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Abstract

Introduction. For the last six decades, mechanical ventilation has become an estab-
lished therapy in intensive care units for patients who have respiratory problems. How-
ever, this therapy faces some challenges; finding the optimal ventilation mode and set-
tings is not always straightforward. Recent advances in the field ofArtificial Intelligence,
especially deep learning, enable learning from big datasets. Deep learning models that
are trained on patient data may help to establish the appropriate mode and settings.
Objectives. In this project, we aimed to solve a part of this problem; creating a model
that can predict values of several vital signs of the patient, given historical values. We an-
alyzed the PICU dataset, which contains time series of vital signs and ventilator settings
of 1547 patients of the Pediatric Intensive Care Unit of theWilhelmina’s Children’s Hos-
pital. The goal of this projectwas two-fold. First, we performed an extensive exploratory
analysis on the dataset. We used time series analysis methods such as Vector Autore-
gression (VAR), Panel VAR, andMultilevel Graphical VARmodels to describe relations
that exist between variables and time steps. Secondly, we created and trained predictive
models using several neural network architectures; the Long Short-Term Memory Net-
work (LSTM), Convolutional Neural Networks (CNN), and an architecture that com-
bines both of them. These models directly predict, given the (historical) time series of
several vital signs, (a) future value(s) of the target vital signs.
Results. In our exploratory analysis, we found several correlations that were present
between variables that can be explained by clinical theory. Furthermore, we observed
that the vital signs exhibit a strong autocorrelation; the current measurement largely
depends on recent measurements. The predictive models learned to mimic the naïve
persistence model, which uses the last available measurement as its prediction. The
trained models perform relatively well during stable periods. However, they fail to
detect sudden changes that are the most interesting from a clinical standpoint. The
trainedCNN-basedmodel slightly outperforms the persistencemodel, according to sev-
eral error-metrics.
Discussion. The vital signs of the included patients remain mostly stable. Therefore,
the naïve model performs relatively well, which may cause the mimicking. We suggest
that clustering may enable selecting unstable periods in order to make the dataset more
balanced. Furthermore, we give some directions for further research on the verification
of predictive time series models.
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1
Introduction

For the last six decades, mechanical ventilation has become a fundamental, established
therapy in intensive care units. Ventilators provide respiratory support for patients who
have trouble breathing on their own. The goal of this therapy is restoring the respira-
tory system of the patient so that ultimately, the patient can be extubated when the
patient is ready to breathe on his own. The ventilators aim to improve the oxygena-
tion of the patient (optimizing the oxygen intake) while relieving him in his efforts to
breathe. Succeeding in these aims enables the patient to heal. This therapy, however,
faces some challenges; while the goal is to heal the patient, ventilators can also damage
the patient; the unwanted side-effects are referred to as ventilator-induced injuries [18].
Moreover, there are many methods of delivering ventilation to the patient, but finding
the most suitable method for each patient is not trivial [7].

AI methods could help to establish the appropriate ventilation mode and settings.
In recent years, several papers on the use of decision support systems, machine learn-
ing, and data mining aimed towards improving mechanical ventilation were published.
Moreover, some ventilators already have intelligent ventilation modes that automati-
cally adjust parameters based on the current condition of the patient [8]. Kilic and Kilic
[23] describe a decision support system that decides whether a patient is ready to wean
from ventilation based on fuzzy logic. Brigham et al. [7] describe a project whose goal
it was to predict the response or efficacy of the current ventilation method on preterm
newborns, by predicting future values of the minute volume metric, the volume that a
patients expires during a minute, using deep learning. A first step in improving clinical
decision making regarding ventilation could be to provide a prognosis of the vital signs

1



CHAPTER 1. INTRODUCTION

Figure1.1: Apatientmonitor that showsanumberof vital signs. Physicians andnurses use the vital signs to assess the

condition of the patient. Furthermore, themonitor can alarm the caregivers if a vital signmoves outside a predefined

range.

for the current ventilation method [7]. Vital signs are, in essence, sensor data measured
by patient monitoring equipment. The vital signs can be used to assess the patient’s
condition. A patient monitor (see figure 1.1) provides a live overview of the vital signs.
Some of the vital signs are plotted to give the caregivers an overview how the vital signs
have changed over time. An example ventilator related vital sign shown in figure 1.1
is the end tidal CO2 (ETCO2, in white). Throughout this project, the aim is to predict
future values of several vital parameters that indicate the current condition of the pa-
tient. A prediction model will be created based on the PICU dataset. The PICU data
set is a multivariate time annotated data set of 1547 patients that were admitted to the
Pediatric Intensive Care Unit (PICU) of the Wilhelmina’s Children’s Hospital, (Wilhelmina
Kinderziekenhuis in Dutch and abbreviated as WKZ). The WKZ is a part of the Univer-
sity Medical Center Utrecht. The PICU dataset contains time series of these vital signs;
we will refer to them further in this work as Vital Signs Time Series or VSTS. In chapter
2, we will describe these vital signs and ventilation practice in more detail. In addition
to the Vital Signs Time Series, the dataset contains the settings of the ventilator and a
limited set of static patient information, such as age andweight. During this project, this
novel dataset is used for the first time. In order to gain more insight in the dataset and
the data generating process, we performed an exploratory analysis, besides the creation
of predictive models.

2



Clinical Context CHAPTER 1. INTRODUCTION

1.1 Clinical Context

The WKZ is currently working on new build plans for its Pediatric Intensive Care Unit.
In order to provide a better healing environment for the patient and his/her family,
patients get single rooms instead of being in a ward with other patients. While a single
room provides privacy and rest for the patient, the caregivers lose situational awareness
and oversight of the patient that they used to have in the open layout of the ward. The
work process of the physicians and nurses relies on data, information, and alarms, but
currently, these arrive at a tumbling speed. A Clinical Decision Support system is needed
to help to make the clinical data more comprehensive for the healthcare professional, in
order for him to provide the optimal care to the patient.

For the last two years, a group within WKZ has been exploring the possibilities
of Clinical Decision Support in collaboration with the Department of Information and
Computing Sciences of Utrecht University. Because of the expertise in the group on the
ventilation practice and experience with the software that resides in modern ventila-
tors, it was decided that solely improving the ventilator software was not the right way
to start this process. Instead, they chose a more data-driven approach by leveraging
the data stored in the Patient Data Management System (PDMS). The MetaVision PDMS
provides a database with minute by minute data of more than 50 ventilation related
variables, among other vital signs. This database can be queried using SQL. The PICU
dataset that we employ in this project is derived from the PDMS of the WKZ’s PICU.
Ventilation Decision Support (VDS) could help the healthcare professionals at the PICU
to optimize ventilation and weaning of ventilation by providing trend monitoring, and
by giving a prognosis of the patient’s vitals. This project was started in this context.

1.2 Time series analysis

Asmentioned above, the PICU dataset contains time series. Time series are sequences of
variables in the following form; {y1, y2, . . . , yt}. The subscripts denote the time period
of the variable y and determine the ordering [47]. Because of the temporal component
/ temporal correlation, we cannot analyze a time series dataset as cross-sectional data.
However, the PICU dataset is also a cross-sectional dataset, as the vitals are measured
for each patient separately. For each of these patients, multiple vitals are measured
simultaneously. Possibly, there are relations between the different vital signs; for exam-
ple, a low heart rate might precede a decrease in the respiratory rate in a later time step.
If this behavior is present in a majority of the patients, knowing the heart rate might
help to predict future values for the respiratory rate. In chapter 4, we will discuss sev-
eral analysis methods for time series and use these methods to investigate the presence
of possible causal relations between the different variables that are present in the PICU
dataset.

3
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1.3 Deep Learning and AI

In the last decade, we have seen AI systems surface in many fields. Especially in recent
years, big advances are made by systems that use deep learning methods like Artificial
Neural Networks. Recent increases in the availability and use of distributed computing
(mainly in the cloud), make the use of big datasets feasible. The size of datasets also
increases, enabling learning algorithms to train onmore examples. These circumstances
combined enable us to model problems of increasing complexity [19]. Deep learning
methods enable us to model complex problems; this could also be problems we do not
fully know how to solve ourselves using traditional methods [26]. The PICU dataset is
a vast dataset that contains many data points. When the amount of available training
data increases, these methods become more useful [19]. In chapter 5, we will discuss
several deep learning methods and show how these methods could be used to provide
a prediction on the patient’s vital signs, based on historical information. Furthermore,
we will discuss how these models performed in our experiments.

1.4 Project goals

Wealreadydescribed some of the problems that the caregivers face andhowAImethods
may be useful to solve this problem. In this section, we describe the project’s scope and
objectives in more detail and discuss their motivation.

1.4.1 Exploratory Analysis

We will perform a descriptive analysis of the PICU dataset. In this analysis, we will
describe the properties of the time series featured in the data set. We will investigate,
for example, if time series are stationary or are autocorrelated. There may also be asso-
ciations or causal relations between these time series.

These relations can be described using Vector Autoregression (VAR) models. A VAR
model is a frequently used analysis technique formultivariate time series. Togetherwith
Granger causality testing, we can investigate possible causal relations between time se-
ries [5]. However, ordinary VARmodels are patient-specificmodels and do not describe
relations between vital signs time series that are present in the whole dataset, only those
present within a specific patient. Panel VAR or Multilevel Graphical VAR models can be
used to develop models of multivariate time series concerning multiple subjects. The
latter technique can be used to visualize relations between variables in a graph.

As this was the first time this data set was analyzed, it is very worthwhile to make
an extensive descriptive analysis. The exploratory analysis of the PICU dataset could
give us valuable insights into the relations between the time series of the vital signs.

4
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1.4.2 PredictiveModels

We mentioned before that selecting the optimal ventilation mode and settings is not an
easy task, asmany different factors influence the efficacy of the chosen ventilationmode.
This vast number of factors that influence the patient’s condition makes it difficult to
predict the patient’s future state given the current ventilation mode. However, deep
learning methods may be able to learn the relation between historical data points and
future values. The aim is thus to create a model that, given a series of historical vital
signs and settings, predicts future values of a subset of these vital signs. Deep learning
methods like Recurrent or Convolutional Neural Networks may enable us to process
this vast amount of data available in this dataset.

In consultationwith the doctors of theWKZ,we chose the following target variables:

1. Oxygen Saturation (SPO2);

2. End-tidal CO2(ETCO2);

3. Expiratory Tidal Volume (VTexp);

4. Peak Pressure (PPEAK)

These variables give some insight into the condition of the patient and the efficacy of
the current ventilation method.

Furthermore, the model should be generic; we mean by this is that it should be use-
able for multiple patients. Therefore, the model should not be tailor-made for an indi-
vidual patient. Ideally, given a history {t0−h, . . . , t0}, the model should make reliable
predictions for t0+s, where s is in the range of a couple of hours. Brigham et al. [7] per-
formed similar experiments, but in their work s was very small; s was atmost 15 seconds
or ten time steps. We investigated what was feasible. Besides solely predicting a single
output ts, we also attempted to predict the intermediate values between t0 and ts.

1.4.3 ResearchObjectives

We can summarize the two sections above, with the following two research objectives:

Research Objective 1. To describe the properties of the individual time series and pos-
sible (causal) relations between them. We will perform these tasks to gain more
insight into the data generating process.

Research Objective 2. To create models that, after being trained on multiple time se-
ries of both measured variables and settings entered by the ventilator’s operators,
predict future values of the patient’s oxygen saturation, end-tidal CO2, expiratory
tidal volume, and peak pressure.

5
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1.5 Other research questions

In addition to the two objectives discussed above, some other questions need to be an-
swered in order to accomplish these. We will discuss these questions in the following
sections.

1.5.1 Concerns regarding the PICU dataset

As opposed to some data sets the PICU data set is not entirely “clean” since it was col-
lected from an actual intensive care unit, where this data was passively gathered; the
recordkeeping of the vitals is not primarily aimed towards research. At the PICU, man-
ual interventions take place, but these are not always directly visible in the dataset. One
of the reasons is that some actions have to be manually entered by the physicians and
nurses, and if it is registered, the data entrymethodmay not be consistent over time. An
example of manual intervention is the administration of medication. Certain drugs can
influence the respiratory system and, in turn, these drugs affect the recorded vital signs
[18]. The administration of drugs is recorded in the PDMS, but not at the exact time
of the administration, and therefore, not included in the PICU dataset. The absence of
recorded interventions in the dataset may cause problems in determining causal rela-
tions between these variables. Fortunately, changes in ventilator settings are recorded in
the dataset. This problem, however, persists. The fact that we do not know if a manual
intervention took place is not something that can be (easily) fixed in the dataset after-
ward, and it may raise questions on the trustworthiness of a model that was trained on
this dataset. A methodology on how to deal with this problem is not yet available, and
solving this is probably not feasible in the scope of this project. However, during the
project, we kept in mind that interventions took place and that these may influence the
predictions and causal relations.

In addition to these more methodological problems, there are also some other prob-
lems present in the dataset. Throughout all patients and variables, some values are
absent or unreliable which may be due to equipment failure, manual interventions or
the patient’s behavior. Moreover, many machine learning methods or analysis meth-
ods cannot deal with missing data points. In chapter 3, we will discuss the treatment of
missing data points and how we prepared the dataset for the actual data analysis.

Research Question 1. How do we prepare the raw dataset for further analysis?

1.5.2 Patient subsets

The PICU dataset is very heterogeneous, in the sense that it contains pediatric patients
from all age groups between newborns and adolescents and with a broad spectrum
of diseases. We will describe some aspects of the patient population in section 3.3.
Brigham et al. [7] had similar aims as we have. The number of patients that were in-
cluded in their dataset was small (10 patients), but the patients were in a very similar

6
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condition, and they all had the same age approximately. The homogeneity level of their
dataset is not present in ours. We could, however, decide to create different models
for each ventilation mode or for specific patient groups instead of a generic model to
increase the performance. During this project, we will investigate if this will improve
performance or influence the results of analysis methods:

Research Question 2. Will the creation ofmodels that are trained on subsets of patients
improve the model’s accuracy?

1.5.3 Learningmethod

Multiple deep learning methods may be suitable for modeling this problem. Networks
that belong to the class of Recurrent Neural Networks are used a lot for learning on data
in which a specific ordering or temporal relation is present. For example, RNNs are
used to model natural language and time series analysis/forecasting. Brigham et al. [7]
used a Long Short-Term Memory network, (a RNN variant) to create a prediction model.
In addition to Recurrent Neural Networks, Convolutional Neural Networks may also be
useful for time series analysis. In this project, we will investigate which methods are
suitable and how these models can be applied to the PICU dataset and time series in
general.

Research Question 3. Which deep learningmethods are suitable for making predictive
models for Vital Signs Time Series?

1.6 Thesis outline

The structure of this thesis is as follows: In chapter 2, we first discuss the clinical con-
cepts of ventilation further. In chapter 3, we will discuss the PICU dataset in detail and
explain how the dataset wasmade usable for analysis. Next, in chapter 4wewill discuss
a range of time series analysis methods and use these methods to learn the presence of
causal relations between the different variables that are present in the PICU dataset. In
chapter 5, we will discuss several deep learning methods and how these methods could
be used to provide a prediction on the patient’s vital signs, based on historical informa-
tion. After that, we will discuss the results to research aim two. In chapter 6, we will
provide a global discussion and conclusion on the results discussed in chapters 4 and
5.
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Of all the experiences the physician must undergo, none can be
more distressing than to watch respiratory paralysis in a child
with poliomyelitis - to watch him become more and more dysp-
neic, using with increasing vigor every available accessory mus-
cle of neck, shoulder and chin-silent, wasting no breath for speech,
wide-eyed, and frightened, conscious almost to the last breath.

Dr. James L. Wilson, in [11]

.

2
Ventilation

2.1 Introduction

The disease polio(myelitis) can be seen as the main reason for the development of the
first machines that provide artificial respiration. Many patients during polio epidemics
were experiencing respiratory problems [18]. The first device that providedmechanical
ventilation was the tank respirator, perhaps more known as the iron lung [31]. Drinker
and Shawmade one of the first prototypes in 1929, describing them in their paper called
“An apparatus for the prolonged administration of artificial respiration: I. A design
for adults and children” [11]. Patients were put inside the tanks, and the machine-
generated a negative pressure, causing the size of the lungs to increase. In this way,
the negative pressure simulates an inhalation. In the 1960s, more advanced more ma-
chines emerged into practice. These machines provided positive pressure ventilation; in-
stead of forcing the lungs to increase, the machines pushed air into the lungs. These
machines also allowed patients to trigger the ventilation themselves. In the 1980s, venti-
latorswith screenswere introduced; the curves of vital parameters could nowbe plotted
on these screens, enabling operators to monitor the patient condition more precisely. In
the following years, computing becamemore andmore ubiquitous; eventually, comput-
ers were also embedded in ventilators, providing more advanced and patient-tailored
ventilation. This evolution resulted in an enormous number of settings and parame-
ters that can be set on the ventilators to provide this patient-tailored care. For now, we
will disregard all these parameters; then, there are two main ventilation modes that the
caregivers can choose from:

9
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Invasive ventilation uses an endotracheal tube, which is directly placed through the
mouth into the trachea (see figure 2.1a for an illustration). An inflatable cuff seals
the normal airway, preventing leakage. The tube is then connected to the ventila-
tor.

Non-invasive ventilation uses a face or nasal mask and is more suitable for patients
that are in a better condition, in contrast to the invasive method. As non-invasive
ventilation ismuchmore comfortable than invasive, thismethod is preferredwhen
possible. Invasive ventilation, however, gives more control, as there is less leakage
because of the cuff. In figure 2.1b, a nasal mask is shown.

When the caregivers have decided between these, then they have to decide how to con-
figure the ventilator. However, further in this work, we will only consider invasive ven-
tilation. In the following sections, we will first describe and formalize some essential
concepts of normal breathing and how they connect to mechanical ventilation. After
that, we will describe the essential concepts and settings of mechanical ventilators. In
these sections, we will mainly follow the information presented in Chatburn et al. [8]
and Gommers and Rosmalen [18], as they provide a good overview of this domain.

(a) Invasive ventilation (b)Non-invasive ventilation

Figure 2.1: The twomain ventilationmethods: invasive1and non-invasive ventilation.

2.2 Breathing

Breathing, we do it almost without thinking, but defining or more formally describing
what we do during a breath is not trivial. The goal of breathing is to provide the body

1Figure adapted from https://medical-dictionary.thefreedictionary.com/endotracheal%
2Btube
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with oxygen (O2) and rid the body of carbon dioxide (CO2). In the alveoli, diffusion
takes place; differences in concentration enable the gas CO2 to travel from the blood
to the alveoli and oxygen to enter the blood from the alveoli. During inhalation, the
chest size is increased, and as the size of the lungs also increases, negative pressure is
created in the alveoli. Subsequently, air flows from the mouth to the alveoli to balance
this negative pressure. When the pressure is balanced, diffusion, as described above,
takes place. During expiration, the chest muscles are relaxed, and then the lungs return
to their smaller form. The smaller form causes an increase in pressurewithin the alveoli,
causing the air to flow outwards [18]. There are several variables in that characterize
our breathing. In this section, we will discuss the most important variables:

2.2.1 Time related variables

A breath is defined as a single cycle of inspiration and expiration. During an inspiration
there is a positive air flow from the mouth to the lungs and during expiration, the flow
is negative, as the air flows back from the lungs to the mouth. Flow denotes the speed of
the airflow, or howmuch air flows in or out the lung perminute. In figure 2.3, we can see
that during inspiration, the airflow is constant, while during expiration, the (absolute)
flowdecreases towards the end of each breath. Flow is often expressed in the unit l/min.

Figure 2.3 describes, besides flow, several other variables that are included in the
dataset. The most obvious one is the respiratory frequency, which can be derived in the
following way:

tcycle =
1

fresp
(2.1)

fresp =
1

tcycle
(2.2)

where

tcycle : time needed for a full breathing cycle
fresp : respiratory frequency

Our respiratory frequency is amongst others related to our heart rate. An increased heart
rate (caused by increased labor for example) means that more O2 is consumed and as a
consequence, the arterial CO2 pressure (PACO2) rises as the body produces CO2 when
O2 is consumed. An increased PACO2 causes an increase in the respiratory rate as an
expiration usually lowers the PACO2. By increasing the respiratory frequency, the body
can normalize the PACO2 levels. We denote the respiratory frequency in the number of
breaths per minute (BPM). For the heart rate, we record the number of heart beats per
minute in a similar way.

The ratio between the time needed for the inspiration and expiration is defined as

11
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Figure 2.2: The relation between age and the heart and respiratory rate. The boxplots are based on the PICUdataset.

the inspiratory-expiratory ratio (I:E-ratio), which is defined in the following way:

ie =
tinsp
texp

(2.3)

On a ventilator, caregivers can set the optimal I:E-ratio for each patient. The ventilators
also record the actual measured ratio, especially for patients who breath spontaneously
and are only supported in their breathing efforts.

The heart rate and respiratory frequency are related to age. This is illustrated in
figure 2.2. For babies, both frequencies are higher on average compared to other age
groups.

2.2.2 Volume related variables

Besides time and frequency, we can also describe a breath in terms of volume. Formally,
theTidal Volume (VT) is defined as the integral of the flow time curve, or less formally, the
flowmultiplied by time [8]. In the PICU dataset, this variable is expressed in milliliters.
There are two types of Tidal Volume recorded; the Expiratory Tidal Volume (VTexp) and
Inspiratory Tidal Volume (VTinsp). During invasive ventilation, still some leakage can occur.
Leakage is defined as the difference between the VTinsp and the VTexp . When the patient
receives non-invasive ventilation, the amount of leakage is often even bigger, as there is
less control over the air flow.

During the child’s development, his lung capacity increases and in turn, his tidal
volume. Whenwe compare weight and Tidal Volume, we can see this relation. In figure
2.4, this relation is visualized, based on the data available in the PICU dataset. The tidal
volume is also used as a setting. On the ventilator, caregivers can set the amount of air
the patient should receive each breath or should receive during a minute. The latter is
referred to as the minute volume or flow rate.
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Figure2.3: Abreath is definedasa single cycleof inspirationandexpiration. Thisfigure canbeused todescribe several

variables; for example, flow, respiratory frequency and the I:E ratio. This figure is adapted from [8].

2.2.3 Diffusion related variables

The ventilators and monitors also measure the success of the diffusion, which can give
some indication of the lung’s health. Below we will describe two variables and one
setting related to the diffusion of O2 and CO2:

Oxygen saturation (SAO2 and SPO2). Oxygen saturation is defined as the percentage
of red blood cells (hemoglobin) that are saturated with oxygen. Healthy satura-
tion levels are in the range of 95 to 100 %. When we look at figure 2.5, we can see
that in the PICU dataset, most saturation levels are in this range. Dangerous lower
levels are recorded, but they do not occur a lot in the dataset. Low saturation levels
are immediately counteracted by the physicians and nurses.
The saturation can be measured in two ways. We can determine the oxygen sat-
uration by blood gas analysis and by pulse oximetry. The first method is more
accurate; however, this cannot be measured continuously because this method is
invasive. Saturation measured by blood gas analysis is referred to as the arterial
saturation (SAO2). A pulse oximeter is a non-invasive device, which is slightly less
precise but can be measured continuously. The saturation measured by a pulse
oximeter is referred to as periferous saturation (SPO2). In the PICU dataset, only
SPO2 measurements are included.

End tidal CO2 (ETCO2). This variable describes the concentration of CO2 in the ex-
pired air. The ventilator measures this variable. ETCO2 can be expressed as a frac-
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Figure 2.5: Frequency of saturation values in the PICU dataset.

tion/concentration or as a pressure. In the PICU dataset, the ETCO2 is recorded as
a pressure using themmHg unit. Typical values of the ETCO2 variable lie between
35 and 45 mmHg, which corresponds to a 5 to 6 % concentration of CO2 [18]. This
is also visiblewhenwe look at figure 2.6, which shows the frequency of ETCO2 val-
ues in the PICU dataset.

Fraction of inspired oxygen (FIO2). The earth’s atmosphere contains roughly 21 % oxy-
gen. However, in some cases, it would be beneficial for a patient if the oxygen
levels were higher (for example, when the SAO2 is low). The O2 fraction of the
applied gas mixture can be set using the FIO2 setting. The average FIO2 level is
34 % in the PICU data set, so above atmospheric levels. The FIO2 level does not
depend on static variables like weight or age. The ventilator also measures the
FIO2 level. Because the FIO2 level is higher for more ailing patients, this value
could give be indicator of the patient’s health.

2.2.4 Pressure related variables

We already described how pressure relates to air flow. The ventilators can also regulate
and measure several pressure related variables:

Positive End Expiratory Pressure (PEEP). After expiration, there is some residual pres-
sure still present in the lungs. The word positive refers that this pressure level is
above atmospheric levels. Patients on ventilators are also given an applied PEEP.
The PEEP is applied to prevent alveolar collapse by ensuring that the alveoli stay
open. When alveoli collapse, no diffusion can take place, preventing oxygen from
entering the bloodstream, while carbon dioxide cannot be expired either. The
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Figure 2.6: Frequency of EtCO2 values in the PICU dataset.

amount of PEEP that needs to be applied depends on the lung’s health. Normal
PEEP levels are around 5 cm H2O, and higher levels are associated with more
ailing lungs.

Pressure above PEEP. During ventilation, a positive pressure level, above the PEEP level,
is needed to ensure that air flows into the lungs. The amount of pressure that is
applied can be set for several ventilation modes.

Peak Pressure (PPEAK). For some ventilation modes, the pressure is not a fixed setting
but varied based on the condition of the patient. The ventilators measure the ap-
plied pressure levels to ensure that the pressure levels do not reach dangerously
high levels. The pressure levels rise and decline while a breath progresses. There-
fore, the peak pressure level of each breath is recorded.

2.3 Ventilationmodes

In the previous section, we described several parameters that can be set on a ventilator.
Besides these settings, there are also several methods of applying ventilation, these are
referred to as ventilation modes. A ventilation mode consists of three parts [8]:

1. Breath Control Variable
2. Breath Sequence
3. Targeting Scheme

In the sections below, we will introduce these parts and describe what influence they
have on the settings and outcome.
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2.3.1 Breath control variable

The Breath Control Variable decides Ventilation can be described using the following
equation (assuming that there is no respiratory effort from the patient) [8]:

P(t) = E · V(t) + R · V̇(t) (2.4)

where

P : pressure
E : elastance or compliance; indication of the lung’s condition
V : volume
R : resistance; this rises when there are obstructions in the trachea and/or tube
V̇ : flow
t : time, with P(t), V(t) and V̇(t) as continuous functions of time t

If we predetermine the pressure function, then we can derive the volume and flow. The
same holds the other way around, so when the volume and flow functions are derived,
the pressure can be derived. Therefore, we can control ventilation in two ways:

Volume Control (VC). In modes where this breath control variable is used, flow and
volume are set on the machine by the operator. The pressure varies based on the
lung condition; more precisely, the pressure is influenced by the compliance and
resistance as per equation 2.4. In figure 2.7, it is shown how flow, pressure, and
volume behave over time. Volume Control guarantees a certain minute volume by
setting the frequency, as MV = fresp · VT. Volume Control is a suitable mode for
patients whose arterial CO2 pressure needs to be constant. However, there is a
downside; if the pressure rises due to decreasing compliance or perhaps a higher
resistance due to sputum lung damage can be inflicted on the patient [18].

Pressure Control (PC). In this mode, the peak inspiratory pressure is fixed while the
Tidal Volume and flow vary. Suppose the operators want to increase the patient’s
minute volume. We cannot achieve this by increasing the respiratory frequency
and the tidal volume, as these variables are not the control variables in this modal-
ity. We can achieve this by increasing the peak pressure and the time for each
inspiration. The latter can be controlled by changing the I:E ratio.

During both modes, PEEP is applied to ensure that the alveoli stay open. The pressure
variables that vary during volume control are thus the Pressure above PEEP and the
Peak Pressure.

2Adapted from https://commons.wikimedia.org/wiki/File:Pressure_regulated_volume_
control_graphic.jpg

17

https://commons.wikimedia.org/wiki/File:Pressure_regulated_volume_control_graphic.jpg
https://commons.wikimedia.org/wiki/File:Pressure_regulated_volume_control_graphic.jpg


Ventilation modes CHAPTER 2. VENTILATION

Figure 2.7: Volume control vs. Pressure control 2

2.3.2 Breath Sequence

The former part described the regulation of the airflow. The operators also have to de-
cide who is in charge of starting a breath; the patient or the ventilator. There are patients
who cannot start the inspiration themselves. The operators choose one of the following
three breath sequences, according to the condition of the patient.

