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The Hidden Markov Model: Practical guidelines  

From the discipline of psychology to ecology and from the field of bioinformatics to 

economy: the Hidden Markov models (HMMs) provides a convenient framework for analyzing time 

series behavior. (Rabiner, 1989) (Visser, 2011) (Zucchini, MacDonald & Langrock, 2016). One 

analyzing time series data with the HMM does not have to rely on averaging cross-sectional data, but 

can rather model and study a process in its entirety (Visser, 2011). The HMM is flexible, stemming 

amongst other things from the fact that the observed sequence is not required to adhere to a single 

distribution: the sequence is rather allowed to be of multimodal nature (Zucchini et al., 2016) (Visser, 

2011). Consequently, a time series adhering to many different distributions simultaneously can be 

modelled with the HMM, rendering the framework particularly flexible, and hereby suitable, for a 

wide range of applications within a wide range of different disciplines. These distinctive disciplines 

include for instance the field of speech recognition, in which the HMM is utilized as signaling model 

(Rabiner, 1989), the field of bioinformatics in which the HMM is utilized to analyze genome 

sequences (Eddy, 1998), the field of econometrics and finance in which the HMM is utilized to predict 

the volatility of stock markets (Mamon & Elliot, 2007), the field of ecology in which the HMM is 

utilized to model wildlife movement patterns (Langrock et al., 2012) and the field of behavioral 

neurosciences in which the HMM is utilized to model the behavior of mice (Aarts et al., 2015).  

Despite the scientific potency of the HMM, still insufficient knowledge is available regarding 

the circumstances under which the model is able to perform properly, that is: able to derive accurate 

estimates. The present research will endeavor to explore the ability of the model to derive accurate 

estimates, given variations in (1) the length of a time series and (2) the degree to which there is a 

clear distinction between states. The latter will be endeavored by means of a simulation study, in 

which control can be exerted over the specification of the latter two variables. Ultimately, the aim is 

to define guidelines that contribute to model furnishing choices given variations of the 

aforementioned variables. More specifically, the aim is to define guidelines with respect to the 

required length of a time series and the required degree of heterogeneity, in order to be able to 

derive accurate estimates with the Hidden Markov model.  
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Case	introduction	

For clarification purposes, I will now introduce a straightforward and oversimplified case, with the 

objective of enhancing the understanding of the HMM. Please note that this example is fictional, 

solely adopted for clarification purposes. It is (arguably) common knowledge throughout the world 

that the footwear of choice for the Dutch are wooden shoes. Let us assume this signature product is 

of such vital importance that the Dutch economy thrives on the disposal of it. We assume that the 

observed wooden shoe sale at a particular moment in time is governed by the state of the Dutch 

economy at that same moment. Such a relationship seems plausible in regards of basic economic 

principles, for in times of high prosperity the Dutch people would possess more recourses allowing 

them to purchase additional pairs of wooden shoes (possibly a different pair for each occasion), 

hereby increasing the observed wooden shoe sale. Hence, we assume the degree of economic 

prosperity at a particular moment in time to govern the disposal of wooden shoes, which is for the 

sake of simplicity categorized as either being low, average or high. Additionally, for simplicity we 

define the level of economic prosperity in a binary manner, either as being prosperous or 

unprosperous.  

Besides the relationship between state (economic situation) and observed behavior (disposal 

of wooden shoes), we furthermore presume a second dependency, namely one between the states 

at different moments in time. We presume that the state of the economy at a particular moment in 

time is dependent upon the state of economy at the preceding moment in time. Theoretically such a 

relationship would seem plausible: for it is more likely that an economically prosperous moment in 

time is followed up by another prosperous moment. A state, such as the state of economy, is often a 

stable and rigid phenomenon that does not change every other moment. The aforementioned 

relationships are schematically depicted in Figure 1, wherein 𝑆":$  denote the states at moments 1 to 

𝑇 and 𝑋":$  denote the observed behavior at moments 1 to 𝑇. 

 

 

 

 

 

 

 

 

Figure 1: Dependency graph of the Hidden Markov Model. 
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The	three	components	of	the	Hidden	Markov	Model	

As was theoretically elaborated upon within the previous section, the exemplarily case is designed 

such that the series of observed behavior (disposal of wooden shoes) is governed by the unobserved 

underlying state (economic situation). This relationship is of probable nature, for the wooden shoe 

sale might be dependent on alternative factors than merely the economic situation, such as for 

example the popularity of alternative footwear. The probabilistic relationship between state and 

observed behavior is one out of the three components of the HMM, governed by the conditional 

distribution matrix 𝐴. The latter probabilities describe that, given residing in a state (𝑆 =

prosperous		or	𝑆 = unprosperous), what are the probabilities to observe behavior 𝑋 =

low	disposal, 𝑋 = medium	disposal	or		𝑋 = high	disposal : 

𝐴	 = 	:	0.60 0.35 0.05
0.06 0.30 0.64	A. 

