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Abstract

As artificial intelligence is becoming more influential, it has become desirable
to incorporate formal accounts of responsibility in techniques relying on AI.
Finding a relation between stit logic and causal models would therefore be a
great development, since both systems can be used for defining different parts
of responsibility. Causal models are a great tool for modelling the causation part
of responsibility while stit logic can be used for modelling parts of responsibility
that causal models cannot effectively represent. Few people have, however,
studied the relation between causal models and stit logic. The primary goal of
this project will be to see whether it is possible to interpret one formalisation
of responsibility in terms of the other.
Causal models use conditional probability distributions and directed graphs to
model causality among variables. They are widely used in many disciplines,
including artificial intelligence and philosophy. Since causality is crucial for the
formalisation of responsibility, causal models can be used for this purpose. Little
work has, however, been done on using causal models to formalise responsibility.
Stit logic is a logic containing the “stit” operator. “Stit” is an acronym for “see
to it that” and the corresponding operator is used to model the effect that an
agent has on a specified variable in the future. This project intends to find out
how stit logic is related to causation by interpreting stit logic in terms of causal
models.
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Chapter 1

Introduction

Due to the rapid development of artificial intelligence, the influence of deci-
sions made by artificial intelligence-based systems is rapidly growing. There are
many situations in which technology using artificial intelligence directly affects
the people it interacts with. Some examples are self-driving cars sharing the
roads with human drivers, trade bots acting on the stock market, and medical
diagnosis software (Broersen 2014; Matthias 2004). Since the actions performed
by these systems affect people, it is desirable to have an account of responsi-
bility that can evaluated who is responsible for actions performed by artificial
intelligence-based machines.
Technology has played a role in our lives for a long time. Consequently, it is not
new that there are situations in which responsibility has to be assigned for an
event that was caused by a machine. As described in (Matthias 2004), often the
owner, operator, or developer of the machine is held accountable for the effects
of actions by performed by the machine. The development of artificial intelli-
gence does, however, present some challenges that make this way of assigning
responsibility inadequate.
The development of artificial intelligence has led to the introduction of au-
tonomous agents. These are software entities that can make autonomous de-
cisions (Segerberg, Meyer, and Kracht 2016). Some of these agents can learn
from their environment, which means that their behaviour is not always in the
control of the developer or owner of the agent. The agent’s behaviour may
change in ways that are unpredictable to its developers as a result of learning.
Responsibility cannot be assigned the way we are used to, since no person can
predict the actions of such an agent (Matthias 2004).
Consequently, due to the fast development of artificial intelligence, a more elab-
orate definition of responsibility is desirable. The goal of this thesis is to define
such a definition in a formal language.
Several attempts have already been made at developing a formal definition of
responsibility (Broersen 2014; Halpern and Kleiman-Weiner 2018; Cholvy, Cup-
pens, and Saurel 1997). Some of these makes use of causal models (Halpern and
Kleiman-Weiner 2018). In (Broersen 2014), it is mentioned that stit models
are also used for the discussion of responsibility. Both these types of models
have very different properties which makes them suitable for a formalisation of
responsibility for different reasons. This thesis will discuss how combining these
models can further the development of a formal account of responsibility. This
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chapter will discuss both types of models. It will also introduce the objective
of the thesis and describe why the different models can be used to achieve this
objective.

1.1 Stit logics

The first types of logic that will be discussed in this thesis is a type of logics
of action. The logic of action is a group of logics that reason over actions in
formal languages (Segerberg, Meyer, and Kracht 2016). The logic of action was
first studied in philosophy, but has been studied in many other fields, including
artificial intelligence. The logic of action is a suitable starting point for a study
of responsibility in the context of artificial intelligence, since a good definition
of responsibility must be able to make formal claims about actions (Cholvy,
Cuppens, and Saurel 1997). A thorough description of logic of action can be
found in (Segerberg, Meyer, and Kracht 2016).
The type of logic of action that we will consider for the development of a theory
of responsibility is called “stit logics”. Stit logics get their name from the
acronym for “seeing to it that”. They provides a way to study actions by means
of formal languages (Segerberg, Meyer, and Kracht 2016).
This logic reasons over models called stit models. These are models with a tree-
like structure of which each branch can be considered a possible flow of time.
Agents can perform actions that determine trough which branch time will flow.
The actual power that the agents have is limited, as is described in (Segerberg,
Meyer, and Kracht 2016). Agents cannot determine precisely what flow of time
will take place. They can, however, rule out certain branches every time they
perform an action. This logic contains operators that can express the effects
of these actions. Besides that, the logics contains temporal operators that are
similar to those used in “regular” temporal logics.
Stit models have the desirable property of having a language that can express
whether an agent has guaranteed some event to happen by performing an action.
This way of expressing whether some outcome was guaranteed by an action of
an agent can be used to built arguments for the accountability of agents.
An elaborate discussion on stit models can be found in (Belnap, Perloff, and Xu
2001) and (Segerberg, Meyer, and Kracht 2016).

1.2 Causal models

In (Halpern and Kleiman-Weiner 2018), it is stated that responsibility is a con-
cept that should be defined based on causality, blameworthiness and intention.
In stit logics, there is no obvious way to express causality. Moreover, there
are no restrictions on whether the valuation of variables in stit models must
respect causal laws. This is one of the reasons that a definition of responsibility
in terms of stit models might feel incomplete to the authors of (Halpern and
Kleiman-Weiner 2018). In this thesis, the discussion of stit models will therefore
be complemented with a discussion of a different type of model that can be used
to express causality. The models that will be used for this purpose are called
causal models.
Causal models describe the causal relations between a set of variables. They are
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described by a set of variables and a set of rules determining the causal relations
between these variables. Usually, these rules are structural equations expressing
the values of variables in terms of the values of other variables. Causal models
have the desirable property that they provide a way to study how the values
of variables affect each other. Causal models are discussed more elaborately in
(Pearl 2000) and (Hitchcock 2018)
One of the most useful features of causal models are interventions. These are
operations on causal models that show what the effects on the values of variables
is when one variable is forced to take on some value. Interventions can be used
to reason over hypothetical situations in the language of causal models. This
is why causal models are suitable for reasoning over counterfactual dependency
(Hitchcock 2018).
Several definitions of actual causation have been proposed that are expressed
in terms of the language of causal models(Halpern and Pearl 2005; Beckers and
Vennekens 2018). Many of these definition are based on the idea of counterfac-
tual dependency. As a result, causal models played a big role in the development
of definitions of actual causation.
The ability to express and reason over actual causation is an advantage of causal
models over stit models. Stit theory is a logic that studies actions, and the valu-
ations of variables in its models does not have to respect any causal laws. Since
causality has been called an important component of responsibility in (Halpern
and Kleiman-Weiner 2018), the causal language can be considered a valuable
addition to stit models for the formulation of responsibility.

1.3 Goals

The objective of this thesis is to contribute to finding a satisfactory formal
definition of responsibility. This will be done by describing a space of stit
models in which each model conveys causal information from a given causal
models. Subsequently, reasoning over actions in these models will be compared
to existing definitions of causality and responsibility.
In this thesis, a transformation will be developed that can be applied to any
causal model and returns stit models with certain desirable properties. This
transformation will be designed such that the causal information conveyed in
the causal model is preserved in the stit model. If the transformation is indeed
designed such that it preserves causal information, studying the stit models
in its image would give insight in how reasoning over causality in stit models
compares to reasoning over causality in causal models. Moreover, building such
a transformation will create models in which the causal effects of actions can be
expressed in the stit language.
Ultimately, the goal of this project is to improve the existing definitions of
responsibility. This would mean that in the self-driving car case, for example, it
would no longer be unclear if the passenger of such a car is responsible for any
harm the car may cause. Moreover, a definition would be expressed solely in
formal language, this would mean that an autonomous agent could reason over
the definition itself.
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1.4 Outline

The first chapters of this thesis will give an introduction to the models that are
discussed with respect to responsibility. Chapter 2 will introduce causal models
and Chapter 3 will introduce stit models. In Chapter 4 a transformation will be
introduced that transforms and combination of a causal model and additional
information into a stit model. This transformation will be denoted by λ. Chap-
ter 4 will conclude with a description of the characteristics of models in the
image λ.
Chapter 5 will discuss what the translation of expression in the language of
causal models under transformations λ looks like. An axiomatization of the
class of recursive causal models will be introduced in this chapter. It will be
shown what these axioms say about models in the image of λ. Finally, in Chap-
ter 6, an example scenario will be considered. A few definitions of causation
expressed in terms of the language of causal models will be used to determine
which events caused each other in the example. Subsequently, transformation
λ will be applied to a causal model representing the example. The semantics of
the stit operators will be evaluated over the resulting stit model.



Chapter 2

Causal Models

Causality is an important concept that is related to responsibility. In order
to study causality many formal definitions of causality have been developed.
A lot of these definitions make use of the language of causal models (Beckers
and Vennekens 2018). Moreover, the language of causal models can be used
to express an axiomatization of causal reasoning (Halpern 2000). In order to
properly discuss causation in the remainder of this thesis, the notion of causal
models and there language must therefore first be introduced. This will be the
aim of this chapter.

