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Abstract

In the preceding two decades, Hidden Markov models have become the

method of choice for obtaining novel information from intensive longitudinal

data sequences. One of the fundamental problems in hidden Markov mod-

elling pertains to retrieving the structure of a hidden process phenomenon.

Retrieving such structures enables researchers to formulate models which best

describe unobserved real-world process phenomena. These types of learning

problems are typically adressed with the Gibbs sampler. Methodological

guidelines on fitting and optimal input specifications for the Gibbs sampler

are however sparse. This study seeks to identify the general and optimal

relations between the Gibbs sampler and two of its input variables: the

number of event types inherent to, and the length of, the event observation

sequence. In doing so it seeks to establish specification references for the

appropriate and optimal use of the Gibbs sampler in single sequence HMM

learning. Results indicate four event types and a sequence input length of

8000 to result in superior Gibbs sampler estimates. This study’s conclusions

consequently coincide with, and add to the extant literature. Future research

avenues in regards to extending current work, and incorporating additional

observation variabes are discussed.



Introduction

Over the course of the preceding decades, hidden Markov models (HMMs) have

become the method of choice for describing and explicating latent process dynamics

(Eddy, 1996; Eddy, 1998; Rabiner & Juang, 1986; Rabiner, 1989). By examining

the temporal associations and transitions between each successive observation and

its associated underlying hidden state, Markovian modelling techniques enable

researchers to extract novel information from intensive longitudinal data (ILD)

series (Aarts, 2016; Rabiner, 1989). Conventional statistical models are typically

ill-suited to adequately address such time-series data, in that the information

contained within the ILD is severely abridged or even completely discarded in

their application (Aarts, 2016). Vis-à-vis such conventional models, and due to

the flexibility of their mathematical structure, HMMs present a universal and

actionable method for ILD analysis, facilitating the reformulation and extension of

scientific theory in a wide variety of research areas. These types of models have

been utilized to study speech and handwriting recognition (Chen, Kundu, & Zhou,

1994; Rabiner, 1989), human action and shape classification (He, & Kundu, 1991;

Yamato, Ohya, & Ishii, 1992), computational molecular biology (Eddy, 2011; Fine,

Singer & Tishby, 1998), brain MR image segmentation (Zhang, Brady, & Smith,

2001), precipitation occurence (Hughes, Guttorp, Charles, 1999) and stock market

forecasting (Hassan, & Nath, 2005).

Due to increases in the general availability and quality of ILD, coupled with

advances in computing power and estimation procedures, HMMs have become

an increasingly relevant and accessible modelling strategy (Visser, 2011; Gagniuc,

2017). The expanding significance of the HMM in the contemporary analysis of

ILD necessitates the formulation of a set of guidelines to aid current and future

researchers in its correct and efficient application. One of the fundamental problems

in hidden Markov modelling relates to the identification of the underlying latent

structure of the process phenomenon of interest (Rabiner, 1989). Uncovering this

structure is central to most HMM applications, because it enables researchers to

optimally adapt the parameters of the HMM to ILD sequences, i.e., formulate

HMMs which best represent real-world process phenomena (Visser, 2011; Rabiner,

1989). However, since the latent configuration of the system is hidden and therefore

apriori unknown, its optimal configuration needs to be approximated with the

use of Markov Chain Monte Carlo (MCMC) sampling algorithms (Rydén, 2008;

Scott, 2002). In short, MCMC sampling algorithms enable researchers to calculate

numerical approximations of multi-dimensional integrals (Lynch, 2007). These types

of methods approximate the distribution of a particular parameter by sampling

from a multi-dimensional random variable, resulting in an ensemble distribution

from which summary statistics such as the mean and variance can consequently be

extracted (Lynch, 2007).
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For this particular investigation, the Gibbs sampler MCMC algorithm will be

utilized to approximate the latent structure of the HMM, on account of it being

the contemporary MCMC algorithm of choice for single sequence HMM learning

(Rydén, 2008; Scott, 2002).

Ideally, the Gibbs samplers approximation of the latent structure of the HMM

will constitute a one-to-one representation of the true parameter values of the

latent system. Accurate Gibbs sampling estimator values are however dependent

on a diverse set of input variables, such as the length of the ILD sequence, the

number of event types relative to the number of states, and the shape of the

probability distributions of the transition and conditional probability matrices

(Rabiner, 1989; Rydén, 2008; Scott, 2002; Chudova & Smith, 2002). This input

specific accuracy variability neccesitates the existence of a reference set which

delineates to researchers how the Gibbs samplers input values can be adapted

to provide an optimal and efficient description of the system of interest. Such

reference documentation is however generally lacking in the extant literature on

HMM Gibbs sampling input specification (Brooks, Gelman, Jones, & Meng, 2011;

Cappé, Moulines, & Rydén, 2009). As such, the central objective of this study

pertains to adressing and ameliorating this knowledge gap. It seeks to do so by

establishing references on the degree to which a subset of the total set of relevant

input variables affect the Gibbs samplers capacity to produce accurate HMM

parameter estimates. It additionally seeks to identify the single and combined value

input ranges for which these variables enable the Gibbs sampler to produce optimal

system approximations. Catalogueing such specification references will consequently

allow for the tentative formulation of a set of guidelines on the topic of if and when

the Gibbs samplers estimates can be expected to accurately reflect the structure

of the system of interest. This inquiry will proceed by providing the reader with

a stagewise description of the HMM, and the Gibbs sampler MCMC algorithm.

Consequently, based on the extant literature on Gibbs sampler input specification,

the variables of interest and their hypothesized relations to the functioning of the

Gibbs sampler are discussed.
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Model description

The Markov chain

The hidden Markov model is an augmented version of the Markov chain (MC)

model (Jurafsky & Martin, 2014). The MC is a discrete-time stochastic model

describing a system which at any moment in time is in one of a set of N events

E = {E1, E2, ..., En} (Rabiner, 1989). At regularly spaced, discrete time points, the

system transitions from one event to another based on a probability set that is

exclusively determined by the current event (Jurafsky & Martin, 2014; Rabiner,

1989). The time points associated with the event transitions are denoted by t = 1, 2,

. . . , T, with the current event at time t having the denotation Et (Rabiner, 1989).

The assumption that the probability for each consecutive event is dependent solely

on the event that precedes it is the central premise of the Markovian modelling

framework (Gagniuc, 2017; Jurafsky & Martin, 2014). This so-called Markov

property defines the MC model to be memoryless; conditional on the present event

displayed by the system, its future and past events are independent (Gagniuc, 2017;

Jurafsky & Martin, 2014).

In formal terms, the MC model provides a description of a sequence of time-

ordered events {Et : t = 1, 2, ...,T}, where the values for each event Et originate

from the set of countable natural numbers N, i.e., Et ∈ {1, 2, ...,N} (Aarts, 2016).

The Markov property dependency assumption is defined by the argument

P(Et+1 | Et, Et+1....E1) = P(Et+1 | Et) (1)

where the probability of switching to the next event Et+1 is exclusively dependent

on the state of the current event Et (Aarts, 2016). See figure 1 below for a graphical

depiction of transitions between events conform the Markov property.

Figure 1: Directed graph illustrating memoryless transitions between events.

Transitions between events in the sequence are represented by a transition proba-

bility matrix Γ, in which the element γij denotes the probability of transitioning

from event i at time t to event j at time t+1 (Rabiner, 1989):

γij = P(Et+1 = j | Et = i) with
n∑
j

γij = 1 ∀i. (2)

The transition probability matrix contains the complete set of probabilities to

transition from event i to event j, with j ∈ {1, 2, ...,N}, including the self-transition

probability i to i (Rabiner, 1989). Note that Γ is a right-stochastic matrix, i.e.,

the elements of each row sum to 1 (Gagniuc, 2017).
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Also note that the transition probabilities γij are assumed to be time-homogeneous,

i.e., remain constant over the duration of the finite span of the event sequence

(Rabiner, 1989). See figure 2 below for a graphical representation of the transition

probability matrix.

Figure 2: Transition probability diagram for a system with an event set of three. Note

that in this particular example, the transition probabilities γ12 and γ31 equal zero.

The second and final component of the MC is its initial probability distribution -

given as a stochastic row vector π = (π1, π2, ..., πi) - which represents where the

event sequence might start out initially, and with what probabilities (Jurafsky

& Martin, 2014). Some events j may have πj = 0, meaning that they cannot be

initial sequence events (Jurafsky & Martin, 2014). Furthermore, like the transition

probability matrix, the elements of the row vector πi sum to 1, i.e.,
∑n

i=1 πi = 1

(Jurafsky & Martin, 2014).

To set ideas, two key applications of the MC model will summarily be discussed.

Consider a Markov chain model describing a generic process phenomenon with event

set E = {E1, E2, E3}, for a sequence t = 1, 2, ..., 8 of observed time-ordered events

O = {E2, E3, E1, E3, E1, E3, E1, E2}. Assume that the phenomenon is adequately

described by the event set at any point t, that the transition probability matrix Γ

is of the form

Γ = γij =

0.4 0.3 0.3

0.2 0.6 0.2

0.1 0.1 0.8


and that the initial probability distribution row vector equals π =

[
0.1 0.7 0.2

]
.

Given the specified MC model λ, what is the probability of the observed event

sequence O? Analogous to Rabiner (1989), writing

P (O | λ) = [P (E2, E3, E1, E3, E1, E3, E1, E2 | λ]

= P [E2] · P [E3 | E2] · P [E1 | E3] · P [E3 | E1]·

P [E1 | E3] · P [E3 | E1] · P [E1 | E3] · P [E2 | E1]

= π2 · γ23 · γ31 · γ13 · γ31 · γ13 · γ31 · γ12
= (0.7)(0.2)(0.1)(0.3)(0.1)(0.3)(0.1)(0.3)

= 3.78 · 10−6

results in a probability of 3.78 · 10−6 for the sequence occurence O given the MC

model.
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A second query one can address using the MC model concerns that circumstance

wherein the model is in a known event, and one seeks to determine the probability

that the model will remain in that event for an exact amount of t time points.

Analogous to Rabiner (1989), the probability of the observed event sequence

O = {Ei
1
, Ei

2
, Ei

3
, ..., Ei

t
, Ej
t+1

6= Ei}

given the MC model λ equals

P (O | λ,E1 = Ei) = (γiit−1)(1− γii) = pit (3)

where pit is the probability density function of duration t in event i. Based on pit,

the expected number of subsequent observations for a certain event - conditional

on it being the initial event in the observed event sequence - is provided by the

argument:

t̄i =
∞∑
t=1

tpi(t) =
∞∑
t=1

t(γii)
t−1(1− γii) =

1

1− γii
. (4)

Given the MC model and the self-transition probabilities contained in the transition

probability matrix Γ that was defined on the previous page, the number of expected

subsequent observations would equal 1 / 0.6 = 1.67 for event E1, 1 / 0.4 = 2.5 for

event E2 and 1 / 0.2 = 5 for event E3.