Continuous Mandatory Ventilation (CMV). When this setting is used, the machine
always initiates the inspiration. Inspiration is then time-cycled, meaning that in-
spiration and expiration occur on a fixed time defined by the frequency on the
ventilator.

Continuous Spontaneous Ventilation (CSV) . This mode is the complete opposite of
CMV, as patients ventilated by this mode initiate the inspiration themselves and
the ventilators only support the breathing of the patient by applying some addi-
tional pressure. The patient triggers all the work of the ventilator. A disadvantage
of this method is that there is no guarantee on the minute volume, as the patient
is fully autonomous over his respiratory frequency.

Intermittent Mandatory Ventilation (IMV). This mode is somewhat in the middle of
the two previous ventilation modes, by allowing the patient to breathe sponta-
neously, but still having some control on the respiratory frequency: The patient is
given a window in which he can start an inspiration. Within this window the pa-
tient can trigger a supported inspiration by the machine. If the patient, however,
does not trigger the machine in this window, the machine starts a mandatory in-
spiration directly after missing the window. With this method, some guarantees
on minute volume can be made.

The Volume Control is designed to guarantee a minute volume; therefore, there does
not exist a CSV mode for Volume Control.
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2.3.3 Targeting Scheme

While our condition changes, so do our breaths change as well. This also is the case for
patients who receive mechanical ventilation. With Targeting Schemes, the ventilators can
adjust the Breath Control Variables according to the condition of the patient:

Setpoint. In this targeting scheme, all settings are fixed. A benefit of this system is that
it is known beforehand what this system is going to do. However, as the patient’s
condition changes slightly over time, the setting should be adapted manually.

Servo. This mode increases the pressure when the flow decreases, which is caused by
a higher resistance. By increasing the pressure, more air flows in the lungs, miti-
gating possible decreased oxygenation.

Adaptive. This scheme is among the more advanced targeting schemes. Among prac-
titioners, this mode is probably more known as Pressure Regulated Volume Con-
trol. In this scheme, a goal tidal volume is set. By slightly adjusting the pressure
based on the work of the patient, the ventilator ensures that this goal is reached.
The pressure is measured over time and should remain between safe bounds, as
with regular volume control. The tidal volume is reached by controlling the pres-
sure; therefore, this mode does not belong in the volume control category, but to
the Pressure Control category.

There are more targeting schemes than the aforementioned three. These can be found
in Chatburn et al. [8] and Gommers and Rosmalen [18].

2.4 Predictors and Target variables

Frequently used ventilation modes on the WKZ PICU are the following:

• PC-CMV-SetPoint

• PC-CSV-SetPoint

• PC-IMV-Adaptive

Further in this work, we will only consider the PC-IMV-Adaptive mode. In section 3.5,
we will further elaborate on this choice. Here, we will briefly list some of the measured
variables and settings that are important for this ventilation mode and will be target
variables or predictors in our predictive models.

Peak Pressure (PPEAK). This mode falls into the Pressure Control class. However, as in
thismode the pressure is automatically adapted by the ventilator, the applied pres-
sure is not set by the operators. Instead, the Tidal Volume and the patient’s con-
dition determine the applied pressure. The Peak Pressure is, however, recorded
and could give some indication on the resistance in the air way.
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Tidal Volume. As this is themost important setting for this ventilationmode, this value
is included as a predictor. We will also include the measured Expiratory Tidal
Volumeas a target variable. The difference between the setting and the two could
be an indication of leakage.

SPO2. Low saturation levels should be counteracted as soon as possible, therefore, a
prognosis for this vital sign is helpful.

ETCO2. Dojat et al. [10] and Kilic and Kilic [23] used the ETCO2 variable as a predic-
tor for determining if a patient is suitable for weaning3. The ETCO2 variable is,
therefore, also an indicator of the efficacy of the ventilation.

Respiratory Frequency. To prevent hyper- and hypoventilation, it is good to monitor
the respiratory frequency.

Heart rate. This vital sign is not directly related to ventilation, but we described in sec-
tion 2.2.1 how the heart rate and respiratory frequency are related.

In the predictive models, these above mentioned target variables will also be used as
predictors. In addition to these, all the settings and corresponding measured versions
of them will be included.

2.5 Summary

Above, we have discussed the most important ventilation principles. We described how
we can formalize breathing and how we can characterize breathing using several types
of variables. These variables describe the timing, volume, applied pressure, air compo-
sition and the quality of the diffusion. These variables can also be used to assess the
lung’s health. We also described the main ventilation modes and how they differ. We
have also described why these are chosen as predictors and target variables in our pre-
dictive models. In chapter 4, we will first describe possible causal relations between
these variables.

3Kilic and Kilic [23] actually used the PACO2; however, there is a similar relation between ETCO2 and
PACO2 as there exists between SPO2 and SAO2.
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PICUDataset

3.1 Introduction

In this work, a data set gathered at the Pediatric Intensive Care Unit of the Wilhelmina
Children’s Hospital will be analyzed. This dataset is referred to in this work as the
PICU dataset. The dataset contains time-stamped patient information collected from the
database used by theMetaVision Patient DataManagement System (PDMS). A PDMS is an
application that is used by physicians and nurses at the PICU tomonitor the vitals of the
patients. The data in this database is provided by a range ofmedical equipment; bedside
monitors, ventilators, pumps, et cetera. These devices provide the measurements they
perform. Devices that are not onlymonitoring but are also actively involved in treatment
(e.g., ventilators), provide their settings also. All data streams provided by medical
equipment are recorded at a frequency of once every minute.

The PICU dataset is a derivation from this PDMS. In the PICU dataset, only patients
are included that were attached to mechanical ventilation for at least 24 hours. How-
ever, patients with congenital heart disease were excluded. The dataset contains 1547
patients, who were admitted between the years 2008 and 2018. The patient population
is very diverse; it contains pediatric patients from all age groups, ranging from age 0 to
18. In this section, we will describe the main characteristics of this dataset. First, we will
describe the organization of the dataset in section 3.2. After that, we will describe the
patient population in section 3.3. In section 1.5.1, we already expressed some concerns
regarding this dataset. One of the main concerns is missing data points; within several
vital signs time series, observations are missing. Many data analysis methods cannot
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handle missing data points. We will discuss in section 3.4 how we prepared the raw
dataset for further analysis.

3.2 Dataset organization

Initially, a big dataset containing anonymised patient information was provided in a
single file in the CSV format. This file had a size of approximately 5.0 GiB and it had the
following structure:

patientid,time,eng_venttype,other_variable,^^.
9,2119-11-10 10:35:00,,3.5,^^.
^^.

For every patient, there are 88 variables recorded at each timestamp. The CSV then con-
tains 90 columns in total; including the timestamp and the patient identifier as columns.
The patient identifier and timestamps are anonymised; the date part of the timestamps
are fictional, in order to preserve patient privacy. Because of the file’s size, it cannot di-
rectly be used in analytical programming environments like R. The dataset was adapted
as follows.

First, the original file was split in smaller chunks; we created a separate file for every
patient. Then a parsing schema was created for the whole dataset. There is a reason we
did this after splitting, because of the file size we could not determine the right parsing
schema for the columns of the whole dataset. After considering a number of rows from
a sample of the patient population, we were able to form a parsing schema. One of
the reasons why auto-discovery of a parsing schema did not work is the sparsity of the
dataset; not all variables are recorded for every patient, as there are separate columns
for the variables and parameters of the individual ventilators (e.g., eng_venttype and
ser_venttype for the Engstrom and Servo ventilators respectively). Sampling several
rows from the whole data set enabled us to make a type schema of all the columns of
the entire data set. This schema enabled parsing every patient file correctly and access
all the records in a type-safe way.

Using a programwritten in F♯, a language in the functional programming paradigm
that is very suitable for data discovery and analysis, we were able to aggregate some
cross-sectional statistics for each patient. We created an overview containing some basic
statistics for some of the variables of interest. This resulted in a table which included
the variables given in table 3.1. The parameters in table 3.1 include the most indicative
parameters. The aggregated table may be used to group patients on age, and perhaps
condition. Indicators for patient health are the vital signs and the settings themselves.
By finding extreme settings, for example, the PEEP and FIO2 parameters, we may be
able to find interesting patients. The resulting table was used to produce some of the
graphs and plots in chapter 2.
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Monitor Ventilator Patient

ETCO2 Expiratory Tidal Volume Identifier
Heart Rate Total Frequency Admission Date
SPO2 PEEP tstart
Resp. Frequency FIO2 tend

Ventilator Type Length of Stay
Ventilation Mode Age

Weight

Table3.1: In this table, the variables are given that are included in the aggregated table. Fromthemonitor andventila-

tor variables, theminimum,maximum, and average values are calculated. The ventilator types and ventilationmodes

are aggregated as lists.

3.3 Patient population

As said earlier, the PICU data set contains 1547 patients, who are all between the ages
0 and 18. Most patients, however, are very young; 821 of them are between 0 and one
years old. In figure 3.1, the age distribution is shown. The number of older children
that stay longer than 24 hours on the PICU is small compared to the group of younger
infants. In turn, most of the patients that are younger than a year are also between 0 and
one months old at the moment of admission.

The average time spent on the PICU is 296 hours, which translates to 12 days. The
median length of stay is 170 hours, which is approximately seven days. From this ob-
servation, we may assume that the patients’ time series are long enough to correctly
analyze them. We did not find a relation between age and length of stay.

In addition to age, we can also divide the patients over the several ventilator types.
As there are differences between ventilator types, it may be desirable to create ventilator-
specific prediction models. In figure 3.2, the results are shown. There are four types of
ventilators:

• Engstrom

• Carescape

• Servo-i (also referred to as Servo)

• Servo-u

A large group of patients (n = 800) was solely connected to the Servo-i ventilators.
The second biggest group was solely connected to an Engstrom ventilator. By looking
at figure 3.2, it would seem that a large group (n = 169) was not connected to any
ventilator. We found out, however, that this was not the case; the patients who were not
associated with a ventilator were connected to the Servo-300 ventilator, a predecessor
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Figure 3.1: Age distribution in the PICU data set

of the Servo-i and Servo-u ventilators. The Servo-300 did not report its settings to the
PDMS, and therefore, we could not identify it (as identificationwas based on the settings
columns).
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3.4 Dataset preparation

We already mentioned in section 1.5.1 that the raw PICU dataset cannot be used in anal-
ysis methods directly. Below, we will provide several reasons for this.

Differences between ventilators and ventilation modes. Each ventilator stores its set-
tings in columns that are only used by that specific ventilator type. Most settings
are present for all types, but some are only present for a specific type. In table 3.2,
an overview is provided of the setting parameters.
Besides the difference between ventilator types, there are also variations between
ventilator modes. For example, when patients are ventilated in a CMV mode,
only the vendor_pres_pc1 pressure settings are used, whereas in a IMV / CSV
mode, the vendor_pres_ps2 settings are used. Furthermore, when a VC or PC-
IMV-Adaptive mode is used, the pressure settings are not used; the systems aim
to achieve a goal tidal volume/minute volume and vary the pressure themselves.
This difference is also reflected in themeasurements; it depends on the ventilation
mode, which variables are measured. The fact that several columns remain empty
for certain modes means that we cannot create models that work for all ventilation
modes.

Gaps in the data. There are periods in the dataset in which the patient is disconnected
from the ventilator and monitoring equipment. These episodes are recorded as

1pc stands for Pressure Control, which is a CMV mode
2ps stands for Pressure Support, which is, depending on the configuration, a CSV or IMV mode
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gaps in the data; there are no measurements stored for these timestamps. Patients
are disconnected from regular equipment during surgery or transportation. After
surgery, the patient is again connected to the equipment at the PICU. We cannot
treat the gaps as part of a time series, as within these gaps, the state of the patient
may have fundamentally changed.

Missing measurements. There are also small periods in the dataset where data from
only one or a few variables is missing. This can happen, for example, due to equip-
ment failure, patient behavior, or a manual intervention by the caregivers. These
missing values are stored as NA values. With imputation methods, we can fill in
possible values for the missing variables.

In the following sections, we will describe how we adapted and prepared the PICU
dataset for further analysis. In section 3.4.1, wewill discuss howwe solved inter-ventilator
differences and how we divided the dataset into uninterrupted episodes. In section
3.4.2, we will discuss how we imputed the remaining missing values.

3.4.1 Dataset redesign

Setting Servo-i Servo-u Engstrom Carescape

Mode ser_ventmode seru_ventmode eng_ventmode car_ventmode
Patient Type ser_pttype seru_pttype eng_pttype eng_pttype
PEEP ser_peep seru_peep eng_PEEP eng_PEEP
Pressure ser_pres_pc, ser_pres_ps seru_pres_pc,

seru_pres_ps
eng_pres_pc, eng_pres_ps eng_pres_pc, eng_pres_ps

Frequency ser_freq seru_freq_min eng_freq eng_freq
Minute Volume ser_mv - - -
Inspiration Time ser_insptime - eng_time_insp,

eng_time_supp
eng_time_insp,
eng_time_supp

Inspiration Rise Time ser_insprisetime seru_insprisetime,
seru_insprisetime_msec

eng_insprisetime_ps,
eng_insprisetime

eng_insprisetime_ps,
eng_insprisetime

Trigger Sensitivity Below
PEEP

ser_trigsens - - -

FIO2 ser_fio2 seru_fio2 eng_fio2 eng_fio2
I:E-Ratio ser_ieratio seru_ieratio - -
Tidal Volume ser_tv seru_tv eng_tv eng_tv

Table 3.2: In this table, all the settings that describe the same concept are placed on the same row. In the preparatory

phase, the values of the original columns are stored in new ventilator generic settings columns. Some settings have

multiple variables (e.g., pressure). The choice between them often depends on the chosen ventilationmode.

During the preparatory phase, we created a new schema for all the variables. We
combined all the vendor-specific columns that describe the same concept into one sin-
gular column. We reduce the sparsity of the dataset by doing this; in turn, this made
the dataset much more comprehensive. We also combine some of the measured vari-
ables (e.g., frequency of the Engstrom and Carescape ventilators). Some variables are
based on other variables. An example derived variable is the compliance variable. Not
every ventilator records this value, and therefore, we omitted this variable in the new
schema. We keep only the measured variables that are measured by all ventilators. We
combine these into a new record schema. The new schema for each recorded time step is
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shown in table 3.3. The ventilator mode is stored according to the classification method
provided by Chatburn et al. [8]. In the original dataset, the modes were encoded as
integers, and each ventilator type had a different encoding.

As said earlier, as some variables and parameters are omitted for some ventilation
modes, we cannot create a generic model for all modes. Therefore, for each patient, we
will create episodes. In these episodes, the ventilation mode remains the same. These
episodes are also without gaps. When a gap is found, a new episode starts. We already
split the dataset based on the patient identifier. We did this by reading the original CSV-
file line-by-line and appending the contents verbatim to patient-specific files. Here, we
read these patient-specific files and parse the results according to a type-schema. We
store the information in a record-type that corresponds with table 3.3. If this is the
first measurement, a new episode is created. All subsequent records are parsed and
added unless the ventilation mode differs from the previous record or the timestep has
increased by more than one minute. The latter indicates a gap. When one of these
situations occurs, the last read record is added to a new episode. When all the contents
of the patient’s file have been read, the new episodes are saved to a new patient-specific
file. Each episode has a unique identifier. For each patient, we also stored the total
number of episodes and global parameters as age, weight, length of stay, and admission
date in a separate file. All the episodes are also stored in a separate file, so we can make
selections based on ventilation mode.

Record Info Measurements: Settings: Actions Ventilator Info: Comments:

ID HR Pressure PS Suction Model SettingsChange
Time SPO2 Pressure PC Nebula Mode

RF Inspiration Time Plasters
ETCO2 Inspiration Rise Time
VTexp Tidal Volume
VTinsp
Frequency Frequency
PPEAK

FIO2 FIO2
PEEP PEEP
I:E-ratio I:E-ratio

End Inspiratory Cycle

Table3.3: Thenewschema for each recorded time step. Weonly includevariables that aremeasuredbyall ventilators

and those that are not derived from others. We also include the vendor-generic settings, the recording of an action

(intervention, boolean variables), the ventilator model, and if a change in the settings has occurred.

3.4.2 HandlingMissing Data Points

The episodes that we have now are gapless; from tstart to tend, there are measurements
present. However, within these measurements, a few variables can still be missing or
contain extreme outliers. First, we replace all extreme outliers with NA values. These
extreme outliers are impossible sensor readings, i.e., negative values and impossible
values outside the possible range, like FIO2 > 100. In this way, we treat the extreme
outliers as missing data points. Typically, there are two options for handling missing
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data:
Complete case analysis or listwise removal. Weremove the rows that havemissingdata.

After removal, the resulting dataset only contains complete cases.

Imputation. We fill in probable values in for the missing data.
For time series, listwise removal is not always suitable. Removing entries / time-stamped
rows with missing measurements may disrupt temporal patterns for the variables that
are complete. However, this is not the case at the beginning and the end of the episode.
These are spots where many missing data points are present. At some episode’s begin-
nings, the patient is admitted to the PICU, intubated, or brought back from surgery. Up
to the moment when the patient is fully connected, sensor readings can be unreliable
or even missing. The same happens at the end of an episode; before a gap or a mode
change, some variablesmay bemissing due to the interventions of the caregivers. In our
case, we removed entries at the beginning and the end of an episode up to the first or last
complete entry respectively. We could impute these values, but we suspect that some
of the other values may also be unreliable within these periods. This removal process is
referred to as trimming. Trimming does not disrupt temporal patterns, however, remov-
ing remaining entries with missing data does disrupt temporal patterns as these entries
are surrounded by complete ones, and removing them causes gaps. Therefore, we did
not remove these entries and imputed the remaining missing values. A limited set of
episodes remained empty after trimming; this may happen when one of the columns is
empty for the entirety of the episode.

In table 3.4, the percentage of missing values for each variable is shown after trim-
ming . These percentages ranged from almost zero to 3 %. The ETCO2 variable had the
highest percentage of missing values (3.32 %).

ETCO2 VTexp FIO2 Freq HR I:E-ratio PEEP PPEAK RF SPO2

3.32 % 0.18 % 0.00 % 0.18 % 0.64 % 2.81 % 0.18 % 0.18 % 1.93 % 1.05 %

Table 3.4: The percentage of missing data for each of the measured variables. The EtCO2 variable contains the most

missing data points.

Types of Missing Data

The suitability of imputation depends on the type of missing data. We distinguish be-
tween three types of missing data [22, 42]:
Missing at random (MAR). The chance that a data point is missing is not related to

the missing information itself.

Missing completely at random (MCAR). This is a stronger version of the former, but
here the missing information has also not related to all the other recorded vari-
ables.
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Missing not at random (MNAR). In this case, the missing of information is directly
related to the value. In surveys, MNAR often takes place at privacy-sensitive vari-
ables like income. The chance that a variable is absentmay also depend on another
variable.

For the MNAR case, we cannot perform imputation without modeling the underlying
process, which makes imputation much more difficult. We assume, however, that this
is not the case for our missing data. All the data is gathered passively (so there is no
incentive to withheld information) Furthermore, we assume that during normal oper-
ation the sensors work correctly, that is, they do not store NA values for specific values.
Of course, sensor failure occurs within our dataset. A possible cause can be a discon-

Figure 3.3: Typical behavior ofmissing values during themanual suction intervention. Someof the variables are omit-

ted for clarity. The FiO2 setting (blue) is set to 100 %, and during the intervention, missing values occur in the ventila-

tor measured variables EtCO2 (purple) and P
peak (green).

nection due to the movement of the patient or intervention of a caregiver. We assume
that the failure does not depend on the actual value and happens at random.

Sensor failure also occurs when the caregivers perform the manual suction interven-
tion; in this case, the tube is temporarily disconnected for cleaning out sputum. When
this is done, the FIO2 setting is set to 100 % (see figure 3.3). During the period that the
tube is cleaned, the ventilator measured variables (ETCO2, VTexp , Freq, I:E-ratio, PEEP,
and PPEAK) do not work and report NA values to the PDMS, which is correct behavior, as
they cannot perform measurements. Note that in table 3.4, the VTexp , Freq, PEEP, and
PPEAK variables show similar percentages of missing values. The fact that these variables
are missing could also be used as an indicator or feature. One might also argue that this
is a case of MCAR. However, the VAR models we discuss in chapter 4 cannot deal with
missing values, so keeping the missing values is not an option. Furthermore we can-
not know what the actual values are during these interventions, so we treat the missing
values caused by this intervention the same as the other missing data points.
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Imputation

There are severalmethods suitable for time series imputation. TheR-package dplyr [55]
and tsibble [54] provide several basic imputation methods suitable for time series:

Last Observation Carried Forward. This imputation method provides the last avail-
able measurement as the imputed value.

Next Observation Carried Backward. Thismethodworks similarly as the previous, only
the next available observation is used as the imputed value.

Linear interpolation. The last and next available values are interpolated. When these
values differ, the imputed values follow the trend between these. This method
was used by Bose et al. [5].

In addition to these more naïve methods, there are also some more sophisticated meth-
ods. The Kalman filter is a frequently used method for imputing missing data in a uni-
variate time series (e.g., [24, 21]), which does take temporal characteristics into account.
The dataset that we use, however, contains multiple time series. It may be possible to
use the other time series to find the most suitable value for imputation.

The MTSDI package, which stands for Multivariate Time Series Data Imputation can be
used to imputemissing values inmultivariate time series. The algorithm is based on the
Expectation-Maximization (EM) algorithm [22]. According to Junger and De Leon [22],
the method is suitable for modeling both spatial and temporal correlations. During a
simulation study, the authors tested the performance of the algorithm. On a test set
where the amount of missing data was at most 5 %, the algorithm yielded good results.
When the amount of missing data was increased, the performance of the algorithm de-
creased likewise. Formore information on the implementation of theMTSDI algorithm,
we refer to [22]. Belowwewill describe howweused theMTSDI algorithm for imputing
the missing data in the PICU dataset.

The MTSDI algorithm aims to keep the mean of the time series intact. The conver-
gence parameter specifies how far the resulting mean can differ from the original mean.
The convergence parameter has as default a very small value (0.001). This default value
was not fruitful with respect to the PICU dataset; the algorithm produced a lot of ex-
treme values that were (far) out of the ranges that were present in the original dataset.
We observed that the precision of the variables in the dataset is often only one decimal;
therefore, a small convergence parameter does not make sense. After taking a higher
value for the convergence parameter (0.1), the results greatly improved; however, some
imputed valueswere still out of range. During a secondpass, these out of range variables
are removed and again imputed using the Kalman filter method. We use the Kalman
filter provided in the imputeTS package [35]. The combination of these two methods
resulted in a successfully imputed dataset that kept the means of the dataset intact and
does not contain out of range values. We performed imputation on each episode sepa-
rately, as the MTSDI algorithm and the Kalman filter cannot take the episode identifier
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into account. In figure 3.4, the results of this combined approach are shown on the
missing values of figure 3.3.

Figure 3.4: This figure shows the results of the combined MTSDI and Kalman filter imputation method. The original

data are shown in figure 3.3.

3.5 Focus on a single ventilationmode

In addition to choosing to focus our research on one single ventilator type, we also de-
cided to focus or research on one specific ventilator mode. We explained in section 3.4.1
how we divided the patients’ time series into episodes for each mode because the set of
used variables differs among them. As our time was limited, we decided to focus our
research on one single ventilationmode. We chose the PC-IMV-Adaptive / PRVCmode,
as this is the most used mode on the WKZ PICU for the Servo-i model (see table 3.5).
For our further research, there are almost 2700 days (nearly 7.5 years) of Vital Signs
Time Series available.

Ventilation Mode Days of data available

PC-CMV-SetPoint 1460.17
PC-CSV-Adaptive, Adaptive 14.54
PC-CSV-Adaptive 65.00
PC-CSV-Servo 36.34
PC-CSV-SetPoint 2256.15
PC-IMV-Adaptive, Adaptive 49.68
PC-IMV-Adaptive 2693.78
PC-IMV-SetPoint, SetPoint 169.37
VC-IMV-Dual, Dual 2.05

Table 3.5: The used ventilationmodes in theWKZ PICU
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3.6 Summary

In this chapter, we have described the main characteristics of the PICU dataset and the
patient population it describes. We have described the major flaws of the raw dataset;
these were the mixing of different ventilators and modes, the presence of gaps, and
missing values that are present in the measured variables. We have described how we
adapted the dataset for further analysis. This chapter answers Research Question 1:
How do we prepare the raw dataset for further analysis? We achieved this by first adapting
the architecture by storing the time series in episodes of continuous measurements in
the same ventilation mode. After that, we removed the beginning and endings of the
episodes that containedmissing data. Finally, we imputed the remainingmissing values
by using a combination of the MTSDI-algorithm and a Kalman Filter. This adapted
dataset can now be used for further analysis. An extensive exploratory study of the
PICU dataset will be given in the next chapter.
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4
Exploratory time series analysis

4.1 Introduction

Before we make predictive models for vital signs time series, we will provide an ex-
ploratory analysis. We will introduce several analysis methods and time series model-
ing methods. We can use these methods to describe the Vital Signs Time Series that are
present in the PICU Dataset. First, an introduction to time series analysis will be given
by discussing some fundamental concepts and notation. These can then later be used
to describe the time series models.

Several models can be used to describe a multivariate time series. The first model that
we will introduce is Vector Autoregression, which models how the current measurement
relies on the earlier time steps of these variables.

Secondly, the Panel VAR model will be discussed, which is a variation on the Vec-
tor Autoregression model. This model can be used to model data when there is also
a cross-sectional characteristic present in the data set (in addition to the temporal re-
lation). This cross-sectional characteristic can, for example, be different countries or
subjects/patients. In our case, this will be the identifier of the episodes we discussed in
chapter 3. One can see this identifier as a patient identifier; however, a patient can have
multiple episodes.

The third model we will discuss is the Multilevel Graphical VAR Models (MLGVAR).
Thismodel is an exploratory analysis tool based on theGaussian Graphical model (GGM).
GGMs can be used to visualize relations in various types of datasets. The MLGVAR
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model can analyze multivariate time series data of multiple subjects [15].
This chapter is structured as follows: First, some fundamental concepts of time series

analysis will be introduced, followed by a description of these aforementioned analysis
methods. Furthermore, we will describe how these methods will be applied to this
dataset and how the analysis is implemented in the R language. We will conclude this
chapter by discussing the results and their interpretation.

4.2 Time series analysis

One of the main goals of time series analysis is to develop models that describe the
data in question. A time series is a sequence of random variables {x1, x2, . . . , xt}, for
which the subscripts denote the time period of the variable x [47]. In literature, the
sequences {xt} of random variables are referred to as stochastic processes. A realization
of a stochastic process consists of its observed values [47]. The time series we discuss in
this work are discrete time parameter series; the data is measured at a fixed discrete time
interval. In practice, all time series are discrete [47].

Traditionally time series are assumed to be composed of several components (clas-
sical additive decomposition) [34]:

xt = mt + st + ϵt (4.1)

where

xt : the observed series
mt : trend
st : seasonal effect / effects based on the calendar
ϵt : residuals or error term

4.2.1 Univariatemeasures

Several (statistical) measures can describe a time series. These measures will be dis-
cussed in this section.

A fundamental statistical measure used in all analysis is the mean. The mean of a
time series is defined as follows [47]:

µxt = E(xt) =
∫ ∞

−∞
x · ft(x) dx (4.2)

where

µxt : the mean of the series
xt : the observed series
E(xt) : the expected value of a random value in xt

ft(x) : the probability density function
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Another measure is the autocovariance function. This function measures the linear
dependence between two points on a series (observations measured on different times
s and t). Smooth series have larger autocovariance values, also when the distance be-
tween s and t is increased. In contrast, choppy series have values that tend to zero. The
autocovariance function is defined as follows [47]:

γX(s, t) = cov(xs, xt) = E[(xs − µs)(xt − µt)] (4.3)

In time series modeling, we often include earlier or lagged variables in equations. We
can define the lag or backshift operator, which can access the previous value of a variable,
as follows [47]:

B(xt) = xt−1 (4.4)

This backshift operator can be repeated; this can be done in the following way:

B3(xt) = B(B2(xt)) = B(B(B(xt))) = xt−3 (4.5)

In addition to thesemeasures, standard statisticalmeasures as the variance and standard
deviation can also be used to describe the series.