2.1 Definitions

Each causal model is defined by a set of variables and a set of structural equa-
tions. Causal models can be modified by operations called interventions. These
concepts will be introduced in this chapter. The notation and definitions used
in this chapter are based on the papers (Halpern 2000), (Halpern and Pearl
2005) and (Beckers and Vennekens 2018).
The set of variables of a causal model contains two types of elements. Each
variable is either exogenous or endogenous. The set of exogenous variables of
a causal model will be denoted by U . This set contains all the variables whose
value does not depend on the values of other variables in the model, but instead
depend exclusively on factors outside of the model. A configuration of this set
of variables is called a context and is represented by a vector ~u. The endogenous
variables are variables whose value is affected by the values of other variables.
The set of endogenous variables a causal model is denoted by V.
R is a function that is defined over the set of all the variables of a causal model.
For any variable in U ∪ V, R returns a non empty set of possible values of that
variable. In this thesis it will be assumed that R always returns a finite set. In
this thesis it will be assumed that any variable can take on at least two different
values.
For a vector ~X of variables in U ∪V, R( ~X) denotes the cross product of the sets

of possibles values of variables in ~X.

R( ~X) =×
X∈ ~X

R(X)

7
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A tuple containing a set of endogenous variables, a set of exogenous variables,
and a function R is called a signature.

Definition 2.1.1. A signature S is a tuple (U ,V,R) where U represents a set
of exogenous variables, V represents a set of endogenous variables, and R is the
function returning all possible values of each variable.

Besides a signature, the definition of a causal model also depends on a set
of structural equations, denoted by F . For each variable X ∈ V, F contains an
equation FX . Equation FX expresses the value of X in terms of the values of
the variables in {V ∪ U}\X.
A signature combined with a set of structural equations over that signature
defines a causal model.

Definition 2.1.2. A causal model M is described by a tuple (S,F) of a
signature S and a set of structural equations F .

2.2 Interventions

An intervention is an operation on a causal model that modifies its set of struc-
tural equations. An intervention is denoted by an expression of the form ~X ← ~x,
where ~X is a vector of endogenous variables and ~x a vector in R( ~X). When

intervention ~X ← ~x is applied to a causal model M , the model is transformed

to M ~X←~x.
This causal model has the same variables asM. The set of structural equations

ofM ~X←~x is denoted by F ~X←~x. For every variable Y 6∈ ~X, this set contains the

same structural equation as F . For each variable Xi ∈ ~X, F ~X←~x contains an
equation Xi = xi, where Xi is the ith variables in ~X and xi is the ith variable
in ~x

Definition 2.2.1. An intervention is an operation on a causal model. Inter-

vention ~X ← ~x transforms M = (S,F) into M ~X←~x = (S,F ~X←~x).

Definition 2.2.2. Given a set of structural equations F and an intervention
~X ← ~x, F ~X←~x is the set with one equation F

~X←~x
Y for each variable Y ∈ V.

These equations have the following form:

• ∀Y 6∈ ~X, F
~X←~x
Y = FY

• ∀Xi ∈ ~X, F
~X←~x
Xi

= xi

Interventions can be used to define the notions of independence and recur-
siveness. The following definitions of these concepts are based on the definition
given in (Halpern 2000).

Definition 2.2.3. Variable X is independent of variable Y if given some
context ~u, the value of X remains the same when the value of Y is changed to
any of its possible values.

In other words, X is independent of Y if the value of X remains the same
under any intervention ~Y ← ~y.
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Definition 2.2.4. A causal modelM is recursive if there exists a strict total
order ≺ of the variables in V such that if X ≺ Y , then Y is independent of the
value of X.

Recursive causal models can be thought of as having an acyclic structure.
One important property of recursive models is that given a context, there is
always a unique solution to the set of structural equations of a recursive causal
model. In the remainder of this discussion all causal models are assumed to be
recursive.

2.3 Parent Sets and Timing

Given a causal model M, it is possible to define for each variable in V what
other variables directly affect its value. A variable directly affecting the value of
a variable V is called a parent of V . The set of all parents of a variable is called
the parent-set of that variable. For any endogenous variable V , pa(V ) denotes
the parent-set V .

Definition 2.3.1. Variable Y is a parent of variable X if there exists a con-
figuration of V\{X,Y } such that after setting all these variables to this config-
uration, a change in the value of Y can still cause a change in the value of X
trough equation Fx.

Definition 2.3.2. For any variable V ∈ V, the parent-set pa(V ) denotes the
set containing all variables that are parents of V .

Note that in a total order ≺ of a recursive causal model, as specified in
definition 2.2.4, a variable is always ranked lower than all the variables in its
parent set.
Based on an order as mentioned in definition 2.2.4, variables can be assigned
a value, called a timing, that carries temporal information. The definition and
use of the timing here are based on the definition of timing in (Beckers and
Vennekens 2018).
A timing τ assigns a natural number between 0 and some maximum value k
to each endogenous variable of M. Intuitively, for any variable V ∈ V, τ(V )
denotes the point in time at which V obtains its value. In order for τ to provide
useful temporal information, it must meet some restrictions. If it meets these
restriction, it is said to be a valid timing.

Definition 2.3.3. A valid timing of a causal model M is a function τ : V →
[1, k] for some k ≤ |V| that assigns a natural number between 1 and k to each
variable in V of M and has the following properties;

• τ is surjective

• τ assigns values such that ∀vi,∀vj , vi ∈ pa(vj)→ τ(vi) ≤ τ(vj)

By Definition 2.2.4, a valid timing always exists for a recursive causal model.
Given a recursive causal model M, there is a total order such that ∀X,Y ∈
V,X ≺ Y if Y is independent of X. Consider the function that assigns integers
to variables in the order specified by ≺. This function is a valid timing.
The inverse projection function τ−1 is the function that takes any natural num-
ber n in the range of τ and returns the variables in V that have n as their
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timing value. If the function τ is a valid timing, then its inverse projection is a
function.

τ−1(x) = {V | τ(V ) = x}

2.4 Semantics

The semantics of causal models will be evaluated over language LM with respect
to a causal modelM = (S,F) and context ~u. A part of LM is the set of primitive
events which contains formulas of the form X = x where X is any variable in
V and x is in R(X). LM contains elements of the form [~Y ← ~y]X = x. In such

a formula of LM, ~Y ← ~y represents an intervention and X = x represents a
primitive event. The vectors ~Y and ~y may be empty vectors. This is the case
when non-intervened on models are considered. The complete language LM
contains the following elements:

φ ::= [~Y ← ~y]X = x | φ ∧ φ | ¬φ

This language contains the same elements as the language Luniq that is de-
scribed in (Halpern 2000). This language will be used later in this thesis to
formalize different definitions of causality. Halpern shows that this language is
as expressive as the more elaborate language L+ (Halpern 2000). In addition

to the elements in Luniq, L+ contains elements of the form [~Y ← ~y]φ where φ
can be any Boolean combination of primitive events.
The semantics of LM are determined by the following rules.

(M, ~u) |= X = x ⇔ x is the value of X in the unique solution of F given ~u

(M, ~u) |= [~Y ← ~y]X = x ⇔ (M~Y←~y, ~u) |= X = x

(M, ~u) |= ¬φ ⇔ (M, ~u) 6|= φ
(M, ~u) |= φ ∧ ψ ⇔ (M, ~u) |= φ and (M, ~u) |= ψ
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Stit Logics

Stit logics are logics that can be used to reasoning over accountability for out-
comes. Stit logics contain so called stit operators. The name of these operators
is an acronym for ‘seeing to it that’. This acronym first appeared in 1957 in
a paper by Kanger (Belnap, Perloff, and Xu 2001). Over the course of time,
different stit operators have been proposed. All operators express a version of
the idea that an agent has seen to an outcome if it has ruled out all possible
worlds in which that outcome is not true.
This chapter will introduce the model used in stit logics and subsequently intro-
duce some commonly used stit operators. Most of the definitions in this chapter
will be based on the book (Belnap, Perloff, and Xu 2001).

3.1 Structure

A stit model is characterised by a structure and a valuation function. This
chapter will introduce all concepts that are needed to properly define both a
structure and a valuation function.
The most important component of a stit structure is its set of moments, denoted
by Moments. Besides Moments, the description of a structure also includes
a relation ≤ over Moments. This relation must define a tree structure over
the elements in Moments. ≤ defined a tree over Moments if the following two
conditions are met. The first is that ≤ must be a partial order over Moments.
A partial order is a relation that is reflexive, antisymmetric, and transitive.
The second condition is that for any element in Moments, the set of elements
preceding that element must be a well ordered set (Moerdijk and Oosten 2018).
Let T = 〈Moments,≤〉 be the tree defined by the elements in Moments and the
relation ≤. Given a tree T , the set Histories can be defined. Each element of
this set represents a set of moments that is maximal linearly ordered according
to ≤.

Definition 3.1.1. A history is a maximal linearly ordered subset of Moments

Histories contains all such possible histories. For any moment m, H(m)
will denote the set of all histories contain moment m. Formally, this can be
described as

H(m) = {h ∈ Histories | m ∈ h}

11
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Instant is a partition of Moments whose equivalence classes contain moments
that are at equal depth of the tree T . Two moments are at the same depth
of tree T if the same number of moments separates them from the root of T .
Each equivalence class of Instant is called an instant. The instant containing
moment m is denoted by i(m).
The set Agents specifies which agents act on the stit model. This thesis will
mostly consider single-agent models. In such models, Agents has one element.
Finally, the definition of the set Choice is needed to complete the definition of
the structure. Choice is a set containing one partition of H(m) per agent in
Agents, for each moment m. The partition of H(m) for agent α is denoted
by Choiceαm. Given such a partition, two moments are said to be Choiceαm-
equivalent if they lie on histories that are in the same equivalence class of
Choiceαm. The equivalence class of Choiceαm that contains history h is denoted
by Choiceαm(h). Formally, Choice is described in the following way:

Choice = {Choiceαm | m ∈Moments, α ∈ Agents}

In a single-agent model, the partition of H(m) for the sole agent is simply
denoted by Choicem. In a single-agent model, the set Choice is defined in the
following way:

Choice = {Choicem | m ∈Moments}

The sets that have been defined contain enough information to fully define a
stit structure.