The hidden Markov model

Although the MC model constitutes an effectual method for determining ob-

served event sequence probabilities, it is unable to properly adress those types of

process phenomena where the event sequence of interest is not observable (Jurafsky

& Martin, 2014). The hidden Markov model (HMM) extends the concept of the

Markov chain so that the likelihood of occurence for an event is a probabilistic

function of an unobserved underlying state (Rabiner, 1989). The HMM is a doubly

embedded stochastic process, with an underlying stochastic process that is not

observable, but which can be observed through another set of stochastic processes

that produce the observed event sequence (Rabiner, 1989). HMMs thus enable

researchers to analyze both observed and hidden underlying events that are thought

of as causal factors in the probabilistic model (Jurafsky & Martin, 2014).

In order to explicate the HMM framework to the reader, Visser’s (2011) topology

of the three fundamental characteristics of the discrete time HMM is presented

and expounded on. The first of Visser’s (2011) defining characteristics relates to

the fact that the marginal distribution of the intensive longitudinal data (ILD)

sequence has a mixture distribution, i.e., the collapsed set of event observations

are drawn from two or more distributions with different parameter values.
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In formal terms, consider an observed event sequence {Et : t = 1, 2, ..., T}, which can

have either a discrete or a continuous distribution, and an associated underlying

HMM consisting of the state variables {St : t = 1, 2, ..., T}. Throughout this

particular consideration, the state variables are defined to be discrete; they are

elements of a finite set s = {1, 2, ...,m}, so that St = i, i ∈ s. The set s is the finite

state space of the HMM - the set of all possible configurations of a system - while

m represents the total number of states in the model. Since the HMM considered

here is a discrete time model, i.e., for each time point t, there exists at most a single

hidden state that can function to generate an observable event, the probability of

observing the current event Et is exclusively determined by the current latent state

St (Rabiner, 1989):

P (Et | Et−1, Et−2, ..., E1, St, St−1, ..., S1) = P (Et | St). (5)

Put differently, the observations Et are dependent on the state variables St such

that the distribution of Et can be written as fi(Et) := f(Et | St = i) (Visser,

2011). Because the set s is finite, the marginal distribution of the ILD is a mixture

distribution with m states

f(Et) =
m∑
i=1

pifi(Et) (6)

where pi are the state proportions with the constraint that
∑m

i=1 pi = 1, pi ≥ 0 and

fi(·) is the conditional distribution of the data in state i (Visser, 2011). In sum,

HMMs are characterized by discrete, hidden states, which can be interpreted as

states in a process that generate typical observations for that particular moment

in time (Visser, 2011). An intuitive example of this characteristic is provided by

the analysis of sleep stages with use of the HMM framework (Flexerand, Dorffner,

Sykacekand, & Rezek, 2002). Although sleep stages such as REM sleep, deep

sleep and wakefulness are not directly observable, they each generate characteristic

continuous EEG measurements - which, for the sake of argument, are subsequently

discretizised - that communicate their relative presence to researchers (Flexerand

et al., 2002).

The second defining characteristic of the HMM relates to the temporal associa-

tions and transitions between the underlying states, which like in the MC model,

conform to the Markov property dependency assumption, but now for states instead

of events. Write

P (St+1 | St, St+1, ..., S1) = P (St+1 | St) (7)

so that the probability of transitioning to the next state St+1 depends only on

the current state St. See figure 3 on the next page for a graphical representation

of the temporal evolution of the HMM. Note that each state produces a single

unique observation, drawn from a distribution distinct to the active state, as per

the first defining characteristic, and that the probability for each consecutive state

is exclusively determined by the state that precedes it, as per the second.
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Figure 3: Temporal evolution of the hidden Markov model

Based on the definition of the HMM so far, the model can be said to contain

three sets of parameters: the initial probabilities of the states πi, the transition

probability matrix Γ, and the state-dependent probability distribution of observing

Et given St with parameter set θi. The first two of these parameters sets, namely π

and Γ, are analogous to the MC model, but - as stated earlier - now relate to the

hidden states as opposed to the observed events. The initial probability distribution

is given by stochastic row vector π = (π1, π2, ..., πi), and represents where the state

sequence might start out initially, and with what probabilities (Jurafsky & Martin,

2014). Some states j may have πj = 0, meaning that they cannot be initial sequence

states (Jurafsky & Martin, 2014). Furthermore, the elements of the row vector πi

sum to 1, i.e.,
∑n

i=1 π1 = 1 (Jurafsky & Martin, 2014). Alternatively, denote the

probability that the first state in the state sequence, Si, equals i with (Rabiner,

1989):

πi = P (S1 = i) with πi = 1. (8)

The transition probability matrix Γ with transition probabilities γij denotes the

probability of transitioning from state i at time t to state j at time t+ 1 (Rabiner,

1989):

γij = P (St+1 = j | St = i) with
n∑
j

γij = 1 ∀i. (9)

The transition probability matrix contains the complete set of probabilities to

transition from state i to state j, with j ∈ s, s ∈ {1, 2, ...,m}, including the self-

transition probability i to i (Rabiner, 1989). Note that Γ is a right-stochastic

matrix, i.e., the elements of each row sum to 1 (Gagniuc, 2017). Also note that

the transition probabilities γij are assumed to be time-homogeneous, i.e., remain

constant over the duration of the finite span of the state sequence (Gagniuc, 2017).

The third parameter set is the state-dependent probability distribution, which

denotes the probability of observing Et given St with parameter set θi (Jurafsky

& Martin, 2014). In this particular consideration, the state-dependent probability

distribution is given by a categorical distribution, where the parameter set θi is the

set of state-dependent probabilities of observing certain events.
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This consequently translates into

P (Et = E | St = i) ∼ Cat(θi) (10)

for the observed event outcome set E = {1, 2, ..., n}, where θi = (θ1, θ2, ..., θn) is

a vector of probabilities for each state S = {i, ...,m} with θi = 1, i.e., the set

of possible outcome probabilities sum to 1 within each state vector (Aarts, 2016;

Gagniuc, 2017).

The third and final characteristic of the HMM relates to the fact that the

underlying discrete states St are hidden. The distribution function f(Et | St = i)

or fi(Yt) is not a deterministic function but a probability density function (Visser,

2011). It would otherwise simply present a mapping of the states St into the

event observations Et, and reduce from an HMM to an MC model since St is now

observed (Visser, 2011). Relating this third characteristic to the sleep stage example,

a probabilistic relationship is defined to exist between the set of discretizised EEG

readings and the set of discrete sleep stages. Although some EEG readings might

represent uncharacteristic output for one particular sleep stage, while being more

typical for the other, all states have a defined chance of generating them.

To summarily set ideas in regards to how HMMs function to generate observed

event sequences, consider a discrete time HMM (λ) describing sleep pattern data.

The HMM consists of two sets: a state set S = {S1, S2, S3}, and an event set

E = {E1, E2, E3, E4, E5, E6}. The elements of the state set correspond to the

concepts of wakefulness, REM sleep and deep sleep respectively, where the event set

refers to different types of discrete EEG measurements. It generates sleep pattern

data on the basis of the following parameter sets:

π =
[
0.90 0.08 0.02

]
, θ =

0.70 0.20 0.02 0.05 0.02 0.01

0.10 0.02 0.50 0.30 0.03 0.05

0.02 0.08 0.05 0.04 0.51 0.30

 , Γ =

0.3 0.6 0.1

0.1 0.5 0.3

0.2 0.3 0.5

 .
Analogous to Visser (2011), in order to generate data from the HMM framework,

first the value for the initial state variable St=1 needs to be determined by drawing

from the initial state probability vector π. In this particular instance, it is assumed

that the observation period is initiated when the test subject has just entered

bed, which naturally corresponds to a high probability for wakefulness as being

the initial state in the hidden state sequence. Given the initial state, consequently

draw an observation from the appropriate row of the state-dependent distribution

θ. Given that S1 is the active underlying state at time t = 1, inspection of the

θ matrix shows that the EEG measurement type E1 has the highest likelihood

of occurence among all events in the event set. Note that the remaining EEG

measurement types have a small but nonetheless defined probability of occurence,

as per the third defining characteristic of the HMM. For this example, assume that

the event with the highest likelihood is drawn for t = 1, i.e., E1. Subsequently,

generate a transition from the appropriate row of the transition matrix Γ which

provides the next value of the state variable St+1.
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Given S1, there exists a moderate to high probability for self-transitioning S1, a

high probability for transitioning to the REM sleep stage S2, and a low probability

for transitioning to the deep sleep stage S3. For the sake of argument, assume that

the subject has entered REM sleep at time t = 2, and has therefore transitioned

from state S1 to S2. Repeat the process of alternately drawing event observations

from θ for each current state, and generating a transition from Γ for determining

the subsequent state, until t = T - 1. See figure 4 below for a graphical reference

on this process of data generation.

Figure 4: HMM data generation process for sleep stage cycles, extended to t = 8 for

illustration purposes.
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Model estimation

Having as such defined and explicated the structure of the HMM, three basic

problems need to be adressed in order for the model to be applicable in real-world

applications (Rabiner, 1989):

Problem 1 (Likelihood / Filtering): Given an observed event sequence E =

{E1, E2, ..., ET}, and an HMM model λ = (Γ, θ, π), how does one efficiently com-

pute P (E | λ)?

Problem 2 (Decoding / Smoothing): Given the observed event sequence

E = {E1, E2, ..., Et}, and an HMM model λ = (Γ, θ, π), how does one choose a

corresponding state sequence S = {S1, S2, ..., ST} which is optimal in some mean-

ingful sense?

Problem 3 (Learning / Training): How does one adjust the model parameters

λ = (Γ, θ, π), so as to maximize P (E | λ)?

For the sake of brevity and structure, the reader is referred to appendix A for a

discussion on how to adress the first two problems with the forward and Viterbi

algorithms. The third query relates to optimizing the HMM model parameters so

that it provides an optimal description of a given observation sequence (Visser, 2011).

As stated earlier, effectively adressing this question is key to most HMM applications,

because it allows researchers to optimally adapt model parameters to observed event

sequences, i.e., create optimal models for real-world process phenomena (Visser,

2011). A number of methods can be used to provide an answer to this problem, such

as Maximum Likelihood, Expectation Maximization or the Baum-Welch algorithm

(Aarts, 2016). The method that will be explicated and utilized here is Bayesian

estimation, on account of its methodological flexibility (Aarts, 2016). The Bayesian

approach utilizes a forward-recursion, backwards-sampling Gibbs sampler Markov

Chain Monte Carlo (MCMC) algorithm to estimate the parameters of the HMM

(Aarts, 2016; Rydén, 2008; Scott, 2002). In order to properly explicate this technique

to the reader, the concepts of Bayesian statistics and diffuse priors are summarily

discussed, on the basis of which the forward-recursion, backwards-sampling Gibbs

sampler is thereafter explicated.

