
Semantically minimal ABox abduction in
Description Logics

Merle Beaujon
Master’s thesis Artificial Intelligence

Daily supervisor: ir. Michael van Bekkum (TNO)
Project supervisor: prof. dr. mr. Henry Prakken (Utrecht University)
Second examiner: prof. dr. Pinar Yolum Birbil (Utrecht University)

September 11, 2019

Abstract

Abduction is a reasoning method that can be used to derive explanations for unexpected obser-

vations. This paper aims to use abduction in Description Logics (DL) to find ABox assertions

that can explain observations described in ABox assertions. This form of abduction is called

ABox abduction and can be useful for domains where statistical inference is not possible, or

not preferred. Several implementations of ABox abduction reasoners have already been built,

however, not many implementations can select semantically minimal explanations. Therefore

this paper is aimed at researching methods to find semantically minimal explanations in the DL

ALCHO, i.e. it is aimed at finding explanations that do not explain more than is necessary.

This study presents two algorithms: SEMAR, which is an algorithm that searches for seman-

tically minimal explanations by making adjustments to a traditional Tableau Algorithm (TA),

and the SMC algorithm, which is an algorithm that selects semantically minimal explanations

from a set of found explanations. SEMAR can potentially find explanations more effectively

than other implementations. However, further research is needed to develop a correct algo-

rithm and a working implementation. This study provides a proof of correctness and a working

implementation for the SMC algorithm. Empirical tests show that the implementation of the

SMC algorithm is successful in selecting semantically minimal explanations from a set, and the

implemented optimizing techniques have a positive effect on the performance.

Acknowledgements

First of all I would like to thank Michael van Bekkum for giving me the opportunity to research

this topic at TNO. You always made sure I kept track of the bigger picture and did not get

lost in this theoretical topic. Furthermore, I would like to thank Henry Prakken for his sharp

attention to detail, your advise helped me to be precise.

Thank you to the whole Connected Business team of TNO, for all the advise, the philosophical

discussions, and for tolerating my use of all the whiteboards. These past nine months you have

welcomed me at TNO and were always willing to help me with any difficulties and doubts I

encountered. Writing this thesis would have been a lot harder without the table-tennis matches,

pub-quizzes and game nights!

Lastly, I would like to thank all my friends and family for supporting me. Every time I had to

explain my thesis topic I could practice my examples and summaries, so thank you for asking!

In special I would like to thank Michaela, Coen and Nils for getting me to this point and

Hendrik for keeping me calm in during stressful times.

Contents

Abstract i

Acknowledgements iii

List of Algorithms 2

List of Figures 3

List of Tables 4

1 Introduction 5

2 Background Theory 8

2.1 Abductive Reasoning . 8

2.1.1 Philosophical background . 8

2.1.2 Significance of Abduction . 11

2.1.3 Abduction as Logical Inference . 12

2.2 Description Logics and Ontologies . 18

2.2.1 The DL knowledge base . 18

2.2.2 Nominals . 22

v

vi CONTENTS

2.2.3 Role inclusion . 23

2.2.4 Tableau algorithm . 24

2.3 Abductive Reasoning in DL: ABox Abduction 26

2.3.1 Methods for ABox Abduction . 28

2.3.2 Minimal Hitting Set Algorithm . 30

2.3.3 ABox abduction via Minimal Hitting Set Algorithm 35

2.4 Goal of this thesis . 40

3 Approaches for finding Semantically Minimal ABox Abduction Explanations 42

3.1 One Axiom Approach . 43

3.1.1 Adjusted Tableau Algorithm without nominals GCI’s 48

3.1.2 Non-minimal explanations . 53

3.1.3 Redundant disjuncts . 54

3.1.4 The universal quantifier . 56

3.1.5 Observations with existential quantifiers 58

3.1.6 Minimizing consistency checks with use of found models 62

3.1.7 Complete algorithm . 63

3.1.8 Evaluation of SEMAR . 68

3.1.9 Implementation . 71

3.2 Optimising Approach . 72

3.2.1 Evaluation of SMC . 76

3.2.2 Implementation . 81

CONTENTS 1

4 Results 84

4.1 Performance . 88

5 Conclusion & Discussion 92

Appendices 95

A Concept operators . 96

B Additional DL knowledge base definitions . 97

Bibliography 102

Index 103

List of Algorithms

1 Adjusted Tableau Algorithm (ATA) . 49

2 Clash check . 51

3 Extra explanations for Observations with Existential Quantifier (OEQ-check) . . 61

4 Pre-check for consistency . 64

5 Semantically Minimal ABox Abduction Reasoner (SEMAR) 65

6 Clash check for SEMAR . 66

7 Post-check for SEMAR . 67

8 Semantic minimality check for AAA . 75

2

List of Figures

2.1 Expansion rules for ALCHO knowledge bases. 25

3.1 Extra ∀ expansion rules for abduction via tableau. 58

4.1 Ratio between actual TA calls and maximum TA calls per explanation set size. . 91

3

List of Tables

3.1 Characteristics of the tested implementations . 81

3.2 Characteristics of the three ontologies . 82

3.3 Set of observations . 83

4.1 Found explanations per observation . 86

4.2 Performance of the algorithms . 88

4.3 Average performance of the SMC, calculated over 3 runs of AAAr
sem 89

4

1 | Introduction

The ability to reason is one of the unique abilities of human intelligence. Pearl and Mackenzie

(2018) even claim that the ability to question why is the main reason for the existence of our

science- and technology based society. Reasoning can be used to understand what the effect of

a certain action will be, but also to hypothesize about the causes of a certain observed effect.

The act of generating hypotheses for the possible causes of a given effect can be described as

abductive reasoning (Peirce 1878). While abductive reasoning is a rather unknown term, the

following examples show that humans do reason abductively on a daily basis. When a weather

man goes outside and sees that his lawn is wet, he usually assumes that is has rained, when a

taxi driver is in a traffic jam and sees police cars racing by, he usually assumes that an accident

has happened down the road, and when a dog owner comes home and finds a box in shreds,

she usually assumes that her dog has chewed up the box. In all these situations the subject has

reasoned about what the best explanation would be for the observations he or she has made.

Many scholars have tried to formally define the process of finding the best explanation to an

observation (Lipton 2003; Aliseda-Llera 1997). With the increasing availability of data Bayesian

networks entered as an effective method of finding the most probable explanation for a detected

effect (Pearl and Mackenzie 2018). To use a Bayesian network, knowledge about the conditional

probabilities of the system that one is reasoning about are needed. For domains that have

enough data to calculate probabilities for each cause of an observed event, Bayesian networks

are very powerful to find probable explanations for that observed effect. However, for domains

that lack extensive data it can be hard, or impossible, to calculate conditional probabilities.

In cases where calculating conditional probabilities is not feasible, Bayesian networks cannot

5

6 Chapter 1. Introduction

be used to search for explanations. Moreover, for calculating conditional probabilities based

on frequencies of events happening, one needs to accept a (partial) closed-world assumption.

For example, calculating conditional probabilities of every probable cause of a crime that could

happen would be difficult, if not impossible. For such cases it could be helpful to abduct over

a logical system that describes the knowledge of the given domain in order to retrieve plausible

hypotheses (Elsenbroich et al. 2006).

For domains that require a lot of expert knowledge, it is interesting to express that knowledge

in a Description Logic (DL). DLs are a family of logics that describe the structure of a domain,

and form the basis of most ontologies. The connected business team of TNO implements

ontologies for domains that could benefit from this organisational structure. These ontologies

contain knowledge about the structure and relations within such a domain. While users can

query the ontologies with the existing reasoners, such as HermiT, FaCT, Pellet and JFact,

to retrieve knowledge that currently is present in the ontology, or can be deducted from that

knowledge, it is impossible to use the knowledge that such an ontology holds to reason about

surprising observations that have occurred. For example in an ontology that is designed to

keep track of the status of an information system with the use of log files, it is possible to

deduct that a system is not working properly due to the information in the log files. However,

if it is observed that a system has crashed, while there is no information in the present log

files that can be used to explain the crash, abduction can help to hypothesize about what

information is missing to explain the crash. According to Elsenbroich et al. (2006) abduction

over DLs can be split into four main forms of abduction; inferring concepts that are subsumed

by a given concept (concept abduction), inferring instances that would entail a given assertion

(ABox abduction), inferring meta-subsumptions that would entail a given subsumption (TBox

abduction), and a generalization of ABox and TBox abduction (Knowledge base abduction).

Especially ABox abduction is useful to detect missing information about instances, rather than

about the ontology itself.

This paper aims to present an implementation of an ABox abduction algorithm, based on

previous research. The implementation should be able to generate all assertions which serve

as a useful explanation for an observed assertion. This paper is focused on investigating an

7

implementation that can find a minimal set of explanations regardless of the situation, such that

future extensions can select the best explanations from that set by taking the situation at hand

into account. To minimize the set of explanations, without having specific knowledge about

the domain, every explanation should adhere to several constraints, one of which is described

as semantic minimality. A semantically minimal solution is a solution such that it explains

no other valid solution. This constraint ensures that an explanation never assumes more than

is necessary. While several implementations have been built to search for explanations to an

ABox abduction problem (Du, Wang, et al. 2014; Pukancová and Homola 2015; Pukancová and

Homola 2017; Mrózek et al. 2018; Del-Pinto and Schmidt 2018), none of the implementations

succeeded to generate semantically minimal explanations for both concept and role assertions.

Therefore, this paper is specifically aimed at improving the existing implementations, such that

only semantically minimal solutions are generated.

The subsequent chapter provides an overview of the existing literature on abduction and an

in depth review of previous research on abduction in Description Logics. Besides, the chapter

provides a short explanation of Description Logics and the relevant terms. After a base of the

theory is established two different approaches to finding semantically minimal solutions are de-

scribed in chapter 3. From the two approaches two algorithms are developed: SEMAR (section

3.1) and SMC (section 3.2). Both algorithms are evaluated, and a full proof of correctness and

worst case complexity for SMC is provided end of chapter 3. SEMAR is only introduced as a

theoretical algorithm, no working implementation of the algorithm could be built. Section 3.2.2

describes a working implementation of SMC and introduces a method for testing the perfor-

mance of the implementation. The results of these performance tests are described in chapter

4. Lastly, chapter 5 summarizes the findings of this study and describes some limitations and

ideas for future research.

2 | Background Theory

While the number of ABox abduction implementations is small, a lot of research has been

conducted on abductive reasoning over other, more classic, logical systems. The next section

provides a historical overview of the development of abductive reasoning in any logical system.

After this introduction into abductive reasoning section 2.2 describes the relevant theory behind

Description Logics. When basic theory about abduction and Description Logics is established,

existing research on DL abduction, specifically ABox abduction, is discussed in section 2.3.

From the existing ABox abduction methods the goal of this thesis is introduced and an overview

of the possible additions is presented.

2.1 Abductive Reasoning

2.1.1 Philosophical background

The first description of abduction as a logical inference was presented by Pierce. In 1878

Pierce classified human reasoning into three types of reasoning: deduction, induction and ab-

duction. While Pierce describes how three forms of reasoning form a natural triangle, many

other philosophers do not agree there is a clear distinction between the different forms of rea-

soning (Mill 2011; Campos 2011). Still, a vast amount of the literature on abduction leads

back to Pierce’s work, thus understanding abduction starts by understanding Pierce’s notion of

it. Following Pierce’s line of reasoning, deduction can be described as inferring new, concrete

knowledge as a consequence of a known rule and a cause. This acquired knowledge is logically

8

2.1. Abductive Reasoning 9

entailed by the knowledge that one already has, thus must be true. Inductive reasoning on the

other hand is concerned with inferring new, probable rules from observed samples. Inductive

reasoning can be seen as learning the relations between cause and effect, based on the available

observations. The third mode of reasoning, abductive reasoning, is used to hypothesize about

the cause of an observed effect, by using given rules. Let us look at an example, based on the

bean bag example of Aliseda-Llera (1997), to illustrate the differences between the three forms

of reasoning. Imagine a box, called box 1, filled with coloured marbles. If we know a rule that

"All marbles in box 1 are red", and we have a case where a marble is from box one, the result

of the deduction must be that the drawn marble is red (example 1). In the case of induction

the rule is unknown, but we have multiple cases where we know that the marbles are from box

1, and that those marbles are red. From this information it is probable that the rule about

all marbles in box 1 being red holds (example 2). In the last example, the case of abduction

(example 3), there is knowledge about the rule "All marbles in box 1 are red", and we know the

result: the found marble is red. From this information one can abduct that the drawn marble

might be from box 1.

Example 1. Deduction

All marbles in box 1 are red,

This marble is from box 1

This marble is red

Example 2. Induction

These marbles are from box 1,

These marbles are red

All marbles in box 1 are red

Example 3. Abduction

All marbles in box 1 are red,

This marble is red

This marble is from box 1

From this example some important differences between the forms or reasoning can be observed.

Particularity important is that deduction leads to new information that can be accepted as

true knowledge, while induction and abduction produce new knowledge that can be true. The

marble in example 1 has to be red, at least if the two premises are considered to be true. In

example 2, box 1 might contain both blue and red marbles even if both the premises are true.

Just by chance, or because all the red marbles lay on top, all the drawn marbles where red.

Pierce describes induction as a reasoning method both used for producing and validating rules.

Abduction, on the other hand, merely presents a suggestion of what may have happened. In

example 3, based on the given knowledge, it is certainly a possibility that the marble is from

10 Chapter 2. Background Theory

box 1. However, there is no need to believe that box 1 is the only place with red marbles, there

can be other boxes that contain red marbles as well. Another technique to recognize abduction

is to take a look at the timeline of the line of reasoning. Abduction is mainly used when one

makes a surprising observation and then reasons what has happened for this observation to

occur. Deduction is used to predict what will happen in the (near) future if a premise is true,

while the use of induction tries to explain how something currently works. An important note

to remember is that abduction can also be used to reason about a past in the future, if a

certain result is wanted in the future, and one reasons what has to happen in order to obtain

this result, abductive reasoning is used.

Furthermore, induction is used to generalize given information, while deduction and abduction

try to reason about specific cases. Peirce (1878) considers abduction as the only stage of

reasoning to introduce truly new ideas, while deduction and induction predict and verify these

ideas. This connects with the idea that abduction is the process of forming an explanatory

hypothesis. However, Pierce also describes abduction as the process of choosing a hypothesis,

which connects to selection rather than creating new ideas. This duality in his description

is one of the reasons why other scholars were confused with Pierce’s classification. Instead

of using the term abduction, Harman (1965) introduced the concept of inference to the best

explanation, which combines different types of reasoning to infer the best explanation for a

given observation.

Harman (1965) introduced inference to the best explanation (IBE) as a term, as he sees abduc-

tion as a misleading term. He describes IBE as the process of forming the best explanation to an

observation, by eliminating all other possible hypothesis. This form of IBE is strongly focused

on selecting good hypotheses, instead of generating new, creative hypotheses. The concept of

IBE has been revised by many scholars in an attempt to clarify what would be the best expla-

nation (Lipton 2003). Barnes (1995) argued for differentiating between inference to the loveliest

explanation and inference to the likeliest explanations. He described that while most scholars

are concerned with finding an explanation that is the likeliest to occur in a given situation,

there are explanations that are less likely to occur, but provide a better understanding about

the situation. He described the search for explanations that would present the best description

2.1. Abductive Reasoning 11

of a situation as inference to the loveliest explanation, and the search for an explanation that

is most likely to have occurred inference to the likeliest explanation. It is not the aim of this

paper to refine the concept of abduction, however it is important to understand that different

forms of reasoning can be intertwined to retrieve valid hypotheses to an observation. Readers

interested in differences between Pierce’s abduction and IBE are advised to read the discussion

of Campos (2011) and the extensive background of Aliseda-Llera (1997).

While the ultimate goal of building an abductive reasoner for ontologies is to find the best

explanation for observations, this paper focuses on the generation of all plausible hypotheses.

When we refer to abduction as a process we want to describe the process to obtain a set of

all plausible hypotheses. While some general constraints can be applied to limit the set of

hypotheses, no ranking, or selection, of better hypotheses is incorporated. Abduction in this

sense can be seen as the first phase of IBE, while both deduction and induction can be used to

select the best explanation from the set of hypotheses. The result of abduction is considered

to be a set of hypotheses for what has happened. In the body of this text a hypothesis might

also be described as a possible explanation for the observation.

2.1.2 Significance of Abduction

As discussed in the previous section, abduction is a subject that many philosophers have in-

vestigated, yet why is it relevant to formalize abduction? By formalizing abduction in such

a way that it can be used to reason over logical systems any system can create explanations

for surprising observations. To give a few examples, this can be helpful for doctors to find

possible diseases based on a patients symptoms, for detectives to find an explanation for what

has happened based on forensic clues, or even for debugging to find what is missing from a

piece of code in order to get the desired result.

One might argue that Bayesian networks are suited to take on this job, as they do not only

calculate possible explanations, but inherently rank their explanations based on the conditional

probabilities (Pearl 2009). The rise of Bayesian networks has indeed decreased the research into

abduction significantly since the nineties. However, Bayesian networks are not the ultimate

12 Chapter 2. Background Theory

solution for any case, as conditional probabilities are needed for them to work. Furthermore,

they are focused on the chances of events happening concurrently, instead of the semantic value

of an explanation. In the medical field this might not be a blocking issue, as most logical

systems in medical research are based on use cases and thus have reliable probabilities. In the

domain of law these probabilities are much harder, if not impossible, to decide on. Since the

essay of Elsenbroich et al. (2006) research into abduction, specifically abduction in Description

Logics, has increased. This paper continues to research abduction in formal logical systems, to

develop a reasoner that can be used for domains that do not have the means to calculate or

determine conditional probabilities.

The reason TNO started to look into abductive inference was to increase traceability for in-

formation systems. By building an abductive reasoner, the ontologies built by TNO can be

used to hypothesize about what has caused a system failure, with the ontology providing the

necessary background knowledge about the domain, yet missing the information of what has

crashed the system. An abductive reasoner can be used on any domain that does not have the

means to calculate conditional probabilities.

2.1.3 Abduction as Logical Inference

Since the introduction of abduction as a logical inference by Peirce (1878) many techniques to

use abduction in logical systems are developed (Lucas 1997; Aliseda-Llera 1997). Many of the

techniques focus on propositional logical systems. While the techniques differ on how correct

hypotheses can be derived, there is general consensus on the desired result (Mayer and Pirri

1993; Lucas 1997; Aliseda-Llera 1997; Reiter 1987). Consider a background theory Γ , consisting

of set of rules and premises written in the logical language L. Given an observation Φ and

the background theory Γ , a set of hypotheses H can be defined. The hypotheses may also be

referred to as possible explanations, or abducibles. The observation Φ can be a set of different

elements which are all observed, for example, "the grass is green" and "the sky is blue" are two

elements of the observation "the grass is green and the sky is blue". Every explanation E has

to entail the complete observation. Thus each element of the observation, when added to the

2.1. Abductive Reasoning 13

background theory, i.e. Γ ∪ E � Φ for every E ⊆ H.

While only checking if the possible explanation joined by the background theory entails an

observation results in explanations for the observation, there are several other constraints that

are relatively arbitrary to add. Firstly, an explanation is explanatory when the observation is

not entailed by the background theory itself. When the observation exists of multiple elements,

the observation is not entailed by the background theory if not all elements of the observation

are entailed by the background theory. Without the explanatory constraint anything can be a

valid explanation, as the observation is already entailed. This constraint does not necessarily

say anything about the explanation itself, thus the observation can be checked without even

considering explanations. Definition 2.1 describes the constraints for an abduction problem.

Definition 2.1 (Abduction problem). Let Γ be a theory, O the set of all elements that can

possibly be observed and Φ ⊆ O a set of observed elements, dubbed the observation. A tuple

〈Γ,Φ〉 can be described as a explanatory abduction problem if and only if:

1. Γ 2 Φ,

2. Γ ∪Φ 2⊥.

Secondly, an explanation together with the background theory should be consistent. To under-

stand this constraint one should know that once there is an inconsistency in a logical system

everything is entailed. Therefore, simply adding an explanation that is inconsistent with respect

to the background theory would entail any observation. While it does entail the observation,

such an explanation would not be useful to explain the observation. The third constraint,

relevancy, is implemented to ensure that the explanation actually does provide some new infor-

mation. An explanation is relevant when the explanation on itself does not entail the observa-

tion. An explanation that is not relevant does not use any previous knowledge, thus does not

provide any new information. Definition 2.2 includes all three constraints to describe a useful

explanation to an abduction problem.

Definition 2.2 (Abduction explanation). Let Φ ⊆ O be an abduction problem, with theory Γ

and observation Φ ⊆ O. A hypothesis E ⊆ H can be described as an explanation of Φ with

14 Chapter 2. Background Theory

respect to Γ if and only if:

1. Γ ∪ E � Φ (plain)

2. Γ 2 Φ (explanatory)

3. Γ ∪ E 2⊥ (consistent)

4. E 2 Φ (relevant)

If an explanation does entail the observation, but does not respect the other constraints in

definition 2.2, this explanation is said to be plain. While there are methods that only guarantee

plain explanations, explanations that are not relevant, consistent or explanatory would not be

accepted as a sensible explanations when processed by a human user. A fourth constraint that

is not necessary to make sensible explanations, but does help to limit the set of hypotheses

is minimality. Minimal explanations can be split into syntactically and semantically minimal

explanations. First syntactically minimal explanations are defined.

Definition 2.3 (Syntactic minimality). Let 〈Γ,Φ〉 be an abduction query, consisting of theory

Γ and observation Φ ⊆ O, and E , E ′ ⊆ H be explanations to 〈Γ,Φ〉. E is said to be syntactically

smaller than E ′ if E ⊆ E ′. If there is no other explanation to 〈Γ,Φ〉 that is smaller than E ,

then E is said to be syntactically minimal.