Definition 3.1.2. A stit structure is a tuple 〈Moments,≤, Instant,Agent, Choice〉
where Moments and ≤ define a tree, Histories and Instant are both parti-
tions of Moments and Choice is a function that maps elements in Moment to
partitions of Histories.

3.2 Model

A stit model is defined by a structure, extended with a language and a valuation
function.
The language of stit models is based on a set of atomic variables. Let A be such
a set. The valuation function of a stit model maps each atomic variables to a
set moment-history pairs. A moment-history pair is a tuple of a moment and a
history containing that moment.

Definition 3.2.1. A stit model is a tuple 〈S, J〉 of a stit structure and a
valuation function.

The language of stit models is called LG and contains the following elements:

φ ::= ψ | ¬φ | φ ∧ φ | [Was : φ] | [Will : φ] | [Sett : φ]

| [ d stit: φ] | [ c stit: φ]

Where ψ is an atomic variable. The stit operators in this language are written
without reference to an agent. This thesis will mostly consider single-agent stit
models. The operators can easily be expanded to include reference to agents in
case this is needed for a multi-agent model.
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3.3 Semantics

The semantics of a stit model are determined in the following way. Let ψ ∈ A.
Then;

if ψ ∈ A, then G,m/h |= ψ ⇔ m/h ∈ J(ψ)
G,m/h |= ¬φ ⇔ G,m/h 6|= φ
G,m/h |= φ ∧ χ ⇔ G,m/h |= φ and G,m/h |= χ
G,m/h |= [Was : φ] ⇔ there is a moment m′ such that

m′ < m and G,m′/h |= φ
G,m/h |= [Will : φ] ⇔ there is a moment m′ ∈ h such

that m > m′ and G,m′/h |= φ
G,m/h |= [Sett : φ] ⇔ for all h′ ∈ H(m), G,m/h′ |= φ

The semantics of formulas of the form ψ ∈ A, ¬φ, and φ∧χ are fairly intuitive.
The Was operator acts like a regular temporal operator. [Was : φ] holds at
m/h if there is some moment m′ ranked lower than m such that in m′/h phi
was true. As a result of the branching structure of SM, any moment m′ ranked
lower than m must be on history h. The Will operator is the forward-looking
equivalent of the Was operator. [Will : φ] holds at m/h if there is some moment
m′ on h that is ranked higher than m such that in m′/h φ is true. The dual
of this operator will be introduced and used in Section 5.1. The Sett operator
expresses settledness. A formula φ is settled in a moment-history pair m/h if φ
holds at all moment-history pairs with moment m. This is sometimes referred
to as historical necessity.
There are different kinds of stit semantics that have their own stit operators.
This thesis will focus on the Chellas stit semantics and the Deliberative stit
semantics. The stit operators of these semantics will now be discussed.

3.3.1 Chellas Stit

The operator [c stit :], is called the Chellas operator and it has the following
definition: G,m/h |= [ c stit: φ] is true if and only if G,m/h′ |= φ for each h′ ∈
Choicem(h). This definition is based on Broersen, Herzig, and Troquard 2006.
Intuitively, the Chellas semantics say that an agent has seen to it that some
formula φ is true if it chooses a choice cell in m such that φ holds in all moment
history pair with moment m and a history in the chosen choice cell. When this
is the case, φ is guaranteed to be true after the agent chooses that cell. Therefor,
it is intuitive to say that by making that choice, the agent has seen to it that φ
holds.

3.3.2 Deliberative Stit

The [d stit :] operator is called the Deliberative operator. G,m/h |= [ d stit: φ]
is true if and only if the following both hold;

• G,m/h′ |= φ for each h′ ∈ Choicem(h)

• G,m/h 6|= [Sett: φ]

These semantics are based on Belnap, Perloff, and Xu 2001.
The first of these conditions is equal to the condition for Chellas stit. Like in the
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Chellas semantics, in the Deliberative stit semantics the agent has only seen to
something if this was guaranteed by the choice of the agent. The second of these
conditions says that an agent has only seen to φ at a moment-history pair if φ
was not historically necessary at that moment-history pair. This condition can
intuitively be seen as the condition that an agent has not seen to an outcome
if that outcome was guaranteed to happen regardless of the choice made by the
agent.
The rules for Delibrative Stit to hold are more restrictive than the rules for the
Chellas Operator. Consewuenlty, if [d stit :φ holds in some moment-history pair
m/h, so does [c stit :φ]. The following therefore always holds:

[d stit : φ]→ [c stit : φ]

Moreover, as is shown by (Segerberg, Meyer, and Kracht 2016), the following
also always hold:

[d stit : φ]↔ ([c stit : φ] ∧ ¬[Sett : φ])

[c stit : φ]↔ ([d stit : φ] ∨ [Sett : φ])
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Transformation λ

This chapter will introduce a map from recursive causal models to stit models.
This map, called λ, maps any combination of a recursive causal model M, a
context, and a timing of that causal model to a stit model λ(M).

4.1 MomentsM

Assume that a causal modelM and a timing τ are given. Let Iτ be the set that
contains all possible interventions on M that respect the following condition:

~X ← ~x ∈ Iτ ⇔ ∃k ∈ N such that X ∈ ~X ⇔ τ(X) < k

Each moment of the stit structure of stit model λ(M) will represent a tuple
consisting of an element of Iτ and a vector of endogenous variables.

Definition 4.1.1. A moment of stit model λ(M) represent a tuple ( ~X ← ~x, ~V )
of an intervention in Iτ and a vector of variables from V.

The moment representing tuple ( ~X ← ~x, ~V ) is denoted by m[ ~X←~x,~V ].

MomentsM is the set of moments of stit structure SM. This set contains all
moments that are characterized by an intervention that is in Iτ and a vector
containing the variables who intuitively obtain their value after that interven-
tion. Formally, this set can be summarized in the following way:

MomentsM = {m[ ~X←~x,~V ] | ~X ← ~x ∈ Iτ ∧
(
v ∈ ~V ⇔ τ(v) = τmax( ~X) + 1

)
}

4.2 Relation ≤M
The relation ≤M is a relation over the elements of MomentsM.

Definition 4.2.1. ≤M is the relationship such that ifm[ ~X←~x,~V ] andm[ ~X′←~x′,~V ′]
are two elements of the set MomentsM of a stit model λ(M), then:

m[ ~X←~x,~V ] ≤M m[ ~X′←~x′,~V ′] ⇔
(
~X ⊆ ~X ′

)
∧
(
∀Xi ∈ ~X,X ′i ∈ ~X ′, Xi = X ′i ⇒ xi = x′i

)

15
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Intuitively, this means that moment m[ ~X←~x,~V ] is ranked lower then mo-

ment m[ ~X′←~x′,~V ′] if the variables in ~X are in ~X ′ and the interventions of both

moments agree on their value assignments to variables in ~X. When the inter-
ventions characterizing two moments do not agree on the value assignments to
the variables in ~X, these moment are incomparable. Moreover, if two moments
are incomparable, this means that their interventions do not agree on the value
assignment of at least one variable.

4.3 Tree TM

A tree is a partial ordered set with the property each set of elements preceding
some element must be a well ordered set (Moerdijk and Oosten 2018). We will
show that according to this definition, TM = 〈MomentsM,≤M〉 is a tree.

Theorem 1. TM = 〈MomentsM,≤M〉 is a tree

Proof. It will first be shown that ≤M is a partial order over MomentsM. In
order to show this, it must be shown that the relation ≤M over MomentsM is
reflexive, antisymmetric and transitive.
A relation is reflexive over a set if any element of that set is related to itself.
By the definition of set-inclusion, the vector over which the intervention of any
moment ranges is always contained in itself. The intervention of any moment
obviously assigns the same values to each variable as itself. Therefore, any mo-
ment is related to itself and ≤M is reflexive over MomentsM.
A relation is antisymmetric over a set of moments if any two moment that pre-
cede each other are identical. Let us assume that MomentsM contains two
elements m and m′ and these moments precede each other. Then, the vectors
over which their interventions range include in each other. In other words, they
are identical. Since these moments are related, their interventions assign the
same values. Consequently, these moments must be identical and ≤M is anti-
symmetric over MomentsM.
The relation ≤M is transitive over MomentsM if for any three elements m, m′,
and m′′ of MomentsM, m ≤M m′ and m′ ≤M m′′ implies that m ≤M m′′.
Assume that three such moments exist and m ≤M m′ and m′ ≤M m′′. The
vectors over which the interventions of these elements range are included in each
other as determined by ≤M. By the transitivity of set inclusion, the vector of
the intervention of m is included in the vector of the intervention of m′′. More-
over, because both moments are related to m′, they must agree on the value
assignment to the variables in the vector of the intervention of m. Consequently
m and m′′ are related and ≤M is transitive over MomentsM.
It can now be deduced that the relation ≤M is a partial ordering of MomentsM.
The second condition for 〈MomentsM,≤M〉 to be a tree is that any set of mo-
ments preceding some element of MomentsM must be a well ordered set. A set
is well ordered if ≤M is a total order over that set and every subset of that set
has a least element (Moerdijk and Oosten 2018).
Let m[ ~X←~x,~V ] be an arbitrary element in MomentsM and consider the set

Moments′M = {m ∈MomentsM | m ≤ m[ ~X←~x,~V ]}. It will be shown that ≤M
is a well order over Moments′M.
We will first show that ≤M is a total order over this set. A total order is a
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partial order in which all elements are related. Let m′ and m′′ be two moments
in Moments′M. As a result of the definition of Iτ , the vector of the intervention
corresponding to one of the moments m and m′ must be included in the vector
of the intervention corresponding to the other moment. Since both moments
are related to m, they agree on the value assignments of smallest vector among
the vectors of their interventions. Consequently these moments are related.
In order to show that Moments′M is well ordered, it must also be true that each
of its subsets has a least element. Let Moments′′M be a subset of Moments′M.
As a result of the definition Iτ , Moments′′M has finitely many elements. ≤M
is a total order over this set and the least element of Moments′′M is simply the
moment that is ranked lower than all other moments.
Moments′M must therefore be a well ordered set. Consequently, TM = 〈MomentsM,≤M
〉 is a tree.