The Bayesian statistical framework postulates that probability expresses a

certain degree of belief about the likelihood of a particular event (Lynch, 2007).

This belief can either be informed by prior evidence for the event, in the form of

pre-existing experimental results for example, or by novel evidence that is yet to

be incorporated in the belief assesment, say recently acquired observational data

(Lynch, 2007). Combining this set of prior and novel evidence results in posterior

evidence, which is an updated or reinformed version of the degree of belief one has

about the event (Lynch, 2007).
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In a mathematical sense, given two events A and B, the conditional probability of

A given that B is true is expressed by Bayes’ theorem

Posterior ∝ Prior · Likelihood −→ P (A | B) ∝ P (A) · P (B | A)

where A represents the proposition about the event and B represents the evidence

for A that is to be incorporated in the belief assessment (Lynch, 2007). The P (A)

argument represents the prior probability of the proposition A, i.e., the belief about

A before any additional evidence is considered. P (B | A) represents the likelihood

function of the presented evidence given the prior belief, i.e., the probability of B

given that A is true (Lynch, 2007). The product of these two terms is proportional

to the posterior distribution P (A | B), the updated degree of belief about the

event (Lynch, 2007). This posterior distribution can consequently be analyzed and

summarized in order to acquire an improved understanding of the nature of the

event (Lynch, 2007).

In order to be able to apply the Bayesian methodology to learning problems in

the HMM framework, appropriate priors for each of the model parameters (Γ, θ) of

interest must first be defined. In other words, a degree of belief about their prior

form has to be established. Since the true distribution values of these parameters

are unknown apriori, their prior specification has to reflect this fact by deliberately

specifying them in as vague a manner as possible. As such, the parameters of

the prior distribution, which are also called hyperparameters, need to be chosen

so that they may assume a wide range of possible values (Lynch, 2007). It is

standard practice in the literature to utilize a uniform Dirichlet distribution when

the parameters of interest follow a categorical distribution and are most accurately

described by a set of diffuse hyperparameters (Lynch, 2007). The uniform Dirichlet

distribution is a multivariate probability distribution that describes k ≥ 2 variables

X1, ..., Xi, such that each xi ∈ (0, 1) and
∑N

i=1 xi = 1, that is parametrized by a

vector of positive-valued parameters α = (α1, ..., αk) (Lynch, 2007)

{x1, ..., xk} ∼
1

B(α)

K∏
i=1

xαi−1
i . (11)

with α1 = ... = αk = 1. The reader is referred to Appendix B for an in-depth

exposition of the uniform Dirichlet prior.

Given the uniform Dirichlet prior, assume that the rows of the transition

probability matrix Γ and the state-dependent probabilities θi are independent

(Aarts, 2016):

St=2,...,T ∼ ΓSt−1 with Γi ∼ Dir(a10) and (12)

Et=1,...,T ∼ θSt with θi ∼ Dir(a20). (13)
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The argument in Equation (12) posits that the probability distribution for the

current state St is given by the row in Γ corresponding to the previous state in the

hidden state sequence St−1 (Aarts, 2016). This argument is only valid for states after

the first time point, since there exists no previous state in the hidden state sequence

for state S1. The probability distribution for S1 is instead determined by the initial

probabilities of the states πi (Aarts, 2016). Per the argument in Equation (13), the

probability distribution of the observed event Et is given by the appropriate row

in θ corresponding to the form of the current state St (Aarts, 2016). The hyper-

parameter a10 of the diffuse prior Dirichlet distribution on Γi is a row vector with

length equal to the number of states m, so that a10 = α1, α2..., αm = 1 (Aarts, 2016).

The hyper-parameter a20 of the diffuse prior Dirichlet distribution on θi is a vector

with length equal to the number of observed events n, so that a20 = α1, α2..., αn = 1

(Aarts, 2016). It is furthermore assumed that πi is a dependent parameter, i.e.,

is invariant by the stationary distribution of Γ, so that π = πΓ (Aarts, 2016).

To summarily elucidate the set of distribution specifications, consider the set of

parameters for a system with S = {S1, S2, S3} and E = {E1, E2, E3, E4}, with

associated diffuse hyper-parameters a10 = (1, 1, 1) for each Γi and a20 = (1, 1, 1, 1)

for each θi. The priors for the parameters of interest Γ and θ will than be of the

form

θ =

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

 , Γ =

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

 .
where the probability distribution for each θi is given by Et=1,...,T ∼ θSt and that

of each Γi by St=2,...,T ∼ ΓSt−1 . Given this set of distributions, the objective is to

construct the joint posterior distribution of the hidden state sequence (S) and

the parameter estimates (Γ, θ), given the observed event sequence (E) and the

hyper-parameters (a10, a20) (Aarts, 2016):

P ((St),Γi, θi | (Et)) ∝ P ((Et) | (St), θi) · P ((St) | Γi) · P (Γi | a10) · P (θi | a20).

The forward-recursion, backward-sampling Gibbs sampler MCMC algorithm is

consequently introduced to approximate P ((St),Γi, θi | (Et)) (Aarts, 2016; Rydén,

2008; Scott, 2002). MCMC models posit that although the actual hidden state

sequence underlying the event observation sequence is unobserved and therefore

unidentifiable, any statistic of its posterior distribution can be approximated given a

sufficiently large set of obtained simulated samples N from its distribution (Yildirim,

2012). The Gibbs sampler is one MCMC technique that enables generating such

a sufficient set of simulated samples (Yildirim, 2012). It does so by iteratively

sampling from the conditional posterior distributions of St, Γi and θi, given the

remaining parameters in the model (Aarts, 2016). It identifies a sample sequence S

on the basis of E, from which it infers Γi and θi conditional on S and E (Aarts,

2016).
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The component of the Gibbs sampling algorithm that adresses the sampling of S is

the forward-recursion, backwards-sampling procedure, which obtains the forward

probabilities αt(i), i.e., the joint probability of state S = i at time point t and

Et=1,...,T , given the current values of Γ and θ (Aarts, 2016; Jurafsky & Martin,

2014). See the discussion of the forward algorithm in appendix A for reference on

its formal definition and procedural description in order to solve for P (O | λ). On

the basis of the forward probabilities αt(i), the procedure consequently generates

a hidden state sequence S through backward sampling of αT :1, drawing values

(ST , ST−1, ..., S1) (Aarts, 2016). Conditional on this sampled hidden state sequence

S = {S1, S2, ..., ST} and the observed event sequence E = {E1, E2, ..., ET}, the

parameters of interest Γi and θi can consequently be drawn from their conditional

posterior distributions P (Γi |) and P (θi |) (Aarts, 2016). Specifically, the ith row

of Γ is drawn from its conditional posterior distribution P (Γi |) ∼ Dir(a1mi),

where a1mi represents the sum of the prior Dirichlet values a10 and the number of

transition counts from state i to state i+ 1 in the sampled hidden state sequence

(Aarts, 2016). The ith row of θ is drawn from its conditional posterior distribution

(Pθi |) ∼ Dir(a2mi), where a2mi represents the sum of the prior Dirichlet values a20

and the number of observed event counts for each state i (Aarts, 2016). In essence,

the Gibbs sampler combines a current Dirichlet prior with a generated evidence

likelihood function regarding the parameters of interest Γ and θ, to construct the

conditional posterior distributions P (Γi |) and (Pθi |) from which their updated

values are drawn. This process is generally referred to as a single iteration of the

Gibbs sampler, where the updated posteriors for Γi and θi subsequently function

as the prior Dirichlet distribution input for the next iteration of the Gibbs sampler

(Aarts, 2016; Rydén, 2008). This iterative process continues until convergence,

meaning that the sample values of the parameters of interest have the same

distribution as if they were sampled from the true posterior joint distribution

(Yildirim, 2012). Note that because the algorithm is initialized with diffuse values,

the posterior distribution samples may not necessarily be representative of the actual

posterior distribution at early iterations in the sequence (Yildirim, 2012). Since

MCMC theory guarantees that the samples generated under the Gibbs sampler will

ultimately approximate the joint posterior of interest, they are typically run for a

large number of iterations in order to achieve convergence. Because samples from

early iterations can be assumed to not originate from this posterior, it is common

to discard them; this initial iteration period is also referred to as the “burn-in”

period (Yildirim, 2012).

To summarily set ideas in regards to the functioning of the Gibbs sampler,

suppose that one wishes to find a more optimal parameterization set for the system

introduced on the previous page, with S = {S1, S2, S3} and E = {E1, E2, E3, E4},
and associated diffuse hyper-parameters a10 = (1, 1, 1) for each Γi and a20 =

(1, 1, 1, 1) for each θi.
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Recall that the diffuse prior Dirichlets for the parameters Γ and θ were of the form:

θ =

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

 , Γ =

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

 .
Assume that, given the priors and the event observation sequenceE = {E3, E1, E3, E2,

E2, E4, E3, E1}, the forward-recursion, backward-sampling algorithm has sampled

the underlying hidden state sequence S = {S2, S1, S1, S3, S2, S3, S1, S2}. See figure

9 below for a graphical representation of this system.

Figure 5: Visualization of the characterized system

Based on the system, index the counts for the cells in each of the respective rows

of Γ and θ, where the probability distribution for each θi is given by Et=1,...,T ∼ θSt

and that of each Γi by St=2,...,T ∼ ΓSt−1 :

θ1 =
[
1 0 2 0

]
, θ2 =

[
1 1 1 0

]
, θ3 =

[
0 1 0 1

]
,

Γ1 =
[
1 1 1

]
,Γ2 =

[
1 0 1

]
,Γ3 =

[
1 1 0

]
.

Given the respective prior specifications for Γ and θ, the sampled hidden state

sequence S and the observation sequence E, and the respective counts for θi and

Γi, the conditional posterior distribution P (Γi |) and P (θi |) can be constructed as

Dir(a11) = (1 + 1, 1 + 0, 1 + 2, 1 + 0) = (2, 1, 3, 1),

Dir(a12) = (1 + 1, 1 + 1, 1 + 1, 1 + 0) = (2, 2, 2, 1),

Dir(a13) = (1 + 0, 1 + 1, 1 + 0, 1 + 1) = (1, 2, 1, 2).

Dir(a21) = (1 + 1, 1 + 1, 1 + 1) = (2, 2, 2),

Dir(a22) = (1 + 1, 1 + 0, 1 + 1) = (2, 1, 2),

Dir(a23) = (1 + 1, 1 + 1, 1 + 0) = (2, 2, 1).

