
Utrecht University

Debye Institute

Nanophotonics Group

Evaporative Cooling in a Bose Gas

Author:
C. Beulenkamp

Supervisors:
Prof. dr. P. van der Straten

Jasper Smits

June 17, 2015





Abstract

A method of simulating the evaporative cooling of neutral atoms in a magnetic trap
is presented. The method is based on kinetic theory and an assumption of ergodicity.
An application of this method to the experimental conditions in the Utrecht BEC
experiment is compared to measurements. The simulation is found to be accurate
down to a temperature of 10 µK. Its predictive power makes it a valuable tool in
optimizing the cooling process.
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Introduction

1 Introduction

Evaporative cooling is the process of cooling through removal of high energy particles.
It happens naturally in any system where this removal can take place, such as a
hot cup of coffee. The temperature will gradually drop, slowing down the rate of
evaporation because the average energy is lowered and less particles are produced that
have sufficient energy to escape. Lowering the cutoff energy ensures that evaporation
will continue. This is called forced evaporative cooling, and has been crucial in the
realization of Bose-Einstein condensation (BEC). It was first demonstrated by Hess
et al [5] using atomic hydrogen. The first BEC was made by evaporatively cooling
a dilute cloud of rubidium atoms [1]. Cooling to BEC is done by applying radio
frequency (RF) induced evaporation to neutral atoms trapped in magnetic traps.
The RF radiation flips the spin of the atoms, causing them to be repelled from the
trap. The probability of an atom being flipped depends on its height in the potential,
and thus its energy.

When probing the properties of Bose-Einstein condensates, a condensate with a large
amount of atoms is preferred. To maximize the size of the condensate, the evaporative
cooling process has to be optimized. Not much is known about the evolution of the
gas, making it difficult to optimize except through trial-and-error. Previous models
have been based on the assumption that the distribution has the form of a truncated
Boltzmann distribution. This assumption overestimates the rate of evaporation, and
is thus not very useful in an experimental setting. In this thesis a model applicable in
the lab is given. First, the experimental setup for production of BEC’s is described.
Kinetic theory then provides a way of calculating the evolution and properties of
the gas using only the distribution function. The evaporative cooling process is then
simulated. Finally, the simulation is compared to three experiments.
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2 Experimental setup and methods

2.1 Experimental setup

A bar of 30 grams of sodium is heated in the oven to roughly 300 °C to create a
sodium vapor. Using two diaphragms, a collimated beam of hot atoms is led into a
Zeeman slower. The average speed of the atoms at this point is 800 m/s. Along the
length of the Zeeman slower are two laser beams, moving in the opposite direction
with respect to the atomic beam. The first is resonant to the cycling transition
32S1/2, Fg = 2→ 32P3/2, Fe = 3. Absorption of photons imparts their momentum to
the atoms, slowing them down. As the atoms slow down, the change in the Doppler
shift changes the position of the resonance. To ensure maximal absorption a magnetic
field gradient is applied along the length of the Zeeman Slower to compensate the
Doppler shift using the Zeeman shift. The second beam is a repump beam, resonant
to the 32S1/2, Fg = 1 → 32P3/2, Fe = 2 transition, which ensures no atoms are lost
at places where the magnetic field crosses zero.

At the end of the Zeeman slower is the vacuum chamber, where the slowed atoms are
caught in a Magneto-Optical Trap (MOT). It consists of three retro-reflected laser
beams, a repump beam with a dark spot and a magnetic quadrupole field generated
by two anti-Helmholtz coils. The main MOT beams are detuned to slightly below the
cycling transition. Atoms that stray from the minimum of the quadrupole magnetic
field are more likely to be pushed back by photon absorption. The dark spot in the
repump beam decreases the radiation pressure in the center of the trap, allowing for
higher densities.

To further increase the phase-space density, the atoms are transferred to the magnetic
trap (MT). The trap only confines atoms in the mF = −1 state, so spin-polarization
is used to increase the transfer efficiency [15]. After transferring and compressing the
cloud, evaporative cooling starts. The RF-field is generated by a single coil antenna
with a diameter of 21 mm connected to an amplifier which receives a signal from a
synthesizer (Novatech Instruments Inc. DDS8m 100 MHz). To circumvent memory
restrictions, the DDS updates the RF-frequency only ten times per second. The
clouds are then imaged using absorption imaging or phase contrast imaging.
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2.2 Magnetic Trap

Figure 2.1: A representation of the coils constituting the magnetic trap. [9]
The transparent outer rings are the MOT coils.