4.2.2 Stationarity property

The time series need to be stationary to correctly analyze and model time series. This is
necessary to prevent the construction models based on spurious correlations. A stationary
series is a series without trends and periodic fluctuations (e.g., seasonality). Without
stationarity, it is not possible to make correct statements about, for example, the means
and correlations that characterize the time series [5]. Shumway and Stoffer [47] define
a strictly stationary time series as follows:

Definition 1. A strictly stationary time series is a series for which the probabilistic behavior of
every collection of values

{xt1 , xt2 , · · · , xtk}

is identical to that of the time shifted section:

{xt1+h , xt2+h , · · · , xtk+h}

So that:
Pr{xt1 ≤ c1, · · · , xtk ≤ ck} = Pr{xt1+h ≤ c1, · · · , xtk+h ≤ ck}

This definition is often too strict; it is not always realistic to assume that real-world data
conforms to this definition, even after transformation. There is also the notion of weakly
stationarity time series, which is a relaxed version of strictly stationary, only specifying
constant behavior over time for two probabilistic properties [47]:

Definition 2. A weakly stationary time series xt, is a finite variance process such that,
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1. the mean value function (equation 4.2) is constant and does not depend on t

2. the autocovariance function (equation 4.3) depends on s and t only through their difference
|s − t|.

Stationarity is often linked to the presence of unit root in the series. Suppose we have a
series xt that can be written as an autoregression with p lags:

xt = a1xt−1 + a2xt−2 + · · ·+ apxt−p + ϵt. (4.6)

Using the coefficients a, we can formulate a characteristic polynomial equation:

mp − mp−1a1 − mp−2a2 − · · · − ap = 0 (4.7)

When for one of the polynomial roots of these equations m = 1 holds, then the series
has a unit root. In a stationary time series, no unit roots are present, we can find out
through unit root testing if a series is stationary or not.

Several tests can be used to find unit roots in a series. One commonly employed
test is the Augmented Dickey-Fuller (ADF) test. The null hypothesis is that a unit root is
present in the series, while the alternative states that the series is (weakly) stationary.

Another test that can be used is the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test.
Contrary to the ADF test, here the presence of unit root is the alternative. Furthermore,
the null hypothesis states that a function is trend stationary, which isweaker thanweakly
stationary. A trend stationary process can be written in the following form:

xt = f (t) + ϵt (4.8)

where

f (t) : a function R → R

A process can be non-stationary and not have a unit root present. A trend stationary
process is mean-reverting, meaning that when a shock has taken place, it will converge
to the current mean on the trend. During this project, we will perform unit root testing
using ADF tests.

4.2.3 Transforming time series

When a time series is not stationary, it can be adjusted by taking a first-order difference
of the series (subtracting the current value from its lag)1:

∆xt = xt − B(xt) (4.9)
1NB: In time series literature like Shumway and Stoffer [47], instead of the ∆, the∇ symbol is also used.

However, in our work, we will use the ∆, as we will use the ∇ to denote the gradient in chapter 5.
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Often, these first-order difference time series are stationary, butwhen this is not the case,
this operation can be repeated to create a difference of order d [47]:

∆d = (1 − B)d (4.10)

Another operation that is sometimes performed in time series is demeaning or centering,
removing the mean of the series so that the mean of the resulting time series is 0. This
is done in [15] and [48]. In this analysis, we will use within-subject centering. With this
method the mean that will be subtracted from the time series is the mean of the subject.
Another possibility is that the population mean is subtracted, but this is not something
that is done in the literature referenced in this work.

4.2.4 Granger Causality

Suppose that wewant to investigate if changes in the ETCO2 variable may cause changes
in the SPO2 variable. We can test this using the Granger Causality test. The Granger
Causality test is one of the most commonly employed techniques to investigate causal
relations between two time series. The test is named after Clive W.J. Granger, who in-
troduced it in his paper called “Investigating causal relations by econometric models
and cross-spectral methods” (1969) [20]. It has to be noted that Granger causality can-
not be equated to general causality: it is not necessary that an event in time series a,
preceding an event in time series b, actually causes the event in series b. The event in a
could indeed have been the cause, but there may also be another event that causes both
the events in a and b. Granger causality is defined as follows [40]:

Definition 3. A variable Granger-causes another variable if knowing the first (significantly)
helps to predict the latter.

If wewant to determine if there exists a Granger causality relationship between two time
series, we can follow the following procedure: Suppose that we have two time series, xt

and yt. Then, we pose the following two hypotheses:

H0: yt does not Granger-cause xt

H1: yt does Granger-cause xt

First we define a regression on x using only x’s own lagged values.

xt = cx + ax1 · xt−1 + ax2 · xt−2 + · · ·+ axp · xt−p + ϵt (4.11)

where

a : coefficients
p : the number of included lags
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Then the lagged values of y are added to the equation. Again regression is performed
to find suitable values for the coefficients:

xt = cx + ax1 · xt−1 + ax2 · xt−2 + · · ·+ axp · xt−p

+ ay1 · yt−1 + ay2 · yt−2 + · · ·+ ayp · yt−p + ϵt
(4.12)

In the regression above, the coefficients that are not significant (according to t-statistics)
are removed as they do not add explanatory power to the regression measured by an F-
test [56]. H0 is rejected if at least one lagged term of y is kept in the regression equation.
The null hypothesis is, therefore, only accepted if all lagged values of y are removed
from the regression equation.

4.3 Analysis methods

4.3.1 Vector Autoregression

Beforewediscussed individual time series, however, the data set that is used in thiswork
is multivariate. Vector Autoregression (VAR) models enable us to model multivariate
stationary time series. In a VAR model, we perform regression on the outcomes of a
vector yt, which is a (K × 1) random vector, with K denoting the number of variables
that are modeled.

Using lagged values of a variable yi in y and the other remaining variables contained
in y, a linear regression is formed. A VAR model has an order p, specifying the lag-
length; e.g. a VAR(3) model includes the observations of t − 3, t − 2 and t − 1 of all the
variables in y. We can describe a general VAR(p) model using the following equation:

yt = c + A1yt−1 + A2yt−2 + · · ·+ Apyt−p + ϵt (4.13)

Suppose that wewant tomodel the ETCO2 and SPO2 variables in terms of each other. We
can then create a bivariate VAR(p)model. Suppose that y1 describes the ETCO2 variable,
and y2 the SPO2 variable and that we want to include the two previous observations
(p = 2). We can then create a bivariate VAR(2) model. We can rewrite equation 4.13 by
explicitly notating all the elements of y and A:[

y1,t

y2,t

]
=

[
c1

c2

]
+

[
A11,1 A12,1

A11,2 A12,2

] [
y1,t−1

y2,t−1

]
+

[
A21,1 A22,1

A21,2 A22,2

] [
y1,t−2

y2,t−2

]
+

[
ϵ1,t

ϵ2,t

]
(4.14)

We can also rewrite the above equation in scalar notation:

y1,t = c1 + A11,1 · y1,t−1 + A12,1 · y2,t−1 + A21,1 · y1,t−2 + A22,1 · y2,t−2 + ϵ1,t (4.15)

y2,t = c2 + A11,2 · y1,t−1 + A12,2 · y2,t−1 + A21,2 · y1,t−2 + A22,2 · y2,t−2 + ϵ2,t (4.16)
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The c terms in these equations are intercept values (cf. regular linear regression). All the
coefficients for the different lagged values are contained in the matrices A. The matrices
Ap have a size of (K × K) [28]. If we decompose equation 4.14 into scalar notations,
we see that no coefficients are shared between the two equations. This means that the
coefficients of each equation can be estimated separately [5].

Lag selection

For a VAR model, we have to find out which lag order is the best. This lag order is
important as too few lags can cause autocorrelation errors and a lag size that is too big
can cause overfitting [28, 5]. Information Criteria can be used to assess the complexity of
models. For VAR models, the following four Information Criteria can be used [28]:

• Akaike Information Criterion (AIC)

• Final Prediction Error (FPE)

• Hannan-Quinn Criterion (HQ)

• Schwarz Criterion (SC), which is equivalent to the Bayesian Information Criterion
(BIC)

The AIC and FPE are roughly equivalent. Lütkepohl [28] shows that AIC and FPE
never underestimate the lag order, but they can overestimate the order with a positive
probability. Paulsen and Tjøstheim [38] show that the probability for overestimating
the lag order decreases when the dimension K increases, so when more variables are
present in the multivariate time series. When K ≥ 5, the probability for overestimating
the true lag order becomes negligible.

In small samples sizes, AIC and FPE are mostly able to find the correct order, while
HQ and SC will find the correct order more often than the former when the sample size
is larger. However, AIC and FPE can still provide better forecasts than HQ and SCwhen
working on larger sample sizes, as thOne way to do thisese methods are created with
the intent to minimize predictive errors, sometimes sacrificing finding the correct order.
HQ and SC will more often find the correct order [28].

Residual autocorrelation

After fitting a VAR model, it is desired to determine the quality of the fitted model; an-
swering the question if the model gives a good representation of the data. is to examine
the residuals [5], the ϵ term in equation 4.13. If there is information still present that
could have been modeled, then this will influence the performance of the model. When
there is information still present, this is referred to as residual autocorrelation. With the
Lagrange Multiplier Test this can be assessed. If there is information still present, this can
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be modeled with the following equation:

ϵt = D1ϵt−1 + · · ·+ Dhϵt−h + vt (4.17)

where

Di : some constant
vt : white noise or the true error term
h : the number of lags

In this test the following two hypotheses are tested [28]:

H0: D1 = · · · = Dh = 0 or in other words ϵt = vt

H1: Di ̸= 0 for at least one i ∈ {1, . . . , h}

The test that we will use to test these hypotheses is the Breusch-Godfrey Lagrange Multi-
plier test [6].

VARModel stability

After a VAR model is fitted, we have to assess if the model is stable. A stable VAR model
generates stationary time series. If a model is unstable, the model can have a trend or
even exhibit seasonal fluctuations [28]. Assuming that the model is fitted on stationary
time series, the model should, of course, also generate stationary time series.

The stability of a VAR(p)-process can be determined by calculating the eigenvalues of
the coefficient matrix. The eigenvalues are complex numbers, so the eigenvalues have
a real and imaginary part. If all eigenvalues lie within the unit circle, which has as
axes the real and imaginary part of C, then the system is considered stable (see figure
4.1). Bose et al. [5] performed visual inspection of a unit circle plot to assess stability.
However, visual inspection is not needed. If we take the modulus2 of all eigenvalues
z and determine if they are smaller than 1 (so z < 1), the VAR-process is considered
stable [39].

4.3.2 Panel VAR

Panel datasets are a class of datasets which have a cross-sectional dimension in addition
to the time dimension. The PICU dataset is a panel dataset, as it contains the same set
of observations for each patient, which are measured at a fixed frequency over multiple
time periods. A Vector Autoregressionmodel cannot take the cross-sectional dimension
into account, whereas a Panel VAR model does take this into account. This model com-
bines aDynamic Panel Model (DPM) with the VARmodel that we discussed before [48].

2The modulus r of a complex number z = x + yi is r = |z| =
√

x2 + y2
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Figure 4.1: When all the roots of the VAR system lie within the unit circle, the VAR system is considered stable. The

x-axis describes the real part of the root, the y-axis the imaginary part. Adapted from [5].

Panel models have the following form [57]:

yi,t = α + βTXi,t + ui,t (4.18)
ui,t = µi + ϵi,t (4.19)

where

i : the index of the cross-sectional dimension
t : the index of the time dimension
α : intercept
βT : coefficient vector
Xi,t : the independent variables
µi : effects that vary between individuals i, but do not vary over time
ϵi,t : effects that vary over individuals and time

In a Dynamic PanelModel, lagged variables are also added to the regression of equation
4.18 [57]:

yi,t = α + βTXi,t + γyi,t−1 + ui,t (4.20)

where

γ : coefficient for the lagged variable

If we translate equation 4.20 to our case, we observe that there is a patient-specific
“mean” µi. The coefficients β and γ are assumed to be the same for all patients. The use
of multiple lags and multiple dependent variables is still missing in equation 4.20, as
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this equation has only one dependent variable and only includes one lag. By combining
equations 4.13 and 4.20, we can form the regression equation for a Panel VAR model
[48]:

yi,t = µi +
p

∑
l=1

(Alyi,t−l) + Bxi,t + Csi,t + ϵi,t (4.21)

where

yi,t : an (m × 1) vector of m endogenous variables for the ith cross-sectional unit at
time t

yi,t−l : an (m × 1) vector of m endogenous variables at time step t − l
xi,t : a (k × 1) vector of k predetermined variables
si,t : an (n × 1) vector of n exogenous variables
Al : an (m × m) matrix containing the coefficients for lag-l
B : an (m × k) matrix containing the coefficients for the k predetermined

variables
C : an (m × n) matrix containing the coefficients for the n exogenous variables
µi : the subject-specific mean

This model allows the use of predetermined and exogenous variables. Exogenous vari-
ables are variables that are not influenced by other variables. Examples of exogenous
variables are age and weight, as the other variables do not influence them; these vari-
ables even remain constant over time in our dataset. Predetermined variables have a
weaker form of exogeneity; their value is not correlated to previous values, but a sud-
den change may affect future values [58]. However, for the PICU dataset, there are no
exogenous variables for which this relaxation is needed. All the other variables are en-
dogenous variables. For the estimation of the coefficients of the Panel VAR model, we
refer to Sigmund and Ferstl [48].

4.3.3 TheMultilevel Graphical VARModel

In the article “The Gaussian Graphical Model in Cross-Sectional and Time-Series Data”,
by Epskamp et al. [15], a novel graphical exploratory data analysis method is intro-
duced; theMultilevel Graphical VARmodel3. This model is based on the Gaussian Graph-
ical Model (GGM). A GGM is an undirected graph or network with nodes and edges.
The nodes in the network represent the different variables, and the edges describe the
correlation coefficients between them. In short, a GGM shows which variables can pos-
sibly be used to predict one-another. An example GGM is shown in figure 4.2. GGM’s
are designed to be used in three kinds of datasets [15]:

1. Cross-sectional datasets, where no temporal ordering is present, and every subject
is measured only once. These can be modeled using a basic GGM.

3Epskamp et al. [15] refer to this model as themultilevel VAR model (mlVAR). However, in this work, we
will add the word Graphical to emphasize that this model can be used to visualize correlations.
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Figure 4.2: AGGMbased on the PICU dataset (The Contemporaneous Network)

2. Temporally ordered datasets of one subject, (n = 1 time series). This is modeled
through a Graphical VAR model.

3. Temporally ordered datasets of multiple subjects(n ≥ 2 time series). This is mod-
eled through a Multilevel Graphical VAR model.

Wewill describe the process of deriving a GGM. First, the basic GGM for cross-sectional
data is introduced. This model will later be extended for modeling time series data. In
this section, we will largely follow the contents as presented by Epskamp et al. [15].

Deriving a GGM

The edges in a GGM describe the partial correlation coefficients (PCC’s). A PCC denotes
the correlation between two variables after conditioning on all the other variables in
the dataset [15]. Suppose we have a random vector y⊤

C = [YC1 , YC2 , . . . , YCm ] with yc

as its realization. We assume that yc is centered / demeaned (see 4.2.3). C denotes a
case, in the case of a cross-sectional dataset this C can denote the subject identifier, or C
could denote a temporal ordering or a combination of these. Next, we define a matrix
Σ, which will denote the variance-covariance matrix. We also define a matrix K, which
is the inverse of Σ, that is K = Σ−1. The elements of K, (κij), are related the partial
correlation coefficients of the Gaussian Graphical Network as follows:

Cor(Yi, Yj | y−(i,j)) = −
κij√

κii
√

κjj
(4.22)
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where

Cor(. . .) : The partial correlation between Yi, and Yj
y−(i,j) : all the values of y without the elements i and j
κij : the elements of matrix K

We can represent the PCCs in a graph. We visualize each variable Yi as a node. For each
significant PCC,wedrawan edge between the nodes. The edges all have aweight, which
is equal to the PCC. In practice, none of the partial correlationswill be exactly zero. Some
PCCs are significant and others are not. We can use thresholding and regularization to
force some values in the matrix to zero. The resulting graph is more sparse and only
shows relevant correlations.

GGM on Cross-sectional data (independent cases)

Because in cross-sectional datasets only one observation per subject is available, we can-
not estimate subject-specific means or GGM networks that are based on a single subject.
All the rows in the dataset are assumed to share the same multivariate distribution:

yp ∼ N(0, Σ) (4.23)

We canmake similar statementswhenwehave an n = 1 time series datasetwhen there is
no temporal relation between measurements (for example, when time interval between
measurements is very large).

yt ∼ N(0, Σ) (4.24)

The Temporal Network

We have seen in section 4.3.1 that we can use regular VAR models to model the effect
that consecutive earlier measurements have on the current measurement. Let us adapt
the VAR equation of 4.14 into the current notation for a lag order of p = 1.

yt = Byt−1 + ϵt

ϵt ∼ N(0, Θ)
(4.25)

The matrix B fulfills the same role as matrix A from equation 4.14. From matrix B we
can derive a temporal network. This network is not a GGM, as the temporal direction
does not go backwards (the future cannot influence the past). Therefore, this network
is directed and not a GGM (as GGMs are by definition undirected graphs).

A temporal network is thus a directed graph and created by drawing weights as arcs
between the corresponding variables. The weights are derived from the regression co-
efficients βij in B. The weights determine the size of the arcs. An arc in the temporal
network indicates that the origin variable can be used to predict the target variable node.
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We visualize the current measurement and lagged measurement as a single node. This
fact results in the presence of self-loops in the graph.

Graphs are commonly encoded as matrices in which the row indicates the node of
origin and the column the node of destination. The matrix B is transposed (B⊤) to
achieve this. Because of the temporal ordering, arcs between different variables are al-
ways from a lagged variable to the current measurement and not the other way around.

Equation 4.25 describes a p = 1 model. Suppose that we want to include more
lagged predictors in the model. Let L ⊆ N be a set of lags that are included in the
model. As each lag-l has its own matrix Bl , each lag has its own temporal network.

In section 4.2.4, we described the Granger Causality test. When we want to deter-
mine a causal relation between two variables using Granger-causality testing, we can
include these two variables in the comparison. The temporal network, however, gives
us more information. When there is a correlation between two variables, this is con-
ditioned on all the other variables in the network. An arc e : A → B (for A, B ∈ yt)
when A helps predicting B after controlling on all other variables in yt. This informa-
tion could indicate potential causal relations between these variables, assuming that no
other (unobserved) variables than those in yt cause those variables.

The Contemporaneous Network

In addition to the temporal network, we can make a GGM based on the contemporaneous
effects. The residuals ϵt of equation 4.25 can be used to derive the contemporaneous
network. The variance-covariance matrix of ϵt, which is denoted as Θ (see equation
4.25), can be inverted to obtain a matrix K(Θ) (that is, K(Θ) = Θ−1). By using equation
4.22, we can use the elements κ

(Θ)
ij to calculate the partial correlations between variables

i and j after controlling for the temporal effects. This networks shows how i and j are
correlated, or can predict each other within the same time step; if we know that the
ETCO2 and SPO2 have a significant coefficient in this network, we can use the ETCO2
value at time step t to “predict” the SPO2 value at the same time step t, or vice versa.

Graphical VAR (GVAR)

A graphical VARmodel (GVAR) is amodel that is composed of both the temporal network
and the contemporaneous network. When there are no temporal effects (when all the
measurements are independent of time), this model is equivalent to the GGM model
for cross-sectional data. This is the case when B = O, where O is a matrix containing
only zeros.

A fully saturated GVARmodel, in which all nodes are connected to all nodes, can be
estimated as follows: first a regular VAR model is fitted (just as in 4.3.1). The variance-
covariance matrix Θ of the residuals is then inverted to acquire the contemporaneous
model. There is also a step-wise model selection that can be used to estimate sparse
GVAR models. LASSO estimation (least absolute shrinkage and selection operator) can
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be used to estimate both the temporal and contemporaneous network structure. LASSO
estimation reduces the model’s fit on the training set by only using a subset of the set of
the predictors. This may seem counterintuitive, but this can reduce the risk of overfit-
ting. A good set of predictors can be found using step-wise selection, according to the
Extended Bayesian Information Criterion (EBIC).

TheMultilevel Graphical VARModel (MLGVAR)

Before, we described the Graphical VAR model that can model an n = 1 time series.
However, the PICU dataset contains data of multiple patients. The GVAR model can be
adapted to be able to deal with multiple subjects/persons. This model allows that the
number of measurements can be different for each person p. The adapted regression
equation is defined as follows [15]:

y[t,p] = µp + Bp(y[t−1,p] − µp) + ϵ[t,p]

ϵ[T,p] ∼ N(0, Θp)

Θ−1
p = K(Θ)

p

(4.26)

where
µp : the stationary mean vector of subject or person p
Bp : the subject-specific temporal network

We need to combine the information found in the individual networks to acquire in-
sight into the structure of the global network of the patient population. By multilevel
modeling (investigating models at a second level), we can obtain matrices B∗ and K(Θ)

∗
that represent the temporal and contemporaneous model of a random subject. These
are related to the individual networks as follows:

E(µP) = 0

E(BP) = B∗

E(K(Θ)
P ) = K(Θ)

∗

(4.27)

Thematrix B∗ encodes the average partial correlation coefficients of the population, cre-
ating a fixed effects model, which is similar to the Panel VAR model discussed in section
4.3.2. The differences BP − B∗ are referred to as the random effects. Similarly, the K(Θ)

∗
encodes the population’s contemporaneous network.

In addition to the two networks thatwere also present in theGraphical VARmodel, a
third network can be estimated based on themeans µP. This network is referred to as the
between-subjects network. We can invert the variance-covariance matrix Ω of stationary
means µP in the following way:

µP ∼ N(0, Ω)

K(Ω) = Ω−1
(4.28)
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This network shows how the variables predict each other on average [15].

Estimation of a multilevel VAR for n ≥ 2 time series

A multilevel VAR model can be estimated in two steps [15]:

1. First, univariate regressionmodels are estimated. The regressions contain all lagged
variables and the subject sample means of the variables as between-subjects pre-
dictors. The lagged variables are within-subject centered (see equation 4.26). The
subject sample means can be used to estimate a between-subjects network.

2. The contemporaneous model can be estimated using the results of the previous
step by applying univariate regression on all the residuals ϵ of step 1.

Regularization takes place in the form of thresholding, in other words, removing all
effects that have a very small coefficient. In the contemporaneous networks and between
subjects network, there are twoways to perform regularization, as there are two p-values
that denote the significance of an edge; from A → B and vice versa (B → A). An edge
can be retained in the network if one of these values is significant (this is called the
“or-rule”, or only if both of them are significant (“and-rule”).

Interpretation

Epskamp et al. [15] describe how each of these networks can be interpreted. They note,
however, that these networksmay only be used to create hypotheses for further research.
No hard (causal) relations can be established, but the results of these models can give
some indication for a starting point of further research. Below, we will discuss the in-
terpretation of the model’s networks according to Epskamp et al. [15]:

The temporal networks can be interpreted as a network that directly describes causal
influences as they happen over time, visualizing the correlations between a past
time step t − h and the current time step t. When the model is based on multiple
lags, this can be hard to interpret, as there is a separate models for each lag. The
sign of the corelation coefficient can even change between time steps.

The between-subjects network describes how variables predict each other on average,
describing global relations between variables. These can be causal and reflect the
temporal structure, but this may not always be the case. Take this example as
provided by Epskamp et al. [15]: If people are forced to exercise, they will have a
higher heart rate after starting the exercise. This will probably result in an arc with
a positive coefficient in the temporal network between the variables exercise and
heart rate. In the between-subjects model, however, a negative correlation exists
between these variables, as patients who exercise more often have a better condi-
tion, and a lower heart rate on average than patients who exercise less.
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The contemporaneous network shows the correlations between variables that are still
present in the residuals. The contemporaneous model could give some indication
of what interactions take place between variables between the last lag and the cur-
rent measurement. Strong correlations in this network could be an indication that
the measurement frequency should be increased, as there are possible temporal
relations present between the lags’ measurements that could have been modeled
through a temporal network if the frequency was higher.

4.4 Researchmethodology

Wehave described three differentmethods that can be used to analyze the PICUdataset:

• Traditional subject-specific Vector Autoregression (VAR) model

• Panel Vector Autoregression model

• Multilevel VAR model

In this section, we will describe how we can use these methods to analyze the dataset.
First, we will analyze the dataset using traditional VAR models. After that, we will
analyze the results of the Panel VAR model and the Multilevel Graphical VAR model.
For all of these models and tests, we will illustrate how these methods can be used in
the R programming language.

4.4.1 VARMethodology

In this section, we will describe how we analyzed the dataset using Vector Autoregres-
sion models. We will do this according to the methodology presented by Bose et al.
[5]. In their work, the authors examined the Vital Sign Time Series using a VAR model
and assessed causal relationships with Granger Causality testing. This paper (based on
the work in Lütkepohl [28]) presents a clear guide on how to perform such an analysis.
Their methodology consists of the following steps:

1. Determine the stationarity of the Vital Sign Time Series

2. Determine the lag-length p using selection based on an information criterion

3. Build a VAR model with p lags

4. Assess Residual Auto correlation (with the Lagrange Multiplier test)

5. Assess the stability of the VAR Model

6. Perform Granger Causality testing do determine causal relations between time
series
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Bose et al. [5] determined causal relations between time series prior to aCardio-Respiratory
Instability event (violations of the alarm thresholds of either the heart rate, SPO2 or res-
piratory frequency vital signs). As VAR models are subject-specific, they determined
the causal relations for each patient separately. The estimation procedure is not com-
putationally complex; this enables to estimate the VAR models for a large collection of
series. In the following sections, wewill follow the steps described above and show how
these can be performed in R.

Stationarity testing

Stationarity testing is done using the Augmented Dickey-Fuller Test, which is provided
in the tseries [53] as the adf.test(^^.) function. The test is performed on every
column containing a measured variable and its first-order difference. As we expect that
the presence of a unit root within an individual univariate series does not mean that
all other instances of that variable also share the presence of unit root, this test will be
performed on all the time series present in the dataset.

Lag order

Subsequently, we will determine the ideal lag-length. The function VARselect(^^.)
accepts a xts [46] multivariate time series object [40]. Given an l.max it will determine
the ideal lag order, according to the AIC, HQ, SC and FPE criteria (see section 4.3.1):

1 varselect ^- VARselect(prvc.subset.xts, lag.max = l.max, type = "const")

The type = "const" is chosen, because that is the default forVARmodelswhere no sea-
sonality (or other non-stationary properties) and/or exogenous variables are present.
As we assume that only stationary time series are present, this setting is suitable. The
object prvc.subset.xts includes all the measured variables of a single patient’s unin-
terrupted time series. We take for l.max ^- 30, as including more lags will make the
computation only longer and will limit the usefulness of some smaller series, as there
are series present in the dataset that have a length of two hours. We will assess all sub-
sequent test based on the results of both the AIC and SC criteria.

VARModel estimation

According to the results of the lag-order selection test, an individual VAR(p) model for
each of the patient’s uninterrupted series will be estimated. The VAR(^^.) function’s
signature is very similar to VARselect(^^.) function’s signature, but instead of esti-
mating the lag order, this one can be used to estimate the VAR model of the current
series.
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1 selectp ^- varselect$selection[[1]] # 1 ^> AIC, 2 ^> HQ, 3 ^> SC, 4 ^> FPE
2 varm ^- VAR(prvc.subset.xts, p = selectp, type = "const")

The function creates a varest object, which contains all the coefficients of the estimated
equations that describe the process. This object can be used for further testing and
Granger Causality testing, which we will describe below. It has to be noted that no
variables can be introduced that remain constant over time, such as the settings. These
variables have a variance of zero, and this causes problems as this makes one of the
matrices in the model to be singular (non-invertible).

Residual autocorellation testing

Residual testing can be performed to assess whether a model describes the data well
enough, or that we should increase the order p. We can perform the Breusch - Godfrey
test, which is implemented in the serial.test(^^.) function, which is also included
in the vars package [40]. Recall the autocorrelation hypotheses described in section
4.2.1 and equation 4.17. Let l.max ^- h from that equation, which denoted the furthest
autoregressive term in history.

1 > serial.test(var.est, type="BG", lags.bg = l.max)
2

3 Breusch-Godfrey LM test
4

5 data: Residuals of VAR object var.est
6 Chi-squared = 1253.5, df = 1000, p-value = 7.065e-08

In this example, H0 is rejected, as p < 0.05. This result means that in the residuals of
this VAR model, autocorrelation is still present, which might indicate that the lag order
of this model should be increased.