Drawing values from P (Γi |) and P (θi |) results in the posterior parameter set

θ =

2/7 1/7 3/7 1/7

2/7 2/7 2/7 1/7

1/6 2/6 1/6 2/6

 , Γ =

2/6 2/6 2/6

2/5 1/5 2/5

2/5 2/5 1/5


which function as the parameter sets for consequent sampling of S and as the

updated prior for the subsequent iteration in the Gibbs sampling procedure.
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Problem definition

To re-iterate, the central objective of this study pertains to establishing refer-

ences on the topic of how certain input variables affect the Gibbs samplers capacity

to produce accurate estimates. It additionally seeks to explicate for which single

and combined value input ranges these variables enable the Gibbs sampler to

produce optimal system approximations. By doing so it seeks to adress current

knowledge gaps on the topic of appropriate Gibbs sampling input specification

for single sequence HMM learning. Based on the extant literature, and given the

structure of the Gibbs sampler, two variables are presently identified as influencing

the Gibbs sampler’s estimation performance: The ratio between the number of

states and event types, and the length of the event observation sequence. Note

that this is not an exhaustive list of the variables that can be expected to influence

the Gibbs samplers performance; the shape of the probability distributions of

both the transition and conditional matrix would for instance have constituted an

additional intuitive assessment variable. However, time constraints and processing

power limitations require this inquiry to limit the scope of its investigation. Fur-

thermore, given the relative scarcity of the available literature on Gibbs sampler

input specification, assessing the role of these two variables is a worthwhile first

step in establishing reference material on the subject. As such, the following two

reasearch questions are formulated: How do increases in the number of event types,

and the length of the event observation sequence affect the accuracy of the Gibbs

sampler’s estimates? And for which individual and combined value ranges are these

estimates optimal? Hypotheses regarding the relation between the Gibbs sampler

and the input variables of interest are consequently formulated on the basis of

statistical reasoning, and the extant literature on optimal Gibbs sampling input

specification.

With respect to the ratio between the number of states and event types, the

literature suggests that introducing additional event types will, ceteris paribus,

enable the Gibbs sampler to more effectively adress learning problems in the HMM

framework. This argument derives from the notion that isolating pattern occurences

is more difficult in contexts where the event sequence of interest displays a high

pattern periodicity (Chudova & Smyth, 2002). It is a more strenuous task for the

Gibbs sampling algorithm to identify periodic pattern boundaries for such event

sequence types, because they inherently comprise of unlabeled data structures

(Chudova & Smyth, 2002). The absense of clear data label patterns makes the

Gibbs procedure more prone to event-state misclassification, which consequently

introduces error into its estimates regarding the latent structure of the HMM

(Chudova & Smyth, 2002).
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In a study on the subject, Chudova & Smyth (2002) examined the hypothesis that

high pattern periodicity complicates HMM learning, by positing that an increase

in the autocorrelation of periodic observation patterns would result in a decrease

in the Gibbs samplers ability to effectively approximate the parameters of the

HMM. In other words, observation pattern sequences with a high or even uniform

autocorrelation, such as AAAAAA, were expected to represent a more difficult

learning task than sequences with a relatively moderate autocorrelation, such as

ABABABAB or ABCABCAB (Chudova & Smyth, 2002). As per the expectation,

the authors found that increasing pattern structure periodicity resulted in higher

estimation error probabilities for the parameters of the HMM (Chudova & Smyth,

2002). See figure 6 for a graphical illustration on how estimation error will increase

given a higher sequence pattern periodicity.

Figure 6: Posterior probabilities for the first state in the system as presented by Chudova

& Smyth (2002), given increasingly random pattern periodicities. The X-axis represents

position in the sequence. Reprinted from Chudova, & Smyth (2002).

Chudova & Smyth (2002) consequently conclude that ”in general, the detection of

structured patterns in a Markov context presents a more difficult learning problem

than the detection of random patterns”. Another study on the subject by Van

Helden, André, & Collado-Vides (1998) reported that only patterns with a clear

periodic structure complicated learning inference, reinforcing the notion that the

boundaries of periodic patterns are harder to determine than those of non-periodic

patterns. Barring these two studies, work on the influence of pattern periodicity on

the accuracy of the Gibbs samplers estimates is generally sparse.
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Analogous to Chudova & Smyth, this study therefore reasons that an increase

in the number of event types will induce randomization into the patterns of the

observation sequence, thereby lowering autocorrelation and increasing pattern

variabllity. Increased pattern variability will consequently better enable the Gibbs

sampler to identify the periodic boundaries of the patterns in the sequence, and infer

from it the underlying latent structure of the HMM. As such, it is here hypothesized

that the introduction of additional event types will function to improve the estimates

of the Gibbs sampler. Given the hypothesized relationship between the number

of event types and the functioning of the Gibbs sampler, this study consequently

seeks to identify the value input range for which this variable enables the Gibbs

sampler to optimize its HMM parameter approximations. Optimization is defined

here as selecting the best input value from the set of available alternatives on the

basis of some selection criterion. This criterion is characterized as being that value

where the marginal cost of obtaining one estimator accuracy increment outweighs

its marginal benefit. Its definition is based on the notion that in general, studies

seek to obtain estimates which are as optimal as possible, while minimizing the

time and computing power required to produce it. As such, this study hypothesizes

the optimal number of event types to be situated in the lower, but not the lowest

bounds of the event type variable. This expectation is based on findings by Chudova

& Smyth (2002), who report that initial increases in the number of event types

resulted in drastic increases in the accuracy of the Gibbs samplers estimates, but

that the effect of subsequent increases were generally redundant. The reader is once

more referred to figure 6 for a visual demonstration of this finding.

With respect to the length of the observed event sequence E, additional obser-

vational data will enable the forward recursion - backward sampling algorithm to

produce a larger sample of the hidden state sequence, which consequently provides

additional information from which to infer its latent structure (Jurafsky & Martin,

2014; Lynch, 2007). One would therefore intuitively expect a longer event sequence

to result in improved Gibbs sampling estimates for the parameters of the HMM.

This argument is intuitive because, by the theorem of large numbers, the sample

average Ā = 1
n
(X1+ ...+XN ) will converge to the expected value Ā→ µ for n→∞

(Hsu & Robbins, 1947). More formally, assume that X1, ..., XN are independent and

identically distributed random variables with mean µ. Let Ā represent the average

of n variables. Then, for any ε ≥ 0, the following must hold (Hsu & Robbins, 1947):

lim
n→∞

P (|Ā− µ| ≤ ε) = 1.

An illustration of the phenomenon of the law of large numbers is provided in

the discussion on updating priors in appendix B. A graphical illustration of the

phenomenon is furthermore provided in figure 7 on the next page. The notion

that additional sequence length is beneficial to the Gibbs samplers performance is

moreover supported by empirical studies on the subject.
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For instance, Chen and Schmeiser (1993) recommend the use of a single long run

as opposed to an aggregate of multiple short runs to minimize point-estimator

bias. In a comment on implementation strategies for MCMC sampling techniques,

Raftery & Lewis (1992) similarly ”recommend that inference ultimately be based

on a single long run, but that this be monitored using carefully chosen diagnostics”.

Figure 7: Case example of the mechanism of the law of large numbers for a six-sided

die. The figure shows that as the number of rolls n increases, the averages values of the

die converge to the expected value µ = 3.5.

Furthermore, a study on the topic of applying Bayesian techniques to natural

language processing (NLP) problems found that the accuracy of Gibbs sampler

HMM parameter estimates increased when the total input data did as well (Gao &

Johnson, 2008). Chudova & Smyth (2002) similarly report that, ceteris paribus,

additional input data resulted in improved Gibbs sampler HMM parameter esti-

mates. Although these studies are relatively dated, they nonetheless lend empirical

credence to the argument that, in general, additional data input and single long

runs will enable the Gibbs sampler to improve on its parameter estimates. This

study consequently hypothesizes that, ceteris paribus, an increase in the sequence

length will result in improved Gibbs sampler estimates. With regards to the opti-

mization query, both the law of large numbers and literature suggest that increases

in the length of the event observation sequence will continuously result in improved

estimates of the system, albeit with increasingly decreasing marginal returns. As

such, this study hypothesizes that the marginal estimator accuray rate for this

variable follows a logarithmic growth curve, where optimal value input ranges are

situated in the upper quartile of the variable.
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Having thus characterized the general and optimal input relations between the

variables of interest and the Gibbs sampler on the individual variable level, this

study subsequently seeks to identify optimal such input relations on the combined

variable level. The objective in regards to this query is twofold. Analogous to the

individual level optimization hypotheses, it first seeks to identify the combined

value specification ranges for which the Gibbs samplers approximation of the

systems latent structure is optimized. It secondly seeks to identify constrained

combined optimal value ranges, i.e., variable specifications which produce optimized

Gibbs sampler estimates given that one of the two variables is constrained to

a particular value. Establishing references with regards to this second query is

especially significant, because it enables researchers to adapt the input specifications

of the Gibbs sampler to the conditions of the context application. Put differently,

it maximizes Gibbs sampler estimates in application contexts where specifying

optimal input values is, for one reason or another, unfeasible. An example of a

constrained context could pertain to the topic of exoplanet discovery, where the

length of the event observation sequence is determined by the time interval in which

the exoplanet of interest is situated in front of its host star. With regards to the

unconstrained optimization query, this study hypothesizes optimal value ranges to

be situated in the intersection between the lower bound values of the number of event

types, and the upper quartile values for the length of the observed event sequence.

With regards to the constrained optimization query, this study hypothesizes that,

given the constraint, estimates will be maximized in accordance with the optimal

individual variable input values. In other words, this study hypothesizes that, given

a constrained value for the number of event types, optimal Gibbs sampler input

values for the length of the sequence will be situated in the upper quartile. Inversely,

given an imposed constraint on the length of the observation sequence, optimal

Gibbs sampling inputs for the number of event types will be situated in the the

lower bounds of the variable. This inquiry will proceed by explicating the design

of the simulation study that is utilized to investigate the sum of the here defined

hypotheses. The results of this study are consequently reported and discussed,

on the basis of which conclusions are drawn with respect to the here formulated

hypotheses.

19



Simulation design

The proposed relations between the variables of interest and the functioning of

the Gibbs sampler are assessed by conducting and subsequently interpreting the

results of a simulation study. Simulations can be understood to be approximate

imitations of the functioning of a particular process or system (Banks, Carson,

Nelson, & Nicol, 2010). They consist of a model, which provides a description of

the process or system of interest, and the simulation itself, which describes how the

model operates in a particular scenario (Banks, et al., 2010). Simulation studies

comprise of a set of multiple such simulations, which describe the operations of the

model of interest in a number of different scenarios (Banks, et al., 2010). Empirical

results regarding these operations can consequently be analyzed to evaluate the

models performance in each scenario (Morris, White, & Crowther, 2019).