From 𝐴 it can be discerned that an unprosperous moment in time is accompanied with a relatively 

high probability (p = .60) to observe a low disposal of wooden shoes, whereas a prosperous year is 

accompanied with a relatively high probability (p = 0.64) to observe a high disposal. It is important to 

note that the states of the HMM are by definition unobserved, or hidden, in the sense that they are 

not and cannot be directly observed. Suppose it would have been possible to measure the sequence 

of states directly, or infer these with determination from the observed sequence, the application of 

the HMM would render redundant (Visser, 2011). Concluding this section, we defined the observed 

behavior of the Hidden Markov model to be dependent upon the hidden state in a probable manner, 

denoted by Visser (2011) as the distribution function:  

𝑓(𝑋$|𝑆$ = 𝑖), or 𝑓G(𝑋$). 

Additionally, the states of the HMM are dependent upon their preceding state: they adhere to a 

Markovian process (Rabiner, 1989) (Visser, 2011). In regards of the aforementioned exemplary case, 

this would imply that the economic situation at time 𝑇	 is dependent upon the economic situation at 

time 𝑇H". Equally so, this process is probabilistic in nature, and provides the second out of the three 

components of the HMM, described by the transition distribution matrix 𝐵	(Rabiner, 1989). 

𝐵	contains the probabilities that, given the state (𝑆 = prosperous		or	𝑆 = unprosperous)	at 

moment 𝑇H",  what is the probability to remain in that state, or transition to the other state at time 

𝑇	: 

𝐵 =	:	0.8 0.2
0.1 0.9	A, 

denoted by Visser (2011) as: 

𝑃(𝑆$|𝑆", … , 𝑆$H") = 	𝑃(𝑆$|𝑆$H"). 
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It becomes apparent from this expression that the state 𝑆$  is solely dependent upon the preceding 

state 𝑆$H". Restricting to this assumption is, however, not paramount, for the flexible nature of the 

HMM allows for the definition of so-called higher order models, wherein 𝑆$  may be dependent upon 

multiple preceding states (Visser, 2011).  

At last, the first state of the sequence 𝑆" is specified a priori by the researcher and is known 

as the initial probability (Rabiner, 1989). The initial distribution 𝐶 provides the probability of the 

initial state of the sequence to be either one state, or the other (𝑆 = prosperous	or		 

𝑆 = unprosperous): 

𝐶 = 	:	0.30.7	A. 

	

Guidelines	concerning	the	furnishing	of	the	Hidden	Markov	model	

Despite the wide application and vast body of extensions build upon the base model, still little is 

known about the circumstances under which the base model is able to provide accurate estimates. In 

fact, elemental guidelines concerning model furnishing are until today non-existent within the 

literature. The objective of this paper is, therefore, to explore and provide such guidelines. With 

these guidelines I endeavor to provide researchers with a sense of insight concerning practical 

choices to be made with respect to model furnishing, specifically concerning (1) the length of the 

time series, (2) the degree to which a clear distinction between the states is required to exist and (3) 

potential interdependencies between the latter two.  

It is expected that the length of a time series is positively related towards the accuracy of the 

model estimations: to a certain extent more data usually invokes more accurate estimations. The 

extension of data is expected, however, to lose its significance at a certain threshold, equally so as is 

the case with sample sizes in conventional statistics (Toepoel, 2016). I will endeavor to define a 

framework with respect to the length of a time series that is required in order to generate accurate 

estimates, by inquiring: 

1. What is the required length of a time series in order to achieve accurate estimates when 

conducting the Hidden Markov model? 

I expect the second parameter, the degree to which a clear distinction between the states exists, to 

be positively related towards the accuracy of the model estimation. Whenever the observed patterns 

of behavior are closely resembling one and another, one could expect the model to struggle more in 

the allocation of the correct state sequence, hereby negatively influencing the accuracy of the model 

over a number of repetitions. Vis-à-vis, one could expect the model to derive more accurate 

estimates whenever the states are clearly distinguishable. I will endeavor to gain insight in the extent 
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to which (the absence of) a clear distinction between the states impacts the accuracy of the model, 

by inquiring: 

2. What is the required degree of distinctiveness between the states of the Hidden Markov 

model for achieving accurate estimates?  

It is important to realize that the answers on both research questions might be interdependent. For 

example, one could expect that in situations wherein there is an unclear distinction between states, a 

relatively long time series might be beneficial in order to derive accurate estimates. On the other 

hand, for a situation wherein there is a clear distinction between the states, a shorter time series 

might suffice. It might be important to acknowledge the existence of such potential 

interdependencies, for which I will also attempt to gain insight into model accuracy in relation to one 

of the delineated variables, given that the other is not kept constant, but rather is specified to be 

expectantly disadvantageous as opposed to expectantly advantageous with regards to providing 

accurate estimations. The latter will be endeavored by inquiring: 

3. What is the required length of the time series of a Hidden Markov Model in order to achieve 

accurate estimates given the distinctiveness between states is either unclear or clear?   

and: 

4. What is the required degree of distinctiveness between the states of the Hidden Markov 

model in order to achieve accurate estimates given the length of the time series is either short 

or long? 
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Simulations	

Simulation	design	

I will attempt to answer the proposed research questions by means of a simulation study. A number 

of different scenarios will be delineated, each varying in their specification in the length of their 

observed data sequence 𝑇,  and degree to which a clear distinction between states λ, exists. On 

behalf of each scenario, a data sequence will be simulated accordingly the specification of both 𝑇 and  