The magnetic trap used is an Ioffe-Pritchard type trap in the cloverleaf configuration.
The axial trapping is provided by anti-parallel pinch-bias coils and radial trapping
by the clover leaves.

In very small magnetic fields, transitions to strong-field seeking states can be induced
by the motion of the atoms in the trap. These transitions are called Majorana flops
and can cause severe losses due to atoms leaking from the trap at the minimum. To
prevent this, the trap has a small bias field B0.

The potential for an Ioffe-Pritchard trap can be approximated by [7]:

U(r) = gF µB |B(r)| =
√
α2(x2 + y2) + (βz2 + U0)2. (2.1)

For energies ε� U0 the potential is harmonic:

U(r) =
m

2
(ω2
ρ(x

2 + y2) + ω2
zz

2) + U0, (2.2)

where ωρ = α√
mU0

and ωz =
√

2β
m .
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2.3 Imaging setup

2.3.1 Absorption imaging

A collimated laser beam perpendicular to the z-axis of the trap is led through the
cloud . There are two imaging directions with different magnifications. There is top-
imaging, which probes from directly above the trap, and side-imaging, which probes
at an angle of 45 degrees with respect to the the axis of top-imaging. The atoms are
probed at the Fg = 1 to Fe = 1 transition. To find the fraction of light that has been
absorbed, three images are taken: one of the cloud illuminated by the probe beam,
one of the probe without atoms and one of the background. The level of absorption
is found by subtracting the background from the other two images and then taking
their ratio. The signal is then:

A(x, y) = e−
∫
σ ρ(x,y,z) dz, (2.3)

where σ = Cg,e
3λ2

2π is the absorption cross section with Cg,e the relative transition
strength from the ground state to the excited state e and ρ is the density distribution
of the cloud. After the MT is shut off and the cloud is allowed to expand, the
quantization axis is no longer well defined. Assuming that the atoms are randomly
distributed over the magnetic sub-levels leads to Cg,e = 5/18 [8]. During time-
of-flight, the cloud expands according to the momentum distribution upon release.
When the width due to expansion is larger than the width of the cloud in the trap,
a Gaussian distribution can be fitted to the images to estimate the temperature and
atom number. In this case, the column density ρc is also a Gaussian:

ρc =
N

2πσxσy
e
− (x−x0)2

2σ2
x
− (y−y0)2

2σ2
y . (2.4)

The atom number N is extracted directly from the images, and the temperature is

found by fitting σ(t) =
√
σ2

0 + kBT
m t2 to a series of images with different time-of-flight.

2.3.2 Phase Contrast Imaging

Phase contrast imaging is based on the phase shift light acquires when it passes
through matter. By letting light that passes through the atoms interfere with light
that travels around the atoms an intensity profile is created that can be measured
by a camera. The advantage of this technique is that the light used for imaging can
have a large detuning, keeping absorption low and thus allowing for multiple non-
destructive images. This imaging technique was used to measure the trap frequencies,
for which only the center of mass has to be determined. More details can be found
in [6], [3], [4] and [8].
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2.4 Measuring the trap parameters

In order to simulate the cooling process, the trap parameters α, β and U0 need to
be known. The trap frequencies ωρ and ωz and the bottom of the trap U0 can be

measured and used to determine α =
√
mω2

ρU0 and β = m
2 ω

2
z .

Using phase contrast imaging, the trap frequencies can be determined quickly and
accurately. A condensate is prepared in the trap and the minimum is shifted slowly,
then rapidly returned to its original position. The resulting oscillation can be fitted
to obtain the trap frequencies. Using phase contrast imaging dozens of photos can be
made of the same condensate. The speed at which photos can be taken is limited, so
several series of photos have to be combined to achieve the resolution to resolve the
radial frequency. This measurement combines eight series of fifty photos. The trap
frequencies found are ωρ = 2π × (15.13± 0.03)Hz and ωz = 2π × (108.01± 0.07)Hz.
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Figure 2.2: Radial oscillation, R2 = 0.998494
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Figure 2.3: Axial oscillation, R2 = 0.999697

The trap bottom U0 is determined by cooling to BEC and ramping down the RF-
frequency. If the ramp goes through the bottom of the trap, all atoms are lost. By
scanning the endpoint of the ramp, the trap bottom can be found. For the simulations
in this thesis U0 = 2π ~× 2.54 MHz is used.
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3 Theory