In this particular study, the Gibbs samplers capacity to retrieve latent HMM

structures is the system of interest. The model used to represent the Gibbs sampler

is specified in R, a language and environment for statistical computing, developed

at Bell Laboratories by John Chambers and colleagues. The specific R function

that prescribes how the Gibbs sampler model operates is authored by Emmeke

Aarts, who is an assistant professor based at the department of methodology and

statistics at Utrecht University. Given the Gibbs sampler model, the objective

of this simulation study is to describe the procedure’s operational capacity in

retrieving the latent parameter values for a number of varyingly specified HMM

data sequences. These sequences have been generated with an R-function that

emulates the functioning of a generic HMM. Like the model function, this function

was originally authored by Aarts. The input values for the HMM function were able

to vary with respect to the number of states, the number of event types, the length

of the input sequence, the initial state probabilities and the probability matrices

for Γ and θ. The number of states and its associated transition probability matrix

Γ were kept constant over all HMMs. Specifically, a three state HMM system was

specified, with associated transition probability matrix:

Γ =

0.87 0.06 0.07

0.03 0.92 0.05

0.07 0.01 0.92

 .
The initial state probability vector was similarly kept constant over all HMMs,

with:

π =
[
0.40 0.30 0.30

]
.

The values for the length of the observation sequence were able to vary over

the elements of the set L = {1000, 2000, 4000, 6000, 8000}, whereas the values

for the number of event types were able to vary over the elements of the set

N = {3, 4, 6, 8, 10}. The ranges for both these variables were formulated to represent

a comprehensive span of their typical real-world values.
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Note that the lower value intervals are somewhat more narrow as opposed to

those in the upper ranges. This design choice seeks to reflect the consensus in

the literature that initial increases in N and L will have a larger impact on the

accuracy of the Gibbs samplers estimates. The respective conditional probability

matrices for each element of N were consequently characterized as:

θ3 =

0.87 0.06 0.07

0.03 0.92 0.05

0.07 0.01 0.92

 , θ4 =

0.68 0.24 0.06 0.02

0.02 0.22 0.75 0.01

0.03 0.03 0.01 0.93

 ,

θ6 =

0.62 0.31 0.03 0.02 0.01 0.01

0.02 0.01 0.55 0.38 0.01 0.03

0.03 0.03 0.01 0.02 0.58 0.33

 ,

θ8 =

0.34 0.25 0.25 0.05 0.02 0.03 0.04 0.02

0.02 0.02 0.01 0.42 0.29 0.21 0.01 0.02

0.01 0.03 0.01 0.02 0.01 0.03 0.40 0.49

 ,

θ10 =

0.34 0.23 0.21 0.05 0.02 0.03 0.04 0.02 0.04 0.02

0.02 0.02 0.01 0.32 0.22 0.19 0.16 0.02 0.02 0.02

0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.36 0.29 0.25

 .
Note that although the probability mass that is assigned to each event type shifts

between the varying conditional matrices, it remains relatively equal for the sum

of event types that are key indicators for a particular state. This simulation design

represents how increases in N function to introduce pattern variability into the

observation sequence of the HMM. Given the value ranges of the input variables,

the HMM simulation function consequently proceeded to generate an HMM data

sequence for each value combination of N and L. For example, table 1 shows that

in scenario one, an HMM with three event types generated an HMM observation

sequence with a length 1000. The sum of all simulation combinations between

N and L resulted in a total of 5 · 5 = 25 simulated HMM data sequences. The

reader is once more referred to table 1 below for an overview of the complete set of

simulation scenarios.

Table 1: Set of HMM data simulation scenarios.

N

3 4 6 8 10

L

1000 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

2000 Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10

4000 Scenario 11 Scenario 12 Scenario 13 Scenario 14 Scenario 15

6000 Scenario 16 Scenario 17 Scenario 18 Scenario 19 Scenario 20

8000 Scenario 21 Scenario 22 Scenario 23 Scenario 24 Scenario 25
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The value specifications of the Gibbs sampler model were consequently able to

vary with respect to the number of iterations, the number of samples, the burn-in

period and its starting values. For all scenarios, the Gibbs sampler procedure was

repeated for a total of 4000 iterations, with a burn-in period of 1000. For scenarios

1 - 5, five-hundred samples were drawn for each scenario, for scenarios 6 - 15,

two-hundred-and-fifty samples were drawn each scenario, while for scenarios 16 - 25,

one-hundred samples were drawn for each scenario. As was alluded to earlier, due

to constraints in time and computing power, this study was unfortunately unable

to draw equally large sample sizes for all scenarios. As a consequence it had to

impose limitations on the sample sizes for HMM data sequences with higher values

for N . The starting values for the transition probability matrix were specified as

Γs =

0.40 0.30 0.30

0.30 0.40 0.30

0.30 0.30 0.40

 ,
whereas the starting values for the respective conditional probability matrices were

specified as:

θ3s =

0.40 0.30 0.20

0.30 0.40 0.30

0.30 0.30 0.40

 , θ4s =

0.30 0.30 0.20 0.20

0.20 0.30 0.30 0.20

0.20 0.20 0.20 0.40

 ,

θ6s =

0.24 0.24 0.13 0.13 0.13 0.13

0.13 0.13 0.24 0.24 0.13 0.13

0.13 0.13 0.13 0.13 0.24 0.24

 ,

θ8s =

0.20 0.15 0.15 0.10 0.10 0.10 0.10 0.10

0.10 0.10 0.10 0.20 0.15 0.15 0.10 0.10

0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.20

 ,

θ10s =

0.20 0.12 0.12 0.08 0.08 0.08 0.08 0.08 0.08 0.08

0.07 0.07 0.07 0.18 0.14 0.14 0.12 0.07 0.07 0.07

0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.20 0.12 0.12

 .
Note that the starting values have been specified so as to slightly steer the estimates

of the Gibbs sampler in the direction of the true underlying parameter values of

the model. This was done to prevent label switching. The reader is referred to

Scott (2002) for a discussion on this issue. Also note that the starting values for

the first row of θ3s were misspecified by the researcher. Due to this specification

error, the likelihood of the occurence of label switching was increased for all the

three event type scenarios. Initial priors for the Gibbs sampler were given uniform

and symmetric Dirichlet distributions, for reasons explicated in appendix B and in

the discussion on Gibbs sampling on pages 10-14. The Gibbs sampler model was

subsequently ran on each scenario, resulting in sample ensemble estimates of the

latent structure underlying each of the twenty-five scenarios.
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Results

The accuracy of the Gibbs samplers ensemble parameter estimates for the vary-

ing scenarios will be assessed by comparing them with with their true parameter

values, which were specified on pages 20 and 21 of the previous section. Unfortu-

nately, a number of scenarios suffered from severe label switching. Specifically, all

scenarios with three event types, and all scenarios with an observation sequence

of length 1000 displayed switched components. As such, these scenarios had to be

excluded from the analysis. Some incidental label switching also ocurred for the

scenarios with four event types and associated sequence lengths 2000 and 4000, and

the scenario with eight event types and associated sequence length 2000. However,

in these particular instances only a single sample value of the total ensemble sample

displayed switched components. The influence of label switching on these scenarios

parameter estimates was therefore negligible. After excluding the switched com-

ponent scenarios, a total of sixteen scenarios were incorporated into the analysis.

Three statistical measures were subsequently utilized to facilitate the comparison

between the estimated and true parameter values, the average bias, the Root Mean

Square Error of Approximation or RMSEA, and the coverage. The definitions of

these statistical measures are first summarily discussed. The average bias of an

ensemble sample of estimators is the difference between each estimator’s posterior

mean of the estimated value, and the true value of the parameter being estimated,

averaged over all samples (Lehmann, & Casella, 2006). It is obtained with the

argument

Biasξ(ξ̂) =
1

Z
·

Z∑
z=1

(ξ̂ − ξ)

with sample size z ∈ {1, ..., Z}, ξ̂ as the posterior mean of the estimator’s estimated

value, and ξ as a real number representing the true value of the parameter being

estimated (Lehmann, & Casella, 2006). The RMSEA represents the sample variation

of the difference between the estimated value and the value of what is estimated

over the sample size z ∈ {1, ..., Z}, and is given by the argument (Lehmann, &

Casella, 2006):

RMSEAξ(ξ̂) =

√√√√ 1

Z
·

Z∑
z=1

((ξ̂ − ξ)2).

Note that the interpretation of the bias and the RMSEA are relative to the scale

of the estimated parameter, i.e., a bias of 0.05 is relatively large if the parameter

has a true value of 0.10, but relatively small if it has a true value of 1. To aid

interpretations of the results, relative definitions for the bias and RMSEA have

additionally been specified, which express the bias and RMSEA in percentages

relative to the true parameter value.
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Moreover, due to the fact that the distribution of the probability mass varies for

the respective conditional matrices, specifying relative measures for the bias and

RMSEA will enable their inter-scenario comparison. For the sake of being thorough,

these relative measures have been obtained with the arguments:

Biasξrel[ξ̂] =
1

Z
·

Z∑
z=1

((ξ̂ − ξ)/ξ), and RMSEAξrel(ξ̂) =

√√√√ 1

Z
·

Z∑
z=1

(((ξ̂ − ξ)/ξ)2).

The coverage of the 95% credibility interval finally represents the percentage of the

number of times over the samples that the interval contains the true parameter

value. The size of the credibility interval is also assessed, so as to diagnose the

precision of the Gibbs samplers’ estimates.

The results of the simulation study are consequently evaluated on the basis of

the set of diagnostic statistical measures. The reader is referred to figure 8 for an

overview of the respective biases for the parameters of the transition probabilities

(Γ) for all scenarios. From left to right, the bias has been plotted for each of the

number of event type categories N , with the length of the sequence L as the

grouping variable. The respective X-axes depict the value of the bias, whereas the

respective Y-axes depict each of the parameters in Γ.

Figure 8: Bias of the parameters of the transition probability distribution for the set

of event type categories, with grouping on length. Bias is shown on the X-axis, the

parameters in Γ on the Y-axis.
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First note that the scale of the X-axes range from -0.04 to 0.04 for all event type

categories, indicating that the bias is generally low for all respective parameters

of Γ. Upon further inspection it becomes strikingly apparant that the bias of

the transition probability parameters display highly similar patterns over each of

the event type categories. This is an indication that, for the here specified HMM

scenarios at least, the Gibbs samplers’ estimates of these transition probability

parameters will approach certain estimator values regardless of variations in N .

Transition probability parameter estimates furthermore improve for all event type

categories when L increases, especially for sequence lengths 6000 and 8000, albeit

it only slightly. These preliminary results are consequently reassessed by inspecting

the relative bias of the transition probabilities, for which the reader is referred

to figure 9. As becomes readily apparant from the graph, the relative bias is

lowest for the self-transition probabilities, whereas it is relatively high for the

between-transition probabilities. This is an intuitive finding, because slight under-

or overestimations will be more impactful for parameters with low true values as

opposed to those with high true values. Moreover, as in the absolute bias plot, the

transition probability parameters display highly similar patterns over each of the

event type categories, indicating that this variable is redundant to bias reduction in

Γ. The bias furthermore decreases notably for increases in the length of the event

observation sequence, again specifically for lengths 6000 and 8000. The relative

bias thus reaffirms the notion that there is no effect on the accuracy of the Gibbs

samplers’ estimates of the transition probabilities for increases in N , while there is

for L.

