

Interactively Planning Resilient
and Connected Field Hospital
Locations in a Conflict Area

Case study Mosul, Iraq

Thijs van der Caaij
ITC: s6031250 UU:6035736
thijsvandercaaij@gmail.com
+31 (0)6 45025304

 Supervisor: Ellen-Wien Augustijn
 Date: 22-08-2019

 Version: Final Report Revised

mailto:thijsvandercaaij@gmail.com

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

2

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

3

CONTENTS

1 INTRODUCTION .. 5

1.1 Research Context ... 5
1.2 Research Objectives ... 6

1.2.1 General objective .. 6
1.2.2 Sub-objectives ... 6

1.3 Research limitations ... 8
1.4 Research Framework ... 9
1.5 Research Guide .. 11

2 THEORETICAL FRAMEWORK ... 12

2.1 Spatial Decision Support System (SDSS) .. 12
2.1.1 Components .. 13
2.1.2 GIS and Database Management Systems .. 13
2.1.3 Stakeholder Management ... 13
2.1.4 Dialog Management .. 14
2.1.5 Knowledge Management ... 15
2.1.6 Architecture ... 15

2.2 Model Management for Performance Indicators .. 17
2.2.1 Connectivity ... 17
2.2.2 Resiliency .. 18
2.2.3 Dedication of Population ... 19

3 METHODOLOGY ... 23

3.1 Case Study Area ... 23
3.2 Performance Indicators in Model Component .. 23

3.2.1 Static Indicators ... 24
3.2.2 Dynamic Indicators .. 24

3.3 Data .. 25
3.4 Stakeholder Requirements ... 26
3.5 SDSS-Architecture .. 28
3.6 Soft- and hardware ... 28
3.7 Dialog Component .. 29
3.8 Knowledge Component .. 29
3.9 SDSS Testing ... 29

4 DESIGN AND IMPLEMENTATION OF THE SDSS ... 30

4.1 Initial SDSS Design .. 30
4.2 First SDSS Implementation (pre-test) ... 33

4.2.1 Tool Development ... 33
4.2.2 Performance Indicator Calculation .. 33
4.2.3 Interface Design and Control ... 34
4.2.4 Pre-test .. 35

4.3 Second SDSS Implementation (first test) ... 36
4.4 Third SDSS Implementation (second test) ... 39

5 TESTING OF THE SDSS ... 41

5.1 Test Design ... 41
5.1.1 Test Set-up .. 41
5.1.2 Stakeholder Profiles and Instructions .. 41
5.1.3 Test Script ... 42
5.1.4 Selection of Test Persons ... 45

5.2 Testing Outcomes ... 45
5.2.1 Test 1 ... 46
5.2.2 Test 2 ... 48

5.3 Discussion... 50

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

4

6 CONCLUSION AND RECOMMENDATION ... 52
6.1 Conclusion ... 52
6.2 Limitations and Recommendations for Future Research ... 53

REFERENCES .. 55
Appendix A: Testing Instructions (Stakeholder Profiles) ... 57
Appendix B: Testing Script .. 61
Appendix C: Main SDSS Python Script .. 62
Appendix D: SDSS Adjustment Tools Python Script .. 94
Appendix E: Unimplemented SDSS Feedback ... 99

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

5

1 INTRODUCTION

1.1 Research Context
The Islamic State of Iraq and the Levant (ISIL) seized the city Mosul, Iraq in June 2014. This led to
attempts to retake the city from 2015 till 2017 by Iraqi, Peshmerga and international forces. Although
the Iraqi Prime Minister proclaimed victory over ISIL on 10 July 2017, inhabitants of Mosul have
continued to be displaced and in need of medical aid. The International Organization for Migration
(IOM) reports 793,422 people from Mosul to be displaced by 18 October 2017 (IOM, 2017) and the
World Health Organization (WHO) states that 2.7 million people were in need of health services
(WHO, 2017). Together with its partners, WHO has been providing medical aid since the start of the
Mosul crisis. These efforts can, among others, be seen in the form of Trauma Stabilization Points
(TSP), Primary Health Care Centers (PHCC) and Mobile Medical Clinics (MMC). The MMCs are
flexibly employable field hospitals which, should an alteration in the ground situation ask for it, allow
them to change locations. These field hospitals are defined by the WHO as "mobile, self-contained,
self-sufficient health care facility capable of rapid deployment and expansion or contraction to meet
immediate emergency requirements for a specified period of time" (WHO-PAHO, 2003, p.6).
Currently, their locations are chosen by a multi-disciplinary group consisting of different stakeholders,
such as WHO staff, multiple armed forces and Kurdish representatives. Each of these stakeholders
has their own preferences when it comes to the placing of field hospitals. The WHO, for example,
manages and supplies the field hospitals, but they often need protection as they are more and more
becoming tactical targets even though they are neutral (Nickerson, 2015). Then armed forces have to
provide this protection, and they seek hospital locations that require minimal protection.

Resources are often limited in conflict aid, and such was the case in Mosul, as only a limited part of
the population could be provided with medical assistance (IOM, 2017). The locations of a limited
amount of field hospitals should be optimized, to at least fully utilize the available medical capacity.
For this task, GIS has been used to get a somewhat objective analysis on the siting of field hospitals.
Unfortunately, a conflict such as in Mosul proved to be unpredictable and having quite some uncertain
aspects. It, for example, can be hard to predict the flows of refugees with respect to the time of
relocation, the number of refugees and the destination of these refugees. This difficulty has previously
led to an over assumption on the number of people that would flee to refugee camps outside of
Mosul. As the distribution of people is an important factor in finding optimal locations for field
hospitals, this over assumption led to field hospitals being placed near refugee camps and their
capacity not fully being used, while there was a need for these hospitals elsewhere.

Besides population distribution, there are other uncertain factors, like the accessibility of the field
hospital. In a normal situation, the accessibility to a certain point in a street network is somewhat
fixed, but in a conflict situation, routes can be blocked by enemy territory and network bottlenecks like
bridges can be damaged or destroyed, preventing people from using these points to get to field
hospitals. This uncertainty can partly be addressed by choosing resilient field hospital locations. The
Multidisciplinary Center for Earthquake Engineering (MCEE) characterizes resiliency of both social
and physical systems with the four “R’s” robustness, redundancy, resourcefulness and rapidity
(Bruneau et al., 2003). Redundancy is most relevant in the context of a street network in a conflict
situation, Bruneau et al. (2003, p.284) define it as “the extent to which elements, systems, or other
units of analysis exist that are substitutable, i.e., capable of satisfying functional requirements in the
event of disruption, degradation, or loss of function”. In the context of this research resiliency and
redundancy are treated as the same concept, and the most resilient locations are defined as those
that will remain available longest to most people, when an increasing number of routes become
unavailable. Xu et al. also mention that "redundancy is vital for transportation networks to provide
utility during disastrous events" (2015, p.1). Redundancy is said to be only one of the measurements
for resiliency though. A further exploration on the fitness of these measures should be made to come
to more resilient field hospital locations. The concept of resilient locations will be further addressed in
the theoretical part of this research.

While GIS can arguably prove useful in the planning of field hospitals, it relies heavily on the accuracy
of provided data. If this data comes with big uncertainties and dynamics due to the conflict situation,
then there is a need for a more flexible and resilient method of field hospital planning in conflict

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

6

situations. This need can be addressed by a spatial decision support system (Sugumaran &
Degroote, 2010).

Multi-criteria decisions such as the selection of field hospital locations are frequently assisted by multi-
criteria decision models (MCDM). These vary greatly in complexity and mathematical knowledge
needed to be utilized, but the average decision-maker does not possess the required skills and
knowledge to utilize such models to solve decision-making problems. This is where spatial decision
support systems (SDSS) come in. An SDSS is an interactive computer system with the purpose of
assisting in spatial decision-making by attempting to solve semi-structured spatial problems. It could
be used in an operator/decision-making room to be run on a decision (touch) table to increase ease of
use and allow for convenient decision-making in groups. This is of great importance as often multiple
stakeholders are involved in choosing facility locations. This is also relevant to the Mosul case, as
parties with different perspectives on the problem are involved in the decision-making, such as
armies, aid organisations, government officials and possibly other groups. A multi-criteria decision
model can be implemented in the SDSS to assist the decision-makers.

A way of coping with the uncertainty of data on conflict areas lies in the interactivity of an SDSS.
Although data can be out-dated or incomplete, decision-makers often have hands-on experience with
the facts on the ground and with similar previous situations, as opposed to just access to abstract
data. Such experience is valuable in decision-making as it leads to knowledge that can complement
the uncertain data. An SDSS based on flexible and interactive algorithms could allow decision-makers
to make on the fly contributions to data that is being considered in the MCDM. For example, if a
decision-maker knows that a particular area is risky or a road is inaccessible, the SDSS could allow
the decision-maker to adjust the location of the field hospital running an MCDM. This also allows for
easy experimentation with different scenarios, while providing corresponding performance indicators
to certain scenarios to the decision-maker.

There exists an offering of general SDSSs that aim to facilitate multi-criteria decision problems, but
these are often too complex, unclear and too general for the average decision-maker. Jacko et al.
(2003) prove that customized SDSSs that take into account the requirements and constraints of
specific decision problems, are likely to result in more productive SDSSs. Since the selection of field
hospital locations in conflict areas is a very specific decision problem, the need for an SDDS designed
around this problem, is identified.

While on the fly adjustments to data and an MCDM could prove very helpful to select locations for
field hospitals in a conflict situation, the computation of adjustments and performance indicators
should not take too long in order to keep the SDSS user-friendly. Not making the SDSS too
computationally requiring possibly forces us to reside on coarse, less complex but often also less
accurate MCDMs. These considerations will be further discussed in the theoretical framework and
methodology of this research.

1.2 Research Objectives
1.2.1 General objective
The main objective of this research is to design and develop a spatial decision support system for the
selection of field hospital locations in conflict areas that is data extensive and is based on fast
algorithms. The SDSS executes a set of models that will be selected by a literature review on different
models for calculating performance indicators in the planning of field hospital locations. Performance
indicators are generated which will visualize output scenario impacts. The developed performance
indicators will be integrated in an user-friendly and interactive SDSS which allows for on the fly
adjustments of map objects and quick decision-making. The aim is to identify locations with a high
connectivity that are also resilient to conflict dynamics while reckoning with other relevant
performance indicators. Three sub-objectives with their own sub-questions can be recognized.

1.2.2 Sub-objectives
A successful design and implementation of an SDSS requires knowledge of approaches that exist for
performance indicators in the planning of field hospitals which cope best with the dynamics and
requirements of a conflict situation. The project framework of section 1.1 showed the importance of a
couple of the factors that are to be considered when planning field hospitals in a conflict situation. But

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

7

besides these factors being obviously important, little is written about factors for siting field hospitals
in previous literature. Moradian et al. states that at least up until February 2014, no literature has
addressed site selection for field hospitals (2016). Knowledge on these performance indicators might
be found in literature on site selection of similar utilities like storm or fire shelters or custom indicators
have to be designed. Further, the problem context has shown that a field hospital location desires
some level of connectivity and resiliency due to the dynamics of a conflict situation. Different
measurements for the connectivity and resiliency of a location should be compared to see which are
most fit to be implemented in performance indicators. Review also has to be done on the components
of SDSSs to create a careful design for an SDSS and on how to test an SDSS. Therefore the first
sub-objective and its respective sub-questions are:

(1) To identify suitable performance indicators and SDSS components to include in an
SDSS for the planning of field hospitals locations in a conflict situation.

• What can different SDSS components contribute to a successful SDSS?
• What methods are to be used to measure the ‘resiliency’ and ‘connectivity’ of a location?
• What other performance indicators matter in the context of field hospital location selection and

how are they to be calculated?
• What functionality is required of the SDSS?

Next, the performance indicators and SDSS components can be implemented in the SDSS. It will be
made interactive in order for field hospital location decision-makers to implement their knowledge and
hands-on experience with real life conflict developments and similar experiences into the SDSS and
make easy, on the fly adjustments to the input data of the SDSS. The SDSS should not only respect
connectivity and resiliency of a location as performance indicators in the planning of field hospitals,
but also effectively communicate this to decision-makers through visualizations in the SDSS interface.
Decision makers often have great local knowledge from previous field experiences which is hard to
translate to data and they make the final decision on field hospital locations, but an SDSS which
easily lets them adjust and reflect on this data could greatly support them in their decisions (Rydén,
2011). Other performance indicators than location connectivity and resiliency should be visualized as
well to support decision-makers, such as the served population by single field hospitals or that of all
field hospitals in a certain configuration combined. At last, it is also important that decision-makers are
guided through the process of planning field hospital locations by the interface of the SDSS.
Therefore the second sub-objective and its respective sub-questions are:

(2) To develop a flexible SDSS which allows for on the fly adjustments and support for
finding connected and resilient field hospital locations.

• Which tools should be provided to decision-makers to make the SDSS flexible and
interactive?

• In what ways are performance indicators implemented into the SDSS?
• Which dialogs are needed to guide the decision-maker through the process of planning field

hospital locations?
• In what way(s) are performance indicators communicated to the decision-makers?

In order for getting to know whether the designed SDSS is suitable, interactive and able to support in
selecting connected and resilient locations for field hospitals, the different implementations of the
SDSS have to be tested. Tests will reveal the extent to which the SDSS is fit for this task and what
aspects of the SDSS possibly need to be altered. Some alterations can be made between tests,
which will lead to various implementation iterations and more to be tested. Different tests will be
needed and a setup will have to be designed for these tests. Also test participants have to be selected
and a test script will have to be made that stresses all relevant elements of the SDSS. The tests will
have to simulate real life field hospital location decision-making as much as possible. Therefore the
third sub-objective and its respective sub-questions are:

(3) To test whether different SDSS implementations are a suitable support for the
decision-making process of planning field hospital locations.

• Is the SDSS intuitive?
• Is it easy to adjust data in the SDSS?

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

8

• Does the SDSS produce realistic connectivity and resilience performance indicators?
• Is the SDSS fast enough?
• In what context is the SDSS tested?
• What test criteria are tested?
• Do the tests follow a certain methodology?

1.3 Research limitations
As shown in the problem context in chapter 1, an SDSS for the selection of field hospital locations
should be treated as a mere support tool for decision-makers. Even more so, when assumptions have
to be made, data quality proves inadequate and situations are subject to the unpredictable dynamics
of a conflict. Also, SDSS will only be tested for data regarding the Mosul crisis. In order for the SDSS
to be externally valid, its performances should first be tested in other environments as well. This
SDSS is not tested with real decision-makers due to the inaccessibility to these people. The real value
of the SDSS in supporting decision-making on the location of field hospitals can only be determined
by appliance in a real and on-going conflict situation, to then be compared to conventional methods of
field hospital location planning. This SDSS does only require software that is currently freely available
to actual decision-makers and is therefore easy to adopt.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

9

1.4 Research Framework
The research objectives and their corresponding questions have led to the research model in figure
1.1 below. The research framework consists of three main phases: Literature review and
methodological decisions (a), design of and implementation in the SDSS (b) and testing and
evaluation (c). These phases roughly reflect sub-objectives (1), (2) and (3) of this research. For
overview purposes, not all steps are chronologically presented within phases. Their order of
appearance is indicated with a little section number in the corner of each step as guidance.

Figure 1.1: Research model consisting of phase; (a): Literature review and methodological decisions, (b):

design of and implementation in the SDSS and (c): testing and evaluation.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

10

Each of the above phases, consist of several steps. These are summarized in table 1.1 below and are
further elaborated next.

Phase (a): Literature review
& methodological decisions

Phase (b): Design of and
implementation in SDSS

Phase (c): Testing and
optimization

(a)1 SDSS exploration (b)1 Indicator preparation (c)1 SDSS testing
(a)2 Performance indicator
evaluation

(b)2 Development and
visualization of the
performance indicators

(c)2 SDSS optimization

(a)3 SDSS design decision (b)3 Implementation of
interactivity

(c)3 Discussion

 (b)4 Development of the
interface

(c)4 Conclusion

Table 1.1: Overview research phases

Phase (a): Literature review
The start of the literature review is purely explorative, just to get more knowledge about aspects that
are important for the planning of field hospitals in a conflict situation. This has led to step (a)1: SDSS
exploration. Here recent SDSS literature is explored and selected for relevance to the project
framework of this research. Next comes step (a)2 Performance indicator evaluation. Here the most
important performance indicators in the planning of field hospitals in a conflict are determined. Special
attention is given to connectivity and resiliency indicators, looking at various measures e.g. one to
evaluate the connectivity and resilience at different locations. Attention is also paid to how other
measures can function as other performance indicators to see how certain field hospital distribution
scenarios perform. The method for SDSS testing is also considered here. The literature review phase
is ended with step (a)3 SDSS design decision. This step is the bridge to phase (b). Here choices are
made on how the SDSS will be structured, what models are included in its model component, what
performance indicators are to be provided to the SDSS taking into account the conflict context and the
Mosul data, what interactivity exactly entails and what the interface will require.

Phase (b): Design and implementation of the SDSS
In phase (b) the MC-SDSS will be designed and implemented. It starts with step (b)1 Indicator
preparation. Here a part of the interface is made which makes sure the right spatial layers for the
indicators is being put in, also providing proper information on the relevance of the data. Next is step
(b)2 Development and visualization of the performance indicators. Here the indicators that represent
certain field hospital distribution scenarios are calculated and implemented. They are then included
and clearly visualized into the interface of the SDSS to inform the decision-makers as good as
possible. After that comes step (b)3 Implementation of the interactivity, in which adjustability of the
(spatial) data is accommodated. Lastly in this phase is step (b)4 Development of the interface.
Here a user-friendly interface with just the right number of tools and options is implemented. This is
also where guidance is provided.

Phase (c): Testing and optimization
At phase (c), the first version of the SDSS will be finished. This enables various steps, to start with
Step (c)1 SDSS testing. At this step, the support delivered by the SDSS to decision-makers will be
tested by myself and independent test participants. Relevance, completeness, user friendliness and
performance are among the elements to look at. Step (c)2 SDSS optimization uses the feedback from
step (c)2 and is about implementing it in a next SDSS iteration. If necessary, more testing-optimizing
iterations can be made. In step (c)3 Discussion test results will be discussed and possible future
implementation of feedback is considered. Then lastly, step (c)4 Conclusion is used to reflect on the
objectives of this research and their corresponding questions in an attempt to answer these.
Limitations of this research and recommendations for future research are also given here.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

11

1.5 Research Guide
This chapter provides a context to the planning of field hospitals in conflict areas and identifies
research objectives and a framework to complete these objectives. The next chapter will review
literature on SDSS design, methods for calculation of performance indicators and some literature on
the testing of an SDSS. Chapter 3 then provides the Mosul case study, the actual used performance
indicators, data used, requirements to the SDSS and different considerations for the design of the
SDSS. Chapter 4 will guide the reader through the SDSS design process and different
implementation iterations of the SDSS. In chapter 5 the whole process of testing different SDSS
implementations is documented, including test set-ups, different testing roles, test script, the selection
of test participants, the test outcomes and a discussion of these results. At last, the research
objectives will be reflected upon in a concluding chapter 6, limitations to this research are
acknowledged and recommendations will be made for future research.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

12

2 THEORETICAL FRAMEWORK

In this chapter the theories regarding the proposed SDSS are considered. First the concept of an
SDSS is elaborated further, also discussing its components and architecture. Then different models
for performance indicators are reviewed. At last a short consideration is made on the testing
methodology.

2.1 Spatial Decision Support System (SDSS)
Regular GIS software packages help address structured problems with a solidly defined solution
process, like the running of a sequence of simple queries. But many issues are not so well structured
or defined. A prescriptive process is especially absent in problem-solving when various players have
a stake in the outcome as these players may fail or have trouble agreeing on the formulation of the
problem. Such problems can still benefit from advanced analytical tools to explore the problem, run
analyses on it and use the gained information to come to most optimal solutions. An SDSS is
designed and developed to address these not so structured problems.

An SDSS is an interactive, computer-based system which can assist in the solving of semi-structured
spatial problems (Sprague & Carlson, 1982). An SDSS has the possibility of bridging the gap between
decision-makers and complex models, as spatially referenced information is combined with a
decision-making environment in order to positively affect the performance of decision makers
(Maniezzo, Mendes, & Paruccini, 1998). All the characteristics of an SDSS, according to Sugumaran
& Degroote (2010) are summarized in figure 2.1. Carver (1991) argues that only the combination of
advanced spatial analysis, the expertise of the decision-maker and a suitable user interface makes an
SDSS different from a regular GIS. Carver specifically indicates that an SDSS in a decision committee
room could create significant improvements in the way locational decisions are made. Jacko et al.
(2003) prove that customized SDSSs that take into account the requirements and constraints of
specific decision problems, are likely to result in more productive SDSS than generic GIS platforms.
Stakeholder participation and consultation in the locational decision allow for more carrying capacity
of decisions made and increases stakeholders’ ability to provide useful feedback if it is done through
the interaction with customized SDSSs (Carver, 1991).

Figure 2.1: SDSS characteristics (Sugumaran & Degroote, 2010).

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

13

2.1.1 Components
Because an SDSS has to provide support for decision-making in semi-structured spatial problems, it
should be easy to use, provide potential solutions through presentation of different scenarios, be
flexible in use and possible to adapt and support analytical models. While an SDSS only has a
database, model and user interface at its most basic level, more components are often required to
achieve these characteristics. The number of components and level of detail vary in literature, but
Sugumaran & Degroote (2010) identified a database management-, model-, dialog management- and
stakeholder component crucial while they considered an application domain knowledge component
optional (figure 2.2). What follows are short considerations of these different components. The model
component is considered in more depth in section 2.3.

.
Figure 2.2: SDSS components identified by Sugumaran & Degroote (2010).

2.1.2 GIS and Database Management Systems
Most SDSSs are built around a GIS and use among others the database management and dialog
management component of the GIS. The ability to store large amounts of (non)spatial data that is
(in)directly linked to spatial features is one of the main strengths of a GIS. Besides the collection,
storage and management of data, a GIS also provides functionality for the cartographic visualization
of data. The database management component feeds data to the other components in an SDSS.

2.1.3 Stakeholder Management
In any spatial decision-making process, there are a number of stakeholders that have a stake in the
potential outcomes of the process. The successful application of an SDSS depends on the
involvement of various roles. Sugumaran & Degroote (2010) recognized various roles with different
functions in the design, development, implementation and usage of an SDSS. These roles are that of
the decision-maker, the analyst, developer and expert as can be seen in figure 2.3 below.

The expert is often a proponent for the SDSS, who acknowledges its potential value. The expert has
detailed knowledge on necessary aspects of the spatial decision problem, being familiar with the
possibilities that technology provides for the SDSS. Experts can also play a more specific role as they
have knowledge on one or more aspects of the spatial decision problem. Either way, the expert
provides unique knowledge and insight into the decision problem, which can be incorporated into the
SDSS. The expert can work together with the other stakeholder roles to develop the necessary
knowledge to and advice on how to make the best use of the SDSS. The expert could however not be
aware of the precise context for a location decision in a given area. Strager and Rosenberger (2006)
demonstrated such knowledge differences between groups of outside experts and local stakeholders
in a spatial multi-criteria analysis.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

14

The developer role includes tasks like collecting requirements for the SDSS from end users,
designing the SDSS architecture, developing the user interfaces and functionality programming.
Jankowski et al. (2006) stated that knowing user requirements for the SDSS leads to a system that
can support decisions well. Therefore these requirements of stakeholders should be investigated
before designing and developing the SDSS. According to Sahota and Jeffrey (2006), little
employment of an SDSS can be caused by too limited involvement of users in the development of the
software. Specific pitfalls that commonly occur are that tools are too time consuming to use, too
complex and that there is too much uncertainty in outputs.

The analyst is usually involved in selecting models, running these and interpreting results, to inform
the decision-maker. Because GIS-knowledge is often needed in an SDSS, the analyst might be a GIS
analyst or someone familiar with the models. Usually, the larger the semi-structured spatial decision
problem is, the more analysts from different disciplines are involved (Ascough et al. 2002).

Decision makers are the stakeholders who need meaningful information regarding the potential
solutions to the spatial problem at hand. This information is usually provided through the SDSS by
experts and analysts to aid their decision-making.

Although these four stakeholder roles in an SDSS are described separately, situations often occur in
which the stakeholder has more than one role. This depends on the nature and size of the decision
problem and stakeholders’ levels of expertise.

Figure 2.3: Stakeholders involved in SDSS (Sugumaran & Degroote, 2010).

2.1.4 Dialog Management
One of the most important aspects of a successful SDSS is the way users interact with the software in
the system. This is called the dialog management component and it provides the user with an
interface to operate, give input to and to get output from. The component offers the ability to represent
outputs as meaningful maps and it gives the option to produce effective reports, tables and charts.
Spatial decision-making processes involve iterative, interactive, and participative involvement of end
users (Sugumaran & Degroote, 2010). This involvement is supported in the user interface of an
SDSS, and it allows the user to compare potential solutions and their effects on a decision problem.

Malczewski (1999) summarized accessibility, flexibility, interactivity, ergonomic layout and processing-
driven functionality to be considered for an effective user interface. Accessibility can be achieved by
intuitive user interfaces that facilitate all the functionality for users. The possibility of changing the
input on the fly and to undo incorrect actions makes the system flexible. A system will be interactive if

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

15

information flows efficiently between the user and the system. An ergonomic layout implies efficient
communication between the user and the system. At last a processing-driven interface keeps the user
up to date on what is going on and what has to happen next. A careful design of the system by user
input and software testing can help in meeting these characteristics.

In the past decades there has been an increased realization that ease of use leads to more
employment of an SDSS. As advanced as the system may be, if its interface is too complex, there is a
good chance that few users are able to operate it. This stresses the need to meet the characteristics
mentioned above.

2.1.5 Knowledge Management
The knowledge management component is often present in an SDSS, but it is not always essential to
its functioning. Its purpose is to offer expert knowledge that can help in finding the best solution for a
problem or to guide users through the decision-making process and the models included. According
to Armstrong et al. (1990), there should be a library with expert knowledge as a guide for users,
limiting their need of asking experts.