3.1 The Boltzmann equation and ergodicity

An ideal gas can be described by a distribution function f(r,p), which is the mean
number of atoms at the position r with momentum p. The evolution of the gas is
described by the Boltzmann equation:(

p

m
∇r −∇rU · ∇p +

∂

∂t

)
f(r,p) = I(r,p), (3.1)

where I is the collision integral for s-wave collisions in the low energy limit:

I(r,p4) =
σ

(2π~)32πm

∫
dp2dΩ′ q{f(r,p1)f(r,p2)− f(r,p3)f(r,p4)}. (3.2)

with q = (p3 − p4)/2 the relative momentum and Ω′ specifies the direction of the
relative momentum after the collision with respect to the relative momentum before
the collision. Here σ = 8πa2 is the collisional cross-section, where a = 52.98a0 [11]
is the s-wave scattering length for sodium in the Fg = 1,mF = −1 state. The first
term between the brackets describes atoms at position r with momenta p1 and p2

undergoing an elastic collision and having momenta p3 and p4 after the collision. The
second term describes the opposite process. We will assume ”sufficient ergodicity”,
which means that the distribution of atoms in phase space depends only on their
energy:

f(r,p) =

∫
dε δ(U(r) +

p2

2m
− ε)f(ε). (3.3)

Where f(ε) is the occupation number for a state with energy ε and is called the
ergodic distribution function. The density of states is then given by:

ρ(ε) =

∫
drdp δ(U(r) +

p2

2m
− ε). (3.4)

Using the assumption of sufficient ergodicity, the Boltzmann equation is reduced to
a change in the distribution function f(ε) [7].

ρ(ε4)ḟ(ε4) =
mσ

π2~3

∫
dε1dε2dε3 δ(ε1 + ε2 − ε3 − ε4)ρ(min[ε1, ε2, ε3, ε4]){f(ε1)f(ε2)− f(ε3)f(ε4)}

=
mσ

π2~3

∫
dε1dε2 ρ(min[ε1, ε2, ε1 + ε2 − ε4, ε4]){f(ε1)f(ε2)− f(ε1 + ε2 − ε4)f(ε4)}

With Bose stimulation included the equation becomes:

ρ(ε4)ḟ(ε4) =
mσ

π2~3

∫
dε1dε2 ρ(min[ε1, ε2, ε1 + ε2 − ε4, ε4])×

{f(ε1)f(ε2)(1 + f(ε1 + ε2 − ε4))(1 + f(ε4))− f(ε1 + ε2 − ε4)f(ε4)(1 + f(ε1)][1 + f(ε2))} .
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This can be separated into a rate of atoms scattering into a state with energy ε4 and
a rate of atoms scattering out of a state with energy ε4.

ρ(ε4)ḟ in(ε4) =
mσ

π2~3

∫
dε1dε2 ρ(min[ε1, ε2, ε1+ε2−ε4, ε4])f(ε1)f(ε2)(1+f(ε1+ε2−ε4))(1+f(ε4))

(3.5)

ρ(ε4)ḟout(ε4) = − mσ

π2~3

∫
dε1dε2 ρ(min[ε1, ε2, ε1+ε4−ε2, ε4])f(ε1+ε2−ε4)f(ε4)(1+f(ε2))(1+f(ε1))

(3.6)
This second rate describes all elastic collisions for an atom with energy ε4. The
average elastic collision rate is thus given by:

kel =
1

2N

∫
dε ρ(ε)ḟout(ε). (3.7)

Where the factor of 2 is due to the double counting of collision events. The collision
time is then defined as τel = k−1

el .

3.2 Loss processes

During evaporation atoms are lost due to background pressure, dipolar relaxation
and three-body recombination, reducing the efficiency of the cooling process. These
loss processes are modeled as:

Ṅi = −Gi
∫

drni(r), (3.8)

where i=1,2,3 represent the background pressure, dipolar relaxation and three-body
recombination respectively. The loss constants are G1 = 1

τ , with τ the measured
lifetime of the atom cloud when held in the MT, roughly 180 seconds, G2 = 6×10−17

cm3 s−1 [2] and G3 = 6.6× 10−30 cm6 s−1 [13]. These losses can be written in terms
of the ergodic distribution function using identity (3.3). Consider the loss due to
background pressure:

Ṅ1 = −G1

∫
drn(r) = −G1

∫
drdp f(r,p) = −G1

∫
drdpdε δ(U(r) +

p2

2m
− ε)f(ε).