Stability testing

We can assess the stability of the VAR model by looking at the eigenvalues of the coef-
ficient matrix using the roots(^^.) function.

1 # Getting the roots of describing polynomial
2 rs.complex ^- roots(var.est, modulus = FALSE)
3 rs.modulus ^- roots(var.est, modulus = TRUE)
4
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5 visualInspect(rs.complex) # See Appendix
6 # Given a VAR model, var.stable calculates if it is stable
7 var.stable ^- function(varmodel){
8 rs ^- roots(varmodel, modulus = TRUE)
9 return(all(rs < 1))

10 }

The function var.stable(^^.) returns TRUE when the model is stable. The function
can easily be applied to a list of VAR models.

Granger Causality testing

In the former steps, all Vital Signs Time Series were included. However, for Granger
Causality testing, we will only compare two VSTS. We use the lag order that was de-
termined earlier for creating a bivariate VAR model. Let c1, c2 ∈ K where K is a set
containing all the VSTS.

1 prvc.colselect ^- prvc.subset.xts[,c(c1,c2)]
2

3 varm ^- VAR(prvc.colselect, p=selectp, type="const")
4 test.a ^- causality(varm, cause=c1.name)
5 test.b ^- causality(varm, cause=c2.name)

Using the causality(^^.) function we can test if c1 causes c2 and vice versa. The func-
tion gives an output like the following:

1 $Granger
2

3 Granger causality H0: dHF do not Granger-cause dRF
4

5 data: VAR object prvc.colselect
6 F-Test = 142.32, df1 = 1, df2 = 954, p-value < 2.2e-16
7

8

9 $Instant
10

11 H0: No instantaneous causality between: dHF and dRF
12

13 data: VAR object prvc.colselect
14 Chi-squared = 44.232, df = 1, p-value = 2.917e-11
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In this example, H0 (no Granger Causality) is rejected, as p < 0.05. After establishing
the presence of a Granger-causal relationship between all pairs of variables for all pa-
tients, the results can be aggregated to get an overview of the global causal relations
between the variables.

4.4.2 Panel VARmodeling

The R package panelvar [48], that implements the PanelVAR model we discussed in
section 4.3.2, provides several methods for the estimation of a Panel VAR model:

pvarfeols(^^.): A fixed-effects Panel VAR estimator using an Ordinary Least Squares estimator

pvargmm(^^.): Afixed-effects PanelVARestimator using aGeneralizedMethodofMoments (GMM)
estimator

The pvargmm(^^.) function can estimate the coefficients for equation 4.21. Unfortu-
nately, the required computation time and (more importantly) the amount of required
memorymake the use of this function impossible on (subsets of) this dataset. However,
we can use the pvarfeols(^^.):

The data structure that was used before has to be adapted in order to be usable in
this model. The DateTime column is adapted for each patient to range from 1, 2, . . . , T,
where T is the index of the last recorded entry of the patient. The PanelID is the iden-
tifying index for each episode of the patient. Each variable is demeaned (like in the
Multilevel VAR model). We provide a list of dependent variables and exogenous vari-
ables. This model cannot estimate the coefficients for predetermined variables, but we
concluded earlier that there are no variables that fall into this category, so this does not
pose any problem. However, during experiments, we learned that we cannot include
static variables like age and weight. Therefore, we will only include the measured vital
sign variables, just as in the traditional VAR models. This function can then be used as
follows:

1 prvc.pvar ^-
2 pvarfeols(
3 dependent_vars = dep_vars, # e.g., c("HR", "ETCO2", ^^.)
4 exog_vars = exo, # e.g., c("AGE", "WEIGHT"). Not used in our work
5 lags = 30,
6 transformation = c("demean"),
7 data = panel.subset,
8 panel_identifier = c("PanelID", "Time")
9 )

52



Research methodology CHAPTER 4. EXPLORATORY TIME SERIES ANALYSIS

4.4.3 Graphical andMultilevel Graphical VARModels

Epskamp et al. [15] list two R packages that can be used to create the graphical models
of time series data.

graphicalVAR, for n = 1 time series modeling and pooled estimation of a generic model for n ≥ 2
[13]

mlVAR, for n ≥ 2 time series modeling [14]

Creating graphical VARmodels using the graphicalVAR package turned out to bemore
difficult than initially expected, and ultimately not even feasible. While creating a Lag-
1 model is possible, it was not possible to take more lags into account. According to
the package’s documentation, it should be possible to supply a vector of lags to the es-
timation function [13]. However, after supposedly successfully estimating the model,
something goes wrong in saving the results in the data structure. As the function un-
gracefully terminates with an error, the intermediate models’ results are lost. After re-
verting to a Lag-1 model, this error disappears. Resolving this problemwas not deemed
feasible during the scope of this project, and it was decided not to investigate the dataset
using this package any further. As with the VARmodels, we cannot include the settings
in the model, as these models still require a non-zero variance.

We can, however, estimate a Multilevel Graphical VAR Model. This model can be
estimated with the mlVAR package as follows:

1 mlvar.res ^- mlVAR(
2 prvc.subset, # Data set
3 mvars, # A chr vector containing included variables
4 "ID", # Specifying the Panel ID, the ID of the episode / patient
5 lags = c(1:30), # A vector containing the lags that have to be included
6 temporal = "fixed", # For fixed effects modelling
7 contemporaneous
8 = "orthogonal", # To obtain the contemporaneous network
9 nCores = 1 # The number of cores.

10 )

The completion of the estimation procedure takes much time; however, this procedure
can be sped up by parallelization, but this has a cost: When a (big) dataset is analyzed,
the dataset and intermediate results are not shared between the processes, but instead,
each process receives its own copy. For estimating the fixed effects model (Temporal
and Between-Subjects) model, this is still feasible in some cases. However, when the
contemporaneous network needs to be determined, this becomes problematic. The in-
termediate results have already consumed a tremendous amount of memory. These
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results are, for this phase, again distributed over the cores, exceeding the memory lim-
its of our equipment. It is, therefore, better to sacrifice computation speed to prevent
memory shortage. For instance, the model that is estimated using the code above saved
as an RDS-file (a compressed serialized R object), consumes 3.4 GiB of space. However,
when the model is loaded into R, it will be expanded, causing that session to consume
approximately 12 GiB of RAM. On the used computing equipment, this was, however,
feasible in controlled conditions. We cannot consider the whole dataset with this pack-
age; therefore, we will draw a random sample of 100 episodes from the dataset.

A fitted mlVAR model contains the three different networks discussed earlier. These
can be retrievedbyusing the plot(^^.) function on the object, by using type = "temporal",
"contemporaneous"or "between" respectively. When the temporal network is plotted,
the Lag-1 model is plotted by default4. The other lags can be accessed through the func-
tion call plot(^^., type = "temporal", lag = 5). Note that 5 does not indicate lag-
5, but the 5th lag in the original function call (e.g. lag-25 in c(1,5,10,20,25,30)). It is
therefore possible to skip lags in the model.

By setting the temporal parameter of the estimation function to "orthogonal" a
random effects model can be determined. This is, however, not feasible on the PICU
dataset, as the dataset’s dimensions cause the model to consume too much memory. In
line with the Panel VARmodel, we will limit our experiments to fixed effects modelling.

It is also possible to create unique models for each subject by using the following
function call:

1 model ^- mlVAR(^^., temporal = "unique", contemporaneous = "unique")

However, in this case no between-subjectsmodel is created, as themeans of the variables
are not included as predictors. These individual models can be accessed by supplying
an additional parameter in the plotting function call:

1 plot(^^., type = "contemporaneous", subject = 12)

4.4.4 Patient subset

For some of the models, we will perform the analysis on a subset of the dataset. This
subset is based on age; we will only include patients that were younger than 30 days at
the time of admission. Clinically, it might be better to select patients on symptoms or a
common disease, but we cannot easily do this as this information is not recorded in the
dataset. For the VAR model and Panel VAR model creation, we will only perform this
on the subset. The Multilevel Graphical VAR models will be based on randomly drawn
samples of both the whole dataset and the under 30 days subset.

4or the first model that was supplied in the mlVAR(^^., lags = c(^^.), ^^.) function call.
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4.5 Results

In this section, we describe the exploratory analysis of the PC-IMV-Adaptive part of the
dataset. From this part, we only retain the episodes which are longer than 200 minutes,
and these were imputed according to the procedure in 3.4.2. The remaining dataset in
question contains 1753 episodes. The average duration of an episode is 22 hours and 48
minutes. There is data from 526 unique patients, so approximately three episodes per
patient. In table 4.1, we listed the variables that we intended to include in our analysis.

Measured Variables Settings

End-tidal CO2(ETCO2)
Expiratory Tidal Volume (VTexp , ETV) Tidal Volume
Fraction of inspired Oxygen (FIO2) FIO2
Respiratory Frequency (Ventilator) (Freq) Respiratory Frequency
Respiratory Frequency (Monitor) (RF)
Heart Rate (HF)
I:E – Ratio (IE) I:E – Ratio
PEEP PEEP
Peak Pressure (PPEAK, PRES)
Saturation (SPO2, SAT)

Inspiration Time
Inspiration Rise Time

Table 4.1: The variables that are considered in the exploratory analysis. The settings and measured variables that

directly correspond to each other are placed on the same line. We only briefly consider the settings, as they cannot

be included in the VARmodels.

However, during initial experimentation, we found that the settings cannot be included
in the VAR models. The settings remain mostly constant over time. When we included
the settings, somewhere in the estimation procedure a non-invertible matrix was cre-
ated. Therefore, the VAR models could not be estimated.

In table 4.2, the changes in measurements and settings are compared. Also the aver-
age standard deviation is shown for all the measured variables. The settings that are
changed the most are the FIO2 and the Tidal Volume. The fact that these variables
remain constant causes these non-invertible matrices. In further experiments, we will
therefore, not include the settings. However, some of these settings are also measured,
so not all information is lost.

When we look at standard-deviation in table 4.2c, we see that the many variables do
not see big changes over time. The I:E-ratio is very stable, whereas the Heart Rate and
Expiratory Tidal Volume deviate much more from the mean.
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FIO2 TV PEEP IE FREQ INSP INSPR
n unique values 3.53 2.12 1.67 1.14 1.75 1.14 1.10

(a) Settings

ETCO2 ETV FIO2 FREQ HF IE PEEP PRES RF SAT
n 65.96 71.12 44.35 114.63 62.62 68.57 36.09 142.06 52.07 86.24

(b)Measurements

ETCO2 ETV FIO2 FREQ HF IE PEEP PRES RF SAT
SD 3.31 17.34 7.98 3.69 11.33 0.17 0.77 3.26 3.78 1.93

(c)Measurements - Standard Deviation

Table 4.2: These values indicate howmany changes occur for a variable within an episode. There is a large difference

between the measurements and the settings. The standard deviation in (c) is also the average standard deviation

within an episode.

4.5.1 Determining stationarity

Before a VARmodel can be created, we first need to determine if the VSTS are stationary.
Stationarity tests are performed using the Augmented Dickey-Fuller test provided by
the tseries package in R (adf.test). This function was applied using a standard lag
order criterion for each time series y, which grows as y becomes longer [53]:

p(y) =
⌊
(length(y)− 1)

1
3
⌋

(4.29)

We performed stationarity tests for each measured time series and its first-order differ-
ence. The results of this test are shown in table 4.3. As can be concluded from these
results, most time series become stationary after taking their first order difference. The
heart rate (HF) series are more often non-stationary than stationary; a sample graph is
shown in figure 4.3. However, for the FIO2 series, the results differ slightly; 20 out the
1753 serieswere still non-stationary. Amanual intervention, the suction of the tube, may
cause this non-stationarity. For the duration of the procedure, FIO2 is raised to 100 %.
Afterward, the levels are restored to the previous level. These spikes in the FIO2 levels
may persist after taking the first-order difference.

4.5.2 Determining the lag order

The lag order is determined using the VARSelect(^^.) function. After running this
function on all individual series, the results were aggregated in table 4.4. There is a
remarkable difference between the AIC / FPE and the SC and HQ criteria. The latter
two prefer a smaller model; p = 2 is the most preferred for the Schwarz Criterion, and
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Variable Stationary Non Stationary

∆3FIO2 1742 9
∆2FIO2 1738 13
∆EtCO2 1749 4
∆ETV 1753 0
∆FIO2 1731 20
∆HF 1750 3
∆IE 1748 3
∆PEEP 1751 2
∆PRES 1750 3
∆RF 1750 2
∆Sat 1749 3

Variable Stationary Non Stationary

EtCO2 1130 623
ETV 1668 85
FIO2 1534 217
Freq 1361 388
HF 849 904
IE 1563 188
PEEP 1526 227
Pres 1504 249
RF 1499 253
Sat 1281 471

Table 4.3: Stationarity testing on the PC-IMV-Adaptive subset, note that some of the columns do not add up to 1753,

due to the fact that some of the stationarity tests failed.

for the Hannan Quinn criterion p = 4 is the most preferred. The choice for p = 6 is
based on the observation that a majority of the patients is covered by this lag order (i.e.,
no underfitting takes place). On the other hand, for the Akaike Information Criterion,
the preferred p is 30. After increasing the maximum lag order to 35, the preferred order
also goes to 35. After another increase to 40, the preferred p again becomes 40. A higher
lag order seems to increase the predictive performance, but as said earlier, this may not
always be practical. Decreasing the number of included VSTS reduces the number of
lags. If we perform lag order selection during bivariate Granger Causality testing, the
resulting order is much lower according to the AIC, usually around 9.

4.5.3 VARmodel creation

The VAR models were estimated using the VAR(^^.) function for a sample of 100 pa-
tients, with p = 30 (AIC) and p = 6 (SC, HQ). All of the time series are first-order dif-
ferenced to ensure stationarity of the series. A sample output for the Oxygen Saturation
for a single patient is shown in appendix B. Four out of six of dSat lags are significant.
Other variables with a significant coefficient were dFIO2 and dPEEP. Considering all
the equations and variables, the number of coefficients is enormous; it is impossible to
make some general remarks about them.

We performed the Breusch-Godfrey LM test on all the estimated VARmodels to test
for residual autocorrelation. For both p = 6 and p = 30 there is residual autocorrelation
present in all the models. When there is residual autocorrelation, p is usually increased.
However, increasing the lag order from 6 to 30 did not result in a decrease of residual
autocorrelation.

In addition to testing for residual autocorrelation, we also determined if the VAR
models were stable. The VAR(6) models were mostly stable. Out of the 100 VAR(6)
models, four were unstable, so there were 96 stable models. However, this was not the
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Figure 4.3: A non-stationary heart frequency series (above) and a stationary∆HF (below)

case for the VAR(30) models; only 56 models were stable and 22 became unstable be-
cause the episode became too small due to the increased lag order. The smaller episode
size caused NAs in the coefficients of the characteristic polynomial of the model. Fur-
thermore, 22 models were otherwise unstable.

4.5.4 Granger causality

We performed Granger causality testing on the under 30 days subset. Using this test,
we determined the presence of many Granger-causal relations. This is especially visi-
ble if we aggregate the results on all the episodes that we analyzed. These results are
shown in table 4.6. The most frequently found relation exists between the ventilation
measured frequency (∆Freq) and the ∆ETCO2, which exists in 329 out of 361 episodes.
The frequency Granger-causes most of the other variables. We aggregated the results of
table 4.6 on the causes. The resulting table is shown in table 4.5. We can learn from this
table that the Frequency Granger-causes most of the other VSTS overall.
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p HQ AIC SC FPE

1 3 1 194 2
2 53 2 438 4
3 171 0 412 8
4 326 7 265 21
5 234 19 126 50
6 188 41 82 69
7 122 68 23 94
8 114 84 11 102
9 61 98 2 113

10 53 93 2 104

p HQ AIC SC FPE

11 27 62 0 76
12 18 74 2 83
13 15 84 2 92
14 9 53 1 66
15 3 56 1 63
16 5 54 0 54
17 9 53 2 53
18 23 55 12 61
19 30 60 20 59
20 21 52 15 55

p HQ AIC SC FPE

21 26 52 17 57
22 24 35 12 36
23 28 43 16 39
24 26 45 17 44
25 19 32 12 32
26 17 29 11 35
27 22 37 13 35
28 17 30 13 32
29 20 38 10 41
30 61 388 14 165

Table 4.4: These tables show the results of the determination of the lag order p. The numbers denote the number of
episodes that had the ideal lag length according to the column’s Information Criterion.

Cause n

1 ∆Freq 2558
2 ∆PRES 2399
3 ∆ETV 2362
4 ∆FIO2 2329
5 ∆PEEP 2318

Cause n

6 ∆IE 2180
7 ∆EtCO2 1784
8 ∆Sat 1780
9 ∆HF 1720

10 ∆RF 1637

Table 4.5: Results after aggregating only on the causes. n indicates how many times the variable is the cause in a

Granger causal relation. Number of included patients is 361.
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Cause Effect False True

1 ∆Freq ∆EtCO2 32 329
2 ∆Freq ∆HF 37 324
3 ∆Freq ∆RF 48 314
4 ∆FIO2 ∆Sat 53 309
5 ∆PRES ∆EtCO2 56 306
6 ∆FIO2 ∆EtCO2 61 301
7 ∆ETV ∆FIO2 68 294
8 ∆Freq ∆IE 72 290
9 ∆ETV ∆EtCO2 73 289

10 ∆PRES ∆FIO2 73 289
11 ∆Freq ∆Sat 74 287
12 ∆PRES ∆Sat 76 286
13 ∆PEEP ∆FIO2 81 281
14 ∆PEEP ∆EtCO2 83 279
15 ∆IE ∆EtCO2 85 277
16 ∆FIO2 ∆RF 85 276
17 ∆ETV ∆RF 87 274
18 ∆IE ∆RF 89 273
19 ∆PRES ∆HF 91 271
20 ∆PRES ∆RF 91 270
21 ∆Freq ∆PEEP 92 269
22 ∆PEEP ∆Sat 93 269
23 ∆EtCO2 ∆Sat 95 267
24 ∆ETV ∆PRES 95 267
25 ∆ETV ∆Sat 95 267
26 ∆PRES ∆Freq 96 265
27 ∆IE ∆HF 98 264
28 ∆PEEP ∆RF 98 263
29 ∆PEEP ∆Freq 99 262
30 ∆FIO2 ∆Freq 104 257
31 ∆ETV ∆HF 106 256
32 ∆Freq ∆FIO2 108 253
33 ∆HF ∆Sat 109 253
34 ∆Freq ∆ETV 109 252
35 ∆PEEP ∆HF 110 252
36 ∆PEEP ∆ETV 111 251
37 ∆ETV ∆PEEP 113 249
38 ∆PEEP ∆PRES 113 249
39 ∆PRES ∆ETV 115 247
40 ∆FIO2 ∆HF 117 245
41 ∆FIO2 ∆IE 117 245
42 ∆ETV ∆Freq 117 244
43 ∆HF ∆EtCO2 119 243
44 ∆IE ∆Sat 121 241
45 ∆Freq ∆PRES 121 240

Cause Effect False True

46 ∆Sat ∆EtCO2 123 239
47 ∆IE ∆Freq 125 237
48 ∆PRES ∆PEEP 125 237
49 ∆FIO2 ∆ETV 127 235
50 ∆FIO2 ∆PRES 128 234
51 ∆IE ∆PEEP 131 231
52 ∆Sat ∆FIO2 131 231
53 ∆IE ∆ETV 133 229
54 ∆PRES ∆IE 134 228
55 ∆FIO2 ∆PEEP 135 227
56 ∆IE ∆FIO2 137 225
57 ∆RF ∆EtCO2 137 224
58 ∆EtCO2 ∆HF 140 222
59 ∆ETV ∆IE 140 222
60 ∆RF ∆Sat 147 214
61 ∆HF ∆RF 148 213
62 ∆PEEP ∆IE 150 212
63 ∆EtCO2 ∆RF 151 210
64 ∆IE ∆PRES 159 203
65 ∆EtCO2 ∆FIO2 162 200
66 ∆Sat ∆PEEP 165 197
67 ∆Sat ∆PRES 168 194
68 ∆Sat ∆RF 168 193
69 ∆Sat ∆HF 174 188
70 ∆EtCO2 ∆PEEP 176 186
71 ∆Sat ∆Freq 175 186
72 ∆HF ∆IE 179 183
73 ∆RF ∆HF 178 183
74 ∆Sat ∆ETV 179 183
75 ∆HF ∆FIO2 184 178
76 ∆EtCO2 ∆ETV 185 177
77 ∆EtCO2 ∆PRES 186 176
78 ∆RF ∆PEEP 186 175
79 ∆EtCO2 ∆Freq 187 174
80 ∆RF ∆IE 188 174
81 ∆RF ∆FIO2 188 173
82 ∆EtCO2 ∆IE 190 172
83 ∆HF ∆Freq 191 170
84 ∆Sat ∆IE 193 169
85 ∆RF ∆ETV 193 168
86 ∆RF ∆Freq 194 167
87 ∆HF ∆PEEP 196 166
88 ∆HF ∆PRES 202 160
89 ∆RF ∆PRES 202 159
90 ∆HF ∆ETV 208 154

Table 4.6: Granger causality between variables
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4.5.5 Panel VARmodels

We created a Panel VARmodel using the pvarfeols(^^.) function on a random sample
of 100 episodes drawn from the under 30 days subset. Creating a PanelVARmodel using
the GMM estimator was not feasible due to the size of the dataset (see section 4.4.2).
After estimating, we determined if the PanelVAR model was stable using a similar test
provided in the package. The PanelVARmodel was considered stable, as all the roots of
the characteristic polynomial lie within the unit circle. The most important predictors
are from the first two lags. The average contribution of a lagged variable to one of the
Panel VARmodel’s equations is shown in figure 4.4. We see that the contribution lowers,
as the distance t0 grows.

We can also show the contribution of each variable. Fromfigure 4.5, we can conclude
that the frequency variable is the most important as its lags are the most represented in
all the models’ regression equations. Note that we made a similar observation in the
VAR model from the Granger causality test in table 4.5.

2

4

6

8

0 10 20 30

Lag

C
on

tr
ib

ut
io

n

Figure 4.4: Number of times a variable of lag-t is included in a regression equation.
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4.5.6 Graphical VARmodels

We used the original series without differencing as input for the Multilevel Graphical
VAR models. However, due to the computational complexity of the estimation algo-
rithms and limitations of the used equipment, it was not possible to fit the model to the
full dataset. Instead, we created samples of smaller size. The first was a random sample
of 100 patients drawn from the whole dataset. The second was a random sample of 100
patients that were 30 days old or younger at the day of admission to the PICU. For these
two subsets, we created the following networks:

• 30 Temporal networks for each lag in L = {1, 2, . . . , 30}

• A contemporaneous network

• A between-subjects network

The temporal networks of lag-1 and lag-2 are shown in figure 4.6 and 4.7 respectively.
The first thing that comes to mind when looking at the graph is the self-loops that are
present for every node. The numbers on the arcs are the correlation coefficients between
the variables. Among these correlations, the autocorrelations are the strongest. Note
that the strongest correlation in the graph determines the thickness of the graph’s other
arcs. Because of this, we cannot rely on the visual aspects of the graph solely, as the
width of the arcs of the lag-1 temporal network has a different meaning as the thickness
of the arcs in the lag-2 graph. Using the underlying qplot package which was used
in the plot(^^.) function, the arc labels can be included in the plot. The maximum
absolute correlation decreases a lot in the temporal networks beyond lag-2: In the lag-2
network, themaximumabsolute correlation coefficient is already 0.14, coming from 0.73.
In lag-3 it is 0.08, and at lag-10 it has gone down to 0.03. The sign of the correlation of
the correlations also changes between lags; for example, the sign of the autocorrelation
of the FIO2 variable changes between lag-1 and lag-2. If we consider the intervariable
relations, we see a relatively strong arcs coming out from the Frequency in both the lag-1
and lag-2 models. This is a result which was to be expected, in view of the results of the
Granger-causality tests and the PanelVAR model.

The between-subjects networks (figures 4.8 and 4.9) show a significant correlation
between theRespiratory Frequency (RF) andFreq, theRespiratory Frequencymeasured
by the ventilator. This association was expected as they describe the same concept. Be-
sides this relation, there is a strong association between Peak Pressure and PEEP. There
is also a difference between the network of the below-30-days subset and the whole
dataset; the number of correlations is smaller in the network for the entire dataset (6 vs.
15). Possible clinical explanations for the correlations that are present in the between-
subjects-network will be discussed in section 4.6.2.

The contemporaneous networks (in figure 4.10 and4.11) donot contradict the between-
subjects network as the signs of edges do not change. However, the between-subjects
network ismore sparse. The contemporaneous relation between PEEP and PRES (PPEAK)
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is very strong. This is to be expected in view of the relation between them that was de-
scribed in section 2.2.4. In section 4.6.3, we will further discuss clinical explanations of
the correlations of this network.
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Figure 4.6: Fixed effects temporal model of Lag-1, for the below 30-days subset
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65



Results CHAPTER 4. EXPLORATORY TIME SERIES ANALYSIS

0.2

0.21

0.21

−0.22

−0.25

0.27

0.27

−0.28

−0.31

0.32

0.35
−0.35

−0.37

0.38

0.86

EtCO2
ETV

FIO2

Freq

HF

IE

PEEPPres

RF
Sat

Between−subjects network

Figure 4.8: Between subjects model of the under 30 days subset
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Figure 4.9: Between subjects model of the whole dataset
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Figure 4.10: Contemporaneousmodel of the under 30 days subset
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Figure 4.11: Contemporaneousmodel of the whole dataset
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4.6 Discussion

In this section, we will discuss the results of the previous section. We discuss here the
results of the three models; the classical VAR model, the Panel VAR model, and the
Multilevel Graphical VAR model.

4.6.1 Temporal models

When considering the temporal effects, we can make several observations. The first
is that there are no apparent contradictions between models. For example, for all the
models, it holds recent lags (e.g., lag-1 and lag-2) are most influential in determining
the value of the current measurement. This observation is more evident in the Panel-
VAR and the Multilevel Graphical VAR model, as they model the whole dataset and
not individual patients. Also, we have seen that the Frequency variable is included in
many regression equations and is listed as a cause for many Granger-causal relations.
For the MLGVAR model, this is also the case; arcs from the Frequency node have high
(absolute) correlation coefficients.

The high number of Granger-causal relations between variables (and indicators of
Granger-causal relationships in the PanelVAR / MLGVAR models) could be an indica-
tion that when wemake predictive models, that including other variables might indeed
help in predicting future values for the Vital Signs Time Series. This could mean that
these variables are indeed related, and do not solely rely on their own history. How-
ever, the coefficients of the self loops in the temporal networks are among the highest.
The high coefficients in the temporal network for lag-1 (figure 4.6) show a significant
correlation between the previous measurement and the current. This might be an in-
dication that extending the prediction horizon beyond t + 1 might be difficult, as the
contribution of the lags decreases linearly, an observation which is evident from figure
4.4.

The high number of Granger-causal relations and a high number of temporal net-
works make it difficult to assess these clinically; especially, when the number of vari-
ables is also high. Creating VAR models for each episode and then aggregating their
results is feasible when the number of episodes is not too high; we can even sometimes
discuss individual patients. In our case, we found many relations between variables.
This observation, combined with the fact that our dataset contains many patients and
episodes, makes the traditional VAR methodology unpractical.

4.6.2 Between-subjects model

In this section, we will attempt to interpret the results of the between-subjects network
of both the under 30 days subset and the whole dataset (in figure 4.8 and 4.9). These
networks show some interesting correlations between variables. Below, we will provide
some possible (clinical) relations that might explain these correlations:
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Respiratory Frequency and Frequency. We expected to find this relation beforehand,
as these variables describe the same concept; they only differ in the method of
measurement. The Frequency is recorded by the ventilator, whereas the Respira-
tory Frequency is based on the leads that are used for electrocardiography (ECG).
This difference causes slight variations in the recorded values. The fact that these
variables record the same concept probably causes them to have the highest cor-
relation (0.86 and 0.78) coefficient in this network for both datasets.