Syntactic minimality removes redundant information from the explanations. The explanations

that are not syntactically minimal contain more information than needed. By removing these

explanations from the set of hypotheses, uncovering the true cause for why a certain observation

has occurred becomes easier. In contrast, semantic minimality limits the set of hypotheses to

explanations that make no more assumptions than necessary to explain the observation. This

means that the ultimate explanation can be excluded from the set of semantically minimal hy-

potheses. However, as the semantically minimal hypotheses will be entailed by the semantically

non-minimal explanations, the ultimate explanation can be derived by an iterative application

of abduction, with the semantically minimal explanations as new observations. Furthermore,

iteratively searching for explanations to a semantically minimal explanation can form a chain

of explanations, which does not only provide the original explanation, but gives insights on

2.1. Abductive Reasoning 15

how this explanation leads to the observation, by providing intermediate explanations. Let us

first define semantic minimality, before proceeding with an example to illustrate the use of the

different constraints.

Definition 2.4 (Semantic minimality). Let 〈Γ,Φ〉 be an abduction query, consisting of theory

Γ and observation Φ ⊆ O, and E , E ′ ⊆ H be explanations to 〈Γ,Φ〉. E is said to be semantically

stronger than E ′ (denoted by E �Γ E ′) iff Γ∪E � E ′. The explanation E is said to be semantically

minimal if there is no other explanation E ′ to 〈Γ,Φ〉 such that E �Γ E ′

To illustrate the formally defined constraint a familiar example is presented, based on the

example of Pearl (2009).

Example 4. Given an observation Φ = {grass_wet} and a propositional theory Γ with

axioms {grass_green} and rules:

rain→ grass_wet

sprinklers→ grass_wet

temperature_high→ sprinklers

What are are the plain explanations? According to definition 2.2 the plain explanations for

Φ, w.r.t. Γ are:

E1 = {rain}

E2 = {sprinklers}

E3 = {temperature_high}

E4 = {¬grass_green}

E5 = {grass_wet}

E6 = {rain, sprinklers}

. . .

The given explanations are just a subset of all the plain explanations. The complete set

16 Chapter 2. Background Theory

of plain explanations is infinite, for any trivial contradiction (E ′ �⊥), or any explanation

that is a union of an excising explanation (En ⊂ E ′), it holds that Γ ∪ E ′ � Φ, thus is a

valid, plain, explanation. To illustrate how the constraints remove redundant explanations

the set of explanations given above is sufficient.

According to definition 2.1 the abductive query is explanatory (Γ 2 Φ), thus all the expla-

nations are explanatory. E4 entails Φ only because {grass_green}∪ {¬grass_green} �⊥,

while the explanation has no relations to why the grass is wet. As {grass_green} ⊆ Γ

and {¬grass_green} ⊆ E4 hold, Γ ∪ E4 �⊥ is true. Thus E4 is not consistent and can

be removed from the explanations. All other explanations of the form E ′ �⊥ are removed

by the consistency constraint as well. There is only one explanation that is not relevant,

E5. This explanation is actually the same as the observation, thus does not add any new

information, therefore it can be removed from the set.

Both E1 and E2 are syntactically smaller than E6, thus {rain, sprinklers} is not syntactically

minimal. If we already assume that it has rained, it would be redundant to also assume that

the sprinklers are on. E1 and E2 cannot be compared as sets, {rain} * {sprinklers} and

{sprinklers} * {rain}, and are no subset of another explanation, thus are both syntactically

minimal. By enforcing syntactic minimality there is only a finite set of explanations left

as all infinite explanations of the form En ⊂ E ′ are by definition not syntactically minimal.

The only left explanations are E1, E2 and E3. From these explanations E3 is not semantically

minimal as Γ ∪ {temperature_high} � {sprinklers}, i.e. E3 �Γ E2. While the assumption

that the temperature is high might be the ultimate explanation of why the grass is wet,

giving it immediately as a solution leaves the knowledge that actually the sprinkles made

the grass wet, and the knowledge that they turned on because of the high temperature,

unknown. Using the same theory Γ with the new observation {sprinklers} leads to the

explanation {temperature_high}, keeping all the relevant information.

By complying with all constraints only two explanations are left, either it has rained (E1)

or the sprinklers were on (E2). To decide whether one of the explanations is better over the

others future implementations should use other selection methods.

2.1. Abductive Reasoning 17

A fifth constraint is discussed by Lucas (1997): a diagnosis for a set of observed symptoms

should only explain those symptoms that are observed, and should not entail any other possible

symptoms. This constraint is based on the assumption that if a symptom is present, it is likely

that this symptom has been observed. When a symptom is not observed, there still is a chance

that the symptom is present, thus one cannot add the negation of this symptom to the set of

observations. While Lucas (1997) is mainly focused on finding diagnoses for faulty systems,

the same constraint could be applied for searching any kind of explanation: the constraint

that an explanation for an observation can only explain the observation itself and does not

entail additional information. In some situations this might be helpful, imagine the situation

in example 4 enriched with the knowledge that when it rains the street will also be wet. In this

situation the fifth constraint can help one reason that the sprinklers must have been on, because

otherwise the street would also be wet, and that information is not in the observation. If you

are standing outside this would be a valid line of reasoning. Yet, if somebody only told you the

grass is wet, and the information whether the street is wet is simply missing, it does not seem

valid to remove rain as a possible explanation. The fifth constraint is situation dependent,

thus will not be used as a constraint in this paper. To avoid explanations that explain too

much, negative observations can be added to the observation. To continue the example of

the wet street, the street is not wet should be included in the observation to restrict the set

of explanations. It would be interesting for future implementation to include an interactive

system that can check for missing observations.

Based on the definitions given above, several algorithms have been developed to find expla-

nations to an abductive query. Both Lucas (1997) as Aliseda-Llera (1997) provide a good

overview of the different, classical techniques to obtain abductive explanations. Since this work

focuses on abduction in description logics the next section introduces the basic terminology

of description logics, before proceeding to introduce previously developed methods for ABox

abduction.

18 Chapter 2. Background Theory

2.2 Description Logics and Ontologies

Description logics (DLs) are knowledge representation languages that can structure knowledge

about a certain domain. An ontology is a knowledge base in a DL based language, usually in

the ontology language OWL. In an ontology information about the structure of a domain and of

instances in that domain can be stored. The aim of this paper is to develop an implementation

of abduction that can reason over various ontologies, however, no OWL terminology will be

used. This section provides a compact overview of the terminology and reasoning techniques

of DLs, based on the book of Baader et al. (2017). Appendix B contains some extra formal

definitions that have been left out of this section for readability. For a more extensive overview

of all DL terminology readers are advised to consult Baader et al. (2017).

2.2.1 The DL knowledge base

A description logic is a formal language that is used to store structured knowledge. Each

DL is indicated by a set of calligraphic letters that represent the expressivity of the language.

The basis for most DLs is formed by the concept language ALC. This language consists of

concepts, roles, and rules. Concept names can be seen as unary predicates, for example an office

domain would have concepts Employer, Employee and Job. A role name represents a binary

relation between two elements, for example the role worksFor represents a relation between

an employer and employee. With the use of concept and role names concept descriptions,

which are often referred to as concepts, can be formed (definition 2.5). Complex concepts are

composed of different concepts which are combined by an operator. The semantics of every

operator is described in appendix A. Individual names, such asMary or John, can be asserted

to concepts and roles. A formula in the form a : C is a concept assertion which indicates

that the individual a is asserted to the concept C. A formula in the form of (a, b) : r is a

role assertion which indicates that the pair of individuals (a, b) is asserted to the role r. For

example a concept assertion Mary : Employer, would read as "Mary is an employer" and

a role assertion (John,Mary) : worksFor would read as "John works for Mary". All the

2.2. Description Logics and Ontologies 19

assertions of a knowledge base together form the assertions part, called the ABox.

Definition 2.5 (Concept description). Given a set of concept names C, and a set of role names

R, a concept description in ALC can be one of the following:

1. Any concept name C ∈ C,

2. > or ⊥,

3. C uD for any concept descriptions C and D,

4. C tD for any concept descriptions C and D,

5. ¬C for any concept description C,

6. ∃r.C for any concept description C and any role name r,

7. ∀r.C for any concept description C and any role name r.

An atomic concept description, or simple concept, consists of a single atom (case 1 or 2).

A compound concept description, or complex concept, is constructed by at least one concept

description and an operator (case 3, 4, 5, 6 or 7).

Rules provide structure as to how concepts are related to each other. This is done via axioms,

also referred to as is-a relations, which are either general concept inclusions (GCIs) or equiva-

lence axioms. A GCI is a formula A v B, which indicates that every individual that is asserted

to the concept A, must also be asserted to concept B. An equivalence axiom is a formula

A ≡ B, which is an abbreviation for both formulas A v B and B v A. Axioms make it possible

to structure knowledge about a domain, without saying anything about the individuals in that

domain. To continue the work example, a GCI ∃worksFor.Employer v Employee could be

constructed, meaning that every individual who works for an individual that is an employer,

must be an employee. All GCIs together form the terminological part of a knowledge base,

called the TBox.

20 Chapter 2. Background Theory

Given a knowledge base consisting of an ABox and a TBox, an interpretation maps all concept,

role, and individual names to an element (definition 2.6). An interpretation satisfies the ABox

when all assertions in the ABox hold for all elements in the interpretation. Note that DLs do

not necessarily hold a unique name assumption, thus two individuals in the knowledge base

can have the same interpretation. An interpretation satisfies the TBox if all GCI’s in the TBox

hold for every element in the interpretation. When an interpretation satisfies both the ABox

and TBox of a knowledge base it is said to be a model of that knowledge base (definition 2.7).

For every modelM there exists one ABox encoding, which is the set of all assertions which are

entailed by the model M (definition 2.8).

Definition 2.6 (Interpretation). Given a set of concept names C, a set of role names R, and a

set of individual names I, an interpretation I = (∆I , ·I) consists of a non-empty set ∆I, called

the interpretation domain, and a mapping ·I that maps:

• every concept name A ∈ C to a set AI ⊆ ∆I,

• every role name r ∈ R to a binary relation rI ⊆ ∆I × ∆I, and

• every individual name a ∈ I to an element aI ∈ ∆I.

The mapping of complex concepts, > and ⊥ is extended as follows:

>I = ∆I ,

⊥I = ∅,

(C uD)I = CI ∩DI ,

(C tD)I = CI ∪DI ,

(¬C)I = ∆I \ CI ,

(∃r.C)I = {d ∈ ∆I | there is an e ∈ ∆I with (d, e) ∈ rI and e ∈ CI},

(∀r.C)I = {d ∈ ∆I | for all e ∈ ∆I , if (d, e) ∈ rI , then e ∈ CI}.

CI is called the extension of C in I, and b ∈ ∆I is called an r-filler of a in I if (a, b) ∈ rI.

2.2. Description Logics and Ontologies 21

Definition 2.7 (Model). Given a knowledge base K = (T ,A) with an ABox A and a TBox T

, an interpretation I is a model M for K iff:

1. The interpretation satisfies every assertion in the ABox, i.e.:

(a) aI ∈ CI for every concept assertion a : C ∈ A, and

(b) (aI , bI) ∈ rI for every role assertion (a, b) : r ∈ A.

2. The interpretation satisfies every GCI in the TBox, i.e. CI ⊆ DI for every GCI C v D

in T .

If and only if there exists a modelM for K , then K can be called consistent.

Definition 2.8 (ABox encoding). Given the set of all concept names C, all role names R, and

all individual names I, the ABox encoding of a modelM is an ABox BM constructed as follows:

BM ={a : C|aM ∈ CM, C ∈ (A,¬A), A ∈ C, a ∈ I}

∪ {(a, b) : r|(aM, bM) ∈ rM, r ∈ R, a, b ∈ I}

∪ {(a, b) : ¬r|(aM, bM) /∈ rM, r ∈ R, a, b ∈ I}.

If there exists at least one model for a knowledge base K , then K is consistent, otherwise

K is inconsistent. Almost every reasoning problem for DLs can be reduced to a problem of

consistency. Finding a model of knowledge base proves the consistency of that knowledge base.

Therefore, DL reasoners are built that are optimized to search for models of a knowledge base.

As this thesis is focused on inferences, the main reasoning task is to check the entailment of

assertions. An assertion is entailed by a knowledge base K if and only if the assertion must

be true given the knowledge in K , i.e. when all models of K contain the assertion. When an

assertion a : A is entailed by a knowledge base K this is represented by the entailment symbol

in the following form: K � a : A. To check if an assertion a : A is entailed by K , it is sufficient

to check the consistency of K ′ = K∪ {a : ¬A}. If there exists a model for K ′, then it is possible

22 Chapter 2. Background Theory

that a : ¬A is true in the context of K ′, thus a : A is not entailed by K . If there exists

no model for K ′, then there is no possibility for a : ¬A to be true, thus a : A must be true

and K � a : A holds. Note that a : A is always entailed by a knowledge base K when K is

inconsistent on its own.

There are several methods to check the consistency of a knowledge base. The most common

methods are resolution and tableau algorithms. As this paper is focused on an abduction

method that uses the tableau algorithm, this method is explained in section 2.2.4. Dependent

on the DL language that is used the tableau algorithm can vary. As the implementations of

this thesis are written in the DL ALCHO, additional knowledge is needed about nominals

(indicated by the letter O), and role inclusion (indicated by the letter H), before explaining

the tableau algorithm for the DL ALCHO. Information about all different DL languages can

be found in Baader et al. (2017).

2.2.2 Nominals

As described in the previous section, the rules in a TBox describe the relations between different

concepts. However, in some cases, one wants to describe a concept with the use of an individual

name. Take, for example, the case that TNO has a knowledge base that contains all information

about its employees and departments. Now imagine one wants to add a concept for all employees

in the department Data science, called EmployeeOfDS. The department Data Science is

already defined as an individual DS and a role worksAt exists to indicate at which department

an employee works. In this case it is not possible to easily add a GCI that uses the present

information to assert all correct employees to the concept EmployeeOfDS. To use the present

knowledge, one needs to express the concept EmployeeOfDS with the help of the individual

DS, which is why nominals were introduced.

An individual name a can be used as a nominal {a}. The interpretation of a nominal ({a})I is

equal to the interpretation of the individual {aI}. By using an individual to form a nominal,

the individual can be used as a concept and can therefore be used to define other concepts. To

continue the example of employees of TNO, the individual DS can now be used as a nominal

2.2. Description Logics and Ontologies 23

{DS} to form the concept definition EmployeeOfDS ≡ Employeeu∃worksAt.{DS}. Now all

the individuals that are asserted to the concept Employee and have been indicated to work at

the department of DS, are asserted to the concept EmployeeOfDS.

2.2.3 Role inclusion

The relations between concepts can be described via TBox axioms, yet relations between roles

cannot be described in the DL ALC. Still, a hierarchy between roles can exist in a domain. For

example, if one wants to specify which employees work full-time at one department, the role

worksFulltimeAt can be introduced. Intuitively one would like to infer that any employee that

works full-time at a department, does in fact work at that department. With the DL ALCO one

would have to separately assert all full-time employees both to the role worksFulltimeAt and

the role worksAt. This double assignment is not only redundant, it is also prone to errors if a

user does add the assertion worksFulltimeAt, yet forgets to add the assertion to worksAt.

Therefore, role inclusion axioms were introduced.

A role inclusion axiom (RIA) is a DL constructor that can form an implication between two

roles, therefore allowing a hierarchy among roles. An RIA is an axiom in the form r v s,

where {r, s} are roles, that indicates that every role assertion r must also be asserted to role

s. The role inclusion axioms are added to the TBox of a knowledge base. By adding the role

inclusion worksFulltimeAt v worksAt to the example given above, all fulltime employees of

the department Data Science are automatically indicated to be employees of the department

Data Science. To summarize role inclusion with multiple steps the symbol v∗ can be used,

i.e. r v∗ s if and only if r v ri, . . . , rn ⊆ s or r = s for roles {r, ri, . . . , rn, s}. For example, if

everyone who works at a department is also an stakeholder of that department and worksAt v

stakeholderOf is added to the TBox, then worksFulltimeAt v∗ stakeholderOf holds.

24 Chapter 2. Background Theory

2.2.4 Tableau algorithm

A tableau algorithm for description logics expands a knowledge base K , such that all the

information that is present in K is represented in simple assertions, while checking for conflicting

assertions. By expanding all TBox axioms and ABox assertions to simple ABox assertions, a

model can be found for a given knowledge base. As described in section 2.2.1, a knowledge

base is consistent when there is at least one model for that knowledge base. If two conflicting

assertions are present in a knowledge base no model is possible. This is indicated by saying

there exists a clash in the knowledge base. A tableau algorithm applies expansion rules until

there are no more rules to apply, or a clash is indicated. When a clash is indicated there is no

possible model for the knowledge base, thus the tableau algorithm returns that the knowledge

base is inconsistent. When there are no more rules to apply, and there is no clash, then there

is a model for the knowledge base, and the knowledge base is consistent.

The expansion rules for a knowledge base inALCHO are given in figure 2.1. Each expansion rule

adds new assertions to the ABox, with the exception of the expansion rule for nominals, the {}-

rule. The rule for nominals merges two individuals that both are assigned to one nominal. This

rule replaces one of the individuals by the other individual in all assertions, as the interpretation

of both individuals must be the same. While most rules add known concepts and roles to the

ABox assertions, the or rule (t-rule) introduces a new concept, X, that can represent either side

of the or operator. This rule introduces branching in the tableau algorithm, where one branch

represents the left side of the or-operator and the other branch the right side. Every time the

or rule is applied, two paths can be followed by the tableau algorithm. It can arbitrarily choose

one of the paths to check for a model. If the first path leads to a model, consistency of the

knowledge base is proven, and the second path does not have to be checked. If the first path

leads to a clash, the second option should be checked to prove consistency or inconsistency.

The ∃-rule mentions a condition "a is not blocked". The blocking constraint was introduced

to stop the algorithm in cases where existential concepts introduce an infinite chain of new

individuals. Note that an individual a is an ancestor of an individual b if and only if there

2.2. Description Logics and Ontologies 25

Let K = (A, T) be an ALCHO knowledge base with ABox A and TBox T , {a, b, c, d} be
individual names, {r, s} be role names, {o} be a nominal, and {C,D} be concepts (either simple
or complex). The following rules can be applied to expand the knowledge base K :

u-rule: if 1. a : C uD ∈ A, and
2. {a : C, a : D} * A

then A −→ A ∪ {a : C, a : D}.

t-rule: if 1. a : C tD ∈ A, and
2. {a : C, a : D} ∩ A = ∅

then A −→ A ∪ {a : X} for some X ∈ {C,D}.

∃-rule: if 1. a : ∃r.C ∈ A,
2. there is no b such that {(a, b) : r, b : C} * A, and
3. a is not blocked,

then A −→ A ∪ {(a, d) : r, d : C}, where d is new in A.
∀-rule: if 1. {a : ∀r.C, (a, b) : s} ⊆ A, and

2. b : C /∈ A
3. s v∗ r

then A −→ A ∪ {b : C}.

v-rule: if 1. a : C ∈ A,> v D ∈ T , and
2. {a : D} /∈ A

then A −→ A ∪ {a : D}.

{}-rule: if 1. {a : {o}, b : {o}} ⊆ A,
2. a 6= b

then A −→ A \ {a : C} ∪ {b : C} for every a : C ∈ A,
A −→ A \ {(a, c) : r} ∪ {(b, c) : r} for every (a, c) : r ∈ A, and
A −→ A \ {(c, a) : r} ∪ {(c, b) : r} for every (c, a) : r ∈ A.

Figure 2.1: Expansion rules for ALCHO knowledge bases.

exist n rules such that assertions (a, a1) : r1, . . . (an, b) : rn are present in the ABox, with

{a1, . . . , an} being any individuals. In contrast, a is a descendant of b, when b is an ancestor of

a. For an individual a to be blocked by another individual b, a must be a descendent of b, the

set of concepts C that a is asserted to must be a subset of the set of concepts b is asserted to.

The introduction of blocking ensures the termination of the algorithm. Proof of the soundness,

completeness, and termination of the tableau algorithm for DL can be found in Baader et al.

(2017).

26 Chapter 2. Background Theory

2.3 Abductive Reasoning in DL: ABox Abduction

While abduction as a form of reasoning has a rich history, abduction over description logics is a

relatively new concept. Elsenbroich et al. (2006) argued why abduction could be an interesting

form of reasoning to use in ontologies. They classify abduction over DLs into the following four

forms, which scholars have followed since:

• Concept abduction: The abduction problem consists of a concept Φ and a knowledge base

in a DL as the theory Γ , which has to be solved by a concept E as an explanation, such

that the knowledge base entails the implication that E leads to Φ, i.e. Γ � E v Φ.

A special case of concept abduction is Conditionalized concept abduction. Instead of

using the tuple 〈Γ,Φ〉 as the abduction problem, a condition concept C is added. Only

explanations for which the union with the condition implicates the observation are valid,

i.e. Γ � E u C v Φ.

• ABox abduction: The abduction problem consists of an assertion Φ = C(a) and a knowl-

edge base in a DL as the theory Γ , which has to be solved by a set of assertions E as

an explanation, such that the explanation together with the theory entails the observed

assertion, i.e. Γ ∪ E � Φ.

• TBox abduction: The abduction problem consists of an general concept inclusion Φ =

C v D and a knowledge base in a DL as the theory Γ , which has to be solved by a set

of GCI’s E as an explanation, such that adding the explanation to the knowledge base

implies the observation, i.e. Γ ∪ E � C v D.

• Knowledge base abduction: The abduction problem consists of either a general concept

inclusion or an assertion Φ and a knowledge base in a DL as the theory Γ , which has

to be solved by a set of GCI’s and assertions E as an explanation, such that adding the

explanation to the knowledge base implies the observation, i.e. Γ ∪ E � Φ.