(3.9)
So the change in atom number can be expressed in terms of the change in the disti-
bution function.

Ṅ1 =

∫
dε ρ(ε) ḟ1(ε) = −

∫
dε ρ(ε)G1f(ε) (3.10)

The change in the distribution function due to these losses can be written as:

ρ(ε) ḟ1(ε) = −G1 ρ(ε) f(ε). (3.11)

7
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In a similar way, an expression is found for three-body recombination:

Ṅ3 = −G3

∫
d3rn3(r) = −G3

∫
d3rd3p1d

3p2d
3p3 f(r,p1)f(r,p2)f(r,p3) (3.12)

= −G3

∫
dε1dε2dε3 f(ε1)f(ε2)f(ε3)

∫
d3rd3p1d

3p2d
3p3

3∏
i=1

δ(U(r) +
p2
i

2m
− εi).

(3.13)

Where integration over the momentum gives:∫
d3rd3p1d

3p2d
3p3

3∏
i=1

δ(U(r)+
p2
i

2m
−εi) =

(
2π(2m)3/2

(2π~)3

)3 ∫
U(r)≤mini εi

d3r (ε−U(r))3/2,

(3.14)
which is the three-fold density of states. The i-fold density of states is defined as:

ρi(ε) =

(
2π(2m)3/2

(2π~)3

)i ∫
U(r)≤mini εi

d3r (ε− U(r))i/2. (3.15)

For the Ioffe-Pritchard potential these density of states functions are polynomials. By
numerical integration and comparison to the results for a purely harmonic potential,
the following polynomials are found.

ρ1(ε) = ρ(ε) =

(
2π(2m)3/2

(2π~)3

)(
π2

4α2
√
β

)
(ε3 + 2U0ε

2), (3.16)

ρ2(ε) =

(
2π(2m)3/2

(2π~)3

)2(
16π

35α2
√
β

)
(ε7/2 +

7

3
U0ε

5/2), (3.17)

ρ3(ε) =

(
2π(2m)3/2

(2π~)3

)3(
3π2

32α2
√
β

)
(ε4 +

8

3
U0ε

3). (3.18)

The total loss due to three-body recombination can then be written as:

Ṅ3 = −G3

∫
dε1dε2dε3 ρ3(min

i
εi) f(ε1)f(ε2)f(ε3) =

∫
dε3 ρ1(ε3) ḟ3(ε3). (3.19)

So the change in the distribution function is:

ρ1(ε3) ḟ3(ε3) = −G3

∫
dε1dε2 ρ3(min

i
εi) f(ε1)f(ε2)f(ε3). (3.20)

And likewise, for dipolar relaxation:

ρ1(ε2) ḟ2(ε2) = −G2

∫
dε1 ρ2(min

i
εi) f(ε1)f(ε2). (3.21)

8
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3.3 Thermodynamic properties

Given a distribution f(ε), some extensive properties can be calculated. First there
are the number of atoms and the total internal energy:

N =

∫
dε ρ(ε) f(ε) , U =

∫
dε ε ρ(ε) f(ε). (3.22)

Then there is the entropy for a system of bosons [10]:

S = −kB

∫
d3rd3p {f(r,p) log f(r,p)− (1 + f(r,p)) log(1 + f(r,p))}

= −kB

∫
dε ρ(ε){f(ε) log f(ε)− (1 + f(ε)) log(1 + f(ε))}.

When ḟ is known, the derivatives can also be calculated:

Ṅ =

∫
dε

δN

δf(ε)
ḟ(ε) =

∫
dε ρ(ε) ḟ(ε) , U̇ =

∫
dε

δU

δf(ε)
ḟ(ε) =

∫
dε ρ(ε) ε ḟ(ε),

(3.23)

Ṡ =

∫
dε

δS

δf(ε)
ḟ(ε) = kB

∫
dε ρ(ε) log

[
f(ε) + 1

f(ε)

]
ḟ(ε). (3.24)

Because the gas is not in equilibrium, there is strictly speaking no temperature.
However, quasi-temperatures can still be computed which can be useful in describing
the gas. In equilibrium, the temperature and chemical potential can be expressed in
terms of f and ḟ . The chemical potential is equal to the change in the Helmholtz
free energy F = U − T S due to the addition of a particle, where the temperature
is constant. Suppose the added atom is put in a state with energy ε, i.e. f(ε) →
f(ε) + 1

ρ(ε) . The corresponding change in F is:

∆F (ε) = ∆U(ε)− T ∆S(ε) =

(
δU

δf(ε)
− T δS

δf(ε)

)
1

ρ(ε)
= ε− kBT log

[
1 + f(ε)

f(ε)

]
.