(Respiratory) Frequency and Expiratory Tidal Volume. There is a negative correlation
between the frequency and the Expiratory Tidal Volume(−0.33, whole dataset);
in words this correlation says the following: patients who breathe faster, breathe
less air out per breath. By judging this network alone, one might assume that this
relation could have a pathological origin; however, there is a cause for this relation-
ship that is more reasonable. This relation is probably related to age and weight,
two variables that are not included in this model. The fact that this relation is
present in the network for the whole dataset, but this (direct) relation is absent in
the network of the 30 days subset is is also an indication that this relation is not of
pathological origin. The youngest patients, especially babies, breathe faster, and
we have seen in figure 2.4 that the VTexp variable is related to weight. Weight is, in
turn, related to age. The fact that older patients have a higher VTexp and a lower
RF and the fact that the opposite applies to younger patients, explain this relation
in the network of the whole dataset. Figure 4.12 visualizes the relation between
age, weight, VTexp and RF.

Peak Pressure, PEEP, and FIO2. When the PEEP is set higher, the lung has more oxy-
genation problems; in other words, the lung is ailing. Recall that the PEEP is used
to prevent alveolar collapse (see section 2.2.4). When the PEEP is higher, the pres-
sure needs to be set appropriately above the PEEP level to ensure airflow. The
measured peak pressure levels will, in turn, also be higher. This is reflected in
both networks, which have a positive correlation of 0.41 for the whole dataset and
0.32 in the under 30 days dataset.
In addition to raising the pressure levels, an ailing lung is treated by changing
the fraction of inspired oxygen (FIO2). When the inspired air contains more oxy-
gen than usual, the body can easier maintain proper blood oxygen levels (SAO2),
despite the diminished lung capacity. When the patient’s lung is ailing, the care-
givers will increase both pressure levels and oxygen levels. These relations that
are an indication of the lung’s health level and treatment regimen are visible in
both networks (0.35 for the whole dataset and 0.38 for the subset).

Peak Pressure and (Respiratory) Frequency. The network of the whole dataset shows
a positive correlation of 0.41. When a patient is ailing, more pressure is needed to
ensure that the same amount of air reaches the lungs. To ensure that the ETCO2 re-
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mains within safe boundaries, the set respiratory frequency is increased. Also,
when the frequency is increased (and in turn, the breaths are shorter), more pres-
sure is needed to move the same volume of air.

I:E ratio, Expiratory Tidal Volume, and RF. In practice, when the patient is connected
to the ventilator in the PRVC / PC-IMV-Adaptive mode, the inspiration time is set
and the ratio between the inspiration and expiration time (I:E ratio) is set to be
1 : 1.5. When the patient attempts to breathe on his own, the expiration will be
shorter. When this happens, the value will be higher as the time for the expira-
tion is in the denominator (recall equation 2.3). In turn, when the time for the
expiration is shorter, the Expiratory Tidal Volume could be smaller. In turn, the
respiratory frequency will increase. These correlations are, however, only present
in the under 30 days subject (0.21 with RF, and −0.28 with VTexp).

Heart Frequency and Saturation. In the network for the under 30 days subset, a neg-
ative correlation (−0.37) between the heart frequency and saturation is shown.
This relation could have the following explanation: patients who are severely ill
can have a higher heart rate and lower saturation level. During recovery, the heart
rate lowers, and the saturation rises to normal levels of 95 % - 100 %.

ETCO2, FIO2, and PPEAK. In practice, when the lung is more ailing, the ETCO2 levels will
be higher. The VTexp levels will be lower as well. These clinical observations might
explain the negative correlation between VTexp and ETCO2 (−0.25) in the network
of the under 30 days subset. The pressure and FIO2 levels might be increased
as treatment (correlation −0.31 with VTexp). The negative association between
ETCO2 and FIO2(−0.35) may seem strange; as an ailing lung may have higher
ETCO2 levels. However, when a patient is healing, he will start to breathe more
by himself. In turn, this may lead to higher ETCO2 levels (but safe). Moreover,
healthier patients do not need a high FIO2.

ETCO2 and SPO2. In the same line as above, we could explain the positive correlation of
0.27 in the under 30 days subset, could be explained by the fact that when a patient
gets healthier and starts more and more breaths himself, which leads to higher
ETCO2 levels (ventilated patients have an artificial lower ETCO2 level). Healthier
patients also have higher SPO2 levels.

In addition to these possible explanations of the correlations, we can also make some
general remarks on the between-subjects model. When we compare both networks, we
can clearly see that more relations are found on the under 30 days subset (6 vs. 15). This
fact might confirm our conjecture that creating predictive models for specific subsets of
patientsmight be beneficial for themodel’s predictive accuracy, as theremay be relations
between variables that are only valid for specific groups of patients.

The fact that the model relates the Respiratory Frequency to the Expiratory Tidal
Volume, points out that we should heed the advice by Epskamp et al. [15] seriously;
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Age Weight

VTexpRF

Figure 4.12: The relation between Age, Weight, RF and VTexp . The dashed line expresses the (spurious) correlation

found in figure 4.9, which was caused by the absence of age andweight in theMLGVARmodel.

that we should not derive causal conclusions from these models, only hypotheses for
further research.

4.6.3 Contemporaneousmodel

In figures 4.10 (under 30 days subset) and 4.11 (whole dataset), several relations are
shown. We will describe some of them below.

PEEP and PPEAK(Pres). This relation is the most prominent among them, and found
in the networks of both datasets (0.33 whole, 0.39 subset). This relation is also
present in the between-subjects model. It says that within the same measurement
we can use the PEEP to predict the PPEAK and vice versa. In section 2.2.4, we de-
scribed that a higher PEEP results in a higher applied peak pressure.

Expiratory Tidal Volume, I:E ratio and Frequency. The negative correlation between
VTexp and I:E is among themost strong in both graphs (−0.26 whole,−0.38 subset).
The relation between the Frequency and I:E-ratio is also strong (0.27 whole, 0.32
subset) in both models. The relations between can be explained along the same
lines as for these variables in the between-subjects network.

Expiratory Tidal Volume and PPEAK. We have seen in section 2.2.4 and 2.3.3 how the
pressure can be regulated to achieve a higher VTexp . The contemporaneous corre-
lation between VTexp and PPEAK (0.21 whole, 0.27 subset)might capture this relation.

RF and ETCO2. Whenour respiratory frequency is lower (hypoventilation), our ETCO2 lev-
els increase. This iswell visible in a capnogram, which is the plot of the ETCO2 levels
[18]. Vice versa, the same holds. The networks of both datasets show a negative
correlation of −0.06 between these variables.
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Epskamp et al. [15] describe how these models might be interpreted. This network
models relations between variables that are present within a measurement, so that if we
know the current value of variable A, we can use that to predict the current value of
variable B. However, these relations may also be caused by temporal effects that cannot
be modeled through the lagged variables; for example, when they happen within the
oneminutewindow. By increasing themeasurement rate, some of the contemporaneous
correlations might disappear and instead be captured as temporal ones.

4.6.4 Limitations

The models that we discussed are all linear models. Between the time series, or even
within a time series, non-linear relations can be present. Brigham et al. [7] suggest that
the Vital Signs Time Series are non-linear. The VAR models can not capture these non-
linearities, as they can onlymodel linear relations. The relations thatwe discussed above
may only be valid if the linearity assumption is correct.

4.7 Summary

In this chapter, we detailed how time series analysis methods can be used to describe
time series datasets like the PICU dataset. Whereas the classical VAR models can be
used to create patient-specific models, the PanelVAR and Multilevel Graphical VAR
models can be used to create models that describe the whole population. We could
not include variables that remain (most of the time) constant (e.g., settings); there-
fore, we only included the measured variables in the models. We used VAR models
for Granger-causality testing. We found a considerable number of Granger-causal rela-
tions between variables. However, these relations we patient-specific. The number of
patients is also large. These two observations combined led us to the conclusion that
applying the methodology of Bose et al. [5] is not very practical. However, the Panel-
VAR and, especially the MLGVAR model, enable us to make statements that may hold
for the whole population.

We saw that the current measurement xt greatly depends on recent lags xt−1 and
xt−2. When p in xt−p becomes higher, the correlation becomes smaller and smaller. This
is visible in figure 4.4. Figures 4.6 and 4.7 show that for each variable its own lags are the
most important, as the correlations of the self-loops are the strongest. However, there
are some significant temporal associations between variables, for example, between the
Respiratory Frequency (FREQ) and the Expiratory Tidal Volume.

In addition to the temporal effects, we also discussed the between-subjects effects
and contemporaneous effects. The between-subjects network shows how variables pre-
dict each other on average, and the contemporaneous network shows how variables are
related within the same measurement, after accounting for the temporal effects. We
have seen relations that could be explained by the lungs health and the treatment regi-
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men (e.g., between PPEAK, PEEP, and FIO2). However, we have also seen that the model
might make wrong assumptions. For example, the relation between RF and VTexp (see
figure 4.12), because the static variables age and weight are missing.

We also observed that when we only consider a specific patient-cohort (based on
age), the models differ. The between-subjects network for the under 30 days subset
shows more correlations than the network for the whole dataset. This leads us to the
hypothesis that creating models for specific groups of patients might be beneficial.

In the next chapter, we will discuss predictive models that also capture non-linear
functions (as well as linear functions). Moreover, these models can use the variables
that we did not include in our exploratory analysis; static variables, like age and weight,
and the ventilator’s settings.
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5
Predictivemodels

5.1 Introduction

In the last decade, we have seen intelligent systems surface in almost any field ormarket.
We have seen how IBM’s Watson defeated the best human players of the TV-show Jeop-
ardy, the defeat of the best human Go player by Alpha-Go, the advent of self-driving
cars. In newspapers, popular scientific magazines and, of course, research papers, ap-
plications of AI are ubiquitous. Many of these recent advances useArtificial Neural Net-
works. Significant increases in the availability and use of distributed computing (mainly
in the cloud), make the use of big datasets feasible. The increase in computing power
also contributed to the growth of the networks’ capacity, enabling the ability to model
more complex problems. Besides the increase in computing power, the introduction of
new neural network architectures, for example, the Long Short-TermMemory networks
and Convolutional Neural Networks, made these advances possible.

Artificial Neural Networks can also be applied to time series forecasting. The ability
of Neural Networks tomodel very complex (non-linear) functions could be beneficial to
predict future values of Vital Signs Time Series. Making a predictionmodel usingANNs
is not a trivial task. We have to make very conscious choices on what model to use, as
no machine learning algorithm is suitable for all datasets (no free lunch theorem) [19].
By carefully designing and configuring a Neural Network, we might be able to create a
successful model.

In the following sections, neural networks and the field of deep learning will be dis-
cussed. First, we will discuss the primary building blocks of Neural Networks, the per-
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ceptron, and some other principles that are also used in more advanced architectures.
Then we discuss how we can model sequences like time series using two neural net-
work architectures we mentioned earlier, the Long Short-Term Memory Networks, and
Convolutional Neural Networks. After that, our experimental setup will be discussed,
followed by their results and interpretation.

5.2 Artificial Neural Networks andDeep Learning principles

1

Bias

x1

Inputs

x2

xn

Σ f

Threshold function

ŷ

Output
θ0

θ1

θ2

θn

Figure 5.1: The perceptron byRosenblatt. Several inputs xi and correspondingweights θi , combinedwith a threshold

function, produce an estimate ŷ. This figure is based on a figure in [2], but adapted to the notation used in this work.

In 1943, the first paper on neural networks was published by Warren McCulloch and
Walter Pitts [33, 17]. The paper called “A logical calculus of the ideas immanent in
nervous activity” described a computational model of a biological neuron. The human
nervous system is composed of millions of neurons, which enables them to sense, act,
and think about the world. The theoretic model that they proposed was able to perform
Boolean operations, and therefore theoretically, a neural network should be able to cal-
culate the result of every computation. In 1958, Frank Rosenblatt implemented one of
the first artificial neurons, the perceptron (see figure 5.1). By configuring theweights, this
network could be used as a classification method. A linear threshold function could be
used to distinguish two classes. However, it was also flawed in the sense that this imple-
mentation was perceived to be unable to learn the XOR-operation, which is a boolean op-
eration that was thought to be trivial to learn. This inability caused a deception amongst
researchers and funding agencies, and therefore funding into neural network research
plummeted.

In the 1980s there was a revival of neural networks after publications in the “Parallel
Distributed Processing” volumes by Rumelhart et al. and McClelland et al. [44, 32].
Neural networks, traditionally being a modeling tool for cognitive science, have also
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since then be used for many machine learning tasks. ANNs excel in pattern recognition
and modeling complex functions [17]. According to Kurd et al. [26], the main benefits
of Artificial Neural Networks over other machine learning methods are as follows:

The ability to learn. This ability is also present when there is no or little understanding
of the relation between the input and the desired output of the learning problem.
In other words, no specific knowledge about the problem is needed; this enables
bottom-up learning as no specific information on the problems needs to be made
explicit.

Operational Performance. ANNs are often able tomake generalizations on the training
data, meaning that ANNs can alsomake correct predictions on unseen data. Their
generalization ability often outperforms other machine learning techniques.

Computational efficiency. Neural networks can be more efficient in both memory con-
sumption and processing speed than other methods.

The first advantage refers to a difference that exists between traditional machine learn-
ing methods and deep learning. In more traditional machine learning algorithms, such
as logistic regression, important features, pieces of relevant information, are handpicked
[19]. When a traditional method needs to make a recommendation for a self-driving ve-
hicle, for example, whether to brake or not, thatmodel is given features like the presence
of an object, the distance to the next object, the velocity of the vehicle. These features
give meaning to and simplify the raw data; an example feature could be (the output
of) an algorithm that detects the presence of objects in an image. If a traditional method
were instead given the raw output of a camera, themodel would not be able to deal with
this, as these individual pixels can have a negligible relation with a reason for needing
to brake. Representing the environment with designed features enables these methods
to make decisions. However, in some cases, it is not always known or clear which fea-
tures can be extracted from the raw data [19]. Finding these features is often hard, for
example, it is challenging to represent abstract concepts like objects in terms of raw pix-
els; or in this project’s case, a disease in terms of Vital Signs Time Series. Deep learning
methods can learn the representation of these features in the raw data themselves [19].

5.2.1 TheMultilayer Perceptron

The Multilayer Perceptron (MLP) or deep feed forward network is often considered as the
primary deep learning method. The name references to the original perceptron by
Rosenblatt, by effectively being an extension to his perceptron. The MLP has the fol-
lowing alterations:

• The usage of multiple layers of nodes instead of a single layer

• The usage of a non-linear activation function instead of a linear threshold function.
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Figure 5.2: A single perceptron unit of aMultilayer Perceptron Network (in yellow). The architecture is almost iden-

tical to the original perceptron (see figure 5.1), with the only change being the activation function. This figure is based

on a figure in [2], but adapted to the notation used in this work.

A single perceptron unit is displayed in figure 5.2. A unit has multiple inputs xi, and a
bias node, which are connected through weights θi. This bias has a similar role as the
intercept in linear regression. The bias has its own weight θ0, which actually defines
the bias (because of the multiplication by one). The output ŷ is calculated using the
following function [2]:

ŷ = g(θ0 +
n

∑
i=1

(xi · θi)) (5.1)

= g(θ0 + xTθ) (5.2)

where

g(z) : a non-linear activation function (e.g., the sigmoid function σ)
θ :

[
θ1 θ2 · · · θn

]T

x :
[
x1 x2 · · · xn

]T

We can view the perceptron as a function f which maps an input with type X to an
output with type Y. This is expressed in the following equation:

ŷ = f (x; θ) (5.3)

where

f : a function of x , parametrized by θ with type f : X → Y

θ : a vector describing the weights of the neural network
x : a vector containing the inputs

[
x1 x2 · · · xn

]T
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We can make a Multilayered Perceptron by tying the output of a node to the input of
another node. The following equation is visualized in figure 5.3.

ŷ = f (x; θ) = f3( f2(

[
f1,1(x; θ1,1)

f1,2(x; θ1,2)

]
; θ2); θ3) (5.4)

The MLP is designed as follows: Suppose having an input x, for which the network

x1

Inputs

x2

...

xn

f1,1

Hidden layer 1

f1,2

f2

Hidden layer 2

ŷ
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Figure 5.3: By combining multiple perceptron units, a multilayer perceptron is formed. A white node depicts a full

perceptron unit (recall the yellow box in figure 5.2). This figure visualizes equation 5.4. The bias nodes are omitted in

this figure.

needs to estimate for y, outputting ŷ. The information in x is given to a series of input
nodes (in blue). These are connected to a series of layerswithmultiple nodes (inwhite).
The last layer is called the output layer (in red), which encodes the value of ŷ. Output
nodes are also perceptron units.

When the network is given an input x, the information flows through from the input
nodes, to each of the hidden layers and its units, and finally, it determines an output
for ŷ. This process is called forward propagation [19]. Each unit is effectively in itself
function, accepting the output of the nodes of the previous layer. A perceptron produces
thus an intermediate output or final output. The layers after the input layer are often
referred to as hidden layers, as their weights are not known beforehand.

We could use aMultilayered Perceptron for time series forecasting. This can be done
by training an MLP that approximates a function that maps a vector containing t time
steps to a vector containing s predictions. Suppose we want to predict the next three
ETCO2 measurements, given a history of t measurements. We give a MLP a vector
x =

[
x1 x2 · · · xt

]
, which contain the last t ETCO2 measurements. The input flows

through a network with k hidden layers, with each its own number of nodes dk, and fi-
nally produces an output. This is a vector ŷ =

[
y1 y2 y3

]
, which contains a prediction

for the next three ETCO2 measurements. This network is visualized in figure 5.4. As
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said before, the weights of the network are not known. The network can find suitable
weights through the application of the Gradient Descent algorithm.
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ŷ2
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Figure 5.4: The multi layered perceptron used for time series forecasting, with k hidden layers. Each white node is a
perceptron cell. The bias node for each cell is omitted in this figure.

5.2.2 Gradient Descent and Back Propagation

Initially, the weights θ of a neural network f are set randomly. After estimating ŷ, we
can calculate the cost function J(θ). The exact definition of the cost function depends on
the problem, but generally it will describe howwell the network predicts ŷ given θ. The
training of a neural network can be described as an optimization problem. Optimization
is defined as the task to minimize (or maximize) a function f (x) by altering x, in other
words, find x for which f (x) is at its lowest or highest. In this particular case, we want
to minimize the cost function J(θ). The minimum of a function f (x) can be determined
by using its derivative f ′(x).

f (x − ϵ sign( f ′(x))) < f (x) (5.5)
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If ϵ is small enough, we can use the above equation 5.5 to move towards a minimum
of f (x). This method is known as gradient descent [19]. Note that using this method, a
minimum of f (x) can be found; however, this minimum is not necessarily the global
minimum. In the case of deep learning, functions are optimized that possibly have
multiple local minima, which makes finding this global minimum difficult. Therefore,
approximate minimization is applied. Parameter settings θ that perform well enough,
corresponding with low values of J(θ) are therefore accepted.

As θ ismultidimensional, partial derivatives are necessary. Apartial derivative ∂
∂xi

f (x)
describes how f changes when only xi is changed. Then the notion of a gradient can be
introduced, which is the ensemble of all the partial derivatives for f with respect to a
vector x. The gradient for f (x) is denoted as ∇x f (x). Using gradient descent, we will
move towards a new point x′ using the following equation [19]:

x′ = x − ϵ∇x f (x) (5.6)

where

ϵ : denotes the learning rate, which is a small positive scalar, determining the step size

Finding the right learning rate is essential for finding the correctweights for the network.
A learning rate that is too large might not find the minimum, as a minimum can be
missed because of the step size (overshoot). However, a learning rate that is too small
may take forever to converge, or it can get stuck in a local minimum that is far from
optimal. Gradient descent converges when all the individual values of the gradient are
zero or very close to zero. In pseudo code, gradient descent can be described as follows:

1 def gradient_descent(learning_rate, cost_fun, network):
2 network.weights = random.normal(network.dimensions)
3 converged = False
4 while not(converged):
5 gradient = compute_gradient(cost_fun, network)
6 # θ′ = θ− ϵ · ∇θJ(θ)
7 network.weights = network.weights - learning_rate * gradient
8 converged = check_converged(gradient)
9 return network.weights

The function compute_gradient(^^.) is usually an implementation of the Back prop-
agation algorithm, first presented by Rumelhart et al. [45]. We described earlier in this
section how information flows forward when calculating the result of the neural net-
work when after supplying an input. The back propagation algorithm allows the errors
(the result of the cost function) to flow backwards through the network. How this algo-
rithm works can best be illustrated using the example network shown in figure 5.5: By
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x

Input

a b ŷ

Output

J(θ)

Cost function
θ1 θ2 θ3

Figure 5.5: Sample Computational Graph

repeatedly applying the chain rule, we can calculate for each weight θi the partial deriva-
tive, answering the question on how a minor change in weight θi affects the final cost of
the network [19]. By using the gradients from later layers (for example, the gradients
from b in a) we can calculate the partial derivative for each weight θi [2]. An example
calculation for the gradient of the weights θ of figure 5.5 is shown below. For the weight
θ3 we only need to apply the chain rule once:

∂J(θ)
∂θ3

=
∂J(θ)

∂ŷ
· ∂ŷ

∂θ3
(5.7)

However, for θ2 we have to apply the rule twice:

∂J(θ)
∂θ2

=
∂J(θ)

∂ŷ
· ∂ŷ

∂θ2
=

∂J(θ)
∂ŷ

· ∂ŷ
∂b

· ∂b
∂θ2

(5.8)

And for θ1 thrice:
∂J(θ)
∂θ1

=
∂J(θ)

∂ŷ
· ∂ŷ

∂θ1
=

∂J(θ)
∂ŷ

· ∂ŷ
∂b

· ∂b
∂θ1

=
∂J(θ)

∂ŷ
· ∂ŷ

∂b
· ∂b

∂a
· ∂a

∂θ1
(5.9)

Finally, we can combine these all into the gradient, which can can then be used in the
gradient descent algorithm:

∇θJ(θ) =
[

∂J(θ)
∂θ1

∂J(θ)
∂θ2

∂J(θ)
∂θ3

]T
(5.10)

5.2.3 Activation functions

Neural networks are often used to solve problems that cannot be solved by using lin-
ear methods. For example, consider a complex classification problem with two classes,
where the border between the two classes cannot be described using a linear function.
An example is the XOR-operation, which could not be learned by the original perceptron,
as there is no linear threshold function that can model the XOR-operation. However, by
using a non-linear activation function instead of a linear function, Multilayer Percep-
trons are able to learn or model this operation. The non-linearities enable us to make
an approximation of functions that can be arbitrarily complex [2]. There are three fre-
quently used activation functions [2]:

Sigmoid function. The logistic sigmoid function is defined as σ(z) = 1
1+e−z and maps

z between 0 and 1. This function is used especially in output units in binary clas-
sification problems [19]. This activation function is not used a lot within the units
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of the hidden layers. When we look at the graph of the function (figure 5.6a), we
see that towards the “ends” of the S-curve, the amount of change decreases. This
is also visible if we look at the derivative of the sigmoid (in red), which converges
to zero when z goes towards−1 and 1. This is not very helpful in the learning pro-
cess, as no learning takes place when the derivative is (close to) zero (see section
5.2.2). However, this function is used in LSTM units, discussed in section 5.3.2

Hyperbolic tangent. This function is defined as tanh(z) = sinh(z)
cosh(z) =

ez−e−z

ez+e−z = e2z−1
e2z+1 . It is

very similar to the sigmoid function, and has a similar S-curve, as can been seen
in 5.6b. However, it maps z between −1 and 1 and is steeper than the sigmoid.
The same learning problem is present here, as can been seen in the graph. This
activation function is used in RNN and LSTM units.

Rectified Linear Unit (ReLU). This function is defined as g(z) = max(0, z). This func-
tion is linear for positive inputs, and zero for negative inputs (see figure 5.6c).
This linearity makes them suitable for learning, as the derivative is always 1 when
z is positive. Therefore, the ReLU is not prone to the problems of the sigmoid and
the hyperbolic tangent, and therefore, they are nowadays the recommend choice
as activation function [19].
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Figure 5.6: The plots show the threemost commonly used activation functions, the sigmoid σ(z), the hyperbolic tan-
gent tanh(x) and the Rectified Linear Unit. The activation functions have been plotted in blue and their derivatives
in red.

5.3 Sequencemodeling

In situations where time and order is present, the information of earlier moments can
be of importance to say something about later time steps. If we consider a language
model where we want to predict the next word, the choice does not only depend on the
previous word or even the current sentence, but it may also depend on words uttered
in previous sentences or paragraphs. Sequences can be modeled using MLPs, but this
architecture has some practical issues: MLPs have a fixed input size; the size of the input
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layer needs to be the same for every prediction. For long sentences or even paragraphs as
input, the input layer needs to be very big. Often sequences have a variable length, and
due to the fixed size of the input layer, this cannot easily be represented in the network.

Furthermore, in sequences, several patterns may not always be present on the same
place in a temporal ordering. Take the language model as an example; there are some-
times several options for word order that are equivalent (i.e., the meaning of the sen-
tence remains the same). Alternatively, in vital signs time series prediction, some curve
characteristics can have a variable length. Even though their exact manifestation or time
of appearance may differ, they still can cause some similar effects in the curve that we
aim to predict. These are all things that are difficult to model with MLPs, as each time
step has its fixed place in the network, and therefore, the automatically derived features
that are represented in the network also. So if these patterns can happen at multiple
time steps, then they have to be learned for each time step, which makes learning more
difficult.

Sequence modeling can, in theory, be done using MLPs, for example, by increasing
the number of hidden units and corresponding weights and padding the inputs, but
this is a very cumbersome process. Ultimately, a machine learning method is desired
that can do the following [50]:

1. Handle variable length sequences
2. Keep track of temporal ordering
3. Handle long term dependencies
4. Share parameters across the sequence

5.3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks that are especially suit-
able for processing sequential data [19]. They were first described by Rumelhart et al.
[45]. The main RNN structure is shown in figure 5.7. The loop, and when unfolded the
links between the time steps, allow information to flow from previous time steps to later
ones. By unfolding the network, a process visualized in figure 5.7, we can see how the
network can handle variable length sequences. Suppose we have an input vector xt for t
time steps. Instead of representing the network as a recurrence (left-hand side), we can
unfold this recurrence (right-hand side), by drawing a component for each time step t.
Each instance of ht represents the current state of the network, which can be modified
by each input xt. We can also see that the network can keep track of temporal ordering,
as information flows from earlier time steps to following steps, and not the other way
around. The network can be defined using the following equation [19]:

ht = f (ht−1, xt; θ) (5.11)

When the network is trained, the network uses a fixed size vector h to encode infor-
mation from previous time steps. Because of this fixed size, not all information can be
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Figure 5.7: A recurrent neural network visualized as a computational graph. The weight parameter θ is composed

of three weight matrices; a matrix U for parametrizing the weights between the input and the hidden RNN layer, a

matrixW for theweights between the recurrent units, and finally amatrixV that parametrizes theweights between

the recurrent units and the output units. This figure is a simplified version of figure 10.3 in [19].

saved, as the number of previous time steps is arbitrary. By adjusting the weights W
between the time steps’ components, it is determined how information from previous
time steps flows further to successors.

Back and forward propagation

In section 5.2.1, we described how information from the inputs flows through the net-
work to produce an output; this process was called forward propagation. We can apply
the same principle here, by chronologically traversing xt. Provided we have an initial
state h0, the following equations will be performed for every time step t [19]:

at = b + Wht−1 + Uxt (5.12)
ht = tanh(at) (5.13)
ŷt = g(c + Vht) (5.14)

where

b : bias
c : bias
U : weights between the input and recurrent units
W : weights between the recurrent units
V : weights between the recurrent units and the outputs
g(z) : activation function like (σ(z), tanh(z) or ReLU)

The weight matrices U, V and W are shared across all time steps. The sharing of param-
eters by the RNN ensures a reduction in the number of parameters in total that would
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be needed compared to an MLP equivalent. This reduction makes learning easier. The
weights of the recurrent neural network can be learned using a slightly modified ver-
sion of the back-propagation algorithm, Back Propagation Through Time (for a detailed
description of the algorithm, see section 10.2.2 in Goodfellow et al. [19]). A figure that
illustrates how the errors propagate through the network is shown in figure 5.8.
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Figure 5.8: Back Propagration Through Time. Forward propagation is in black, back propagation is in red. This figure

is based on a figure in [50], but adapted to the notation used in this work.