4.4 Histories

The set HistoriesM contains all branches of TM. By the definition of stit
trees, H(m[ ~X←~x,~V ]) contains all histories containing moment m[ ~X←~x,~V ]. This

can intuitively be thought of as the set containing all branches of T going trough
m[ ~X←~x,~V ].

If h ∈ Histories branch of T , and m[ ~X←~x,∅] is its maximal element, then ~X ← ~x

is called the characterizing intervention of h. The intervention corresponding
to any moment in h is a restriction of the characterizing intervention of h.

4.5 Order and Instants

Based on the definition of the elements in Moments, an integer can be assigned
to each moment based on its depth in tree T . For each moment m, integer
O(m) will denote the order of moment m. The notion of order is not part of
the definition of stit models in (Belnap, Perloff, and Xu 2001). Intuitively the
order of a moment m represents the number of times an agent must intervene
on M before reaching moment m.

Definition 4.5.1. For any m[ ~X←~x,~V ] ∈ Moments, the order of m[ ~X←~x,~V ] is

O(m[ ~X←~x,~V ]) = max({τ(X) | X ∈ ~X}).

As a result of this definition of orders, two moments are in the same instant,
as defined in Section 3.1, if and only if they have the same order.

4.6 Choice

As defined in Section 3.1, a single-agent stit structure must contain a choice
set that contains a partition of H(m) for each element moment m in its stit
structure.
ChoiceM will be the set that contains a partition Choicem[ ~X←~x,~V ]

ofH(m[ ~X←~x,~V ])

for each element m[ ~X←~x,~V ] of MomentsM. In each partition in Choice, all

histories whose characterizing intervention assign the same value to ~V are in
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the same equivalence class. The equivalence class containing histories whose
characterizing interventions assign values ~v to variables ~V will be denoted by

Choice
~Y←~y
m[ ~X←~x,~V ]

where ~Y = ~X ∪ ~V and ~y = ~x ∪ ~v. Any moment on a history

in this class must represent an intervention that assigns the values in ~y to the
variables in ~Y . This is a result of the fact that no intervention can be undone
in a stit model in the images of λ. In this thesis, only causal models will be
considered whose variables can take on at least two values. As a result, all
partitions in ChoiceM of any stit model λ(M) contain at least two equivalence
classes.
As described in Section 3.1, the equivalence class of Choicem[ ~X←~x,~V ]

containing

history h is denoted by Choicem[ ~X←~x,~V ]
(h). When the semantics of λ(M) are

discussed it will become clear that h ∈ Choice
~Y←~y
m[ ~X←~x,~V ]

if and only if ~Y = ~y

holds at m[ ~X←~x,~V ]/h.

It should be noted that according to this definition, ChoiceM contains one par-
tition for each moment. This is enough to define a single-agent stit model. The
model can easily be extended to a multi-agent model by defining one partition
per moment per agent.

4.7 Stit model λ(M)

In the previous sections some sets were discussed that can be defined based on
the information of some causal model M, and and a timing τ . Let AgentM be
the set containing one agent α.

Definition 4.7.1. SM is the stit structure described by 〈MomentsM,≤M
, InstantM, AgentM, ChoiceM〉

SM is the stit structure of stit model λ(M). Given a stit structure SM and
a context ~u of causal model M, it is possible to define stit model λ(M). This
will be done by taking the stit structure SM and adding a language, valuation
function, and semantics to that structure.
The language that will be evaluated with respect to the model λ(M) is LG,
which was introduced in Section 2.4. The set of atomic variables A that is
needed to define the elements of LG will contain primitive events, as defined
in Section 2.4. This set contains elements of the form X = x where X is an
endogenous variable of M and x ∈ R(X) is a possible value of X.
The valuation function of λ(M) maps any primitive event to a set of moment-
history pairs. This function maps each primitive event of the form X = x to all
moment-history pairs that intuitively represent causal models in which X = x
holds. A moment-history pair m/h is said to represent causal model M ~X←~x
if the interventions represented by the choices that the agents had to make to
reach m/h accumulate to ~x← ~x.

Definition 4.7.2. Valuation function JM is a function that maps any primitive
event X = x to moment-history pairs in the following set:

{m/h | h ∈ Choice~Y←~ym and (M~Y←~y, ~u) |= X = x}

Definition 4.7.3. Model λ(M) is defined by tuple 〈SM, JM〉
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The semantics of a stit model λ(M) behave according to the semantics of
stit models defined in Section 3.3. Note that as a result of this definition and
the definition of the valuation function J , the following always holds:

∀~Y ∈ V,∀~y ∈ R(~Y ), (h ∈ Choice~Y←~ym ⇔ λ(M),m/h |= ~Y = ~y)

.

4.8 Properties of models in the image of λ

Transformation λ is not a surjection. This means that there are some stit
models for which there is no combination of a causal model, context and timing
that are mapped to that stit model by λ. All the stit models that are reached
by λ for some combination of a causal model, timing and context share certain
properties. These properties are the result of the fact that λ preserves the causal
information that is in causal models. In this section some of these properties
will be discussed.
Let S be the space of all stit models, and Sλ the subspace of S that contains all
stit models reached by λ. Off course, all models in Sλ share their language and
valuation function, as described in Section 4.7. Moreover, models in Sλ share
structural properties. An important structural feature of models in the image
of λ is that for every agent, moment-history pairs that are in the same instant
have a choice function of the same size. An agent intervenes on variables in
the order of their fixed timing. As a result, the variables that an agent can
intervene on are the same for all moment-history pairs in the same instant.
The size of a choice function is based on the amount of values that can be
assigned to the variables that the agent can intervene on in a moment-history
pair. Consequently, moment-history pairs that are in the same instant have a
choice function of the same size. As a result of this, the structure of models in
Sλ looks symmetrical. A consequence of this feature is that models in Sλ only
represent situations in which the amount of choices available to an agent does
not depend on its previous actions.
Another distinguishing feature of models in Sλ is that in each moment-history
pair of these models, some atomic variable becomes true that will remain true
in the remainder of the history. This is a result of the fact that interventions
cannot be changed back in these models. Every choice made by an agent in such
a model, corresponds to an intervention on at least on variable. This variable
takes on a value as a result of that intervention. This can be expressed in that
form of a primitive event, which are the atomic variables of models in Sλ.
The last feature of models in Sλ that will be discussed in the section is their
valuation function. In general, there are no restrictions to what a valuation
function should look like for a stit model. In stit models in Sλ, primitive events
are true in moment-history pairs based on the valuation of the causal model
represented by that moment history pair. As a result, their value depends
on the context, structural equations, and interventions performed up to the
moment-history pair. This is how the causal information from the causal model
is preserved in the stit model.
An example of a stit model that is not in Sλ is not hard to find. Imagine a
stit model describing the options of a car navigating in traffic. In this example,
when the car leaves its spot it can either go left or right. When the car goes
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left, it reaches a three-way junction. When is goes right it reaches a four-way
junction. Imagine a stit model in which each moment represents an intersection.
The choice function for the agent in each moment has one cell for each road the
agent can enter at the intersection. Let the model have one variable, representing
the location of the car.
There are a few reasons why this model cannot be reached by map λ. Firstly,
the amount of choice cells is not the same in each instant of this model. The
size of the choice partition for each moment depends on previous choices made
by the agent. Moreover, the only variable of this models changes after each
moment-history pair whereas in all models in Sλ after each choice, one variable
takes on a permanent value. This shows that there is no causal model M such
that (M) would represent the situation described above.

4.9 Example

Transformation λ will be illustrated by applying it to an example of a causal
model. The following example is taken from the paper (Halpern and Pearl 2005)
This example concerns a recursive causal model representing the effects of rain
in April and electrical storms in May and June on the occurrence of forest fires
in May and June. This model will be denoted by MF . The variables of MF

are AS, ES, and F . The variable AS represents whether or not there were
showers in April. This variable can take on the values 0 and 1. ES is the
variable representing whether or not there were electrical storms in the months
May and June. ES = (0, 0) and ES = (1, 1) represent situations in which there
were storms in neither and both months respectively. ES = (1, 0) represents
a situation in which there were electrical storms in May only and ES = (0, 1)
represents the situation in which there were electrical storms in June only. The
variable F represent whether and when a forest fire occurs in the forest. F = 0
is true if no fire takes place in the forest. F = 1 and F = 2 are true if there is
a fire in May or June respectively.
The parents of variable F are AS and ES. AS and ES are exogenous variables.
The value of F can be computed from the values of AS and ES. When AS = 0,
a fire takes place in the first months in which there are electrical storms. When
AS = 1, a fire only takes place in June if there are electrical storms in June.
When AS = 1 and there are no electrical storms in June, not fire will take place.