λ belonging to that particular scenario. Subsequently, the model will be applied on each data 

sequence, replicated either 250 or 500 times. Estimations of these replications will be averaged, 

resulting in a single estimate for each parameter within each simulation scenario. Accuracy will be 

assessed by contrasting these estimated parameters with their true counterparts, endeavoured by 

three different measures. Ultimately these measures will be contrasted across the different 

simulations, with which I will attempt to answer the research questions as put forward in the 

preceding section.  𝑇 will be specified to vary alongside a range of five values on a spectrum ranging 

from short to long. λ will also vary alongside three values, ranging from unclear to clear.  

Table 1: Simulation scenarios.  

 

RQ1, concerning the specification of 𝑇 in relation the accuracy of the estimated model, will 

be addressed by keeping constant (that is moderately clear) λ, consequently comparing the accuracy 

of the estimated model for the simulations 6, 7, 8, 9 and 10.  RQ2, exploring the specification of  λ in 

relation to the accuracy of the estimated model will be addressed in an equal manner, that is by 

keeping constant 𝑇 on medium, consequently comparing scenarios 3, 8 and 13. RQ3, exploring the 

benefit of 𝑇 given λ is unclear as opposed to clear, will be addressed by comparing the simulations 1, 

    -   

    𝑇:		The length of the observed time series (𝑋$) 

  Short Short- medium Medium  Medium - 
Long 

Long 

λ: 

Degree to 
which 
there is a 
clear 
distinction 
between 
states 

 
Unclear 
 

 
Simulation 1 

 
Simulation 2 

 
Simulation 3 

 
Simulation 4 

 
Simulation 5 

 
Moderately 
- Clear 

 
Simulation 6 

 
Simulation 7 

 
Simulation 8 

 
Simulation 9 

 
Simulation 10 

 
Clear 

 
Simulation 11 

 
Simulation 12 

 
Simulation 13 

 
Simulation 14  

 
Simulation 15 
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2, 3, 4, 5 and 11, 12, 13, 14, 15.  Ultimately, RQ4 exploring the benefit of λ  given 𝑇 is either short or 

long, will be assessed by comparing the simulations 1, 6, 11, 2, 7, 12 and 4, 9, 14, 5, 10, 15. 

	

Model	specification	

Each simulation will inhibit an observed sequence of a categorical variable 𝑋, varying accordingly five 

different categories, observable in a fixed number of 3 states. As was elaborated on in the preceding 

section, the length of the observed time series 𝑇 will vary across the simulations accordingly to being 

short, short to medium, medium, medium to long and long. Values for these variations will be 

specified as 𝑇 = 900, 𝑇 = 1200, 𝑇 = 1800, 𝑇 = 2700 and  𝑇 = 3600 respectively. The degree to 

which a clear distinction between the states exists λ , can’t be specified as input aforetime the 

simulations in a direct fashion such as 𝑇, and consequently calls for an indirect approach. This will, 

therefore, be conducted by manipulating the conditional distribution matrix 𝐴. The simulations 

wherein a clear distinction between the states exists will be defined such as a situation in which each 

category of 𝑋	reflects a high probability to be observable in one or two states, and less so in the 

remaining states:  

𝐴	STUVW = X	
0.72 0.07 0.07 0.07 0.07
0.04 0.44 0.44 0.04 0.04
0.04 0.04 0.04 0.44 0.44

	Y. 

Simulations with a moderately clear distinction between states will be defined such as a situation in 

which each category of 𝑋 is moderately likely to be observable in one or two states, but this 

distinction is less profound as compared with the clear distinction: 

𝐴	Z[\UWV]UT^HSTUVW = X	
0.56 0.11 0.11 0.11 0.11
0.10 0.36 0.36 0.09 0.09
0.09 0.10 0.09 0.36 0.36

	Y. 

At last, an unclear distinction between states implies a situation where in each category of 𝑋 is still 

observable in one or two states, however this distinction renders increasingly blurred: 

𝐴	_`STUVW = X	
0.40 0.15 0.15 0.15 0.15
0.13 0.30 0.30 0.13 0.14
0.14 0.13 0.13 0.30 0.30

	Y. 

The transition matrix 𝐵 will be held constant across all simulations, and is specified as: 

𝐵 =	X	
0.80 0.10 0.10
0.05 0.80 0.15
0.00 0.10 0.90

		Y. 
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The initial distribution will also be held constant across all simulations, specified as: 

𝐶 = 	X	
0.33
0.33
0.34

	Y. 