(3.25)
The chemical potential is this change averaged over all accessible states in the system:

µ =

∫
dερ(ε) ∆F (ε)∫

dε ρ(ε)
=

∫
dερ(ε) (ε− kB T log

[
1+f(ε)
f(ε)

]
)∫

dε ρ(ε)
. (3.26)

This expression can be easily checked by plugging in the Bose-Einstein distribution
f(ε) = (e(ε−µ)/kB T − 1)−1. The temperature is defined by:

U̇ = T Ṡ + µṄ. (3.27)

These equations can be used to define a non-equilibrium temperature and chemical
potential. Restricting the integration over ε to an interval J (where Ṅ , U̇ , and Ṡ are
also restricted to J) gives local values {T (J), µ(J)}.
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The temperature defined above is useful for describing the distribution, but is not
directly related to experiment. Experimentally, temperature is determined using the
free expansion of the cloud. The temperature is thus related to the pressure in the
trapped cloud. Consider the pressure tensor [14]:

↔
P (r) =

1

(2π~)3

∫
dp

pp

m
f(r,p). (3.28)

The trace of this tensor gives the scalar pressure:

p(r) =
1

3
Tr(
↔
P (r)) =

1

3m(2π~)3

∫
dpp2 f(r,p). (3.29)

Integrating the scalar pressure over the whole cloud allows a conversion to the ergodic
distribution function:∫
dr p(r) =

1

3m(2π~)3

∫
drdpp2 f(r,p) =

1

3m(2π~)3

∫
drdpdεp2 δ(U(r)+

p2

2m
−ε) f(ε).

(3.30)
This leads to expression similar to the densities used to calculate the loss rates:∫

dr p(r) =

∫
dε ρp(ε) f(ε), (3.31)

where:

ρp(ε) =
2π(2m)3/2

(2π~)3

2π2

32α
√
β

(ε4 +
8

3
U0ε

3) (3.32)

can be easily found using the result for ρ3.

The result is an integral of pressure over a volume, so the ideal gas law can be used
to define the kinetic temperature:

Tk =

∫
dε ρp(ε) f(ε)

NkB
(3.33)
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3.4 RF induced evaporation

An RF-field can be used to drive the transition from the |F = 1,mF = −1〉 trapped
state to the |F = 1,mF = 0〉 non-trapped state. The resonance frequency of this
transition depends of the Zeeman shift between the two states:

~ωRF = gF ∆mF µBB, (3.34)

where ~ is the reduced Planck’s constant, ωRF is the frequency of the applied RF-field,
gF is the hyperfine Landé g-factor, mF is the magnetic hyperfine quantum number of
the state, µB is the Bohr magneton and B is the magnetic field strength. The energy
~ωRF is also known as the truncation energy, denoted by εt, because the distribution
function is effectively truncated at this energy due to spin-flipping of atoms that
have equal or higher energy. A distinction can be made between evaporation, which
is the loss of high-energy atoms through elastic collisions, and spilling, which is atoms
with energies just below the truncation energy being lost due to the lowering of the
RF-frequency. If the RF-frequency is ramped down too fast, more atoms are lost
through spilling and evaporation. If it is ramped down too slowly, atoms are lost
to background pressure. The truncation energy can be related to the temperature
of the cloud by the truncation parameter η = εt

kB T
. This parameter determines the

efficiency of evaporation and spilling.

For a given ωRF there is a resonance surface at ~ωRF = gF ∆mF µBB(r) with a width
that scales linearly with the amplitude of the RF-field. When the RF power is low, the
surface is thin, and there is the possibility of high energy atoms, having higher speeds,
passing through the resonance surface before their spin-state is changed. This could
lead to inefficient cooling because the most energetic atoms are still trapped. Consider
an atom having a speed v moving through a magnetic field gradient B′ = dB/dρ
and passing a magnetic resonance with Rabi-coupling ΩRF = µBgFBRF/~. The
probability P to make the transition from mF = −1 to mF = 0 is given by [9]:

P = 1− e−2πΓLZ . (3.35)

Where ΓLZ is the Landau-Zener parameter given by

ΓLZ =
~Ω2

RF

4vµBgFB′
. (3.36)

Consider an atom moving only along the radial direction. In the limit ε� U0 an atom

with an energy ε > ~ωRF will pass through the surface once in a time ttrap =
√

2mε
α ,

which is the time it takes for it to fall to the center of the trap from its highest point
in the potential. The magnetic field gradient is approximately B′ = α/µB.