4.9.1 Transformation from MF to λ(MF )

Transformation λ will now be illustrated by describing stit model λ(MF ). Let
~u be the context under which AS and F are set to 0 and ES is set to (0, 0).
Let τ be the timing such that τ(AS) = 1, τ(ES) = 2, and τ(F ) = 3. It is easy
to see that this is a valid timing.
Stit model λ(MF ) will consist of structure SMF and valuation function JMF .
Structure SMF will have the set of moments as described in Section 3.1. Some
examples of elements of this set are m

[~∅←~∅,AS], m[AS←0,ES], m[AS←1,ES] and

m[〈AS←1,ES←(0,1)〉,F ]. The ordering over these moments, ≤MF , behaves as de-
fined in Section 3.1. An example of a branch of the tree defined by MomentsMF

and ≤M is the following :

{m
[~∅←~∅,AS],m[AS←1,ES],m[〈AS←1,ES←(1,1),F ],m[〈AS←1,ES←(1,1),F←0〉,~∅]}
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HistoriesMF is the set containing all such branches. There are twenty-four
branches in this set. The set ChoiceMF will be the set as expected from the
definitions in Section 3.1. The choice partition of moment m[AS←1,ES] will be
specified to illustrate what the choice partitions formed under λ look like.
In partition Choicem[AS←1,ES]

, histories are divided based on their value assign-
ment to ES. This variable can take on four different values, and consequently
there are four different equivalence classes in Choicem[AS←1,ES]

. There are twelve
histories in H(m[AS←1,ES]). Those will be referred to by their characterising
intervention in the remainder of this discussion. A history with characterising

intervention ~X ← ~x will be denoted by h
~X←~x.

Choicem[AS←1,ES]
contains the following equivalence classes:

ChoiceES←(0,0)
m[AS←1,ES]

= {h〈AS←1,ES←(0,0),F←0〉, h〈AS←1,ES←(0,0),F←1〉, h〈AS←1,ES←(0,0),F←2〉}

ChoiceES←(0,1)
m[AS←1,ES]

= {h〈AS←1,ES←(0,1),F←0〉, h〈AS←1,ES←(0,1),F←1〉, h〈AS←1,ES←(0,1),F←2〉}

ChoiceES←(1,0)
m[AS←1,ES]

= {h〈AS←1,ES←(1,0),F←0〉, h〈AS←1,ES←(1,0),F←1〉, h〈AS←1,ES←(1,0),F←2〉}

ChoiceES←(1,1)
m[AS←1,ES]

= {h〈AS←1,ES←(1,1),F←0〉, h〈AS←1,ES←(1,1),F←1〉, h〈AS←1,ES←(1,1),F←2〉}

A few observations can be made about this partition. All histories inH(m[AS←1,ES])
have a characterizing intervention that assign the same value to AS. This is a
result of the no-backwards-branching property of stit structures. Moreover, all
histories that are in the same equivalence class have characterizing interventions
that assign the same value to ES. This is a result of the definition of choice
classes in models in the image of λ. In these models, each choice equivalence
class represents an intervention.
The set InstantMF is defined as expected from the definition in Section 3.1.
AgentsMF is the set containing the single agent α. Let SMF and JMF be the
structure and valuation function as defined earlier. λ(MF ) is the model defined
by this structure and valuation function.

4.9.2 Semantics

A few examples of expression in the language LG that hold in moment-history
pairs of λ(MF ) will be discussed. Let h∗∗ = h〈AS←1,ES←(1,1),F←0〉. The fol-
lowing expression holds:

λ(MF ),m[〈AS←1,ES←(1,1)〉,F ]/h
∗∗ |= F = 2

This expression corresponds to the situation discussed in (Halpern and Pearl
2005). In this example, there are showers in April and subsequently there are
electrical storms in May and June. As discussed in Section 3.3, the values of
the variables in m[〈AS←1,ES←(1,1)〉,F ]/h

∗∗ depend on the values of the variables
inMF

〈AS←1,ES←(1,1)〉 with context ~u. This is the causal model in which AS has

been set to 1 and ES has been set to (1, 1). As discussed by Halpern and Pearl,
in this causal model variable F takes on value 2.
Let h∗ = h〈AS←0,ES←(1,1),F←1〉 and consider the following expression:

λ(MF ),m
[~∅←~∅,AS]/h

∗ |= [Sett : F = 0]
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As discussed in the section on the semantics of this models, expressions of the
form [Sett : φ] only hold in a moment-history m/h pair if φ holds in all moment-
history pair containing m. In the moment-history pair considered here, no inter-
vention has taken place yet but the agent will intervene on AS. Under context
~u, before any interventions, all the variables ofMF have value 0. In this setting
of MF , intervening on AS does not affect the values of other variables. Conse-
quently, in all moment-history pairs containing m

[~∅←~∅,AS], F = 0 is true and as

a result [Sett : F = 0] holds at m
[~∅←~∅,AS]/h

∗.
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Translation of Axioms

The aim of this chapter will be to introduce expressions that can be used to
translate expression in the language LM to expression in the language LG. This
will be done by introducing an expression in the language L+

G that characterizes
moment-history pairs that represent intervention from the language LM. This
expression will then be used to translate the axioms in an axiomatization of the
class of recursive causal models to expression L+

G.

5.1 Characterization of Interventions

In this section the relation between interventions on M and moment-history
pairs of λ(M) will be discussed. A moment-history pair m/h of a stit model

λ(M) is said to represent intervention ~X ← ~x on M if and only if h ∈
Choice

~X←~x
m . In this section it will be shown that [d stit : G ( ~X = ~x)] in a

moment-history pair m/h if and only if moment-history pair m/h represents

intervention ~X ← ~x. In this expression, G should be interpreted as the dual of
the Will operator that was introduced in the discussion of the semantics of stit
models. λ(M),m/h |= G φ holds whenever for any m′ ∈ h, if m′ > m, then
λ(M),m′/h |= φ.

Proof. It will now be shown that [d stit : G ( ~X = ~x)] holds at the moment-

history pair representing intervention ~X ← ~x. Let m/h be a moment-history

pair representing intervention ~X ← ~x in a stit model λ(M). Any history h′ that

is Choicem-equivalent to h is in Choice
~X←~x
m . Consequently ~X = ~x holds in m/h′

and all moment-history pairs choice equivalent to m/h. Since no intervention

can be undone in a stit model in the image of λ, ~X = ~x is true in all moment-
history pairs a history Choicem-equivalent to h and a moment ranked higher
than m. Consequently, G ( ~X = ~x) holds in all moment-history pairs choice

equivalent to m/h. As a result, [c stit : G ( ~X = ~x)] holds in m/h.
As a result of the assumption that any variable of M can take on at least two

values, Choicem contains at least one class that is not equal to Choice
~X←~x
m . Let

Choice
~X←~x∗
m be such a class. Let h∗ ∈ Choice ~X←~x∗m . It is clear that ~X = ~x∗

holds at m/h∗ and since ~x 6= ~x∗, G ( ~X = ~x) does not holds at this moment-

history pair. This shows that λ(M),m/h |= ¬[Sett : G ( ~X = ~x)]. It has now

23
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been shown that both [c stit : G ( ~X = ~x)] and ¬[Sett : G ( ~X = ~x)] hold at

m/h. By the rules of the semantics of delibaretive stit, [d stit : G ( ~X = ~x)]

holds at any moment-history pair representing ~X ← ~x.
It will now be shown that [d stit : G ( ~X = ~x)] does not hold in moment-history

pairs that do not represent intervention ~X ← ~x. We will consider the cases in
which m/h is a moment-history pair happening before, after, or at the same

instant as the intervention on ~X and shown that if m/h does not represent
~X ← ~x, [d stit : G ( ~X = ~x)] does not hold at m/h.

Assume m/h is in an earlier instant than the intervention on ~X. This means

that there are some variables in ~X that have not been intervened on yet after
the agent chooses Choicem(h). As a result of the construction of λ(M), there
is some h′ ∈ Choicem(h) and some m′ > m such that m′/h′ is a moment-

history pair in which ~X 6= ~x. This is the moment-history pair in which the
agent intervenes on the highest ranked variables in ~X and assigns values that
are not in ~x. Consequently, in m/h′, G ( ~X = ~x) does not hold. Since h′ is

choice equivalent to h in m, [d stit : G ( ~X = ~x)] does not hold in m/h.

Assume m/h is in an later instant than the intervention on ~X. Then the

intervention that happens on ~X in an earlier moment on m either assigned the
values in ~x, or some other set of values. If the intervention assigned the values
in ~x, ~X = ~x holds in all moment-history pairs containing m. This remains true
in all later moment-history pairs, for interventions cannot be undone in the stit
models that we consider. As a result ¬[Sett : G ( ~X = ~x)] is not true at m/h

and consequently neither is [d stit : G ( ~X = ~x)]. If the intervention assigned
the values in some vector ~x′ ∈ R(X) that is distinct from ~x, this means that
~X = ~x′ holds in all moment-history pairs of m, since interventions cannot be
changed back. As a result, ~X = ~x holds in none of the moment-history pairs in
m and consequently neither does [d stit : G ( ~X = ~x)].
Finally, assume that m/h is in the same instant as the moment representing
~X ← ~x. We have assumed that m/h does not represent this intervention.

Consequently, there must be some vector ~x′′ 6= ~x such that h ∈ Choice ~X←~x′′m .

By the semantics of stit models in the image of λ, it can be derived that ~X = ~x′′

holds at m/h and consequently neither does [d stit : G ( ~X = ~x)].

It has been shown that [d stit : G ( ~X = ~x)] holds exclusively in moment-history

pairs representing the intervention ~X ← ~x.