Zhu et al. (1996) divided the knowledge component into five categories: domain knowledge, model
knowledge, utility program knowledge, metadata, and process knowledge. Domain knowledge is
knowledge on the specific problem domain the SDSS is used for. The model knowledge describes
models, helps to select the right models and their relevant criteria. Information about tangential tools
is provided by utility program knowledge. The metadata gives information about the data used in the
SDSS and the process knowledge guides through the decision-making process using the SDSS.

Elmes and Cai (1992) made an SDSS for improving by moth affected ecosystems including a visual
tutorial in its knowledge component to guide in selecting inputs, operations and data characteristics
required for spatial analysis. Witlox (2005) states that only specialized knowledge which is based on
true expert input should be included and that the knowledge should not be trivial or overly
complicated.

2.1.6 Architecture
It is now clear how an SDSS requires various components that serve multiple purposes. There
basically are two ways to provide all the functions in an SDSS. Either by linking software together in a
comprehensive system or by developing all the functions in a single software through existing tools or
by developing customized tools.

Linking software might be necessary because there are few software applications that provide all
required functions. Most SDSSs have been developed this way. This is made possible by creating an
interface or intermediary program that takes care of the data transfer between various pieces of
software. This model saves time as it makes use of work already done, but it often reduces control of
the development design and it possibly decreases flexibility of the SDSS.

Developing all the functionality in a single software can be difficult as it might lack functionality in its
original form and so a lot might have to be developed. But when this approach is chosen for the
development of an SDSS, it is usually done in a GIS as they in general meet the majority of the
requirements for an SDSS. Usually, spatial data analysis, modelling, management and other
functionality like visualization and customization of interfaces are present in GIS.

The way in which all of the functionality in an SDSS is combined, can be categorized in a spectrum
from no coupling, to loosely coupled, to tightly coupled, to full integration within a single software
(Chakhar and Mousseau, 2008). Without coupling, different programs have to be accessed by the
user to achieve the intended functionality. With loose coupling, there is some automated interaction
between the different software components used in the SDSS. Tight coupling is the same as loose
coupling except that all functionality can be accessed from a single interface. Figure 2.4 presents the
coupling approaches proposed by Chakhar and Mousseau (2008) in regard to GIS and multicriteria
analysis software.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

16

Figure 2.4: Diagrams representing loose, tight, and fully integrated coupling approaches (Chakhar and

Mousseau, 2008).

Coutinho-Rodrigues, Simão, & Antunes (2011) have developed an SDSS which integrates MCDMs
for the purpose of planning urban infrastructure systems. It is inspired by the fully integrated coupling
framework of Chakhar & Mousseau which is shown above (2008). Their SDSS builds on existing GIS
functionality, uses a customized user-friendly interface, uses various MCDMS and includes interactive
functionality to experiment with these models, in order to assist their aimed for decision-makers as
good as possible. Figure 2.5 below shows the architecture of their SDSS. It serves as an example for
the architecture of this research and is further discussed in section 3.5.

Figure 2.5: Multicriteria Planning of Urban Infrastructure Systems Architecture (Coutinho-Rodrigues et al., 2011).

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

17

2.2 Model Management for Performance Indicators
The model management component of an SDSS takes care of all the different models that have to be
executed and possibly combined. It contains a certain set of models that provide analytic capabilities
to spatial datasets. The spatial models translate the spatial data to more meaningful information for
decision-making processes. Next, the need for models in this SDSS is discussed and different models
are explored.

The problem of deciding where to place field hospitals is a typical location decision problem which
involves various conflicting criteria, making it a multi-criteria decision-making problem (MCDM).
Malczewski (2004) states that while there is a wide variety of decision models, there is a lack of rules
to decide which to use for what situation. In this research, various models are needed to calculate the
various performance indicators. But no existing MCDM is used to combine these performance
indicators and propose ideal locations to the stakeholders. Because picking locations for field
hospitals in conflict areas is a too complex process to just prescribe locations based on criteria and
weights. Instead, a custom MCDM is proposed in which stakeholders are presented with clear
visualizations of different performance criteria and combine this information with their expert
knowledge to explore the solution space and come to the most optimal locations by exchanging their
knowledge between themselves and the SDSS. The stakeholders will be allowed to move candidate
locations around on a map to evaluate the impact a location change has on the provided performance
indicators. Therefore some theoretical underpinning is provided next for the most important
performance indicators in the SDSS. These are the connectivity, resilience and served population by
a hospital location. The other performance indicators do not require theoretical underpinning because
they are much less complex. Decisions upon the use of certain models are made in chapter 3 on
methodology.

2.2.1 Connectivity
The connectivity of a location can be of great importance in deciding where to place field hospitals.
Roads give insight into the connectivity between places, as places that might be near one another in
Euclidean distance, could be much further apart through a road network. Connectivity is often
expressed in some measurement calculated through a road network. Experience learns however, that
road network datasets can be difficult and time consuming to generate for conflict areas. Calculations
with road networks can be time-consuming as well. Therefore both measurements through a road
network and a less complicated measurement are discussed next for expressing connectivity.

One method of expressing connectivity is through centrality measures. Their algorithms are often
already available in GIS platforms and they can identify the most important vertices in a road network
and provide the ability to rank them (Borgatti, 2005).

Closeness centrality
Closeness centrality of a vertex is the average length of the shortest path between a vertex and all
other vertices in a network. The more central the vertex is in the network, the closer it is on average to
every other vertex. Sabidussi (1966) defines closeness centrality as:

 𝐶(𝑥) =

1
∑ 𝑑(𝑦, 𝑥)𝑦

 (1)

where 𝑑(𝑦, 𝑥) is the distance between vertices 𝑦 and x.

Betweenness centrality
Betweenness centrality is how often a node in a network is passed if you look at the shortest routes of
any point to any other point in a network. In other words, the higher this centrality, the more likely you
are to pass a node when taking a shortest route in the network. Brandes (2001) defines betweenness
centrality as:

 𝐶𝐵(𝑣) = �

𝜎𝑠𝑡(𝑣)
𝜎𝑠𝑡𝑠≠𝑣≠𝑡∈𝑉

 (2)

where 𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
 is the fraction of shortest routes between 𝑠 and 𝑡 that pass node 𝑣.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

18

While closeness and betweenness centrality are quite similar (Brandes, Borgatti & Freeman, 2016),
closeness centrality is more susceptible to outliers in the network. One exceptionally single road
heading out of the network will shift the closeness centrality heavily towards this road. Betweenness
centrality is less susceptible to this because it is more of a ‘local’ centrality whereas closeness is more
‘global’ (see figure 2.6 below). Closeness centrality sort of counts a node in the middle of the network
as central, while betweenness centrality often classifies major roads as central because they are
passed much.

Figure 2.6: closeness centrality (left) and betweenness centrality (right).

Custom connectivity
While these centrality measures could tell us something about the connectivity of a vertex in a
network, a similar method might be needed to measure connectivity without a network. The ratio of
major- to residential road length reached within a small search window from the given vertex can
substitute when there is no network to be traversed through. To gain a sense of the centrality in a
wider area of a hospital, a small averaging search window around a hospital could be used as well.

2.2.2 Resiliency
A field hospital location that can easily be cut off from demand sources (population using the
hospital), is undesirable in a conflict situation. A demolished road or bridge for example can make a
location unreachable. There are measurements for the resiliency of a location. Generally, the most
resilient locations are those that will remain available longest to most people, when an increasing
number of routes become unavailable. A location in the middle of a segment in a street network for
example only has 2 directions to be accessed from; the two directions in the street. A location at an
intersection of 8 roads will have a much smaller chance of being disconnected from the rest of the
street network, although it should be kept in mind that theoretically 7 out of eight roads could be a
dead end, which leaves only one road connecting the location to the remainder of the network. There
are different ways for measuring the resiliency of a location, two will be discussed in the next
paragraphs. The redundancy index is considered for situations where there is a road network dataset
available and when calculation speed is no issue and the degree centrality measurement for when
there is just a road dataset or a need for fast calculation.

Redundancy index
The importance of redundancy as a possible measure for resiliency has been stressed in the project
framework of this research. Redundancy in networks is vital for providing utility during disruptions,
such as when a road segment in a network is blocked or damaged. Redundancy, in this case,
provides alternative routes to get to a certain point. The redundancy index, as described by City Form
Lab (2016), can approximate the redundancy of paths to get to a certain vertex from any other vertex

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

19

in a network. The path redundancy index calculates for a vertex in a network both the shortest path
and the alternative paths to each of all the other vertices, given a certain redundancy coefficient. Then
the ratio between the summed length of the alternative paths and the shortest path is calculated.
Doing so for a certain vertex to each of all the other vertices in a network and taking the average of
these ratios provides the redundancy index of a vertex. The redundancy coefficient indicates how
much longer the alternative paths are allowed to be compared to the shortest path.

Given a pair of vertices O and D in an undirected graph G, the redundancy ratio for the pair with a
redundancy coefficient ρ ≥ 1 is defined by (City Form Lab, 2016):

Rρ[O, D] =
∑e∈Ew[e] ⋅ ζO,D[e, ρ ⋅ d[O, D]]
∑e∈Ew[e] ⋅ ζO,D[e ⋅ d[O, D]]

(3)

where w[e] is the weight of edge e in G; d[O,D] is the shortest path distance from O to D in G; and ζ
O,D[e, x] is 1 if there is any path (not necessarily simple) from O to D in G that goes through edge e
and whose weight is at most x, and 0 otherwise. A path is simple when it does not cross a vertex
more than once. The enumerator of the ratio is the summed lengths of the alternative paths and the
denominator that for the shortest path between two vertices.

The redundancy index is calculated by taking the average of the ratios between the vertex to all other
vertices. Given one origin O and a non-empty set of destinations Δ, the redundancy index for O with a
redundancy ratio ρ ≥ 1 is defined as (City Form Lab, 2016):

𝑅𝜌[𝑂,𝛥] =
∑D∈ΔRρ[O, D]

|𝛥|

(4)

where |Δ| is the size of the set Δ, i.e. the number of destinations. The redundancy index is relatively
fast and can be calculated for all the vertices in a network at once. The redundancy index is an
approximation of the true amount of redundant path length and it usually gets quite close to this true
amount. Although it is relatively fast because of its approximation, processing time can quickly add up
for large networks and higher redundancy coefficients. The higher the redundancy coefficient, the
more computational power is needed to calculate the index. When a redundancy coefficient of 1.1 is
chosen, then this means that the redundancy index is calculated for routes 10% longer than the
shortest path. If this, for example, gives an index of 5.5, this means that for this coefficient on average
5.5 times more alternative street length becomes available to reach another vertex.

Degree centrality
Besides the earlier discussed closeness and betweenness centralities, another centrality
measurement is degree centrality. It is the oldest and conceptually simplest centrality measure.
Degree centrality is measured by the number of streets that a vertex or intersection is directly
connected to. The more degrees that are connected to the vertex, the less likely it is that a vertex will
be cut-off from the rest of the network. The degree centrality of a vertex 𝑣, for a give graph 𝐺 ∶= (𝑉,𝐸)
with |𝑉| vertices and |𝐸| edges, is defined as (Freeman, 1978):

 𝐶𝐷(𝑣) = deg(𝑣) (5)

The degree centrality calculation is much less requiring than the redundancy index, but a lot less
accurate because it only takes directly connected road segments into consideration.

Custom resiliency
While degree centrality could tell us something about the resiliency of a vertex in a network, a similar
way is needed to measure resiliency without calculations through a road network. Because as
previously mentioned, proper road network data is not always available in a conflict area. The number
of roads reached within a very small search window from the given vertex can substitute when there
is no network to be traversed through. To gain a sense of the degree centrality in a wider area of a
hospital, a small search window around a hospital could be used as well.

2.2.3 Dedication of Population
Location decisions aim to optimize at least one objective function. This could for example be the
minimization of facilities, maximizing spatial coverage or minimizing the average distance traveled

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

20

from demand to facility (also known as P-median) (Farahani et al., 2010). Daskin & Dean (2004) have
reviewed these objective functions with regard to health care facilities and concluded that the
maximization of coverage and the minimization of the average distance are the most efficient
objectives in the context of planning public facilities. Of these objectives, the minimization of distance
leads to the most equitable hospital location pattern (Morrill & Symons, 1977) as it tends to equalize
the distance travelled among the target population. This minimization of total distance between
population and hospitals is further addressed in the performance indicator definition in section 3.2 and
more in-depth discussion of objective functions is performed by Rahman & Smith (2000).

In the case of field hospital location decisions, it often is the case that not enough hospital capacity is
available to serve all of the demand from the population. Therefore it is assumed that the first and
foremost objective function in the context of this SDSS is to make sure that the available hospital
capacity is used to full extent. The stakeholders using this SDSS can evaluate this objective function
through a served population performance indicator. When multiple hospitals are present on a map in
the SDSS, it has to be determined which hospital serves what area and corresponding population to
calculate this performance indicator. There are different methods to determine this and next, we will
discuss three methods. These methods differ in whether it is possible to calculate areas that are
proportional to some weight given to the hospitals. As it might, for example, be desirable to model that
more people travel to a big existing hospital rather than equally towards field hospitals. The methods
also range from complex and more accurate to simple and less accurate, which translates into a
trade-off between accuracy and computation time.

Voronoi diagram
Probably the simplest method for the division of space between hospitals is the use of a Voronoi
diagram. A Voronoi diagram partitions the space around the hospitals into Voronoi polygons.
A Voronoi polygon consists of the area that is closer to the corresponding hospital than to any to any
other hospital. Where distance to two or more hospital is equal, the boundaries of the Voronoi
polygons will be located. The Voronoi diagram is calculated in Euclidean space without taking roads
and obstacles into consideration (see figure 2.7 below). In exchange of this simplicity, the calculation
of a Voronoi diagram is rather fast and of course it does not require a road network for its calculations.

Figure 2.7: The hospital Voronoi polygons of the Voronoi diagram do not take (in)active roads and obstacles into

account.

Custom raster areas
Instead of dedicating population to hospitals through Euclidean vector space, a raster-based
approach might be computationally similarly requiring and more flexible. For each hospital, a raster
distance map could be calculated, such as in figure 2.8 a below. Then the distance raster of each
hospital is compared, and for each cell, the hospital distance map with the smallest distance in that
cell will be the output cell (GRASS Development Team, 2019). This results in a division of area like in
figure 2.8 b below, and is almost the same as the Voronoi diagram. Except with this method, you
could set weights to individual hospitals by applying this weight to every cell of a hospital’s distance

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

21

raster. It, for example, could be desirable to assign hospital capacity as weights because bigger
hospitals attract more population. In figure 2.8 c below, the hospital in the yellow area has had a
reduced weight applied to its distance raster. This has resulting in the hospitals of the green and
purple areas getting more area.

Figure 2.8: (a) individual hospital distance raster, (b) custom raster area division (equal weights) and (c) weighted

raster area division (hospital 1 has a weight of 0.75 instead of 1).

This custom raster area method could be extended by using raster path distance allocation
algorithms. Such an algorithm calculates for each cell in a raster which of the target cells (hospitals)
has the shortest path, taking the cost of each traversed raster cell into account. With a fine enough
raster, a vector roads file could be rasterized to act as a cost surface. The resulting raster would hold
cells on locations of roads which have no traversing cost and all roadless areas would be impassable.
With this method, residential roads could be given a small traversing cost to reflect upon the
difference between major and residential roads. Unlike the previously discussed Voronoi diagram, this
method accounts for the real-life restriction of having streets to travel through and obstacles to avoid.
Without such an implementation of a cost surface, inactive bridges in a road file will not have any
effect on the reach of a hospital (figure 2.9 below) and the raster approach would only differ from
Voronoi diagram in the ability to set weights. This method also would not require a road network file.

Figure 2.9: Custom raster areas without raster path distance allocation.

Service area allocation
In (vector) service area allocation, for each hospital, a road network is traversed to calculate how far
each road segment is from each hospital. Then each road segment gets assigned the hospital
identifier of the hospital that is least far away from road segment (GRASS Development Team, 2019).
Polygons can then be drawn around subsections of the network to indicate which hospital serves
what area. This computation can be somewhat time-consuming and requires a road network. In
exchange, it provides the ability to add traversing costs to road segments and junctions. Also it is
possible to weight the reach of each hospital. Figure 2.10 below shows how hospital service areas
reach over water through bridges, but do not anymore if bridges are toggled inactive.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

22

Figure 2.10: (top left) active bridges and (top right) inactive bridges affect the allocation of hospital service areas
through a road network (bottom left shows service area with active bridges, bottom right with inactive bridges).

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

23

3 METHODOLOGY

3.1 Case Study Area
Mosul is a major city in northern Iraq with an estimated population of between 750.000 and 1.500.000
in its urban area after approximately half a million fled the city in the second half of 2014 because of
fighting between ISIL and government forces (UNAMI, 2014). It is located some 400km north of
Baghdad, and its old city stands on the west bank of the river Tigris. At the time of the liberation
operation, the five bridges over the Tigris have reportedly been destroyed by ISIL forces (Tawfeeq,
2017), and pontoon bridges were the only connections between the west and east part of the city
(MacSwan, 2017). In 2017, many of the refugees resided in refugee camps surrounding the city.
Besides bridges, many roads and buildings are damaged as well (see figure 3.1) (BBC, 2017).

Figure 3.1: Mosul damage assessment on 8 July 2017 (BBC, 2017).

3.2 Performance Indicators in Model Component
What follows is a consideration of the various performance indicators that need to be implemented
into the model management of the SDSS, to allow stakeholders to come to the best locations for field
hospitals in a conflict situation. We can distinguish between two types of performance indicators,
more static ones and quite dynamic ones. The more static ones are calculated only once per session,
unless the road and dangerous situations happen during the decision-making process itself. It is
expected that at the beginning of a planning session, or a bit prior to, updates are made by the
stakeholders to the map objects in order to reflect upon any changes that happened in the conflict
dynamics. These static indicators, therefore, are allowed to take longer to calculate. The dynamic
indicators will have to be calculated after every shift in objects on the SDSS map. The move of a
hospital changes every performance indicator as all of the indicator values are determined by the
locations of the hospitals. The difference between the connectivity- and resilience- versus the other
indicators is that most of the connectivity and resilience calculations do not have to be repeated at
each change, unless roads are toggled (in)active or if an adjustment has been made to the danger(s)
on the map. An overview of the performance indicators can be found below in table 3.1. The table
contains the indicator name, the main method that is used for the calculation of the indicator, the data
that is used in this calculation and the number of methods that were used subsequently in the
calculation of an indicator. What follows is a consideration of each of the performance indicators. A
fully implemented schematic of the SDSS model component can be found in section 4.2.2 on the first
implementation of the SDSS.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

24

Indicator name Main method Data used Nr. of
methods

Population Voronoi diagram Population
Existing hospitals

Field Hospitals
Danger

3-5

Mean Population Distance Distance Population
Existing hospitals

Field Hospitals
Danger

2

Danger Distance Distance Existing hospitals
Field hospitals

Danger

1

Water Distance Distance Existing hospitals
Field hospitals

Water

1

Area Covered Voronoi diagram Existing hospitals
Field hospitals

3-5

Connectivity Betweenness centrality Existing hospitals
Field hospitals

Roads
Danger

3-4

Resilience Degree centrality Existing hospitals
Field hospitals

Roads
Danger

3-4

Table 3.1: Overview of field hospital planning performance indicators.

3.2.1 Static Indicators
The accessibility of a location is by many considered the most important factor in the supply of health
care (Moradian et al., 2017). The same is assumed for field hospitals. As previously discussed,
accessibility is measured in this research as connectivity and resilience.

Connectivity
A comparison between different connectivity measures has been made in section 2.2.1. For the
connectivity performance indicator of the SDSS, a custom betweenness centrality measure will be
used. First of all betweenness is being used instead of closeness centrality because of the
local/global difference that has been showcased. It is desired that the connectivity measure can also
locally, outside of the middle of a network, express centrality. By using the betweenness centrality,
major roads (also outside of the middle of the road network) will have high centrality values. In real
life, this would likely also be the case. Betweenness centrality is calculated for every junction in the
road network, and our connectivity indicator will be the average betweenness centrality in a 200 meter
window around each hospital.

Resilience
A redundancy index, degree centrality and a custom resiliency measure have been discussed in
section 2.2.2. It has been decided to implement a custom degree centrality measure. While the
redundancy seemed a more accurate measure of resilience because it took the whole network into
consideration, the calculation of this measure quickly takes too long. Therefore the much faster
degree centrality is chosen. And to mitigate the loss of accuracy because it only looks at direct
resilience, the resilience indicator represents the mean of all degree centrality in a 200 meter window
around each hospital.

3.2.2 Dynamic Indicators
Population
Besides permanent population there are two other groups that are probably most relevant for field
hospitals; Internally Displaced Persons (IDPs) and non-camp IDPs. IDPs are better known as
refugees who reside in camps and non-camp IDPs are persons who reside somewhere else than their
own home or a camp, such as an improvised home or at a host.

Of the three discussed methods to dedicate demand to certain hospitals in section 2.2.3, the Voronoi
diagram is chosen because of its simplicity. These dynamic indicators need to be calculated very

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

25

often in a planning process and their updating needs to be near immediate. The vector and raster
based service areas are promising because of their increased accuracy, but take up to a minute to be
calculated in this case study.

The demand that needs to be covered is assumed to be the population data that is loaded into the
SDSS. If this demand is not yet expressed in data points, the centroids will be taken from the features
that do represent the demand. The sum of demand of these points that fall within a single hospital
Voronoi polygon is considered to be the served population by a hospital.

Mean population distance
In section 2.2.3 it was concluded that the minimization of the average distance to health facilities
leads to the most equitable hospital distribution. Since health equity is important to the WHO, it is
decided to provide a mean population distance performance indicator. This is the average distance of
the population points in a hospital’s Voronoi polygon to the hospital.

Danger distance
Of course a field hospital should not be placed in enemy territory or areas which involve great risk.
Areas of great risk could be locations that are likely to be attacked. For example, government
buildings, military bases or universities. Or the military could already have plans to attack somewhere,
making the area more dangerous. The danger distance performance indicator is the distance of a
hospital to the nearest danger.

Water distance
Rydén argues that in the strategic placing of field hospitals in a disaster hit country, water accesibility
plays a role (Rydén, 2011). Water could be scarce and therefore it would be somewhat beneficial to
place field hospitals near water sources. Even dirty water sources can be beneficial because field
hospitals are provided with water filters if necessary. Also, areas of water can be dismissed as
candidate locations, taking into account that bridges theoretically could be a location for a field
hospital. The water distance performance indicator is the distance of a hospital to the nearest danger.

Area covered
Besides the minimization of average distance to health facilities, the maximization of coverage was
another objective function that was considered important in section 2.2.3. Therefore the covered area
is also provided as a performance indicator. It is derived from the size of a hospital’s Voronoi polygon.

3.3 Data
Data for the Mosul case study is provided by the WHO and is on Northern Iraq.. These are several
vector- and raster data layers. Of this provided data, extractions have been made for testing purposes
of the SDSS. The extractions are based on a custom extent which can roughly be seen in figure 3.2
below. Both the provided and testing data is listed in table 3.2. Next, the different data is discussed.

Figure 3.2: custom Mosul data extent (the frame of the figure).

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

26

Population
The demand for field hospitals is determined by a polygon distribution of total population in Northern
Iraq. It consists of all the population, so IDP’s and non-camp IDP’s are included.

Roads
The road data was derived from OpenStreetMap. The roads initially were discontinued in small
settlements, due to incorrect geometries or missing data. Therefore the roads have been connected in
those places as it is assumed that they can be traveled. Also, a network has been made of the road
data by fixing connectivity issues.

Existing hospitals
Existing hospitals are an important factor in the determination of field hospital locations as they
already serve a certain demand (Moradian et al., 2017). In the SDSS, any provided field and existing
hospitals are merged into a single file for processing speed, but they are still differently identified (field
hospitals by numbers and existing hospitals by letters).

Field hospitals
Field hospitals can optionally be loaded into the SDSS if any are already operating. If none is loaded,
a new file will be created in which field hospitals can be added.

Enemy Territory
The enemy territory is demarcated by danger polygons which is last updated November 24 2017. The
enemy/dangerous territory was among others in the Northwest of Mosul at the time of creation. Only
this part has been used as danger for the test case.

Water
Only the main water barriers in Northern Iraq have been included in the data on water. These are big
rivers and lakes, including the Tigris river which streams through Mosul. The data consists of
polygons representing these water bodies.

OUTPUT NAME GEOMETRY INPUT NAME GEOMETRY
Test population Polygon TOTAL_POP Polygon
Test roads Network Road_infra_ND Network
Test existing hospitals Point Health_Facilities_24_Nov Point
Test field hospitals Point - -
Test water Polygon Water barriers Polygon
Test danger Polygon Situation_Nov24 Polygon

Table 3.2: Mosul data summary, test data (left) and original Mosul data (right).

3.4 Stakeholder Requirements
As was mentioned in the theoretical background, a single stakeholder can have various roles towards
the SDSS. In this SDSS, I am the expert and developer whereas the end user is the analyst and
decision-maker. The decision-maker could however not possess the skills of the analyst, but the
knowledge base, the combination of different algorithms into the model component and the ease of
the SDSS will guide the decision-maker through the process of decision-making using the SDSS.
Some decision-makers could also possess expert knowledge, which other decision-makers do not
possess. This knowledge could also be added to the knowledge base in future iterations to aid the
decision-maker.

Sugumaran & Degroote (2010) and other authors stressed the importance of involving all the
stakeholders in the development of the SDSS. Ideally, a user needs analysis was performed among
potential users of the SDSS, but it proved to be difficult to access real potential users. A general issue
in user needs analysis is that users limitedly share their real needs, because they do not know what is
technically possible (Belkin, 2000). Therefore an approach in which expected user requirements are
used to design an SDSS could prove an academically interesting case.