Each form of abduction for DLs has its own unique goals. Concept abduction is used to reason

about the relations between concepts. Finding an explanation for a simple concept name can

2.3. Abductive Reasoning in DL: ABox Abduction 27

already be achieved by most existing DL reasoners. By using the concept forgetting technique of

Zhao and Schmidt (2018) explanations for complex concept assertions can also be found easily.

TBox abduction is more helpful for building and repairing ontologies as it is used to search for

missing is-a relationships. A practical algorithm for finding TBox abduction explanations in

expressive DLs is given in Du, Wan, et al. (2017). While the algorithm presented is practical in

use, it lacks a formal proof of soundness and completeness. Both concept and TBox abduction

are interesting forms of reasoning to research, yet they are used to reason about the ontologies

itself rather than using the ontology to reason about individuals in the real world. Both ABox

abduction and knowledge base abduction can reason about individuals and are therefore more

interesting for the use case of TNO, where explanations are searched for specific incidents.

Research into knowledge base abduction is limited. One could think of knowledge base ab-

duction as a combination of ABox and TBox abduction, as all solutions for an ABox/TBox

assertion in ABox/TBox abduction will also be solutions in knowledge base abduction, This

could be a reason that research is more focused on first solving ABox and TBox abduction,

before attempting to create an implementation that can account for both. While the solution

for knowledge base abduction contains all explanations that would be retrieved via ABox ab-

duction, it can also contain explanations that include potential missing GCI’s. In situations

where one is using a tested ontology to abduct explanations for a certain event, explanations

that suggest potential changes to the structure of an ontology might distract from the true

cause. In such a situation, when one is confident about the structure of its ontology, ABox

abduction can be more useful than knowledge base abduction. As this research is focused on

finding explanations for surprising observations with the use of an established ontology, rather

then searching for additions to a flawed ontology, this research is focused on improving the

excising implementations for ABox abduction.

Definition 2.9 (ABox Abduction problem). Let Γ be a knowledge base in DL, O the set of

all possible ABox assertions and Φ ⊆ O an observation. A tuple 〈Γ,Φ〉 can be described as an

ABox abduction problem if and only if:

1. Γ 2 Φ,

28 Chapter 2. Background Theory

2. Γ ∪Φ 2⊥.

Definition 2.10 (ABox Abduction explanation). Let Φ ⊆ O be an ABox abduction problem,

with knowledge base Γ and ABox assertion Φ ⊆ O. The set of solutions to an ABox abduction

problem contains all valid explanations, S = {E |E is an explanation for 〈Γ,Φ〉}. An explanation

E ⊆ H can be described as an explanation of Φ with respect to Γ if and only if:

1. Γ ∪ E � Φ (plain)

2. Γ 2 Φ (explanatory)

3. Γ ∪ E 2⊥ (consistent)

4. E 2 Φ (relevant)

5. E ′ * E for every E ′ ∈ S\{E} (syntactically minimal)

6. Γ ∪ E ′ � E or Γ ∪ E 2 E ′ for every E ′ ∈ S\{E} (semantically minimal)

2.3.1 Methods for ABox Abduction

Since Elsenbroich et al. (2006) argued for the use of abduction over an ontology several studies

have been conducted on the topic. Following chronological order, Klarman et al. (2011) was the

first to propose an ABox abduction method. Klarman et al. (2011) introduce an approach for

ABox abduction in the DL ALC, with observations and explanations in ALE . To find expla-

nations the knowledge base and abduction query are first translated to first-order logic and a

modal structure. The approach is based on both regular connection tableau and resolution with

set-of-support. The paper provides a proof of soundness (for plain solutions) and completeness

for the proposed method, yet no practical implication is provided. A more practically oriented

method is proposed in Du, Qi, et al. (2011), and further developed in Du, Wang, et al. (2014)

and Du, Wang, et al. (2015). The proposed method translates SHJQ ontologies to Datalog,

such that a Prolog abduction solver can be used to compute explanations, which are translated

back to DL afterwards. The papers provide empirical proof to support their method, yet only

soundness is formally proven. As the method is not proven to be complete, the method might

not find all possible explanations to an abduction problem.

2.3. Abductive Reasoning in DL: ABox Abduction 29

Both Klarman et al. (2011) and Du, Wang, et al. 2014 use translations to other logical systems

for finding abductive explanations. By translating to another system, the abductive methods

already developed in that specific system can be used. Yet, due to the translation to another

system expressivity can be lost, and it is not possible to use the optimized techniques developed

for DL anymore. Ma et al. (2012) propose to transform the abduction problem into a consis-

tency problem of the knowledge base, which can be solved by using the traditional tableaux

construction in the DL ALCI. The abduction problem of searching an explanation E for an ob-

servation Φ, given the knowledge base Γ , is transformed into the consistency problem of finding

any explanation E , such that E is inconsistent when combining it with the knowledge base Γ

and the negated observation, i.e. Γ ∪E ∪ {¬Φ} is inconsistent. To find all explanations Ma et al.

(2012) proposes to construct a tableau for the negation normal form of the set Γ ∪ {¬Φ}. For

every unclosed branch of the tableau, the negation of the last node is added to the explanation.

The method of Ma et al. (2012) is illustrated with the use of an example, yet no complete

implementation, nor a proof of soundness and completeness is included in the research.

In the same year another method which uses the tableau algorithm for DL, was presented

by Halland and Britz (2012). Similarly, the abduction problem 〈Γ,Φ〉 is transformed into

the problem of finding all explanations E such that Γ ∪ E ∪ {¬Φ} is inconsistent. They use an

extension of the tableau algorithm to find all modelsM for Γ∪{¬Φ}. Subsequently, the minimal

hitting set algorithm of Reiter (1987) is used to find explanations that can make every modelM

invalid. The minimal hitting set is only used as a tool and no alterations to the algorithm are

made. Halland and Britz (2012) provide an implementation for the DL ALC that can compute

explanations in ALE . While the method is explained to be sound, Halland and Britz (2012)

discuss that their approach is not complete. Surprisingly the semantically minimal explanations

are the ones that are often missing from the set of explanations this implementation provides.

Building on the work of Halland and Britz (2012) other implementations were developed that

used the minimal hitting set algorithm to search for useful explanations (Pukancová and Ho-

mola 2017; Pukancová and Homola 2018; Mrózek et al. 2018). In Pukancová and Homola

(2017) an algorithm is presented that is sound and complete for finding explanations for single

observations in the ALCHO description logic. Pukancová and Homola (2018) describe how an

30 Chapter 2. Background Theory

extended version of this approach can be used for multiple observations. Furthermore Mrózek

et al. (2018) describe how the implementation can be altered to use a reasoner of choice to call

the tableau algorithm. Unlike the method of Halland and Britz (2012), these approaches do

alter the hitting set algorithm, such that the tableau algorithm is called less frequently. An

overview of how the minimal hitting set algorithm operates, and how it is used to find abductive

explanations, is given in section 2.3.2.

The majority of the techniques for ABox abduction make use of the tableau algorithm, still

Del-Pinto and Schmidt (2018) present an abduction method with the use of forgetting. Forget-

ting is a non-standard reasoning technique that uses resolution to remove a set of symbols from

the knowledge base, while preserving all entailments (Koopmann and Schmidt 2015). The new

ontology, formed by forgetting, is a uniform interpolant, which contains the strongest necessary

entailment of the knowledge base. Del-Pinto and Schmidt (2018) show that computing the

uniform interpolant over a conjunction of the knowledge base and the negated observation, by

forgetting the concepts in the observation, results in a set of assertions, and that every result-

ing set is a semantically minimal explanation for the observation. With the use of traditional

consistency checking, each explanation can be checked for the other constraints given in def-

inition 2.2, such as consistency and syntactic minimality. The method is proven to be sound

and complete in ALC, yet it cannot reason with roles in the observation or explanations as the

resolution rules for ALC cannot handle negated role assertions. As the forgetting technique is

still in development, and the use of tableau algorithms for DLs is already widely used, this pa-

per will focus on techniques that make use of the minimal hitting set algorithm, in combination

with a tableau algorithm. Nonetheless, Del-Pinto and Schmidt (2018) present an interesting

way of looking at the abduction problem, which showed that it is possible to develop a sound

and complete method for extracting semantically minimal explanations.

2.3.2 Minimal Hitting Set Algorithm

As discussed in the previous section, the minimal hitting set algorithm forms a basis for promis-

ing ABox abduction techniques. To fully understand the technique this section explains the

2.3. Abductive Reasoning in DL: ABox Abduction 31

minimal hitting set algorithm as developed by Reiter (1987), before proceeding to explain how

it can be used for ABox abduction specifically. Reiter (1987) proposed an algorithm to run

diagnosis in a first-order system. A system is described as a pair (SD,COMPONENTS), where

SD, the system description, a set of first-order sentences and COMPONENTS, the system com-

ponents, is a finite set of constants. SD contains a unary predicate AB for each component,

which indicates if a component is behaving abnormal. Provided an observation OBS a diagnosis

for the triple (SD,COMPONENTS,OBS) can be retrieved by searching for a minimal set of

faulty components. In other words, a diagnosis assumes a minimal set of components to be

working abnormal, while the rest of the components function properly

Definition 2.11 (Diagnosis). A diagnosis for (SD, COMPONENTS, OBS) is a minimal set

∆ ⊆ COMPONENTS such that: SD∪OBS∪{AB(c)|c ∈ ∆}∪{¬AB(c)|c ∈ COMPONENTS−∆}

is consistent.

Example 5. Consider an webshop that has a system in place for handling orders. Whenever

an order is placed by a client, and the client has enough credit on its account, the order

is complete. When a complete order is placed, and the correct address in registered to

the client then the order is send to that address. This system is formally represented by

(SD,COMPONENTS) with COMPONENTS = {o1, o2, c, a} and SD:

order(X)∧ complete(X)∧ address(Y)∧ ¬AB(Y)→ send(Y)

order(X)∧ ¬AB(X)∧ credit(Y)∧ ¬AB(Y)→ complete(X)

credit(c),

address(a),

order(o1),

order(o2).

Suppose, we observe that no package is sent to the client’s address, OBS = {¬send(a)}.

Given definition 2.11 there are three proper diagnoses for (SD,COMPONENTS,OBS):

32 Chapter 2. Background Theory

∆1 : {c}, ∆2 : {a} and ∆3 : {o1, o2}. Either the client’s credit, the client’s address or both the

orders are faulty. This is the result of the following consistent unions:

SD ∪OBS ∪ {AB(c)} ∪ {¬AB(a),¬AB(o1),¬AB(o2)} ∆1

SD ∪OBS ∪ {AB(a)} ∪ {¬AB(c),¬AB(o1),¬AB(o2)} ∆2

SD ∪OBS ∪ {AB(o1), AB(o2)} ∪ {¬AB(a),¬AB(c)} ∆3

To efficiently compute the diagnoses for a system Reiter (1987) proposed to use conflict sets.

A conflict set is any subset of components such that assuming every component in this set

to be normal, in conjunction with the observation, and the system description results in an

inconsistent system (definition 2.12). He proposes that a diagnosis is any minimal set for

which the complement of the diagnosis is no conflict set for a system. By definition 2.11

any complement set of the diagnosis has to be consistent with the system description and

observation, therefore it cannot be a conflict set as defined by (2.12).

Definition 2.12 (Conflict set). A conflict set for (SD,COMPONENTS,OBS) is a set {c1, . . . ,

ck} ⊆ COMPONENTS such that SB ∪OBS ∪ {¬AB(c1), . . . ,¬AB(ck)} is inconsistent.

A conflict set C for (SD,COMPONENTS,OBS) is minimal iff there is no conflict set C ′ for

(SD,COMPONENTS,OBS) such that C ′ ⊂ C.

Definition 2.13 (Hitting set). Suppose S = {S1, . . . , Si} is a collection of sets. A hitting set

for S is a set H ⊆
⋃
Si∈S Si such that H ∩ Si 6= ∅ for each Si ∈ S.

A hitting set H for S is minimal iff there is no hitting set H ′ for S such that H ′ ⊂ H.

Reiter (1987) shows that finding a diagnosis for a system can be solved by finding all minimal

hitting sets for the collection of conflict sets for that system. As described in definition 2.13,

a hitting set for a collection of sets contains at least one element of every set in the collection.

Therefore, the complement of a hitting set for the collection all conflict sets cannot be a conflict

set in itself. Given this knowledge, and the knowledge that any diagnosis is a minimal set such

2.3. Abductive Reasoning in DL: ABox Abduction 33

that the complement is no conflict set, finding all diagnosis for a system amounts to finding

minimal hitting sets for the collection of the conflict sets. While finding the hitting sets for the

collection of all conflict sets is legitimate, it is sufficient to find the hitting sets for all minimal

conflict sets. Any non-minimal conflict set has a minimal subset. If a hitting set contains an

element of this subset, it also contains at least one element of the non-minimal conflict set.

Therefore, the minimal hitting sets of all minimal conflict sets will be the same collection as

the minimal hitting sets of all conflict sets.

Theorem 2.1. ∆ ⊆ COMPONENTS is a diagnosis for (SD,COMPONENTS,OBS) iff ∆ is a

minimal hitting set for the collection of minimal conflict sets for (SD,COMPONENTS,OBS).

Example 6 (Continued). The order system and the observation described before, formu-

lated as (SD, {o1, o2, c, a}, {¬send(a)}) have two minimal conflict sets according to defini-

tion 2.12: {o1, c, a} and {o2, c, a}, provided by the inconsistency of the following formulas

respectively:

SD ∪OBS ∪ {¬AB(o1),¬AB(c),¬AB(a)}

and

SD ∪OBS ∪ {¬AB(o2),¬AB(c),¬AB(a)}.

Given the collection of minimal conflict sets C = {{o1, c, a}, {o2, c, a}} three minimal hitting

sets can be found: {c}, {a} and {o1, o2}. The minimal hitting sets correspond to the diagnoses

(∆1, ∆2 and ∆3) computed in example 5.

Hitting sets can be used to compute diagnoses, but the given definitions do not present a

effective way to identify minimal hitting sets yet. To effectively identify minimal hitting sets

Reiter (1987) uses a hitting set tree (HS-tree). While an HS-tree can be used to find minimal

hitting sets for any collection of sets, in the context of abduction HS-trees are used to compute

the minimal hitting sets for a collection of conflict sets. To construct an HS-tree, the conflict

34 Chapter 2. Background Theory

sets are used as nodes, and the edges consist of elements in the conflict set. An HS-tree is

formally defined as:

Definition 2.14 (HS-tree). Suppose S is a collection of sets. An edge- and node-labeled tree T

is an HS-tree for S iff it is a smallest tree with the following properties:

1. Its root is labeled by Xif S = ∅. Otherwise, its root is labeled by some C ∈ S.

2. If n is a node of T , define H(n) to be the set of edge labels on the path in T from the root

node to n.

3. If n is labeled by X, it has no successor nodes in T .

4. If n is labeled by some C ∈ S, then for each σ ∈ C, n has a successor node nσ joined to n

by an edge labeled by σ. The label for nσ is a set C ∈ S such that C ∩H(nσ) = ∅ if such

a set C exists. Otherwise, nσ is labelled by X.

By property 4 of definition 2.14 it is implied that the path from the root to a node, which is

labelled by a check-mark, is a hitting set, as every set in the collection has at least one element

that is already in the path. As the nodes have successor nodes for every element in their set,

each minimal hitting set is in in the HS-tree. While the HS-tree does produce all minimal

hitting sets, not all hitting sets in the tree are minimal. Therefore, Reiter (1987) introduces

a pruning technique, such that the search for minimal hitting sets is optimized. With the

following steps a a pruned HS-tree can be generated:

1. Generate the HS-tree breadth-first, thus generating nodes at any fixed level in the tree in

left-to-right order.

2. Reusing node labels: if a node n is labeled by the set C ∈ S and if n ′ is a node such that

H(n ′) ∩ C = ∅, n ′ is labelled by C. Underline the node to indicate that the label of n ′ is

a reused label. Such a node n ′ requires no access to S.

3. Tree pruning:

2.3. Abductive Reasoning in DL: ABox Abduction 35

(a) If node n is labeled by Xand node n ′ is such that H(n) ⊆ H(n ′), close n ′. Closing

is done by marking the node with ×, i.e. do not compute a label for n ′; do not

generate any successors of n ′.

(b) If node n has been generated and node n ′ is such that H(n) = H(n ′), then close n ′.

(c) If nodes n and n ′ have been respectively labeled by sets C and C ′ of S, and if C ′ ⊂ C,

then for each α ∈ C − C ′ mark the edge from node n labeled by α as redundant by

cutting the edge with)(. A redundant edge, together with the subtree beneath it,

may be removed from the HS-tree while preserving the property that the resulting

pruned HS-tree will yield all minimal hitting sets for S.

Each path from the root to a node of the pruned HS-tree that is marked by a check-mark

represents a minimal hitting set. Thus by constructing a pruned hitting set tree for the collection

of conflict sets for a system, all diagnoses for that system are computed.

Theorem 2.2. Let S be a collection of sets, and T a pruned HS-tree for S, as previously

described. Then {H(n)|n is a node of T labeled by X} is the collection of minimal hitting sets

for S.

2.3.3 ABox abduction via Minimal Hitting Set Algorithm

Reiter (1987) introduced the HS-tree to find minimal hitting sets for any collections of sets,

specifically for finding conflict sets. For any plain explanation to an ABox abduction problem

the following holds: Γ ∪ E � Φ. If Γ ∪ E � Φ holds, then Γ ∪ E ∪ {¬Φ} must be inconsistent,

as Φ must be true in every situation that Γ ∪ E is true. Concurrently, as Γ 2 Φ holds for

every explanatory abduction problem, Γ ∪ {¬Φ} must be consistent. Thus, an ABox abduction

problem can be transformed into the problem of finding any E for which Γ ∪ E ∪ {¬Φ} is

inconsistent, yet Γ ∪ {¬Φ} is consistent. According to definition 2.7 a knowledge base K is

consistent if and only if there exists at least one model M for K . From these preliminaries it

follows that there must be at least one model M for Γ ∪ {¬Φ} and, given thatM is the set of

all models for Γ ∪ {¬Φ}, E must comprise of assertions such that every model M ∈M is not a

36 Chapter 2. Background Theory

model for Γ ∪E ∪ {¬Φ}, in other words, an explanation must make every model for Γ ∪ {¬Φ} an

invalid model for Γ ∪E ∪ {¬Φ}. Thus, for every modelM for Γ ∪ {¬Φ}, the explanation E must

contain an assertion that can clash with an assertion inM. Therefore, Pukancová and Homola

(2017) use an HS-tree to find the minimal hitting sets of the ABox encodings of every model

for Γ ∪ {¬Φ}.

While a standard HS-tree, as described in section 2.3.2, can be used to find all syntactically

minimal explanations, Pukancová and Homola (2017) propose some changes in pruning and

labeling to make the algorithm more efficient. An HS-tree, constructed by definition 2.14, with

the collection of sets S corresponding to the ABox encodings of all models M for Γ ∪ {Φ}, can

be pruned by the following definition:

Definition 2.15 (Pruned node). A node n in an HS-tree T for an ABox abduction problem

〈Γ,Φ〉 is pruned if:

1. either there exists an node n ′ s.t. H(n ′) ⊆ H(n) and n ′ is labelled by {} or X(label n by

{});

2. or there exists an node n ′ s.t. H(n ′) = H(n) and n ′ is labelled by a model (label n by ×);

3. or {¬Φ} ∪H(n) is inconsistent (label n by {});

4. or H(n) ∪ K is inconsistent (label n by {}).

By pruning a HS-tree with the rules above only consistent, relevant, and syntactically minimal

explanations are retrieved. Due to condition 4 all paths that result in an inconsistent expla-

nation are pruned immediately. Any node that contains all assertions of a path that has been

pruned due to an inconsistency in its path will be pruned by condition 1, without having to

check the consistency, as any super set of an inconsistent set will be inconsistent itself. In the

same manner condition 3 immediately prunes all nodes that lead to explanations that do not

add any new information.

While Halland and Britz (2012) adjust the tableau algorithm to compute the set of all models

M for Γ ∪ {¬Φ} and then construct an HS-tree for M , Pukancová and Homola (2017) only

2.3. Abductive Reasoning in DL: ABox Abduction 37

compute one model M at the start and compute other models during the construction of the

HS-tree. Furthermore, used models are stored in a in the setM , such that they can be reused

for other branches. The ABox encodings of a model are used as labels for the nodes in the

HS-tree. The implementation used to find explanations to an ABox abduction problem 〈Γ,Φ〉

uses the following order:

1. First the tableau algorithm is called to compute a model M for K = Γ ∪ {¬Φ}.

(a) If there is no model, the abduction problem is not relevant and the algorithm stops.

2. An HS-tree is constructed, with the root node labeled by the ABox encoding B of model

M.

3. For a node labelled by B , a successor node is created for every assertion b ∈ B, the path

between the nodes is labelled by ¬b.

4. For each successor node n the possibility of pruning is checked in the following order:

(a) The path H(n) is checked for clashes, as this will automatically violate both condi-

tions 3 and 4. If a clash exists n is pruned and labelled {}.

(b) The path H(n) is checked for minimality (condition 1).

(c) The path H(n) is checked for relevancy (condition 3).

(d) The path H(n) is checked for consistency (condition 4).

(e) The path H(n) is checked for duplicity (condition 2).

5. If the node should not be pruned, the algorithm checks whether there is a model N for

K ∪H(n), in the following order:

(a) If there is an N ∈M such that H(n) ⊆ N, the ABox encoding of model N is reused

for the current node.

(b) If there is no such model N, the tableau algorithm is called to search for a new model

for K ∪H(n).

38 Chapter 2. Background Theory

i. If such a model P is found, its ABox encoding is used for the current node and

the model P is stored inM for later reuse.

ii. If such a model is not found, K ∪ H(n) is inconsistent and H(n) is a minimal

hitting set. H(n) is stored as explanation and n is labelled by X.