5.2 Language L+
G

The language that is used in this thesis to reason over causal models, LM, is
built up of interventions and primitive events. Primitive events are used as the
atomic variables in the language LG. We can therefore use the language of stit
models to reason over primitive events in the causal models represented by mo-
ments in the models returned by λ.
In the previous section it was shown that moments representing some interven-
tion can be characterized in the stit language LG. This allows us to reason over
expressions in terms of interventions in the language LG. In order to do this a
new operator, the intervention operator, will now be introduced. The interven-
tion operator has the from [ ~X ← ~x]λ where ~X ← ~x is an intervention on M.
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In order to use this operator, in the remainder of this thesis stit models in the
space of λ will be evaluated using a new language L+

G. This language contains
elements of the following form:

φ ::= ψ | ¬φ | φ ∧ φ | [Was : φ] | [Will : φ] | [Sett : φ]

| [ d stit: φ] | [ a stit: φ] | [ c stit: φ] | [ ~X ← ~x]λφ

Here ψ is any element for the set of primitive events in M and ~X ← ~x can be
any intervention in the set Iτ .
The semantics of this language are the same as the semantics discussed in Section
3.3 for all the elements of the language that are also in LG. The sematics of the
intervention operator are determined by the following rule:

λ(M),m/h |= [ ~X ← ~x]λφ ⇔ λ(M),m/h |= [d stit : G ( ~X = ~x)]→ φ

As a result of this definition, if [ ~X ← ~x]~Y = ~y is true in a causal modelM given

context ~u, the formula [ ~X ← ~x]λ~Y = ~y holds in all moment-history pairs of stit
model λ(M).

5.3 Stit and Interventions

As a result of the introduction of the [ ~X ← ~x]λ operator in the previous section,
it is now possible to compare expressions about interventions in a stit model
λ(M) to expressions in terms of the stit operators. By doing this it will become
clear that every stit operator considered in this thesis has a definition that is
weaker than the characterization of interventions. Consequently, when an agent
intervenes on a variable inM, it has, by all definitions of stit that are considered
in this thesis, seen to it that said variable obtained its value in λ(M). It is,
however, possible that an agents sees to it that a variable obtains its value in
λ(M) without performing an action that corresponds with an intervention on
that variable in M.

5.3.1 Chellas Stit

An expression of the from [c stit : ~X = ~x] holds at a moment-history pair m/h

of a stit model λ(M) if ~X = ~x is true in m/h and all moment-history pairs
Choicem-equivalent to m/h.

When moment-history pair m/h represents intervention ~X ← ~x, this means

that h ∈ Choice
~X←~x
m . Consequently, λ(M),m/h |= ~X = ~x. Moreover, by

the definition of choice-equivalence classes, any history h′ ∈ Choicem(h) choice

equivalent to h is also in Choice
~X←~x
m . As a result, for any moment-history pair

m/h′ choice equivalent to m/h, it is easy to see that λ(M),m/h′ |= ~X = ~x.

λ(M),m/h |= [c stit: ~X = ~x] is therefore true when m/h represents interven-

tion ~X ← ~x. Intuitively this means that when an agent intervenes on a variable
in a causal model, it sees to it that that variables obtains its value according to
the Chellas semantics.
Using the semantics introduced in Section 5.2 it can be deduced that the fol-
lowing holds in all moment-history pairs of any stit model in the image of λ.

[ ~X ← ~x]λ[c stit: ~X = ~x] (5.1)
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5.3.2 Deliberative Stit

In a moment-history pair m/h of a stit model G , G,m/h |= [ d stit: φ] if and
only if G,m/h′ |= φ for each h′ ∈ Choicem(h) and G,m/h 6|= [Sett: φ].
In the previous section it was shown that if in a stit model λ(M), m/h represents

intervention ~X ← ~x then λ(M),m/h′ |= G ( ~X = ~x) for each h′ ∈ Choicem(h).
Since any variable can take on at least to values, there must a moment history
pair m/h′ corresponding to a different intervention on

vecX than ~X ← ~x. In this moment-history pair ~X = ~x does not hold and
consequently ~X = ~x is not settled at m/h.
It can be inferred that in any moment-history pair representing intervention
~X ← ~x, [d stit : ~X = ~x] holds.

[ ~X ← ~x]λ[d stit: ~X = ~x] (5.2)

5.4 Axioms

In (Halpern 2000), an axiomaziation for the class of recursive causal models
is proposed. In this section the operator introduced in Section 5.2 is used to
translate the axioms in this axiomatization to axioms in the language L+

G.
The axioms in this axiomatization are called C0, C1,C2,C3,C4 and C6. Each
axiom will be discussed in this chapter. First rule in this axiomatization, called
C0, includes all instances off propositional tautologies. The translation of this
axiom to L+

G simply contains all propositional tautologies that can be expressed
in L+

G.
Axiom C1 is called the equality axiom in (Halpern 2000).

[~Y ← ~y]X = x⇒ [~Y ← ~y]X 6= x′ if x, x′ ∈ R(X), x 6= x′ (C1)

The semantic implication of this axiom for causal models, is that in any causal
modelM~Y←~y variable X can only take on one value from the set R(X). Using
the operator introduced in Section 5.2, the following translation of axiom C1
can be obtained.

[~Y ← ~y]λX = x⇒ [~Y ← ~y]λX 6= x′ if x, x′ ∈ R(X), x 6= x′ (C1λ)

Axiom C2 entails that given an intervention ~Y ← ~y on a causal model M, a
variable X of that causal model must take on at least one of the values in the
set R(X). ∨

x∈R(X)

[~Y ← ~y]X = x (C2)

This can be translated easily to a statement in the language L+
G.∨

x∈R(X)

[~Y ← ~y]λX = x (C2λ)

For any moment-history pair m/h of a stit model λ(M), there is a vector ~Y ∈ V
and a vector ~y ∈ R(~Y ) such that m/h represent causal model M~Y←~y. This
axiom can therefore be generalized to the following statement:∨

x∈R(X)

λ(M),m/h |= X = x (C2′λ)
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The third axiom says that given a causal model M, an intervention ~X ← ~x on
that causal model and a context ~u, if Y = y and W = w then the value of Y is
not affected by intervention W ← w.

([ ~X ← ~x]W = w ∧ [ ~X ← ~x]Y = y)⇒ [ ~X ← ~x,W ← w]Y = y (C3)

This can be translated to the following axiom in L+
G.

([ ~X ← ~x]λW = w ∧ [ ~X ← ~x]λY = y)⇒ [ ~X ← ~x,W ← w]λY = y (C3λ)

Intuitively this axiom says that when the agent chooses a choice cell that corre-
sponds to an intervention that sets the values of variables to their current value,
the truth values of all variables will remain the same.
Axiom C4 is as follows:

[X ← x, ~W ← ~w]X = x (C4)

Using the operator introduced in Section 5.2, the following straight forward
translation of the fourth axiom can be obtained;

[X ← x, ~W ← ~w]λX = x (C4λ)

Semantically, the fourth axiom in this axiomatization entails that after inter-
vention ~X ← ~x, any other intervention will not affect the value of X. In all
moment-history pairs m/h that represent a causal model that is the result of an
intervention on variable X followed by some other intervention on an arbitrary
vector ~W , the following holds;

[Was : [d stit : G (X = x)]]

A translation of Axiom C4 is therefore the following;

[Was : [d stit : G (X = x)]]→ X = x (C4λ’)

The last axiom of this axiomization is concerned with variables that affect each
other.

(X0  X1 ∧ ... ∧Xk−1  Xk)⇒ ¬(Xk  X0) (C6)

In order to understand this axiom in terms of the language LM the semantics
of  must first be clarified. The expression Y  Z means that the value of
variable Y affects the value of variable Z. In (Halpern 2000) Y  Z is defined
as an abbreviation of the following formula∨

~X⊂V,~x∈R( ~X),z 6=z′∈R(Z)

([ ~X ← ~x, Y ← y]Z = z′ ∧ [ ~X ← ~x]Z = z) ( )

Before considering the translation of axiom C6 to an expression in L+
G, we will

first consider what the  operator means semantically for a stit model that
is the image of a recursive causal model under λ. By literally translating the
definition of  , the following equation is obtained;

Y  λ Z ⇔
∨

~X⊂V,~x∈R( ~X),z 6=z′∈R(Z)

(
[ ~X ← ~x, Y ← y]Z = z′ ∧ [ ~X ← ~x]Z = z

)
(5.3)

Axiom C6 can easily be translated to the following axiom;

(X0  λ X1 ∧ ... ∧Xk−1  λ Xk)⇒ ¬(Xk  λ X0) (C6λ)
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Causation and Applications

There are several definitions of causation that can be used to determine if events
caused each other. In this chapter, a few of these definitions of causation will
be introduced. All the definitions that are introduced in this chapter can be
expressed in terms of the language of causal models. They will then be used to
determine what caused a certain outcome in a simple example. Subsequently, it
will be illustrated what happens when λ is applied to a causal model describing
the same example. This will then provide a way to compare the stit semantics
evaluated over the resulting stit model to the conclusions drawn by the earlier
introduced definitions of causation.