Between testing of the SDSS, feedback is considered to be new requirements to the SDSS and is
therefore implemented in the design of the SDSS. What follows are the expected requirements for the
SDSS in table 3.3, categorized by the SDSS components which were introduced in section 2.1.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

27

Dialog Component Database (GIS)

Component
Model Component Knowledge

Component
Welcome dialog Adding and (re)moving

tools for hospitals,
roads and danger

Calculation of served
population

Provide explanation of
indicators

Load layers dialog Ability to undo 1 step or
undo all steps

Calculation of served
area

Inform on relevant
parts of performance
indicator calculation

model
Adjust map objects

dialog
Ability to load layers Calculation of distance

to danger
Provide explanation on

tools
Allow fast and on the

fly adjustments
Keep GIS platform

stable
Calculation of distance

to water
Provide guidance

through steps of SDSS
Ability to switch

between different
service levels for
population served

 Calculation of
betweenness

Demo which shows
how the SDSS works

Ability to set max.
hospital reach and

capacity

 Calculation of degree

Ability to save and load
setup scenario,

compare scenarios

 Calculation of a
suitability map based
on indicator weights

Show performance of
hospitals in an

overview

 Make population and
roads covered by

danger
inactive/inaccessible

Reflect upon whether
capacity is reached

Set suitability weights
dialog

Provide suitable map
symbology

Table 3.3: Expected stakeholder requirements.

Based on these requirements, an example of typical use of the SDSS will be described next. Once
the SDSS is opened, a welcome dialog appears, and then a dialog appears which allows for the
loading of the data which will be used for the different performance indicators considered for the most
optimal placing of the field hospitals.

Once this data is loaded in the SDSS, the different layers for which actions are possible and their
actions are displayed in the interface. For example selecting an action and tapping or dragging
leading to among others the following actions:

- If the toggle road action is selected and a road segment is tapped, the possibility is given to toggle
the road segment (in)active.
- If the move danger action is selected, its borders can be dragged to reduce or extend the reach of
this area.
- If the add hospital action is selected, the map can be pressed to add a field hospital.

After any of these actions, a table can be updated which shows the values for all the performance
indicators for each hospital. The ability to do these fast on the fly adjustments of map objects allow a
group of stakeholders/decision-makers to experiment with potential solutions and provide them with
an effective way of negotiating their stakes into the model outcomes. Also, it provides decision-
makers with the ability to use their hands-on experience and update the map in front of them by the
developments in the conflict area. This way, the strength of the computer to solve structured problems
based on hard data and decision-makers’ experience and knowledge can effectively be combined. An
example would be the possibility to quickly toggle a road segment as inactive to render it out of the
analysis, when intelligence has just been obtained that the road has become inaccessible. Also,

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

28

should the decision-maker recognize an area that is likely to become dangerous in the near future,
and then a relatively simple add danger action could mark the area as unsuitable for field hospitals to
be placed in.

The performance of certain single field hospital locations and the combined performance of all field
hospital locations in a certain setup are then visualized by certain the performance indicators, which
contribute to the comparison of different setup scenarios. There is always the ability of adding,
deleting or dragging field hospitals to other locations. Also after the calculation of performance
indicators. Extensive help is provided in this process through a tutorial and by information on how to
use different parts of the SDSS.

3.5 SDSS-Architecture
The SDSS in this research is basically developed in one GIS platform (QGIS) for which different third-
party software is already supported. GRASS GIS algorithms for example are already integrated into
the QGIS platform and the platform already uses PyQt5 for its interface. Looking at the different ways
of coupling the SDSS in section 2.1.6, this SDSS will be tightly coupled as all of the functionality will
be accessible from the interface of the GIS platform.

The architecture of the SDSS in this research is inspired by the one used in the research of Coutinho-
Rodrigues, Simão, & Antunes (2011). Their SDSS is structured to serve functionality similar to that of
the SDSS of this research. It for example also builds on existing GIS functionality, uses a customized
user-friendly interface, uses an MCDM and includes interactive functionality to experiment with the
performance criteria, in order to assist the decision-maker as good as possible. A schematic of the
SDSS is provided below in figure 3.3.

Figure 3.3: SDSS architecture.

3.6 Soft- and hardware
The SDSS will be tightly coupled with the QGIS platform. Interfaces for the SDSS are designed using
Qt Designer, which is software for the design of interfaces. The interfaces and are coupled with the
QGIS API through Python 3 scripts. GRASS GIS and native QGIS processing algorithms are used in
the calculation of performance indicators.

Software Purpose

QGIS 3.6.3 GIS platform to build SDSS into
Qt Designer Software to design interfaces
Python 3.7.3 Used to link interfaces with GIS platform and processing algorithms
PyQT 5.13 Used to access and control interfaces

GRASS GIS 7.6.1 Used for various processing algorithms
Table 3.4: software used in this research.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

29

Most decision (touch) tables operate on the visual input of another device. This allows for easy touch
implementation in the SDSS: A device with the required software and the SDSS on it can be
connected to a touch display which next can be used interactively to test the SDSS. The QGIS
platform also supports touch input. Chapter 5 is dedicated to the testing of the SDSS. For the analysis
of the testing, screen capture software and an external camera was used to capture the actions and
reactions of the test participants.

3.7 Dialog Component
The dialog component of the SDSS includes interface functionality and their layouts. They are
carefully designed to be as easily used as possible to stimulate the employment of the SDSS. In
section 2.1.4, it is concluded that the accessibility, flexibility, interactivity, ergonomic layout and
processing-driven functionality of an interface are essential. Interface accessibility in this SDSS will be
pursued by providing all of the functionality in an easily accessible interface. The possibility of
changing the input on the fly and undo incorrect actions make the system flexible. The interactivity of
the SDSS is also ensured by efficient information flows between user and SDSS. At last the interface
is processing-driven as it keeps the user up to date on what is going on and what has to happen next.
The testing of this SDSS will reveal whether the interface indeed is easily used.

3.8 Knowledge Component
Although section 2.1.5 concluded that a knowledge component is optional, it is decided to integrate it
into the SDSS because it can greatly increase the user-friendliness of the SDSS. We identified
domain knowledge, model knowledge, utility program knowledge, metadata, and process knowledge.
The included domain knowledge is not very comprehensive as not a lot is documented about real field
hospital location decision-making, but could be implemented in future iterations if more experience of
stakeholders is gathered. Model knowledge will be provided in the form of explanations of what the
performance indicators mean. Utility program knowledge is provided in a visual explanation of how
the different actions for map objects and the different visibility toggles work. Metadata is not required
as it provides unnecessary distracting information for users. If they really want to, they can view
metadata through the GIS platform itself. The process knowledge is provided directly in the interfaces
of the SDSS to guide the user through the process of using the SDSS in their field hospital location
decision-making process.

3.9 SDSS Testing
In order to complete the third sub-objective of this research on testing of the SDSS, an appropriate
testing method has to be used. Since this is the first time that an SDSS is proposed to assist in the
planning of field hospital locations, this is a bit of explorative research. It therefore is appropriate to
also use a more qualitative testing methodology rather than quantitative. In this stage of SDSS
development, qualitative research will surface most of the problems that come with an SDSS
prototype and no quantitative testing is needed yet.

The ‘think aloud’ method is used in the testing of this research. The method involves the analysis of
recorded voice and actions (both on screen and with their bodies) of test participants while
participants are asked to voice their thoughts during decision-making (Van Someren, Barnard &
Sandberg, 1994). The method is being used in a variety of fields, including the testing of user
interfaces in software. The method is very natural to execute for test participants as most people
already speak their thoughts when they are discussion decisions. The recordings during tests allow to
analyse the decision-making as accurately as possible. The specific testing with the ‘think-aloud’
method is further discussed in chapter 5.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

30

4 DESIGN AND IMPLEMENTATION OF THE SDSS

In this chapter the design and implementation of the SDSS are discussed. First, an initial design,
which resulted from the expected stakeholder requirements of section 3.4, is discussed. Then the first
implementation up to the pre-test is presented, which had resulted from self-testing. Next, a second
design is presented, which is an implementation that resulted from the updated requirements after the
pre-test. Last, a final implementation is presented which resulted from the feedback and updated
requirements after test 1. Feedback from test 2 and other requirements that have not yet been
implemented in the final design will be reflected upon in recommendations. The tests that have been
executed with these implementations, are fully considered in chapter 5.

4.1 Initial SDSS Design
The initial SDSS design contained 6 screens which interacted with a map. These 6 screens guide and
support the decision-makers through the process of choosing the most optimal locations for field
hospitals. When you open the SDSS, a welcome screen in shown which provides a short description
about what the SDSS can be used for and which steps can be taken to get to most optimal locations.
Proceed can be pressed to go to the next step and cancel to exit.

Figure 4.1: Field Hospital Planner welcome dialog design.

In the next screen, paths can be selected to load the correct input layers. Only population and roads
are essential for the SDSS to function. Also the help button can be pressed from this screen onwards
to get additional info about a screen.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

31

Figure 4.2: Field Hospital Planner load layers dialog design.

The 3rd screen contains several input settings which characterize the to be planned field hospitals:
number of hospitals, hospital reach and capacity. Capacity might be divided and set for different
levels of medical service. Pressing the ‘proceed’ button will load all the layers and settings onto the
map and the progress bar indicates when it is done loading.

Figure 4.3: Field Hospital Planner hospital settings dialog design.

A 4th screen will show a table with all of the hospitals and performance indicators. It will appear as
soon as the input layers are loaded, hospital settings have been set and the indicators have been
calculated. If there are many hospitals, the table can be scrolled through and an average row will
always stay visible at the bottom row. A certain hospital distribution’s table can be saved. This screen
will stay visible throughout the remaining screens.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

32

Figure 4.4: Field Hospital Planner performance indicator dialog design.

Screen 5 will provide advice on completion. This screen can be skipped if no advice is required. It
requires weights to be set to each of the performance indicators. These weights are then used to
calculate a total score suitability raster map. Locations of water or danger are excluded as possible
hospital locations on this map. The total suitability by the different weights will be shown on the map,
but suitability for each of the individual performance indicators can be viewed as well. This map
provides quick insight to which locations are most suitable for field hospitals. A progress bar indicates
when the suitability map is finished.

Figure 4.5: Field Hospital Planner set suitability weights dialog design.

Screen 6 is the final screen. This screen allows the decision-makers to easily and in a user-friendly
manner adjust relevant objects on the map. If the move hospital radio button is pressed, it for example
provides the action to move hospitals on the map by dragging them to another location. The
performance indicators for this new location will refresh almost directly to inform the decision-makers
about this location. Adjustments can be undone by 1 action or by all actions since adjusting began.
Different compositions of field hospitals can also be saved and loaded in order to compare the
performance of different scenarios.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

33

Figure 4.6: Field Hospital Planner adjust objects dialog design.

4.2 First SDSS Implementation (pre-test)
For the first development run it was decided to mainly create proofs of concepts. Three main concepts
had to be explored: tool development, calculation of performance indicators and interface design and
control (which includes the presentation/visualization of the indicators). If these three concepts were
successfully implemented, then an expansion of the software into a coherent functioning SDSS was
possible. This implementation has resulted from self-testing and has been tested at the pre-test to see
whether the three concepts were sufficiently functional.

4.2.1 Tool Development
The tool development covered the possibility to easily select an action for a certain map object
(hospital, road or danger) and then perform this action by pressing and possibly dragging these map
objects on the touchscreen. For some actions, existing tools in the QGIS platform were used and for
others new tools were developed. The toggling of roads (figure 4.7 a) for example is a newly
developed tool. When the user presses a road, the identified road map object has its activity attribute
switched between yes/no and it turns the road red if it is toggled inactive. Although adding and
removal tools already exist in the platform, custom tools were also developed for these actions
because they take unnecessary many steps by the user for the application of this SDSS. For moving
map objects, existing functionality has been incorporated because it works as desired (figure 4.7 b &
c). The script for the developed tools can be found in appendix D.

Figure 4.7 left to right: (a) toggle roads, (b) move hospital, (c) move danger tools.

4.2.2 Performance Indicator Calculation
The definitions of the performance indicators have been provided in section 3.2. The calculation of
these performance indicators involves linking various native QGIS and GRASS GIS algorithms.
Whereas distance to water and danger require just one algorithm, calculation of hospital service area
and the population in this area can take up to five. The calculation of the degree and betweenness
indicators takes three to four algorithms. Figure 4.8 below shows the model for performance indicator

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

34

calculation. It starts with two to six input layers on which various algorithms are executed to get the
values for two to six performance indicators for each hospital.

Figure 4.8: Performance indicator calculation model. 2-6 Input layers and 4-6 output indicators.

4.2.3 Interface Design and Control
Another main concept which required exploration was the design of the SDSS interface and the
capability of controlling it. Dialogs have been designed in Qt Designer software. Objects in the
interface dialogs have been connected with QGIS functionality through Python code. In figure 4.9
below, the four dialogs are shown which resulted from the first exploration of interface development.
They are linked by their ‘proceed’ and ‘go back’ buttons and dialog (d) would show up once data
layers have been loaded. The ‘…’ buttons in dialog (b) are linked to file selection screens and the
radio buttons in dialog (c) to a couple of algorithms which together manage the tools section.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

35

(a) (b)

 (c) (d)

Figure 4.9 Interface dialogs: (a) welcome dialog, (b) load layers dialog, (c) adjust layers dialog and (d)
performance indicators dialog.

Performance indicator dialog (d) uses a pre-existing Qt Designer table widget. If any adjustments
have been made to the loaded map layers and the table is updated, then the performance indicator
calculation model from figure 4.8 will be run again to show new values in the table. The bottom row
will always display an average of the above rows and the number of columns can vary between five
and seven dependent on whether danger and water data have been provided. In this implementation,
indicator values were presented in a hard to interpret manner. Area covered for example shows
square meters and between and degree have not been normalized.

4.2.4 Pre-test
As mentioned in section 4.2, the pre-test was conducted mainly to see if the main concepts of the
SDSS were viable. If these three concepts were successfully implemented, then an expansion of the
software into a coherent functioning SDSS was possible. These concepts were identified from the
stakeholder requirements in section 3.4. They are the required tools, the calculation of performance
indicators and successful interface design and control. The tested implementation had resulted from
self-testing. This first SDSS implementation was showcased to several academics, of which some
have interacted with and advised on the Mosul case study (figure 4.10 below). Shaheen Abdulkareem
from the Mosul area and someone with SDSS testing experience were also among the academics.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

36

Figure 4.10: SDSS pre-test. Showcasing the three main concepts.

The pre-test showcased the basic functionality of the SDSS. In this version it almost did not have any
guidance yet. Looking at the first main concept; the required tools, the pre-test proved that they were
functioning. The functionality was there, but switching between tools was still very buggy and could
cause crashes. Also after updating the performance table the tools would cause crashes. So the
ability to switch between different actions and buttons should be handled better in the next
implementation. Then the second concept, the calculation of performance indicators, was also
functional. It did take a couple of minutes however and the GIS platform would not be responsive
during this calculation, causing the impression that the software had crashed. The communication of
the resulting performance indicator values was also vague and unclear, especially because of
unrelatable numbers and a lack of hospital identification. Then the third main concept, the design and
control of the interface, was showcased in some bare functionality. The performance table was
working (until it stopped due to a bug) and different toggles and buttons were successfully linked to
desired events. Control of the interface was no issue, but a lot more issues needed to be fixed and
functionality implemented. Plans for future implementations of the SDSS were also shared with the
invited academics and feedback was given on the showcase in return. The full resulting feedback can
be found ordered by test criteria (the test criteria is further discussed in chapter 5) in table 4.1 below.

Intuitiveness Performance Reasonability Usability Stability Completeness Guidance Success
Replace ‘none’
with save/undo
buttons

Indicators take
long to load

 Streets or
districts
should be
referenced

Editing
actions not
working
after each
other

Make SDSS
dockable to
sides of GIS
platform

Guidance
largely
missing

Yes, but a
lot of
improveme
nts
needed.

Make
performance
indicators
interpretable

 Non-
responding
when
computing

Show hospital
IDs

* means
something
is
necessary

Visualize
results as well

 Enable
edits after
table
update

Visualize
hospitals by
serving
population size

Explain
indicators

 Provide an
overall score
by weights

Table 4.1: Pre-test feedback, divided by test criteria from the test design.

4.3 Second SDSS Implementation (first test)
In the second implementation, the three main concepts from the first design have really been
integrated into a cohesive SDSS. Most feedback from the pre-test has been implemented in this
version. Table 4.2 below shows all the implementations between the pre-test and test 1. They have
been categorized in the same way as the stakeholder requirements in section 3.4.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

37

Database (GIS)
Component

Model Component Dialog Component Knowledge Component

Toggle population density Add average distance to
field hospital indicator

Replace none buttons by
a save/undo button

Provide explanation of
indicators

Deactivate or remove
most of the default

toolbars, panels and
menus of QGIS

Bug fix: Exclude roads
and population from

algorithms if covered by
danger

Make indicator values
better interpretable

(normalize road
indicators)

Inform on relevant parts
of performance indicator

calculation model

Add toggle hospitals
(in)active tool

 Make plugin dockable Provide explanation on
tools

Provide ID to new
hospitals

 Make pinch zoom function
less sensitive

Provide guidance through
steps of SDSS

Add an add danger tool Visualize hospital IDs
 Bug fix: Switching

between tools/actions not
fully working

 Bug fix: Edit/update table
not working after each

other

Table 4.2: SDSS implementations between pre-test and test 1.

A first and important update in this implementation is that the Field Hospital Planner SDSS is now
docked either on the left or right side of the window. Also most menus, toolbars and panels have been
removed from the QGIS interface (figure 4.11). The load layers dialog stayed mostly the same (figure
4.12). It now has switchable extra guidance text and a warning is given if no (correct) population or
roads data is selected.

Figure 4.11: Second implementation welcome dialog.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

38

Figure 4.12: Second implementation load layers dialog.

In the second implementation, the adjust layers and performance indicator dialogs have been merged
to create more order with less screens (figure 4.13 below). Guidance has been added to the dialog
(figure 4.13 below), which informs on all the actions and buttons. It is now possible to toggle the
activity of hospital and to add danger areas. Also a population density visualization can be toggled,
which are the green blocks in the map area. The none buttons in the previous implementation have
been replaced by a single save/undo button, which has to be pressed after each adjustment to either
save these adjustments or undo them. Only after clicking this ‘save/undo’ button you are enabled to
use another action or to update the table. Also a ‘whole view’ button has been added which zooms
the map back to an overview. The table does not auto-update after adjustments to the objects on the
map, but the ‘update table’ button has to be pressed to prevent unnecessary updating. Performance
indicators now have more readable and meaningful presentations (including units and some
normalized values) and a mean served population distance to hospital indicator has been added.
Last, a help button toggles a dialog in which the meaning of performance indicators is further
explained and a legend is provided (figure 4.14).

Figure 4.13: Second implementation adjust and inform dialog.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

39

Figure 4.14: Help dialog (bottom left) with legend.

4.4 Third SDSS Implementation (second test)
In the third implementation any remaining stability problems of the SDSS have been fixed. It also has
feedback from test 1 implemented. Feedback that has not been implemented at this point, can be
found in appendix E. Table 4.3 below shows all the implementations between the test 1 and test 2.
They have been categorized in the same way as the stakeholder requirements in section 3.4.

Database (GIS)
Component

Model Component Dialog Component Knowledge Component

Toggle hospital service
areas

Upon update, only fully
rerun degree and

between. algorithm if
roads or danger are

adjusted

Warnings added for:
reloading layers, trying to
update while adjusting,

trying to (re)move existing
hospitals

Small update for changed
functions

 Bug fix: crash if no
junctions within 200m of

hospital

Provide togglable legend
with including population

values

 Change indicator order
 Add scalebar
 Bug fix: hospitals

sometimes mix up in table

Table 4.3: SDSS implementations between test 1 and test 2.

Figure 4.15 below shows the third and final implementation of the Field Hospital Planner SDSS. Less
has changed between the first and second implementations, but some valuable adjustments were
made nonetheless. A floating legend dialog which includes population intensity values, is now
togglable and can be placed wherever the users desire. Also a self-adjusting scalebar has been
added to the bottom-right of the map area. There now is a ‘show hospital service area’ button as well.
Besides these mainly visual adjustments, a performance change has been made as well. Previously,
the update table would execute the whole model for performance indicator calculation. Because of
this, updating the table would take up to several minutes. Probably at least 95% of this waiting time is
caused by calculations made on the road network. Therefore, road network calculations are only
repeated whenever roads or danger have been adjusted. This reduces the update time to a maximum
of ten seconds if only the hospitals have been adjusted.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

40

Figure 4.15: Third implementation adjust and inform dialog.

This third implementation clearly contains some elements of the initial design of section 4.1. On the
other hand, screens have been merged, options added and left out, functionality added and the final
implementation turned out more complex than the initial design. What is missing from the initial design
are some hospital characteristics settings and the ability to produce a suitability map.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

41

5 TESTING OF THE SDSS

This chapter first provides information on the nature of the SDSS user tests, as well as the specific
settings and set-ups that these tests were conducted in. Also the test- roles, script and selection of
participants are extensively discussed. Next, the proceedings of the different tests and their outcomes
are presented.

5.1 Test Design
The tests are designed after certain goals and according to criteria. In short, the goal of the SDSS is
to be able to easily adjust hospitals, roads and danger on the fly, quickly inform on the resulting
performance change which among other relevant indicators includes good connectivity and resilience
measures. Seven testing criteria have been identified to cover all aspects of the SDSS. These are
intuitiveness, performance (speed), reasonability of outcomes, usability of existing functionality,
stability (crashes, bugs), completeness of functionality and guidance. Last, it is important to mimic a
real field hospital location group decision process as much as possible, assuring scientific validity.

5.1.1 Test Set-up
Because the SDSS has to be used by a group who exhange information live and all have to physically
access the SDSS in their group decision-making, a decision room is required. The decision room
requires a big decision (touch) table for all the decision-makers to stand around. Because the ‘think
aloud’ method is used, the decision table and the decision-makers have to be filmed and their voices
recorded. The display of the decision table is filmed as well, as this enables to later watch back both
the actions taken on the screen as well as the gestures made and the talking done during these
actions. Some notes were taken during the tests, but it would be impossible to write down as much
information as recording captures. More information means that the tests can be better analyzed.
After each of the tests, the earlier mentioned testing criteria are assessed in a group feedback
moment and participants are allowed to provide additional information on their cognitive processes
during the test. While it is natural for most people, especially in group decision-making, test
participants are reminded to please speak their thoughts when performing actions. Also, a general
idea of the testing criteria is shared with the participants before the test and that they are encouraged
to share their thoughts on these criteria during the test. Last, they are reminded that the experiment is
not about rating their actions and solutions, but about what helped and did not help in coming to a
solution.

Throughout the development of the SDSS, it of course has been self tested a lot. As explained in
section 4.2, a pre-test has also been performed in which three main concepts were tested for
functionality: tool development, calculation of performance indicators and interface design and control
(which includes the presentation/visualization of the indicators). After this pre-test, the software has
been expanded to be a coherent functioning SDSS which could be tested properly like a real world
decision-making process. Two tests were then performed with three participants each. The
participants got either the role of WHO, allied military forces or GIS specialist assigned. Their profiles
are discussed in the next section of this chapter. I moderated the tests by providing instructions for
the tests and reading the test script to the participants, which is discussed in 5.1.3. I only intervened if
a problem would arise which prevented the participants from progressing the test in order to not
unnecessarily influence the tests.

5.1.2 Stakeholder Profiles and Instructions
Because no real field hospital location decision-makers have participated in the testing of the SDSS, it
was of extra importance that clear and extensive stakeholder profiles were provided. The test
instructions and role-specific profiles can be found in appendix A. The instructions start with a rough
planning, to inform the participants what they are up to. It starts with a short introduction of the SDSS
and some context of the Mosul case study. Then the participants have time to study their stakeholder
profiles and they are allowed to ask questions about these if things are unclear. If they are ready the
test begins and after the test there is a group feedback moment and the possibility for a small
discussion.

The context about the Mosul case study introduces the positions of the different stakeholders and that
they have conflicting interests. It also introduces the task of planning field hospitals with the SDSS as

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

42

a supporting tool. The different performance indicators and tools are explained as well. Then the
stakeholder profiles provide a backstory for each stakeholder, ending with a small summary of their
goals. This summary makes it easier for a stakeholder to lookup what goals have to be kept in mind
during the planning (see table 5.1 below).

WHO Allied armed forces GIS specialist

Primary goal: Utilize full (field)
hospital capacity.

Primary goal: No (field) hospitals
are allowed within 1 km of danger.

Primary task: You lead the
decision-making process, are a sort
of moderator and you operate the
touch screen if the others struggle

to understand the software.

Secondary goal: Minimize pop.
travel distance.

Secondary goal: max. 2 hospitals
within 3-1 km distance of danger.

Primary goal: Ensure that hospitals
are well connected (near main

roads, reflected by the ‘between’
indicator). Above 15% is very good,

under 5% is bad.

Tertiary goal: Minimize water
distance.

Task: Toggle existing hospitals
inactive if they are within 1 km of

danger.

Secondary goal: Ensure that
hospitals have a resilient location
(many escape routes, reflected by
‘degree’). Above 30% is very good,

under 15% is bad.

Task: Ensure that existing hospitals
are not added, moved or deleted.
But they can be toggled (in)active.

Task: Add danger areas if needed. Secondary task: You could possibly
help recognize areas that will easily
be ‘cut off’ from the street network if

danger were to expand

Table 5.1: Stakeholder goals and tasks summaries.

Sometimes the goals or tasks are ranked, as utilizing the full hospital capacity for example is much
more important to the WHO than being close to water. The goals have been experimented with in
self-testing to see what were suitable and realistic values, slightly conflicting interests and relevant
tasks. With these stakeholder profiles an attempt is made to make the participants act like their roles
as much as possible. After the specific stakeholder profiles, the instructions visually explained some
buttons and their workings. The instructions end with some important notes like practical tips for the
use of the SDSS, the touch table and a reminder on only asking for my help if it is really needed to
proceed with the test.

5.1.3 Test Script
The script for testing has been carefully designed. It can be found in appendix B. The goal of the tests
was to stress the SDSS as much as possible: test all the different functionality, make sure different
combinations and orders of functionality are used to see whether the SDSS remains stable. The test
script has been designed with three things in mind. First, to make sure that all necessary aspects are
covered in the tests, the script has been designed after seven testing criteria. These are intuitiveness,
performance (speed), reasonability of outcomes, usability of existing functionality, stability (crashes,
bugs), completeness of functionality and guidance. Second, special attention has been given to
stressing the main desired characteristics of the SDSS: the ability to adjust map objects on the fly,
quickly getting informed on the performance change and reasonable connectivity and resilience
measures. Third, it is tried to mimic a real field hospital location decision process as much as
possible. To make the test script reflect a real decision process, conflicting scenarios were created
which most likely forced the stakeholders in conflicts of interest. At the same time, it was made sure
that the scenarios did allow for solutions in which all stakeholders were somewhat satisfied. The
challenges of the script also slowly build up, to allow the stakeholders to get used to the software and
their roles.