The application of the HMM inhibits a trajectory embodying two different facets: (1) deriving the 

probabilities of the states at each moment in time 𝑇, summarized in the conditional and transition 

distribution matrices, and (2) optimize these probability matrices by iterating multiple times. The 

most probable state sequence will be derived by means of the Forward probability algorithm, 

estimating the most probable state sequences at times time 𝑇",	 𝑇a, …, 𝑇H", governing the observed 

sequence at that the same moments in times. This is a product of both the conditional and transition 

probabilities (Rabiner, 1989). After determining the most probable state sequence, a Gibbs sampling 

algorithm will sample states in a backwards manner and update the probabilities contained in the 

conditional and transition distribution matrices accordingly (Rydén, 2008) (Scott, 2002) (Please refer 

to Scott (2002) for a more extensive evaluation of the Gibbs sampling procedure for the HMM). For a 

schematic depiction of the estimation procedure I redirect the reader to figure 20 in appendix 5. The 

adoption of such a Bayesian estimation approach, that is by employing a Gibbs sampling algorithm, 

implies by definition the specification of a prior. A Dirichlet distribution will be allocated to each row 

of both matrices, in which the probabilities will be allocated commensurately, that is in a non-

informative manner. Such a procedure is conventional practice in case of the specification of a non-

informative prior (Rydén, 2008). The reason for adopting a non-informative prior resides in the fact 

that little research such as the present has preceded, for which the specification of an uninformative 

prior is most appropriate.  

The previously delineated procedure of forward estimation and backwards sampling will be 

iterated a total of 4000 times per simulation, after which each parameter estimation will be derived 

by averaging the estimations of each iteration, resulting in a single estimation of all parameters per 

simulation. A burn-in period of 1000 will be specified, for the result of the first 1000 iterations might 

be deceptive due to a state of un-convergence, hereby producing non-meaningful estimates. The 

number of conducted replications will differ per scenario due to reasons of preservation of 

computational power, for the expectantly easier scenarios are likely to be more consistent in their 

estimations, consequently requiring less replications. All scenarios inhibiting sequential length of 	𝑇 

= 900 and 	𝑇 = 1200 will embody a total of 500 replications, whereas the remainder scenarios 

inhibiting a length of 𝑇 = 1800, 𝑇 = 2700 and 	𝑇 = 3600 will be replicated 250 times. 
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Simulation	results	

Model	evaluation	measures	

Three different measures will be consulted in order to evaluate model accuracy. Accuracy of the 

conditional and transition distributions will be evaluated and visualized separately. The first adopted 

measure is the bias, evaluating the difference between an estimated parameter and its true 

counterpart, calculated as: 

1
𝑍
	×	d (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	𝑣𝑎𝑙𝑢𝑒p

q

p	r	"
− 𝑡𝑟𝑢𝑒	𝑣𝑎𝑙𝑢𝑒). 

 

The second adopted evaluation measure is the Root Mean Square of Approximation (RMSEA). The 

RMSEA of a parameter resembles the bias closely, differing in the fact that it also includes variance. 

The RMSEA is calculated as following:  

t
1
𝑍
	×	d (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	𝑣𝑎𝑙𝑢𝑒p

q

p	r	"
− 𝑡𝑟𝑢𝑒	𝑣𝑎𝑙𝑢𝑒)a. 

Two variations on the Bias and RMSEA measures will be consulted, the first of which is simply the 

absolute measure, reflecting the difference between estimated and true probability in terms of 

absolute probability. Additionally, the absolute variant of both biases and RMSEA will be 

supplemented by a relative measure. The relative bias and RMSEA of a parameter are standardized, 

achieved by dividing the absolute measure by its true counterpart, resulting in a measure describing 

the proportional miss-estimation of a parameter in contrast to its true counterpart, aiming at an 

Enhancement of the level playing field with respect to the comparability of simulations that include 

differently sized true parameter values. Parameter S3 to S1 contained in the transition distribution 

matrix is excluded due to a misspecification aforetime the simulations.  

  The third and final evaluation measure is the coverage of the 95% credibility interval, 

reflecting the proportion of replications wherein the true parameter value fell within the 95% 

estimated credibility interval.  

The occurrence of convergence has been assessed for several iterations of several models at 

random and was observed to be positive.   
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Bias	

Depicted in figure 2 are the relative and absolute biases per parameter of the conditional 

distribution. Measures for each variation in clearness of the distinction between states are depicted 

in a separate plot. For an alternative visualization, that is in a different plot for each variation in 

length, grouped on the distinction between states, I redirect the reader to figure 7 in appendix 1.  

 

Figure 2: Biases of the Conditional Distribution: Grouping on clearness of the distinction between 

states. Values on the x-axis of the top row plots are biases in terms of absolute probability. Values on 

the x-axis of the bottom row plots are biases standardized proportional to the size of their true value   
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 Depicted in figure 3 are the relative and absolute biases per parameter of the transition distribution. 

Measures for each variation in clearness of the distinction between states are depicted in a separate 

plot. For an alternative visualization of the same data, that is in a different plot for each varying 

length I redirect the reader to figure 8 in appendix 1.  

Figure 3: Bias Transition Distribution: Grouping clearness of the distinction between states. Values on 

the x-axis of the top row plots are biases in terms of absolute probability. Values on the x-axis of the 

bottom row plots are biases standardized proportional to the size of their true value.  