6. If each node is labelled, the algorithm returns to step 3 to create and label successor

nodes for the current level.

7. When all nodes are labelled, and no successor nodes can be created, the algorithm is

done.

For observations consisting of a single concept or role assertion in ALCHO the algorithm is

sound and complete for finding consistent, relevant and syntactically minimal explanations for

an explanatory ABox abduction problem. Furthermore, the algorithm eventually terminates.

Besides giving a proof of soundness and completeness, Pukancová and Homola (2017) explain

that the worst case complexity of the algorithm is in ExpTime. As the algorithm implements

the minimal hitting set algorithm, which is proven to be in NP (Reiter 1987), and calls the

tableau algorithm at most once each step, the complexity of Pukancova’s algorithm is equal to

the complexity of the tableau algorithm. The tableau algorithm for ALCHO is in ExpTime,

therefore the proposed algorithm is in ExpTime.

The algorithm presented above is built to deal with single ABox abduction observations. Pukan-

cová and Homola (2017) therefore dubbed it the Single Observation Abduction (SOA) algo-

rithm. To find explanations for multiple observations two methods are proposed in Pukancová

and Homola (2018). The first approach is based on reduction to combine the multiple obser-

vations into one observation. All the assertions are first reduced to a disjunction, where the

asserted individual is detached from the assertion and added as a nominal. The conjunction

of all reduced assertions is then assigned to a dummy variable and used as input for the SOA

algorithm. The complete implementation for multiple observations is dubbed as the ABox Ab-

duction Algorithm (AAA). The first version of the algorithm, based on reduction, is indicated

as AAAr.

2.3. Abductive Reasoning in DL: ABox Abduction 39

A second approach to ABox abduction for multiple observations splits the ABox abduction

problem into multiple sub problems (Pukancová and Homola 2018). The splitting approach

(AAAs) runs the SOA algorithm for each assertion in the observation separately, then adds any

combination of the found explanations in the SOA algorithm as an explanation for the complete

observation. As the observations can contain new individuals, which are not present in the

knowledge base, the knowledge base is enriched with an assertion >(a) for each individual

a that is present in one of the observations. After the extra individuals are added to the

knowledge base, the SOA algorithm is called for each observation. The resulting explanations

are stored in a general explanation set. After all the explanations are generated for each separate

observation, all possible combinations of explanations are formed to compute the explanations

for the complete observation. As the combination of explanations might result in some unwanted

complete explanations, all the explanations are checked on consistency, relevancy and syntactic

minimality again.

Both AAAr and AAAs are proven to terminate and to be sound and complete. Empirical proof

in Pukancová and Homola (2018) shows that the reduction approach is faster in computing all

explanations to a multiple observant abduction problem, while the splitting approach generates

more explanations in a short amount of time. Still, as both approaches run in ExpTime,

computing all explanations for a large ontology is not feasible in any application. Therefore,

Pukancová and Homola (2018) introduced the possibility to search up to a certain depth in

the HS-tree, by including a parameter l in the algorithms. The SOA algorithm stops after an

HS-tree has labelled all nodes and cannot produce any successor nodes, or has reached a full

depth of l. From the tests that Pukancová and Homola (2017), Pukancová and Homola (2018),

and Mrózek et al. (2018) conducted follows that a maximum depth of 3 is advisable for large

ontologies to not let the implementations run out of memory.

40 Chapter 2. Background Theory

2.4 Goal of this thesis

The overarching goal of this thesis is to create an application that can be used by TNO to

find useful explanations for observations, using any of the ontologies they have developed,

for example, to find explanations for surprising behavior of an information system, using an

ontology with all the information about this information system. Ultimately an application that

can generate explanations in a reasonable amount of time, and can select the best explanation

(possibly with additional user input) is wanted. This is impossible in the scope of this thesis,

nonetheless, it is the aim of this thesis to provide an implementation that can at least generate

the possible explanations that adhere to all the constraints for ABox abduction explanations

given in definition 2.10. Specifically, this thesis aims to answer the following four research

questions:

1. How can the minimal hitting set algorithm be improved, such that it is sound and complete

for generating semantically minimal solutions?

2. How can the tableau algorithm be optimized to generate models that lead to all and only

semantically minimal solutions?

3. How can branches in a HS-tree be pruned, when its path contains parts of a semantically

non-minimal solution?

4. How do the adjustments to the AAA implementation affect its performance?

The ABox abduction implementations of Pukancová and Homola (2018) and Mrózek et al.

(2018) are applications to retrieve explanations to an abduction problem. However, the gen-

erated explanations are not necessarily semantically minimal. The aim of this paper is to

adjust the implementation AAA of Pukancová and Homola (2018) such that it generates only

semantically minimal solutions to an ABox abduction problem. One obvious solution to reach

semantic minimality is to check for every explanation if it entails one of the other explanations,

however, as this would mean calling the time intensive tableau algorithm n × (n − 1) times

2.4. Goal of this thesis 41

for n explanations, this would not be a practical solution. Therefore, it is the aim of this

paper to explore more efficient ways to detect non-minimal explanations within the algorithm

of AAA, such that paths in the HS-tree that lead to semantically non-minimal explanations

can be avoided or pruned.

3 | Approaches for finding Semantically

Minimal ABox Abduction Explana-

tions

One of the possible approaches for finding semantically minimal ABox abduction explanations

to explore is to use an adjusted tableau algorithm. While Pukancová and Homola (2018)

do optimise the minimal hitting set (MHS) algorithm to call the tableau algorithm the fewest

number possible, they use the tableau algorithm as a black-box. The tableau algorithm they use

has been optimised for deductive reasoning techniques, yet during the expansion of a tableau,

clashes with decedents of the observation, in combination with backtracking to the last or-

branch, can indicate which elements of the model lead to a direct clash with (a part of) the

observation. Only the elements in a model that lead to a direct clash with a part of the

observation are interesting for forming semantically minimal solutions. Another important

feature of semantically minimal explanation is that it should be possible to retrieve at least

one of the observations after applying at most one TBox rule to the explanation. If two TBox

rules are applied to retrieve at least one observation, then the set of assertions retrieved after

applying the first TBox rule would be entailed by the original set of assertions, thus the original

set cannot be semantically minimal according to definition 2.4. By marking the elements that

directly lead to a clash during the tableau algorithm, and only used one TBox axiom, the

number of potential explanations returned by the TA algorithm could be significantly reduced.

Let’s call this approach the one-axiom approach, as the approach is based on the theory that

only one TBox axiom is needed to explain at least a part of an explanation. Section 3.1 works

42

3.1. One Axiom Approach 43

out the details of this approach and presents an algorithm based on this approach.

While the one-axiom approach has the potential to find semantically minimal explanations

without finding all explanations first, it is an adjustment to the TA algorithm and does not

use the MHS algorithm developed by Pukancová and Homola (2018). An alternative approach

that builds on the algorithm of Pukancová and Homola (2018) is presented in section 3.2.

This approach is aimed at optimising the process of finding semantically minimal explanations

from an existing set of explanations, instead of finding explanations on its own. Therefore this

approach is referred to as the optimising approach.

Both approaches hold a similar structure. First, a theoretical basis of the algorithm should be

described. Secondly, potential proofs of soundness and completeness are provided. Lastly, an

implementation of the algorithm is described. For the one-axiom approach no proof of com-

pleteness could be provided as there are some theoretical loopholes that where not possible to

be solved within the time limit of this thesis. Furthermore, no working implementation could

be formed of the one axiom approach due to the large number of adjustments to the optimised

TA implementations that were needed. The details of the non-working implementation are de-

scribed at the end of section 3.1. The optimising approach successfully introduces an algorithm,

and proofs of soundness and completeness. Furthermore, an implementation of the algorithm

is presented in section 3.2.2. Next to a description of the implementation this section describes

some tests that can be done to compare the performance of the new implementation.

3.1 One Axiom Approach

The tableau algorithms are optimized to prove consistency, thus are optimized to find a model

of a knowledge base K. However, to find an abductive solution we are especially interested

in the clashes, as a clash with the negated observation would possibly lead to an explanation.

Pukancová and Homola (2018) use the minimal hitting set to find which assertions in a model

can cause a clash with the observation. While this approach can stop the tableau algorithm

after it has found a model, it does call the tableau algorithm numerous times, at least once for

44 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

each element in the ABox encoding of the first model. Only when no model can be found via

the tableau algorithm, no elements are added to the solution and no new tableau algorithms are

called. When searching for all possible explanations, every assertion that is possible in a model

should be tested as an explanation, however in this paper we focus on semantically minimal

explanations. A semantically minimal explanation does imply only what is necessary and not

more (definition 2.4), thus should be able to explain the observation without the intermediate

use of other assertions. This means that only the assertions that are closest to a clash with the

negated observation are candidates for a semantically minimal explanation. Testing assertions

that are not directly related to a clash are not interesting to explore. Therefore, instead of

using a minimal hitting set with models found by using a tableau algorithm, this section is

focused on using the clashes found during a tableau algorithm to identify semantically minimal

explanations.

To identify all semantically minimal explanations during the expansion of the tableau algorithm

it is important to distinguish between knowledge base clashes and observational clashes. A

clash within the ABox is an observational clash if and only if one of the clashing assertions is

an observation derived assertion (ODA).

Definition 3.1 (Observation derived assertion). An assertion in an extended ABox is consid-

ered to be an observation derived assertion iff:

1. the assertion is the negated observation ¬Φ itself, or

2. the assertion is the product of an expansion rule that is not the t- or v- rule, and at least

one of the parent assertions is an observation derived assertion.

Any set of assertions that can force an observational clash can be considered a plain explanation

to the observation, as every possible model for Γ∪E∪¬Φ is avoided by a forced clash (definition

2.10). However, these sets might not be minimal (semantically or syntactically), and they

can even be inconsistent or irrelevant. To check for the additional constraints new tableau

algorithms could be called on the sets of assertions that form a potential explanation. Still

there is already information in the original tableau algorithm that can be used to determine

3.1. One Axiom Approach 45

if a set of assertions adheres to the constraints. To understand how a tableau algorithm can

be used to identify minimal and relevant explanations, let us first take a closer look at how

the expansion rules introduce new assertions to the ABox and which rule can contribute to a

relevant explanation. As explained in section 2.2.4, there are six expansion rules that can be

used to expand a ALCHO knowledge base. Each rule introduces at least one new assertion

when it is applied to an ABox and can therefore introduce a clash. When an observational

clash occurs during a tableau algorithm for a knowledge base K ∪Φ, then the path that leads

to this observational clash can be forced by adding a set of assertions E that ensure that any

other path in the tableau of K ∪Φ ∪ E leads to a clash. Which assertions should be added to

E is dependent on the expansion rules that are used in the path from the root of the tableau

to the observational clash. When backtracking from an observational clash to the root of the

tableau, one could add the following assertions to an explanation to ensure that the observation

is implied:

u-rule The conjunction rule adds two new assertion from one parent assertion. Both new asser-

tions are necessary, therefore adding the parent assertion of an u-rule that leads to an

observational clash to the knowledge base will implies both new assertions and therefore

imply the observation. Note that constructing a new knowledge base with only the parent

assertion will also imply the observation in this case, E � Φ, thus these explanations are

not relevant. Any set of assertions that implies the parent assertion, will also imply the

observation.

t-rule The disjunction rule introduces a new branch in the tableau, each with a new assertion.

If one of these new assertions leads to an observational clash, then the tableau should

be forced to take that path. In other words, the other path should inevitably lead to a

clash. Let us illustrate the situation with a parent assertion I : D t E on which a t-rule

can be applied. If the assertion I : E leads to an observational clash, then the easiest

way to ensure any tableau takes the branch to the observational clash is by adding the

negation of the root assertion of the branch that is closest to the explanation, thus I : ¬D.

By adding both the parent assertion I : D t E and the negated root assertion I : ¬D to

46 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

the knowledge base the observation is implied. Note that due to the parent assertion

the explanation itself already explains the observation without any knowledge from the

knowledge base. Therefore, the parent assertion should be implied instead of added to

the explanation itself in order for the explanation to be relevant.

∃-rule The existential quantifier has one parent assertion and adds a new individual to the ABox.

As the ∃-rule only adds new individuals it can never lead directly to an observational clash.

In fact the only time that an existential quantifier will lead to an observational clash is

when the the observation itself contains a quantifier. If the ∃-rule indirectly leads to an

observational clash, and the parent assertion is not an observation derived assertion in

itself, then the parent assertion would form an irrelevant explanation to the observation.

∀-rule The universal quantifier has two parent assertions and adds only one new assertion. If this

assertion leads to an observational clash, then both parent assertions should be implied

by K ∪ E for the observation to be implied as well. One of the parent assertions is a

role assertion and the other is a concept assertion of the form I : ∀r.C. As the only

new roles that are introduced via the tableau algorithm must have a new individual as

their subject, and the ∀-rule only asserts new concepts to the subject of the role parent

assertion, a universal quantifier can only introduce an observational clash when the role

parent assertion is already implied by K. Thus the parent assertion of the form I : ∀r.C

can be added to the explanation. There is only one case in which this explanation is not

relevant, which is the case if the observation is equal to I : ∀r.C, else the explanation

given is relevant.

{}-rule A nominal replaces one individual name with another individual name as they represent

the same individual if they are both assigned to the same nominal. This will only lead

to an observational clash if one of the parent individuals is the observed individual itself.

If the {}-rule is applied to the observed individual and this rule leads to a clash, then

the assertion I : {J} must be added to the explanation where I is the observed individual

name. The assertion that causes an observational clash J : C should still be checked for

explanations.

3.1. One Axiom Approach 47

v-rule The GCI rule assigns the TBox rules to every individual in the ABox. As every indi-

vidual in the ABox must adhere to every TBox rule, the new assertions are implied by

the knowledge base. If a v-rule inevitably leads to an observational clash, then the ob-

servation itself is already implied by the knowledge base and the abduction query is not

relevant. If the v-rule only leads to an observational clash under certain conditions then

those conditions together form a complete explanation. There is no need to add to an

explanation beyond a v-rule, as is will only lead to non-minimal explanations.

When dissecting the influence of each rule as done above, some clear explanations come through

when applying a tableau algorithm. As the v-rule introduces assertions that are implied by

the knowledge base, they can end a search path. However this only works if there are no open

assertions before the v-rule is applied. By only applying a v-rule when no other expansion rule

is possible one ensures that the expansion rules that are applied after the v-rule use information

presented by this rule, because when the expansion rule did not need any information of the

new assertion, then the expansion rule could have already been applied before applying the

v-rule.

Another interesting rule is the nominal rule, as it can merge two individuals thereby removing

and adding an unknown number of assertions. Because of the unknown number of assertions

it is difficult to pinpoint which new individual led to the observational clash, when a nominal

rule caused an observational clash. This especially holds in cases where a nominal is part of an

GCI, thus can be introduced during the expansion of an ABox as presented in example 7.

Example 7. For an observation Φ = {Mary : Human}, an ABox A = {(John, Judy) :

hasChild}, and a TBox T = {C v {Judy}, Human v ∀hasChild.Human} there are several

valid, minimal explanations:

• The explanation E1 = {John : Human, (John,Mary) : hasChild} might be the most

intuitive explanation, adding a new relation and assuming that John is human.

• The explanation E2 = {John : ∀hasChild.Human,Mary : {Judy}} is less intuitive, it

assumes that Mary and Judy are the same person. Given that it is already known that

48 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

Judy is a child of John, it is not necessary abstract to the assertion that John is human,

the assumption that John only has human children produces already is a relevant solution.

• The explanation E3 = {Judy : Human,Mary : C} assumes that Mary if of the type C

and that Judy is human. As Mary must be the same individual as Judy, indicated by

the first TBox rule, Mary must be human too. This explanation is both relevant and

minimal.

The second explanation requires two applications of a v-rule, which makes it different from the

standard methods of retrieving explanations.

The situation in example 7 is theoretically possible but practically rarely used. Using a GCI

in the form of C v {I} means that every instance of concept C must be the individual I, which

makes the concept C more like a property of the individual than that it acts as a concept. As

a GCI in de form C v {I} would rarely be used in a well modelled ontology, and as it causes

difficult situations, let us first look at an algorithm that can be used to find explanations on

knowledge bases that have no nominals included in any TBox axiom.

3.1.1 Adjusted Tableau Algorithm without nominals GCI’s

Whereas the GCI rule only adds implied assertions, the other rules can apply assertions that

are not necessarily entailed by the knowledge base. The information that these rules entail is

therefore interesting to add as an explanation to the observation. To find semantically minimal

explanations with the use of the tableau algorithm an adjusted tableau algorithm can be used

(algorithm 1).

The Adjusted Tableau Algorithm (ATA) applies expansion rules that are formulated in figure

2.1, yet unlike a standard tableau algorithm it only applies a v-rule when no other rules are

applicable. Furthermore, the ATA keeps track of all the observational derived assertions, such

that relevant clashes can be identified. To check for clashes algorithm 2 is used. Because the

clash check is done each time an expansion rule is applied, we know that an ABox is consistent

3.1. One Axiom Approach 49

Algorithm 1: Adjusted Tableau Algorithm (ATA)
Data: Knowledge base K = A ∪ T
Observation Φ
Result: A set of semantically minimal explanations E

1 Initiate tableau with A ∪ ¬Φ at the root;
2 while no model is found do
3 if u-, t-, ∃-, ∀-, or {}-rule can be applied then
4 Apply rule;
5 if one of the parent assertions is an ODA then
6 Mark the new assertions as observational derived assertions;

7 Check for clashes;
8 else if v-rule can be applied then
9 Apply rule;

10 Check for clashes;
11 else
12 Close the path and mark as model;

13 while not at the root node do
14 Backtrack to the nearest non-closed alternative path;
15 if u-, t-, ∃-, ∀-, or {}-rule can be applied then
16 Apply rule;
17 if one of the parent assertions is an ODA then
18 Mark the new assertions as observational derived assertions;

19 Check for clashes;
20 else
21 Close path;

50 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

before the application of an expansion rule. Therefore, it is only necessary to test the new

assertions for clashes. For each new assertion it should be checked whether the negation of

that assertion is already in the ABox. When it is, then it should be determined whether it is

a normal clash or an observational clash. When an observational clash is found, rules that are

applied to get to this clash are examined. Both a t-rule, and a ∀-rule can add assertions to

the explanation. Only a ∀-rule or a v-rule can close an explanation. When an explanation is

closed, then the set of assertions that form an explanation are returned. Note that this can be

an empty set when there are no assertions added to the explanation. In this case there was no

interesting explanation to be found, either because there only was a non-observational clash,

or because the observational clash was entailed. If no clash is found the function returns false.

Both ATA and the Clash check have conditional statements that check if a model is already

found. When no model can be found for K ∪ ¬Φ, then the observation is already entailed,

thus a model has to be found for any explanation to be explanatory (definition 2.10). Once a

model is found, the ABox cannot be expanded any further, otherwise it would not have been

a model (definition 2.7). The v-rule ensures that every individual in the ABox is asserted

to every GCI in the TBox, thus when no v-rule can be applied, then every individual in the

ABox is already asserted to every GCI of the TBox. As semantically minimal explanations

only can be found up to the closest v-rule. Alternative paths to a model that do not lead to an

observational clash without the application of a new v-rule will not lead to a new semantically

minimal solution, as the same rule will already be applied somewhere in the path to the model.

Therefore, alternative paths to a model only have to be expanded with ABox expansion rules.

As soon as the v-rule is the only rule that can be applied to an alternative path, this path can

be left unexplored.

In example 8 this is illustrated by drawing out all the possible paths of the ABox extensions

for the given knowledge base. The green base line is a path to a model (in this case the only

model). Branches from the green lines are alternative paths that are introduced by disjunctions.

From line 5 to line 9 the alternatives are shown in dashed line when one would still allow new

GCI axioms to be applied. While the dashed paths do encounter other observational clashes,

no new explanations are found as they represent similar clashes as those found on line 12 and

3.1. One Axiom Approach 51

Algorithm 2: Clash check
Data: ABox A
Set of new assertions A+

List of visited notes N
Observation Φ
Result: A possible explanation E

1 foreach assertion I : C ∈ A+ do
2 if I : ¬C ∈ A then
3 if I : C or I : ¬C is an ODA then
4 while current node is not the root note do
5 if last rule is u-, {}- or ∃-rule then
6 Move one node up;
7 else if last rule is t-rule then
8 if alternative path leads to a model then
9 E −→ E ∪ I : ¬C, s.t. I : C is the root assertion of alternative path;

10 Move one node up;
11 else if last rule is ∀-rule then
12 if parent assertion of the form I : ∀r.C ∈ {Φ ∪ ¬Φ} then
13 Move one node up;
14 else
15 if alternative path leads to a model then
16 E −→ E ∪ I : ∀r.C;
17 Return E;

18 else if last rule is v-rule then
19 Return E;

20 Return E;
21 else
22 Normal clash found, return ∅;

23 No clash is found, return ⊥;

52 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

Example 8. For an observation Φ = {I : B}, and a knowledge base K where A = {I : A}
and T = {C v B,D v B, E v D}, the following tableau can be constructed:
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

I : ¬B

> v ¬E tD

I : ¬E tD

I : ¬E

> v ¬D t B

I : ¬D t B

I : ¬D

> v ¬C t B

I : ¬C t B

I : ¬C

M

I : B
×
Φ

I : B
×
Φ

I : D

> v ¬D t B

I : ¬D t B

I : ¬D
×
4

I : B
×
Φ

> v ¬C t B

I : ¬C t B

I : ¬C

I : ¬D t B

I : ¬D
×
4

I : B
×
Φ

I : B
×
Φ

Φ

K

v 2

t 3

K

v 5

t 6

v 8

t 9

K

v 9

t 10

K

v 12

t 13

3.1. One Axiom Approach 53

15.