The script starts with instructions to load relevant data into the SDSS. Then the stakeholders are
presented with an outdated situation, one of the three active existing hospitals is too close to a new
danger zone and three bridges have been destroyed, they will have to toggle the hospital and bridges

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

43

inactive using the provided tools. But first, they have to update the performance indicators to see the
performance of a single hospital which is right next to one of the bridges that will soon be toggled
inactive. The stakeholders are quickly informed on the performance of the field hospital and are told to
toggle the bridges and make the existing hospital inactive and then update the indicators, paying
special attention to the connectivity and resiliency change when updating the indicators. They see that
the connectivity score drops heavily and that the resiliency score drops somewhat. By showing the
stakeholders this, they have now become acquainted with how these accessibility values work. The
‘between’ indicator for connectivity took such a big hit because the bridge provided many routes to
pass the field hospital. Its ‘degree’ indicator dropped slightly, because the amount of escape routes
only decreased by one (figure 5.1 and 5.2 below). Also, the performance table does not show existing
hospital B anymore because it has been toggled inactive. Figure 5.2 shows that the hospital service
areas have been updated accordingly to the change.

Figure 5.1: Performance indicators are communicated on the right of this screen for a situation in which all roads

are active.

Figure 5.2: Performance indicators are communicated on the right of this screen for a situation in which bridges

(roads over water) next to field hospital 1 are toggled inactive.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

44

The stakeholders are told that the field hospital has little use with such connectivity and are ordered to
delete this field hospital. They get information on the capacity of existing- and field hospitals and the
number of field hospitals at their disposal. They are reminded that they are able to toggle useful map
layers. After this the stakeholders are instructed to select field hospital locations by consideration of
their interests. They also have to take the effects of the two active existing hospitals in mind. Figure
5.3 below shows a possible solution.

Figure 5.3: Possible solution for day 1 of the test script. Hospital A does not meet its capacity of 150.000 people.

The stakeholders are allowed to experiment for a while with different compositions of field hospitals
and if they think that the locations suffice or if it takes too long, the stakeholders are told that we
proceed to the next part of the simulation. The next part aims at more interaction with danger
polygons and an increase in conflicts of interest. It is seven days later, and their field hospitals
performed well. The danger in the east retreats 1km, and the stakeholders have to update this on the
map. They are reminded that if hospital B is further than 1km away from danger, that it can be toggled
active again. Then the stakeholders are presented with a new danger close to the densely populated
west side of the Tigris river. They have to add this danger and toggle any hospitals inside it inactive.
The danger deliberately spans an area in which probably at least one field hospital was located. The
stakeholders are also told to toggle some nearby roads inactive and update the performance table in
order to reflect the new situation. Their composition does not make sense anymore and they are
instructed to move their maximum of five remaining field hospitals to suitable locations. All
stakeholders are under more pressure now. The danger is closer to the population, which forces the
military to yield their goals a bit. More active existing hospitals require careful planning of the WHO to
make sure that most of the available service capacity is used. In order for the WHO and the military to
somewhat achieve their goals, the GIS specialist has to abandon the most connected and resilient
locations and opt for acceptable locations instead. Figure 5.4 below shows a possible solution after
day 7. Only hospitals A and B do not meet their capacity of 150.000. But in no other configuration
would B get more population, as the existing hospitals cannot be moved. All field hospitals meet their
capacity of 50.000 people.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

45

Figure 5.4: Possible solution for day 7 of the test script. Hospital A and B do not meet their capacity of 150.000

people.

5.1.4 Selection of Test Persons
As it was not possible to test the SDSS on real-life users, it was attempted to at least find the most
suitable people. Finding the right participants for the role of the GIS specialist was least challenging,
but finding participants with a similar background to that of the WHO and the armed forces proved to
be too difficult. Instead, it was opted to find participants with diverse backgrounds for these roles and
provide the participants with extensive profiles for their roles. The GIS specialists always had at least
some reasonable experience with GIS platforms. The WHO and armed forces during test 1 did have
some GIS experience, but during test 2, they did not. The selected participants were a diverse group
of people with different genders, ages, education levels and fields and occupancies. Participant 4 also
has an attention deficit disorder, which especially displays in having trouble in obtaining overviews.
The diversity in the characteristics of these groups and the attention deficit disorder increase the
chance of different views and experiences in the testing of the SDSS and may increase the chance of
obtaining useful feedback. After all, the characteristics of the GIS specialists, WHO employees and
armed forces could vary a lot in a real life situation too.

Participant Test Gender Age Education GIS experience Daily occupation
1 1 Male 66 BSc Experienced Cartographer
2 1 Female - MSc. Geo-

Information
Management and
Appliances

Old experience. Lecturer geosciences,
human geography and
planning, social urban
transitions

3 1 Female 53 PhD eco-hydrology 17 years GIS for
RS

Educational material
developer and software
tester

4 2 Female 25 BSc. Reasonably
experienced
with ArcGIS

Soil geography and
earth surface dynamics
student

5 2 Male 23 Applied psychology None Applied psychologist
6 2 Male 22 Pre-university None Waiter

Table 5.2: key characteristics of test participants.

5.2 Testing Outcomes
Next, the course of the different tests and their outcomes will be discussed. The main takeaways are
discussed in full and the whole range of feedback is presented in tables that are ordered by the earlier

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

46

identified testing criteria. These are intuitiveness, performance (speed), reasonability of outcomes,
usability of existing functionality, stability (crashes, bugs), completeness of functionality, guidance and
whether the participants overall succeeded to complete the tasks at hand.

5.2.1 Test 1
Section 4.3 shows that the next implementation of the SDSS featured a lot more functionality and was
much more of a complete coherent SDSS. This next implementation was tested in test 1. From table
5.2, participant 1 played the role of GIS specialist, participant 2 the role of the WHO and participant 3
the allied armed forces.

The participants did not have many questions about the test instructions. These instructions were
provided only on the screen however, which proved inconvenient to consult the instructions again
during the test. Therefore in test 2 instructions were provided on paper. The test participants needed
a little practice to get used to the tools in the SDSS, but quickly managed to perform the desired
adjustments on the map. A general issue with the touchscreen appeared to be that it was difficult to
press an object not directly in front of you due to your angle at the screen and the thick glass. Due to
the thick glass, you actually press too close to yourself and not on the meant destination. Vertically
this could be fixed by turning the table a bit towards the participants and horizontally by only pressing
the part of the screen where you are standing, or first walking towards that part of the table. While
there was the possibility to toggle a population density visualization on the map, it was a bit of
guessing for the participants to determine which hospital served what people. The SDSS did allow the
participants to experiment with served populations by moving hospitals around, but the effects of
these adjustments were only visible after an update of the performance table. This update took 2-3
minutes, which disabled quick insight in the effects of different hospital distributions. A need for
quicker update calculations and a visualization of hospital service areas was identified. The provided
population intensity visualization also lacked a corresponding reference to population numbers, which
should be added to a legend. Also when the participants had to determine distances, there was no
tool or reference to assist them in this. A simple scale bar or a tool for measuring distances through
roads should solve this. All of the tools needed to execute day 1 of the test script were functioning
correctly and the participants ended this part of the script with the setup in figure 5.5 below.

Figure 5.5: SDSS test 1 field hospital setup.

For the next simulated day of decision-making on field hospital locations, the participants had to add a
danger zone. This proved cumbersome as one would expect to be able to draw areas on the map, but
instead corners of an area would appear wherever the map was pressed. Although this was shared in
the instructions, it was not clear enough and a dragging method would be more natural. I had to
intervene to make clear what the actual method for adding an area was in order for the test to

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

47

continue. At the very end in this second part of test 1, a field hospital was placed in an area with very
few roads. This produced an error in the SDSS upon updating the performance table and at the time it
was unclear why. We decided to leave it at that and finish with a group feedback moment. Later it was
found out that the SDSS gave an error because of how connectivity and resilience indicators are
calculated. For hospitals these indicator values are the average of these values for junctions in a 200
meter radius around every hospital. But no junctions were within 200 meters of one of the field
hospital, providing an unanticipated absence of values.

Figure 5.6: SDSS test 1. Allied armed forces, WHO and the GIS specialist evaluating changes in hospital

locations.

To conclude, we held a small feedback session in which the participants shared their thoughts on the
previous mentioned test criteria. We concluded that some small bug fixes were needed to be able to
perform the task at hand in a user friendly manner. The full results of the test are ordered by the
earlier mentioned test criteria in table 5.3 below. Looking at the objective of this research, the result of
this test was that the SDSS did allow for easy adjustments of the data, but that getting information on
the changes took too long. The computed connectivity and resilience values did however appear
realistic, so the waiting time for these values was not for nothing. Ideally you could toggle which
indicators had to be updated and shown, possibly reducing the time needed to update them.

Intuitiveness Performance Reasonability Usability Stability Completeness Guidance Success
The
intuitiveness
is good. It
takes short
getting used
to, but then
its fine.

Indicator
update is too
slow.

Feels
reasonable,
if the input
data is
indeed
realistic.

Essentials
are there.

Difficulty
with
adding
danger
zones.

Add floating
legend

Add
readability
points in
big
numbers

No, but
almost

Provide
population
numbers in
legend

Add
multithreading
to prevent
non-response
when
processing

 Auto-
update
would be
nice if it
was
computed
near-
immediate.

SDSS
got error
on last
table
update
due to
unexpect
ed input.

Add
ruler/scalebar
or tool to
measure
distance
through roads

Change
order of
indicators

Make road /
accessibility
indicators
optional to
decrease
waiting time

 Move and
add
functions
could be
combined.

Hospitals
can mix
in the
performa
nce table

Add road
accessibility
visualization
toggle

 Toggle
which
indicators
have to be
showed

Add
danger a
bit buggy

Table 5.3: Test 1 feedback, divided by test criteria from the test design.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

48

5.2.2 Test 2
The third implementation of the SDSS was tested in test 2. Less has changed than between the pre-
test and test 1, as is described in detail in section 4.4. From table 5.2, participant 4 played the role of
GIS specialist, participant 5 the role of the WHO and participant 6 the allied armed forces. This time,
the participants were given instructions on paper, providing them with an easy accessible goals
summary.

Again it took a little practice for the participants to get used to the SDSS, but actions took no more
than two attempts before they were clear. These participants especially had trouble with not touching
the screen when they meant not to. Upon pressing the map, the map would center on the pressed
location, causing the view to shift upon accidental touch. The whole view button proved very useful to
get back to the overview of the map. The participants found the buildup in script difficulty really useful.
Immediately after the bridge hospital example, it was clear to them what the connectivity and
resilience indicators meant. The provided guidance was experienced as a bit unstructured and was
preferably all in one callable place or in a tool with which elements could be pressed and more info
about that element would then be provided. Ideally, you could call a full visual tutorial for the SDSS.
During this test, updating only took 2-3 minutes when changes were made to the roads or danger(s),
in all other cases 10 seconds at maximum. It was clear that getting information on the adjustments
was much easier like this. The participants could easily perform the first day of the script except for
one moment where pressing the map for a longer time at one spot caused the map to not be movable
by hand anymore. I had to intervene and manually select this map move tool again for the test to
continue. The added hospital service areas, floatable legend and scale bar really helped the
participants in their decision-making.

Figure 5.7: SDSS test 2 day 1 result.

For the second part of test 2 again a danger area had to be added. This time, it was no problem to
create, but again it was said that drawing a polygon would be more intuitive. Moving a danger area
proved more troublesome as every corner of a polygon has to be moved individually. It was
suggested to create the possibility of moving a polygon as a whole, making it a lot easier to make a
danger ‘retreat’. It was opted to just remove the existing danger and create a new danger as this was
way faster than the current moving action. Further the test could be performed without too much
problems and in the end very reasonable hospital setups were made, not much more performance
seemed possible within the provided context.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

49

Figure 5.8: SDSS test 2. Allied armed forces, GIS specialist and the WHO evaluating changes in hospital

locations.

The overall conclusion in the feedback session of test 2 was that the SDSS was very suitable for the
tasks at hand and that it was easy to gain quick insight into different hospital setups. Also, this time,
updating usually took a lot less than during test 1 due to making road calculations only necessary
after road- or danger changes. It was perceived as doable to have to wait on the roads update the few
times it had to be done. In reality, such a change is probably performed only once per session, unless
the road and danger situation happens to change during the decision-making process. Given the
option of faster connectivity and resilience calculations for less accurate values, the participants all
said that they would rather have as accurate as possible values. For hospital service area calculation,
which currently uses a very quick but inaccurate method, it was suggested to offer at least two
calculation methods. This way, the users can decide themselves whether they want a certain update
of indicators to be fast, or accurate. The explained calculation methods for hospital service area in
section 2.2.3 already discussed models that ranged from fast to accurate, so this could be
implemented rather easily. To better communicate connected and resilient areas, a visualization of
these values could be toggled for the roads on the map. Other suggestions were zoom in- and out
buttons and an undo only one step button. The full results can be found ordered by the earlier
mentioned test criteria in table 5.4 below.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

50

Intuitiveness Performance Reasonability Usability Stability Completeness Guidance Success
Intuitiveness
is good.
Takes short
getting used
to, but then
fine.

Map refresh at
every move
unnecessary

Results and
indicators
seem really
reasonable

Pop up
save/und
o dialog
at switch
tool
attempt

Zoom by
pinching
not
working
after a
long
press

Functionality
very complete
for task at hand.

Could be
even more
clear if it
was more
structured

Yes,
SDSS
very well
enables
the tasks
at hand

Zooming while
pinching
would make
more sense
instead of
after taking
the fingers off
the screen

Update roads
takes a bit
long, but you
that probably
only once at
the beginning
of a session.

Served
population is
quite
simplified, but
an indication
nonetheless.

Whole
view
button
very
useful

Average
distance
to
hospital
in served
area
does not
make
sense in
one area

Zoom in/out
buttons.

Make
guidance
fully
optional,
so you get
new map
space
once you
do not
need
guidance
anymore

Map centers
to point on the
map that is
pressed.
Should be
disabled
because
people will
accidently
touch the
map.

Different
options for
hospital
service area
calculation.
From fast to
accurate.

Connectivity
and resilience
really make
sense

Toggles
are very
useful,
they help
you
maintain
overview

Toggles
do
toggle,
but do
not
register
whether
the
toggle
object is
active or
not

Instead of action
toggling, a menu
with possible
actions when
pressing the
map

Create a
help tool
which
gives
information
about the
pressed
interface
element

Danger move
not intuitive,
need to be
able to move
the polygon
as a whole.

 Apply
connectiv
ity and
resilience
to roads
instead
of
junctions

Warning
for invalid
danger
geometry
not
working.

Undo 1 step
button

Stress that
SDSS is
just a
support,
not
necessarily
reality.

Would be nice
to have a
toggle for
whether
screen is
touchable

 Ability to toggle
auto table
update

Visual
demo /
tutorial

Add cancel to
save/undo
button

 Toggle
connectivity and
resilience map

Table 5.4: Test 2 feedback, divided by test criteria from the test design.

5.3 Discussion
The different tests nicely reflect how the SDSS has been developed by taking feedback into account.
Where the implementation at the pre-test was just a proof of concept, the one at test 2 seems a fully
functional and coherent SDSS for the planning of field hospital locations in conflict areas. Here the
main takeaways from the tests and the possibilities for improvement are discussed by the different
testing criteria. This is done by comparing test 1 and 2 for each of the criteria. An overview of all
unimplemented feedback can be found in appendix E.

The intuitiveness of the SDSS is quite good. The participants had little trouble with finding functionality
and usually the required actions were clear after a first attempt. There are some things which could
add to the intuitiveness even more though. First of all, a more ‘modern’ touch control for the SDSS.
There are conventional expectations of what will happen if you apply certain touches on a

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

51

touchscreen. You would expect to be able to drag objects, zoom immediately before releasing a pinch
and minimize dialogs by sliding them into the side of a screen for example. The touch handling of the
QGIS platform is a bit out-dated to this respect because it does not react this way to many of such
touches. You first pinch and release and then you can see how far you have actually zoomed in or
out, or you press a hospital and then press another location to place it there instead of dragging the
hospital there. Such behaviour could better be ‘updated’ to contemporary conventions to make the
SDSS more intuitive. With a big decision table an option to disable touch input would help as well as
people will lean on the table or point to objects and unintentionally move a map.

The performance and the reasonability of the information displayed in the SDSS have quite a big
interplay. The art lies in finding a nice balance between the two. More accurate calculation methods
often also take more time to process and vice-versa. During test 1, the updating of performance
indicators clearly took a little bit too long. In test 2, this was resolved by only performing the heavy
calculations when they were necessary: when roads or danger have been altered. If participants had
to wait less than 10 seconds on the update, then they were not too bothered. Different adjustments
could further increase performance and reasonability of results. Currently, the SDSS will be
unresponsive when the performance indicators are being updated and calculated. By writing the
indicator update in multi-threaded code, other actions could still be performed during the updating.
This allows for updates that take a bit longer and therefore are more accurate. For example, the
raster- or vector-based service area allocation methods could be used to determine the dedication of
population to different hospitals. These methods are expected to result in more reasonable hospital
service areas. Another possibility in this regard is to allow for the selection of different calculation
methods, ranging from fast to accurate. This would allow the users to for example only use the
accurate method at the end of their planning process to check if the chosen hospital distribution is
indeed the most optimal one. A final suggestion to speed up hospital service area calculation with
more sophisticated methods is to opt only to use major roads. Also, this reduces the difficulty and time
consumption to create correct road networks in a conflict area.

The provided functionality of the SDSS was deemed essential and usable. However, if the test
participants could change some functionality, then they would merge add and move actions. Also, it
would be fine to add more toggles. A toggle could be added to select an ‘auto-update’ function, or the
ability to toggle more visualizations of indicators. Especially an on map visualization of connectivity
and resilience would be very useful. Functionality that could be added is the ability to set weights to
performance indicators and then calculate a total performance score which is expressed in a
suitability map which visualizes the total suitability of all possible locations on the map. Some basic
SDSS functions like more zoom and undo buttons would also be convenient. Then a save, load and
report on scenario function would make the SDSS complete.

Regarding the stability of the SDSS, a couple of bugs remain in the current implementation. But no
errors or bugs were found in the last test which would make it impossible to proceed the planning
process. The main bug is the earlier discussed unresponsiveness of the SDSS during computations
and multi-threading could serve as a solution to this inconvenience.

The guidance in the SDSS was perceived as sufficient. Metadata information was not missed, and
domain knowledge was provided through the stakeholder’s profiles of the test participants. The model
knowledge (performance indicators), utility program knowledge (tools) and process knowledge were
provided at the right places. A very good remark was that the user should be able to hide all of this
guidance to make more room for the actual map. Most information already had the ability to be
toggled, but utility program knowledge and some process knowledge are not yet. Solutions that would
be even better are a visual tutorial of the SDSS and a ‘help tool’ with which you can click elements of
the SDSS to gain more information about them.

Overall the test participants deem SDSS in its current state already very suitable for the given tasks
and the performance and reasonability of the performance indicators are identified as the most
important aspects to an even better SDSS for planning field hospital locations in a conflict area.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

52

6 CONCLUSION AND RECOMMENDATION

6.1 Conclusion
The first sub-objective of this research, ‘To identify suitable performance indicators and SDSS
components to include in a SDSS for the planning of field hospitals locations in a conflict
situation’, has been achieved by identifying suitable performance indicators and SDSS components
that had to be included in an SDSS for the planning of field hospitals locations in a conflict situation.
Knowledge has been gathered of algorithms that exist for performance indicator calculation in the
planning of field hospitals. Most important, the Voronoi diagram, betweenness centrality and degree
centrality have been identified as algorithms suitable for the context of a field hospital planner SDSS.
Different measurements for the connectivity and resiliency of a location especially have been
compared to see which were most fit to be implemented in performance indicators. The components
of SDSSs have been reviewed to create a careful design for the SDSS and a method has been
explored for testing the SDSS. Other performance indicators for the context of field hospital location
selection have also been identified and defined. With the knowledge of the review on SDSS
components in mind, SDSS functionality requirements have been identified.

The second sub-objective of this research, ‘To develop a flexible SDSS which allows for on the fly
adjustments and support for finding connected and resilient field hospital locations’, has been
achieved by developing a flexible SDSS which allows for on the fly adjustments and support for
finding connected and resilient field hospital locations. In this SDSS, the greater insight into the
successful planning of field hospitals in a conflict situation from sub-objective 1 has been
implemented in the SDSS. It has been made interactive in order for field hospital location decision-
makers to implement their knowledge and hands-on experience with real life conflict developments
and similar experiences into the SDSS and make easy, on the fly adjustments to the input data of the
SDSS. The SDSS effectively communicates performance indicators to decision-makers through
visualizations in the SDSS interface. The SDSS easily lets decision-makers adjust and reflect on
performance indicators, which greatly supports them in their decisions. Performance indicators other
than location connectivity and resiliency have been visualized as well, showing a total of seven
indicators per hospital in a clear performance table. It is also made sure that decision-makers are
guided through the process of planning field hospital locations by the interface of the SDSS. Add,
(re)move and toggle activity actions have been made available for relevant map objects in the SDSS
to provide flexibility and interactivity. Decision-makers using the SDSS are guided through their
decision-making process by a welcome, load layers and adjust map and show performance indicators
screen.

The third sub-objective of this research, ‘To test whether different SDSS implementations are a
suitable support for the decision-making process of planning field hospital locations’, has
been achieved by testing whether different SDSS implementation iterations were suitable supports for
the decision-making process of planning field hospital locations. The tests revealed the extent to
which the SDSS is suitable for the given tasks and feedback has been gathered. After each of the
tests new implementations have been made in order for various iterations to be tested. Different tests
were needed and a setup has been designed for these tests. Also test participants had to be selected
and a test script has been made which stresses all relevant elements of the SDSS. Use was made of
the ‘think aloud’ method during these tests. The tests simulated real life field hospital location
decision-making as much as possible. Special attention was given to the connectivity and resiliency of
locations and the ease of interactivity with the SDSS. Also, testing criteria were identified which had to
be stressed during the tests. The main conclusions on these testing criteria are:

- The intuitiveness of the SDSS is quite good, but a more ‘modern’ and intuitive would improve
this even further.

- The performance and the reasonability have quite a big interplay and are currently acceptable
for the SDSS. Multi-threading would improve the performance and allow for more
sophisticated methods to be used. The raster- or vector-based service area allocation
methods could be used to determine the dedication of population to different hospital in a
more reasonable manner. Providing the selection of different calculation methods, ranging
from fast to accurate and only using major roads in calculations could also improve

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

53

performance.

- Regarding the provided functionality of the SDSS, this was deemed essential and usable.
Participants would merge add and move actions, add more toggles, add an ‘auto-update’
function and add the ability to toggle more visualizations of indicators (especially connectivity
and resiliency).

- Functionality that could be added is the ability to set weights to performance indicators and

then calculate a total performance score which is expressed in a suitability map which
visualizes the total suitability of all possible locations on the map.

- Regarding the stability of the SDSS, a couple of bugs remain in the current implementation.

But no errors or bugs were found in the last test which would make it impossible to proceed
the planning process.

- The guidance in the SDSS was perceived as sufficient at provided at the right places in the

interface. Guidance could be improved by a visual tutorial of the SDSS, a ‘help tool’ with
which you can click elements of the SDSS to gain more information about them and the ability
and the ability to toggle guidance.

- Overall the test participants deem SDSS in its current state already very suitable for the given

tasks. The performance and reasonability of the performance indicators are identified as the
most important aspects to an even better SDSS for planning field hospital locations in a
conflict area.

The main objective of this research, ‘to design and develop a spatial decision support system for
the selection of field hospital locations in conflict areas that is data extensive and is based on
fast algorithms. The SDSS executes a set of models that will be selected by a literature review
on different models for calculating performance indicators in the planning of field hospital
locations. Performance indicators are generated which will visualize output scenario impacts.
The developed performance indicators will be integrated in an user-friendly and interactive
SDSS which allows for on the fly adjustments of map objects and quick decision-making. The
aim is to identify locations with a high connectivity that are also resilient to conflict dynamics
while reckoning with other relevant performance indicators.’, has been achieved as the SDSS
executes a set of models that were selected by a literature review on different models for calculating
performance indicators in the planning of field hospital locations. The execution of these models
provides performance indicators that are communicated to the user through a clear performance
table. The SDSS overall is user-friendly and interactive and it allows for on the fly adjustments of map
objects and quick decision-making. The aim to identify locations with a high connectivity that are also
resilient to conflict dynamics seems to be reached as these performance indicators reflected realistic
values to me and test participants in testing. They also reflected conflict dynamics in a realistic
fashion: destroyed bridges for example would realistically change connectivity and resiliency of
locations.

This research is a good start in the exploration of SDSS suitability for field hospital location decision-
making in conflict areas. It addresses gaps in both the scientific areas of SDSSs and field hospital
location decision criteria. This research suggests that an SDSS is very promising for this purpose and
next, recommendations are given for future research in these scientific areas.

6.2 Limitations and Recommendations for Future Research
Besides possible implementation of unimplemented feedback which is discussed in section 5.3,
various other recommendations could be made for future research and implementations of a field
hospital planner SDSS. These recommendations expose the limitations of this research and indicate
how these could be resolved.