Long term dependencies and the problem of vanishing gradients

In some cases, early moments in history can have a significant influence on later mo-
ments. We have learned from the results in section 4.5.2 and 4.5.6 that the in VAR mod-
els, lag-30 still had some influence on the current measurement. Theoretically, RNNs
should be able to deal with long term dependencies. In practice, however, this is not the
case: when the gap between cause and effect increases, so does the chance decrease that
a learning algorithm like Back Propagation will find the correct weight for a network
that models this dependency. However, at the same time, by manually adjusting the
weights, a human operator could model this dependency successfully in an RNN [19].
How is this possible?

Suppose we want to calculate gradient with respect to h0. We see in figure 5.8 that
the gradient depends on many factors W . When these factors in W are bigger than

88



Sequence modeling CHAPTER 5. PREDICTIVEMODELS

1, then the gradient could become very large. However, when many values are smaller
than 1, then the gradient may “vanish”. These effects are both caused by themany times
these factors are multiplied. We have seen that the number of times the chain rule has to
be applied depends on how many nodes precede a node in the backward pass (causing
these multiplications, see equations 5.7 - 5.9). As the gap between h0 and ht increases,
the number of chain rule applications increases as well, causing the gradient to become
smaller and smaller (or bigger and bigger).

Because of this vanishing gradient problem, RNNs are unable to learn long termdepen-
dencies. Vanishing gradients make it difficult to find an improvement in the weights,
because it is difficult to determine for small gradients which way the learning should
go [19]. Bengio et al. [4] presented theoretical and experimental evidence that it is not
possible to learn long term dependencies by performing gradient descent. This result
wouldmean, aswe do notwant to rule out long termdependencies, that RecurrentNeu-
ral Networks are unsuitable for our problem. However, we can adapt the underlying
architecture of an RNN to solve this problem. A popular RNN architecture that can deal
with long term dependencies, called Long Short-TermMemory networks (LSTMs), will be
discussed in the next section.

5.3.2 Long Short-TermMemoryNetworks

Long Short-TermMemory networks are an extension to the classical RNN architecture that
wedescribed in the previous section. There are twomaindifferences between traditional
RNNs and LSTMs:

Cell state. Besides the links ht, the hidden state, that RNNs also have, there is another
layer called the cell state ct. The main difference between these two is that the cell
state is not influenced by weights W between the units. Therefore, information
that was provided in early time steps does not suffer from the vanishing gradient
problem. The inputs and the hidden state can, however, influence the information
stored in the cell state through the use of gates.

Gates. The original RNN architecture had one neural network unit per recurrent unit
with a tanh(z) activation function (see equation 5.13). The LSTM has four neural
network units that serve as gates. These gates may add and subtract information
from the cell state, and finally, determine the output for the current cell.

Figure 5.9 shows a single LSTMcell. Just as the traditional RNNs, the LSTMs are chained.
Because of the two states, there are two links between the recurrent units. We can de-
scribe an LSTM network using the following recurrence relation.

ht, ct = f (ht−1, ct−1, ht; θ) (5.15)

There are four gates per LSTM cell. Here will follow a description of all four of these:
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Figure5.9: Asingle LongShort-TermMemory cell (in green). Theyellowrectanglesdenote aneural network layer. The

purple circles and ellipse denote point-wise operations. Joining arrows describe the concatenation of two tensors,

while diverging arrows describe the copying of information. This figure is based on the figures in [37], but adapted to

the notation in this work.

Forget gate. The forgetting of informationmay seem counterintuitive to learning. How-
ever, this is not the case. Recall from the original RNN architecture that the tensor
or vector holding the hidden state ht has a fixed size. The same holds for the cell
state and, therefore, it is not possible to keep all information in the cell state. By
using this gate, the network can decide to forget some information. Depending on
the context, information can become irrelevant. For example, a spike in the heart
rate could be so critical that the information in the cell state describing a previous
steady curve becomes irrelevant. When this spike occurs, the network can decide
to forget this steady curve. Formally, the forget gate can be described using the
following equation:

ft = σ(U f xt + W f ht−1 + b f ) (5.16)

We know from section 5.2.3 that the range of the sigmoid is [0, 1]. The vector ft

has the same dimensions as the the cell state, and it will contain for every element
in ct−1 a value between 0 and 1, encoding how much information should be kept
[37].
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Input gate. We can also store new information in the cell state. Depending on the con-
text and the input, the input gate decides which information is relevant, so in our
case, this would be the information describing this spike in the heart rate. The
input gate decides which pieces of information of the hidden state and the current
input combined will be supplied to the cell state. The input gate is defined using
the following equation:

it = σ(Uixt + Wiht−1 + bi) (5.17)

Because of the sigmoid, the vector it contains for every element of the concatena-
tion of ht−1 and xt a value between zero and one, describing which information
will be transferred to the cell state.

Update Gate. The information in the cell state can be represented in a differentway than
the way information is stored in the inputs and hidden states. The neural network
layer with the the tanh(z) activation function creates candidate values for the cell
state [37]; the information contained in both ht−1 and xt is put between the values
−1 and 1.

gt = tanh(Ugxt + Wght−1 + bg) (5.18)
After calculating gt, the cell state can be updated using the following equation:

ct = ft ⊙ ct−1 + it ⊙ gt (5.19)

First, we forget the information according to the vector ft, which was supplied
by the forget gate, by point-wise multiplying (⊙) the two vectors. Then, the new
candidate values are added to the cell state. Which information gets updated was
decided by the input gate (it). If we look again at our example, the cell state now
contains updated information about the spike.

Output Gate. Wehave now updated the cell state, but we still have not given an output.
The output gate decideswhat information from the cell state flows back to the new
hidden state and output of that LSTM unit, given the current input and previous
hidden state:

ot = σ(Uoxt + Woht−1 + bo) (5.20)
The vector ot is then a vector that decides for each element in the cell state if it will
be transferred to the hidden state and output. Before transferring, each value in
the cell state is transformed by applying the tanh function point-wise. Then the
new hidden state is determined using the following equation:

ht = ot ⊙ tanh(ct) (5.21)

Note that the matrices U and W that contain the weights are different for each gate
(hence the subscripts in the equations). Therefore, the behavior of each gate can be
unique.
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LSTMs meet all the four requirements discussed earlier. Chung et al. [9] show that
gated networks like LSTMs outperform traditional RNNs (an alternative is the Gated
Recurrent Unit (GRU), which performs on par with LSTMs). All these arguments com-
bined make this architecture a good candidate architecture for the prediction of future
vital sign time series.

5.3.3 Convolutional Neural Networks

x0 x1 x2 x3 x4 x5 x6 x7

C0 C0 C0 C0 C0 C0 C0

max max max max max

C1 C1 C1 C1

F

ŷ

w0 w1 w0 w1 w0 w1 w0 w1 w0 w1 w0 w1 w0 w1

Figure 5.10: A sample one-dimensional Convolutional Neural Network. There are two convolution layers (green),

interspersed by one max pool layer. The last convolution layer is connected to a fully connected layer F, which will
determine an output ŷ. Based on a figure in [36], but adapted to our notation.

Besides Recurrent Neural Networks like LSTMs, there are other choices formodeling se-
quences. Convolutional Neural Networks (CNNs) have also been used as a way to model
sequences. Traditionally, CNNs have been used a lot for processing images. Convo-
lutional Neural Networks share many properties with some techniques found in tra-
ditional image processing (e.g., kernels). Mostly, CNNs process 2D images, yet time
series are typically one-dimensional. It is, however, also possible apply CNNs to one-
dimensional data. In figure 5.10, a simple CNN is shown that works on time series data.
CNNs generally consist of three different components or layers [36]:
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Convolution layers consist of cells that look for features in an input patch. Note the
difference between the fully connected layers of aMultilayer Perceptron (see figure
5.4) and the CNN; the input nodes are fully connected to the hidden nodes in the
first, while this is not the case in the latter. The convolutions work on patches of
the data, working on multiple time steps at once. In the figure, there are only two
time steps that are combined; however, in reality, the number of connected time
steps will be larger.

The convolution cells themselves are in fact, an array of nodes that are trained to
detect different features [36]. In our case, these could be the detection of plateaux,
spikes and dips in a time series. The presence of these features will be provided
to the next layer. This could be either another convolution layer, a max pool layer
or a fully connected layer.

Max pool layers. A max pool cell summarizes the information found by the convolu-
tional layer below. For some features, we do not necessarily need to know when
they happened, but only if they happened. The max pool cell picks the maximum
value for each feature of the nodes below and provides it to the next layer. In
this way, networks can work on larger series and detect more high-level features
[36]. If we assume that x encodes a heart rate time series, the max pool layer in
figure 5.10 will report the presence of a spike and dip in the four time steps that
are connected to it.

Fully connected layer. This layer is, in essence, a hidden layer like those found in an
MLP. The units will combine the features found in the convolution layers below.
These layers can be stacked if desired. The (high-level) curve characteristics of the
heart rate series can now be used to make a prediction. Given the series of high-
level features, we can now produce an estimate for a future value of this series.

Convolutional Neural Networks also use parameter sharing; the convolution units in
each layer share the same weights. They will perform the same operation on each patch
of data, a behavior that is similar to a kernel in image processing. This ability makes
learning easier. Besides parameter sharing, this architecture does also fulfill an other
requirement that was discussed in section 5.3: CNNs are able to handle long-term re-
lations. Relations between features are only made in the fully connected layer. As the
weight of a feature that is based on x0 does not depend on a feature of xt,there is no
temporal bias like we found in the Recurrent Neural Network architecture. However,
CNNs are not able to handle variable length sequences. In our case, this does not nec-
essarily pose a problem: given a fixed length history, we may be able to predict one or
more future values for the vital signs.
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5.4 Methodology

By using exploratory analysis methods, we aimed to discover relations between vital
signs time series. In this part, we aim to create models that given a set of historical vital
signs time series predict future values of these time series. In the previous section, we
described two different Neural Network architectures that are suitable for time series
prediction; Long Short-Term Memory Networks and Convolutional Neural Networks.
However, there are still some choices left to be made in the configuration of these net-
works. In the following sections, we will describe which configurations are chosen and
how they are assessed.

5.4.1 Inputs, outputs and network architecture

In the previous sections, we have seen two different neural network architectures that
are suitable for time series prediction, namely Long Short-Term Memory Networks and
Convolutional Neural Networks. However, we still have to decide how to precisely de-
sign the computational graph. There are several options concerning how information
enters the network and how predictions are made. Considering the Recurrent Neural
Network / LSTM architecture, there are several options for input and output [50]:

One to Many. Given a single time step of vital signs, we can produce multiple outputs.
This approach is not suitable for our case, as we have seen that there are correla-
tions between early time steps and newer ones (see section 4.5.6).

Many to One. Given multiple time steps of vital signs, produce a single output. This
architecture is mainly used for classification of time series and is less suitable for
prediction, as information provided in earlier predictions is not reused.

Many to Many. For each time step we provide to the network, an output is produced.
This approach seems similar to one to one modeling, but this is not the case. We
have seen in figure 5.7 and 5.9 that there are links between the recurrent nodes
that transfer information from earlier predictions to later ones. The information
that is provided in earlier steps can be used to predict later ones.

Sequence to Sequence. We take as input a (multivariate) time series. First, we produce
an internal representation of that series. The part of the network that produces this
representation is called the Encoder. Subsequently, this internal representation is
provided to the Decoder, which produces the prediction of multiple time steps. In
our case, this architecture transforms historic sequences into future sequences.
This architecture seems suitable for time series prediction; however, there are some
limitations to this approach. One of the limitations is that the feature dimension of
the input has to be the same as the output’s dimension. In this work, the number
of Vital Signs Time Series that we provide to the network will be larger than the
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number of VSTS we want to predict. Moreover, we will provide static variables
like age and some ventilator settings to the network. While we can also include
these variables in the prediction, this will, probably, not make learning easier.

From these approaches, the Many to Many approach is the most suitable for modeling
our problem, as information about earlier predictions can be reused, and we are not
limited by the dimensions of the input and output. When we consider CNNs we do not
have to make this choice; there is a One to One relation between an input (a history of
vital signs) and the prediction.

Input structure

As described above, the many to many method provides an output for every input xt

that is given. Given the dataset, there are two choices on how to structure the input of
each prediction:

Single Time Step Input (STSI). The vector xt has k dimensions, containing the current
values of k time series. Information about earlier time steps flows through the
hidden state h and the cell state c. A down side to this approach is that when
there is not a lot of information recorded in the state, the outputswill be unreliable.
During a warm-up period, the predictions will, therefore, be unreliable. After this
period, the predictions should be reliable.

xt =
[
HRt ETCO2t · · · Ppeak

t

]
(5.22)

Multiple Time Step Input (MTSI). Instead of a vector, we supply each input node
with a matrix Xt with dimensions h × k. Instead of only providing a single step,
now information about a history of h time steps is already available through each
input node. However, when LSTMs are used, information from previous predic-
tions still flows through recurrent links to the current prediction.

Xt =


HRt−h ETCO2t−h · · · Ppeak

t−h

HRt−(h−1) ETCO2t−(h−1) · · · Ppeak
t−(h−1)

...
...

. . .
...

HRt ETCO2t · · · Ppeak
t

 (5.23)

In section 5.3.3wedescribedhowaConvolutionalNeuralNetwork canmakepredictions
on a time series with a fixed size h. Therefore, the MTSI approach is also suitable to be
used by a CNN. We can also combine a CNN with a LSTM by giving the output of the
CNN to a LSTM. Therefore, the LSTM will work on high level features that describe the
input data. These abstractions will enable the network to work on larger amounts of
data.
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Output structure

There are also several options for the output of the network. In time series forecast-
ing literature, several forecasting methods are mentioned that may be suitable for our
problem [29]:

Iterated forecast (IF). We predict the next time step for all our k input variables. The
forecast is then used to predict the next step. Suppose we use MTSI and use the
input of equation 5.23 as input. The desired output will be as follows:

ŷt =
[
ĤRt+1 ̂ETCO2t+1 · · · P̂peak

t+1

]
(5.24)

The next input will include the prediction and lose the earliest measurement:

Xt+1 =



HRt−(h−1) ETCO2t−(h−1) · · · Ppeak
t−(h−1)

HRt−(h−2) ETCO2t−(h−2) · · · Ppeak
t−(h−2)

...
...

. . .
...

HRt ETCO2t · · · Ppeak
t

ĤRt+1 ̂ETCO2t+1 · · · P̂peak
t+1


(5.25)

This cycle is repeated for the following predictions, until the desired prediction
window is reached. When LSTMs are used, this method is also suitable with the
STSI method. Of course, then only the prediction is supplied as input.
The prediction quality of further time steps mainly relies on the accuracy of the
prediction of the one-period ahead model. If this is not the case, the rest of the
predicted will be unreliable [29]. We suspect that the one-period ahead model
will not be fully reliable. Therefore, we will not investigate Iterated forecasts.

Direct forecast with single step output (DFSO). We directly predict the value of time
step xt+s, without predicting intermediate time steps. We do not necessarily need
to predict the same number of parameters as the input, as the output will not be
used in further predictions.

ŷt =
[
ĤRt+s ̂ETCO2t+s P̂peak

t+s

]
(5.26)

Direct forecast with multi step output (DFMO). We directly predict the value of all
the time steps from t + 1 till s, returning a matrix of size koutput × s:

Ŷt =


ĤRt+1 ̂ETCO2t+1 P̂peak

t+1

ĤRt+2 ̂ETCO2t+2 P̂peak
t+2

...
...

...
ĤRt+s ̂ETCO2t+s P̂peak

t+s

 (5.27)
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From a clinical perspective, the direct forecast with multi step output would be ideal, as
more intermediate predictions provide more information to caregivers. We will, how-
ever, create both single and multi step output models, so we can compare their perfor-
mance.

Summary

We will assess the performance of the following network architectures:

1. LSTM:

(a) Single Time Step Input (STSI) - Direct forecast Single Output (DFSO)
(b) Multi Time Step Input (MTSI):

• Direct forecast Single Step Output (DFSO)
• Direct forecast Multi Step Output (DFMO)

2. CNN + Multi Time Step Input (MTSI):

• Direct forecast Single Step Output (DFSO)
• Direct forecast Multi Step Output (DFMO)

3. LSTM+CNN+Multi Time Step Input (MTSI) - Direct forecastMulti StepOutput
(DFMO)

As CNNs cannot work on single time step inputs, we will not assess this combination.

5.4.2 Dataset

For our predictivemodels, wewill again use the PC-IMV-Adaptive subset of the dataset,
as described in chapter 3. Whereas in the exploratory analysis, not all the variables could
be used, due to limitations of the VARmodels, we can nowuse a broader range of inputs
(see table 5.1). The static parameters age and weight are treated as time series (just like
the other variables), even though they remain constant over time.

Downsampling

Esteban et al. [16] used a similar dataset, namely the EICU dataset [41], to predict alarm
threshold violations and for the creation of synthetic vital signs time series. That dataset
also records vital signs time series; however, it does not contain the series of vital signs
that were measured by ventilators. Besides the different set of variables, the time series
were also recorded in a different frequency; one measurement every 5 minutes. The
classifiers that were trained on that dataset predicted future alarm rule violations quite
successfully [16]. We can mimic this dataset by downsampling the data by only storing
themedian of awindowof fiveminutes. Wewill compare the predictive quality between
the networks that are trained on the original dataset and the adapted dataset.
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Measured Variables Settings Static Parameters

End-tidal CO2(ETCO2) Age
Expiratory Tidal Volume (VTexp) Tidal Volume Weight
Fraction of inspired Oxygen (FIO2) FIO2
Respiratory Frequency (Ventilator) Respiratory Frequency
Respiratory Frequency (Monitor)
Heart Rate (HR)
IE – Ratio IE – Ratio
PEEP PEEP
Peak Pressure (PPEAK)
Saturation (SPO2)

Inspiration Time
Inspiration Rise Time

Table 5.1: The input and output variables that are used in the predictionmodels. The settings andmeasured variables

that directly correspond to each other are placed on the same line. The target variables (the ones that we aim to

predict) aremarked in italics.

Patient specific subsets

Instead of training on the whole dataset, we can see if we can improve predictive quality
by building a model that is suitable for only a subset of the patients. We should know
beforehand to which subset the patients belong; therefore, we can only select on static
parameters. Wewill see if training on a subset of patients does improve predictive qual-
ity. As a subset, we will take the patients that are 40 days or younger at the moment
of admission, which is a more homogenous subset of patients, which is still sufficiently
large to produce a reasonable amount of training data.

Scaling

Initial experimentation on the unaltered dataset did not provide good models, nay, of-
ten training failed when the amount of training data was increased. The different, large
and small, ranges in which the individual vital signs are represented caused increased
weights w in W (w ≥ 1), which, in turn, resulted in the exploding gradient problem (see
section 5.3.1). Exploding gradients make learning unstable [19]; in our experiments,
symptoms of this instability were (impossible) negative values in the loss/cost function
during training. We scaled all the values of the whole dataset between zero and one, ac-
cording to the global minimum andmaximum of that variable to mitigate this problem.
The following equation expresses the scaling method:

x′i,p,t =
xi,p,t − min(xi)

max(xi)− min(xi)
(5.28)
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where

i : column (variable) index
p : patient identifier
t : time index
xi : column vector

We do not let the scaling depend on the patient, like in the Graphical VAR models, as
the system should be able to deal with new patients for which we do not know the
maximum and minimum values beforehand. The scaler’s parameters are saved so that
new patients can be scaled using the same method.

5.4.3 Achieving generalization

In supervised learning, the dataset is often divided into two disjoint parts; a training
set and a test set [19]. The training set is provided to the neural network during the
training phase. In order to evaluate the model’s performance, a part of the dataset is
held out. The test set is then used to assess the model’s performance on unseen data, to
see if generalization is achieved. The generalization error refers to the error on the test set
[19].

Usually, in time series forecasting, the division between test and training is made
across the temporal dimension, where the first part is used for training and the second
part for the testing of themodel’s performance [30]. The PICUdataset is a panel dataset,
as it consists of a panel of patients. In our case, we will make the division on the panel
axis, so that we can verify that the model also works when predictions are made for pa-
tients whose time series were not (partially) included in the training phase. By making
the division on the patient axis, we aim to create a generic prediction model, that will
work for a broad range of patients.

(a)Capacity (b) Early Stopping

Figure 5.11: The plots show how overfitting can occur during training. When the capacity of the network is too large

or training continues too long, overfitting takes place. The arrows point to the optimal capacity and the ideal epoch to

stop training. These figures are adapted from figures 5.6 and figures 7.3 in [19].

A part of the training data will be held out for validation. During training, we aim
to minimize the loss/cost function. As we minimize the loss, we could reach a point
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where we are overfitting to the training data, and the predictive accuracy on the test
datawill again decrease. After each epoch of training, wewill calculate the loss function
on the predictions on the validation set and store the model if it is an improvement on
the validation loss of the previous epoch. We will do the same for the training loss, so
we can compare these two configurations when the training phase has been completed.
We can also stop training after x epochs of no improvement in the validation loss, a
method that is referred to asEarly Stopping [19]. We effectively achieve the same result by
continuously saving the best performing model on the validation set; only we continue
training tominimize the loss on the training set, in order to ensure that we do not stop to
early in a phase were the model is still underfitting. We stop training when the training
loss function has not been improved for over 100 epochs of training.

Early Stopping is a regularization method. Regularization is defined as any alteration
of a machine learning method that aims to reduce the generalization error, while still
maintaining the same learning error [19].

We will divide the patients as follows: the training set will contain 80 % of the pa-
tients and the test set will contain 20 %. From the training set 70 % will be used during
training and 30 % for validation.

During training, we will use time series of at least five hours of uninterrupted mea-
surements. From a time series we will select a window of four hours, by picking a ran-
dom time step tstart that will still allow a window size of four hours. During each epoch
of training, a batch of n randomly selected windows will be fed as training data.

5.4.4 Hyperparameters and Regularization

Besides the weights, there are several other parameters of a neural network. These pa-
rameters are not learned through gradient descent but are specified beforehand. These
hyperparameters control the behavior of the learning method and the capacity of the net-
work or apply some regularization [19]. In our case, there are several hyperparameters
that we have to specify:

The LSTM dimensionality. We can specify the size of the hidden state ht. When we
increase this parameter, more information can be stored. This hyperparameter
says thus something about the network’s capacity. This parameter is specified for
each LSTM layer individually. This parameter is often referred to as the number
of LSTM units, a misnomer, as it does not say anything about the number of LSTM
cells in each layer.

Number of filters in the Convolution Layers. In section 5.3.3, we described how each
CNN cell determines the presence of a couple of features on the patch of data
on which it is working. This hyperparameter determines the number of features
that each cell detects. This parameter is specified for each convolution layer indi-
vidually. Again, this hyperparameters says something about the capacity of the
network.
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Kernel size and Pool size. The kernel size determines the size of the input patch of
each convolution cell. The pool size determines the same for each pooling unit. A
smaller kernel size results inmore fine-grained features, while an increased kernel
size will result in more high-level features.

Learning rate. In section 5.2.2, we discussed how the learning rate affects the learning
process; if this parameter is not set correctly, wemight miss the optimal weights of
the network. Usually, the optimal learning rate depends on the phase of learning.
We can adapt the learning rate through an optimizer. In the beginning, we learn
faster, and oncewe reach a certain phase (the increase in loss function slows done),
the learning rate becomes smaller. Besides this, the Adam optimizer [25] adapts
the learning rate for each weight. Ruder [43] lists several optimizers and gives
an overview of their performance. Adam outperforms in most of the cases other
optimizers. Because of this, wewill use theAdamoptimizer to control the learning
rate.

Dropout is a regularizationmethod, introduced by Srivastava et al. [51]. Whendropout
is applied to a layer, a number of its nodes are removed. A scalar value p (between
zero and one) determines for each epoch of training the chance that a node is kept.
This method counteracts overfitting of the different nodes in the network, as the
final prediction will not rely on a few nodes [19]. During training, each epoch
the network had a different layout. These networks can be seen as an ensemble of
networks, of which we average the prediction. This approach is, however, expen-
sive. Alternatively, we will multiply all the layer’s outgoing weights with p. This
method is an approximation of averaging, as we will get the expected output of
the node [51]. Besides the application of dropout on layers, it is also used between
recurrent units. This is referred to as recurrent dropout.

5.4.5 Evaluation

After a model is fitted, we have to assess its predictive quality. During training, this is
assessed through the use of a loss function. We use theMean Squared Errormetric as loss
function [19]:

MSE =
1
m

m

∑
i=1

(ŷi − yi)
2 (5.29)

where

m : the number of predictions

The MSE measures the error between the predicted ŷ and the actual data points y. This
error is squared for two reasons:

1. The error should always be positive; otherwise estimations that are too low cancel
the estimations out that are too high (because of the summation).
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2. Wrong estimations that are close to the actual value should not be punished as
much as the estimations that are far from the actual value. By squaring, this is
achieved as the slope increases linearly.

By taking the root of the MSE, we obtain the Root Mean Squared Error (RMSE), which
describes the error in the original unit of measurement. For the STSI case, we slightly
change the MSE loss function: we will calculate the MSE for each series, but we do not
take the ten first predictions into account. During the warm-up period, predictions are
unreliable, as no history is available through the hidden and cell state. By conceding
to this fact, we aim to find models that will make accurate forecasts after the warm-up
period has ended, and shift the focus during training to after this period.

In addition to the MSE, there are two alternative metrics that are frequently used in
time series forecasting literature to assess the predictive quality of the models:

Mean Absolute Error (MAE). This method is very similar to the MSE metric, but in-
stead of squaring the error we take its absolute value. This results in the fact that
large errors are not punished more severely than small errors.

MAE =
1
m

m

∑
i=1

|ŷi − yi| (5.30)

Mean Absolute Percentage Error (MAPE). This metric enables one to assess the pre-
dictive accuracy without knowing the scales of the different parameters. It is so to
say, scale invariant. It will describe the average error percentage. However, there
are is one main issue: when the actual value yi that we aim to predict is zero, we
cannot calculate this metric, as we cannot divide by zero (a value that is absolutely
plausible for some parameters). Therefore, we cannot use this method on all the
predictions. We can, however, assume that the number of actual values that are
zero is negligible, and therefore, their contribution to the average error too. After
ignoring these predictions, we can calculate this metric using the following equa-
tion:

MAPE =
100
m

m

∑
i=1

|yi − ŷi

yi
| (5.31)

PersistenceModel

Besides comparing trained models on the prediction error, we will also compare the
models to a naïve model; the persistence model. This model is straightforward. We
have seen in section 4.5.6 that there is a strong correlation between the previous and
current measurement. The persistence model lets the prediction rely entirely on the last
available measurement [34]:

yt+s = yt + ϵt (5.32)

where
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s : the time step in the future

This model provides a baseline for predicting future values. Complex models like Arti-
ficial Neural Networks are only useful if they (at least) outperform the naïve model.

Plots

We will also visualize the predictions of the models. In this way, we can visually com-
pare them to both the actual data and the forecasts of the persistence model. Further-
more, we can provide consecutive visualizations of multistep output models that show
how these models transform the input to output, by plotting both the history followed
by the prediction. In this plot, we will also visualize the actual data so we can assess
the predictive quality. Consecutive plots allow us to see how the model’s predictions
change over time. Moreover, this approach reflects how a predictive model could be
applied in practice.

5.4.6 Implementation

All these networks will be implemented through the Keras library (with TensorFlow
backend) in the Python programming language. By using a Tensor Processing Unit, a
GPU designed for Machine Learning, we can achieve faster training times and process
more data than using the CPU. The training will take place on a Virtual Machine that is
hosted on the Google Cloud Platform. The machine that was used had 4 CPU’s, 24 GB of
RAM and an NVIDIA Tesla K80 Accelerator, which provides 12 GB of memory.

5.4.7 Comparison to relatedwork

In previous sections, we already cited and mentioned the article “Predicting responses
to mechanical ventilation for preterm infants with acute respiratory illness using arti-
ficial neural networks”, by Brigham et al. [7]. This article describes a study conducted
at Durham University and the neonatal intensive care unit of “University Hospital of
North Tees” in Stockton-on-Tees, UK. In this section, we will briefly summarize this
paper and describe how it relates to our work and methodology.

Background

Preterm infants (neonates) are susceptible to respiratory illness, partly because the lungs
are often underdeveloped at birth. Mechanical ventilation is, therefore, usually applied
to neonates after birth [49]. Various ventilator types and methods are currently being
tried on patients, in order to determine which method is most suitable; in other words,
finding the method which achieves the most optimal results for this patient. The overall
goal of the studywas to reduce the need for in vivo testing by using deep learningmodels
that ideally predict the most suitable method. As a first step, they investigated whether
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deep learning methods can predict the response of the current ventilation method, by
forecasting an indicative vital sign. Motivated by the assumption that the Vital Signs
Time Series are non-linear, Brigham et al. opted to use Long Short-Term Memorys to
model time series.