Using the adjusted tableau algorithm most semantically minimal explanations are found. Still

there are some cases in which the adjusted tableau algorithm fails to find the correct expla-

nations. The next sections provide some extra adjustments to the algorithm to ensure that

every semantically minimal explanation is found and that every explanation that is found is

in fact a semantically minimal explanation. All the simple assertions produced by the ATA

are in fact semantically minimal explanations. However there are situations where complex

assertions found via the ATA are not minimal explanations. Section 3.1.2 analyses the problem

with complex assertions as explanations. Furthermore, due to the use of quantifiers some extra

explanations can be found which are semantically minimal, but do not emerge from the ATA,

section 3.1.4 and section 3.1.5 focus on finding all explanations for cases with universal and

existential quantifiers respectively.

3.1.2 Non-minimal explanations

The adjusted tableau algorithm guarantees that the presented explanations are explanatory,

relevant and minimal in the degree that it does not assume more information than is needed

to explain the observations. For simple assertions this is enough to grantee that the given

explanation is both semantically and syntactically minimal. However, complex assertions can

still be semantically or syntactically non-minimal, as information that is entailed by the knowl-

edge base can minimize a complex assertion that is presented as explanations by the ATA. As

illustrated by example 9 there are complex assertions returned as an explanation that contain

a conjunction, which are not necessarily syntactically minimal, as part of the assertion might

be already explained by the knowledge base itself. A crude yet effective way to ensure that all

the complex assertions that contain a conjunction are syntactically minimal is to check if one

of conjuncts is already entailed by the knowledge base.

Example 9. For an observation Φ = {I : A}, and a knowledge base K where A = {I : B}

and T = {C u B v A}, the following tableaux could be constructed:

54 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

1.

2.

3.

4.

5.

6.

I : ¬A

> v ¬C t ¬B tA

I : ¬C t ¬B tA

I : ¬C t ¬B

I : ¬C

M

I : ¬B

×

I : A

×
Φ

Φ

K

v 2

t 3

t 4

1.

2.

3.

4.

5.

6.

I : ¬A

> v ¬C t ¬B tA

I : ¬C t ¬B tA

I : ¬C

M

¬B t I : A

I : ¬B

×

I : A

×
Φ

Φ

K

v 2

t 3

t 4

If the ABox is expanded as displayed in the second tableau, a simple concept assertion

I : C is given as an explanation by the ATA. However, the algorithm can also expand in the

order displayed by the first tableau. In this case the complex assertion I : CuB is returned

as an explanation. The explanation I : C u B is syntactically bigger than the explanation

I : C, {I : C} ⊂ {I : C, I : B}, thus the assertion I : C u B is not a syntactically minimal

solution according to definition 2.10. As the ATA does not require a particular order for

the expansion rules to be applied, both tableaux can be produced.

3.1.3 Redundant disjuncts

Another interesting situation is when a disjunction is given, while one of the disjuncts is an

inconsistent explanation. In this situation the given explanation would seem non-minimal with

regards to the consistent explanation that can be formed by one of the disjuncts. However,

given the formal minimality constraints given in definition 2.10 the complete assertion with

disjunction is considered to be a minimal explanation. Let us look at the following example to

understand the issue with this explanation.

Example 10. For an observation Φ = {I : A}, and a knowledge base K where A = {I : ¬B}

and T = {C t B v A}, the following tableau is constructed:

3.1. One Axiom Approach 55

1.

2.

3.

4.

5.

6.

I : ¬A

> v ¬C u ¬B tA

I : ¬C u ¬B tA

I : ¬C u ¬B

I : ¬C,I : ¬B

M

I : A

×
Φ

Φ

K

v 2

t 3

u 4

In this case one explanation is given by the ATA, E1 = {I : CtB}. As all explanations can be

written as one explanation where all assertions are joint via a disjunction, it seems intuitive

that every explanation that contains an assertion with a disjunction can be written as two

separate explanations. While this is the case in most situations, in this particular example

only one explanation would be consistent, E2 = {I : C}. The explanation I : B is inconsistent

because of the ABox assertion E3 = {I : ¬B}. One might intuitively assume that this makes

{I : C t B} non-minimal, however by the definitions of semantic and syntactic minimality

{I : C t B} cannot be excluded on the basis of non-minimality. As the explanations do

not contain the same elements they are not syntactically comparable, i.e. E1 * E2 and

E2 * E1. As E1 � E2 it is certainly true that K ∪ E1 � E2, which means that the explanation

{I : C t B} is semantically minimal according to definition 2.10. In fact a disjunction is

always semantically weaker then one of its elements as it allows for more uncertainty and

thus assumes less. In this particular situation it also holds that K ∪ E2 � E1, meaning that

E1 and E2 are semantically equal.

This example actually shows an even deeper problem with semantically minimal explanations,

as the disjunction of an explanation with any concept that is negatively asserted in the knowl-

edge base is a semantically minimal explanation, i.e. given a set of semantically minimal

explanations E , for every {I : C} ∈ E and every C 6= D, if {I : ¬D ∈ K} then {I : C tD} ∈ E .

Furthermore a disjunction of all the explanations together is semantically minimal, or at least

semantically equal, to all other explanations because {I : C} � {I : C t D}. This means that

56 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

for each abduction problem exactly one semantically minimal explanation can be given: the

disjunction of all explanations. However, a portion of the disjuncts might not contain rele-

vant information as it is inconsistent with the knowledge base on its own. While the proposed

method does not return explanations with random negated concepts, formally they should be

accounted for. Therefore, a fifth constraint should be added to our definition of an explanation.

Definition 3.2 (Independent explanation). Let Φ ⊆ O be an ABox abduction problem, with

knowledge base Γ and ABox assertion Φ ⊆ O. The set of solutions to an ABox abduction

problem contains all valid explanations, S = {E |E is an explanation for 〈Γ,Φ〉}.

An explanation E ⊆ H can be described as an independent explanation of Φ with respect to Γ

if and only if Γ 2 ¬Ci for each Ci in E = I : C1 t · · · t Cn.

The proposed method might produce some distinctions that do not follow the independence

constraint as presented in example 10. To check if an explanation consists of only independent

disjuncts each disjunct on its own should be tested for consistency instead of the explanation

as a whole. As {I : C} � {I : C tD} and {I : D} � {I : C tD} hold, the assertion K ∪ {I : C tD}

must be consistent iff K∪ {I : C} or K∪ {I : D} is consistent. Therefore checking the consistency

of the whole conjunction is not necessary, as it can be deduced from the consistency of the

disjuncts. It is necessary to check all the disjuncts for their consistency, as a disjunct should be

removed from the explanation when it is not consistent, following the independence constraint

(definition 3.2).

3.1.4 The universal quantifier

As shown at the introduction of our algorithm, in section 3.1.1, the universal quantifier takes

two assertions as input to introduce a new assertion in the ABox. The ATA, as it is currently

described, can only find explanations that contain universal quantifiers which are present in

the TBox. This means that both roles as an explanation, and new universal quantifiers as an

explanation are not found. To discover all explanations that can be retrieved via an universal

3.1. One Axiom Approach 57

quantifier some additional tests should be done. First let us look at the missing explanations

that contain a new role.

When adding a role assertion leads to an observational clash, this role is (part of) an explana-

tion to the observation. A role assertion in an explanation is only relevant when an existential

quantifier is encountered during the expansion of an ABox. Adding both a role and the corre-

sponding existential quantifier to an explanation would form explanations that are not relevant

as they explain the observation without using any information in the knowledge base. For

example the observation Φ = {I : A} could be explained by E = {J : ∀r.A, (J, I) : r}, regardless of

the information in a knowledge base K . However, when an assertion with existential quantifier

can be generated by the knowledge base K∪{J : D} � {J : ∀r.C}, D 6= ∀r.C such that I : C � I : A,

then an explanation E = {(J, I) : r, J : D} is relevant. Moreover, when K � {J : ∀r.C} such that

I : C � I : A, then the relevant explanation E = {(J, I) : r} can be formed.

As the ATA finds at least one model for a consistent K , and every assertion that is entailed by

K must be in every model for K , the assertion J : ∀r.C must be expanded somewhere during

the ATA for K if K � {J : ∀r.C}. Furthermore, as the ATA checks every alternative branch to

the found model, up to a new TBox rule, all assertions J : ∀r.C that can be generated by a

TBox rule in K will be encountered during the ATA. To check if adding a role can lead to an

observational clash an alternative branch can be created. In this alternative branch the role

(J, I) : r is added to the ABox, with J being the individual that is assigned to the concept

containing the universal quantifier ∀r.C and I being the individual of the observation. Adding

this alternative path is redundant when the role (J, I) : r already is implied by the knowledge

base. As there is no rule that can add new role assertions to existing individuals in the ABox

(figure 2.1) except for the nominal rule, and we have decided to ignore ontologies that contain

GCI’s of the form C v {I}, we can assume that all the role assertions that are entailed by K are

already in the ABox when the first TBox rule is applied. Therefore, an alternative path that

adds the role assertion (J, I) : r, should be opened whenever an assertion J : ∀r.C is encountered

and the assertion (J, I) : r is not present in the ABox. This extra expansion rule is illustrated

in figure 3.1.

58 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

∀2-rule: if 1. {a : ∀r.C} ⊆ A, and
2. b : C /∈ A
3. (a, b) : r /∈ A

then A ′ −→ A ∪ {b : C, (a, b) : r}.

Figure 3.1: Extra ∀ expansion rules for abduction via tableau.

When the alternative branch leads to an observational clash, then the added role assertion

is part of a potential explanation. The explanation can be checked similar to the traditional

explanation check, with the exception that the added role assertion is added to the explanation

instead of the assertion that contains the universal quantifier, and that the explanation is not

closed after the ∀-rule. The branch can be expanded until a TBox rule has to be applied, if there

is no observational clash found before that point the potential explanation is not semantically

minimal.

To find the explanations that contain an assertion of the form J : ∀r.C, that cannot be generated

by the knowledge base, all the roles in the ABox should be checked. Only if there is a role

(J, I) : r entailed by the ABox, where I is the individual the the observation, then an assertion

J : ∀r.C can be given as explanation, where C is the concept that I is assigned to in the

observation. Again, because roles cannot be asserted to existing individuals, except with the

use of a nominal, all the roles that are in any model for K are in every model for K and all the

roles that are not in a model for K are not in any model for K. Therefore, the ABox encoding

of the model formed during the ATA can be used to select all roles (J, I) : r, where I is the

individual of the observation. For every role of this form an extra explanation J : ∀r.C can

be added to the set of explanations, if and only if there does not already exist an explanation

J : ∀r.C, with C being the concept the individual I is asserted to in the observation.

3.1.5 Observations with existential quantifiers

The adjusted tableau algorithm finds all explanations that contain the same individual. How-

ever, when a quantifier is present in the observation, an explanation can also be provided

3.1. One Axiom Approach 59

by asserting individuals to the object of the quantifier. This is only the case for existential

quantifiers, as universal quantifiers require every individual to have a certain assertion. For

the existential quantifier any individual that can be added as an object to the quantifier’s

role and that is still consistent with the knowledge base can be added as an explanation. For

example, the observation Φ = Mary : ∃hasPet.Cat added to a knowledge base with A =

Felix : Cat, (Mary, Bello) : hasPet,Whiskers : Striped and T = CatLady v ∃hasPet.Cat

cannot only be explained by the assertion Mary : CatLady, yet can also be explained by

(Mary, Felix) : hasPet, Bello : Cat or even {Whiskers : Cat, (Mary,Whiskers) : hasPet}.

As the tableau method never adds new roles to existing individuals, they have to be found

in a different way. Furthermore, the tableau algorithm checks whether Φ is entailed by the

knowledge base, therefore we know there is no individual X such that K � {(I, X) : r, X : C}

given an observation of the form I : ∃r.C. In other words, all individuals X ∈ I should be

checked whether can be added as a potential object. To check whether an individual can be

used to form an explanation to I : ∃r.C, and which form the explanation should have, follow

these steps for each individual X ∈ I:

1. First consistency of adding the role should be checked. Therefore, check if K∪ {(I, X) : r}

is consistent. If it is consistent check if it is not entailed by checking the consistency of

K ∪ {(I, X) : ¬r}.

(a) If K ∪ {(I, X) : r} is inconsistent there is no possible explanation that is formed by

the individual X, return false.

(b) IfK∪{(I, X) : ¬r} is inconsistent the role (I, X) : r is already entailed by the knowledge

base, continue from step 3.

(c) If both K ∪ {(I, X) : r} and K ∪ {(I, X) : ¬r} are consistent, an explanation that

includes (I, X) : r is possible, continue from step 2.

2. Check if X : C is already entailed by the knowledge base. Iff K ∪ {X : ¬C} is inconsistent

X : C is entailed, return (I, X) : r as a minimal explanation. If X : C is not entailed by K

X : C, or a part of X : C, should be added to the explanation to present a valid solution.

60 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

To check whether X : C can be minimized and does not introduce inconsistencies continue

from step 3.

3. The assertion X : C can contribute to a possible explanation iff adding X : C to the

knowledge base does not result in an inconsistency, as an inconstant knowledge base

cannot become constant by adding something and every explanation should be consistent

with the knowledge base (definition 2.10). If {X : C} ∪ K is consistent, continue to check

for minimisation of X : C. If {X : C} ∪ K is inconsistent X : C is cannot contribute to a

potential explanation, return false.

4. Iff C is of the form CtE or CuE there is a possible smaller explanation than {X : C, . . . }.

For all other forms of C, return {X : C, . . . } as minimal explanation.

(a) If C is of the form D t E either X : ¬D or X : ¬E has to be entailed by K for a

smaller explanation to exist. When K � X : ¬D then K ∪ X : (D t E) � X : E, as

{X : ¬D}∪{X : (DtE)} � X : E. Therefore, X : E is semantically equal to X : (DtE) if

K � X : ¬D (definition 2.4). However, X : (Dt E) cannot be defined as independent

(definition 3.2).

i. Iff K ∪ {X : D} is inconsistent, then X : E is smaller than X : C. Check for

sub-assertions with X : E as input (step 4).

ii. Iff K ∪ {X : E} is inconsistent, then X : D is smaller than X : C. Check for

sub-assertions with X : D as input (step 4).

iii. If both K∪ {X : D} and K∪ {X : E} are consistent there is no smaller explanation

than X : C, return X : C as explanation.

(b) If C is of the form D u E either X : D or X : E has to be entailed by K for a smaller

explanation to exist.

i. Iff K ∪ {X : ¬D} is inconsistent, then X : E is smaller than X : C. Check for

sub-assertions with X : E as input (step 4).

ii. Iff K ∪ {X : ¬E} is inconsistent, then X : D is smaller than X : C. Check for

sub-assertions with X : D as input (step 4).

3.1. One Axiom Approach 61

iii. If both K ∪ {X : ¬D} and K ∪ {X : ¬E} are consistent there is no smaller expla-

nation than X : C, return X : C as explanation.

Algorithm 3 implements these checks to find all explanations for an observation that contains

an existential quantifier. Note that it is first checked if there is already an explanation that is

implied by the observation itself. This is an important step, as I : ∃r.C cannot entail an assertion

about another existing individual. If there is an explanation E such that K ∪ {I : ∃r.C} � E,

then every obtained explanation E ′ must entail E by transitivity. As K ∪ {I : ∃r.C} � E ′ is not

possible for any E ′ containing an individual J ∈ I, J 6= I, K ∪ E 2 E ′ holds, which means E ′

cannot be semantically minimal. Furthermore, the minimisation steps introduced above ensure

syntactic minimality and independence. However, as this should be checked for every returned

explanation, it can be left out of this.

Algorithm 3: Extra explanations for Observations with Existential Quantifier (OEQ-
check)
Data: Knowledge base K
An observation {I : ∃r.C}
A set of found explanations Einput
Result: A set of semantically minimal explanations E

1 foreach E ∈ Einput do
2 if K ∪ {I : ∃r.C} � E then
3 return E ;

4 foreach Individual X ∈ I do
5 if K ∪ {(I, X) : r} is consistent then
6 if K ∪ {(I, X) : ¬r} is consistent then
7 if K ∪ {X : ¬C} is inconsistent then
8 E ← E ∪ {(I, X) : r};
9 Continue to next individual;

10 if There exists an X : D s.t. K ∪ {X : D} � X : C then
11 E ← E ∪ {(I, X) : r, X : D} Continue to next individual;

12 if K ∪ {X : ¬C} is consistent then
13 E ← E ∪ X : C;

14 return E

62 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

3.1.6 Minimizing consistency checks with use of found models

The method for checking explanations that contain an ∃ concept does at least one and a

maximum of 4+x consistency checks per individual, where x is the number of atomic concepts

in the object’s concept. Consistency checks are relatively expensive to do, as they have a

maximum of ExpTime. Especially when there are many individuals in the knowledge base this

could delay the algorithm. To minimize the number of consistency checks one can first do a

rough consistency check. Following the definition of a model a knowledge base K is consistent

if and only if there exists a model for K (definition 2.7). For the normal explanations search

we have already found at least one and possibly more models for K ∪ ¬Φ. As K ∪ ¬Φ only

adds assertions to the knowledge base we can say that K ⊆ K ∪ ¬Φ. For any Kand, such that

K ⊆ Kand, every assertion in the ABox of K is in the ABox of Kand, and every GCI in the

TBox of K is in the TBox of Kand. According to definition 2.7 any interpretation that satisfies

both the ABox and TBox of a knowledge base is a model. Thus, any model for Kand must be

a model for K.

If XM ∈ FM for any model M of K, then X : F is consistent. A consistency check on K ∪ {X : F}

has to be done iff XM ∈ FM is not true for any model M of K. For a simple concept F this

can easily be checked by checking if X : ¬F is in the intersection of the ABox encoding of every

model for K, i.e. X : ¬F ∈
⋂
M∈M BM. If X : ¬F ∈

⋂
M∈M BM, then X : F is not consistent, else

X : F is consistent. As we are not certain whether we computed every model for K (there can

exist models for K that are no model for Kand) only a rough consistency check can be done

with the set of models that were already found M. If X : ¬F ∈
⋂
M∈M BM then a classical

consistency check is still required to determine with certainty if X : F is consistent or not. If

X : ¬F /∈
⋂
M∈M BM then we already know that X : F must be consistent and we do not have to

do an additional consistency check.

As the ABox encoding of a model does not contain all complex concepts (definition 2.8), a

complex concept F should be decomposed to use the ABox encoding for a rough consistency

check. As role assertions cannot be complex, a rough role assertion check can be done by

3.1. One Axiom Approach 63

checking (I, X) : ¬r ∈
⋂
M∈M BM. If (I, X) : ¬r /∈

⋂
M∈M BM, then (I, X) : r is consistent, else do

a traditional consistency check. Algorithm 4 can be followed to do a rough consistency check

on X : F with the use ofM, which represents the set of all found models M for any Kand.

If the algorithm returns X : F is consistent, no additional consistency check has to be done on

X : F. If the algorithm return "false", then a traditional consistency check should be done on

X : F. A good thing to remember is that when the algorithm returns false, then X : ¬F must be

consistent, regardless of the outcome of the traditional consistency check on X : F. If one has

to check if X : F consistent, yet not entailed, this is relevant information that can be saved.

It can be seen that the intersection of the ABox encodings of all modelsM ∈M, i.e.
⋂
M∈M BM

is used on multiple occasions. It would be wasteful to calculate this intersection every time a

check has to be done, as one has to go through all the models inM. Instead the intersection

can be taken at the first check and only has to be updated when a new model has been found,

i.e. when a traditional consistency check has been done.

3.1.7 Complete algorithm

To integrate the extra checks that have been introduced in the previous sections, a complete

algorithm is formed. For future reference this algorithm is dubbed SEMAR, short for SEManti-

cally Minimal ABox Abduction Reasoner. Algorithm 5 has added extra checks for consistency

of the explanations. By adding the consistency checks, the minimality of explanations that

contain a conjunction is secured. Furthermore, the consistency checks on explanations that

contain a disjunction ensures that all explanations are independent. To find all explanations

for observations that contain an existential quantifier the extra explanation search OEQ-check

is called on line 37. Lastly, the extra check for potential explanations formed by universal

quantifiers is added at line 32.