The scientific justification for the creation of a field hospital planning SDSS could be strengthened by
a research which involves actual field hospital planners in conflict areas. SDSS design decisions are
rationally justified in this research with expected requirements for an SDSS that serves this purpose,
but the consult of real decision-makers is the only way to obtaining real SDSS requirements. Tests

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

54

which involve real decision-makers for sure will manifest new requirements and missing functionality.
This would also allow for the development of location criteria theories for field hospitals in conflict
areas, which currently are largely absent due to their niche subject. To strengthen the external validity
of this research even more, the SDSS should be employed in different real conflict scenarios. Also,
only a limited number of tests have been executed with a limited number of participants which
performed a limited number of tasks. This was sufficient for explorative research on this topic, but
letting real life decision-makers use the SDSS more often, will address these limitations and expose
those requirements which can only be discovered by empirical quantitative research. Although test
participants for this research were selected by careful consideration, selection bias remains, because
these were no real field hospital planners. Regarding the ‘think aloud’ methodology, it has only been
adopted to a limited extent. No expected protocols have been designed and compared to the resulting
protocols from the tests due to time constraint.

Limitations related to GIS platform (QGIS), in which the SDSS is implemented, are that it is time-
consuming to develop all the necessary functionality and to prevent or change undesired behaviour.
Especially the software’s build-in response to touch input differs from contemporary expectations, as
dragging map objects, for example, is by default not supported and objects are moved by pressing on
them and then pressing on a new location.

Limitations related to the decision (touch) table, are possible limited availability of such a table in real
life cases and impracticalities of using such a table. Users are inclined to lean on the table, causing
undesired windows to pop up or close. Or something is pointed at and accidently clicked. Also, a
combination of the glass thickness and the angle of the view on the table can cause unintended
positions on the screen to be pressed. If it is the case that decision tables are only limited available in
practice, then there is a need for a field hospital planning approach that does not require a decision
table. One solution would be a setup in which an SDSS is synchronized among different computers.
Laptops with touchscreens are commonly available and decision-makers could still negotiate the
decision-making process in a single room. The big difference would be that instead of one large
decision (touch) table, each decision-maker looks at an own laptop screen. If the decision-makers are
indeed physically together in one room, then this would not require an internet connection either,
something that could be lacking in a conflict area. Such an approach would of course have its own
limitations, such as having less of an overview due to the smaller screen.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

55

REFERENCES

Aarts, E. & Korst, J. (1989). Simulated Annealing and Boltzmann Machines: A Stochastic Approach to

Combinatorial Optimization and Neural Computing (Chichester, Sussex: John Wiley)
Abdullahi, S., Mahmud, A. R. bin, & Pradhan, B. (2014). Spatial modelling of site suitability

assessment for hospitals using geographical information system-based multicriteria approach at
Qazvin city, Iran. Geocarto International, 29(2), 164–184.
https://doi.org/10.1080/10106049.2012.752531

Angus MacSwan. (2017). Iraqi bridge is sole link for Mosul residents rebuilding lives. Retrieved
November 16, 2017, from https://www.reuters.com/article/us-mideast-crisis-iraq-bridge/iraqi-
bridge-is-sole-link-for-mosul-residents-rebuilding-lives-idUSKBN1A706D

BBC. (2017). How the battle for Mosul unfolded. Retrieved November 16, 2017, from
http://www.bbc.com/news/world-middle-east-37702442

Belkin, N. J. (2000). Helping people find what they don't know. Communications of the ACM, 43(8),
58-61. Retrieved 11 August, 2019, from
https://www.researchgate.net/profile/Nicholas_Belkin/publication/220427131_Helping_people_fi
nd_what_they_don't_know/links/540db68d0cf2f2b29a39ff8d/Helping-people-find-what-they-
dont-know.pdf

Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of mathematical
sociology, 25(2), 163-177. Retrieved August 2, 2019, from
https://www.tandfonline.com/doi/pdf/10.1080/0022250X.2001.9990249

Brandes, U., Borgatti, S. P., & Freeman, L. C. (2016). Maintaining the duality of closeness and
betweenness centrality. Social Networks, 44, 153-159. Retrieved 15 August, 2019, from
https://www.sciencedirect.com/science/article/pii/S0378873315000738

Bruneau, M., Eeri, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O ’rourke, T. D., … Von Winterfeldt, D.
(2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of
Communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497

Chakhar, S., & Mousseau, V. (2008). GIS‐based multicriteria spatial modeling generic framework.
International Journal of Geographical Information Science, 22(11–12), 1159–1196.
https://doi.org/10.1080/13658810801949827

City Form Lab. (2016). Urban Network Analysis - Help V1.01. Retrieved from
http://media.voog.com/0000/0036/2451/files/20160120_UNA_help_v1_1.pdf

Coutinho-Rodrigues, J., Simão, A., & Antunes, C. H. (2011). A GIS-based multicriteria spatial decision
support system for planning urban infrastructures. https://doi.org/10.1016/j.dss.2011.02.010

Daskin, M. S., & Dean, L. K. (2004). LOCATION OF HEALTH CARE FACILITIES. Operations
Research and Health Care. Retrieved from
http://84.89.132.1/~ramalhin/Referencias/Daskin_2004.pdf

Esri. (2017). Algorithms used by the ArcGIS Network Analyst extension—Help | ArcGIS Desktop.
Retrieved December 5, 2017, from
http://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/algorithms-used-by-
network-analyst.htm#ESRI_SECTION1_6FFC9C48F24746E182082F5DEBDBAA92

Farahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A
survey. Applied Mathematical Modelling, 34(7), 1689–1709.
https://doi.org/10.1016/J.APM.2009.10.005

GRASS Development Team, 2017. Geographic Resources Analysis Support System (GRASS 7)
Programmer's Manual. Open Source Geospatial Foundation Project. Electronic
document: http://grass.osgeo.org/programming7/

Li, X., & Yeh, A. G. (2005). Integration of genetic algorithms and GIS for optimal location search.
International Journal of Geographical Information Science, 19(5), 581–601.
https://doi.org/10.1080/13658810500032388

Malczewski, J. (2004). GIS-based land-use suitability analysis: a critical overview. Progress in
Planning, 62, 3–65. https://doi.org/10.1016/S0305-9006(03)00079-5

Maniezzo, V., Mendes, I., & Paruccini, M. (1998). Decision support for siting problems. Decision
Support Systems, 23(3), 273–284. https://doi.org/10.1016/S0167-9236(98)00042-6

Mohammed Tawfeeq. (2017). Mosul’s bridges destroyed by ISIS as troops advance - CNN. CNN.
Retrieved from http://edition.cnn.com/2017/01/13/middleeast/iraq-mosul-troops-advance/

Moradian, M. J., Ardalan, A., Nejati, A., Boloorani, A. D., Akbarisari, A., & Rastegarfar, B. (2017). Risk
Criteria in Hospital Site Selection: A Systematic Review. PLOS Currents Disasters.
https://doi.org/10.1371/CURRENTS.DIS.A6F34643F3CD22C168B8C6F2DEEAE86D

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

56

Moradian, M. J., Ardalan, A., Nejati, A., Darvishi Boloorani, A., Akbarisari, A., & Rastegarfar, B.
(2016). Importance of Site Selection for Stockpiling Field Hospitals for Upcoming Disasters.
Bulletin of Emergency and Trauma, 4(3), 124–5. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/27540545

Morrill, R. L., & Symons, J. (1977). Efficiency and Equity Aspects of Optimum Location. Geographical
Analysis, 9(3), 215–225. https://doi.org/10.1111/j.1538-4632.1977.tb00575.x

Nickerson, J. W. (2015). Ensuring the security of health care in conflict settings: an urgent global
health concern. CMAJ, 187(11), E347-E348. Retrieved from:
http://www.cmaj.ca/content/cmaj/187/11/E347.full.pdf?casa_token=Or1toNcGsJAAAAAA:gfS1Z
QDlzNLH40BQOXyoa8zXEIiti2SbX8HU2nMotQrkcWnQKAObOoS7s1KqkakFDLFWjqEg1H8-

Rahman, S.-U., & Smith, D. K. (2000). Use of location-allocation models in health service
development planning in developing nations. European Jounal of Operational Research.
Retrieved from
https://pdfs.semanticscholar.org/5aac/80259a602bd5ca5551ba98c3db4f82b9d851.pdf

Rydén, M. (2011). Strategic Placing of Field Hospitals Using Spatial Analysis. Retrieved from
http://kth.diva-portal.org/smash/get/diva2:420334/FULLTEXT02.pdf

Saaty, T. L., & Peniwati, K. (2008). Group decision making : drawing out and reconciling differences.
RWS Publications. Retrieved from
https://books.google.com.sg/books/about/Group_Decision_Making.html?id=phLWKwAACAAJ

Sprague, R. H., & Carlson, E. D. (1982). Building effective decision support systems. Prentice-Hall.
Retrieved from
https://books.google.nl/books/about/Building_Effective_Decision_Support_Syst.html?id=89_sPT
AmkVsC&redir_esc=y

Sugumaran, R., & Degroote, J. (2010). Spatial decision support systems: principles and practices. Crc
Press. Retrieved from: https://www.taylorfrancis.com/books/9780429148095

Tien, J. M., El-Tell, K., & Simons, G. R. (1983). Improved formulations to the hierarchical health
facility location-allocation problem. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
13(6), 1128–1132. https://doi.org/10.1109/TSMC.1983.6313187

UNAMI. (2014). Report on the Protection of Civilians in Armed Conflict in Iraq. Retrieved from
http://www.ohchr.org/Documents/Countries/IQ/UNAMI_OHCHR_POC_Report_FINAL_6July_10
September2014.pdf

Van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud method: a practical
approach to modelling cognitive. London: Academic Press. Retrieved from:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.821.4127&rep=rep1&type=pdf

WHO. (2017). WHO Special Situation Report, Mosul Crisis, Iraq. Retrieved from
http://www.who.int/hac/crises/irq/sitreps/iraq-mosul-health-situation-report-23july2017.pdf?ua=1

WHO-PAHO. (2003). WHO-PAHO Guidelines for the Use of Foreign Field Hospitals in the Aftermath
of Sudden-Impact Disasters. Retrieved November 16, 2017, from
http://www.paho.org/disasters/index.php?option=com_content&view=article&id=674:pahowho-
guidelines-for-the-use-of-foreign-field-hospitals&Itemid=924&lang=en

Xu, X., Chen, A., Jansuwan, S., Heaslip, K., & Yang, C. (2015). ScienceDirect 21st International
Symposium on Transportation and Traffic Theory Modeling Transportation Network
Redundancy. Transportation Research Procedia, 9, 283–302.
https://doi.org/10.1016/j.trpro.2015.07.016

Zhu, X., R. J. Aspinall, and R. G. Healey. (1996). ILUDSS: A knowledge-based spatial decision
support system for strategic land-use planning. Computers and Electronics in Agriculture 15(4):279–
301.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

57

Appendix A: Testing Instructions (Stakeholder Profiles)

Planning
Introduction of plug-in (5 minutes)
Study the profiles (10 minutes)
Ask question about the profiles (5 minutes)
First part of the exercise (15 minutes)
Second part of the exercise (15 minutes)
Oral feedback and discussion (10 minutes)

General
The Islamic State of Iraq and the Levant (ISIL) seized the city Mosul, Iraq in June 2014. This led to
attempts to retake and free the city from 2015 till 2017 by Iraqi, Peshmerga and international forces.
During this conflict, many inhabitants of Mosul have been displaced from their homes. Together with
its partners, the World Health Organization (WHO) has been providing medical aid during the Mosul
crisis by field hospital deployment. These field hospitals are mobile which allows them to change
locations, should an alteration in the ground situation ask for it.
The situation on the ground can change in various ways, as you will experience later during this
experiment. A multi-disciplinary group consisting of different stakeholders, such as WHO staff, armed
forces and GIS experts together decide at which locations the available field hospitals can be
deployed best. Each of these stakeholders has their preferences and opinion when it comes to where
the field hospitals are going to be set up. In this experiment, the three of you represent different
parties in this decision-making process, namely the WHO, allied armed forces and a GIS expert.
You are aided by a digital decision (touch) table in your decision-making, which will show a map of the
Mosul city and potential field hospital sites. The software running on the table is designed to guide
you, the decision-makers, through the process of finding the best locations for field hospitals. It does
so by allowing you to easily add, move or delete field hospitals or dangerous territory. You also have
the option of toggling roads or hospitals inactive, which you would do, for example, when a bridge is
destroyed. It could also be the case that regular hospitals are also active in the city.
As decision-makers, each of you values different properties of field hospital locations. Seven different
field hospital performance indicators are shown to reflect your different interests. They are the
connectivity and resiliency of a field hospital on a scale of 0 to 100, the area (m2) a field hospital is
covering with its location, the amount of population in that area, the average distance (meters) of the
covered population to their (field) hospital and distance to danger and water. The ‘between’ indicator
is a measure that indicates how passable the location is if you want to get from any point A to any
point B in the city. Major roads are likely to have a better ‘between’ value. ‘Degree’ is an
approximation of how many roads can be blocked in the vicinity of a field hospital without it being cut
off from the rest of the city. Any road segments or (field) hospitals that are toggled inactive are
excluded from the performance indicator calculations. Roads and population covered by dangerous
territory are also considered inactive and neglected.

WHO
You will be representing the World Health Organization in this experiment. You manage the field
hospitals, make sure they are occupied by medical personnel and that they are provided with
sufficient supplies to daily service a certain amount of people (capacity). In this experiment your most
important goal is to fully use the capacity of each hospital (‘population’ performance indicator shows
the serviced population). You almost never have enough resources to provide medical service to
everybody who is in need. Therefore, it is not acceptable when a field hospital is servicing only a part
of its capacity. Second most important to you is minimizing the average distance people have to travel
to get to a field hospital (‘mean pop distance’ performance indicator). Your field hospitals also
distribute small water filtering systems for when people have no access to drinkable water. These
have little use when there is no water nearby to filter, so minimizing the distance to water is your third
goal (‘water distance’ performance indicator). But this third goal is less important. Besides field
hospitals, some regular hospitals could still be in service. These cannot be moved and have to be
taken into account when deciding on where to put field hospitals.
Goals summary

- Primary: Utilize full (field) hospital capacity
- Secondary: Minimize pop. travel distance
- Tertiary: Minimize water distance

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

58

- Existing hospitals cannot be added, moved or deleted, but can be toggled (in)active

Allied armed forces
You will be representing allied armed forces in this experiment. Your task is to make sure that field
hospitals are as safe from conflict as possible. To a certain extent, you can ensure the safety of field
hospitals, but you only have a limited amount of defensive forces to do so. Of all the decision-makers,
you know best which areas are safe, which are at risk and which are occupied by enemy forces.
Unfortunately, the population in dangerous territory cannot be provided with health services. You have
to make sure that field hospitals are not too close to dangerous territory and therefore, you try to
minimize this distance (look at the ‘danger distance’ performance indicator). The closer the field
hospitals are to danger, the more forces you need to provide safety. Within 3 kilometres from danger
is a rule of thumb for when defences are needed. Field hospitals can be placed closer than 3
kilometres to danger, but you only have forces to defend two field hospitals down to 1 kilometre from
danger.
Goals summary:

- Primary: No (field) hospitals are allowed within 1 km of danger
- Secondary: max 2 hospitals within 3-1 km distance of danger
- Toggle existing hospitals inactive if they are within 1 km of danger
- Add danger areas if needed

GIS specialist
You will be representing the GIS expert in this experiment. You have been chosen to do so because
you are at least familiar with GIS. You will mostly be controlling the touch screen, and you lead the
decision-making process. Because of your familiarity with the software, you are a kind of moderator in
the experiment. If the other decision-makers struggle to understand the software, you might be able to
explain it to them. As a GIS specialist, you are also familiar with street networks and how people flow
through them. This gives you logistical insight in the decision-making process. You will also remind
the medical and military stakeholders of the important difference between absolute distances, and
distances when you have to travel over a street network. To be able to supply medical support and to
defend a field hospital it should not be easy to cut it off from the whole street network. You ensure that
field hospitals are central (‘between’ performance indicator) by being near main roads in the network.
You also look at the resiliency (‘degree’ performance indicator) of a location in respect to the street
network: are there sufficient routes for surrounding population to get to the field hospital? Or will a lot
of people be disconnected when you remove one road? You could also help the military stakeholder
in identifying points in the street network which could easily be cut off if dangerous territory were to
expand. Keep in mind that a very good location for all field hospitals is not realistic.
Goals summary:

- You lead the decision-making process, are a sort of moderator and you operate the touch
screen if the others struggle to understand the software

- Ensure that hospitals are well connected (near main roads, reflected by the ‘between’
indicator). Above 15% is very good, under 5% is bad.

- Ensure that hospitals have a resilient location (many escape routes, reflected by ‘degree’).
Above 30% is very good, under 15% is bad.

- You could possibly help recognize areas that will easily be ‘cut off’ from the street network if
danger were to expand

Field Hospital Planner Interface
Below you can see a typical map for this plugin together with symbol explanations on the right. You
have (in)active (field) hospitals, danger zones, a network of major and residential roads which can
also be toggled inactive, water and population density.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

59

It is possible to easily perform actions on (field) hospitals, dangerous territory and roads by clicking
one of the white circles below. After that, you can press the map to apply the action. If you are done
with the action, you first press the ‘Save/Undo’ button before you can do anything else.

Lastly, you can press the button to calculate performance indicators (see picture
below) for each active (field) hospital on the map. Beware to only press this button if you are done
adjusting objects on the map, as updating can take up to a few minutes.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

60

Further notes

- You can zoom in and out on the map just like you would by pinching on a smartphone.
- Try not to touch the decision table with multiple people at the same time.
- Try not to lean on the edges of the decision table, as it might cause the application to exit

essential parts of the software.
- Thijs, the developer of the software in front of you, is not allowed to intervene in the

experiment unless it really cannot proceed otherwise.
- You are being recorded to gain some context on why certain actions were performed on the

decision table.
- You can press help buttons in the software to gain additional info on what you are seeing in

the interface, especially about the performance indicators.
- For adding areas of danger, you can do so by tapping where the corners should be and you

can finish an area by pressing and holding your finger for 2 seconds anywhere on the map.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

61

Appendix B: Testing Script

Day 1
Proceed to the second window of the Field Hospital Planner where you can load data.

The data for day one is located at
C:/Users/Minou/AppData/Roaming/QGIS/QGIS3/profiles/default/python/plugins/save_attributes/input_
data/
Please select all the .shp files for population, roads, field- and existing hospitals, water and danger
and press ‘proceed’.

It looks like the city of Mosul soon will be entirely freed from local insurgents. International forces have
secured most of the city, but fighting remains in the East of the city. This has created a dangerous
area. The long lasting fighting has also caused several of the bridges of Mosul to be destroyed. Three
major hospitals are still standing in the city. But because hospital ‘B’ is so close to the fighting front, it
has been decided to not use this hospital for the time being.

There currently is one field hospital on the ground. Please press ‘Update Table’ to see how this
hospital performs. But the map is currently not up to date. Please select the toggle action for the
roads and toggle the 2 southernmost bridges inactive. Save the adjustments and now select the
toggle action for hospitals t toggle hospital ‘B’ inactive. Write down the ‘Between’ value of field
hospital 1 and press ‘Update Table’ again to see how the field hospital performs now that the map has
been updated. What has happened to the ‘Between’ value? As you can see the ‘between‘ value took
a big hit now that the bridge is gone, it is less of a central place in the street network now. We will
therefore remove field hospital 1, press the hospital remove action and remove it.

Although they are unrealistic numbers, for the sake of this simulation we assume that each existing
hospital can daily serve 150.000 people and each field hospital 50.000 people. Besides field hospital
1, there are 5 other field hospitals at your disposal today. So 6 in total. Toggle ‘show population’ to
see where there is demand for medical care. Toggle ‘show hospital service area’ to show what area of
population a hospital serves. As you can see, most demand is located west of the Tigris river as many
people have fled the East part of Mosul. Try to place all 6 field hospitals, keeping each of your goals
in mind. You of course cannot move the existing hospitals, so try to keep this in mind.

Day 7
We are now a couple of days further. Your 6 field hospitals have been setup and running while
fighting continued. All went well (or not? Could anticipate to their choices) and the danger in the east
has fully retreated about 1 km eastwards. Select the danger move tool and click on one of the corners
of the danger to move that corner. Save, but do not yet update the table.

Unfortunately another insurgency has developed on the Westside of the Tigris. Insurgents have been
hiding among the population but have now gathered forces and raised their weapons. The new threat
spans a danger area of about 1,5 km northwest of hospital A from the Tigris all the way to the end of
the Major road straight West of hospital A. Add this danger with the danger add action. You will also
have to toggle any field hospitals in this area inactive, as you cannot reach it anymore. If existing
hospital B is further than 1km from danger, you can toggle it active again. Please update the table.
The remaining hospitals probably are not in a very ideal position now. (possibly point at roads which
have to be toggled inactive) Try to move the hospitals to better positions.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

62

Appendix C: Main SDSS Python Script

-*- coding: utf-8 -*-
"""
/***
 Field Hospital Planner
 A QGIS plugin

Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/

 begin : 2019-05-28
 git sha : $Format:%H$
 copyright : (C) 2019 by Thijs
 email : thijsvandercaaij@gmail.com
 ***/

/***
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 ***/
"""
import time
import os # This is is needed in the pyqgis console also
from qgis.core import (
 QgsVectorLayer, QgsLineSymbol
)
from PyQt5.QtCore import QSettings, QTranslator, qVersion, QCoreApplication, QUrl
from PyQt5.QtGui import QIcon, QColor, QFont
from PyQt5.QtWidgets import QAction, QFileDialog, QMessageBox, QTableWidgetItem,
QProgressBar, QProgressDialog
from PyQt5.QtMultimediaWidgets import QVideoWidget
from PyQt5.QtMultimedia import QMediaPlayer, QMediaContent
from qgis.core import * #

Initialize Qt resources from file resources.py
from .resources import *
Import the code for the dialog
from .save_attributes_dialog import *
import os.path
from .mapTools import *

class SaveAttributes:
 """QGIS Plugin Implementation."""

 def __init__(self, iface):
 """Constructor.

 :param iface: An interface instance that will be passed to this class
 which provides the hook by which you can manipulate the QGIS
 application at run time.
 :type iface: QgsInterface
 """
 # Save reference to the QGIS interface
 self.iface = iface
 # initialize plugin directory

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

63

 self.plugin_dir = os.path.dirname(__file__)
 # initialize locale
 locale = QSettings().value('locale/userLocale')[0:2]
 locale_path = os.path.join(
 self.plugin_dir,
 'i18n',
 'SaveAttributes_{}.qm'.format(locale))

 if os.path.exists(locale_path):
 self.translator = QTranslator()
 self.translator.load(locale_path)

 if qVersion() > '4.3.3':
 QCoreApplication.installTranslator(self.translator)

 # Declare instance attributes
 self.actions = []
 self.menu = self.tr(u'&Save Attributes')

 # Check if plugin was started the first time in current QGIS session
 # Must be set in initGui() to survive plugin reloads
 self.first_start = None

 # Editing instances
 self.editing = False
 self.modified = False
 #self.territoryLayer = QgsProject.instance().mapLayersByName('testpolygon')
 #self.territoryLayer = self.territoryLayer[0]
 #self.hospitalLayer = QgsProject.instance().mapLayersByName('Mosul')
 #self.hospitalLayer = self.hospitalLayer[0]
 self.roadsLayer = None
 self.hospitalLayer = None
 self.waterLayer = None
 self.dangerLayer = None
 self.populationLayer = None
 self.areaVoronoiLayer = None
 self.own_dir = os.path.dirname(os.path.abspath(__file__))
 self.step3count = 0
 self.step2count = 0
 self.radioButtonClicked = False
 self.saveButtonPressed = False
 self.roadsToggled = False
 self.roadsChanged = False
 self.dangerChanged = False
 #zoomFactor = 6
 #self.iface.mapCanvas().setWheelFactor(zoomFactor)
 #self.iface.mapCanvas().scaleChanged.connect(self.newScale)

 # noinspection PyMethodMayBeStatic
 def tr(self, message):
 """Get the translation for a string using Qt translation API.

 We implement this ourselves since we do not inherit QObject.

 :param message: String for translation.
 :type message: str, QString

 :returns: Translated version of message.

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

64

 :rtype: QString
 """
 # noinspection PyTypeChecker,PyArgumentList,PyCallByClass
 return QCoreApplication.translate('SaveAttributes', message)

 def add_action(
 self,
 icon_path,
 text,
 callback,
 enabled_flag=True,
 add_to_menu=True,
 add_to_toolbar=True,
 status_tip=None,
 whats_this=None,
 parent=None):
 """Add a toolbar icon to the toolbar.

 :param icon_path: Path to the icon for this action. Can be a resource
 path (e.g. ':/plugins/foo/bar.png') or a normal file system path.
 :type icon_path: str

 :param text: Text that should be shown in menu items for this action.
 :type text: str

 :param callback: Function to be called when the action is triggered.
 :type callback: function

 :param enabled_flag: A flag indicating if the action should be enabled
 by default. Defaults to True.
 :type enabled_flag: bool

 :param add_to_menu: Flag indicating whether the action should also
 be added to the menu. Defaults to True.
 :type add_to_menu: bool

 :param add_to_toolbar: Flag indicating whether the action should also
 be added to the toolbar. Defaults to True.
 :type add_to_toolbar: bool

 :param status_tip: Optional text to show in a popup when mouse pointer
 hovers over the action.
 :type status_tip: str

 :param parent: Parent widget for the new action. Defaults None.
 :type parent: QWidget

 :param whats_this: Optional text to show in the status bar when the
 mouse pointer hovers over the action.