Data collection

Brigham et al. used data from four different ventilation methods (terminology cf. [8]):

1. PC-CSV-Adaptive
2. PC-CMV-SetPoint
3. PC-IMV-Adaptive
4. PC-IMV-SetPoint

The data were collected as follows: one of the four modes was applied for 30 minutes
the data generated by the ventilators and monitors were recorded. This measurement
period was followed by a 15-minute washout period, after which a new measurement
period was used for another mode. From each period of measured data, a window of
10, artifact-free, minutes was selected. The following parameters were measured every
1.5 seconds:

• Inspiratory Tidal Volume

• Spontaneous Minute Volume (the amount of air that a patient expires during pa-
tient triggered breaths).

• Respiratory Frequency

• FIO2

• Pressure

• Compliance

The settings in the patients were fixed at an Expiratory Tidal Volume of 4 - 6 ml/kg and
the inspiratory time between 0.25 and 0.35 seconds. The patient cohort consisted of 10
preterm babies, who were born after less than 30 weeks of pregnancy.

Model

Brigham et al. used LSTMs to create a prediction model. Based on five time steps of
historical data {t−4, t−3, . . . , t0}, they predicted t1 (1.5 seconds ahead), where t0 is the
current time step. They also created models that predicted t10 (15 seconds ahead). For
this prediction, the history there goes back to t−9. Only the Minute Volume vital sign
was predicted (this variable is related to the the Expiratory Tidal Volume in our dataset,
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see section 2.2.2). A network containing one hidden LSTM layer was used to predict t1.
For t10, two architectures were tested; the first was aforementioned one layer architec-
ture, and the second was a network with an additional hidden layer.

Results

Thepredictions of the next time-step aheadmodel seemed to be successful at first glance;
the model has a higher accuracy as the error-metric RMSE is low (in terms of the orig-
inal unit of the Minute Volume). However, if we look at the plots that compared the
prediction to the actual data, it seems that the predictions seem to be lagging. For the
t10 models, the results are worse in terms of the RMSE-metric. After adding a second
LSTM layer, the results of the model improved; the resulting RMSE was lower, but not
as low as the t1 model. However, in our opinion, we see the same lagging behavior in
some of the plots.

Relation to our project

The context of both projects is similar, and therefore, the projects share have many sim-
ilarities. In our dataset, more patients are included, whereas, in their work, the patient
cohort was limited to a more homogenous group: the patients were of similar age and
had similar complications. Furthermore, the data was collected and selected systemat-
ically, which is not the case in our dataset. The most significant difference is the fre-
quency of measurements, which is much higher in their dataset.

We have implemented their architecture to see how this architecture will perform
on our dataset; we refer to their architecture as the LSTM-MTSI-DFSO model. In the
reflection of the results, the authors note that the LSTM networks have trouble keeping
up with frequent changes. This is one of the reasons that we will also try if the CNN
architecture may be a better fit. In their models, no static parameters were included like
age and weight. The authors expect that by including this the accuracy of the model
improve will improve. In our models, these variables will be included, so if their hy-
pothesis is correct, we might see some improvement compared to their models. The use
of Dropout and other (deeper) architectures is also suggested, and we will experiment
with both of them.

Their paper lacked an overviewof themodel’s performance on thewhole dataset/test
set; only the model’s performance on some patients was provided. By following the
evaluation procedure provided in section 5.4.5, we aim to provide a report of the re-
sults that is more indicative of how the models perform in general.

5.5 Results

In this section, the results of our experiments, as discussed in the previous section, will
be discussed. As the number of configurations is large, only a subset of the results is
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reported here. Only the best-performing, category representative, or otherwise special
models are reported for each category. We will report for each model the following:

• The configuration; architecture, input and output specifications, and hyperparam-
eter values

• The performance per vital sign according to the following four metrics:

– Mean Squared Error (MSE)

– Mean Absolute Error (MAE)

– Root Mean Squared Error (RMSE)

– Mean Average Precision Error (MAPE)

• Visualizations of the predictions compared to the true signal

The dataset contains data of multiple patients, who are partitioned over the training,
test, and validation sets. We call calculate these metrics for all the vital signs separately,
as there are scale differences between them. Because of the presence of a patient axis,
there are two ways to evaluate these metrics:

1. We calculate these metrics per patient and aggregate the results by averaging. In
this way, we calculate the mean of means.

2. We ignore the cross-sectional axis and calculate the metric on the whole dataset.

We choose to go for option two, as we believe this is a more accurate way to describe
these metrics. Moreover, during training, this is also the method in which the loss func-
tion is calculated. Also, the square root relation between the RMSE and MSE metrics is
kept intact, whereas when the first method is being used, this is not the case.

We will first discuss the results of the LSTM models in section 5.5.1, followed by
the CNN-based models’ results in section 5.5.2. Furthermore, we will assess the per-
formance of the combined LSTM-CNN architecture in section 5.5.3. Finally, in section
5.5.4, we will report on the results of some experiments where we adjusted the dataset
by down-sampling and by only including a subset of the patients in the training set.

5.5.1 Long Short-TermMemory

The LSTM model is the only architecture with the option of a single time step input, as
this option is nonsensical when used in combination with a CNN architecture. First, we
will address the Single Time Step Input (STSI) approach, followed by theMultiple Time
Step Input approach.
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Single Time Step Input (STSI)

In this section we will describe the results of a LSTM network wit the following specifi-
cations:

Input: 1 time step for 19 variables
LSTM Layer 1: No. of Units = 500, Dropout = 0.1
LSTM Layer 2: No. of Units = 500, Dropout = 0.1
Fully Connected Layer: 6 units, one for each vital sign
Output: 1 time step, t + 10

The results for a forecast horizon of 10minutes are shown in table 5.2. In terms of (Root)
Mean Squared Error, there is an overall improvement over the naïve persistence model.
However, in terms of the other error metrics, MAE and MAPE, this improvement is
negligible or even absent. When we plot the predictions of both the models, we can see
that the LSTMmodel has learned to mimic the naïve persistence model, the RMSE with
respect to the naïve model is 2.37, while this is 6.14 with respect to the true signal. This
behavior is also visible in the visualizations for the other vital signs (not shown). Fur-
thermore, this behavior is also seen when we increase or reduce the forecast horizon.

Multi Time Step Input - Direct Forecast Single Step Output

In addition to the STSImodels, we createdMSTImodels based on the LSTM-architecture.
When we increased the number of input time steps, we also had to reduce the number
of LSTM units, as the learning speed became untenably slow. In this section, we will
show the results for an LSTM network with the following configuration:

Input: 60 time steps for 19 variables
LSTM Layer 1: No. of Units = 100
LSTM Layer 2: No. of Units = 100
Fully Connected Layer: 6 units, one for each vital sign
Output: 1 time step, t + 10

This model’s results are shown in table 5.3. This model gives a slightly improved accu-
racy compared to the STSI model for all of the variables except the Expiratory Tidal Vol-
ume. The plots show that this model has also learned to mimic the persistence model.
In the case of the PPEAK variable (visualized in 5.3c), the variablewhich shows the biggest
improvement in terms of the MAPE-metric, we see that the model can discern outlier-
s/noise from the main signal, and the predictions will follow the latter more closely.
However, the model still follows the persistence model, as the error between the persis-
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MSE MAE RMSE MAPE

ETCO2 6.81 1.49 2.61 3.66
VTexp 489.16 8.19 22.12 47.17
RF 12.68 1.97 3.56 5.37
HR 62.26 4.96 7.89 3.99
PPEAK 8.50 1.71 2.91 12.26
SPO2 4.07 1.02 2.02 1.13

(a) LSTM - STSI - DFSO, horizon = 10minutes

MSE MAE RMSE MAPE

ETCO2 8.07 1.49 2.84 3.64
VTexp 904.19 9.42 30.07 45.68
RF 18.82 1.86 4.34 4.82
HR 70.19 4.94 8.38 3.96
PPEAK 13.58 2.01 3.68 13.56
SPO2 5.57 0.94 2.36 1.05

(b)Naïve persistencemodel
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Prediction (RMSE = 6.14, RMSEnaive = 2.37)
Naïve (RMSE = 6.31)

(c)HR plot

Table 5.2: The LSTM-STSI-DFSO performance on the test set. Themodel has forecast horizon of 10minutes.

tence signal and the model’s prediction is smaller than the predictive error on the true
signal. Just as in the STSI case, this behavior is also present when the predictive horizon
is increased or decreased.

Multi Time Step Input - Direct Forecast Multiple Step Output

We adapted the above LSTM-MTSI-DFSO-architecture by increasing the number of out-
put nodes. Each time step has its own output node in the network:

Input: 60 time step for 19 variables
LSTM Layer 1: No. of Units = 100
LSTM Layer 2: No. of Units = 100
Fully Connected Layer: 120 units (6 × 20)

Output: 20 consecutive time steps (t1, . . . , t20), for 6 variables

The results show (see table 5.4 that the model has trouble predicting four out of six
variables (all except the heart rate and saturation); for example, there is a significant
increase in the Mean Squared Error metric of the ETCO2variable compared to the per-
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MSE MAE RMSE MAPE

ETCO2 6.31 1.46 2.51 3.53
VTexp 611.14 8.43 24.72 56.73
RF 12.12 1.82 3.48 4.91
HR 60.74 4.88 7.79 3.94
PPEAK 8.03 1.66 2.83 11.09
SPO2 3.64 0.96 1.91 1.06

(a) LSTM-MTSI-DFSO error metrics

MSE MAE RMSE MAPE

ETCO2 8.07 1.49 2.84 3.64
VTexp 904.19 9.42 30.07 45.68
RF 18.82 1.86 4.34 4.82
HR 70.19 4.94 8.38 3.96
PPEAK 13.58 2.01 3.68 13.56
SPO2 5.57 0.94 2.36 1.05

(b)Naïve persistencemodel
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Table 5.3: The results on the test set of the LSTM-MTSI-DFSOmodel.

sistence model (80.90 vs. 7.45). These increases in the error metric are caused by the
fact that the model fails to learn some of the time steps correctly. For most of the time
steps, all goes well. However, the model fails to learn the correct weights for 5 out of the
120 time steps and will predict a bogus constant value for all inputs (see figure 5.12).
The model is still underfitting, and further training will not resolve this problem, as it
persists after almost 100 epochs without improvement in the training loss.

We tested multiple configurations and alterations in the hyperparameter values for
this architecture. However, the results were similar: the gaps in the prediction may
happen at random places, but the presence of gaps could not be prevented. Moreover,
despite all alterations, the model would still mimic the persistence model.

5.5.2 Convolutional Neural Networks

As said before, we only created models with the Multiple Time Step Input method for
the Convolutional Neural Networks architecture. Considering the outputs, we created
both models that predict a single time step of the output variables, and models that
produce a multiple time step output.
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MSE MAE RMSE MAPE

ETCO2 80.90 3.26 9.00 7.94
VTexp 613.75 9.33 24.77 55.90
RF 139.64 4.96 11.82 13.93
HR 61.83 4.82 7.86 3.84
PPEAK 57.21 3.60 7.56 20.03
SPO2 3.62 1.05 1.90 1.14

(a) Error metrics on the LSTM-MTSI-DFMOmodel

MSE MAE RMSE MAPE

ETCO2 7.45 1.42 2.73 3.42
VTexp 1139.77 10.29 33.76 54.09
RF 17.83 1.78 4.22 4.69
HR 70.77 4.80 8.41 3.86
PPEAK 12.77 1.95 3.57 12.70
SPO2 4.96 0.91 2.23 1.00

(b) Error metrics on the Naïve Persistencemodel

Table 5.4: The results of the LSTM-MTSI-DFMOmodel.

(a) EtCO2 (b)RF (c)HR

Figure 5.12: The results of the still underfitting LSTM-MTSI-DFMOmodel. The fails to learn the EtCO2 time step t9.

For the RF variable, time steps t1 and t12 were not well determined. However, for HR, weights were established for

all time steps.

Direct Forecast Single Step Output (DFSO)

For the single time step case, we use a CNN model with the following configuration:

Input: 30 time steps for 19 variables
Convolution Layer: Kernel size: 3, No. of filters = 256
Convolution Layer: Kernel size: 5, No. of filters = 64
Fully Connected Layer: 200 units
Fully Connected Layer: 6 units, one for every vital sign
Output: 1 time step, t10

In table 5.5, the results are shown for the model with a prediction horizon of 10 min-
utes, so we can compare the results with the LSTM-STSI results in table 5.2. We have
seen in section 5.5.1 that the LSTM-MTSI-DFSOmodel offers a minor improvement over
the LSTM-STSI-DFSOmodel. The results of the CNN-DFSOmodel only provide a small
decrease in error in terms of theMSE-metric over the LSTM-STSI-DFSOmodel, for some
of the variables (ETCO2, HR, PPEAK). However, the CNN-DFMO only outperforms the
LSTM-MTSI-DFSO model for the RF variable. Overall, there is no significant difference
between the results of the three models (except for the Expiratory Tidal Volume). If we
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MSE MAE RMSE MAPE

ETCO2 6.73 1.50 2.59 3.80
VTexp 502.11 8.26 22.41 58.01
RF 12.89 1.73 3.59 4.58
HR 60.36 4.96 7.77 4.08
PPEAK 8.41 1.69 2.90 11.79
SPO2 4.11 0.96 2.03 1.08

(a) The CNNmodel

MSE MAE RMSE MAPE

ETCO2 7.88 1.48 2.81 3.63
VTexp 919.68 9.76 30.33 52.01
RF 19.44 1.87 4.41 4.91
HR 71.02 4.91 8.43 3.96
PPEAK 13.39 2.01 3.66 13.37
SPO2 5.70 0.95 2.39 1.05

(b) The naïve persistencemodel
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Table 5.5: Forecasting with a horizon of 10minutes using a CNN
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look at the visualizations (in 5.5c), we can see that themodel learned to use the last time
step as a prediction, just as the LSTM models did. In terms of MAPE, the CNN-DFSO
model outperforms the others for the RF variable. For the Expiratory Tidal Volume,
we can see in 5.5d that it provides some generalization on the prediction, at least more
than the other variables, as it does not religiously follow the curve with noisy spikes
and dips as the predictions of the other variables do. Just as the LSTM-STSI-model,
the CNN model offers a significant reduction of the MSE-metric (417) for the Expira-
tory Tidal Volume; however, this reduction is not reflected in the MAPE score. We will
further discuss this phenomenon in section 5.6.1.

Direct Forecast Multi Step Output (DFMO)

Weuse for themulti step output almost the same configuration as in the single time step
output case case:

Input: 30 time steps for 19 variables
Convolution Layer: Kernel size: 3, No. of filters = 256
Convolution Layer: Kernel size: 5, No. of filters = 64
Fully Connected Layer: 200 units
Fully Connected Layer: 120 units (6 × 20)

Output: 20 consecutive time steps (t1, . . . , t20), for 6 variables

In table 5.6, the results of the model are shown for the CNN-DFMO model. The model
is an overall improvement over the naïve model and the LSTM-DFMO model; however,
when compared to the naïvemodel, the lattermodel is for some variables better in terms
of MAPE. We can visualize the model’s predictions in a similar way as in 5.5c and 5.5d,
but this results in 120 plots. This type of plot cannot be used to visualize the behavior
of the multi-step output prediction. Instead, we visualize the predictions as they would
be used in a clinical setting; that is, in a plot which shows the history (input) of the vital
signs followed by the predicted future values. We also plot the true signal so we can as-
sess the quality of the prediction. Typical predictive behavior of the CNN-DFMOmodel
is shown in figure 5.13. We have seen that the DFSO models seem to mimic the persis-
tence model. This behavior is also present in the individual time steps of the variables
that are predicted by the CNN-DFMOmodel (not shown). However, whenwe consider
the ensemble t1, . . . , t20 of DFMO predictions for a variable, this does not always seem
to be the case: The persistence model’s predictions can be visualized as a horizontal line
y = xt0 , where xt0 is the last performed measurement. Predictions that follow this line
are not present in the forecasts in figure 5.13. It seems that the start of the spike in the
ETCO2 curve is not foreseen until t = 2. After that, the model picks it up, but it seems
to revert to some “mean” of approximately 45 mm Hg. The predictions are too low, but
an approximation of the curve’s true shape is visible in the predictions.
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MSE MAE RMSE MAPE

ETCO2 6.40 1.43 2.53 3.59
VTexp 539.11 8.32 23.22 49.33
RF 11.46 1.69 3.38 4.54
HR 54.50 4.61 7.38 3.75
PPEAK 8.12 1.62 2.85 11.35
SPO2 3.17 0.92 1.78 1.00

(a)CNNDFMO

MSE MAE RMSE MAPE

ETCO2 7.93 1.43 2.82 3.51
VTexp 1008.90 9.54 31.76 48.70
RF 17.20 1.77 4.15 4.68
HR 65.12 4.71 8.07 3.79
PPEAK 13.13 1.96 3.62 13.03
SPO2 4.65 0.88 2.16 0.97

(b)Naïve persistencemodel

Table 5.6: The CNN-DFMOmodel. This model provides for every history of 30 minutes a prediction for the next 20

minutes.

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure 5.13: Four consecutive predictions of the CNNMTSI DFMOmodel are shown. It can be seen that the model

does not just naively copy the last measured value, and it seems to be able to foresee a spike in the EtCO2 curve. The

estimates are, however, too low, and the predicted curve seems to revert back to some (pseudo) mean value.
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5.5.3 LSTM+CNN

We only consider the Multi Time Step Input-method for networks that make use of the
Convolutional Neural Network-architecture. For this combined architecture, we will
only consider multiple time steps as the output method. This mixed architecture aims
the use the benefits of both architectures. In this section, the results of the following
configuration are discussed:

Input: 30 time steps for 19 variables
TD: Convolution Layer: Kernel size: 3, No. of filters = 256
TD: Convolution Layer: Kernel size: 5, No. of filters = 64
TD: Flatten
LSTM Layer: 100 units, Dropout = 0.3
LSTM Layer: 200 units, Dropout = 0.5
LSTM Layer: 100 units, Dropout = 0.3
TD: Fully Connected Layer 120 units (6 × 20)

Output: 20 consecutive time steps (t1, . . . , t20), for 6 variables

The convolution units are Time Distributed (TD); this means that a convolution unit pro-
vides the input for each LSTM cell.

The results in table 5.7 show that in terms of the MSE-metric, only the Expiratory
Tidal Volume has a marginal improvement, while for the other variables the error in-
creases. This increase is also visible in the other metrics. When we look at the visu-
alizations in figure 5.14, the model seems to mimic the persistence model. The model
predicts a straight line. The straight line appears to be based on some mean of the in-
put data. We can see that as time progresses, the mean of the input values decreases,
causing the prediction to go lower as well.

MSE MAE RMSE MAPE

ETCO2 7.73 1.80 2.78 4.68
VTexp 525.86 9.68 22.93 51.11
RF 12.69 2.02 3.56 5.80
HR 64.86 5.30 8.05 4.35
PPEAK 8.55 1.77 2.92 12.60
SPO2 4.31 1.25 2.07 1.35

(a) LSTM - CNN

MSE MAE RMSE MAPE

ETCO2 7.77 1.46 2.79 3.61
VTexp 916.01 9.41 30.27 46.68
RF 17.36 1.79 4.17 4.71
HR 65.95 4.68 8.12 3.77
PPEAK 13.02 1.97 3.61 13.55
SPO2 4.68 0.89 2.16 0.97

(b)Naïve

Table 5.7: The LSTM - CNNDFMO, forecasting the next 20minutes
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

Figure 5.14: Six consecutive predictions of the LSTM - CNNMTSI DFMOmodel.

5.5.4 Dataset alterations

With the LSTM-CNN model, we performed some additional experiments by making
some adjustments to the dataset. First, we trained the models only on a subset of the
data. This adjustment did not cause any significant improvements in predictive accu-
racy. However, when we downsampled this subset and trained it with an LSTM-CNN
model, we could create a model that overfitted to the dataset. With all the other meth-
ods, we could not even achieve overfitting, as we only stopped training after 100 epochs
without improvement on the training set; after this, the best performing models were
still underfitting. The LSTM-CNN model had the following architecture:

Input: 30 time steps with a 5 minute interval
150 minutes for 19 variables

TD: Convolution Layer: Kernel size: 3, No. of filters = 5
TD: Max Pool Layer: Pool size = 2
TD: Flatten
LSTM Layer: 500 units, Dropout = 0.3
LSTM Layer: 400 units, Dropout = 0.3
TD: Fully Con. Layer 120 units (6 × 20)

Output: 20 time steps (t5, t10, . . . , t100),
for 6 variables

The full results are shown in table 5.8. When we consider the results on the training
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set, this model provides a very significant improvement in terms of predictive accuracy.
The scores here show a lower bound on the error metrics; a lower score provided by a
model that does not overfit is probably impossible. When we visualize the predictions
on patients that are included in the training set (see figure 5.15), we can see that the
model approximates the curves well. These good results disappear almost completely
when we use this model on the test set (see figure 5.12). It performs much worse than
the persistence model. If we look at the predictions for the ETCO2 variable, we clearly
see that the predictions do not make sense, so at least for the ETCO2 variable, the train-
ing of this model did not help to create a usable model. For the PPEAK variable, these
results are better. The MAPE score is comparable to the CNN-DFMO and LSTM-CNN
networks, and there are moments that this model outperforms the persistence model.
One of these moments is visualized in figure 5.17.

During training, we also kept the model that still performed best on the validation
set. This model, however, does not outperform the LSTM-CNNmodel’s results given in
5.7.

MSE MAE RMSE MAPE

ETCO2 4.50 1.36 2.12 3.48
VTexp 4.16 1.17 2.04 6.61
RF 4.59 1.30 2.14 3.22
HR 39.87 4.19 6.31 2.88
PPEAK 2.60 1.07 1.61 5.60
SPO2 2.58 0.98 1.61 1.08

(a)Results on the training set

MSE MAE RMSE MAPE

ETCO2 39.64 4.82 6.30 13.53
VTexp 17.56 2.71 4.20 15.49
RF 25.19 3.44 5.02 8.80
HR 447.32 16.05 21.15 11.03
PPEAK 11.22 2.53 3.35 12.68
SPO2 21.50 2.97 4.64 3.15

(b)Results on the test set

MSE MAE RMSE MAPE

ETCO2 15.09 2.40 3.88 5.91
VTexp 16.38 2.04 4.05 13.53
RF 17.89 2.28 4.23 5.59
HR 139.10 7.60 11.79 5.48
PPEAK 8.56 1.96 2.93 10.47
SPO2 7.89 1.57 2.81 1.74

(c)Results of the persistencemodel on the test set

Table 5.8: A LSTM-CNN-DFMOwas able to overfit on the training set

116



Results CHAPTER 5. PREDICTIVEMODELS

(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

Figure 5.15: Six consecutive predictions of the LSTM - CNNMTSI DFMOmodel with an adapted training set. These

are predictionsmade on a patient that was included in the training set

(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

Figure 5.16: Six consecutive predictions of the LSTM - CNNMTSI DFMOmodel with an adapted training set. These

are predictions for the EtCO2 variable made on a patient that was included in the test set
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

Figure 5.17: Six consecutive predictions of the LSTM - CNNMTSI DFMOmodel with an adapted training set. These

are predictions for the Ppeak variable made on a patient that was included in the test set
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5.6 Discussion

In this section, wewill discuss the results of the previous section. We have seen three dif-
ferent architectures that were used to create predictive models; the LSTM-architecture,
the CNN-network, and the combined LSTM-CNN-architecture. First, we will discuss
how we can explain and interpret the results of these models in section 5.6.1. Then we
will compare the results with those presented in literature in section 5.6.2. After that,
we will answer the research question we posed in the introduction in 5.6.3. Finally, we
will propose some directions for further research in section 5.6.4.

5.6.1 Discussion of the results

We will first discuss the DFSO models that directly forecasted the variables with a fore-
cast horizon of 10 minutes, without predicting the values of the time steps in-between.
These results are shown in table 5.9. The DFSO model that performs best is the LSTM-
MTSI model. Of all the trained models, the LSTM-MTSI performs the best on four out
of the six variables. However, the difference between the four models is negligible. We
have seen how all the models mimic the naïve persistence model, yet show a marginal
improvement over the persistence model. We can also compare the results of one of the
DFMO models. By selecting only the t10 part of the DFMO forecast, we could compare
the results with the predictions of the DFSO models. This model slightly outperforms
the DFSO models for three out of six variables. If we only compare the results with
the CNN-DFSO model only, the CNN-DFMO-10 model outperforms this model for all
variables. This shows that predicting multiple steps does not degrade the model’s per-
formance, it even improves the results slightly. For the DFMO models, we see a clear

LSTM-STSI LSTM-MTSI CNN-DFSO Naïve CNN-DFMO-10

ETCO2 3.66 3.53 3.80 3.63 3.76
VTexp 47.17 56.73 58.01 52.01 51.12
RF 5.37 4.91 4.58 4.91 4.33
HR 3.99 3.94 4.08 3.96 3.81
PPEAK 12.26 11.09 11.79 13.37 11.73
SPO2 1.13 1.06 1.08 1.05 1.01

Table 5.9: This table shows the results of the DFSOmodels, according to theMAPE-metric.

difference between the models (see table 5.10). The CNN outperforms all the other
trained models; however, the difference between the persistence model and the CNN
model in terms of MAPE is marginal. There is a reason why the naïve results differ
between the adapted dataset and the original dataset. This downsampling process re-
moves a lot of noise, especially in the Expiratory Tidal Volume signal, which is noisier
than the other signals, which makes this signal difficult to predict 1 The models trained

1The noisinessmay be caused by the absence of the cuff (see section 2.1) for the youngest patients (which
are also included in the unaltered training set). The absence of the cuff causes unstable VTexpvalues due to
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MAPE LSTM CNN LSTM-CNN Naïve Naïve (5) Overfit (5)

ETCO2 7.94 3.59 4.68 3.51 5.91 13.53
VTexp 55.89 49.33 51.11 48.70 13.53 15.50
RF 13.93 4.54 5.80 4.68 5.59 8.80
HR 3.84 3.75 4.35 3.79 5.49 11.03
PPEAK 20.03 11.35 12.60 13.03 10.47 12.68
SPO2 1.14 1.00 1.35 0.97 1.74 3.15

Table 5.10: This table shows the results of the DFMOmodels, according to theMAPE-metric.

on the original datasets perform denoising (especially on the VTexpsignal) themselves, as
they provide a generalization over the naïve prediction, exposing the true signal hidden
behind the noise. The error-metrics do not reflect this quality, as we make a comparison
between the predictions and the noisy signal; the denoised moments are regarded as
errors. This flaw is visible, especially in the MAPE-metric. However, the MSE-metric,
the loss function during training, rewards this quality. The denoised prediction con-
tains fewer outliers, which are punished more severely by this metric. This quality is
the main reason why the trainedmodels provide such significant improvement with re-
spect to the predictions of the Expiratory Tidal Volume variable, when compared to the
naïve model and according to theMSE-metric. If we perform the denoising beforehand,
the naïve score on denoised patient data will automatically be better.

An observation that can be made that concerns all the trained models is that they
all mimic the naïve persistence model. This is not clearly visible in the scores, but it is
clearly visible if we compare the true signal, naïve predictions, and the model’s predic-
tion visually. When this happens, a question that needs to be answered is the following:
Is the data generating process a random walk? When this is the case, the optimal pre-
diction is indeed the naïve prediction, and there is not much that we can do to improve
this.