64 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

Algorithm 4: Pre-check for consistency
Data: Knowledge base K
An ABox assertion X : F
A set BM that contains the ABox encodings of every found model M for Kand
A set B∩ that represents the intersection of BM
Result: Decision on consistency for X : F

1 if F is of the form D t E then
2 if D and E are simple concepts then
3 if X : ¬D /∈ B∩ then return X : F is consistent;
4 if X : ¬E /∈ B∩ then return X : F is consistent;
5 return false

6 if only D is a simple concept then
7 if X : ¬D /∈ B∩ then return X : F is consistent;
8 return Pre-check on X : E

9 if D and E are complex concepts then
10 if Pre-check on X : D returns consistent then return X : F is consistent;
11 return Pre-check on X : E

12 if F is of the form D u E then
13 if D and E are simple concepts then
14 foreach BN ∈ BM do
15 if {X : D} ∩ {X : E} ∈ BN then return X : F is consistent;

16 return false

17 if only D is a simple concept then
18 foreach BN ∈ BM do
19 if {X : D} ∈ BN then
20 if Pre-check on X : E with BM ← BN and B∩ ← BN returns consistent

then return X : F is consistent;

21 return false

22 if D and E are complex concepts then return false ;

23 if F is of the form ∃r.D then
24 foreach individual Y ∈ I do
25 if (X, Y) : ¬r /∈ B∪ then
26 foreach BN ∈ BM do
27 if {(X, Y) : r, Y : D} ∈ BN then return X : F is consistent;

28 return false

29 if F is of the form ∀r.D then
30 foreach BN ∈ BM do
31 foreach (X, Y) : r ∈ BN do
32 if Y : D /∈ BN then Skip to next model;

33 return X : F is consistent

34 return false

35 if F is of the form C, ¬C or {I} for C ∈ C and I ∈ I then
36 if C : ¬F /∈ B∪ then return X : F is consistent;
37 else return false;

3.1. One Axiom Approach 65

Algorithm 5: Semantically Minimal ABox Abduction Reasoner (SEMAR)
Data: Knowledge base K = A ∪ T
Observation Φ = I : C
Result: A set of semantically minimal explanations E

1 Initiate tableau with A ∪ ¬Φ at the root;
2 while no model is found do
3 if u-, t-, ∃-, ∀-, ∀2-, or {}-rule can be applied then
4 Apply rule;
5 if one of the parent assertions is an ODA then
6 Mark the new assertions as observational derived assertions;

7 if Clash check for SEMAR is not false then
8 Add return of clash check to Epre;
9 else if There is an open alternative path then

10 Backtrack to the nearest non-closed alternative path;

11 return ∅
12 else if v-rule can be applied then
13 Apply rule;
14 if Clash check for SEMAR is not false then
15 Add return of clash check to Epre;
16 else if There is an open alternative path then
17 Backtrack to the nearest non-closed alternative path;

18 return ∅
19 else
20 Close the path and mark as model;

21 Backtrack to the nearest non-closed alternative path;
22 while not at the root node do
23 if u-, t-, ∃-, ∀-, ∀2-, or {}-rule can be applied then
24 Apply rule;
25 if one of the parent assertions is an ODA then
26 Mark the new assertions as observational derived assertions;

27 if Clash check for SEMAR is not false then
28 Add return of clash check to Epre;
29 Backtrack to the nearest non-closed alternative path;

30 else
31 Close path;

32 foreach (X, I) : r in the intersection of all found ABox encodings do
33 if X is an exsisting individual and K ∪ {(X : I : ¬r} is inconsistent then
34 if {X : ∀r.C} /∈ Epre then
35 Epre ← X : ∀r.C};

36 if Φ is of the form I : ∃r.C then
37 Epre = OEQ-check with K , Φ and Epre as input;
38 E = Post-check for SEMAR with Epre as input;
39 return E

66 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

Algorithm 6: Clash check for SEMAR
Data: ABox A
Set of new assertions A+

List of visited notes N
Observation Φ
Result: A possible explanation E

1 foreach assertion I : C ∈ A+ do
2 if I : ¬C ∈ A then
3 if I : C or I : ¬C is an ODA then
4 while current node is not the root note do
5 if last rule is u-, {}- or ∃-rule then
6 Move one node up;
7 else if last rule is t-rule then
8 E −→ E ∪ I : ¬C, s.t. I : C is the root assertion of alternative path;
9 Move one node up;

10 else if last rule is ∀-rule then
11 if parent assertion of the form I : ∀r.C ∈ {Φ ∪ ¬Φ} then
12 Move one node up;
13 else
14 E −→ E ∪ I : ∀r.C;
15 Return E;

16 else if last rule is ∀2-rule then
17 E −→ E ∪ (I, J) : r s.t. (I, J) : r is one of the parrent assertions;
18 else if last rule is v-rule then
19 Return E;

20 Return E;
21 else
22 Normal clash found, return ∅;

23 No clash is found, return ⊥;

3.1. One Axiom Approach 67

Algorithm 7: Post-check for SEMAR
Data: A set of possible explanations Epre
Result: A set of semantically minimal explanations E

1 foreach E ∈ Epre do
2 if E contains an assertion I : C s.t. C is of the form D u E then
3 if K ∪ {I : ¬D} is inconsistent then
4 E← E \ {I : C} ∪ {I : E};
5 if K ∪ {I : ¬E} is inconsistent then
6 E← E \ {I : C} ∪ {I : D};

7 else if E contains an assertion I : C s.t. C is of the form D t E then
8 if K ∪ {I : D} is inconsistent then
9 if K ∪ {I : E} is inconsistent then

10 Continue with next E ;

11 E← E \ {I : C} ∪ {I : E};
12 else if K ∪ {I : E} is inconsistent then
13 E← E \ {I : C} ∪ {I : D};

14 E ← E ∪ E;
15 Continue with next E;

16 if K ∪ E is inconsistent then
17 Continue with next E;

18 E ← E ∪ E;
19 foreach E ∈ E do
20 foreach F ∈ E s.t. F 6= E do
21 if K ∪ E ∪ ¬F is inconsistent then
22 if K ∪ F ∪ ¬E is consistent then
23 E ← E \ E;
24 return E

68 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

3.1.8 Evaluation of SEMAR

The one axiom approach started from two simple premises: every semantically minimal expla-

nation can use at most one TBox axiom to infer a simple observation, and only clashes with

a descendant of the observation can lead to an explanation to that observation. However, sec-

tions 3.1.2 to section 3.1.5 show that there are many small exceptions and details that ask for

additional consistency checks. Before looking at the limitations that these adjustments bring

with them, let us look at the soundness and completeness of SEMAR.

Lemma 3.1 (Soundness). Given a knowledge base K in ALCHO containing no TBox axioms

that contain nominals, and a single observation in negation normal form (NNF) Φ that contains

no conjunctions, SEMAR initialized with K and Φ produces a set E. Each explanations Ei ∈ E

is a explanatory, consistent, relevant, independent, syntactically minimal, and semantically

minimal ABox abduction explanation to the ABox abduction problem 〈K, Φ〉.

Proof. First let us check when an explanation E can be added as an explanation. There are

three options when an explanation for an ABox abduction problem 〈K, Φ〉, Φ = {I : C} can be

added to Epre by SEMAR :

1. during the Clash check algorithm, when adding a set of assertions E inevitably leads to

a clash with an observation derived assertion (ODA), and E 2 Φ, then E is added as

potential explanation.

2. during the loop on line 32. For any (X, I) : r s.t. X is an existing individual, I is the

individual of the observation Φ and K � {(X, I) : r}, an explanation X : ∀r.C is formed.

3. during the OEQ-check an explanation can be added when the observation is of the form

I : ∃r.C, there exists no explanation E s.t. Φ∪K � E. There are three types of explanations

that OEQ-check can return for any existing individual X:

(a) an explanation of the form {(X, I) : r}, s.t. K � {X : C}

3.1. One Axiom Approach 69

(b) an explanation of the form {(X, I) : r, X : D}, s.t. K 2 {X : C}, K ∪ {X : D} � {X : C},

and {X : D} 2 {X : C}

(c) an explanation of the form {X : D}, s.t. K � {(X, I) : r}, K ∪ {X : D} � {X : C}, and

K ∪ {X : C} � {X : D}

For the first situation, where explanations are added because they cause a clash with an ODA,

K∪E � Φ must be true. As the observationΦ is in NNF and does not contain any conjunctions,

the negation of Φ cannot contain a disjunction. The only expansion rule that could introduce

a disjunction to an assertion is the v-rule. By definition an ODA is a descendent of the

observation Φ by any expansion rule except the t- or v-rule (definition 3.1). Furthermore, the

only expansion rule that introduces branching in the original set of expansion rules (figure 2.1)

is the t-rule. Thus, for any ODA O a tableau algorithm in ALCHO will find no model for

K∪¬O∪¬Φ, i.e. K∪¬O � Φ. Any explanation E causes a clash with at least one ODA, thus

K∪E � ¬O. By transitivity the explanation E must entail the observation Φ. Any explanation

E returned by the Clash check algorithm must be relevant, as E 2 Φ (definition 2.10).

For the second case, an explanation E = {X : ∀r.C} is added if, and only if X is an existing

individual, and K � {(X, I) : r}. As {(Y, Z) : s, Y : ∀r.D} � {Z : D}, for any individuals

Y, Z ∈ I, role s ∈ R, and concept D, the entailment {(X, I) : r, X : ∀r.C} � {I : C} must

be true. As K ∪ E � {(X, I) : r, X : ∀r.C} is true, K ∪ E � Φ must be true by transitivity.

Furthermore, {Y : ∀r.D} 2 {Z : D} holds for any Y, Z ∈ I, role s ∈ R, and concept D. Therefore,

{X : ∀r.C} 2 {I : C}, which means that the explanation E is relevant by definition 2.10.

Lastly, the explanations generated by the OEQ-check algorithm are explanations to an observa-

tion I : ∃r.C because {X : C, (X, I) : r} � I : ∃r.C, and for all three options K∪E � {X : C, (X, I) :

r}. The explanations are relevant as well as {(X, I) : r} 2 {I : ∃r.C}, {X : D} 2 {I : ∃r.C}, and

{(X, I) : r, X : D} 2 {I : ∃r.C} because {X : D} 2 {X : C}.

If an explanation E is not explanatory, then no model for K ∪ ¬Φ can be found. SEMAR

returns an empty set when no model can be found (line 11 and 18). Therefore, all explanations

E ∈ Epre returned by SEMAR must be explanatory.

70 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

For the explanations found in the first two situations the post check algorithm performs an

extra check to ensure that the explanations are consistent, independent, syntactically minimal,

and semantically minimal. Any explanation E ∈ Epre is added to the final set of explanations

E if and only if:

1. K ∪ E is consistent, and

2. K ∪ {I : ¬D} is consistent for any D when E = {I : D u E}, and

3. K ∪ {I : D} is consistent for any D when E = {I : D t E}, and

4. K ∪ E ∪ ¬F or K ∪ F ∪ ¬E is consistent for any F ∈ E s.t. F 6= E.

By definition conditions 1 and 4 ensure that every explanation is consistent and semantically

minimal respectively (definition 2.10). Condition 2 ensures syntactic minimality for every expla-

nation that contains a conjunction. As explanations that do not contain a conjunction, cannot

be split in a multiple assertion explanation, it cannot be syntactically non-minimal. Therefore,

only checking the explanations that contain a conjunction is sufficient. Lastly, every explana-

tion that contains a disjunction is checked for independence. By definition only explanations

that contain a disjunction can be dependent (definition 3.2). Therefore, any explanation E

returned by the post check algorithm must be consistent, independent, syntactically minimal,

and semantically minimal.

In conclusion all explanations E ∈ E that are generated by SEMAR must be in fact an ex-

planation that is explanatory, consistent, relevant, independent, syntactically minimal and

semantically minimal by definition 2.2 and definition 3.2.

While a proof of soundness of the algorithm is given above, a proof of completeness was not

found within the time limit of this thesis. The main issue in proving completeness was found due

to the use of complex concepts in the observation. Furthermore, the use of nominals make some

extra explanations possible as two individuals can be merged. While it is not that common

to have an ontology that forces individuals to merge in practice, this could be possible in

3.1. One Axiom Approach 71

theory. To prove completeness of the algorithm, a way to handle nominals asserted to different

individuals, e.g. I : {J}, must be included in the algorithm, or it must be defined what specific

explanations are not possible to be found by SEMAR.

Next to the limitation that nominals pose on the algorithm, SEMAR is not sound for observa-

tions that contain a conjunction, when in NNF. The conjunction posed an issue as the algorithm

is based on finding explanations by closing branches during the expansion of the ABox. When

a conjunction is present in the observation, then the negated observation contains a disjunc-

tion, meaning it can be split over multiple branches. Closing only one branch is not enough

to be an actual explanation to the observation. While this is a constraint of the algorithm,

such an observation can be split in multiple observations. Then SEMAR can be used to find

explanations for each sub-observation. To make SEMAR compatible for multiple observations,

thus observations that contain a conjunction in NNF using a method inspired by the splitting

method of Pukancová (2018) would be interesting for future research.

3.1.9 Implementation

As no proof of completeness could be formulated for SEMAR within the scope of this thesis,

an implementation of the algorithm would be helpful to empirically test the algorithm. At

the first attempt for an implementation a new Java application was written that uses the

algorithms presented in this chapter as the base. The Jena Apache framework was used to

import ontologies to the application. Unfortunately it was not possible to build an application

that implemented SEMAR and did not run out of memory for the test ontology Family.

A second attempt at a working implementation of SEMAR included the open source, tableau

based, reasoner Pellet 2.0. By using the optimisation techniques that Pellet has implemented

a working implementation of SEMAR might be possible without memory issues. However,

lazy unfolding, which is one of the major optimizing techniques that Pellet uses, makes the

foundations of SEMAR weak. Lazy unfolding only applies the v-rule when the premise is

already present in an ABox, while SEMAR is aimed at finding those premises that are not

yet present in the ABox. An idea that could integrate lazy unfolding rules in SEMAR, would

72 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

be to use lazy unfolding on all individuals except the individual of the observation. However,

implementing the lazy unfolding and understanding the complete syntax of Pellet was not

possible within the time limit of this research. Therefore a decision was made to move on with

to the optimising approach, which proved to be more fruitful.

3.2 Optimising Approach

Alternatively to searching for semantically minimal solutions using an adjusted tableau algo-

rithm, the minimal hitting set (MHS) of Pukancová and Homola (2015) can be used to search

for all explanations, after which an extra algorithm can be used to determine which of those

explanations are semantically minimal. Let us first check if integrating a semantic minimality

check in the MHS algorithm is effective. During the MHS algorithm there are branches with

potential explanations, if it can be proven that a branch containing a potential explanation

cannot lead to a semantically minimal explanation, that branch can be pruned. Therefore, we

want to be able to check incomplete explanations for their potential to become a complete,

semantically minimal explanation.

Checking if an incomplete explanation implies another incomplete explanation is not useful,

as it gives no grantees about the potential of this branch to lead to a complete, semantically

minimal explanation. Given two incomplete explanations Ep1 and Ep2, that can potentially lead

to the complete explanations E1 and E2 respectively, one can check if K ∪ Ep1 � Ep2, yet the

check provides no knowledge that can ensure whether K ∪ E1 � E2 is true or not. If Ep1 does

indeed imply Ep2, there can still be an assertion I : C ∈ E2 that is not implied by E1. Therefore

the branch of Ep1 cannot be pruned based on semantic minimality. If Ep1 does not imply Ep2,

there can be assertions in E1 that make it so that E1 implies E2. Thus even if Ep1 is semantically

minimal, that gives no grantee that E1 is as well. To illustrate imagine a knowledge base that

contains the following two GCI’s:

1. Man u ∃hasChild.Parent v Grandfather, and

2. Grandfather v Father.

3.2. Optimising Approach 73

] If the MHS is used to find explanations for John : Father, two explanations will be found,

1. E = [{John : Grandfather} , and

2. {John :Man, John : ∃hasChild.Parent}].

It is clear that the second explanation implies the first explanation, thus is not semantically

minimal, however only the complete explanation implies {John : Grandfather}. Checking

K ∩ {Jonn :Man} � {John : Grandfather} results in the knowledge that {John :Man} does

not imply {John : Grandfather}, however this knowledge is useless when anything is added

to {John :Man}, as the check has to be done again with the new set of assertions.

If there is an incomplete explanation Ep1 that implies another complete explanation E2, this is

useful information, as any explanation that contains the assertions I : A ∈ Ep1 will also imply

E2. This means a branch can be pruned if a consistency check proves that there is another

complete explanation Ei, that is implied by the current set of assertions. However, when the

current set of assertions Ep1 does not imply any complete explanation no relevant knowledge

is gained, as in the next step an assertion can be added that makes it so that there is an Ei

s.t. K ∪ Ep1 � Ei. Doing a consistency check is expensive, and has to be conducted every time

a new assertion is added to a potential explanation, for every complete explanation, until a

potential explanation does imply another complete explanation, or the branch delivers a new

complete explanation. Therefore, doing a consistency check every step can prune a branch in an

early stage, however it greatly increases the maximum complexity. Furthermore, if a complete

explanation is found and that explanation does not imply any other explanation that has been

found, it has to be tested for semantic minimality to every new complete explanation that has

been found.

It should be noted that the pre-check for consistency checking explained in section 3.1.6, which

checks the presence of an assertion in the found ABox assertions, can be used to minimize

the amount of calls to the tableau algorithm. When an explanation E1 is not semantically

minimal, it has to imply at least one other explanation Ei, i 6= 1. An explanation E1 implies

another explanation Ei if and only if every assertion I : C ∈ Ei is true in any model M for

74 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

K ∪ E1. Therefore, if an assertion I : C ∈ Ei is not present in an ABox encoding of an arbitrary

modelM for K ∪ E1, then Ei does not imply Ei. As this check can only conclude if a potential

explanation does not imply any other explanation it cannot be used to prune branches due to

semantic minimality without using an extra call to the tableau algorithm.

While the pre-check cannot be used to prune the MHS tree, it can be used after the MHS

algorithm has run to check the proposed explanations for semantic minimality. One extra

benefit of using this check with the ABox abduction Algorithm (AAA) is that AAA only

produces explanations containing simple concepts. Therefore, the explanations won’t have to

be broken down to simple concepts as done in section 3.1.6. On every node of the MHS the

consistency of the current set of assertions Ep1 is tested. If the current set is consistent there

exists a modelM for K ∪ Ep1. If Ep1 is in fact an explanation, then it would be useful to store

the ABox encoding ofM to use for the pre-check for semantic minimality.

After all the explanations Ei have been found and at least one ABox encoding for K∪Ei has been

stored the check for semantic minimality can be done. Algorithm 8 shows how the explanations

can be checked for semantic minimality. In the rest of this paper this algorithm is referred to

as the Semantic minimality Checker (SMC).

Line 4. The first check to be done is to check if all the elements of the control explanation, Ej,

are present in the intersection of all ABox encodings for the explanation to be checked, with

regards to the knowledge base, Ei ∪ K. When one of the elements is not in all of the ABox

encodings, then the explanation Ej cannot be entailed by Ei, therefore the tableau algorithm

does not have to be called.

Line 6. When the explanation Ei entails another explanation Ej it can only be semantically

minimal if the explanation Ej also entails Ei, therefore the entailment check is done in reverse.

Only if Ei is not entailed by Ej it can be disregarded as semantically minimal.

Line 7. As the current explanation Ei entails the control explanation Ej, any other explanation

that entails Ei will also entail Ej. As the other explanations will be checked against Ej, the check

against Ei is redundant. Therefore it can be removed form the check set.

3.2. Optimising Approach 75

Algorithm 8: Semantic minimality check for AAA
Data: Knowledge base K
Finite set of pairs E containing an explanation Ei and the intersection Bi of all found
ABox encodings for K ∪ Ei
Result: A set of semantic minimal explanations Esem

1 Echeck ← E
2 foreach Pair Ei =< Ei,Bi >, Ei ∈ E do
3 foreach Pair Ej =< Ej,Bj >, Ej ∈ Echeck, Ej 6= Ei do
4 if Ej ∩ Bi = Ej then
5 Call the tableau algorithm on Ei ∪ K ∪ ¬Ej
6 if tableau returns no model then
7 Echeck = Echeck \ Ei
8 if Ei ∩ Bj = Ei then
9 Call the tableau algorithm on Ej ∪ K ∪ ¬Ei

10 if tableau returns model then
11 Continue to next pair in E
12 else
13 Store the ABox encoding of found model in B
14 Bj = B ∩ Bj
15 else
16 Continue to next pair in E
17 else
18 Store the ABox encoding of found model in B
19 Bi = B ∩ Bi

20 Esem ← Ei

Line 10. It has been proven that the explanation Ei is not semantically minimal. As the expla-

nation only has to be semantically bigger then one of the other explanations to be semantically

non-minimal, the rest of the explanations do not have to be checked. Therefore the algorithm

continues to test the next explanation for semantic minimality.

Line 19. Any model for K ∪ Ei ∪ X for an arbitrary set of ABox assertion X must also be a

model for K∪Ei. As the pre-check is stricter when the intersection of ABox encodings is smaller

adding a new ABox encoding is beneficial for the computation time. Therefore the found model

for K ∪ Ei ∪ ¬Ej is first encoded to a set of ABox assertion, and then the intersection of the

current set with the new ABox encoding is taken to minimize the intersection set.

76 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

3.2.1 Evaluation of SMC

Given that algorithm 8 is written separately from the MHS algorithm it is also possible to use

it as a semantic minimality checker (SMC) on any other set of explanations. Therefore the con-

straints of AAA are not necessarily binding for the the semantic minimality checker. However

in this thesis the algorithm is written to select all semantically minimal explanations from a

set of explanations produced by the AAA implementation of Pukancová (2018). Therefore it is

limited by the limitations of the output produced by AAA: The explanations are in ALCHO

and consist of simple concepts. Furthermore for practical reasons the AAA implementation

might be set to a certain depth to complete in reasonable time. When a depth d is set on AAA

it unfolds the MHS up to a depth of d nodes for each branch. For AAAr setting a depth d

means that every explanation entail at most d assertions. For AAAs setting a depth d means

that only the explanations that entail at most d assertions are guaranteed to be found. As

the SMC does not find explanations on its own, but only tests the set of found explanations

for semantic minimality, the proofs in the remainder of this section only hold for explanations

that have a maximum depth of d are in ALCHO and consist of simple concepts. As these

are constrains of the input and not of the algorithm itself they are not explicitly stated in the

formal proofs.

Lemma 3.2 (Soundness). Given a knowledge base K, an observation Φ, a finite set of ex-

planations E produced by an algorithm A, and a finite set B consisting of elements Bi, that

represent the intersection of ABox encodings for K∪ Ei, the SMC algorithm initialized with K,

E and B as input produces a set Esem. Each explanation Ei ∈ Esem is a semantically minimal

ABox abduction explanation to the ABox abduction problem 〈K, Φ〉, within the limitations of

algorithm A.

Proof. According to definition 2.10 an explanation E is semantically minimal if and only if E is

not semantically stronger than any other explanation E ′ to the abduction problem, i.e. K∪E ′ �

or K ∪ E 2 E ′. Therefore, if every explanation Ei ∈ Esem is not semantically stronger than any

other explanation Ej ∈ E , then every explanation Ei ∈ Esem is semantically minimal, assuming

3.2. Optimising Approach 77

E are all the explanations to the abduction problem 〈K, Φ〉.