 :returns: The action that was created. Note that the action is also
 added to self.actions list.
 :rtype: QAction
 """

 icon = QIcon(icon_path)
 action = QAction(icon, text, parent)
 action.triggered.connect(callback)
 action.setEnabled(enabled_flag)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

65

 if status_tip is not None:
 action.setStatusTip(status_tip)

 if whats_this is not None:
 action.setWhatsThis(whats_this)

 if add_to_toolbar:
 # Adds plugin icon to Plugins toolbar
 self.iface.addToolBarIcon(action)

 if add_to_menu:
 self.iface.addPluginToVectorMenu(
 self.menu,
 action)

 self.actions.append(action)

 return action

 def initGui(self):
 """Create the menu entries and toolbar icons inside the QGIS GUI."""

 icon_path = ':/plugins/save_attributes/icon.png'
 self.add_action(
 icon_path,
 text=self.tr(u'Save Attributes as CSV'),
 callback=self.run,
 parent=self.iface.mainWindow())

 # will be set False in run()
 self.first_start = True
 QgsProject.instance().clear()

 def unload(self):
 """Removes the plugin menu item and icon from QGIS GUI."""
 for action in self.actions:
 self.iface.removePluginVectorMenu(
 self.tr(u'&Save Attributes'),
 action)
 self.iface.removeToolBarIcon(action)

def select_output_file(self):
filename, _filter = QFileDialog.getSaveFileName(
self.dlg, "Select output file ","", '*.csv')
self.dlg.lineEdit.setText(filename)

def select_input_file(self):
filename2, _filter2 = QFileDialog.getOpenFileName(
self.dlg2, "Select input file ","")
self.dlg2.pushButton_2.setText(filename2)

 def select_water_file(self):
 filename2, _filter2 = QFileDialog.getOpenFileName(
 self.dlg2.dock, "Select water input file ","")
 self.dlg2.dock.water_path.setText(filename2)

 def select_roads_file(self):
 filename2, _filter2 = QFileDialog.getOpenFileName(

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

66

 self.dlg2.dock, "Select roads input file ","")
 self.dlg2.dock.roads_path.setText(filename2)

 def select_population_file(self):
 filename2, _filter2 = QFileDialog.getOpenFileName(
 self.dlg2.dock, "Select population input file ","")
 self.dlg2.dock.population_path.setText(filename2)

 def select_danger_file(self):
 filename2, _filter2 = QFileDialog.getOpenFileName(
 self.dlg2.dock, "Select danger input file ","")
 self.dlg2.dock.danger_path.setText(filename2)

 def select_hospitals_file(self):
 filename2, _filter2 = QFileDialog.getOpenFileName(
 self.dlg2.dock, "Select field hospitals input file ","")
 self.dlg2.dock.hospitals_path.setText(filename2)

 def select_fieldhospitals_file(self):
 filename2, _filter2 = QFileDialog.getOpenFileName(
 self.dlg2.dock, "Select existing hospitals input file ","")
 self.dlg2.dock.fieldhospitals_path.setText(filename2)

 def about(self):
 """
 Visualize an About window.
 """
 QMessageBox.about(self, "About geoWeightedSum model", """ <p>Performs geographic multi-
criteria decision making using weighted sum model Documents and data are available in www.maplab.alwaysdata.net</p> <p>Author:
Gianluca Massei [g_massa at libero.it]</p> """)

 def load_layers(self):
 if self.step2count > 0:
 reply = QMessageBox.question(QMessageBox(), "Warning", "Do you really want to load the
entered layers again?", QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes)
 if reply == QMessageBox.Yes:
 pass
 else:
 return

 self.message("Loading layers. Please wait...")
 population = self.dlg2.dock.population_path.text()
 population =
'C:/Users/Minou/AppData/Roaming/QGIS/QGIS3/profiles/default/python/plugins/save_attributes/input
_data/population.shp'

 if population:
 try:
 QgsProject.instance().removeMapLayers([self.populationLayer.id()])
 except:
 pass
 self.populationLayer = QgsVectorLayer(population, "Population", "ogr")
 QgsProject.instance().addMapLayer(self.populationLayer)
 self.populationLayer.loadNamedStyle(self.own_dir + '/symbols/population_symbol.qml')

QgsProject.instance().layerTreeRoot().findLayer(self.populationLayer.id()).setItemVisibilityChecked(F
alse)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

67

 hospitals = self.dlg2.dock.hospitals_path.text()
 fieldhospitals = self.dlg2.dock.fieldhospitals_path.text()
 #hospitals =
'C:/Users/Minou/AppData/Roaming/QGIS/QGIS3/profiles/default/python/plugins/save_attributes/input
_data/mosul_points.shp'

 if hospitals or fieldhospitals or not self.hospitalLayer:
 try:
 QgsProject.instance().removeMapLayers([self.hospitalLayer.id()])
 except:
 pass
 # hard coded crs, could and should be soft coded by looking at road crs
 self.hospitalLayer = QgsVectorLayer("Point?crs=epsg:32638&field=id:string", "Hospitals",
"memory")

 #crs = self.hospitalLayer.crs()
 #crs.createFromId(32638)
 #self.hospitalLayer.setCrs(crs)
 if hospitals:
 try:
 QgsProject.instance().removeMapLayers([self.tempHospitalLayer.id()])
 except:
 pass
 self.tempHospitalLayer = QgsVectorLayer(hospitals, "Existing Hospitals", "ogr")
 temp_hospital_features = self.tempHospitalLayer.getFeatures()
 self.hospitalLayer.dataProvider().addFeatures(temp_hospital_features)
 self.hospitalLayer.updateFields()

 #add activity field if it does not yet exist
 active_index = self.hospitalLayer.fields().indexFromName('active')
 if active_index == -1:
 activityField = QgsField('active', QVariant.String)
 self.hospitalLayer.dataProvider().addAttributes([activityField])
 self.hospitalLayer.updateFields()

 #change activity field values to 'y'
 self.hospitalLayer.startEditing()
 for f in self.hospitalLayer.getFeatures():
 fieldIndex = f.fieldNameIndex('active')
 self.hospitalLayer.changeAttributeValue(f.id(), fieldIndex, 'y')
 self.hospitalLayer.commitChanges()
 self.hospitalLayer.setDefaultValueDefinition(active_index, QgsDefaultValue('y'))

 if fieldhospitals:
 try:
 QgsProject.instance().removeMapLayers([self.fieldhospitalsLayer.id()])
 except:
 pass
 self.fieldhospitalsLayer = QgsVectorLayer(fieldhospitals, "Field Hospitals", "ogr")
 #QgsProject.instance().addMapLayer(self.fieldhospitalsLayer)
 existing_hospital_features = self.fieldhospitalsLayer.getFeatures()
 self.hospitalLayer.dataProvider().addFeatures(existing_hospital_features)
 self.hospitalLayer.updateFields()
#check for inactive roads
road_values = []
for feature in self.roadsLayer.getFeatures():
activity = feature['active']
road_values.append(activity)
QgsMessageLog.logMessage(activity, tag="debug")
if 'n' in road_values:

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

68

fields = self.roadsLayer.fields()
tempLayer = QgsVectorLayer("LineString?crs=epsg:32638", "result", "memory")
query = QgsExpression('"active"=\'%s\'' % 'y')
features = self.roadsLayer.getFeatures(QgsFeatureRequest(query))
#tempLayer.startEditing()
tempLayer.dataProvider().addAttributes(fields)
tempLayer.dataProvider().addFeatures(features)
#tempLayer.commitChanges()
QgsProject.instance().addMapLayer(tempLayer)

 """ hospital styling """
 self.hospitalLayer.loadNamedStyle(self.own_dir + '/symbols/hospital_symbols.qml')
 self.hospitalLayer.loadNamedStyle(self.own_dir + '/symbols/hospital_label.qml')

initialize the default symbol for this geometry type
active_symbol = QgsSymbol.defaultSymbol(self.hospitalLayer.geometryType())
inactive_symbol = QgsSymbol.defaultSymbol(self.hospitalLayer.geometryType())

active_symbol_path = self.own_dir + '/symbols/hospital active.svg'
active_hospital_symbol = QgsSvgMarkerSymbolLayer(active_symbol_path)
active_hospital_symbol.setSize(10)
active_symbol.changeSymbolLayer(0, active_hospital_symbol)

inactive_symbol_path = self.own_dir + '/symbols/hospital inactive.svg'
inactive_hospital_symbol = QgsSvgMarkerSymbolLayer(inactive_symbol_path)
inactive_hospital_symbol.setSize(10)
inactive_symbol.changeSymbolLayer(0, inactive_hospital_symbol)

active_category = QgsRendererCategory('y', active_symbol, 'Active')
inactive_category = QgsRendererCategory('n', inactive_symbol, 'Inactive')
categories = [active_category, inactive_category]

self.hospitalRenderer = QgsCategorizedSymbolRenderer('active', categories)

assign the created renderer to the layer
if self.hospitalRenderer is not None:
self.hospitalLayer.setRenderer(self.hospitalRenderer)

repaint the layer
self.hospitalLayer.triggerRepaint()
self.iface.layerTreeView().refreshLayerSymbology(self.hospitalLayer.id())

 # Connect the layer to the signal geometryChanged, so when a feature is
 # moved in the layer, self.modified is set to true and the edit mode reacts accordingly
 self.hospitalLayer.geometryChanged.connect(self.onModified)
 self.hospitalLayer.featureDeleted.connect(self.onModified)
 self.hospitalNames = []
 for f in self.hospitalLayer.getFeatures():
 self.hospitalNames.append(f['id'])

 roads = self.dlg2.dock.roads_path.text()
 roads =
'C:/Users/Minou/AppData/Roaming/QGIS/QGIS3/profiles/default/python/plugins/save_attributes/input
_data/roads.shp'

 if roads:
 try:
 QgsProject.instance().removeMapLayers([self.roadsLayer.id()])
 except:

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

69

 pass
 self.roadsLayer = QgsVectorLayer(roads, "Roads", "ogr")
 QgsProject.instance().addMapLayer(self.roadsLayer)

 water = self.dlg2.dock.water_path.text()
 water =
'C:/Users/Minou/AppData/Roaming/QGIS/QGIS3/profiles/default/python/plugins/save_attributes/input
_data/water.shp'

 if water:
 try:
 QgsProject.instance().removeMapLayers([self.waterLayer.id()])
 except:
 pass
 self.waterLayer = QgsVectorLayer(water, "Water", "ogr")
 QgsProject.instance().addMapLayer(self.waterLayer)
 water_symbol = QgsFillSymbol.createSimple({'color': 'blue'})

 # assign the created symbol to the layer
 self.waterLayer.renderer().setSymbol(water_symbol)

 # repaint the layer
 self.waterLayer.triggerRepaint()
 self.iface.layerTreeView().refreshLayerSymbology(self.waterLayer.id())

 #add water_dist field to hospitals if it does not yet exist
 active_index = self.hospitalLayer.fields().indexFromName('water_dist')
 if active_index == -1:
 activityField = QgsField('water_dist', QVariant.Double)
 self.hospitalLayer.dataProvider().addAttributes([activityField])
 self.hospitalLayer.updateFields()

 self.waterLayer.loadNamedStyle(self.own_dir + '/symbols/water_symbol.qml')

 danger = self.dlg2.dock.danger_path.text()
 danger =
'C:/Users/Minou/AppData/Roaming/QGIS/QGIS3/profiles/default/python/plugins/save_attributes/input
_data/danger.shp'
 if not danger:
 self.dangerLayer = QgsVectorLayer("Polygon?crs=epsg:32638&field=id:integer", "Danger",
"memory")

 if danger:
 try:
 QgsProject.instance().removeMapLayers([self.dangerLayer.id()])
 except:
 pass
 self.dangerLayer = QgsVectorLayer(danger, "Danger", "ogr")
 QgsProject.instance().addMapLayer(self.dangerLayer)
 #add dngr_dist field to hospitals if it does not yet exist
 active_index = self.hospitalLayer.fields().indexFromName('dngr_dist')
 if active_index == -1:
 activityField = QgsField('dngr_dist', QVariant.Double)
 self.hospitalLayer.dataProvider().addAttributes([activityField])
 self.hospitalLayer.updateFields()

 self.dangerLayer.geometryChanged.connect(self.onModified)
 self.dangerLayer.featureAdded.connect(self.dangerAdded)
 #self.dangerLayer.beforeAddingExpressionField.connect(self.skipExpression)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

70

danger_symbol_path = self.own_dir + '/symbols/Danger.svg'
danger_symbol = QgsSVGFillSymbolLayer(danger_symbol_path)
#active_symbol.changeSymbolLayer(0, danger_symbol)
assign the created symbol to the layer
self.dangerLayer.renderer().symbol().changeSymbolLayer(0, danger_symbol)
 self.dangerLayer.loadNamedStyle(self.own_dir + '/symbols/danger_symbol.qml')
 active_index = self.dangerLayer.fields().indexFromName('id')
 self.dangerLayer.setDefaultValueDefinition(active_index, QgsDefaultValue('1'))
 # repaint the layer
 #self.dangerLayer.triggerRepaint()
 #self.iface.layerTreeView().refreshLayerSymbology(self.dangerLayer.id())

create a new symbol
active_roads_symbol = QgsLineSymbol.createSimple({'line_style': 'topo road', 'color': 'black'})
inactive_roads_symbol = QgsLineSymbol.createSimple({'line_style': 'topo road', 'color': 'red'})

 # apply symbol to layer renderer
 if roads:
 #add activity field if it does not yet exist
 active_index = self.roadsLayer.fields().indexFromName('active')
 if active_index == -1:
 activityField = QgsField('active', QVariant.String)
 self.roadsLayer.dataProvider().addAttributes([activityField])
 self.roadsLayer.updateFields()

 #change activity field values to 'y'
self.roadsLayer.startEditing()
for f in self.roadsLayer.getFeatures():
fieldIndex = f.fieldNameIndex('active')
self.roadsLayer.changeAttributeValue(f.id(), fieldIndex, 'y')
self.roadsLayer.commitChanges()

active_category = QgsRendererCategory('y', active_roads_symbol, 'Active')
inactive_category = QgsRendererCategory('n', inactive_roads_symbol, 'Inactive')
categories = [active_category, inactive_category]

renderer = QgsCategorizedSymbolRenderer('active', categories)

assign the created renderer to the layer
if renderer is not None:
self.roadsLayer.setRenderer(renderer)

repaint the layer
self.roadsLayer.triggerRepaint()
self.iface.layerTreeView().refreshLayerSymbology(self.roadsLayer.id())
 self.roadsLayer.loadNamedStyle(self.own_dir + '/symbols/road_symbols.qml')
 #self.iface.mainWindow().blockSignals(True)
 QgsProject.instance().addMapLayer(self.hospitalLayer)
 #self.iface.mainWindow().blockSignals(False)
 self.iface.mapCanvas().setCanvasColor(QColor.fromHsv(60,0.35*255,0.96*255))

 # set custom render order of layers
 bridge = self.iface.layerTreeCanvasBridge().rootGroup()
 order = [self.hospitalLayer.id(), self.dangerLayer.id(), self.roadsLayer.id(), self.waterLayer.id(),
self.populationLayer.id()]
 bridge.setHasCustomLayerOrder(True)
 try:
 bridge.setCustomLayerOrderByIds(order)
 except:

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

71

 pass
 self.step2count += 1

 self.dlg3.dock.tableWidget.setColumnCount(8)
 bold_font = QFont('Times', weight = QFont.Bold)
 column_headers = ['Hospital', 'Population', 'Mean Pop. Distance', 'Danger Distance', 'Water
Distance', 'Area Covered', 'Between', 'Degree']
 self.dlg3.dock.tableWidget.setHorizontalHeaderLabels(column_headers)
 self.dlg3.dock.tableWidget.horizontalHeaderItem(0).setFont(bold_font)
 self.dlg3.dock.tableWidget.resizeColumnsToContents()

 self.zoomToFull()
 pixmap =
QPixmap(r'C:\Users\Minou\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins\save_attrib
utes\symbols\legend.png')
 self.legend.image.setPixmap(pixmap)
 self.legend.show()

if not self.hospitalLayer.isValid():
print("Layer failed to load!")
self.iface.messageBar().pushMessage(
"Success, layers have been added!", duration=3)

 def newScale(self, scale):
 if scale > 110000:
 self.iface.mapCanvas().zoomScale(110000.0)

 def setEditMode(self):
 self.iface.setActiveLayer(self.layer)
 if self.editing:
 if self.modified:
 reply = QMessageBox.question(QMessageBox(), "Confirm", "Save Changes?",
QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes)
 if reply == QMessageBox.Yes:
 self.layer.commitChanges()
 if self.layer == self.dangerLayer:
 self.dangerChanged = True

 else:
 self.layer.rollBack()
 if self.layer == self.roadsLayer:
 #self.message("ja dit is een weg")
 self.roadsChanged = False
 if self.layer == self.dangerLayer:
 self.dangerChanged = False
 self.editing = False
 else:
 self.layer.commitChanges()
 self.layer.triggerRepaint()
 self.editing = False
 #self.iface.actionPan().trigger()
 else:
 self.layer.startEditing()
 self.layer.triggerRepaint()
 self.editing = True
 self.modified = False
 #self.iface.actionPan().trigger()
 #self.adjustActions()

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

72

 def onModified(self):
 self.modified = True

 def onRoadModified(self):
 self.modified = True
 self.roadsChanged = True

 def dangerAdded(self, fid):
 request = QgsFeatureRequest()
 request.setFilterFids([fid])
 features = self.dangerLayer.getFeatures(request)
 for f in features:
 geom = f.geometry()
 if geom.isGeosValid():
 self.modified = True
 #self.message('Danger added')
 else:
 self.dangerLayer.rollBack()
 self.editing = False
 self.saveButtonPressed = True
 self.radioButtonClicked = False
 # enable all radiobuttons
 self.dlg3.dock.hospitalAdd.setCheckable(True)
 self.dlg3.dock.hospitalMove.setCheckable(True)
 self.dlg3.dock.hospitalRemove.setCheckable(True)
 self.dlg3.dock.hospitalToggle.setCheckable(True)
 self.dlg3.dock.territoryAdd.setCheckable(True)
 self.dlg3.dock.territoryMove.setCheckable(True)
 self.dlg3.dock.territoryRemove.setCheckable(True)
 self.dlg3.dock.roadsToggle.setCheckable(True)

 self.iface.actionPan().trigger()

 # uncheck all radiobuttons
 self.dlg3.dock.hospitalAdd.setChecked(False)
 self.dlg3.dock.hospitalMove.setChecked(False)
 self.dlg3.dock.hospitalRemove.setChecked(False)
 self.dlg3.dock.hospitalToggle.setChecked(False)
 self.dlg3.dock.territoryAdd.setChecked(False)
 self.dlg3.dock.territoryMove.setChecked(False)
 self.dlg3.dock.territoryRemove.setChecked(False)
 self.dlg3.dock.roadsToggle.setChecked(False)
 reply = QMessageBox.question(QMessageBox(), "Warning", "Please create non-twisted
danger areas. Your editing is being rolled back.", QMessageBox.Ok, QMessageBox.Ok)
 if reply == QMessageBox.Ok:
 return
 else:
 return

 def onHospitalModified(self, featureId, geometryChange=None):
 #self.message(str(featureId))
 request = QgsFeatureRequest()
 request.setFilterFids([featureId])
 features = self.hospitalLayer.getFeatures(request)
 feature = None
 for f in features:
 feature = f
 feature_name = feature['id']
 if not feature:

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

73

 self.modified = True
 self.message('bijzonder geval, crash? modified')
 return
 # new_hospital_names = []
 # for f in self.hospitalLayer.getFeatures():
 # new_hospital_names.append(f['id'])
 #feature_name = list(set(self.hospitalNames) - set(new_hospital_names))
 if not feature_name.isdigit():
 self.hospitalLayer.rollBack()
 self.editing = False
 self.saveButtonPressed = True
 self.radioButtonClicked = False
 # enable all radiobuttons
 self.dlg3.dock.hospitalAdd.setCheckable(True)
 self.dlg3.dock.hospitalMove.setCheckable(True)
 self.dlg3.dock.hospitalRemove.setCheckable(True)
 self.dlg3.dock.hospitalToggle.setCheckable(True)
 self.dlg3.dock.territoryAdd.setCheckable(True)
 self.dlg3.dock.territoryMove.setCheckable(True)
 self.dlg3.dock.territoryRemove.setCheckable(True)
 self.dlg3.dock.roadsToggle.setCheckable(True)

 self.iface.actionPan().trigger()

 # uncheck all radiobuttons
 self.dlg3.dock.hospitalAdd.setChecked(False)
 self.dlg3.dock.hospitalMove.setChecked(False)
 self.dlg3.dock.hospitalRemove.setChecked(False)
 self.dlg3.dock.hospitalToggle.setChecked(False)
 self.dlg3.dock.territoryAdd.setChecked(False)
 self.dlg3.dock.territoryMove.setChecked(False)
 self.dlg3.dock.territoryRemove.setChecked(False)
 self.dlg3.dock.roadsToggle.setChecked(False)
 self.message('You can not (re)move existing hospitals! You can only do this with field
hospitals.', 10)
 else:
 self.modified = True

 def onHospitalDeleted(self, featureId):
 #self.message(str(featureId))
 new_hospital_names = []
 for f in self.hospitalLayer.getFeatures():
 new_hospital_names.append(f['id'])
 feature_name = set(self.hospitalNames) - set(new_hospital_names)
 feature_name = next(iter(feature_name), None)
 if not feature_name:
 self.modified = True
 self.message('bijzonder geval, crash? deleted')
 return
 if not feature_name.isdigit():
 self.hospitalLayer.rollBack()
 self.editing = False
 self.saveButtonPressed = True
 self.radioButtonClicked = False
 # enable all radiobuttons
 self.dlg3.dock.hospitalAdd.setCheckable(True)
 self.dlg3.dock.hospitalMove.setCheckable(True)
 self.dlg3.dock.hospitalRemove.setCheckable(True)
 self.dlg3.dock.hospitalToggle.setCheckable(True)
 self.dlg3.dock.territoryAdd.setCheckable(True)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

74

 self.dlg3.dock.territoryMove.setCheckable(True)
 self.dlg3.dock.territoryRemove.setCheckable(True)
 self.dlg3.dock.roadsToggle.setCheckable(True)

 self.iface.actionPan().trigger()

 # uncheck all radiobuttons
 self.dlg3.dock.hospitalAdd.setChecked(False)
 self.dlg3.dock.hospitalMove.setChecked(False)
 self.dlg3.dock.hospitalRemove.setChecked(False)
 self.dlg3.dock.hospitalToggle.setChecked(False)
 self.dlg3.dock.territoryAdd.setChecked(False)
 self.dlg3.dock.territoryMove.setChecked(False)
 self.dlg3.dock.territoryRemove.setChecked(False)
 self.dlg3.dock.roadsToggle.setChecked(False)
 self.message('You can not (re)move existing hospitals! You can only do this with field
hospitals.', 10)
 else:
 self.modified = True

 def setAddHospital(self):
 if self.radioButtonClicked == False:
 self.modified = False
 self.editing = False
 self.radioButtonChecked(self.dlg3.dock.hospitalAdd)
 self.layer = self.hospitalLayer
 self.iface.setActiveLayer(self.layer)
 self.setEditMode()
 self.addPoint = AddPointTool(self.iface.mapCanvas(), self.layer, self.onModified)
 self.iface.mapCanvas().setMapTool(self.addPoint)

 def setMoveHospital(self):
 if self.radioButtonClicked == False:
 self.modified = False
 self.editing = False
 self.radioButtonChecked(self.dlg3.dock.hospitalMove)
 self.layer = self.hospitalLayer
 self.iface.setActiveLayer(self.layer)
 self.setEditMode()
 self.moveTool = self.iface.actionVertexToolActiveLayer().trigger()
 #self.iface.actionVertexToolActiveLayer().trigger()

 def setRemoveHospital(self):
 if self.radioButtonClicked == False:
 self.modified = False
 self.editing = False
 self.radioButtonChecked(self.dlg3.dock.hospitalRemove)
 self.layer = self.hospitalLayer
 self.iface.setActiveLayer(self.layer)
 self.hospitalNames = []
 for f in self.layer.getFeatures():
 self.hospitalNames.append(f['id'])
 self.setEditMode()
 self.deletePoint = DeletePointTool(self.iface.mapCanvas(), self.layer, self.onModified)
 self.iface.mapCanvas().setMapTool(self.deletePoint)

 def setAddTerritory(self):
 if self.radioButtonClicked == False:
 self.modified = False

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

75

 self.editing = False
 self.radioButtonChecked(self.dlg3.dock.territoryAdd)
 self.layer = self.dangerLayer
 self.iface.setActiveLayer(self.layer)
 self.setEditMode()
 self.addTool = self.iface.actionAddFeature().trigger()

 def setMoveTerritory(self):
 if self.radioButtonClicked == False:
 self.modified = False
 self.editing = False
 self.radioButtonChecked(self.dlg3.dock.territoryMove)
 self.layer = self.dangerLayer
 self.iface.setActiveLayer(self.layer)
 self.setEditMode()
 self.moveTool = self.iface.actionVertexToolActiveLayer().trigger()

 def setRemoveTerritory(self):
 if self.radioButtonClicked == False:
 self.modified = False
 self.editing = False
 self.radioButtonChecked(self.dlg3.dock.territoryRemove)
 self.layer = self.dangerLayer
 self.iface.setActiveLayer(self.layer)
 self.setEditMode()
 self.deletePoint = DeletePointTool(self.iface.mapCanvas(), self.layer, self.onModified)
 self.iface.mapCanvas().setMapTool(self.deletePoint)

 def saveButtonClicked(self):
 if self.saveButtonPressed == False:
 self.saveButtonPressed = True
 self.radioButtonClicked = False
 # enable all radiobuttons
 self.dlg3.dock.hospitalAdd.setCheckable(True)
 self.dlg3.dock.hospitalMove.setCheckable(True)
 self.dlg3.dock.hospitalRemove.setCheckable(True)
 self.dlg3.dock.hospitalToggle.setCheckable(True)
 self.dlg3.dock.territoryAdd.setCheckable(True)
 self.dlg3.dock.territoryMove.setCheckable(True)
 self.dlg3.dock.territoryRemove.setCheckable(True)
 self.dlg3.dock.roadsToggle.setCheckable(True)

 self.setEditMode()
 self.iface.actionPan().trigger()

 # uncheck all radiobuttons
 self.dlg3.dock.hospitalAdd.setChecked(False)
 self.dlg3.dock.hospitalMove.setChecked(False)
 self.dlg3.dock.hospitalRemove.setChecked(False)
 self.dlg3.dock.hospitalToggle.setChecked(False)
 self.dlg3.dock.territoryAdd.setChecked(False)
 self.dlg3.dock.territoryMove.setChecked(False)
 self.dlg3.dock.territoryRemove.setChecked(False)
 self.dlg3.dock.roadsToggle.setChecked(False)

 def radioButtonChecked(self, checkedbutton):
 self.radioButtonClicked = True
 self.saveButtonPressed = False
 # disable all radiobuttons
 self.dlg3.dock.hospitalAdd.setCheckable(False)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