Figure 9: Relative bias of the parameters of the transition probability distribution for

the set of event type categories, with grouping on length. Bias is shown on the X-axis,

the parameters in Γ on the Y-axis.
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The reader is consequently referred to figure 10 for an overview of the biases

for the parameters of the conditional probabilities (θ) for all scenarios. As in the

transition probability plots, the bias has been plotted from left to right for the

number of event type categories N , with the length of the sequence L as its grouping

variable. The respective X-axes depict the value of the bias, whereas the respective

Y-axes depict each of the parameters in θ.

Figure 10: Bias of the parameters of the conditional probability distribution for the

set of event type categories, with grouping on length. Bias is shown on the X-axis, the

parameters in θ on the Y-axis.

Note that the scale of the X-axes range from -0.05 to 0.05 over all event type

categories, indicating that the bias is generally low for all respective parameters of

θ. Further inspection of the plot shows that the bias is generally most under- and

overestimated for key state components, such as S1E2, S2E3, and S3E5, in the six

event type category for example. This is an intuitive finding however, because the

true probabilities for these components are much higher than those of non-key event

components, sensitising them to adopting larger absolute bias values relative to

non-key state components. As such, these values should additionally be evaluated

from a relative perspective to assess the true severity of these biases. The plot

furthermore seems to suggest the presence of an effect of N on the accuracy of the

Gibbs samplers estimates of θ. The parameter progression of the bias is slightly

more narrow for the four, eight and ten event type plots, as opposed to the six

event type plot.
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This distinction is however not very explicit, and should therefore also be re-

evaluated in the context of the relative bias. Parameter estimates furthermore

improve for increases in L over all event type categories, most notably so for the step

from 2000 to any of the higher sequence lengths. The reader is consequently directed

to figure 11 for an overview of the relative bias of the conditional probabilities. As

was expected, reinspection of the S1E2, S2E3, and S3E5 parameters shows that

the relative bias for the key state components is much lower than for the non-key

state components. Upon further inspection of the plot, it becomes strikingly clear

that the conditional probability biases are generally lowest in the four event type

category. This is especially true when coupled with a sequence length of 8000, for

which the conditional probability estimates closely approximate the true values for

almost all parameters of θ. The relative bias patterns for the remaining event types

are subsequently somewhat more fluctuative as opposed to that of event type four,

but generally approach close paramater approximations of the true conditional

probability values for higher sequence lengths of L. For all event types scenarios

therefore, an increase in length of the sequence generally results in a decrease in

the bias, especially for the step from length 2000 to any of the higher lengths.

Figure 11: Relative bias of the parameters of the conditional probability distribution

for the set of event type categories, with grouping on length. Bias is shown on the X-axis,

the parameters in θ on the Y-axis.

27



The reader is consequently referred to figure 12 for an overview of the absolute

and relative RMSEA of the transition probabilities for all scenarios. The figure on

the left indicates that the RMSEA for the transition probabilities remains relatively

even between sequence lengths 2000 and 4000 - even increasing slightly for the

eigth and ten event types - after which it decreases starkly for all event types in

the subsequent 6000 and 8000 length ranges. The RMSEA values for the four and

six event type categories are lowest throughout the graph, but the values for the

entire event type set are generally in close proximity to one another, ultimately

converging in the 6000 and 8000 range. These findings are in line with the reported

findings on the bias, which indicated that increases in L - specifically for lengths

6000 and 8000 - and not so much N were important for ensuring low bias values for

the parameters of the transition probability distribution. The right figure similarly

shows that the relative RMSEA decreases sharply as the length of the sequence

increases, whereas relatively little differences in the RMSEA are observed between

the different event types. The four and six event types can once again be said to

be somewhat more optimal than the others, albeit it only very slightly so.

Figure 12: Absolute and relative RMSEA for the transition probability distributions for

all scenarios. The length of the associated sequence is shown on the X-axis, the RMSEA

- absolute on the left, relative on the right - is shown on the Y-axis. Grouping is by event

type.
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The reader is subsequently directed to figure 13 for an overview of the absolute

and relative RMSEA of the conditional probabilities for all scenarios. The figure on

the left indicates that at length 2000, the RMSEA for the four event type category

is high relative to all other event types. This is most probably a consequence of the

absolute squared bias being inflated for this particular event type, as a result of it

inherently having higher conditional probabilities due to having less components

relative to the other event types. As such, its more sensitive to adopting higher

absolute bias values, and should therefore be contextualized relative to its true

scale. Initial inspection of the relative bias plot on the right shows that in the

context of the true scale, the RMSEA is actually lower than for the other event

types. Once again redirecting the reader’s attention the the left figure, it becomes

strikingly apparant that for all event types, the RMSEA decreases when the length

of the sequence increases. This decrease is furthermore strongest for the four event

type category, and less so but nonetheless still quite substantial for the remaining

event types. At the 6000 and 8000 sequence lengths, the RMSEA values for the

respective event types converge at very low values, indicating that there is no

substantial difference in the values of the RMSEA between event types at that

point. The figure on the right consequently shows that on a relative level, the

RMSEA decreases sharply when the length does as well, regardless of the number of

event types. However, similarly to what was reported in the findings of the relative

bias of the conditional probabilities, the figure shows slightly more optimal values

for four as opposed to other event types.

Figure 13: Absolute and relative RMSEA for the conditional probability distribution for

all scenarios. The length of the associated sequence is shown on the X-axis, the RMSEA

- absolute on the left, relative on the right - is shown on the Y-axis. Grouping is by event

type.
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The reader is referred to figure 14 for an overview of the coverage for both the

transition and conditional probabilities. As becomes apparant from the left graph

in the figure, the coverage for the transition probabilities is relatively low for all

event types at length 4000 - about 75% to 80% - whereas it is higher for length 6000

- between 90% and 99%, and generally approaches 1 for lengths 2000 and 8000. As

such, these findings indicate that parameter estimates of the transition probabilities

fall outside the 95% coverage interval to the highest degree for the 4000 sequence

length, to a lesser degree for the 6000 sequence length, while almost always falling

inside for the 2000 and 8000 lengths. The figure on the right furthermore indicates

that the coverage for the conditional probabilities is generally high for all scenarios,

regardless of L or N . To properly diagnose these findings, especially with regards

to the transition probability coverage of lengths 4000 and 6000, the average size of

the credibility interval is additionally assessed.

Figure 14: Coverage conditional and transition probability distributions for all scenarios.

The length of the associated sequence is shown on the X-axis, the coverage - transition

probabilities on the left, conditional probabilities on the right - is shown on the Y-axis.

Grouping is by event type.

The reader is therefore referred to figure 15 on the next page, which shows the

average size of the credibility interval for both the transition and conditional

probabilities. Upon inspection of the left figure, it becomes clear that the Gibbs

samplers’ estimates of the transition probabilities become more precise as L in-

creases. However, as indicated by the coverage, the average size of its credibility

interval is too narrow to permit 95% of the Gibbs samplers’ estimates to fall inside

it for sequence lengths 4000 and 6000. As such, the Gibbs sampler model is too

certain in its estimates of the transition probabilities for these two length types.
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Figure 15: Average size of credibility interval for the conditional and transition proba-

bility distributions for all scenarios. The length of the associated sequence is shown on

the X-axis, the coverage - transition probabilities on the left, conditional probabilities on

the right - is shown on the Y-axis. Grouping is by event type.

The average sizes of the credibility intervals for the transition probabilities are

consequently appropriate for lengths 2000 and 8000. Although the accuracy of the

estimator values for length 2000 are generally inferior to those of the other sequence

lengths, the Gibbs sampler appropriately adjusts the width of the credibility interval

for over 95% of its estimates to fall within it. The estimates for length 8000 are

finally both highly accurate and precise. It has the lowest average credibility interval

and the highest estimator accuracy, while simultaneously permitting over 95% of

its estimator values to fall within the credibility interval. There are furthermore

no differences in the average size of the credibility interval for the transition

probabilities as a result of the number of event types. Inspection of the graph on

the right finally shows that as the the length of the sequence increases, the average

size of the credibility interval for the conditional probabilities decrease quite sharply.

Similarly to the transition probabilities, there exist no substantial differences for

the average size of the credibility interval between event types. Due to the fact that

the coverage of the conditional probabilities were high for all lengths and event

types scenarios, the precision of these estimates can be said to generally improve

for increases in L.
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Conclusion & discussion

This study has examined how the length of, and the number of event types

inherent to the event observation sequence affect the Gibbs samplers’ capacity to

produce accurate HMM estimates. It moreover has sought to explicate for which

single and combined value input ranges these estimates are the most optimal. With

regards to the first query, the following research question was formulated: How do

increases in the number of event types, and the length of the event observation

sequence affect the accuracy of the Gibbs samplers’ estimates? The associated

hypothesis stated that increases in both variables would result in improved HMM

Gibbs sampler parameter estimates. The results consequently indicated that for

the transition parameter probabilities, the effect of the number of event types was

redundant, whereas for the length of the input sequence it had a notable, albeit

relatively nominal effect. For the conditional parameter probabilities, increases in

the number of event types did not result in improved estimator values. To the

contrary, the lowest of all evaluated event types, namely four, produced the best

Gibbs sampler estimates with regards to these parameters. An increase in the length

of the observation sequence furthermore had a continually beneficial effect on the

estimates of the conditional probabilities. The first hypothesis is therefore rejected

for the number of event types variable, whereas it is confirmed for the length of

the input sequence. As such, this study concludes that increases in the sequence

length have a continouous beneficial effect on the estimates of the Gibbs sampler

for both the transition and conditional probabilities. Increases in the number of

event types are however redundant to improving Gibbs sampler estimates for both

the transition and conditional HMM parameters.

The second research question consequently sought to explicate for which single

and combined value input ranges the Gibbs samplers’ HMM approximations were

the most optimal. With regards to the single variable optimal input value, this

value was hypothesized to be situated in the lower but not the lowest bounds of the

event type variable, and the upper quartile for the length of the input sequence. The

results indicated that the four event type category best enabled the Gibbs sampler

to produce optimal estimates for both the transition and conditional parameter

probabilities. However, due to the fact that the three event type category had to

be removed from the analysis, it was unfortunately not possible to investigate the

implications of a transition between the three and four event type categories. As

such it cannot definitively be assessed whether the lower bound of the variable is

more beneficial to estimation as opposed to its lowest bound. Furthermore, recall

that the effect of all event type variables was redundant for improving estimation

accuracy for the transition probabilities. The reason why the results nonetheless

indicate that the four event type is the most optimal value, is a consequence of the

fact that it imposes the least computational strain on the Gibbs sampler procedure

from among the set of event types.
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The results furthermore indicate an input sequence length of 8000 to be the optimal

value for producing optimized HMM Gibbs sampler estimates. Although input

lengths of 4000 and 6000 were generally also able to produce acceptable parameter

estimates, both the accuracy and precision of the Gibbs samplers’ estimates for

length 8000 were sufficiently superior for it to be the natural length of choice.