6.1 Counterfactual Causation

One notion definition of causal dependency that has been discussed for several
centuries if that of counterfactual dependency. This notion was first introduced
by Hume (Lewis 1973). Hume stated that two events are counterfactually de-
pendent if they both occur and if one had not occurred, the other event had
also not occurred. This definition has since played an important role in the de-
velopment of definitions of causation. Many definitions of causation that have
since been developed are extensions of the idea of counterfactual dependency.
A more formal account of counterfactual dependency was first given by Lewis in
(Lewis 1973). He used close worlds semantcis to formally define counterfactual
dependency. In this paper, Lewis gives the following definition of counterfactual
causation. Proposition C depends counterfactually on A if on if there are no
possible A-worlds and some A-world where C holds is closer then any A-world
where C does not hold.
Counterfactual causation was expressed in terms of the language of causal mod-
els in (Menzies 2017). This definition will be introduced here since the expression
in terms of the language of causal models allows for reasoning over counterfac-
tual causation in stit models in the space Sλ. In (Menzies 2017), the following
definition of counterfactual dependence is given:

“A variable Y counterfactually depends on a variable X in a
model if and only if it is actually the case that X = x and Y = y
and there exist values x′ 6= x and y′ 6= y such that replacing the
equation for X with X = x′ yields Y = y′.”

28
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This definition can be rewritten in expressions using the notation that was
introduced in Chapter 3 in the following way:

Definition 6.1.1. A variable Y counterfactually depends on a variable X in
a modelM with context ~u if and only if (M, ~u) |= X = x∧Y = y and there exists
values x′ ∈ R(X), y′ ∈ R(Y ) with x′ 6= x, y′ 6= y, and (MX←x′ , ~u) |= Y = y′

6.2 Halpern and Pearl

Many definitions of causation that have been proposed since the introduction
of counterfactual causation are based on the idea of counterfactual dependency
that was introduced in the previous section. One of those is the definition of
causation proposed in (Halpern and Pearl 2005). The definition of causation
proposed in this paper is an extension of the counterfactual definition with a
condition that allows for a certain set of variables to be set to fixed values while
evaluating the counterfactual condition. This makes it a weaker definition, but
one that is more appropriate to according to Halpern and Pearl.
In (Halpern and Pearl 2005), the following definition of causation is given:

Definition 6.2.1. ~X = ~x is an actual cause of φ in causal modelM with con-
text ~u and set of allowable settings E is allowed if the following three conditions
hold:

AC1. (M, ~u) |= ~X = ~x ∧ φ. (That is, both ~X = ~x and φ are true in the actual
world.)

AC2. There exists a partition (~Z, ~W ) of V with ~X ⊆ ~Z and some setting (~x′, ~w′)

of the variables in ( ~X, ~W ) with ~X = ~x′ ∈ E and ~W = ~w′ ∈ E such that

if (M, ~u) |= Z = z∗ for all Z ∈ ~Z, then both of the following conditions
hold:

(a) (M, ~u) |= [ ~X ← ~x, ~W ← ~w]¬φ. In words, changing ( ~X, ~W ) from
(~x, ~w) to (~x′, ~w′) changes φ from true to false.

(b) (M, u) |= [ ~X ← ~x, ~W ′ ← ~w′, ~Z ′ ← ~z∗]φ for all subsets ~W ′ of ~W and

all subsets ~Z ′ of ~Z. In words, setting any subset of variables in ~W to
their values in ~w′ should have no effect on φ, as long as ~X is kept at
its current value ~x, even if all the variables in an arbitrary subset of
~Z are set to their original values in the context ~u.

AC3. ~X is minimal; no subset of ~X satisfies conditions AC1 and AC2. Mini-
mality ensures that only those elements of the conjunction ~X = ~x that
are essential for changing φ in AC2(a) are considered part of a cause;
inessential elements are pruned.

In this definition, the variables in vector ~W have the role of “witness” vari-
ables while the variables in ~Z are considered to be part of the causal process of
~X. The variables in ~W are not considered part of the causal process and are
therefore kept fixed in condition AC2(a). This condition is the equivalent of

Definition 6.1.1 can therefore be checked while keeping the variables in ~W fixed
at the values that they have in model M under context ~u. Halpern and Pearl
state that this condition makes the definition more “permissive”.
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6.3 Deliberative stit in the image of λ

Applying transformation λ to stit models provides the opportunity to compare
the semantics of the stit models to the semantics of causal models. This will
be done later in this chapter when an example is considered. In this section,
some general observations about the relation between the stit operators and
definitions of causation will be made.
In Section 5.3, it has been shown that whenever an agent intervenes on a variable
by making a choice in a moment-history pair of a stit model in the image
of λ, it has seen to it, by both definitions of stit, that the variable that was
intervened on obtained its value. In this section it will be shown that the
agent has also seen to it that a variable obtains its value, when the value of
that variable is counterfactually dependent on the intervention performed by
the agent. This holds only for the rules of deliberative stit. When an agent
performs an intervention, it has not necessarily seen to all the outcomes that
are counterfactually dependent on that intervention by the rules of Chellas stit.

Theorem 2. Let λ(M) be a stit model. Let X and Y be variables ofM and let
m/h a moment-history pair of λ(M). If variable Y is counterfactually dependent

on variable X and agent α chooses choice cell Choice
~X′←~x′
m in moment-history

pair m/h with X ∈ ~X ′, then the following holds:

λ(M),m/h |= [α d stit : Y = y]

for some y ∈ R(Y )

Proof. Assume that some outcome Y = y is counterfactually dependent on
intervention X ← x. Since Y is counterfactually dependent on X, Y = y is
true in all choice equivalent moment-history pairs of m/h. By the definition of
counterfactual dependency it must be true that if the agent choose a different
choice cell, Y = y had not been true. Consequently, Y = y cannot be true in
the moment-history pairs containing m that are not choice equivalent to m/h.
As a result [α d stit : Y = y] must holds.

Note that the reverse of Theorem 2 is also true. Say that in some moment-
history pair, [α d stit : φ] holds. This means that φ is be true inm/h. Moreover,
there is some moment-history pair of m that is not equivalent to m/h where φ is
not true. In other words, it is possible that if α had performed a different action
φ would not hold. φ is therefore counterfactually dependent on the choice of
the agent.

6.4 Rock Throwing Example

The expressiveness of the counterfactual definition of causation, the definition
by Halpern and Pearl, and the deliberative stit operator will be illustrated by
applying them to an example. The example that will be considered is taken
from (Halpern and Pearl 2005). The example concerns a situation in which two
people, Billy and Suzy, simultaneously throw a rock at the bottle. Suzy’s rock
hits the bottle and shatters it. The other rock cannot shatter the bottle as it
has already been shattered. If the Suzy’s rock would not have shattered the
bottle, it would have been shattered by the Billy’s rock.
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Figure 6.3: Causal Model MB
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6.4.1 Preemtion

The example that will be used is one of preemtive causation. Specifically, this
example concerns early preemption. An event is said to be a preempted cause of
some outcome if it would have caused that outcome, had the outcome not been
caused by another event (Lewis 1973). As a result, the causal process initiated
by the preemted cause was interrupted before it was able to bring about the
outcome.

6.4.2 Counterfactual Reasoning

As Halpern and Pearl point out, applying counter factual reasoning to this ex-
ample does not provide a satisfying conclusion. If Suzy’s rock had not been
thrown, the bottle would still have shattered as a result of Billy’s rock. Ac-
cording to counterfactual reasoning, the first rock did not cause the bottle to
shatter. By the same reasoning it can be concluded that, according to counter-
factual reasoning, the second rock being thrown did also not cause the bottle
to shatter. Consequently, it can be concluded that no rock caused the bottle to
shatter. It feels counter intuitive that no cause can be attributed to the bottle
shattering.

6.4.3 The Halpern and Pearl Definition

It is obviously problematic that neither of the rocks is identified as the cause of
the bottle shattering. In an effort to overcome this, Halpern and Pearl apply
their own definition of causality to a simply causal model. This model is pictured
in Figure 6.1. In this model, ST and BT are exogenous variables. BS is an
endogenous variable. All variables can take on value 0 and value 1. The only
structural equation of this model is BS = max{ST,BT}.
This yields a more satisfying, but still imperfect, conclusion. Their definition
applied to this causal models gives the conclusion that both the rock thrown by
Billy and the rock thrown by Suzy caused the bottle to break.
By modifying the causal model representing this scenario, and applying their
definition to the modified model, Halpern and Pearl eventually show that their
definition of causation can determine that the first rock being thrown is the
cause of the bottle shattering. They do this, however, by modifying the model
in such a way that the structural equations depend on which rock reaches the
bottle first. If Suzy’s rock hits the bottle first, the structural equations are
such that the model is as described in Figure 1.2. This model, MS , has two
exogenous variables, BT and ST . Its set of endogenous variables consists of
BH, SH, ST . All variables can take on the values 0 and 1. These variables
have the following structural equations:

• SH = ST

• BH = min{BT, (1− SH)}

• BS = max{SH,BH}

If Billy’s rock hits the bottle first, the example is best described by the model
in Figure 1.3. This model, MB had the same signature as MS . It has the
following structural equations:
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• BH = BT

• SH = min{ST, (1−BH)}

• BS = max{SH,BH}

Halpern and Pearl make sure that the temporal information about the order of
the rocks hitting the bottle is contained in the structural equations. This seems
unnatural, and as the authors admit themselves, their definition of causation is
highly dependent on how the scenario is represented by the model.

6.5 Application of λ

It will now be show that by transforming the simple causal model M to a
stit model using λ, more intuitive conclusions about the cause of the bottle
shattering can be drawn without using a modified causal model that contains
information about the causal of the bottle shattering.
Two different valid timings ofM will be considered, called τ1 and τ2 respectively.