There is also another reasonwhy this behavior can happen: the dataset contains a lot
of patients who show vital signs that, globally, remain constant over time. This is also
visible when we compare the error metrics of the overfitted model to error metrics of
the naïve model (see table 5.11): The overfitted model can be seen as an upper bound in

Training set Naïve Test set

ETCO2 3.48 5.91 13.53
VTexp 6.61 13.53 15.43
RF 3.22 5.59 8.80
HR 2.88 5.48 11.03
PPEAK 5.60 10.47 12.68
SPO2 1.08 1.74 3.15

Table 5.11: This table shows the results of the overfittedmodel, according to theMAPE-metric.

the fact that there is more leakage.
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terms of accuracy. Suppose that we were indeed able to create a model that makes good
predictions on the test set, then the results of that hypothetical model will probably not
be better than those of the overfitted model on the training set. If we compare the naïve
model with this upper bound, we can see that for the ETCO2, RF, HR, and SPO2 the
difference between the MAPE-metrics is only 2 percentage points. Note that these are
scores of a model that predicts time steps to 100 minutes ahead (with 5-minute inter-
vals). If the naïve model makes relatively good predictions 100 minutes ahead, this can
only be caused by this stability; otherwise, the difference between the overfitted model
and the naïve forecast would be more significant. The difference between the MAPE
of the CNN-DFMO model and the overfitted model on the training set concerning the
ETCO2 variable is only 0.20 percentage points. When we compare the results of the
RMSE scores, there is also not a very significant difference between the CNN-DFMO
model and the overfitted model, apart from the VTexp variable. Finding a (global) op-
timum through gradient descent that improves on this score, is probably hard, as this
relatively good local optimum is always near in terms of the loss function and relatively
easy to find.

5.6.2 Results in literature

In section 5.4.7, we briefly discussed the paper “Predicting responses to mechanical
ventilation for preterm infants with acute respiratory illness using artificial neural net-
works”. In this paper, Brigham et al. performed similar experiments in which they cre-
ated what we call DFSOmodels; models that given a history make a direct forecast for a
single future value. The authors do not provide global error statistics, but only provide
visualizations of the predictions compared to the actual data. They provided RMSE-
metrics corresponding to the visualizations. Because the RMSE-metric is not scale in-
variant, and they do not provide global statistics, we cannot compare the results based
on error-metrics. However, we can compare their visualizations to ours. In figure 5.18,
some of their results are presented. While the last predictions are not explicitly plotted,
we can clearly see the same lagging behavior that we found in our DFSO and DFMO
models (for comparison, see 5.5c and 5.2c). A difference between their dataset and
ours is that their data has a higher frequency. The fact that they faced the same prob-
lem could be an indication that the data at a higher frequency could also be a random
walk. One could say that the fact that the one-minute resolution of the PDMSmay cause
some of the randomness, however the fact that Brigham et al. [7] face similar problems
shows that increasing the rate of the measurements might not be the solution to solve
the random walk problem. However, this should be verified by further research, as
although the methodologies are similar, they are not entirely the same.

5.6.3 Answering the research questions

In this chapter, we aimed to accomplish the following research objective:
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Figure 5.18: Predictions on theMinute Expiratory Tidal Volume, as presented in [7].

Research Objective 2. To create models that, after being trained on multiple time se-
ries of both measured variables and settings entered by the ventilator’s operators,
predict future values of the patient’s oxygen saturation, end-tidal CO2, expiratory
tidal volume, and peak pressure.

While we succeeded in the creation of these models, we cannot say that these models
are clinically usable. They do offer some improvement over the naïve persistencemodel,
but they still mimic this predictor. As the model mostly relies on the last measurement,
it will only make correct predictions when the patient is in a stable condition, which is
mostly the case. These changes from stable to unstable are themost clinically interesting,
and yet, these are not predicted accurately. Whilewehave seen that in some cases (figure
5.13) the model is able to pick up some of these changes, this is not always the case and
difficult to verify.

We also posed a subquestion on finding a suitable learning method. In this chap-
ter, we have experimented with three deep learning architectures. All three of them
are suitable for time series forecasting; however, we experienced some problems with
the DFMO-method and the LSTM-architecture. The CNN-DFMO model only slightly
outperformed the other methods.

Creating patient subgroup specific models did not yet prove to be beneficial for the
model’s performance. This observation is partly due to the fact that all themodelsmimic
the persistence model; when the model only relies on the last available measurement,
the patient’s class does not matter and dividing the dataset based on patient classes will
not help.
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5.6.4 Directions for further research

We have seen that the patients who are ventilated using the PC-IMV-Adaptive mode
have vital signs which remain stable for the majority of the time. This may be differ-
ent for other ventilation modes, but probably this problem is present for these other
patients. This observation raises the following question. Can we improve the model by
providing more examples of unstable patients? Before we can answer this question, we first
have to find patients who had unstable episodes. As the PICU dataset is not verified or
even annotated by physicians, identifying these episodes is not an easy task. A method
that could help finding these episodes is clustering. If we could cluster fragments of
time series in different groups, we could identify patients that belong to a certain class.
Among these groups, a groupmay be present that physicians would classify as unstable
or dangerous. We could also predict the change between the different clusters, instead of
predicting the actual scalar value. As a single scalar value of a vital sign is meaningless
without its context, classifying time series fragments may even make the information
more comprehensive to the caregivers.

The fact that these models seem to model the “normal” behavior of the vital signs
given a set of historical data points could mean that these predictions can be used as an
outlier/anomaly detectionmethod. If the actual values are diverging of this signal, then
this could be a reason for producing an alarm. In further research, the applicability and
trustworthiness of this method can be assessed.

5.7 Summary

In this chapter, we described howArtificialNeuralNetworks could be used to create pre-
dictive models for multivariate time series data. We described several main principles
of deep learning, like the perceptron, backpropagation, and activation functions. Next,
the following three architectures were introduced: the Long Short-Term Memory network
(LSTM), the Convolutional Neural Network (CNN), and an architecture that combines
both of them (LSTM-CNN). We described how these architectures could be applied
to multivariate time series data. Subsequently, we described how we implemented,
trained, and evaluated the models.

LSTMmodels could have two input methods: Single Time Step Input (STSI) andMul-
tiple Time Step Input (MTSI). When the first is used, information of previous time steps
flows through the cell state to the current input. The MTSI method supplies for each
prediction step a history of size h to each input. CNN and LSTM-CNN models can only
work with MTSI inputs.

For the outputwe canmake a similar distinction: Direct Forecast SingleOutput (DFSO)
andDirect ForecastMultiple Output (DFMO). The first produces a single time step for the
target variables at time step xt+s, and the latter produces a series of s time steps for the
target variables. These time steps range from xt+1 to xt+s.

123



Summary CHAPTER 5. PREDICTIVEMODELS

In addition to architectural choices, we also investigated if models trained on a spe-
cific patient group (age below 40 days at admission) produce better models. We as-
sessed the predictive quality using four error-metrics: Mean Squared Error (MSE), Root
Mean Squared Error (RMSE),Mean Absolute Error (MAE),Mean Absolute Percentage Error
(MAPE). Besides these error-metrics, we also assessed the models by visually inspect-
ing plots that compare the predictions with the true signal.

All the models, regardless of architecture, learned to mimic the naïve persistence
model, which uses the last available measurement as its prediction. The CNN-DFMO
model provided the best overall performance and provided a small improvement over
the naïve persistence model, which was used as a baseline. The results of the other ar-
chitectures only differ slightly from the results of the CNN-DFMO model. While this
model performs slightly better, it still mimics the persistence model. In stable peri-
ods, the model performs well. However, it fails to predict unstable periods, which are
the most interesting from a clinical perspective. In plots, the predictions seem to copy
the last available measurement. Moreover, the error between the naïve model and the
trained model is smaller than the trained model with the actual data. A model that is
based on only the last measurement does not provide any added value to the caregivers.
Therefore, thesemodels are not clinically usable. When the best performingmodel is the
naïve persistence model, this could be an indication that the model is a random walk.

Brigham et al. [7] performed similar experiments. Their results seem to correspond
with ours; especially if we compare the plots of their predictions to ours, we see the
same lagging behavior which is visible in our plots. While our methodology differs,
their results support our conjecture that these time series are random walks.
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6
Final Remarks

6.1 Introduction

In this thesis, we explored how we could apply machine learning techniques to ventila-
tion related vital signs time series. The ultimate goal was to create a predictive model
that could predict future vital sign values based on their historical values. The motiva-
tion of this work was to be able to leverage the enormous potential of Artificial Intelli-
gence and new deep learning techniques for solving this complex problem. Caregivers
at the PICU could greatly benefit from accurate predictions on vital signs; maybe even
enabling them tomitigate complications before they occur. In section 1.4.3, we proposed
the following two research objectives:

Research Objective 1. To describe the properties of the individual time series and pos-
sible (causal) relations between them. We will perform these tasks to gain more
insight into the data generating process.

Research Objective 2. To create models that, after being trained on multiple time se-
ries of both measured variables and settings entered by the ventilator’s operators,
predict future values of the patient’s oxygen saturation, end-tidal CO2, expiratory
tidal volume, and peak pressure.

Furthermore, we proposed the following three research questions:

Research Question 1. How do we prepare the raw dataset for further analysis?
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Research Question 2. Will the creation ofmodels that are trained on subsets of patients
improve the model’s accuracy?

Research Question 3. Which deep learningmethods are suitable for making predictive
models for Vital Signs Time Series?

In this project, we have accomplished both objectives. Wehave provided an extensive ex-
ploratory analysis describing several possible relations between the variables. We have
proposed neural network-based architectures that can predict future values of these vi-
tal signs. However, the models’ usefulness is up to discussion. In this chapter, we will
discuss themain results and findings that were discussed in the individual chapters and
discuss their limitations.

6.2 Discussion of themain results

6.2.1 Data preparation

The PICU dataset was not directly usable for further research; each ventilator type and
ventilationmode used a different set of variables and parameters. Moreover, the dataset
contained gaps andmissingdata. Ourmethodologywas as follows: Initially, we adapted
the dataset by partitioning it into ventilationmode-specific episodes of continuousmea-
surements. After that, we imputed the remaining missing values. Now, the dataset was
free of missing values, and we have a fixed schema for each ventilation mode. Because
each ventilator mode still uses specific settings, we opted to focus our research on one
ventilator type and one ventilation mode; we chose the Servo-i ventilator and the PC-
IMV-Adaptive mode, as this is the most used mode on the PICU. However, the tech-
niques that we used in this work are universal, in the sense that the analysis procedures
only have to be adapted minimally to analyze other ventilation modes.

6.2.2 Vector Autoregression

In chapter 4, we used time series analysis techniques found in econometrics and psy-
chological research for medical time series. We adapted the methodology of Bose et al.
[5] to our dataset. There are some differences between their project and ours:

1. Our dataset contains more patients
2. More vital signs (variables) are recorded in our datasets (3 VSTS vs. 10)
3. Bose et al. [5] hand-picked their series and only considered series prior to a car-

diorespiratory instability event, while in our dataset, no selection takes place.
4. The patient population differs (pediatric patients vs. adult step-down unit)

In addition to the increase in recorded variables, the Granger-causal tests we performed
contained significantly more relations per patient than in Bose et al. [5]. Moreover,
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the test only assesses causal relations between two variables; other variables are not as-
sessed. This may lead to the following situation: If a spike in the ETCO2-curve causes
changes in first the HR variable and later the PPEAK variable, we might wrongfully at-
tribute causal relations if we assess Granger-causality between HR and PPEAK(see figure
6.1). We may conclude that for a dataset of the size that we analyzed, the methodology
as presented by Bose et al. [5] did not prove to be very useful.

EtCO2

HRPpeak

Figure 6.1: The Granger-causality tests that we performed only considered two variables. A third variable (in this

example EtCO2) which causes both changes is not taken into account.

6.2.3 Multilevel Graphical VARmodels

By using Multilevel Graphical VAR models, we aimed to describe the relations between
variables that are present in multiple patients; for both a sample of the whole dataset
and a subset selected on age. These relations could be temporal but also contemporane-
ous ones. There were several observations that we made based on the fitted MLGVAR
models:

The most significant correlations we found were between the variables’ previous
measurement and their current. In addition to the self-loops, there were also significant
correlations found between different variables. These correlations persist up to a history
of 30 minutes.

In addition to the temporal effects, we also discussed contemporaneous effects and
between-subjects effects. The between-subjects network enabled us to visualize how
variables predict each other on average. We found several correlations related to the
lung’s health in this network (e.g., correlations between PPEAK, PEEP, and FIO2).

We also fitted the MLGVAR model to a subset of the patients; this resulted in even
more correlations between variables. This finding led us to the hypothesis thatmodeling
for patient subsets might be beneficial for the model’s predictive accuracy. A model has
a limited capacity, and therefore, it may not be able to account for all the relations that
are only valid for specific subsets of patients.

6.2.4 Predictivemodels

In addition to the exploratory analysis, we created predictive models for Vital Signs
Time Series using deep learning methods, according to Research Objective 2. We pro-
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posed several architectures for time series forecasting. These are the Long Short-Term
Memory network, the Convolutional Neural Network, and an architecture that combines
both of them. Subsequently, we fitted these networks on the PICUdataset and tested the
performance of the created models. All the models, regardless of architecture, learned
to mimic the naïve persistence model, which uses the last available measurement as its
prediction. The CNN-DFMO model, a model that is based on the Convolutional Neu-
ral Network, provided the best overall performance and provided a small improvement
over this naïve model. However, it still mimics the persistence model. In stable periods,
the model performs well. However, it fails to predict unstable periods, which are clini-
cally the most interesting, and therefore, the model is not clinically usable. The results
of the other architectures only differ slightly from the results of the CNN-DFMOmodel.

Brigham et al. [7] performed similar experiments as we did. Our results seem to
correspond with theirs; when we compare the plots of their predictions to ours, we
see the same lagging behavior. We have to note that their methodology differs from
ours, for example, their inclusion criteria aremore strict than ours and themeasurement
frequency is significantly higher in their dataset (1.5 seconds vs. 1 minute). We might
conclude from this that increasing the frequency of the measurements does not yield a
better performance; however, further research on such a dataset is needed, as Brigham
et al. [7] do not report the general (quantitative) performance of themodels. Our results
indicate that Vital Signs Time Series may be that unpredictable that the best model we
can make is the naïve model.

6.3 Limitations

Throughout, we made certain choices that may influence the results and limit the use-
fulness of the models. In the following sections, we will discuss these choices and limi-
tations of the scopes.

Linear exploratorymodels

Themodels we discussed in chapter 4 are linear models. However, between the time se-
ries, or even within a time series, non-linear relations can be present [7]. Linear models
are relatively easy to interpret, especially the Multilevel Graphical VAR models. How-
ever, these models cannot capture non-linearities, as they can only model linear rela-
tions. The relations we discussed in section 4.6.2 may only be valid if the linearity as-
sumption is correct.

Applicability to other ventilationmodes

In the preparatory phase, we divided the dataset into episodes that are based on the
ventilator type, ventilator mode. Furthermore, these episodes are gapless. While this
division was necessary, this resulted in some loss of information; that is, events in prior
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episodes are not available as predictors, while this information could be advantageous
for the predictive quality.

The choice for the PC-IMV-Adaptivemode could have some influences on the results
of our predictive model and the results of our exploratory analysis. A PC-CMV-Servo
mode has different goals than a PC-IMV-Adaptive mode, which may result in different
ranges and patterns in the recorded variables. Also, if we consider support (PC-CSV)
or non-invasive ventilationmethods, the number of artifacts andmissing values present
in the time series may be higher than in the episodes of PC-IMV-Adaptive series, for
example, due to more leakage. The imputation method that we applied may not be
appropriate for the other ventilation modes, because the MTSDI algorithm can only
deal with a certain amount of missing data [22].

Imputation

We described in section 3.4.2 how we imputed missing values in the PICU dataset. The
amount of missing data was fairly low; at most 3.5 %, so it is to be expected that the
influence of the imputed values on our results is marginal. Our imputationmethodmay
not be directly applicable in a clinical setting. If a value ismissing in a clinical setting, our
method may not be suitable, as the imputed values may also be based on their future
values and not only on their histories. An adequate method may be Last Observation
Carried Forward [54] or amore sophisticated imputationmethod that considers previous
values and the current values of other variables only.

Unbalanced dataset

The dataset that we used was not balanced in any way. Ideally, enough examples of
several patient categories should be present in the dataset, as well as a balance between
unstable and stable periods. Methods to divide the patients into categories like condi-
tion and in terms of disease were not available during our project. We investigated the
effect of patient subsets based on age during our exploratory analysis, and this yielded
more complex models than when the whole patient population was sampled. We sus-
pect that evenmore specific (or better specified, for example on disease) subgroupsmay
result in better models. Furthermore, as mentioned before, the patients remain mostly
stable; therefore, the number of unstable periods in our dataset may be too low. Hav-
ing a more balanced dataset, with more unstable training examples (or at least more
balanced), may lead to a better predictive quality.

Hyperparameter tuning

In our work, we performed some hyperparameter tuning. However, due to time con-
straints, it was not possible to perform an extensive search for ideal hyperparameters.
Our search was mainly concentrated on parameters related to the models’ capacity. In
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addition to capacity, we also tested several values for Dropout (regularization). We
have seen some indications that the capacity of the models was high enough (we were
able to create a model that overfits); however, the search was in no way exhaustive.
While we think that the quality cannot improve drastically (test set error comparable
with the training error of the overfitted model), there is a possibility that we could see
some marginal improvement by further tuning of the hyperparameters.

Absence of comparative literature

In this work, we worked on several new techniques. The MLGVAR model was only
recently introduced (2018) and since then only used in the psychological analysis of
relatively small datasets (e.g., [1]). Therefore, we cannot compare our methodology
and results in literature. Furthermore, working with a large multivariate time series
dataset concerning multiple subjects is relatively new and difficult research topic, and
some topics (e.g., imputation) have not been fully solved yet [52, 3]. This may be partly
due to the computational complexity of the problem; moreover, this is still a problem as
the MLGVAR model has difficulties processing large amounts of data [15].

For the predictive part, we could compare our results to the work of Brigham et
al. [7]; however, the details on their exact implementation are minimal. Moreover, the
discussion of their results is less extensive as ours, as no global statistics are given of the
overall performance.

6.4 Conclusion

We had two objectives in this project: to perform an exploratory analysis and to create
predictive models. We have learned what the strengths and limitations are of the sev-
eral exploratory analysis tools. The Multilevel Graphical VAR model is an adequate tool
to perform analysis on this type of data. The between-subjects model shows several re-
lations which can be corroborated by clinical theory. Regardless of the validity of these
relations, we have seen that the complexity of the models increases when the patient
population becomes more specific. This led us to hypothesize the following:

Models based on specific patient groups may perform better than more
generic models.

Unfortunately, we could unfortunately not verify this hypothesis in our experiments
with the predictive models (due to the mimicking). The predictive models that we cre-
ated marginally outperformed the naïve persistence model, but they still largely follow
its predictions. We have seen that the model performs well in stable periods, but does
not foresee sudden changes in the vital signs, and therefore, themodels are not clinically
useful. This led us to the following conjecture:
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Creating clinically usable time series (regression) forecasting models is
not possible with the PICU dataset.

We have several reasons to support this conjecture:

1. The predictive models all largely follow the naïve prediction after extensive train-
ing; this indicates that the time seriesmay be a randomwalk. Moreover, the LSTM-
CNN-DFMO model is able to overfit and seemingly having enough capacity to fit
the entire training set. However, the best performing model on the test set (early
stopping) still mimics the persistence model.

2. The PICU dataset does not contain enough observations of unstable periods. The
naïvemodel performswell on the PICUdataset, which is only possible if the values
of the vital signs remain stable for long periods of time. A more balanced dataset
that contains more unstable periods is needed.

Selecting unstable periods was not possible during our project. In the following section,
we will discuss some directions for further research. As selecting unstable periods is
a problem that is not fully solved yet, and other datasets might be prone to this. We
suggest that before attempting to train similar predictive models on similar datasets,
more research is performed in addressing the limitations discussed in section 6.3, espe-
cially the unbalanced nature of the dataset. If the time series are truly random walks,
which our results indicate, creating forecasting models may be futile. However, there
may be other means through which we may be able to create predictive models based
on clustering, which we will discuss in the next section.

6.5 Directions for further research

6.5.1 Clustering

During this project, we have learned how we can perform initial exploratory analysis
on a multivariate time series. This analysis can be extended by clustering. By clustering
we can group time series who share similar features or even identify patients belong-
ing to a certain class. Among these groups, a group may be present that physicians
would classify as unstable or of worrisome/critical condition. We could also predict the
change between the different clusters, instead of predicting the actual scalar value. As
a single scalar value of a vital sign is meaningless without its context, classifying time
series fragments may evenmake the informationmore comprehensive to the caregivers.
Džeroski et al. [12] describe a framework that can both clusters time series in homoge-
nous groups and predict. The authors represent the clusters with symbolic notation.
Lin et al. [27] describe another discretization approach (converting a series into sym-
bolic notation), namely SAX-notation, which can be used to simplify the series and for
clustering. Symbolic representations of time series could be used as features for these
predictive models.
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6.5.2 Performancemetrics

In this work, we have described how we can perform vital signs forecasting using sev-
eral neural network architectures, and we learned howwe could assess the model’s pre-
dictions. We proposed in section 5.4.5 several methods to assess the prediction of the
models. It is sometimes difficult to compare the predictive quality of our models with
those of other models. For example, the results of the prediction models of Brigham
et al. [7] are in our opinion, underreported. When predictions are made on time series
in a clinical setting; we consider it important to discuss the following criteria at least:

Overall performance. How does the model perform on the test set in terms of an error-
metric? This test should give an overall indication of how the model performs
in general. Using an error-metric, we can compare the model to other models.
Besides reporting the error in the unit of measurement, it also is good to report
a scale-invariant error-metric like MAPE, to make it easier to compare the results
that work on different datasets. However, in our opinion, solely providing error-
metrics is not enough, and visual inspection is needed.

Visual inspection of the predictive behavior. What does themodel actually predict for
each time step? We can do this by plotting the predictions and actual data into the
same graph and compare the results. In this step, we can assess if the model suc-
cessfully predicts the real data, or if the model does something else entirely.

Comparison to naïve models. There are many data generating processes that produce
random walks. To check that the model improves on the persistence model and
does not mimic it, we should compare the predictions of the trained model with
that of a naïve model. We test this in two ways: we can compare the predictions
visually, or we can compare the error-metric for the actual data with the error-
metric for the naïve model. If the latter is smaller than the first than the trained
method has probably learned to mimic the naïve model.

However, we found that it is sometimes difficult to assess and characterize the visual
predictions for the whole dataset as the visualizations are still patient-specific. Some-
times, the models make better or worse predictions than usual, andwe have seen that in
some cases, the model performs better than the naïve persistence model (for example,
see figure 5.13). It is hard to verify if this behavior is present in other patients. Further
research might be directed to create a protocol/methodology on how to assess time se-
ries forecasting methods, especially when it concerns a collection of multivariate time
series.
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A
Visual inspection of eigenvalues

The following listing describes a method which can be used plot to assess the visually,
conform the methodology of Bose et al. [5].

1 library(tidyverse)
2

3 circleFun ^- function(center = c(0,0), r = 1, npoints = 100){
4 tt ^- seq(0,2*pi,length.out = npoints)
5 xx ^- center[1] + r * cos(tt)
6 yy ^- center[2] + r * sin(tt)
7 return(data.frame(x = xx, y = yy))
8 }
9 # Given a vector of complex eigenvalues, it will plot them on the unit circle.

10 visualInspect ^- function(rs){
11 dat ^- circleFun()
12 ggplot(dat,aes(x,y)) +
13 geom_path() +
14 geom_point(
15 data = as.tibble(rs),
16 aes(Re(rs), Im(rs))
17 )
18 }
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B
Example output of a VAR estimation of dSat

Below, the output a VAR(6) model is shown. There are 10 variables included in the
analysis, so this results in 60 coefficients and one intercept (const). The probability
coefficients show

1 Estimation results for equation dSat:
2 =====================================
3 dSat = dFreq.l1 + dEtCO2.l1 + dETV.l1 + ^^. + dSat.l6 + const
4

5 Estimate Std. Error t value Pr(>|t|)
6 dFreq.l1 0.021272 0.024221 0.878 0.380208
7 dEtCO2.l1 0.124179 0.051998 2.388 0.017281 *
8 dETV.l1 0.018027 0.012399 1.454 0.146552
9 dFIO2.l1 -0.102030 0.017489 -5.834 9.39e-09 ^^*

10 dHF.l1 -0.163882 0.054984 -2.981 0.003009 ^*
11 dIE.l1 -1.124842 0.356480 -3.155 0.001693 ^*
12 dPEEP.l1 0.585646 0.151295 3.871 0.000122 ^^*
13 dPRES.l1 0.009215 0.024667 0.374 0.708856
14 dRF.l1 0.081982 0.026326 3.114 0.001944 ^*
15 dSat.l1 -0.149206 0.045171 -3.303 0.001020 ^*
16 dFreq.l2 0.010112 0.028440 0.356 0.722322
17 dEtCO2.l2 0.052219 0.054217 0.963 0.335915
18 dETV.l2 0.018595 0.016013 1.161 0.246061
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19 dFIO2.l2 -0.156908 0.019957 -7.862 2.10e-14 ^^*
20 dHF.l2 -0.152711 0.054566 -2.799 0.005318 ^*
21 dIE.l2 -0.854080 0.447272 -1.910 0.056730 .
22 dPEEP.l2 0.324414 0.201766 1.608 0.108455
23 dPRES.l2 -0.032095 0.030559 -1.050 0.294071
24 dRF.l2 -0.028291 0.031198 -0.907 0.364913
25 dSat.l2 -0.179121 0.045578 -3.930 9.61e-05 ^^*
26 dFreq.l3 0.018697 0.034211 0.547 0.584935
27 dEtCO2.l3 0.100291 0.054388 1.844 0.065739 .
28 dETV.l3 0.041253 0.017724 2.328 0.020307 *
29 dFIO2.l3 -0.004261 0.021764 -0.196 0.844846
30 dHF.l3 -0.102030 0.053819 -1.896 0.058526 .
31 dIE.l3 -1.191597 0.490609 -2.429 0.015478 *
32 dPEEP.l3 0.332950 0.206381 1.613 0.107276
33 dPRES.l3 -0.085488 0.033065 -2.585 0.009989 ^*
34 dRF.l3 -0.048841 0.035047 -1.394 0.164021
35 dSat.l3 -0.119052 0.045679 -2.606 0.009409 ^*
36 dFreq.l4 -0.070594 0.037115 -1.902 0.057708 .
37 dEtCO2.l4 0.068470 0.053225 1.286 0.198850
38 dETV.l4 0.070679 0.017792 3.973 8.09e-05 ^^*
39 dFIO2.l4 -0.013458 0.022399 -0.601 0.548215
40 dHF.l4 -0.044758 0.054250 -0.825 0.409721
41 dIE.l4 0.049955 0.497316 0.100 0.920026
42 dPEEP.l4 0.472376 0.206870 2.283 0.022797 *
43 dPRES.l4 -0.083516 0.033802 -2.471 0.013795 *
44 dRF.l4 -0.023466 0.033888 -0.692 0.488960
45 dSat.l4 -0.074957 0.045005 -1.666 0.096394 .
46 dFreq.l5 -0.004816 0.034983 -0.138 0.890567
47 dEtCO2.l5 0.017123 0.049364 0.347 0.728827
48 dETV.l5 0.044837 0.016098 2.785 0.005539 ^*
49 dFIO2.l5 -0.024408 0.021832 -1.118 0.264067
50 dHF.l5 -0.051112 0.052215 -0.979 0.328086
51 dIE.l5 0.417482 0.453526 0.921 0.357716
52 dPEEP.l5 -0.010277 0.200570 -0.051 0.959152
53 dPRES.l5 -0.035582 0.031594 -1.126 0.260578
54 dRF.l5 -0.070295 0.030262 -2.323 0.020562 *
55 dSat.l5 -0.147972 0.041209 -3.591 0.000360 ^^*
56 dFreq.l6 0.005580 0.027655 0.202 0.840188
57 dEtCO2.l6 -0.026679 0.049128 -0.543 0.587324
58 dETV.l6 0.030847 0.012661 2.436 0.015157 *
59 dFIO2.l6 -0.045310 0.018566 -2.440 0.014994 *
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60 dHF.l6 0.058904 0.050555 1.165 0.244473
61 dIE.l6 0.860855 0.366929 2.346 0.019336 *
62 dPEEP.l6 -0.139925 0.154039 -0.908 0.364090
63 dPRES.l6 0.030050 0.025257 1.190 0.234671
64 dRF.l6 -0.044620 0.025951 -1.719 0.086125 .
65 dSat.l6 -0.007802 0.040969 -0.190 0.849030
66 const -0.038595 0.058030 -0.665 0.506287
67 ^^-
68 Signif. codes: 0 ‘^^*’ 0.001 ‘^*’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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C
Multilevel Graphical VAR networks

In the following pages, all the plots of all the 30 temporal networks are shown based on
the whole dataset.
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