The amount of atoms of energy ε that are left after a time ∆ε can then be approxi-
mated by

Nε(t+ ∆t) = Nε(t)× (1− P )
∆t
ttrap = Nε(t)× e

− 2π ΓLZ
ttrap

∆t
. (3.37)
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It follows that the atoms are removed in a time

τevap =
ttrap

2π ΓLZ
=

4vµBgFB
′√2mε

2π α ~Ω2
RF

=
4vgF

√
2mε

2π ~Ω2
RF

=
4gF

√
2mε

√
2(ε− ~ωRF)/m

2π ~Ω2
RF

.

(3.38)
Due to elastic collisions, the population of atoms having energy ε is repopulated in
a time of the order of the collision time τel. The condition for efficient spin-flipping
is then τevap � τel. Incomplete evaporation is most likely at the start of the cooling
curve. The temperature is then around 400 µK and the RF-frequency is around 50
MHz. The amplitude of the RF-field is not precisely known but is at least 10 mG [9].
The evaporation times for high energy atoms at the start of the cooling process are
plotted in figure 3.1.
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Figure 3.1: Evaporation times for atoms with energy ε = η kB 0.0004.

The average collision rate is roughly 1 s−1 , varying slightly with the number of atoms.
Because τevap < τel, incomplete evaporation can be excluded as having an effect on
the cooling process, and the evaporation can be modeled as a complete truncation of
the distribution function.

3.5 The shape of a truncated distribution

The Bose-Einstein distribution is the equilibrium distribution because it satisfies
detailed balance. This means that for any elastic collision involving certain energies
ε1, ε2 → ε3, ε4, the opposite elastic collision ε3, ε4 → ε1, ε2 is equally likely. The
truncation of the distribution function breaks the detailed balance between elastic
collisions. Collisions producing an atom with ε > εt do not have a reverse process.
Higher energy particles have a higher chance of these collisions occurring, so the
higher energy occupation becomes depleted. Conversely, the lower energy ranges are
mostly unaffected. For this reason the distribution can be characterized as being
a Bose-Einstein distribution in the limit ε → 0 and being modified by a correction
polynomial for higher energies. The µ and T of the Bose-Einstein distribution are as
defined in (3.26) and (3.27), for J = [0, ε] and ε→ 0.
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3.6 Effect of gravity on the truncation energy.

Ideally, the surface where the atoms can be spin-flipped and evaporate is an equipo-
tential surface, so that the evaporation depends only on the energy of the atoms. In
practice, gravity causes a slight shift between the two. The cloud sags in the mag-
netic trap due to gravity, so most atoms are lost on the bottom of the evaporation
surface. Consider an atom in the center of the trap moving along the direction of
gravity. The atom is lost if

√
α2ρ2

res + U2
0 −U0 = εt,RF. The potential energy is then:

εt = εt,RF −mg ρres = εt,RF −mg

√
ε2t,RF + 2U0 εt,RF

α2
= εt,RF + ∆εt, (3.39)

where the shift in the minimum m
2 ω

2
ρ

(
g
ω2
ρ

)2
= 2× 10−3 U0 is neglected.

Using εt = η kB T , it follows that:

∆η =
∆εt
kB T

= −ηmg

α

√
1 +

2U0

η kB T
. (3.40)

Below, in figure (3.2), the shift in η is given for different temperature and η = 10.
Note that ∆η does not go to zero at high temperatures due to the linearity of the
trapping potential.
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Figure 3.2: |∆η| for η = 10.
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4 Simulation

4.1 Discretization

In order to simulate the evaporative cooling process, the energy range is divided into
bins from 0 to εt. The resolution is controlled by nbins,kBT , the number of bins per
kB T . The number of bins nbins is nbins,kB T ×

εt
kB T

rounded up. The results presented
in this thesis are computed using nbins,kBT = 10. The bins have width ∆ε = εt

nbins

and are centered at εi = (i − 1
2)∆ε. The integrals are approximated using Riemann

middle sums.