The hypothesis is therefore preliminarily accepted for the event type variable,

and confirmed for the length of the event sequence variable. As such, this study

concludes that the individual optimal input values for the Gibbs sampler - given

a three state system with distinct underlying parameter distributions - are equal

to four for the observation event type variable, and 8000 for the sequence length

variable.

With regards to the unconstrained combined optimal input value for these

two variables, the optimal value ranges were hypothesized to be situated in the

intersection between the lower bound values of the number of event types, and the

upper quartile values for the length of the observed event sequence. As such, one

would expect optimal HMM estimates to result from a Gibbs sampler input config-

uration consisting of four observation event types, and an event observation length

of 8000. Recall that the results indicated the conditional probability parameters to

be best estimated by precisely these input specifications. It has furthermore already

been established that an input sequence length of 8000 produces optimal estimates

for the transition probability parameters, and that the four event type variable

similarly represents the optimal input specification for estimating these parameters

on account of computational efficiency. The unconstrained optimization hypothesis

is therefore confirmed. This study consequently concludes the optimal combined

Gibbs sampler input specification - for a three event system with distinct underlying

parameter distributions - to consist of a value of four for the event observation

type variable, and a value of 8000 for the sequence input length variable. The

constrained combined optimal input value hypothesis finally states that, given the

constraint, estimates will be maximized in accordance with the optimal individual

variable values. The results indicate that, given any particular constrained event

type variable, a value of 8000 for the length of the event sequence will represent the

superior input specification. The bias, RMSEA, coverage and average credibility

interval all support the notion that for any given event type, a sequence input length

of 8000 will produce the most accurate and precise estimates of the parameters of

the HMM. Given any particular constrained input sequence length, the results show

that, in general, the four and six event type categories are superior to the eigth

and ten event type categories for estimating transition parameter probabilities. For

the conditional parameter probabilities, the four event type variable is however

convincingly superior to all other event types over the different sequence length

categories.
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As such, this study concludes, in the confines of the here defined ranges of the

variables of interest, a sequence length of 8000 to represent the optimal input

specification for any particular event type, and an event type of four to represent

the optimal input specification for any particular sequence length.

In conclusion, this study has established initial tentative references on both the

general and optimal input relations between the here presented variables of interest,

and the functioning of the Gibbs sampler. Its main findings indicate - for a three

state system with relatively distinct HMM parameter probabilities, and in the here

defined value ranges of the variables of interest - the optimal Gibbs sampler input

configuration to consist of four event types, and an associated sequence length of

8000. This finding generalizes to single variable optimal inputs, combined optimal

inputs, and contextual optimal inputs. As such, this study provides support to

the extant literature that single long runs and increases in pattern variability are

beneficial factors to the Gibbs samplers’ optimal functioning. It moreover provides

some nuance to the literature, in that although introducing pattern variation is

beneficial to the Gibbs samplers’ estimates, it does not seem to extend beyond the

lower bounds of the event type variable.

The principal drawback of this study pertains to the fact that nine of the

twenty-five HMM scenarios had to be excluded from the analysis due to severe

label switching. In large part this was a consequence of misspecification by the

researcher, and in some part was a result of the specified starting values for the 1000

length types requiring more highly skewed steering distributions than originally

anticipated. A second, methodological drawback of this study related to the fact

that unequal samples were drawn for constructing the ensemble sample parameter

estimates of the different scenarios. This could potentially have skewed results

somewhat for the more computationally intensive scenario contexts. Replication of

the here presented work with properly specified starting value specifications, and

Gibbs samples of about 500 for each scenario, could therefore first provide feedback

on whether its results are replicable and generally valid. It could additionally enable

the elucidation of one of the original objectives of this paper, namely whether the

increase from the three to four event types, and from lengths 1000 to 2000, are as

beneficial to the Gibbs samplers’ functioning as indicated by the literature.

The here presented results consequently suggest a number of future research

avenues. One of this study’s major findings indicated one additional event type

relative to the number of states to be the most beneficial to the Gibbs samplers’

functioning. However, does this finding also translate to HMM structures which

consist of more than three states? Put differently, does there exist a general

mechanism where one additional event type relative to the number of states in

the system will introduce an optimized amount of pattern variation into the event

observation sequence?
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Or does this relation behave differently, as per an exponential growth relation for

example, where increases in the number of states necessitate continually increasingly

increases in the number of event types? The second major finding of this study

indicated a length of 8000 to be the universal optimal Gibbs sampler input value

for the sequence length variable. Is this 8000 length however also the optimal value

in the context of an extended scale, i.e., does it constitute the actual optimization

threshold, or is this threshold situated at an even higher value? Recall that the

effect of this variable was furthemore hypothesized to have a logarithmic growth

curve, i.e., should at one point start to become redundant to the improvement of

estimator values. At what point do additional increases in the sequence length

therefore actually start to display this redundancy? It could moreover also be

of interest to asses the role of additional event observation sequence variables.

One of the most intuitive and relevant would be the shape of the probability

distributions of the transition and conditional parameters of the HMM. The central

query of interest would than relate to the question of whether uniform parameter

distributions have a more or less beneficial effect on the Gibbs samplers’ estimates

as opposed to more distinctly specified distributions. The role of this variable could

consequently be contextualized with that of the here considered variables. For

instance, recall that the effect of the event type variable on improving estimator

accuracy was redundant for the transition parameter probabilities. It could hower

be the case that increases in the pattern variation were made redundant exactly due

to the high distinction of the probability distribution of this parameter. It would

consequently be of interest to assess whether increases in the pattern variation have

a more notable impact on the Gibbs samplers’ functioning, as opposed to more

uniform probability distributions. This notion could likewise be extended to the

conditional parameters of the HMM. The behaviour of the sequence length variable

could consequently also be contextualized in regards to this query. Are initial

increases in the length more notable in contexts with highly uniform transition and

conditional parameter probability distributions for example? And are its optimal

and redundant values situated on different points of the variable’s scale in such

contexts? Finally, the constrained and unconstrained combined variable hypotheses

could also be assessed with inclusion of the parameter distribution shape variable,

so as to explicate a wider array of both absolute and contextual optimized Gibbs

sampler inputs. This would consequently provide researchers with a broad set of

references and guidelines on general and optimal Gibbs sampler input specifications

for single sequence HMM learning.
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Appendix A - Likelihood and decoding

Recall that Rabiner (1989) identified three problems that need solving in order

for the HMM to be applicable in real-world applications:

Problem 1 (Likelihood / Filtering): Given an observed event sequence E =

{E1, E2, ..., ET}, and an HMM model λ = (Γ, θ, π), how does one efficiently com-

pute P (E | λ)?

Problem 2 (Decoding / Smoothing): Given the observed event sequence

E = {E1, E2, ..., Et}, and an HMM model λ = (Γ, θ, π), how does one choose a

corresponding state sequence S = {S1, S2, ..., ST} which is optimal in some mean-

ingful sense?

Problem 3 (Learning / Training): How does one adjust the model parameters

λ = (Γ, θ, π), so as to maximize P (E | λ)?

The first problem can be adressed with the forward algorithm (Jurafsky &

Martin, 2014; Rabiner, 1989). The forward algorithm computes the observation

probability of an event sequence by summing over the probabilities of all possible

hidden state paths that could function to generate it (Jurafsky & Martin, 2014).

It does so by implicitly folding each path into a single forward trellis, as pictured

below in figure 16.

Figure 16: Forward trellis depicting the observation likelihood computational procedure

for two out of three time points for the arbitrary event sequence E = {E1, E2, E1} with

associated state set S = {S1, S2}, given λ.

As per the illustration, each cell of the forward algorithm trellis αt(j) represents

the probability of being in state j after the first t observations, given λ (Jurafsky

& Martin, 2014):

αt(j) = P (E1, E2, ..., Et, St = j | λ). (11)
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For a given state Sj at time t, the value αt(j) is determined by the argument

αt(j) =
m∑
i=1

αt−1(i)γijθj(Et) (12)

where αt−1(i) represents the forward path probability from the previous time step,

γij represents the transition probability from the previous state Si to the current

state Sj , and θj(Et) represents the state observation likelihood of observing Et given

the current state Sj (Jurafsky & Martin, 2014). A formal definition statement of the

forward algorithm is provided by the step-wise argument (Jurafsky & Martin, 2014):

(1) Initialization:

α1(j) = πjθj(E1); 1 ≤ j ≤ m;

(2) Recursion:

αt(j) =
m∑
i=1

αt−1(i)γijθj(Et); 1 ≤ j ≤ m, 1 ≤ t ≤ T ;

(3) Termination:

P (E | λ) =
m∑
i=1

αT (i).

To set ideas, suppose that the system in figure 5 is adequately characterized by the

following parameter sets

π =
[
0.70 0.30

]
, θ =

[
0.55 0.25 0.20

0.40 0.50 0.10

]
, Γ =

[
0.85 0.15

0.25 0.75

]

and provides a description of the observed event sequence E = {E1, E2, E3}. The

first step initializes the system, i.e., given the initial probability distribution π and

the initial observation E1, determine the probabilities for α1(1) and α1(2):

α1(1) = P (S1 | π)P (E1 | S1) = 0.70 · 0.55 = 0.385;

α1(2) = P (S2 | π)P (E1 | S2) = 0.30 · 0.40 = 0.120.

The second step computes the forward probabilities over the time span T by

determining γijθj(Et) for each of the paths in the system, multiplying the acquired

value with the previous path probability αt−1, to consequently sum over the total

of respective pathways for each state in current time t:

α2(1) = 0.385 · P (S1 | S1)P (E2 | S1) + 0.12 · P (S1 | S2)P (E2 | S1)

= 0.385 · (0.85 · 0.25) + 0.12 · (0.25 · 0.25) = 0.0818 + 0.0075 = 0.0893;

α2(2) = 0.385 · P (S2 | S1)P (E2 | S2) + 0.12 · P (S2 | S2)P (E2 | S2)

= 0.385 · (0.15 · 0.50) + 0.12 · (0.75 · 0.50) = 0.0289 + 0.045 = 0.0739;
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α3(1) = 0.0893 · P (S1 | S1)P (E1 | S1) + 0.0739 · P (S1 | S2)P (E1 | S1)

= 0.0893 · (0.85 · 0.55) + 0.0739 · (0.25 · 0.55) = 0.0417 + 0.0102 = 0.0519;

α3(2) = 0.0893 · P (S2 | S1)P (E1 | S2) + 0.0739 · P (S2 | S2)P (E2 | S2)

= 0.0893 · (0.15 · 0.40) + 0.0739 · (0.75 · 0.40) = 0.0054 + 0.0222 = 0.0276.