 

 



THE HIDDEN MARKOV MODEL: PRACTICAL GUIDELINES 

 

13 
 

Consulting figure 2, relative biases of the conditional distribution are observed to be ranging from a 

minimum of approximately -0.75 to a maximum of approximately 2.0, wherein -0.75 reflects an 

underestimation of 75%, and 2.0 reflects an overestimation of 200% as opposed to the true 

parameter value. The window of error is wider for estimations of the transition distribution, ranging 

from a minimum underestimation of around 50% to an overestimation of maximum 600%.  Absolute 

biases of the conditional distribution range from a minimum underestimation of 0.4 to a maximum 

overestimation of around 0.16. Again, the bias window for the transition distribution is more 

expansive, ranging from an underestimation of approximately 0.4 to an overestimation of about 

0.25. The general observable tendency is that of models encompassing a clear distinction between 

states to produce substantially less biased estimates. This tendency is clearly distinguishable, both 

for the absolute and relative variations, equally visible in the conditional and transition distribution. 

Biases of the models with a clear distinction between states have rendered substantially small as 

compared with models of moderately clear and unclear distinction, with under- and over –

estimations ranging from -0.05 to 0.05 for all but two parameters. A considerable reduction of bias 

for the models with clear distinction, as opposed to models with moderately clear and unclear 

distinction is equally observable when consulting estimations of the transition distribution. Absolute 

biases have shrunken to range from approximately -0.08 to 0.08. A comparison of the simulations 

with different lengths resembles another clearly distinguishable tendency: the models of lengths 

2700 to 3600, coloured by shades of green, produced almost exclusively the least biased estimates. 

This tendency is particularly profound for models that encompass a moderately clear distinction 

between states, with observable absolute biases of both the conditional and transition distribution 

approximately halve the sizes as compared with the models of length 900 and 1200. 

By inspecting relative biases of the conditional distribution more closely, it becomes 

apparent that models of lengths 900 and 1200, including a moderately-clear distinction, produced 

severely biased results. Somewhat to the contrary, these biases range even higher than their 

counterparts of the same length with unclear distinction. Overestimations of the conditional 

distribution range from 75% to 100% for a considerable number of parameters. Equally so, absolute 

biases of the latter models are of higher magnitude as compared with their counterparts with 

unclear distinction. Why is it the models of lengths 900 and 1200 with a moderately clear distinction 

between states produce higher biases, as compared with their counterparts including an unclear 

distinction? In order to explain this, I redirect the reader to figure 11, 12, 13 and 14 in appendix 2, 

displaying the estimates per parameter for all four models. From these it becomes apparent that 

estimations of the 4 models have something in common: all wrongly estimate numerous parameters 

with great uncertainty, the last of which is illustrated by the wide spread of variance. This is 
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especially profound for the observations in state 1 and 2. Figure 15 in appendix 2 contrasts averaged 

estimations of simulation 1, reflecting the model with unclear distinction and length 900, with the 

estimations of simulation 6, reflecting the model with moderately clear distinction and length 900, 

both contrasted contrary to their true values. From this it becomes apparent that estimation of, 

especially probabilities of states 1 and 2, of both models display approximately equal estimates, and 

consequently wrongly estimate the latter parameters in terms of equal uncertainty. It is important to 

realize, however, that by definition of the bias measures the model with moderately clear distinction 

gets punished more severely for the latter miss estimation. The reason for this resides in the fact that 

the moderately clear model includes more extreme, that is either very small or very high, true 

parameter values. To even further illustrate this claim, take the example of parameter S1O5. Both 

the unclear and moderately clear models estimated this parameter to reflect a probability of 

approximately 𝑃 = 0.22. The true value of this parameter for the unclear model equals 𝑃 = 0.15., 

resulting in an absolute bias of 𝑃 = 0.07. The true value of parameter S105 for the moderately clear 

model equals 𝑃 = 0.11, which would result in an absolute bias of 𝑃 = 0.11. Hence, in a situation of 

equal uncertain estimations, models including more extreme true parameter values are punished 

more severely in terms of higher biases. Consulting of the standardized variations does not omit this 

problem, for relative biases of 𝑃 = 0.46 and 𝑃 = 1 are observed respectively.  

Despite all models including a clear distinction portraying low biases in general, parameter 

S1O2 of the conditional distribution inhibits disproportionally high relative biases for the models of 

length 900, 1200 and 1800, ranging from an overestimation of approximately 150% to approximately 

200%. Estimations for the conditional distributions per parameter of the models with a clear 

distinction and length 900, 1200 and 1800 can be consulted as figure 16, 17 and 18 respectively, in 

appendix 3. It should be noted that such overestimations might be inflated due to the procedure of 

normalisation. Parameters inhibiting an outstandingly small true probability tend display huge 

relative biases, for they are punished more severely as compared with a parameter inhibiting a true 

probability of higher magnitude. Therefore, interpretation of relative biases should always be 

contrasted with their absolute counterpart, from which doing so it becomes apparent that biases of 

parameter S1O2 are substantially reduced, however, still persist, indicating a systematic 

overestimation of solely parameter S1O2 within the clear models of length 900, 1200 and 1800. The 

same tendency is able to explain the disproportionally high relative bias of parameter S2 to S1 of the 

transition distribution, with a true parameter value as low as 0.05. 