(3.5)→ ρiḟ
in
i =

mσ

π2~3
∆ε2

nbins∑
k=1

nbins∑
l=max(i−k+1,1)

ρmin[k,l,i,k+l−i]fkfl(1 + fi)(1 + fk+l−i)

(3.6)→ ρiḟ
out
i =

mσ

π2~3
∆ε2

nbins∑
j=1

i+j∑
k=1

ρmin[i,j,k,i+j−k]fifj(1 + fk)(1 + fi+j−k)

(3.11)→ ρiḟ1,i = −G1ρifi

(3.21)→ ρiḟ2,i = −G2∆ε

nbins∑
j=1

ρ2[min(εi, εj)]fifj

(3.20)→ ρiḟ3,i = −G3 ∆ε2
nbins∑
j=1

nbins∑
k=1

ρ3[min(εi, εj , εk)]fifjfk

So we have the change in f as a function of f:

ḟ = y(f) = ḟ in + ḟout + ḟ1 + ḟ2 + ḟ3

The µ and T from equations (3.26) and (3.27) can then be computed for any subset
with more than one element.

T =
1

kB

∑
i ρiεiḟi −

∑
i ρiεi∑
i ρi

∑
i ρiḟi∑

i ρi log
(
fi+1
fi

)
i
ḟi −

∑
i ρi log

(
fi+1

fi

)
∑
i ρi

∑
i ρiḟi

(4.1)

µ =

∑
i ρiεi∑
i ρi
− kB T

∑
i ρi log

(
fi+1
fi

)
∑

i ρi
(4.2)
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4.2 Method

The DDS used to control the RF-cooling updates the frequency only ten times per
second, so the cooling process can be seen as stepwise lowering of the trap depth.When
the truncation energy changes, these bins have to be redistributed. To do this for an
arbitrary new truncation energy, a continuous distribution is needed. The simulation
is divided into chunks of a tenth of a second, which take a distribution and cutoff
energy as input and give a best-fit distribution and some other quantities such as the
total internal energy, the new atom number and the collision rate as output. Based
on the arguments in section 3.5, the fit distribution is of the form:

f(ε) =
1

eβ(ε−µ) − 1
(1 +

7∑
i=2

pi (βε)i)θ(εt − ε), (4.3)

where β = (kBT )−1 and θ is the Heaviside step function. The evolution of the distri-
bution function is calculated with the Runge-Kutta method. The step-size needs to
be small enough to ensure stability of the lowest bin, otherwise the quasi-temperature
and quasi-chemical potential cannot be accurately determined. Evaluating the change
in f once per collision time of the lowest bin ensures this stability: ∆t = 2f1

ḟout
1

. The

distribution at time t+ ∆t is then:

f(t+ ∆t) = f(t) +
∆t

6
(k1 + 2k2 + 3k3 + k4). (4.4)

where:

k1 = y(f)

k2 = y(f +
∆t

2
k1),

k3 = y(f +
∆t

2
k2),

k4 = y(f + ∆t k3).

This process is repeated until 0.1 seconds have passed, at which point the µ and
T from equations (3.26) and (3.27) are computed, summing over the first two bins.
The distribution (4.3) with these µ and T is then fitted to the fi. The simulation is
written mainly in Mathematica, with a module that computes the change in f during
0.1 seconds. The Riemann sums were written in C, using OpenMP to parallelize the
sums, and were made usable by Mathematica using LibraryLink.
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5 Experiments

5.1 Linear Ramps

Two linear ramps were measured for comparison with the simulation. Just after
loading the MT the precise energy distribution is not well known, due to the high
optical density, temperature and because evaporative cooling has already been taking
place for a few seconds due to atoms sticking to the windows of the vacuum chamber.
A well determined starting point was prepared by ramping the RF-frequency from
60 to 40 MHz in 20 seconds and allowing the cloud to thermalize for 5 seconds. Two
linear ramps were examined, one going from 40 to 7 MHz in 30 seconds (figures 5.1
and 5.2), and one going from 40 to 7 MHz in 50 seconds (figures 5.3 and 5.4). Each
ramp was sampled at 11 equally spaced points. At each point 6 photos were taken,
with a time-of-flight of 10 to 15 milliseconds.