Only on line 20 of SMC an explanation Ei is added to the set of semantically minimal expla-

nations Esem. As this line is on the end of the loop that checks every explanations of the input

set E , only explanations that are not thrown out of the loop are added to Esem. Thus any

explanation Ei ∈ E is added to Esem if for each other explanation Ej ∈ Echeck:

1. the intersection of the explanation Ej and all the found ABox encodings for the explanation

Ei are not equal to Ej (line 4), or

2. a tableau algorithm called on K ∪ Ei ∪ ¬Ej returns a model (line 6), or

3. a tableau algorithm called on K ∪ Ej ∪ ¬Ei returns no model (line 7 to 16).

In case 1 not all the assertions of explanation Ej are in the intersection of found ABox encodings

for K∪Ei. If an assertion a : C is not an ABox encoding BM for K∪Ei it means that aM /∈ CM

(definition 2.8). Therefore, if an assertion a : C ∈ Ej is not in the intersection of all found ABox

encodings for K ∪ Ei it means there exists a model M for K ∪ Ei for which aM /∈ CM holds.

According to the basic reasoning problems of DL K � a : C only hold if aM ∈ CM for every

model M of K (definition B.5). As case 1 indicates that there is at least one assertion a : C in

Ej and at least one model M for K ∪ Ei such that aM /∈ CM holds, K ∪ Ei � a : C cannot be

true, thus K ∪ Ei 2 Ej, i.e. Ei is not semantically stronger than Ej.

In case 2 a model is found for the knowledge base K∪Ei∪¬Ej. This means that ¬Ej is consistent

with respect to the knowledge base K∪Ei (definition 2.6). Therefore K∪Ei 2 Ej, which means

that Ei is not semantically stronger than Ej.

In case 3 no model could be found for the knowledge base K∪Ej ∪¬Ei. Therefore K∪Ej ∪¬Ei

cannot be consistent (definition B.5). When K ∪ Ej ∪ ¬Ei is not consistent then there is no

possibility for ¬Ei to be true when K∪Ej is true, thus Ei must be true. From this the entailment

K ∪ Ej � Ei follows and Ei can at most be semantically equal, but not semantically stronger

than Ej.

78 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

As Ei cannot be semantically stronger than Ej in any of the cases that Ei is added to Esem for

every Ej ∈ Echeck, every explanation Ei ∈ Esem is semantically minimal with respect to the set

of explanations Echeck. As entailment of knowledge bases is transitive Baader et al. 2017 any

explanation Ek for which K ∪ Ei � Ek is true, K ∪ Ei � Ej must be true for any Ej such that

K ∪ Ek � Ej holds. Echeck starts as a set of all explanations in E . During the SMC algorithm

the only explanations removed form Echeck are the explanations Ek such that there exists no

model for K ∪ Ek ∪ ¬Ej (7), i.e. if K ∪ Ek � Ej. As we know that K ∪ Ei � Ej is true for any

Ei such that K ∪ Ei � Ek is true, an explanation Ei cannot be semantically stronger then Ek

when it is not semantically stronger than Ej. Thus every Ei ∈ Esem cannot be semantically

stronger than any Ej ∈ E if it is not semantically stronger than any Ek ∈ Echeck. Therefore,

every explanation Ei ∈ Esem is semantically minimal, assuming E are all the explanations to

the abduction problem 〈K, Φ〉.

Lemma 3.3 (Completeness). Given a knowledge base K, an observation Φ, a finite set of

explanations E produced by an algorithm A, and a finite set B consisting of elements Bi, that

represent the intersection of ABox encodings for K∪ Ei, the SMC algorithm initialized with K,

E and B as input produces a set Esem. Each ABox abduction explanation to the ABox abduction

problem 〈K, Φ〉 that is semantically minimal and in the set of explanations E is in set Esem.

Proof. Every explanation in Ei ∈ E is added to Esem, unless there exists another explanation

Ej ∈ Echeck such that a tableau algorithm called on K∪Ei∪¬Ej returns no model (line 6), and:

1. the intersection of the explanation Ei and all the found ABox encodings for the explanation

Ej are not equal to Ei (line 16), or

2. a tableau algorithm called on K ∪ Ej ∪ ¬Ei returns a model (line 10).

If there exists no model for K ∪ Ei ∪ ¬Ej then this is inconsistent (definition B.5). This means

¬Ej cannot be true when K∪Ei is true, therefore K∪Ei � Ej i.e. the explanation Ei cannot be

semantically smaller than Ej. However Ei and Ej can still be semantically equal to Ej.

In case 1 not all the assertions of explanation Ei are in the intersection of found ABox encodings

for K ∪ Ej. In other words, there is at least one assertion A : C ∈ Ei and at least one model M

3.2. Optimising Approach 79

for K ∪ Ej such that aM /∈ CM (definition 2.8). Consequently K ∪ Ei � a : C cannot be true.

As the assertion a : C is part of the ABox Ei it can be concluded that K ∪ Ej 2 Ei, and Ej is

not semantically equal to Ei.

In case 2 there exists a model for K∪Ej∪¬Ei meaning that K∪Ej∪¬Ei is consistent (definition

2.6). If K∪Ej∪¬Ei is consistent, it is possible for the ABox ¬Ei to be true when K∪Ej holds, i.e.

K ∪ Ej 2 Ei. As Ei is not entailed by K ∪ Ej the explanations Ei and Ej cannot be semantically

equal.

Lastly, the set Echeck is a subset of E , as the only explanations added to Echeck come out of

the set E (line 1). Consequently an explanation Ei ∈ E is not added to the set Esem only if

there exists another Ej ∈ E such that K ∪ Ei � Ej and K ∪ Ej 2 Ei. According to definition

2.10 an explanation E ∈ E is only semantically minimal when K ∪ E 2 E ′ or K ∪ E ′ � E.

In conclusion, every explanation Ei ∈ E that is not added to Esem cannot be semantically

minimal, i.e. each ABox abduction explanation to the ABox abduction problem 〈K, Φ〉 that is

semantically minimal and in the set of explanations E is in set Esem.

By combining the two proofs it can be proven that the SMC algorithm returns all and only all

semantically minimal explanations from a given set of explanations. To prove the correctness

of the algorithm the termination of the algorithm has to be proven. As the algorithm iterates

over two sets of explanations, and these sets must be finite, the algorithm must eventually

terminate.

Theorem 3.4. Given a knowledge base K, an observation Φ, a finite set of explanations E

produced by an algorithm A, and a finite set B consisting of elements Bi, that represent the

intersection of ABox encodings for K ∪ Ei, the SMC algorithm initialized with K, E and B as

input: (1) returns a set Esem contains all and only all semantically minimal ABox abduction

explanations to the ABox abduction problem 〈K, Φ〉, within the constraints of algorithm A, and

(2) eventually terminates.

Proof. To prove that SMC finds all and only all semantically minimal ABox abduction expla-

nations, within the limitations of algorithm A, it must be shown that all explanations in Esem

80 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

are semantically minimal with respect to the set E , and that all explanations in set E that are

semantically minimal are in set Esem. This follows from lemma 3.2 and lemma 3.3, therefore we

can conclude that the set Esem contains all and only all semantically minimal ABox explanations

to the ABox abduction problem 〈K, Φ〉, within the constraints of algorithm A (1).

The SMC algorithm contains two loops, one that iterates over each element in the set E and

one that iterates over each element in the set Echeck. The input E is a finite set, and is not

adjusted within the algorithm. The set Echeck is initiated as a copy of E , therefore being a finite

set on its own. During the algorithm the set Echeck is manipulated at one place, line 7. Here an

element is removed form set Echeck, thus making the size of the set n − 1 which still is a finite

set. As both loops iterate over finite sets, both loops must eventually terminate. There are no

other constructs that can prevent termination in the SMC algorithm, therefore SMC eventually

terminates (2).

The semantic minimality checker uses the tableau algorithm to check the semantic minimality

of explanations. While algorithm 8 is designed to minimize the amount of tableau algorithm

calls, it is possible that the tableau algorithm is called twice for every explanation pair. As

the tableau algorithm can be time intensive, the SMC algorithm is mainly based on the worst

case complexity of the tableau algorithm. As this thesis uses the semantic minimality checker

to select semantic minimal explanations from the explanations produced by AAA, and the

explanations of AAA are in ALCHO, the worst case complexity is determined by assuming

that the explanations are in ALCHO.

Theorem 3.5. The worst case complexity of the SMC algorithm is ExpTime.

Proof. The algorithm contains a loop that has as many steps as the input n. The loop itself

contains a loop that has n− 1 steps at most. Therefore, the worst case complexity of the SMC

algorithm is at least O(n2). There are two steps within the loops that have a higher complexity

than O(n2), the calls to the tableau algorithm. As the tableau algorithm is called at most twice

every iteration, and the tableau algorithm for ALCHO is in ExpTime Baader et al. (2017), the

worst case complexity of SMC is ExpTime.

3.2. Optimising Approach 81

When the algorithm is used to select semantically minimal explanations that are in a higher ex-

pressivity than ALCHO, the complexity of the SMC algorithm might be higher than ExpTime,

depending on the needed tableau algorithm.

3.2.2 Implementation

The previous section proves that the SMC algorithm is sound and complete in ExpTime are

provided. To test how the algorithm performs in practice an implementation of the algorithm

was build. The application is written in Java and makes use of the Apache Jena framework.

SMC is added as a function to the AAA implementation of Pukancová and Homola 2018.

The function can be executed after all the explanations have been found to filter out all the

semantically non-minimal explanations. Therefore, both the splitting method as well as the

reduction method can be used to deal with multiple observations. To indicate when the al-

ternative method is used to compute semantically minimal explanations the superscript sem

is added to the name of the application, e.g. AAAr
sem indicates that the AAA application

ran with the reduction method and used the SMC to select the semantically minimal explana-

tions. For clarity table 3.1 shows which methods and algorithms are used per implementation.

Both Puckancova’s implementation and the added function use the Pellet 2.0 reasoner for their

tableau algorithm calls. This is the last open source version of Pellet and is already embedded

in Pukancova’s implementation.

Implementation Splitting method Algorithm Algorithm
for generating for selecting
explanations semantically minimal explanations

AAAs
sem Splitting MHS SMC

AAAs Splitting MHS -
AAAr

sem Reduction MHS SMC
AAAr Reduction MHS -

Table 3.1: Characteristics of the tested implementations

First the implementation is tested on a set of random observations to check if the application

returns all, and only all, semantically minimal explanations. To test performance the same

three ontologies used by Pukancová and Homola (2017) and Mrózek et al. (2018) can be used:

82 Chapter 3. Approaches for finding Semantically Minimal ABox Abduction Explanations

LUBM, the Lehigh University Benchmark (Guo et al. 2005), Coffee, an ontology about coffee

published by Carlos Mendes1, and Family, a small ontology created by Pukancová (2018), which

is suitable for testing and comparing outputs. LUBM is a standard benchmark ontology, which

is used by several scholars to test reasoners (Du, Qi, et al. 2011; Del-Pinto and Schmidt 2018;

Pukancová and Homola 2015). The Coffee ontology contains more axioms then LUBM, yet less

concepts and roles (see table 3.2). As the ontologies are relatively compact, the semantically

minimal explanations can be found manually.

Ontology Num. concepts Num. roles Num. individuals Num. axioms
LUBM 43 25 1 46
Coffee 41 6 2 291
Family 8 1 2 24

Table 3.2: Characteristics of the three ontologies

For each ontology five observations are chosen. The observations include both complex and

simple concepts. Furthermore, at least one observation with multiple assertions and one ob-

servation containing a role assertion are tested. As the test ontologies do not contain any

individuals, the chosen individuals are the same for each sample, the Coffee ontology is tested

with the individual drinkX, the Family ontology is tested with the individual Mary and the

LUBM ontology is tested with the individual John. To test role assertions the individuals

drinkY and UU are used. Table 3.3 shows all the sample observations.

After the application is tested on its correctness, some additional tests should be done to

compare the performance of the application. To compare the performance of the application

the run time, but also the number of Tableau algorithm calls (TA calls) and number of used

nodes are noted. For the number of nodes, all the explored nodes of the MHS tree are counted

for the AAA implementations. As a TA can be very time expensive, the number of TA calls

gives good insight in the risk of an implementation taking much time. The run time on its own

gives an indication of the performance, but can vary significantly between different runs due to

external factors, therefore is not a very trustworthy measurement. For the performance tests

the first observation of each ontology in table 3.3 is used. All tests are performed a total of five

1The Coffee ontology is published on GitHub: https://gist.github.com/cmendesce/
56e1e16aee5a556a186f512eda8dabf3

https://gist.github.com/cmendesce/56e1e16aee5a556a186f512eda8dabf3
https://gist.github.com/cmendesce/56e1e16aee5a556a186f512eda8dabf3

3.2. Optimising Approach 83

Ontology Observation
Family Mary : Parent

Mary : ∃hasChild.Parent
Mary : ¬Male
Mary : ∀hasChild.Person
Mary : Grandfather tGrandmother

Coffee drinkX : Base
drinkX : ∃hasIngredient.SteamedMilk
drinkX : ¬Drink
(drinkX, drinkY) : isIngredientOf
{drinkX : ContainsChocolate, drinkX : ContainsMilk}

LUBM John : Employee
John : Person u ∃worksFor.Organization
John : Student
John : ¬Chair
(John,UU) : degreeFrom

Table 3.3: Set of observations

times for each pair of observation and application. The results are then averaged to compare

them to the other applications. The application is tested both with the test for semantically

minimal explanations and without the semantically minimal check. All tests are conducted on

a Dell latitude 7280 laptop running on a windows OS with a 7th generation Intel i5 core.

4 | Results

The implementation AAAsem of the Semantic Minimality Checker (SMC) relies on the expla-

nations of the AAA application. This means that explanations that are generated by AAA

can be removed from the set of explanations, yet no new explanations can be added to the set

AAA is sound and complete for finding all explanations containing simple concepts, yet not

complete for finding all explanations with complex concepts. Thus, AAAsem is only complete

for finding all explanations containing simple concepts. As semantic minimality is computed on

the basis of comparison to other explanations, there can be semantically smaller explanations

that contain complex concepts, which are not included.

This can be illustrated by the the example observation

E1 = {drinkX : ContainsChocolate, drinkX : ContainsMilk}

. There are three explanations returned by AAA:

1. {drinkX :Mocha},

2. {drinkX : HotChocolate}, and

3. {drinkX : Cappucino}.

All these explanations are returned as semantically minimal explanations, as they do not entail

each other. If one looks in the coffee ontology two axioms can be found:

1. ContainsChocolate ≡ ∃hasBase.Chocolate t ∃hasTopping.PowderedChocolate,

84

85

2. ContainsMilk ≡ ∃hasBase.Milk t ∃hasTopping.MilkFoam

Therefore, the following explanations would also be valid explanations according to definition

2.10:

1. {drinkX : ∃hasBase.Milk, drinkX : ∃hasBase.Chocolate},

2. {drinkX : ∃hasTopping.MilkFoam,drinkX : ∃hasBase.Chocolate},

3. {drinkX : ∃hasTopping.MilkFoam,drinkX : ∃hasTopping.PowderedChocolate},

4. {drinkX : ∃hasBase.Milk, drinkX : ∃hasTopping.PowderedChocolate}

However, as these explanations contain a complex concept they are not returned by AAA and

not used to test the semantic minimality of the previous explanations. If they would have been

used to test the semantic minimality, not one of the explanations of AAA would be returned

as semantically minimal.

Furthermore, the depth of the MHS tree is restricted to a depth of three. This means that

explanations produced by AAAr
sem can contain no more than three assertions. For explanations

returned by AAAs
sem longer explanations might be found, still the application is only guaranteed

to find all the semantically minimal explanations that contain at most three assertions. While

this might be an issue for some ontologies where long explanations can occur, most ontologies

do facilitate the option to form syntactically minimal explanations that contain more than

three assertions (Pukancová 2018). The ontologies and sample observations that are used in

this study do not have any minimal explanations that contain more than three assertions.

Given the restriction that only simple concept assertions in ALCHO can be produced, both

AAAs
sem and AAAr

sem manage to select the correct explanations from the given set of explana-

tions. All the returned explanations can be found in table 4.1. The implementation has been

tested on each observation three times and the given result was consistent over the different

runs.

86 Chapter 4. Results

Observation returned explanations
Mary : Parent {Mary :Mother},

{Mary : Father}
Mary : ∃hasChild.Parent {Mary : Grandmother},

{Mary : Grandfather}
Mary : ¬Male {Mary : ¬Person},

{Mary : Female}
Mary : ∀hasChild.Person {Mary : Person}
Mary : Grandfather tGrandmother -
drinkX : Base {drinkX : Coffee},

{drinkX : Chocolate},
{drinkX : IceCream},

{drinkX :Milk},
{drinkX : Sugar},
{drinkX :Water}

drinkX : ∃hasIngredient.SteamedMilk {drinkX :Macchiato},
{drinkX : FlatWhite},
{drinkX : PiccoloLatte},
{drinkX : Affogato},
{drinkX : CafeConLeche},
{drinkX : HotChocolate},
{drinkX : Cappuccino},
{drinkX : CafeLatte},
{drinkX :Mocha}

drinkX : ¬Drink {drinkX : Base},
{drinkX : Topping}

(drinkX, drinkY) : isIngredientOf {(drinkY, drinkX) : hasIngredient}
{drinkX : ContainsChocolate, {drinkX :Mocha},
drinkX : ContainsMilk} {drinkX : HotChocolate}

{drinkX : Cappuchino}
John : Employee {John : Director},

{John : AdministrativeStaff},
{John : ResearchAssistant},
{John : Faculty}

John : Person u ∃worksFor.Organization {John : Director}
{John : ResearchAssistant}
{John : Employee}

John : Student {John : GraduateStudent}
{John : UndergraduateStudent}

John : ¬Chair {John : ¬Professor}
(John,UU) : degreeFrom {(UU, John) : hasAlumnus}

Table 4.1: Found explanations per observation

87

One interesting observation during tests of the implementation was the different outcomes

for the observation {drinkX : ContainsChocolate, drinkX : ContainsMilk} and the ob-

servation {drinkX : ContainsChocolate u ContainsMilk}. While both observations se-

mantically have the same meaning, drinkX is both of type ContainsChocolate and of type

ContainsMilk, the definition of a relevant ABox Abduction explanation (definitions 2.10)

causes a difference in the returned explanations. Relevance is defined as E 2 Φ for any ex-

planation E and observation Φ. This means that there are 8 relevant explanations for the

observation {drinkX : ContainsChocolate u ContainsMilk}:

1. {drinkX :Mocha},

2. {drinkX : HotChocolate}

3. {drinkX : Cappuchino}

4. {drinkX :Macchiato, drinkX : ContainsChocolate},

5. {drinkX : ContainsChocolate, drinkX : PiccoloLatte},

6. {drinkX : Bonbon, drinkX : ContainsChocolate},

7. {drinkX : Affogato, drinkX : ContainsChocolate},

8. {drinkX : ContainsChocolate, drinkX : CafeConLeche},

9. {drinkX : FlatWhite, drinkX : ContainsChocolate},

While explanation 4 to 8 might seem irrelevant as they partly copy the observation, E 2 Φ

actually holds for every one of them. Now if the observation is split into a multiple observation

problem, {drinkX : ContainsChocolate, drinkX : ContainsMilk}, then explanations 4 to

8 are actually irrelevant, e.g. {drinkX : Macchiato, drinkX : ContainsChocolate} 2 Φ1.

The semantic minimality checker does not eliminate any of the explanations as they have no

entailment relation to each other. It depends on whether a user accepts explanations that are

partly equal to the given observation, which input is preferable. Still users have to be aware

that running two seemingly similar inputs a : C u D and {a : C, a : D} can deliver different

results.

88 Chapter 4. Results

4.1 Performance

To compare the performance of the implementation some extra runs have been done on each

ontology. For the Family ontology the performance tests are done with the observationMary :

Parent, for the Coffee ontology the observation drinkX : Base was used, and the LUBM

ontology was tested with the observation John : Employee. Each test has been repeated 5

times, the performance results are shown in table 4.2.

Algorithm Runtime TA calls TA calls Nodes Explanations
seconds average maximum number average

Family
AAAs

sem 3,20 29 29 91 4
AAAs 3,14 22 22 91 4
AAAr

sem 3,15 28 28 91 4
AAAr 3,18 22 22 91 4
Coffee
AAAs

sem 98,43 3.360 3.361 7.381 13
AAAs 94,89 3.298 3.300 7.217 13
AAAr

sem 66,80 3.361 3.366 7.208 13
AAAr 106,47 3.328 3.330 7.258 13
LUBM
AAAs

sem 124,88 2.376 2.378 16.298 15
AAAs 126,02 2.487 2.489 16.298 15
AAAr

sem 125,46 2.755 2.757 16.298 15
AAAr 139,18 2.468 2.474 16.298 15

Table 4.2: Performance of the algorithms

Table 4.2 shows that all the implementations do a lot of TA calls, whether the semantic mini-

mality check is done or not. While the use of the semantic minimality checker does add some

more tableau algorithm checks in general, there are cases that it does less checks (for the LUBM

ontology AAAs
sem against AAAs). This is mainly because the number of extra TA calls that the

semantic minimality checker does is smaller than the variance in TA calls of the MHS algorithm,

i.e. a bad run of the MHS algorithm affects the number of TA calls more than the semantic

minimality checker adds. This effect is only visible in larger ontologies, for the ontology Family

running AAAsem clearly increases the number of TA calls in comparison to AAA.

The runtime of the algorithms is hardly influenced by the use of the semantic minimality option.

4.1. Performance 89

Again, the added time that the semantic minimality checker might need is subservient to the

time variance of computing the MHS algorithm. While the number of nodes varies a bit for

the Coffee ontology, there is no clear trend that shows an influence of the SMC on the number

of nodes.