A final conspicuous observation can be made when comparing the magnitude of biases for 

the conditional distribution with those of the transition distribution. The window of error for both 

the relative and absolute bias of the transition distribution range substantially wider in contrast with 
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the window of error displayed for the conditional distribution. Again, this can be explained by taking 

notice of the true parameter values. True values of the transition distribution are of substantially 

more extreme magnitude, as compared with those of the conditional distribution, producing biases 

of more voluminous magnitude due to the nature of the bias measure. 
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RMSEA	

Depicted in figure 4 on the top row are the relative RMSEA measures for the conditional and 

transition distribution respectively, supplemented by the absolute RMSEA on the bottom row. All 

have been grouped on the degree to which a clear distinction between the states exists. The RMSEA 

measures of al parameters within each simulation have been averaged, resulting in a single measure 

per simulation. For an alternative visualization of the same observations, that is when not grouping 

on clearness of the distinction between states, but rather on the length of the time series, I redirect 

the reader to figure 9 in appendix 1. 

Figure 4: Relative and absolute Root Mean Square Error of Approximation for the conditional and 

transition distribution. Grouping on degree of distinctiveness between the states. 

 

From figure 4 can be discerned that the models with clear distinction between states are barely 

benefitting from a longer sequence, with observable absolute RMSEA measures ranging under the 
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threshold of approximately 0.03 for both the conditional and transition distribution estimates, 

regardless of length. This is in harmony with the biases we have observed in the preceding section: 

models with clear distinction were able to produce low biases, regardless of length. This is equally so 

visualized by figures 16, 17 and 18 in appendix 3, depicting the parameter estimates for a selection of 

models with clear distinction. All estimations of the latter models display very modest bias, in 

addition with exceptionally high certainty, the last of which is reflected by the low variance.   

 Models with a moderately-clear distinction do, on the contrary, benefit from a longer 

sequence, with a stark decline in relative and absolute RMSEA from length 900 to 2700. Again, this 

benefit is more substantive for estimations of the transition distribution, with an observable 

averaged absolute RMSEA of 0.22 at length 900 decreased to approximately 0.03 at length 1800 and 

onwards. A similar, however less profound, tendency is observable for the conditional distribution, 

with an averaged absolute RMSEA of approximately 0.14 at length 900 decreasing to around 0.03 at 

length 1800 and onwards.  

 At last, RMSEA measures of the conditional distribution for the models inhibiting an unclear 

distinction between states are observed to be of higher magnitude. Little accuracy is gained by 

incrementing length, with an averaged absolute RMSEA of approximately 0.09 for the model or 

length 900, in contrast with an averaged RMSEA of approximately 0.08 for the model with length 

3600. On the contrary, much benefit is gained from incrementing length with respect to estimations 

of the transition distribution. Absolute averaged RMSEA measures are observed to have decreased 

from approximately 0.29 in the model of length 900, to around 0.16 for the model of length 3600. 

Despite this benefit, a RMSEA of considerable size still persists, which is in consensus with bias 

measures observed in preceding sections. 

Ultimately, it becomes apparent that RMSEA measures display estimations of the transition 

distribution to be substantially less accurate in contrast to those of the conditional distribution. This 

tendency was equallo so distinguished when observing biases in the previous section, with biases of 

the transition distribution of considerably higher magnitude.	
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Coverage	

Depicted in figure 5 are the coverage measures for both the conditional and transition distribution, 

grouped on the degree to which a clear distinction between states exists. The coverage measures of 

all parameters per simulation have been averaged, such that each simulation is represented by a 

single measure. For an alternative visualization of the same observations, that is when not grouping 

on clearness of the distinction between states, but rather on the length of the time series, I redirect 

the reader to figure 10 in appendix 1. 

 

Figure 5: Averaged coverage of estimations within the credibility interval for the conditional 

distribution and transition distribution. Grouping on degree of distinctiveness between the states 

 

First and foremost, coverages of the conditional distribution are all observed to be above the 

respectable threshold of 92%. A longer sequence is observed to generally increase coverage. Not 

merely the coverage measures of the clear models are of respectable size, coverage of the models 

with unclear distinction display approximately equally respectable results. Additionally, coverages 

estimates of the transition distribution range decently high for a selection of models with unclear 

distinction, as well as all models with moderately clear distinction. This is, however, not in harmony 

with results we have observed in preceding sections. For example, models of all lengths with unclear 

distinction between states have produced biases and RMSEA measures of substantive proportions, 

both salient for estimations of the conditional, as well as estimations of the transition distribution. 

The same holds true for the models of shorter length and moderately clear distinction between 



THE HIDDEN MARKOV MODEL: PRACTICAL GUIDELINES 

 

19 
 

states. These disparate observations call for further exploration, which will be done so by means of 

figure 6, displaying the averaged sizes of the credibility interval per simulation.  