During the experiment the amount of atoms transferred to the MT can fluctuate, so
the starting point was measured at the beginning, middle and end. For every section
between two reference measurements, the simulation was run with three different
starting values: the smallest number of atoms and largest temperature measured
(red), the average number of atoms and temperature (blue) and the largest number
of atom and lowest temperature (green). The simulation temperatures displayed are
the kinetic temperature defined in section 3.3.

The simulations were run with and without the correction for gravity (3.39) to the
truncation energy. The correction only applies along the direction of gravity, so ne-
glecting the effect of gravity will underestimate the rate of evaporation and including
it will overestimate it. This can be seen by comparing the temperature graphs with
and without the compensation for gravity. The simulations without the correction
for gravity have a slightly higher temperature than found experimentally and those
with the correction have a temperature slightly lower. This implies that there is an
effective truncation energy between the two.
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5.1.1 30 second ramp
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Figure 5.1: Experiment and simulations without adjustment for gravity.
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Figure 5.2: Experiment and simulations with adjustment for gravity.
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5.1.2 50 second ramp
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Figure 5.3: Experiment and simulations without adjustment for gravity.
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Figure 5.4: Experiment and simulations with adjustment for gravity.
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5.2 An optimized path in the harmonic regime

Reaching BEC with a large number of atoms requires that the average energy is
reduced while losing as few atoms as possible. Judging the quality of a cooling curve
can be done by examining the efficiency parameter:

α = −
d log

(
U
N

)
d logN

= −∂t(U/N)

U/N

N

∂tN
(5.1)

An optimized path is calculated by maximizing α at each step, lowering the truncation
energy until α has passed a maximum. One such path was examined in the harmonic
regime, i.e. ε < U0. The reference point for this experiment was when the average
particle energy was equal to U0, which corresponds to a temperature of roughly 40µK.
The simulations are run in the same way as with the linear ramps, using starting
values based on the reference measurements before and after. The time-of-flight was
increased to 15 - 20 milliseconds, to keep the optical density low enough to extract
the atom number from the images. Figure 5.5 shows the data and gravity-corrected
simulations for each of the three segments. The atom number and temperature graphs
are split into two parts to make all the error bars visible. In between the second and
third segment, the power in the laser beams was restored to optimal conditions.
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5.2.1 Cooling in the harmonic regime
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Figure 5.5: Simulation and experiment for the optimized curve.
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6 Discussion & Conclusion
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Figure 6.1: Interaction energy

The kinetic theory approach accurately
predicts the cooling process at higher
temperatures, but appears to break
down when the gas reaches a tempera-
ture of roughly 10µK. The reason for
this is still unclear. Some possibilities to
consider are:

� At high densities loss rates can grow exponentially due to collisional avalanches [12] [16].
This occurs when the collisional opacity κ exceeds 0.693. At the point in the
curve where the simulations fails, the collisional opacity is only about 0.03.

� In this model, evaporation occurs directly once an atom with energy ε > εt
is produced. If the collision rate is larger than the trap frequency, they may
collide before evaporating, redistributing their energy. However, at the point
where the simulation fails the collision rate for atoms with energy εt is roughly
6.5 s−1, less than half of the lowest trap frequency.

� The gas is considered to be ideal, but at high densities this is no longer the case.
The interaction energy that an atom at the center of the trap has is 2n0 U

int
0 ,

where n0 is the peak density and U int
0 = 4π~2a

m is the mean field interaction
parameter. When this interaction energy is of the order of the binsize ∆ε, the
model is no longer valid. The quantity 2n0 U

int
0 /∆ε is plotted in figure 6.1.

The interaction energy is still less than one-hundredth of the binsize when the
experimental data and simulations diverge, so this is likely not the solution.

� The last segment of the cooling curve in the harmonic regime is very unstable.
Measuring this curve with the stability achieved in the 50 second linear ramp
experiment may give more insightful results, but this will have to be done after
this thesis is written. A stable and accurate experiment for cooling below 10 µK
can also be used to examine the effective truncation energy due to gravitational
sag.

The simulation’s accuracy for most of the cooling process indicates it can be a valuable
tool in optimizing the production of BEC’s. One important improvement to the
model would be decompression of the trap. For a sufficiently high initial phase
space density, the trap has to be decompressed to decrease losses due to avalanches.
A change in the trap parameters will change the energy of an atom according to
its position. Incorporating it into the model requires calculating the corresponding
change in the distribution function.
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