The third step relates to the termination of recursion at time T, and gives P (E | λ)

with
∑m

i=1 αT (i) = α3(1)+α3(2) = 0.0519+0.0276 = 0.0795. The forward algorithm

addionally enables assessment of the probability of being in a certain state at time

t given the input sequence E (Jurafsky & Martin, 2014). For instance, what is

the probability of S1 being the active underlying condition at time two, given E?

This conditional probability is represented by P (St=2 = S1 | E1, E2), where the

numerator is given by the forward probability α2(1), and the denominator is the

probability of seeing E given the HMM, i.e., the sum of the forward probabilities

at time two
∑

i α2(i). In the example presented here, the probability of observing

state S1 over state S2 at t = 2 equals 0.0893/(0.0893 + 0.0739) = 0.5472 or 54.72%.

The second query concerns identifying the state sequence S which provides an

optimal description of the observed event sequence E in some predefined sense.

The problem is typically adressed with use of the Viterbi algorithm, which is

procedurally identical to the forward algorithm except for the fact that it takes

the maximum instead of the sum over the previous path probabilities (Jurafsky

& Martin, 2014). See figure 17 below for a graphical illustration of the Viterbi

algorithm procedure.

Figure 17: Viterbi trellis depicting the computation of the most probable state sequence

(arrows in bold) for the event sequence E = {E1, E2, E1}, given the state set S = {S1, S2}
and λ. Note that as each path transitions to subsequent states in time, backpointers

(dotted arrows) store in memory the most probable path that led to the particular state.
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In short, each cell of the Viterbi trellis, vt(j), represents the probability that the

HMM is in state j after t observations and has transitioned according to the most

probable state sequence ordening S1, ..., St−1 (Jurafsky & Martin, 2014). The value

for each cell vt(j) is determined recursively by identifying the most probable path

that led to it (Jurafsky & Martin, 2014)

vt(j) = max
S1,...,St−1

P (S1, ..., St−1, E1, E2, ..., Et, St = j | λ) (13)

For a given state Sj at time t, the value vt(j) is consequently computed as

vt(j) =
m

max
i=1

vt−1(i)γijθj(Et) (14)

where vt−1(j) represents the Viterbi path probability from the previous time step,

γij represents the transition probability from the previous state Si to the current

state Sj and θj(Et) represents the state observation likelihood of the observation

symbol Et given the current state Sj (Jurafsky & Martin, 2014). Since the Viterbi

algorithm has to not only identify the probability of the observation sequence,

but also the likelihood of the underlying state sequence, it employs a backtrace

which tracks the most probable state sequence path per each subsequent cell in the

recursion computation. The backtrace is retraced after termination of the recursion

in order to identify the optimal state sequence (Jurafsky & Martin, 2014). A formal

definition statement of the Viterbi algorithm is given by the following step-wise

argument as presented by Jurafsky & Martin (2014):

(1) Initialization:

v1(j) = πjθj(E1); 1 ≤ j ≤ m

bt1(j) = 0; 1 ≤ j ≤ m

(2) Recursion:

vt(j) =
m

max
i=1

vt−1(i)γijθj(Et); 1 ≤ j ≤ m, 1 ≤ t ≤ T

btt(j) =
m

arg max
i=1

vt−1(i)γijθj(Et); 1 ≤ j ≤ m, 1 ≤ t ≤ T

(3) Termination:

Optimal pathway→ P ∗ =
m

max
i=1

vT (i)

Backtrace→ S∗T =
m

arg max
i=1

vT (i)
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Appendix B - The uniform Dirichlet prior

To set ideas, consider the fact that the Dirichlet is a generalization of the Beta

distribution into multiple dimensions. The Beta probability density function is of

the form (Lynch, 2007)

{x1, x2(= 1− x1)} ∼
1

B(α, β)
xα−11 xβ−12 (16)

and is identical to the probability density function of the Dirichlet if K = 2. By

basing initial interpretations of the Dirichlet on the Beta distribution, one can

consequently generalize to the general Dirichlet case where, unlike in the Beta

distribution, K > 2 is a valid argument. The Beta distribution is a univariate

distribution of a random variable X ∈ (0, 1) parameterized by α and β, and

a conjugate prior for binomial parameters, meaning that combining a binomial

likelihood function with a prior Beta distribution will result in a posterior that has

a Beta distribution (Lynch, 2007). In essence, the function of choosing a conjugate

over a non-conjugate prior is one of algebraic convenience (Lynch, 2007). Conjugate

priors give closed form posterior expressions, making them less burdensome to

compute, and give intuition to the Bayesian process by more transparently showing

how a likelihood function updates a prior distribution (Lynch, 2007). Since the

Dirichlet is multi-dimensional extenstion of the Beta distribution, it is a conjugate

for distributions types that permit variables consisting of multiple discrete states,

i.e., a multinomial distribution, meaning that combining a Dirichlet prior with a

multinomial likelihood function will result in a posterior with a Dirichlet distribution

(Lynch, 2007). For a more in-depth discussion of conjugate priors, the reader is

referred to Lynch (2007).

In order to concretize diffuse priors in the context of the Beta distribution,

suppose that α and β constitute respective black (A) and white (B) marble draws

with replacement from an urn. First consider a scenario in which some prior

knowledge exists about the probability distribution of α and β. Assume that it has

previously been established that the value that best describes the likelihood for

drawing a black marble from the urn x1 approximates 0.27, but that it could also

reasonably be situated somewhere else in the likelihood interval [0.20, 0.35]. The

inverse naturally holds for x2 with (1− x1) = (1− 0.27) = 0.73, since
∑K

i=1 xi = 1,

with confidence interval [0.64, 0.81]. Given these specifications, the prior Beta

distribution can be represented as Beta(α = 81, β = 219), since the mean for

x1 = (α)/(α + β) = (81)/(81 + 219) = 0.27, the inverse value of which can be

determined for x2 when β replaces α in the numerator. and which has a distribution

that is almost entirely dispersed over [0.20, 0.35] (see figure 18 on the next page).

Note that the values for α and β represent pseudocounts for A and B, i.e., these

draws have not been formally observed, but implicitly assume that prior the

consideration of any empirical evidence, eighty-one marbles A and two-hundred

and nine-teen marbles B have already been drawn from the urn.
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Their function is to assign probability mass to each of the respective binomial

events, to express a degree of belief about their expected frequencies (Lynch, 2007).

Now suppose that a single black marble (A) is drawn with replacement from the

urn, which is subsequently incorporated in the binomial belief assesment. The

resulting updated posterior Beta distribution, given the specified prior distribution

and the binomial likelihood of the data given the prior, will be Beta(α = 81 +

A, β = 219 + B) = Beta(α = 81 + 1 = 82, β = 219 + 0 = 219). One can

consequently redefine the binomial probabilities x1 = (82)/(82 + 219) = 0.2724

and x2 = (1− 0.2724) = 0.7276, where the probability for x1 has shifted slightly

to the right since the evidence has assigned it additional probability mass. The

more evidence one has, the more the curve will shift to accommodate it, and

the more it will narrow due to the added certainty of additional proof (Lynch,

2007). If one would draw an additional three-hundred marbles from the urn,

resulting in one-hundred and two white (A) and one-hundred and ninety-eight

black (B) marble draws, this would translate into the posterior Beta distribution

Beta(α = 82 + 102, β = 219 + 198) = Beta(α = 184, β = 417) with binomial

probabilities x1 = (184)/(184 + 417) = 0.3062, x2 = 1 − 0.3062 = 0.6938. Given

enough evidence, one will ultimately approach the true value for the binomial

probability distribution, which are taken to equal x1 = 1/3 and x2 = 2/3 in

this particular example. The argument holds since the posterior probabilities of

the evidence based Beta(α = 184, β = 417) with x1 = 0.3062 and x2 = 0.6938

approximate these true values more closely than the binomial probabilities of the

original prior Beta(α = 81, β = 219) with x1 = 0.27 and x2 = 0.73. Updating the

original prior with evidence regarding the relative frequency of marble draws has

therefore resulted in an improved estimate of its bimomial probability. See figure 7

below for a curve comparison of Beta(α = 81, β = 219) and Beta(α = 184, β = 417).

Figure 18: Curve comparison of Beta(α = 81, β = 219), graphed in solid line, and

Beta(α = 184, β = 417), graphed in dashed line.
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Now consider a situation wherein there exists no prior information regarding the

probability distribution of α and β. In that case the default argument is to assume

that the probabilities x1 and x2 are equivalent to one another (Lynch, 2007). A

straightforward way to represent this probability set is to let α = β = 1, since

x1 = (1)/(1 + 1) = 0.50, where the inverse holds for x2. Such a discrete, uniform

probability distribution has a symmetric shape, i.e., the probability mass function

is reflected around a vertical line, and is uniform in the sense that every one of n

values has an equal probability of occurence 1/n (Lynch, 2007). Note that the values

for α and β again constitute pseudocounts, it is assumed that prior any evidence

input, a single draw has been observed for each marble type. The uniform Beta

prior can consequently be characterized as Beta(α+A = 1 +A, β +B = 1 +B), so

that the only element influencing the belief assesment regarding the distribution of

α and β is empirical evidence in the form of data input. Note that it will generally

require more empirical evidence to approach the true binomial probability values in

the case of a diffuse Beta prior as opposed to a more strictly specified Beta prior.

Now extend the Beta-binomial case to the Dirichlet-multinomial case. Instead

of parameterizing K = 2 variables, define a parameterization for K ≥ 2 variables,

denoted by α1, α2, ..., αk. Analogous to the previous example, instead of drawing

black and white marbles, one can now draw N marbles appearing in K colours

from the Dirichlet-multinomial, with associated probabilities x1, x2, ..., xK . The

parameters α1, ..., αK can again be thought as apriori pseudocounts of marbles

of each color, which are updated by summing observed counts for each category

α1 + n1, ...αk + nk. One can consequently assign probability mass to each αk, so as

to define one’s prior degree of belief about their respective expected frequencies.

The diffuse Dirichlet is than defined analogously to the diffuse Beta distribution,

so that it is symmetric and uniform with α1 = ... = αk = 1. See figure 19 below for

a set of trivariate Dirichlet distributions with differing parameter specifications.

Figure 19: Trivariate Dirichlet distributions, parameterized by (a) α1 = α2 = α3 = 1,

(b) α1 = α2 = α3 = 10, (c) α1 = 1, α2 = 10, α3 = 5, (d) α1 = α2 = α3 = 0.2. Note the

diffuse range of values in (a).
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