 

Figure 6: Averaged size of the credibility interval for the conditional and transition distribution 

 

As can be discerned, especially the models with unclear distinction display credibility intervals of 

enormous proportion, with those of the transition distribution displaying sizes of around 0.7 for the 

shorter models. Credibility intervals of such spectacular size are also observable for the models of 

lengths 900 and 1200 with moderately clear distinction. Despite the sizes of the credibility intervals 

for estimations of the conditional distribution being of lower magnitude as compared with those of 

the transition distribution, still intervals of spectacular sizes are observable. Naturally, such vast 

credibility intervals would translate into high coverage measures: even so for estimations that 

encompass severe over- or under –estimation, which could still easily fall within intervals of such vast 

volume. Coverages measures for the models including such credibility intervals are therefore not a 

valid indication of model accuracy. 

 Coverages measures of the models with clear distinction also reflect somewhat conspicuous 

results. The model with a clear distinction and length 900 displays 100% coverage, dramatically 

dropping to approximately 76% for the model of length 2700 for estimates of the transition 

distribution. Another drop, however somewhat less dramatic, is observable when consulting 

coverage measures of the conditional distribution. The model of length 900 displays a 100% 

coverage, which has decreased to approximately 92% for the models of length 1200 and 1800. 
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Explanation for these findings also resides in the sizes of the credibility intervals, as depicted in figure 

6. As can be discerned, sizes of the credibility intervals for models with a clear distinction between 

states are observed to shrink as length is incremented, starting at a size of approximately 0.18 for the 

model of length 900, and reduced to a size of approximately 0.14 for the model of length 3600. Is the 

detriment in coverage due to results getting increasingly less accurate, or could it rather be explained 

by the reduction in sizes of the credibility intervals? Figure 19 in appendix 4 provides an answer: it 

can be discerned that the averaged estimations of all parameters, of all models with clear distinction, 

are approximately the same. Additionally, all models closely resemble their true values. The 

observable drop in coverages for models with a clear distinction and increasingly longer sequences 

are therefore not an indication for increasingly less accurate estimates, but rather have to be a result 

of the decreasing sizes of the credibility intervals. The coverage measures as depicted in figure 5 

should therefore be interpreted with caution, and always in full consideration of the sizes of the 

credibility intervals as depicted in figure 6. 
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Discussion	

The present study has been conducted with the objective of exploring the ability of the Hidden 

Markov Model to derive accurate estimates, given a variation in circumstances. These circumstances 

encompass variations in (1) the length of the time series and variations in (2) the degree to which a 

clear distinction between states exists. Additionally, interdependencies between the later variations 

in relation with model accuracy have been explored. Furthermore, the case on which the HMM was 

applied was of relatively complex nature, encompassing a situation with 5 variations on the observed 

behaviour and 3 different states. This was endeavoured by means of a simulation study, wherein a 

total of 15 distinct data sequences have been simulated, each unique in its synthesis of the two 

aforementioned circumstantial variations. The HMM was applied on each of these data sequences, 

after which the accuracy has been evaluated by contrasting the resulting probability matrices with 

their true counterparts. Three different measures have been consulted, allowing for a cross-

comparison across simulations. Four research questions have been defined in section 1, on which 

answers will be provided in the succeeding section.  

The first research question inquired the following: What is the required length of a time 

series in order to achieve accurate estimates when conducting the Hidden Markov model?  

As was set forth in section 2, this question will be answered by contrasting the models varying in the 

length of their observed time series, while keeping constant (that is: moderately clear) the distinction 

between states. It has been observed that model of length 2700 was able to minimize both bias and 

RMSEA to a substantial degree, and no additional accuracy was accumulated by incrementing length 

to 3600. Hence, the required length of a time series for a model with 5 observations and 3 states in 

order to achieve accurate estimates equals a length of 2700.  

The second research question inquired the following: What is the required degree of 

distinctiveness between the states of the Hidden Markov model for achieving accurate estimates?  

As was set forth in section 2, this question will be answered by contrasting the models with varying 

distinction between states, while keeping constant (that is: average) the length of the observed time 

series. It has been observed that the accuracy improved the most substantial amount for the model 

with a moderately clear distinction in contrast with the model inhibiting an unclear distinction. 

Accuracy is enhanced slightly more when distinction between states render clear, however the 

accuracy of the model with moderately clear distinction can already be deemed of a sufficient 

magnitude. Subsequently, the required degree of distinctiveness between states in order to achieve 

accurate estimates for a model with 5 observations and 3 states is moderately clear (reflected by the 

conditional and transition distribution matrices provided in section 2).  
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The third research question inquired the following: What is the required length of the time 

series of a Hidden Markov Model in order to achieve accurate estimates, given the distinctiveness 

between states is either unclear or clear?   

It was observed that models inhibiting an unclear distinction between states benefit from a longer 

time series, however inaccuracy remained existent. The model encompassing the longest time series 

was still not able to derive accurate estimates, however increasingly accumulation in accuracy was 

gained as length was incremented. Hence, the required length of a time series given an unclear 

distinction between states is undefinable by means of the contemporary results, and calls for further 

research in which length is incremented even further than 3600. Additionally, a length of 900 for 

models encompassing a clear distinction between states was proven to be sufficient with respect to 

producing accurate estimates, for which the extent to which length could be decreased further 

remains undefined by the present research. Further research including models with a length shorter 

than 900 might therefore prove beneficial.  