76

 self.dlg3.dock.hospitalMove.setCheckable(False)
 self.dlg3.dock.hospitalRemove.setCheckable(False)
 self.dlg3.dock.hospitalToggle.setCheckable(False)
 self.dlg3.dock.territoryAdd.setCheckable(False)
 self.dlg3.dock.territoryMove.setCheckable(False)
 self.dlg3.dock.territoryRemove.setCheckable(False)
 self.dlg3.dock.roadsToggle.setCheckable(False)
 checkedbutton.setCheckable(True)
 checkedbutton.setChecked(True)

 def setToggleRoad(self):
 if self.radioButtonClicked == False:
 self.modified = False
 self.editing = False
 self.radioButtonChecked(self.dlg3.dock.roadsToggle)
 self.layer = self.roadsLayer
 self.iface.setActiveLayer(self.layer)
 self.setEditMode()
 #self.layer.startEditing()
 self.toggleRoad = ToggleTool(self.iface.mapCanvas(), self.layer, self.onRoadModified)
 self.iface.mapCanvas().setMapTool(self.toggleRoad)

 def setToggleHospital(self):
 if self.radioButtonClicked == False:
 self.modified = False
 self.editing = False
 self.radioButtonChecked(self.dlg3.dock.hospitalToggle)
 self.layer = self.hospitalLayer
 self.iface.setActiveLayer(self.layer)
 self.setEditMode()
 #self.layer.startEditing()
 self.toggleHospital = ToggleTool(self.iface.mapCanvas(), self.layer, self.onModified)
 self.iface.mapCanvas().setMapTool(self.toggleHospital)

 #go from dlg to dlg2
 def nextStep1(self):
 self.dlg.dock.close()
 self.dlg2.iface.addDockWidget(Qt.RightDockWidgetArea, self.dlg2.dock)

 #go from dlg2 to dlg
 def backStep1(self):
 self.dlg2.dock.close()
 self.dlg.iface.addDockWidget(Qt.RightDockWidgetArea, self.dlg.dock)

 #go from dlg2 to dlg3
 def nextStep2(self):
 self.dlg2.dock.close()
 self.dlg3.iface.addDockWidget(Qt.RightDockWidgetArea, self.dlg3.dock)
 self.load_layers()

 #go from dlg3 to dlg2
 def backStep2(self):
 if self.radioButtonClicked:
 reply = QMessageBox.question(QMessageBox(), "Warning", "Please press the 'Save/Undo'
button before adding/replacing data", QMessageBox.Ok, QMessageBox.Ok)
 if reply == QMessageBox.Ok:
 return
 else:
 return

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

77

 self.dlg3.dock.close()
 self.dlg2.iface.addDockWidget(Qt.RightDockWidgetArea, self.dlg2.dock)

 def quitdlg(self):
 reply = QMessageBox.question(QMessageBox(), "Confirm", "Do you really want to quit the Field
Hospital Planner?\nYou will lose any loaded layers", QMessageBox.Yes | QMessageBox.No,
QMessageBox.Yes)
 if reply == QMessageBox.Yes:
 self.dlg.dock.close()
 QgsProject.instance().clear()
 else:
 return

 def quitdlg2(self):
 reply = QMessageBox.question(QMessageBox(), "Confirm", "Do you really want to quit the Field
Hospital Planner?\nYou will lose any loaded layers", QMessageBox.Yes | QMessageBox.No,
QMessageBox.Yes)
 if reply == QMessageBox.Yes:
 self.dlg2.dock.close()
 QgsProject.instance().clear()
 else:
 return

 def quitdlg3(self):
 reply = QMessageBox.question(QMessageBox(), "Confirm", "Do you really want to quit the Field
Hospital Planner?\nYou will lose any loaded layers", QMessageBox.Yes | QMessageBox.No,
QMessageBox.Yes)
 if reply == QMessageBox.Yes:
 self.dlg3.dock.close()
 QgsProject.instance().clear()
 else:
 return

 def message(self, text, duration=3):
 self.iface.messageBar().pushMessage(text, duration=duration)

 def tempStep(self):
 """ adds danger_id = 1 to those population features that are covered by danger """
 import processing
 filename = self.own_dir + '/temp_population' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = { 'DISCARD_NONMATCHING' : False,
 'INPUT' : self.populationLayer,
 'JOIN' : self.dangerLayer,
 'JOIN_FIELDS' : [],
 'METHOD' : 0,
 'OUTPUT' : filename,
 'PREDICATE' : [0],
 'PREFIX' : 'danger_' }

 processing.run('qgis:joinattributesbylocation', parameters)

 def progdialog(self, progress):

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

78

 dialog = QProgressDialog()
 dialog.setWindowTitle("Progress")
 dialog.setLabelText("please wait")
 dialog.setWindowFlags(Qt.WindowStaysOnTopHint)
 bar = QProgressBar(dialog)
 bar.setTextVisible(True)
 bar.setValue(progress)
 dialog.setBar(bar)
 dialog.setMinimumWidth(300)
 dialog.show()
 return dialog, bar

 #go from dlg3 to dlg4
 def nextStep3(self):
 # check if edits are saved
 if self.radioButtonClicked:
 reply = QMessageBox.question(QMessageBox(), "Warning", "Please press the 'Save/Undo'
button before updating the table", QMessageBox.Ok, QMessageBox.Ok)
 if reply == QMessageBox.Ok:
 return
 else:
 return

 dialog, bar = self.progdialog(0)
 bar.setValue(0)
 bar.setMaximum(100)
 if self.dangerChanged or self.roadsChanged or self.step3count == 0:
 self.dangerLocations()
 self.tempPopulationLayer = QgsVectorLayer(self.own_dir + '/temp_population' +
str(self.step3count) + '.shp', "Temp population", "ogr")
 query = QgsExpression('"danger_id"=\'%s\'' % '1')
 request = QgsFeatureRequest(query)
 request.setSubsetOfAttributes([])
 request.setFlags(QgsFeatureRequest.NoGeometry)
 self.tempPopulationLayer.startEditing()
 for f in self.tempPopulationLayer.getFeatures(request):
 self.tempPopulationLayer.deleteFeature(f.id())
 self.tempPopulationLayer.commitChanges()

 self.tempRoadsLayer = QgsVectorLayer(self.own_dir + '/temp_roads' + str(self.step3count) +
'.shp', "Temp roads", "ogr")
 query = QgsExpression('"danger_id"=\'%s\'' % '1')
 request = QgsFeatureRequest(query)
 request.setSubsetOfAttributes([])
 request.setFlags(QgsFeatureRequest.NoGeometry)
 self.tempRoadsLayer.startEditing()
 for f in self.tempRoadsLayer.getFeatures(request):
 self.tempRoadsLayer.deleteFeature(f.id())
 self.tempRoadsLayer.commitChanges()

 self.tempHospitalLayer2 = QgsVectorLayer("Point?crs=epsg:32638", "Temp hospitals",
"memory")
 query = QgsExpression('"active"=\'%s\'' % 'y')
 request = QgsFeatureRequest(query)
 features = self.hospitalLayer.getFeatures(request)
 self.tempHospitalLayer2.dataProvider().addAttributes(self.hospitalLayer.fields())
 self.tempHospitalLayer2.dataProvider().addFeatures(features)
 self.tempHospitalLayer2.updateFields()

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

79

 self.voronoi()
 self.voronoiLayer = QgsVectorLayer(self.own_dir + '/voronoi' + str(self.step3count) + '.shp',
"Voronoi", "ogr")
 #QgsProject.instance().addMapLayer(self.voronoiLayer)

 self.centroids()
 self.popCentroidsLayer = QgsVectorLayer(self.own_dir + '/pop_centroids' + str(self.step3count)
+ '.shp', "Pop_centroids", "ogr")
QgsProject.instance().addMapLayer(self.popCentroidsLayer)

 self.population_distance()
 self.popCentroidsLayer = QgsVectorLayer(self.own_dir + '/population_nearest' +
str(self.step3count) + '.shp', "Pop_centroids", "ogr")

 self.count_population()
 self.popVoronoiLayer = QgsVectorLayer(self.own_dir + '/pop_voronoi' + str(self.step3count) +
'.shp', "Pop_voronoi", "ogr")
QgsProject.instance().addMapLayer(self.popVoronoiLayer)

 bar.setValue(5)

 self.clip()
 self.trimmedVoronoiLayer = QgsVectorLayer(self.own_dir + '/pop_voronoi_trimmed' +
str(self.step3count) + '.shp', "Pop_voronoi_trimmed", "ogr")
 #QgsProject.instance().addMapLayer(self.trimmedVoronoiLayer)

 self.area()
 try:
 QgsProject.instance().removeMapLayers([self.areaVoronoiLayer.id()])
 except:
 pass
 self.areaVoronoiLayer = QgsVectorLayer(self.own_dir + '/pop_voronoi_area' +
str(self.step3count) + '.shp', "Pop_voronoi_area", "ogr")
 self.areaVoronoiLayer.loadNamedStyle(self.own_dir + '/symbols/service_area_symbol.qml')
 QgsProject.instance().addMapLayer(self.areaVoronoiLayer)

QgsProject.instance().layerTreeRoot().findLayer(self.areaVoronoiLayer.id()).setItemVisibilityChecked(
False)

 self.danger_distance()
 #QgsProject.instance().removeMapLayers([self.hospitalLayer.id()])

 self.hospitalDangerLayer = QgsVectorLayer(self.own_dir + '/danger_nearest' +
str(self.step3count) + '.shp', "Hospitals", "ogr")
 #QgsProject.instance().addMapLayer(self.hospitalLayer)

 self.water_distance()
 #QgsProject.instance().removeMapLayers([self.hospitalLayer.id()])
 self.hospitalWaterLayer = QgsVectorLayer(self.own_dir + '/water_nearest' + str(self.step3count)
+ '.shp', "Hospitals", "ogr")
 #QgsProject.instance().addMapLayer(self.hospitalLayer)

 self.buffer()
 self.hospitalBuffer = QgsVectorLayer(self.own_dir + '/hospital_centrality_buffer' +
str(self.step3count) + '.shp', "Hospital buffer", "ogr")

 #check for inactive roads
 #road_values = []

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

80

 #for feature in self.roadsLayer.getFeatures():
 # activity = feature['active']
 # road_values.append(activity)
 #QgsMessageLog.logMessage(activity, tag="debug")
 # if there are inactive roads, make templayer with active ones only
 #if 'n' in road_values:
 self.roadsToggled = True
 query = QgsExpression('"active"=\'%s\'' % 'n')
 request = QgsFeatureRequest(query)
 request.setSubsetOfAttributes([])
 request.setFlags(QgsFeatureRequest.NoGeometry)
 self.tempRoadsLayer.startEditing()
 for f in self.tempRoadsLayer.getFeatures(request):
 self.tempRoadsLayer.deleteFeature(f.id())
 self.tempRoadsLayer.commitChanges()

 #QgsProject.instance().addMapLayer(self.tempRoadsLayer)
 bar.setValue(10)
 if self.roadsChanged or self.dangerChanged or self.step3count == 0:
 if not self.roadsChanged and not self.dangerChanged:
 #self.message(self.roadsChanged+self.dangerChanged)
 self.centralityLayer = QgsVectorLayer(self.own_dir + '/centrality_points' +
str(self.step3count) + '.shp', "Centrality points", "ogr")
 else:
 #self.message(self.roadsChanged+self.dangerChanged)
 self.centrality()
 self.centralityLayer = QgsVectorLayer(self.own_dir + '/centrality_points' +
str(self.step3count) + '.shp', "Centrality points", "ogr")

 # normalize centrality indicators
 degree_list = []
 between_list = []
 for feature in self.centralityLayer.getFeatures():
 degree = feature['degree']
 between = feature['betw']
 degree_list.append(degree)
 between_list.append(between)
 degree_min = min(degree_list)
 degree_max = max(degree_list)
 between_min = min(between_list)
 between_max = max(between_list)
 #QgsMessageLog.logMessage(str(between_min), tag="debug")
 #QgsMessageLog.logMessage(str(between_max), tag="debug")
 new_between_list = []
 for i in between_list:
 p = (i-between_min)/(between_max-between_min)*100
 new_between_list.append(p)
 new_degree_list = []
 for i in degree_list:
 p = (i-degree_min)/(degree_max-degree_min)*100
 new_degree_list.append(p)
 #QgsMessageLog.logMessage(str(between_min), tag="debug")
 #QgsMessageLog.logMessage(str(between_max), tag="debug")

 self.centralityLayer.startEditing()
 for f, between, degree in zip(self.centralityLayer.getFeatures(), new_between_list,
new_degree_list):
 fieldIndex1 = f.fieldNameIndex('betw')
 self.centralityLayer.changeAttributeValue(f.id(), fieldIndex1, between)
 fieldIndex2 = f.fieldNameIndex('degree')

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

81

 self.centralityLayer.changeAttributeValue(f.id(), fieldIndex2, degree)
 self.centralityLayer.commitChanges()

 self.average_centrality()
 self.averageCentralityLayer = QgsVectorLayer(self.own_dir + '/average_centrality' +
str(self.step3count) + '.shp', "Centrality points", "ogr")
 #gsProject.instance().addMapLayer(self.averageCentralityLayer)
 self.join()
 self.manyIndicatorsLayer = QgsVectorLayer(self.own_dir + '/danger_pop_dist_area' +
str(self.step3count) + '.shp', "Many indicators", "ogr")

 """ table update """
 self.hospitalAmount = self.tempHospitalLayer2.featureCount()
 self.dlg3.dock.tableWidget.setRowCount(self.hospitalAmount)

 id_values = []
 danger_values = []
 water_values = []
 pop_values = []
 popdist_values = []
 area_values = []
 degree_values = []
 between_values = []
 for feature in self.averageCentralityLayer.getFeatures():
 degree = feature['degree_mea']
 between = feature['betw_mean']
 try:
 degree = round(degree, 2)
 between = round(between, 2)
 except:
 degree = 0
 between = 0
 degree_values.append(degree)
 between_values.append(between)

 for feature in self.manyIndicatorsLayer.getFeatures():
 danger = feature["dngr_dist"]
 danger = float(danger)
 danger = round(danger/1000, 1)
 danger_values.append(danger)

 population = feature["TotPop_sum"]
 popdist = feature["Host_Pop_m"]
 population = int(population)
 popdist = round(popdist/1000, 1)
 pop_values.append(population)
 popdist_values.append(popdist)

 fid = feature["id"]
 id_values.append(fid)

 area = feature["area"]
 # m2 to km2
 area = int(area/1000000)
 area_values.append(area)

 #for feature in self.tempHospitalLayer2.getFeatures():

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

82

 for feature in self.hospitalWaterLayer.getFeatures():
 water = feature["water_dist"]
 water = float(water)
 water = round(water/1000, 1)
 water_values.append(water)

for feature in self.areaVoronoiLayer.getFeatures():
population = feature["TotPop_sum"]
popdist = feature["Host_Pop_m"]
population = int(population)
popdist = round(popdist/1000, 1)
pop_values.append(population)
popdist_values.append(popdist)

fid = feature["id"]
id_values.append(fid)

area = feature["area"]
m2 to km2
area = int(area/1000000)
area_values.append(area)

for feature in self.areaVoronoiLayer.getFeatures():
area = feature["area"]
m2 to km2
area = int(area/1000000)
area_values.append(area)

 id_values = map(str, id_values)
 danger_values = map(str, danger_values)
 water_values = map(str, water_values)
 pop_values = map(str, pop_values)
 area_values = map(str, area_values)
 degree_values = map(str, degree_values)
 between_values = map(str, between_values)
 popdist_values = map(str, popdist_values)

 for hospital, value in enumerate(id_values):
 cellItem = QTableWidgetItem()
 cellItem.setText(value)
 cellItem.setFlags(Qt.ItemIsEnabled)
 cellItem.setTextAlignment(Qt.AlignCenter)
 cellItem.setFont(QFont('Times', weight = QFont.Bold))
 self.dlg3.dock.tableWidget.setItem(hospital,0,cellItem)

 for hospital, value in enumerate(danger_values):
 cellItem = QTableWidgetItem()
 cellItem.setText(value)
 cellItem.setFlags(Qt.ItemIsEnabled)
 cellItem.setTextAlignment(Qt.AlignCenter)
 self.dlg3.dock.tableWidget.setItem(hospital,3,cellItem)

 for hospital, value in enumerate(water_values):
 cellItem = QTableWidgetItem()
 cellItem.setText(value)
 cellItem.setFlags(Qt.ItemIsEnabled)
 cellItem.setTextAlignment(Qt.AlignCenter)
 self.dlg3.dock.tableWidget.setItem(hospital,4,cellItem)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

83

 for hospital, value in enumerate(pop_values):
 cellItem = QTableWidgetItem()
 cellItem.setText(value)
 cellItem.setFlags(Qt.ItemIsEnabled)
 cellItem.setTextAlignment(Qt.AlignCenter)
 self.dlg3.dock.tableWidget.setItem(hospital,1,cellItem)

 for hospital, value in enumerate(area_values):
 cellItem = QTableWidgetItem()
 cellItem.setText(value)
 cellItem.setFlags(Qt.ItemIsEnabled)
 cellItem.setTextAlignment(Qt.AlignCenter)
 self.dlg3.dock.tableWidget.setItem(hospital,5,cellItem)

 for hospital, value in enumerate(popdist_values):
 cellItem = QTableWidgetItem()
 cellItem.setText(value)
 cellItem.setFlags(Qt.ItemIsEnabled)
 cellItem.setTextAlignment(Qt.AlignCenter)
 self.dlg3.dock.tableWidget.setItem(hospital,2,cellItem)

 for hospital, value in enumerate(degree_values):
 cellItem = QTableWidgetItem()
 cellItem.setText(value)
 cellItem.setFlags(Qt.ItemIsEnabled)
 cellItem.setTextAlignment(Qt.AlignCenter)
 self.dlg3.dock.tableWidget.setItem(hospital,7,cellItem)

 for hospital, value in enumerate(between_values):
 cellItem = QTableWidgetItem()
 cellItem.setText(value)
 cellItem.setFlags(Qt.ItemIsEnabled)
 cellItem.setTextAlignment(Qt.AlignCenter)
 self.dlg3.dock.tableWidget.setItem(hospital,6,cellItem)

 # add row to bottom of table with sums
 rowcount = self.dlg3.dock.tableWidget.rowCount()
 self.dlg3.dock.tableWidget.insertRow(rowcount)
 columncount = self.dlg3.dock.tableWidget.columnCount()
 for column in range(columncount):
 if column == 0:
 continue
 values_in_column = []
 for row in range(rowcount):
 try:
 value = self.dlg3.dock.tableWidget.item(row, column).text()
 if 5 < column < 8:
 self.dlg3.dock.tableWidget.item(row, column).setText(value+'%')
 if 1 < column < 5:
 self.dlg3.dock.tableWidget.item(row, column).setText(value+' km')
 if column == 5:
 self.dlg3.dock.tableWidget.item(row, column).setText(value+' km\u00b2')

 except:
 pass
 #QgsMessageLog.logMessage(str(value), tag="debug")
 values_in_column.append(value)
 values_in_column = map(float, values_in_column)
 column_sum = sum(values_in_column)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

84

 column_average = float(round((column_sum / rowcount), 2))
 # self.iface.messageBar().pushMessage(str(column_sum), duration=3)
 item = QTableWidgetItem(str(int(column_average)))
 if 5 < column < 8:
 item = QTableWidgetItem(str(column_average)+'%')
 if 1 < column < 5:
 item = QTableWidgetItem(str(column_average)+' km')
 if column == 5:
 item = QTableWidgetItem(str(int(column_average))+' km\u00b2')

 item.setTextAlignment(Qt.AlignCenter)
 item.setFlags(Qt.ItemIsEnabled)
 self.dlg3.dock.tableWidget.setItem(rowcount , column, item)
 cellItem = QTableWidgetItem('Average')
 cellItem.setFont(QFont('Times', weight = QFont.Bold))
 cellItem.setTextAlignment(Qt.AlignCenter)
 self.dlg3.dock.tableWidget.setItem(rowcount , 0, cellItem)

 self.dlg3.dock.tableWidget.resizeColumnsToContents()
 self.dlg3.dock.tableWidget.verticalHeader().setVisible(False)

""" hospital styling """
self.hospitalLayer.loadNamedStyle(self.own_dir + '/symbols/hospital_symbols.qml')
self.hospitalLayer.loadNamedStyle(self.own_dir + '/symbols/hospital_label.qml')

""" reconnect hospital signals """
self.hospitalLayer.geometryChanged.connect(self.onHospitalModified)
self.hospitalLayer.featureDeleted.connect(self.onHospitalDeleted)

 # set custom render order of layers
 bridge = self.iface.layerTreeCanvasBridge().rootGroup()
 order = [self.hospitalLayer.id(), self.dangerLayer.id(), self.roadsLayer.id(), self.waterLayer.id(),
self.populationLayer.id(), self.areaVoronoiLayer.id()]
 bridge.setHasCustomLayerOrder(True)
 bridge.setCustomLayerOrderByIds(order)
 self.iface.mapCanvas().refresh()

 bar.setValue(100)
 self.step3count += 1
 self.roadsChanged = False
 self.dangerChanged = False

 def danger_distance(self):
 """ Calculates distance to nearest 'to'feature from each 'from' feature.
 Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they did
not yet exist """
 import processing
 filename = self.own_dir + '/danger_nearest' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = {'GRASS_MIN_AREA_PARAMETER' : 0.0001,
 'GRASS_OUTPUT_TYPE_PARAMETER' : 0,
 'GRASS_REGION_PARAMETER' : None,
 'GRASS_SNAP_TOLERANCE_PARAMETER' : -1,
 'GRASS_VECTOR_DSCO' : '',
 'GRASS_VECTOR_EXPORT_NOCAT' : False,
 'GRASS_VECTOR_LCO' : '',

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

85

 'column' : ['dngr_dist'],
 'dmax' : -1,
 'dmin' : -1,
 'from' : self.tempHospitalLayer2,
 'from_output' : filename,
 'from_type' : [0,1,3],
 'output' : 'TEMPORARY_OUTPUT',
 'to' : self.dangerLayer,
 'to_column' : None,
 'to_type' : [0,1,3],
 'upload' : [1] }

 processing.run('grass7:v.distance', parameters)

 def water_distance(self):
 """ Calculates distance to nearest 'to'feature from each 'from' feature.
 Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they did
not yet exist """
 import processing
 filename = self.own_dir + '/water_nearest' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = {'GRASS_MIN_AREA_PARAMETER' : 0.0001,
 'GRASS_OUTPUT_TYPE_PARAMETER' : 0,
 'GRASS_REGION_PARAMETER' : None,
 'GRASS_SNAP_TOLERANCE_PARAMETER' : -1,
 'GRASS_VECTOR_DSCO' : '',
 'GRASS_VECTOR_EXPORT_NOCAT' : False,
 'GRASS_VECTOR_LCO' : '',
 'column' : ['water_dist'],
 'dmax' : -1,
 'dmin' : -1,
 'from' : self.tempHospitalLayer2,
 'from_output' : filename,
 'from_type' : [0,1,3],
 'output' : 'TEMPORARY_OUTPUT',
 'to' : self.waterLayer,
 'to_column' : None,
 'to_type' : [0,1,3],
 'upload' : [1] }

 processing.run('grass7:v.distance', parameters)

 def voronoi(self):
 #""" Calculates distance to nearest 'to'feature from each 'from' feature.
 #Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they
did not yet exist """
 import processing
 filename = self.own_dir + '/voronoi' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = {'-a' : False,
 '-l' : False,

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

86

 '-s' : False,
 '-t' : False,
 'GRASS_MIN_AREA_PARAMETER' : 0.0001,
 'GRASS_OUTPUT_TYPE_PARAMETER' : 0,
 'GRASS_REGION_PARAMETER' : self.tempPopulationLayer,
 'GRASS_SNAP_TOLERANCE_PARAMETER' : -1,
 'GRASS_VECTOR_DSCO' : '',
 'GRASS_VECTOR_EXPORT_NOCAT' : False,
 'GRASS_VECTOR_LCO' : '',
 'input' : self.tempHospitalLayer2,
 'output' : filename,
 'smoothness' : 0.25,
 'thin' : -1 }

 processing.run('grass7:v.voronoi', parameters)

 def dangerLocations(self):
 """ adds danger_id = 1 to those population features that are covered by danger """
 import processing
 #see what population is covered by danger
 filename = self.own_dir + '/temp_population' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = { 'DISCARD_NONMATCHING' : False,
 'INPUT' : self.populationLayer,
 'JOIN' : self.dangerLayer,
 'JOIN_FIELDS' : [],
 'METHOD' : 0,
 'OUTPUT' : filename,
 'PREDICATE' : [0],
 'PREFIX' : 'danger_' }

 processing.run('qgis:joinattributesbylocation', parameters)

 # see which roads are covered by danger
 filename = self.own_dir + '/temp_roads' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = { 'DISCARD_NONMATCHING' : False,
 'INPUT' : self.roadsLayer,
 'JOIN' : self.dangerLayer,
 'JOIN_FIELDS' : [],
 'METHOD' : 0,
 'OUTPUT' : filename,
 'PREDICATE' : [0],
 'PREFIX' : 'danger_' }

 processing.run('qgis:joinattributesbylocation', parameters)

 def centroids(self):
 """ only works once while running qgis, causes error the second time """
 import processing
 filename = self.own_dir + '/pop_centroids' + str(self.step3count) + '.shp'
 try:

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

87

 os.remove(filename)
 except OSError:
 pass

 parameters = { 'ALL_PARTS' : False,
 'INPUT' : self.tempPopulationLayer,
 'OUTPUT' : filename }

 processing.run('native:centroids', parameters)

 def population_distance(self):
 """ Calculates distance to nearest 'to'feature from each 'from' feature.
 Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they did
not yet exist """
 import processing
 filename = self.own_dir + '/population_nearest' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = {'GRASS_MIN_AREA_PARAMETER' : 0.0001,
 'GRASS_OUTPUT_TYPE_PARAMETER' : 0,
 'GRASS_REGION_PARAMETER' : None,
 'GRASS_SNAP_TOLERANCE_PARAMETER' : -1,
 'GRASS_VECTOR_DSCO' : '',
 'GRASS_VECTOR_EXPORT_NOCAT' : False,
 'GRASS_VECTOR_LCO' : '',
 'column' : ['Host_Pop'],
 'dmax' : -1,
 'dmin' : -1,
 'from' : self.popCentroidsLayer,
 'from_output' : filename,
 'from_type' : [0,1,3],
 'output' : 'TEMPORARY_OUTPUT',
 'to' : self.waterLayer,
 'to_column' : None,
 'to_type' : [0,1,3],
 'upload' : [1] }

 processing.run('grass7:v.distance', parameters)

 def count_population(self):
 #""" Calculates distance to nearest 'to'feature from each 'from' feature.
 #Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they
did not yet exist """
 import processing
 filename = self.own_dir + '/pop_voronoi' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = {'DISCARD_NONMATCHING' : False,
 'INPUT' : self.voronoiLayer,
 'JOIN' : self.popCentroidsLayer,
 'JOIN_FIELDS' : ['TotPop', 'Host_Pop'],
 'OUTPUT' : filename,
 'PREDICATE' : [0],

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

88

 'SUMMARIES' : [5, 6] }
 processing.run('qgis:joinbylocationsummary', parameters)

 def clip(self):
 #""" Calculates distance to nearest 'to'feature from each 'from' feature.
 #Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they
did not yet exist """
 import processing
 filename = self.own_dir + '/pop_voronoi_trimmed' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = {'INPUT' : self.popVoronoiLayer,
 'OUTPUT' : filename,
 'OVERLAY' : self.tempPopulationLayer }

 processing.run('native:clip', parameters)

 def area(self):
 #""" Calculates distance to nearest 'to'feature from each 'from' feature.
 #Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they
did not yet exist """
 import processing
 filename = self.own_dir + '/pop_voronoi_area' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = { 'CALC_METHOD' : 2,
 'INPUT' : self.trimmedVoronoiLayer,
 'OUTPUT' : filename }

 processing.run('qgis:exportaddgeometrycolumns', parameters)

 def centrality(self):
 #""" Calculates distance to nearest 'to'feature from each 'from' feature.
 #Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they
did not yet exist """
 import processing
 filename = self.own_dir + '/centrality_points' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 roads = self.tempRoadsLayer

 parameters = { '-a' : True,
 '-g' : False,
 'GRASS_MIN_AREA_PARAMETER' : 0.0001,
 'GRASS_OUTPUT_TYPE_PARAMETER' : 0,
 'GRASS_REGION_PARAMETER' : None,
 'GRASS_SNAP_TOLERANCE_PARAMETER' : -1,
 'GRASS_VECTOR_DSCO' : '',

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

89

 'GRASS_VECTOR_EXPORT_NOCAT' : False,
 'GRASS_VECTOR_LCO' : '',
 'arc_backward_column' : None,
 'arc_column' : None,
 'betweenness' : 'betw',
 'cats' : '',
 'closeness' : '',
 'degree' : 'degree',
 'eigenvector' : '',
 'error' : 0.1,
 'input' : roads,
 'iterations' : 1000,
 'node_column' : None,
 'output' : filename,
 'points' : self.tempHospitalLayer2,
 'threshold' : 50,
 'where' : '' }

 processing.run('grass7:v.net.centrality', parameters)

 def buffer(self):
 #""" Calculates distance to nearest 'to'feature from each 'from' feature.
 #Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they
did not yet exist """
 import processing
 filename = self.own_dir + '/hospital_centrality_buffer' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = { 'DISSOLVE' : False,
 'DISTANCE' : 200,
 'END_CAP_STYLE' : 0,
 'INPUT' : self.tempHospitalLayer2,
 'JOIN_STYLE' : 0,
 'MITER_LIMIT' : 2,
 'OUTPUT' : filename,
 'SEGMENTS' : 5 }

 processing.run('native:buffer', parameters)

 def average_centrality(self):
 #""" Calculates distance to nearest 'to'feature from each 'from' feature.
 #Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they
did not yet exist """
 import processing
 filename = self.own_dir + '/average_centrality' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = {'DISCARD_NONMATCHING' : False,
 'INPUT' : self.hospitalBuffer,
 'JOIN' : self.centralityLayer,
 'JOIN_FIELDS' : ['degree', 'betw'],

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

90

 'OUTPUT' : filename,
 'PREDICATE' : [0],
 'SUMMARIES' : [6] }
 processing.run('qgis:joinbylocationsummary', parameters)

 def join(self):
 #""" Calculates distance to nearest 'to'feature from each 'from' feature.
 #Creates duplicate layer and adds distance to a defined field and adds fid and cat fields if they
did not yet exist """
 import processing
 filename = self.own_dir + '/danger_pop_dist_area' + str(self.step3count) + '.shp'
 try:
 os.remove(filename)
 except OSError:
 pass

 parameters = { 'DISCARD_NONMATCHING' : False,
 'FIELD' : 'id',
 'FIELDS_TO_COPY' : ['TotPop_sum','Host_Pop_m','area'],
 'FIELD_2' : 'id',
 'INPUT' : self.hospitalDangerLayer,
 'INPUT_2' : self.areaVoronoiLayer,
 'METHOD' : 1,
 'OUTPUT' : filename,
 'PREFIX' : '' }
 processing.run('native:joinattributestable', parameters)

 def toggleLegend(self):
 if self.legend.isVisible():
 self.legend.close()
 self.message('The legend is now hidden', 5)
 self.dlg3.dock.areaButton.setChecked(False)
 else:
 self.legend.show()
 self.message('The legend is now active', 5)
 self.dlg3.dock.areaButton.setChecked(True)

 def togglePopulation(self):
 if
QgsProject.instance().layerTreeRoot().findLayer(self.populationLayer.id()).itemVisibilityChecked():

QgsProject.instance().layerTreeRoot().findLayer(self.populationLayer.id()).setItemVisibilityChecked(F
alse)
 self.message('Population intensity is now hidden', 5)
 else:

QgsProject.instance().layerTreeRoot().findLayer(self.populationLayer.id()).setItemVisibilityChecked(Tr
ue)
 self.message('Population intensity is now shown in green', 5)

 def togglePopulationArea(self):
 if not self.areaVoronoiLayer:
 self.dlg3.dock.areaButton.setChecked(False)
 reply = QMessageBox.question(QMessageBox(), "Warning", "The hospital service area is
available once the table has been updated", QMessageBox.Ok, QMessageBox.Ok)
 if reply == QMessageBox.Ok:
 return
 else:
 return
 return

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

91

 if
QgsProject.instance().layerTreeRoot().findLayer(self.areaVoronoiLayer.id()).itemVisibilityChecked():

QgsProject.instance().layerTreeRoot().findLayer(self.areaVoronoiLayer.id()).setItemVisibilityChecked(
False)
 self.message('Hospital service area is now hidden', 5)
 else:

QgsProject.instance().layerTreeRoot().findLayer(self.areaVoronoiLayer.id()).setItemVisibilityChecked(
True)
 self.message('Hospital service area is now shown in different colors', 5)

 def zoomToFull(self):
 self.iface.mapCanvas().setExtent(self.populationLayer.extent())
 self.iface.mapCanvas().refresh()

 # not yet working video play
inputVideo = self.own_dir+'/video.wmv'
self.player = QMediaPlayer(None, QMediaPlayer.VideoSurface)
self.player.setMedia(QMediaContent(QUrl.fromLocalFile(inputVideo)))
video_widget = QVideoWidget()

self.player.setVideoOutput(video_widget)
video_widget.show()
self.player.setPosition(0)
self.player.play()

 def helpdlg2 (self):
 if self.dlg2.dock.help.isChecked():
 self.dlg2.dock.helptekst.setText("You can press the '...' buttons to select the data
corresponding to the above map objects. Data has been selected if its path is being shown in the
white box. Pressing 'Proceed' will load those map objects which have a valid path in their white box. If
you already have data loaded, only those map objects which have a path name in their white box will
be reloaded. This will replace the current loaded map object.")
 else:
 self.dlg2.dock.helptekst.clear()

 def helpdlg3 (self):
 self.dlghelp.iface.addDockWidget(Qt.BottomDockWidgetArea, self.dlghelp.dock)
 pixmap =
QPixmap(r'C:\Users\Minou\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins\save_attrib
utes\symbols\legend.png')
 #label = QLabel()
 #label.setPixmap(pixmap)
 #label = Qlabel(self.dlghelp.dock)
 self.dlghelp.dock.image.setPixmap(pixmap)

 def run(self):
 """Run method that performs all the real work"""

 # Create the dialog with elements (after translation) and keep reference
 # Only create GUI ONCE in callback, so that it will only load when the plugin is started
 if self.first_start == True:
 self.first_start = False
 self.dlg = WelcomeDialog(self.iface)
 self.dlg2 = SelectLayersDialog(self.iface)
 self.dlg3 = AdjustLayersDialog(self.iface)
 self.dlghelp = HelpDialog(self.iface)
 self.legend = Legend()
 #self.dlg4 = SaveAttributesDialog4()

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

92

 #self.dlg.pushButton.clicked.connect(self.select_output_file)
 #self.dlg.pushButton_2.clicked.connect(self.select_input_file)
 #self.dlg.aboutButton.clicked.connect(self.danger_distance)
 #self.dlg.aboutButton.clicked.connect(self.iface.actionVertexToolActiveLayer().trigger)
 #self.dlg.loadButton.clicked.connect(self.load_layers)
 #self.dlg.indicatorRefresh.clicked.connect(self.refresh_indicator)
 self.dlg.dock.proceed.clicked.connect(self.nextStep1)
 self.dlg3.dock.cancel.clicked.connect(self.quitdlg)
 self.dlg2.dock.goBack.clicked.connect(self.backStep1)
 self.dlg2.dock.proceed.clicked.connect(self.nextStep2)
 self.dlg2.dock.cancel.clicked.connect(self.quitdlg2)
 self.dlg2.dock.help.clicked.connect(self.helpdlg2)
 self.dlg3.dock.proceed.clicked.connect(self.nextStep3)
 self.dlg3.dock.goBack.clicked.connect(self.backStep2)
 self.dlg3.dock.cancel.clicked.connect(self.quitdlg3)
 self.dlg3.dock.help.clicked.connect(self.helpdlg3)

 self.dlg2.dock.select_fieldhospitals.clicked.connect(self.select_fieldhospitals_file)
 self.dlg2.dock.select_hospitals.clicked.connect(self.select_hospitals_file)
 self.dlg2.dock.select_roads.clicked.connect(self.select_roads_file)
 self.dlg2.dock.select_water.clicked.connect(self.select_water_file)
 self.dlg2.dock.select_danger.clicked.connect(self.select_danger_file)
 self.dlg2.dock.select_population.clicked.connect(self.select_population_file)

 self.dlg3.dock.legendButton.setChecked(True)
 self.dlg3.dock.goBack.clicked.connect(self.backStep2)
 #self.dlg3.dock.hospitalNone.setChecked(True)
 #self.dlg3.roadsNone.toggled.connect(self.iface.actionPan().trigger())

 #self.dlg3.dock.roadsNone.clicked.connect(self.setNoneRoad)
 self.dlg3.dock.roadsToggle.clicked.connect(self.setToggleRoad)
 self.dlg3.dock.hospitalToggle.clicked.connect(self.setToggleHospital)
 #self.dlg3.dock.hospitalNone.clicked.connect(self.setNoneHospital)
 self.dlg3.dock.hospitalAdd.clicked.connect(self.setAddHospital)
 self.dlg3.dock.hospitalMove.clicked.connect(self.setMoveHospital)
 self.dlg3.dock.hospitalRemove.clicked.connect(self.setRemoveHospital)
 #self.dlg3.dock.territoryNone.clicked.connect(self.setNoneTerritory)
 self.dlg3.dock.territoryRemove.clicked.connect(self.setRemoveTerritory)
 self.dlg3.dock.territoryAdd.clicked.connect(self.setAddTerritory)
 self.dlg3.dock.territoryMove.clicked.connect(self.setMoveTerritory)
 self.dlg3.dock.saveButton.clicked.connect(self.saveButtonClicked)
 self.dlg3.dock.popButton.clicked.connect(self.togglePopulation)
 self.dlg3.dock.areaButton.clicked.connect(self.togglePopulationArea)
 self.dlg3.dock.zoomButton.clicked.connect(self.zoomToFull)
 self.dlg3.dock.legendButton.clicked.connect(self.toggleLegend)

 #self.dlg3.territoryNone.toggled.connect()
 #self.dlg3.hospitalRemove.toggled.connect(self.setDeletePoint)

 # Fetch the currently loaded layers
 #layers = QgsProject.instance().layerTreeRoot().children()
 # Clear the contents of the comboBox from previous runs
 #self.dlg.comboBox.clear()
 # Populate the comboBox with names of all the loaded layers
 #self.dlg.comboBox.addItems([layer.name() for layer in layers])

 # show the dialog

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

93

 # Run the dialog event loop
 #result = self.dlg.exec_()
 # See if OK was pressed

if result:
Do something useful here - delete the line containing pass and
substitute with your code.
filename = self.dlg.lineEdit.text()
with open(filename, 'w') as output_file:
selectedLayerIndex = self.dlg.comboBox.currentIndex()
selectedLayer = layers[selectedLayerIndex].layer()
fieldnames = [field.name() for field in selectedLayer.fields()]
write header
line = ','.join(name for name in fieldnames) + '\n'
output_file.write(line)
wirte feature attributes
for f in selectedLayer.getFeatures():
line = ','.join(str(f[name]) for name in fieldnames) + '\n'
output_file.write(line)
self.iface.messageBar().pushMessage(
"Success", "Output file written at " + filename,
level=Qgis.Success, duration=3)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

94

Appendix D: SDSS Adjustment Tools Python Script

-*- coding: utf-8 -*-
"""
Created on Mon Jun 17 17:34:24 2019

@author: Thijs
"""
from qgis.core import *
from qgis.gui import *
from PyQt5.QtGui import *
from PyQt5.QtCore import *

#class MapToolMixin:
def setLayer(self, layer):
self.layer = layer

def transformCoordinates(self, screenPt):
return (self.toMapCoordinates(screenPt), self.toLayerCoordinates(self.layer, screenPt))

def calcTolerance(self, pos):
pt1 = QPoint(pos.x(), pos.y())
pt2 = QPoint(pos.x() + 10, pos.y())
mapPt1,layerPt1 = self.transformCoordinates(pt1)
mapPt2,layerPt2 = self.transformCoordinates(pt2)
tolerance = layerPt2.x() - layerPt1.x()
return tolerance

class AddPointTool(QgsMapTool):
 def __init__(self, canvas, layer, onPointAdded):
 QgsMapTool.__init__(self, canvas)
 self.canvas = canvas
 self.setCursor(Qt.CrossCursor)
 self.layer = layer
 self.onPointAdded = onPointAdded
 active_index = self.layer.fields().indexFromName('active')
 self.layer.setDefaultValueDefinition(active_index, QgsDefaultValue('y'))

 def canvasReleaseEvent(self, event):
 ids = []
 for feature in self.layer.getFeatures():
 fid = feature['id']
 ids.append(fid)
 for num in ids:
 QgsMessageLog.logMessage(str(num)+'1', tag="debug")
 try:
 ids = [num for num in ids if num.isdigit()]
 except:
 ids = [num for num in ids if type(num) == int]
 if type(ids) == list:
 ids = list(map(int, ids))
 for num in ids:
 QgsMessageLog.logMessage(str(num)+'2', tag="debug")
 else:
 ids = int(ids)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

95

 QgsMessageLog.logMessage(str(ids)+'3', tag="debug")

 try:
 self.new_id = str(max(ids) + 1)
 except:
 self.new_id = str(1)

 self.point = self.toLayerCoordinates(self.layer, event.pos())
 self.feature = QgsFeature(self.layer.fields())
 self.feature.setGeometry(QgsGeometry.fromPointXY(self.point))
 attrs = [None] * len(self.layer.fields())
 idx1 = self.layer.fields().indexFromName("id")
 idx2 = self.layer.fields().indexFromName("active")
 attrs[idx1] = self.new_id
 attrs[idx2] = 'y'
 self.feature.setAttributes(attrs)
 self.layer.addFeature(self.feature)
 self.layer.updateExtents()
 self.layer.updateFields()
 self.layer.triggerRepaint()
 self.canvas.refresh()

 self.onPointAdded()

class MovePointTool(QgsMapToolIdentify):
 def __init__(self, mapCanvas, layer, onPointMoved):
 QgsMapToolIdentify.__init__(self, mapCanvas)
 self.setCursor(Qt.CrossCursor)
 self.dragging = False
 self.feature = None
 self.layer = layer
 self.onPointMoved = onPointMoved

 def canvasPressEvent(self, event):
 found_features = self.identify(event.x(), event.y(), [self.layer], self.TopDownAll)
 if len(found_features) > 0:
 self.dragging = True
 self.feature = found_features[0].mFeature

 else:
 self.dragging = False
 self.feature = None

 def canvasMoveEvent(self, event):
 #self.iface.messageBar().pushMessage(str(self.dragging), duration=3)
 if self.dragging:
 point = self.toLayerCoordinates(self.layer, event.pos())
 geometry = QgsGeometry.fromPointXY(point)
 self.layer.changeGeometry(self.feature.id(), geometry)
 self.canvas().refresh()

 def canvasReleaseEvent(self, event):
 self.dragging = False
 self.feature = None
 self.onPointMoved()

class DeletePointTool(QgsMapToolIdentify):

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

96

 def __init__(self, mapCanvas, layer, onPointDeleted):
 QgsMapToolIdentify.__init__(self, mapCanvas)
 self.setCursor(Qt.CrossCursor)
 self.feature = None
 self.layer = layer
 self.onPointDeleted = onPointDeleted

 def canvasPressEvent(self, event):
 found_features = self.identify(event.x(), event.y(), mode = self.ActiveLayer)
 if len(found_features) > 0:
 self.feature = found_features[0].mFeature
 self.layer.deleteFeatures([self.feature.id()])
 self.layer.triggerRepaint()
 self.canvas().refresh()
 self.onPointDeleted()

 else:
 self.feature = None

 def canvasReleaseEvent(self, event):
found_features = self.identify(event.x(), event.y(), [self.layer], self.TopDownAll)
if len(found_features) > 0:
#if self.feature.id() == found_features[0].mFeature.id():
self.layer.dataProvider().deleteFeatures([self.feature.id()])

 pass
 #self.canvas().refresh()

#class ToggleRoadTool(QgsMapToolEmitPoint):
def __init__(self, canvas):
self.canvas = canvas
QgsMapToolEmitPoint.__init__(self, self.canvas)

def canvasPressEvent(self, e):
point = self.toMapCoordinates(self.canvas.mouseLastXY())
print '({:.4f}, {:.4f})'.format(point[0], point[1])

class ToggleTool(QgsMapToolIdentify):
 def __init__(self, mapCanvas, layer, onToggled):
 QgsMapToolIdentify.__init__(self, mapCanvas)
 self.setCursor(Qt.CrossCursor)
 self.feature = None
 self.layer = layer
 self.onToggled = onToggled

 def canvasPressEvent(self, event):
 found_features = self.identify(event.x(), event.y(), mode = self.ActiveLayer)

 if len(found_features) > 0:
 self.feature = found_features[0].mFeature
 fieldIndex = self.feature.fieldNameIndex('active')
 activity = self.feature.attributes()[fieldIndex]

 if activity == 'y':
 self.layer.changeAttributeValue(self.feature.id(), fieldIndex, 'n')
 else:

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

97

 self.layer.changeAttributeValue(self.feature.id(), fieldIndex, 'y')
 self.canvas().refresh()
 self.onToggled()

 else:
 self.feature = None

 def canvasReleaseEvent(self, event):
found_features = self.identify(event.x(), event.y(), [self.layer], self.TopDownAll)
if len(found_features) > 0:
#if self.feature.id() == found_features[0].mFeature.id():
self.layer.dataProvider().deleteFeatures([self.feature.id()])
 #self.onPointDeleted()
 pass
 #self.canvas().refresh()

#class DeleteTrackTool(QgsMapTool, MapToolMixin):
def __init__(self, canvas, layer, onTrackDeleted):
QgsMapTool.__init__(self, canvas)
self.onTrackDeleted = onTrackDeleted
self.feature = None
self.setLayer(layer)
self.setCursor(Qt.CrossCursor)

def canvasPressEvent(self, event):
self.feature = self.findFeatureAt(event.pos())

def canvasReleaseEvent(self, event):
feature = self.findFeatureAt(event.pos())
if feature != None and feature.id() == self.feature.id():
self.layer.deleteFeature(self.feature.id())
self.onTrackDeleted()

#Then, back in the forestTrails.py module, add the following to the end of the
#setupMapTools() method:
self.deleteTrackTool = DeleteTrackTool(
self.mapCanvas, self.trackLayer, self.onTrackDeleted)
self.deleteTrackTool.setAction(self.actionDeleteTrack)
#Then replace the dummy deleteTrack() method with the following:
def deleteTrack(self):
if self.actionDeleteTrack.isChecked():
self.mapCanvas.setMapTool(self.deleteTrackTool)
else:
self.setPanMode()
#Finally, add a new onTrackDeleted() method to respond when the user deletes
#a track:
def onTrackDeleted(self):
self.modified = True
self.mapCanvas.refresh()
self.actionDeleteTrack.setChecked(False)
self.setPanMode()

#class SelectVertexTool(QgsMapTool, MapToolMixin):
def __init__(self, canvas, trackLayer, onVertexSelected):
QgsMapTool.__init__(self, canvas)
self.onVertexSelected = onVertexSelected
self.setLayer(trackLayer)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

98

self.setCursor(Qt.CrossCursor)

def canvasReleaseEvent(self, event):
feature = self.findFeatureAt(event.pos())
if feature != None:
vertex = self.findVertexAt(feature, event.pos())
if vertex != None:
self.onVertexSelected(feature, vertex)

Final thesis report ‘Interactively Planning Resilient and Connected Field Hospital Locations in a Conflict Area’, by T. van der Caaij, 22-08-19

99

Appendix E: Unimplemented SDSS Feedback

Intuitiveness Performance Reasonability Usability Stability Completeness Guidance
 Auto-update

would be
nice if it was
computed
near-
immediate.

Difficulty
with adding
danger.

Visualize
hospitals by
serving
population size

Add
readability
points in big
numbers

 Move and
add
functions
could be
combined.

Non-
responding
when
computing

Provide an
overall score
by weights

 Toggle
which
indicators
have to be
showed

 Add road
accessibility
visualization
toggle

Visualize
results as
well

Map refresh at
every move
unnecessary

 Pop up
save/undo
dialog at
switch tool
attempt

Zoom by
pinching not
working
after a long
press

 Could be
even more
clear if it
was more
structured

Zooming
while
pinching
would make
more sense
instead of
after taking
the fingers off
the screen

Update roads
takes a bit
long, but you
that probably
only once at
the beginning
of a session.

Served
population is
quite
simplified, but
an indication
nonetheless.

Streets or
districts
should be
referenced

Average
distance to
hospital in
served area
does not
make sense
in one area

Zoom in/out
buttons.

Make
guidance
fully
optional, so
you get new
map space
once you do
not need
guidance
anymore

Map centers
to point on
the map that
is pressed.
Should be
disabled
because
people will
accidently
touch the
map.

Different
options for
hospital service
area
calculation.
From fast to
accurate.

 Toggles do
toggle, but
do not
register
whether the
toggle
object is
active or not

Instead of
action toggling,
a menu with
possible
actions when
pressing the
map

Create a
help tool
which gives
information
about the
pressed
interface
element

Danger move
not intuitive,
need to be
able to move
the polygon
as a whole.

 Apply
connectivity
and
resilience to
roads
instead of
junctions

Warning for
invalid
danger
geometry
not working.

Undo 1 step
button

Stress that
SDSS is just
a support,
not
necessarily
reality.

Would be
nice to have
a toggle for
whether
screen is
touchable

 Ability to toggle
auto table
update

Visual demo
/ tutorial

Add cancel to
save/undo
button

 Toggle
connectivity
and resilience
map

	1 INTRODUCTION
	1.1 Research Context
	1.2 Research Objectives
	1.2.1 General objective
	1.2.2 Sub-objectives

	1.3 Research limitations
	1.4 Research Framework
	1.5 Research Guide

	2 THEORETICAL FRAMEWORK
	2.1 Spatial Decision Support System (SDSS)
	2.1.1 Components
	2.1.2 GIS and Database Management Systems
	2.1.3 Stakeholder Management
	2.1.4 Dialog Management
	2.1.5 Knowledge Management
	2.1.6 Architecture

	2.2 Model Management for Performance Indicators
	2.2.1 Connectivity
	2.2.2 Resiliency
	2.2.3 Dedication of Population

	3 METHODOLOGY
	3.1 Case Study Area
	3.2 Performance Indicators in Model Component
	3.2.1 Static Indicators
	3.2.2 Dynamic Indicators

	3.3 Data
	3.4 Stakeholder Requirements
	3.5 SDSS-Architecture
	3.6 Soft- and hardware
	3.7 Dialog Component
	3.8 Knowledge Component
	3.9 SDSS Testing

	4 DESIGN AND IMPLEMENTATION OF THE SDSS
	4.1 Initial SDSS Design
	4.2 First SDSS Implementation (pre-test)
	4.2.1 Tool Development
	4.2.2 Performance Indicator Calculation
	4.2.3 Interface Design and Control
	4.2.4 Pre-test

	4.3 Second SDSS Implementation (first test)
	4.4 Third SDSS Implementation (second test)

	5 TESTING OF THE SDSS
	5.1 Test Design
	5.1.1 Test Set-up
	5.1.2 Stakeholder Profiles and Instructions
	5.1.3 Test Script
	5.1.4 Selection of Test Persons

	5.2 Testing Outcomes
	5.2.1 Test 1
	5.2.2 Test 2

	5.3 Discussion

	6 CONCLUSION AND RECOMMENDATION
	6.1 Conclusion
	6.2 Limitations and Recommendations for Future Research

	REFERENCES
	Appendix A: Testing Instructions (Stakeholder Profiles)
	Appendix B: Testing Script
	Appendix C: Main SDSS Python Script
	Appendix D: SDSS Adjustment Tools Python Script
	Appendix E: Unimplemented SDSS Feedback