τ1(ST ) = 1, τ1(BT ) = 1, τ1(BS) = 2

τ2(ST ) = 1, τ2(BT ) = 2, τ2(BS) = 3

6.5.1 Model λ(M)1

Let λ(M)1 be the stit model built by applying transformation λ to causal model
M with timing τ1 and a context under which no rock is thrown. This is a multi-
agent stit model in which agent Suzy can intervene on ST and agent Billy can
intervene on BT . The set of moment of λ(M)1 is denoted by Moments1M and
has the following elements:

m
[~∅←~∅,〈ST,BT 〉]

m[〈ST←0,BT←0〉,BS] m[〈ST←0,BT←0,BS←0〉,∅] m[〈ST←0,BT←0,BS←1〉,∅]
m[〈ST←0,BT←1〉,BS] m[〈ST←0,BT←1,BS←0〉,∅] m[〈ST←0,BT←1,BS←1〉,∅]
m[〈ST←1,BT←0〉,BS] m[〈ST←1,BT←0,BS←0〉,∅] m[〈ST←1,BT←0,BS←1〉,∅]
m[〈ST←1,BT←1〉,BS] m[〈ST←1,BT←1,BS←0〉,∅] m[〈ST←1,BT←1,BS←1〉,∅]

The sets Histories1M contains all the branches in the tree that is obtained
when applying ≤1

M to Moments1M. And example element of Histories1M is the
following:

{m
[~∅←~∅,〈ST,BT 〉],m[〈ST←0,BT←1〉,BS],m[〈ST←0,BT←1,BS←0〉,∅]}

The Choice set and valuations function of this stit model are as one would
expect from the definitions in Section 4.6 and Section 4.7.
Moment m

[~∅←~∅,〈ST,BT 〉] is the first moment of this stit model. Agents Suzy

and Billy both choose a choice cell at this moment. By throwing the rock, the
agents choose the cells corresponding to ST ← 1 and BT ← 1 respectively.
Both agents see to it that the bottle shatters according to the Deliberative and
Chellas semantics. In this case, the stit logics draw a similar conclusion as the
Halpern-Pearl definition applied to causal model M.
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6.5.2 Model λ(M)2

Consider λ(M)2, the stit model that is the result of applying λ to causal model
M with timing τ2 and the context under which no rocks are thrown. The set
of moments of this model, Moments2M, contains the following elements:

m
[~∅←~∅,ST ]

m[ST←0,BT ] m[ST←0,BT ]

m[〈ST←0,BT←0〉,BS] m[〈ST←0,BT←0,BS←0〉,∅] m[〈ST←0,BT←0,BS←1〉,∅]
m[〈ST←0,BT←1〉,BS] m[〈ST←0,BT←1,BS←0〉,∅] m[〈ST←0,BT←1,BS←1〉,∅]
m[〈ST←1,BT←0〉,BS] m[〈ST←1,BT←0,BS←0〉,∅] m[〈ST←1,BT←0,BS←1〉,∅]
m[〈ST←1,BT←1〉,BS] m[〈ST←1,BT←1,BS←0〉,∅] m[〈ST←1,BT←1,BS←1〉,∅]

The sets Histories2M contains all the branches in the tree that is obtained
when applying ≤2

M to Moments2M. An example element of Histories2M is the
following:

{m
[~∅←~∅,ST ]

,m[ST←0,BT ],m[〈ST←0,BT←1〉,BS],m[〈ST←0,BT←1,BS←0〉,∅]}

This history contains one element more than the example of a history of λ(M)1
that was given in this section. As a result of the greater range of τ2, all histories
of λ(M)2 have one element more than histories of λ(M)1. The Choice set and
valuations function of this stit model are as one would expect from the defini-
tions in Section 4.6 and Section 4.7.
In the first moment of this stit model, m

[~∅←~∅,ST ]
, agent representing Suzy can

see to it that the bottle shatters by throwing the rock and performing interven-
tion ST ← 1. If she does that, agent Billy cannot see to it that he shatters the
bottle in the next moment. If Suzy does not throw the rock, Billy can see to
it that the bottle shatters in the next moment.
These conclusions about the causal relation between the actions of the agents
and the state of the bottle are more intuitive then the ones drawn by the other
definitions of causation. This was possible without changing the structure of
the causal model. There are two main reasons why the stit model could be used
to draw the more appropriate conclusion.
Firstly, temporal information is provided by τ when applying transformation
λ. This is why stit model λ(M) contains more information than M. It can
therefore be used to distinguish between the rocks of Suzy and Billy without
having to change the structure of the model.
Secondly, even tough the deliberative stit operator coincides with the definition
of counterfactual dependency, the evaluation of the stit operator draws a more
intuitive conclusion in this example then the definition of counterfactual depen-
dency. This is because in the first moment of this model, we can evaluated what
happen is Suzy does not throw, while keeping fixed that Billy did not throw.
This is a result of the assumption of a context under which no rock is thrown.
Consequently, deliberative stit says that Suzy sees to it that the bottle breaks.
Deliberative stit and counterfactual dependence coincide, but as a result of the
temporal information provided by the timing function, deliberative stit consid-
ers the effects of Suzy’s throw before Billy has thrown. Counterfactual reasoning
considers the effect of Suzy’s throw after it is known that both Suzy and Billy
will throw. It is therefor less suitable for reasoning over this example.
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6.6 Conclusion

The discussion of the example in this chapter has shown that even though de-
liberative is similar to counterfactual dependency, it is more suitable for the
evaluation of responsibility. This is because the evaluation of the deliberative
stit operator considers the events that happen in chronological order. The ef-
fects of an action are evaluated only with respect to the events that have taken
place before that action. Counterfactual reasoning, however, considers the effect
of an action with respect to the final configuration of the causal models.
Moreover, this example has showed that in order to obtain intuitively conclu-
sions about causation using causal models, the models had to be altered in a
unnatural way while λ provides a way to add the necessary information in a
more natural way by means of the timing function.
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Conclusion

In this thesis, stit model and causal models were introduced. The definitions
and properties of both models were discussed. Subsequently, a transformation
was defined that returns stit models in which each moment-history pair rep-
resents a configuration of a causal model. This transformation was used to
describes a space of stit models that convey causal information. The properties
of the models in this space were explored firstly by translating formulas in the
causal language under transformation λ. Subsequently, their properties were
explored by using the models to discuss examples from the literature in which
the determination of causation is ambigous.

7.1 Observations

A few important observations were made while exploring the map from the
space of causal models to the space of stit models. These will be discussed
in this section. The most important observations that were made concern the
properties of models in the image of λ, the expressiveness of the stit operators in
these models, and how both the structure and operators contribute to expressing
responsibility.

7.1.1 Properties of models

One important observation made in this thesis is that the stit models in the
image of transformation λ have certain distinctive properties.
All models in this space have a symmetrical structure, in which the amount
of choices available to each agent is the same for moment-history pairs in the
same instant. As a result of this symmetrical structure, every configuration of
a causal model M in represented in some moment-history pair of a stit model
in λ(M). Moreover, a distinctive property of models in the image of λ is that
as a result of the role of interventions in these stit models, the primitive event
corresponding to a choice of an agent will remain true in the rest of the history
in which this choice was made.

36
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7.1.2 Operators

Two different stit operators have been discussed in this thesis, the deliberative
stit operator and the Chellas stit operator. These are similar operators, they
both have the condition that the event that the agent has seen to must be true
in all moment-history pairs possible after the agent has made its choice. The
deliberative stit operator is more restrictive than the Chellas stit operator, since
it has the extra condition that there is at least one alternative moment-history
pair reachable in which this event is not true.
Intuitively, this restriction seems similar to the conditions for counterfactual
dependency between the action by the agent and the event that the agent has
seen to. This similarity was explored in this Section 6.3. In models in the
image of transformation λ, there is indeed a connection between the deliberative
stit operator and counterfactual dependency. If an agent makes a choice in a
moment-history pair of such a model, the agent has seen to all events that are
counterfactual dependent on the action. This comparison could only be made
because a class of models was described in which both counterfactual dependency
and stit operators could formally be expressed.
Moreover, the stit operators can be used to express interventions in terms of the
stit language. Since the language of causal models is built out of primitive events
and interventions, any expression from the causal language can be expressed in
terms of the stit language using the transformation that was given.

7.1.3 Responsibility

The objective of this thesis is to contribute to the expression of a formal account
of responsibility. In order to explore how the models described in this thesis can
be used to for this objective, the models were used to represent some examples
from the literature. The examples that were used concerned situations in which
preemption made it difficult to determine causation.
One important finding is that in these examples the role of the timing function
gives the modeller some influence about what the model will look like. The
timing function has a big influence on the structure of the model. Consequently,
whether an agent has seen to an outcome depends greatly on the timing function.
The timing function can therefore be used to represent these example in a
more intuitive way and consequently draw more appropriate conclusions on
responsibility.
In order to draw appropriate conclusions about causation using the existing
definitions of causation, the structure of the causal models representing the
examples had to be changed. Using the stit models defined in this thesis provides
a more more natural way of constructing an appropriate model.

7.2 Future research

This thesis only considered one important part of responsibility, causality, and
used this to expand a branch of the logic of action. Even tough this yielded a
space of models with desirable properties, the approach did not consider other
aspects that are correlated to responsibility. In (Halpern and Kleiman-Weiner
2018), two other factors of responsibility are discussed. These factors are in-
tention and blameworthiness, and Halpern expresses these factors in terms of
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the causal language. Since these factors can be expressed in term of the causal
language, they could be compared to some claims made about causality and
the stit operators in the examples considered in this thesis. Incorporating these
factors would make the discussion of responsibility more complete.
Finally, this thesis did not evaluate stit models in the image of λ for some
causal model M with different contexts. The effects of the timing function on
the conclusions that can be drawn from the model were considered. It turned
out that the timing function does have some effect on the conclusions that can
be drawn. The effects of the context on the conclusions could also be explored.
Using a different contexts yields models with the same structure, but different
valuations.
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