The fourth and final research question inquired the following: What is the required degree of 

distinctiveness between the states of the Hidden Markov model for achieving accurate estimates 

given the length of the time series is either short or long?  

It was observed that models with a short length, that is length 900 and 1200, produced severely 

inaccurate estimates given both an unclear and moderately clear distinction between states. The 

models of the latter lengths and clear distinction, however, were able to minimize error, 

consequently deriving accurate estimates. The models of higher length, that is 2700 and 3600, were 

observed to display substantial accuracy given a moderately clear or clear distinction, as opposed to 

models of the latter length that inhibit an unclear distinction. Subsequently, we conclude that the 

required degree of distinctiveness between the states for a model of 5 observations and 3 states that 

inhibits a shorter length is clear, and the required degree of distinctiveness between the states for 

models of higher lengths is moderately clear.  

 Additional takeaways from the present research concern the three adopted evaluation 

measures. It was observed that the construction of the bias measure is dependent upon the size, or 

more particularly the extremity, of the true values. Since bias is also included in the RMSEA measure, 

the same argument upholds for the latter. By nature of these measures, parameters that inhibit 

more extreme true values are punished more severely, than would these true values be of less 

extreme size. For this reason, comparisons across simulations, but also the comparison of unequally 

sized parameters within simulations, should be conducted with care. Additionally, the coverage 

measure has not been proven of significant use in the present research, due to extremely sized 95% 
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credibility intervals. Due to this dependency, coverage measures should always be contrasted with 

the sizes of the credibility interval.  

 It should be noted that explored and defined guidelines in the present research are 

exclusively salient for the furnishing of a Hidden Markov Model including 5 observations and 3 states.  

The extent to which factors such as the number of varying observations or the number of states are 

related to model accuracy is unknown, however respective guidelines might differ for the latter 

models. Therefore, generalization of the delineated guidelines to models of different structure is not 

advised. The extent to which factors such as the number of varying observations or the number of 

states are related to model accuracy remains until the present unexplored, and could not be included 

in the contemporary research due to the limitations of both restricted time and computing power.  

This consequently calls for further research implications, exploring the relationships between the 

numbers of varying observations and the number of states with regards to model accuracy.  
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Appendix	1 

Figure 7: Bias Conditional Distribution: Grouping length of the time series. Values on the x-axis of the 

top row plots are biases in terms of absolute probability. Values on the x-axis of the bottom row plots 

are biases standardized proportional to the size of their true value 
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Figure 8: Bias Transition Distribution: Grouping length of the time series. Values on the x-axis of the 

top row plots are biases in terms of absolute probability. Values on the x-axis of the bottom row plots 

are biases standardized proportional to the size of their true value 
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Figure 9: Relative and absolute Root Mean Square Error of Approximation for the conditional and 

transition distribution. Grouping on length of the time series 
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Figure 10: Averaged coverage of estimations within the credibility interval for the conditional 

distribution and transition distribution. Grouping on degree of distinctiveness between the states 
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Appendix	2	

 

Figure 11: Parameter estimates of the conditional distribution (displayed by the blue distribution) as 

opposed to its true value (displayed by the red line) for scenario 6 – moderately clear distinction and 

length 900 
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Figure 12: Parameter estimates of the conditional distribution (displayed by the blue distribution) as 

opposed to its true value (displayed by the red line) for scenario 7 – moderately clear distinction and 

length 1200 
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Figure 13: Parameter estimates of the conditional distribution (displayed by the blue distribution) as 

opposed to its true value (displayed by the red line) for scenario 1 – unclear distinction and length 

900 
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Figure 14: Parameter estimates of the conditional distribution (displayed by the blue distribution) as 

opposed to its true value (displayed by the red line) for scenario 2 – unclear distinction and length 

900 
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Figure 15: Parameter estimates of simulation 1&6 contrasted with their true values. Simulation 1 

includes an unclear distinction between states and length 900. Simulation 2 includes a moderately 

clear distinction between states and length 900.  
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Appendix	3	

Figure 16: Parameter estimates of the conditional distribution (displayed by the blue distribution) as 

opposed to its true value (displayed by the red line) for scenario 11 – clear distinction and length 900 
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Figure 17: Parameter estimates of the conditional distribution (displayed by the blue distribution) as 

opposed to its true value (displayed by the red line) for scenario 12 – clear distinction and length 

1200 
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Figure 18: Parameter estimates of the conditional distribution (displayed by the blue distribution) as 

opposed to its true value (displayed by the red line) for scenario 13 – clear distinction and length 

1800 
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Appendix	4	

Figure 19: Parameter estimates of both the conditional and transition distribution for simulations 11 

trough 15, contrasted with their true values. Simulations 11 through 15 all include a clear distinction 

between states, and lengths 900, 1200, 1800, 2700 and 3600 respectively.  
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Appendix	5	

 

Figure 20: Semantical depiction of the employed Bayesian model estimation method. 

  