While running the SMC has a small effect on the number of TA calls, it is not clear from

this table what portion can actually be attributed to the use of the SMC and what is due to

variance of the MHS algorithm. Let us check the performance of the runs done to check the

correctness of the implementation. The average number of TA calls that the SMC has done

for each observation is displayed in table 4.3. Note that these averages only include the runs

on AAAr
sem, as the use of reduction or splitting only influences the MHS algorithm, it is not

relevant to distinguish between them for the performance of SMC.

Observation Explanations Explanations TA calls
all sem. minimal by SMC

Mary : Parent 4 2 7
Mary : ∃hasChild.Parent 2 2 2
Mary : ¬Male 5 2 12
Mary : ∀hasChild.Person 8 1 20
Mary : Grandfather tGrandmother 0 0 0
drinkX : Base 13 6 27
drinkX : ∃hasIngredient.SteamedMilk 11 8 15
drinkX : ¬Drink 17 2 39
(drinkX, drinkY) : isIngredientOf 5 1 13
{drinkX : ContainsChocolate, 3 3 3
drinkX : ContainsMilk}
John : Employee 15 4 35
John : Person u ∃worksFor.Organization 16 3 42
John : Student 2 2 2
John : ¬Chair 4 1 8
(John,UU) : degreeFrom 4 1 8

Table 4.3: Average performance of the SMC, calculated over 3 runs of AAAr
sem

In table 4.3 it can be seen how many TA calls the SMC has done for each observation, on

average. From comparing table 4.3 to table 4.2 it is clear that the number of TA calls that

SMC does is mainly important for the smaller ontology Family. Let us look at the observation

Mary : Parent, from table 4.2 we know that the MHS does roughly 22 TA calls. In table 4.3 it

can be seen that the SMC does roughly 7 TA calls to find the semantically minimal explanations

90 Chapter 4. Results

which is about a third of the calls that the MHS algorithm did. So for this observation the SMC

has a strong influence on the number of TA calls. However, for the observations drinkX : Base

and John : Employee the number of TA calls that the SMC is relatively small in comparison

to the number of calls the MHS algorithm does (27 versus 3328 for drinkX : Base and 35

versus 2468 for John : Employee). This can be explained as the number of TA calls done by

the MHS algorithm is mainly influenced by the size of the ontology, while the number of TA

calls done by SMC is mainly based on the number of explanations that it has to check. As the

number of explanations is not directly related to the size of an ontology, the influence that the

SMC has on the performance becomes less significant when bigger ontologies are used.

Furthermore, table 4.3 shows that while the number of TA calls increases with the size of

the explanation set, it does not grow exponentially. This shows that the optimisation tech-

niques that are implemented in the SMC do have an influence on the performance. When no

optimisation techniques would be used, at least one tableau call twould be needed for each

combination of explanations. This means that for n explanations n ∗ (n− 1) TA calls would be

needed. In table 4.3 it can clearly be seen that for bigger explanation sets the number of TA

calls is significantly lower than it would be without optimisation. Let us take the observation

John : Personu∃worksFor.Organization as an example. The MHS returns 16 explanations,

without any optimisation techniques 240 TA calls would be needed (6 ∗ 15), while the SMC

only does 42 TA calls.

While the optimisation techniques reduce the number of TA calls significantly for big explana-

tion sets, it has less influence on the smaller explanation sets. As the optimisation techniques

are based on reusing information, this result is not surprising because one first has to find

information in order to reuse it. Figure 4.1 shows the effect that the optimisation techniques

have per explanation set size. The figure shows the ratio of the number of TA calls that are

done by the SMC to the number of TA calls that could be expected without the optimisation

techniques plotted against the input size. This ratio decreases rapidly when the explanation

set size is bigger than 2. When the MHS algorithm returns more than 12 explanations the

number of TA calls done by SMC is roughly 20% of the TA calls that would be needed without

optimisation techniques.

4.1. Performance 91

0 4 8 12 16
0

0.2

0.4

0.6

0.8

1

Number of non-minimal explanations

R
at
io

of
TA

ca
lls

(#
TA

ca
lls

/#
m
ax

im
um

TA
ca
lls
)

Ratio of TA calls per number of explanations

Figure 4.1: Ratio between actual TA calls and maximum TA calls per explanation set size.

5 | Conclusion & Discussion

This thesis builds on the foundations of ABox abduction to study the workings of semantically

minimal explanations in depth. Previous research was strongly focused at finding explanations

first and testing semantic minimality in a later stadium (Del-Pinto and Schmidt 2018), or even

accepting semantically non-minimal explanations (Klarman et al. 2011; Pukancová and Ho-

mola 2015; Mrózek et al. 2018). The approaches studied in this paper give a deep insight in

the formalisation of semantically minimal explanations. Although, this study did not succeed

in developing an implementation that can recognize semantically minimal explanations at an

early stage, the study gives a deep insight in the formalisation of semantically minimal expla-

nations, and provides a working implementation for finding semantically minimal explanations

in ALCHO.

This thesis introduces two new algorithms to find semantically minimal ABox explanations to

observations in the DL ALCHO: SEMAR and the SMC algorithm. SEMAR is an adjusted

tableau algorithm, introduced in section 3.1. This algorithm was aimed to optimize a standard

tableau algorithm so it can identify semantically minimal explanations to an ABox abduction

problem. The initial aim was to prove that SEMAR returns all and only all semantically

minimal explanations to an ABox observation. SEMAR is only proven to be sound for ontologies

that do not contain General Concept Inclusions (GCI’s) that contain nominals, and single

observations in negated normal form that do not contain any conjunctions. Completeness of

SEMAR could not be formally proven, as many theoretical exceptions could occur due to the

inclusion of nominals.

Furthermore, building an implementation of SEMAR was problematic because of the complex

92

93

optimization techniques added to implementations of the tableau algorithms for DL. Therefore,

this thesis cannot answer how the tableau algorithm can be optimized to generate models that

lead to all and only all semantically minimal solutions. It does provide a sound base that

further research could build on to develop an implementation that is complete for finding all

semantic minimal solutions using an adjusted tableau algorithm.

Section 3.1 suggests that further research is needed into the integration of lazy unfolding rules

into SEMAR. The use of lazy unfolding rules is a common optimizing technique used by reason-

ers that are based on a tableau algorithm. Integrating them into an implementation of SEMAR

might help solve the encountered memory issues.

Additionally, further research is suggested by section 3.1 into making SEMAR compatible

for multi-assertion observations. When SEMAR is sound and complete for multi-assertion

observation, then observations that contain conjunctions can be split into multiple assertions.

Therefore, SEMAR would be able to process observations containing conjunctions as well.

Section 3.2 introduces the Semantic Minimality Checker (SMC) that is developed to select

semantically minimal ABox abduction explanations from an existing set of explanations. This

algorithm is proven to be correct and has a worst case complexity in ExpTime, when combined

with AAA. The SMC algorithm is a sound and complete method that can complement the

minimal hitting set such that all and only all semantically minimal solutions can be found.

While it could be used to prune branches in a hitting set tree, section 3.2 explains that this is

not advisable because it would not improve the performance of a minimal hitting set algorithm.

To select the semantically minimal explanations from the explanations produced by a minimal

hitting set algorithm the SMC algorithm could implement some optimization techniques that

reduce the number of needed tableau algorithm calls, which has a bigger advantage for the

performance than the pruned branches would give.

Lastly, an implementation of the second algorithm is tested on correctness and performance.

The added number of TA calls of SMC is less or equal than what a simple semantic minimality

algorithm would add. The performance advantages that SMC has over a simple semantic

minimality algorithm increases significantly when the explanation set that has to be tested is

94 Chapter 5. Conclusion & Discussion

bigger than 2. Furthermore, the SMC algorithm has little influence on the computation time

needed for the MHS algorithm, measured both in runtime and in number of TA calls. Especially

on bigger ontologies the added computation time of SMC is relatively small in comparison to

the computation time needed for the MHS algorithm.

While in theory the SMC algorithm can be used on any set of explanations, the implementation

developed and tested for this thesis only uses the input of the AAA implementation. For future

research it would be interesting to test the algorithm in combination with other ABox abduc-

tion implementations. Furthermore, testing the performance of this implementation against

other implementations that return semantically minimal explanations would be valuable future

research.

Lastly, this thesis introduces approaches to generate semantically minimal explanations. How-

ever, the results are still a set of possible explanations. For systems that ultimately need one

explanation for the observed phenomena, further research is needed to select the best explana-

tion out of the set of returned explanations. An interesting step in this direction is to develop

a system that can do a targeted search for missing observations, based on what should be

observable when an explanation is true.

Appendices

95

A | Concept operators

The following five operators can be used to construct complex concepts:

u A conjunction in the form of A u B describes all elements that are in the extension of

both A and B. The assertion Mary : Employee uManager can be read as "Mary is

both an employee and a manager".

t A disjunction in the form of A t B describes all elements that are in the extension of

either A or B. The assertion Mary : Employee t Employer can be read as "Mary is

either employee or employer".

¬ A negation in the form of ¬A describes all elements that are not in the extension of A.

The assertion Mary : ¬Employee can be read as "Mary is not an employee".

∃ An existential restriction in the form of ∃r.A describes all elements that have at least one

r-filler that is in the extension of A. The assertionMary : ∃worksFor.Employer can be

read as "Mary works for at least one element that is an employer".

∀ An value restriction in the form of ∀r.A describes all elements for which every r-filler is

in the extension of A. The assertion Mary : ∀worksAt.Department can be read as

"Mary only works at elements that are a department". Note that every element that does

not have an r-filler is automatically in the extension of ∀r.X, regardless of the concept X,

because it still holds that every r-filler (which is none) is in the extension of X.

96

B | Additional DL knowledge base

definitions

In section 2.2 of this thesis the basic theory behind description logics is explained. For the

sake of readability not all formal definitions are presented in the DL section. For readers that

are not familiar with DLs the work of Baader et al. (2017) provides a proper overview of the

theory behind DLs. This appendix provides some additional definitions that might be helpful

for readers not familiar with Baader’s work.

Definition B.1 (ABox assertions). Let I be a set of individual names disjoint from the set

of concept names C and the set of role names R. For individual names a, b ∈ I, a possibly

compound concept C, and a role name r ∈ R, an expression of the form:

• a : C is called a concept assertion, and

• (a, b) : r is called a role assertion.

An ABox assertion can either be a concept assertion, or a role assertion. A finite set of ABox

assertions is called an ABox.

Definition B.2 (TBox axioms). For possibly compound concepts C and D, an expression of

the form:

• C v D is called a general concept inclusion (GCI), and

• C ≡ D is called an equivalence axiom.

97

98 Appendix B. Additional DL knowledge base definitions

An equivalence axiom C ≡ D is an abbreviation for C v D,D v C. An TBox axiom can either

be a general concept inclusion, or an equivalence axiom. A finite set of TBox axioms is called

a TBox.

Definition B.3 (Nominal). For an individual name b ∈ I, {b} is called a nominal. For any

DL L, the DL LO is obtained from L by allowing nominals as additional concepts. For an

interpretation I, its mapping ·I is extended as follows:

({a})I = {aI}

Definition B.4 (Role inclusion axiom). For roles r, s ∈ R, r v s is called a role inclusion

axiom (RIA). For any DL L, the DL LH is obtained from L by allowing role inclusion axioms

in the TBoxes. For an interpretation I to be a model of a LH TBox it has to satisfy all

concept and role inclusion axioms in the TBox. A role inclusion axiom r v s is satisfied by an

interpretation I iff

rI ⊆ sI .

Definition B.5 (Basic DL reasoning problems). Let K = (T ,A) be a knowledge base, C and

D possibly compound concepts, and b an individual name. We say that:

1. C is satisfiable with respect to T if there exists a model M of T and some d ∈ ∆M with

d ∈ CM;

2. C is subsumed by D with respect to T , written T � C v D, if CM ⊆ DM for every model

M of T ;

3. C and D are equivalent with respect to T , written T � C ≡ D, if CM = DM for every

model M of T ;

4. K is consistent if there exists a model of K;

5. b is an instance of C with respect to K, written K � b : C, if bM ∈ CM for every model

M of K.

Bibliography

Aliseda-Llera, A. (1997). “Seeking Explanations: Abduction in Logic, Philosophy of Science and

Artificial Intelligence”. PhD thesis. Amsterdam: Institute for Logic, Language and Compu-

tation (cit. on pp. 5, 9, 11, 12, 17).

Baader, F., Horrocks, I., Lutz, C., and Sattler, U. (2017). Introduction to Description Logic.

Cambridge University Press (cit. on pp. 18, 22, 25, 78, 80, 97).

Barnes, E. (1995). “Inference to the loveliest explanation”. Synthese 103.2, pp. 251–277. (Cit. on

p. 10).

Campos, D. G. (2011). “On the distinction between Peirce’s abduction and Lipton’s inference

to the best explanation”. Synthese 180.3, pp. 419–442. (Cit. on pp. 8, 11).

Del-Pinto, W. and Schmidt, R. A. (2018). “ABox abduction via forgetting in ALC (long ver-

sion)”. arXiv preprint. arXiv: 1811.05420 [cs.AI] (cit. on pp. 7, 30, 82, 92).

Du, J., Qi, G., Shen, Y.-D., and Pan, J. Z. (2011). “Towards practical ABox abduction in large

OWL DL ontologies.” In: Proceedings of the 25th AAAI Conference on Artificial Intelligence.

(San Francisco, California, US, Aug. 7–11, 2011) (cit. on pp. 28, 82).

Du, J., Wan, H., and Ma, H. (2017). “Practical TBox abduction based on justification patterns.”

In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. (San Francisco, Cali-

fornia, US, Feb. 4–9, 2017). Ed. by S. Singh and S. Markovitch (cit. on p. 27).

Du, J., Wang, K., and Shen, Y.-D. (2015). “Towards tractable and practical ABox abduction

over inconsistent description logic ontologies.” In: Proceedings of the 29th AAAI Conference

on Artificial Intelligence. (Austin, Texas, US, Jan. 25–29, 2015) (cit. on p. 28).

Du, J., Wang, K., Shen, Y.-D., et al. (2014). “A tractable approach to ABox abduction over

description logic ontologies.” In: Proceedings of the 28th AAAI Conference on Artificial In-

99

http://arxiv.org/abs/1811.05420

100 BIBLIOGRAPHY

telligence, AAAI 2014. (Québec City, Québec, Canada, July 27–31, 2014) (cit. on pp. 7, 28,

29).

Elsenbroich, C., Kutz, O., and Sattler, U. (2006). “A case for abductive reasoning over ontolo-

gies”. In: Proceedings of the 3rd OWLED 2006 Workshop on OWL: Experiences and Direc-

tions. (Athens, Georgia, US, Nov. 10–11, 2006). Ed. by B. C. Grau, P. Hitzler, C. Shankey,

and E. Wallace. CEUR Workshop Proceedings 216 (cit. on pp. 6, 12, 26, 28).

Guo, Y., Pan, Z., and Heflin, J. (2005). “Lubm: a benchmark for owl knowledge base systems”.

Journal of Web Semantics 3.2, pp. 158–182. (Cit. on p. 82).

Halland, K. and Britz, K. (2012). “ABox abduction in ALC using a DL tableau”. In: Proceed-

ings of the South African Institute for Computer Scientists and Information Technologists

Conference. SAICSIT ’12. Pretoria, South Africa: ACM, pp. 51–58. (Cit. on pp. 29, 30, 36).

Harman, G. H. (1965). “The inference to the best explanation”. The Philosophical Review 74.1,

pp. 88–95 (cit. on p. 10).

Klarman, S., Endriss, U., and Schlobach, S. (2011). “ABox abduction in the description logic

ALC”. Journal of Automated Reasoning 46.1, pp. 43–80. (Cit. on pp. 28, 29, 92).

Koopmann, P. and Schmidt, R. A. (2015). “LETHE: saturation-based reasoning for non-standard

reasoning tasks.” In: Proceedings of the 4th International Workshop on OWL Reasoner Eval-

uation. (Athens, Greece, June 6, 2015). Ed. by M. Dumontier, B. Glimm, R. Gonçalves, M.

Horridge, E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia, G. Stamou, and G. Stoilos. CEUR

Workshop Proceedings 1387. Aachen, pp. 23–30 (cit. on p. 30).

Lipton, P. (2003). Inference to the Best Explanation. Routledge (cit. on pp. 5, 10).

Lucas, P. (1997). “Symbolic diagnosis and its formalisation”. The Knowledge Engineering Review

12.2, pp. 109–146 (cit. on pp. 12, 17).

Ma, Y., Gu, T., Xu, B., and Chang, L. (2012). “An ABox abduction algorithm for the description

logic ALCI”. In: Intelligent Information Processing VI. Ed. by Z. Shi, D. Leake, and S.

Vadera. Vol. 385. Berlin, Heidelberg: Springer, pp. 125–130 (cit. on p. 29).

Mayer, M. C. and Pirri, F. (1993). “First-order abduction via tableau and sequent calculi”. Logic

Journal of the IGPL 1.1, pp. 99–117. url: https://doi.org/10.1093/jigpal/1.1.99

(cit. on p. 12).

https://doi.org/10.1093/jigpal/1.1.99

BIBLIOGRAPHY 101

Mill, J. S. (2011). A System of Logic, Ratiocinative and Inductive. Being a Connected View of

the Principles of Evidence, and the Methods of Scientific Investigation. Vol. 2. Cambridge

Library Collection - Philosophy. Cambridge University Press. url: https://doi.org/10.

1017/CBO9781139149846 (cit. on p. 8).

Mrózek, D., Pukancová, J., and Homola, M. (2018). “ABox abduction solver exploiting multiple

DL reasoners”. In: Ortiz and Schneider (2018) (cit. on pp. 7, 29, 30, 39, 40, 81, 92).

Ortiz, M. and Schneider, T., eds. (2018). Proceedings of the 31st International Workshop on

Description Logics (DL). (Tempe, Arizona, US, Oct. 27–29, 2018). CEUR Workshop Pro-

ceedings 2211. Aachen (cit. on p. 101).

Pearl, J. (2009). Causality. Models, Reasoning and Inference. Cambridge University Press. url:

https://doi.org/10.1017/CBO9780511803161 (cit. on pp. 11, 15).

Pearl, J. and Mackenzie, D. (2018). The Book of Why. The New Science of Cause and Effect.

New York: Basic Books (cit. on p. 5).

Peirce, C. S. (1878). “Deduction, induction, and hypothesis”. Popular Science Monthly 13,

pp. 470–482 (cit. on pp. 5, 10, 12).

Pukancová, J. (2018). “Direct Approach to ABox Abduction in Description Logics”. PhD the-

sis. Bratislava: Faculty of Mathematics, Physics and Informatics, Comenius University in

Bratislava (cit. on pp. 71, 76, 82, 85).

Pukancová, J. and Homola, M. (2015). “Abductive reasoning with description logics: use case

in medical diagnosis.” In: Proceedings of the 28th International Workshop on Description

Logics (DL). (Athens, Greece, June 7–10, 2015). Ed. by D. Calvanese and B. Konev. CEUR

Workshop Proceedings 1350 (cit. on pp. 7, 72, 82, 92).

– (2017). “Tableau-based ABox abduction for theALCHO description logic.” In: Proceedings of

the 30st International Workshop on Description Logics (DL). (Montpellier, France, July 18,

2017–July 21, 2018). Ed. by A. Artale, B. Glimm, and R. Kontchakov. CEUR Workshop

Proceedings 1879 (cit. on pp. 7, 29, 36, 38, 39, 81).

– (2018). “ABox abduction for description logics: the case of multiple observations.” In: Ortiz

and Schneider (2018) (cit. on pp. 29, 38–40, 42, 43, 81).

https://doi.org/10.1017/CBO9781139149846
https://doi.org/10.1017/CBO9781139149846
https://doi.org/10.1017/CBO9780511803161

102 BIBLIOGRAPHY

Reiter, R. (1987). “A theory of diagnosis from first principles”. Artificial intelligence 32.1,

pp. 57–95. (Cit. on pp. 12, 29, 31–35, 38).

Zhao, Y. and Schmidt, R. (2018). “On concept forgetting in description logics with qualified

number restrictions”. In: Proceedings of the 27th International Joint Conference on Artificial

Intelligence, IJCAI-18. International Joint Conferences on Artificial Intelligence Organiza-

tion, pp. 1984–1990. (Cit. on p. 27).

Index

Abduction explanation, 13

Abduction problem, 13

ABox Abduction explanation, 28

ABox Abduction problem, 27

ABox assertions, 97

ABox encoding, 21

Basic DL reasoning problems, 98

Completeness, 78

Concept description, 19

Conflict set, 32

Diagnosis, 31

Hitting set, 32

HS-tree, 34

Independent explanation, 56

Interpretation, 20

Model, 21

Nominal, 98

Observation derived assertion, 44

Pruned node, 36

Role inclusion axiom, 98

Semantic minimality, 15

Soundness, 68, 76

Syntactic minimality, 14

TBox axioms, 97

103

	Abstract
	Acknowledgements
	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Background Theory
	Abductive Reasoning
	Philosophical background
	Significance of Abduction
	Abduction as Logical Inference

	Description Logics and Ontologies
	The DL knowledge base
	Nominals
	Role inclusion
	Tableau algorithm

	Abductive Reasoning in DL: ABox Abduction
	Methods for ABox Abduction
	Minimal Hitting Set Algorithm
	ABox abduction via Minimal Hitting Set Algorithm

	Goal of this thesis

	Approaches for finding Semantically Minimal ABox Abduction Explanations
	One Axiom Approach
	Adjusted Tableau Algorithm without nominals GCI's
	Non-minimal explanations
	Redundant disjuncts
	The universal quantifier
	Observations with existential quantifiers
	Minimizing consistency checks with use of found models
	Complete algorithm
	Evaluation of SEMAR
	Implementation

	Optimising Approach
	Evaluation of SMC
	Implementation

	Results
	Performance

	Conclusion & Discussion
	Appendices
	Concept operators
	Additional DL knowledge base definitions
	Bibliography
	Index

