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Abstract

Cluster editing, also called graph clustering, of graphs with full infor-
mation is a broadly researched topic. It has its roots in network science
and computational biology. Closely related to this area is the research on
graph clustering on graphs with missing information, or otherwise marked
connections. This research aims to explore whether these marked connec-
tions can be used in a way to improve solutions of graph clustering. In
this paper a new algorithm is proposed and tested against an existing al-
gorithm for graphs with missing information. Their quality is compared,
and the run-time of the existing algorithm will be improved upon with the
new algorithm. In the end a new benchmark for algorithms concerning
themselves with clustering graphs with marked connections will be given.

1 Introduction

Studying the structures of graphs and how to manipulate them is a broadly
studied topic, which has a lot of relevance in todays society. Graphs can rep-
resent many things, like traffic networks or social networks. When taking the
example of social networks one might be interested in certain kinds of group-
ings within such a network. Here the concept of cluster editing of graphs, also
called graph clustering comes into play. Graph clustering is the act of taking
a graph and by changing some connections creating a graph consisting entirely
of clusters. By clustering a graph one is able to extract information about the
most tightly linked groups. Another example of where graph clustering is a vital
task is gene expressions. When information from a gene is used in creating a
product in the body, this is called gene expression. When different genes have
similar expressions, they should be placed in the same cluster, signifying that
the genes have a similar task. The genes do not have to have exactly the same
expressions, but if the expressions are close enough an algorithm will be able to
group them correctly.

Graph clustering algorithms are usually applied to observed data, which may
or may not be accurate. In the case of social networks one might not be able
to tell whether certain people have befriended each other if that information is
kept private, and in the case of gene expression the similarity between genes
concerning certain expressions may simply be unavailable. The degree of accu-
racy may be available to some extent, but it is usually unused when trying to
extract information from the graph. This is the origin of the idea explored in
this paper that the existing uncertainty could actually be used to improve avail-
able algorithms that deal with uncertain or incomplete information represented
in graphs.

This research aims to explore whether using circumstantial information, in
this case the notion of uniform distribution of missing information, can improve
an algorithm for clustering marked graphs. Furthermore it seeks to improve on
the practical run-time of the currently existing algorithm for clustering marked
graphs. Finally it seeks to create a benchmark for quality for marked graph
clustering problems that currently can not be analyzed.



For this research the focus was limited to undirected graphs with no parallel
edges and no loops, called simple graphs.

In Section 2 definitions used in this paper will be explained. Section 3 will
delve into the background of this research by relating it to previous work on this
subject area. The approach to the problem statement and the hypothesis will
be discussed in Section 4. The design and implementation of the algorithms
used in this research is detailed in Section 5. In Section 6 the details of the
tests chosen to be performed will be laid out. Section 7 will give an overview
of the results obtained from running the tests. Furthermore it will explain the
implications of these results, and they will be compared to the expectations
created in Subsection 4.2. Section 8 will contain the conclusion of the research,
give an answer to the problem statement, and summarize the vital points of
this paper. In the end there will be discussion of future research material in
Section 9, which seeks to lay a foundation for future work in this area, and state
additional unanswered questions about the research topic.

2 Definitions

In this paper we consider graphs. Whenever a pair of vertices {u, v} is mentioned
it will be assumed without further stating this explicitly that u # v. This paper
deals with two types of graphs. The first type consists of a set of vertices V', a
set of pairs of vertices F and a set of pairs of vertices N. The set E is defined as
the set of pairs of vertices {u, v} for which there is a connection between u and
v. This is what usually is considered the set of edges. The set N is defined as
the set of pairs of vertices {u, v}, such that {u,v} ¢ E. Pairs of vertices {u, v}
in F represent an explicit connection between the two vertices v and v. Pairs of
vertices {u, v} in N represent an explicit disconnection between the two vertices
u and v. To make this clear the pairs of vertices in E will be called real edges,
and the pairs of vertices in N will be called non-edges.

Throughout the paper this type of graph will be called an unmarked graph,
to contrast with the second type of graph that will be discussed later in this
section. For unmarked graphs the most well studied graphs are unweighted
graphs, but since weights will come into play in some of the used algorithms,
any unweighted graph will be turned into a weighted graph. Weights are ele-
ments of Z and are initially set to 1 for every pair of vertices in E and N. This
weight is the cost that it takes to transform a real edge into a non-edge, and
vice versa.

The second type of graph that is used is a graph similar to the first type,
but with an extra set F. Every pair of vertices {u,v} belongs to exactly one
of the sets F, N or F. Bodlaender et al. [2] calls the pairs of vertices in F'
fuzzy edges. In that paper they are defined as pairs of vertices about which it
is not known whether they are real edges or non-edges. This research builds
upon that concept, but tries to generalize the concept of special edges. As such



the general concept of the set of pairs of vertices F' is simply defined as the
set of pairs of vertices {u,v} that have a special marking. That marking could
be anything that sets it apart from pairs of vertices that do not receive such
a marking, such as the quality of being fuzzy. In this research these pairs of
vertices will thus be called marked edges. They will however still be treated as
fuzzy edges, in the sense that it is not known whether they are real edges or
non-edges and can not have a weight other than 0. Thus for the purpose of this
paper a more refined definition will be used. The set of pairs of vertices F' is
defined as the set of pairs of vertices {u,v}, such that {u,v} is not in E or N
and the weight of {u, v} is 0. Equivalently the type of graph that contains fuzzy
edges was called a fuzzy graph in [2], but in this paper the type of graph that
is studied containing marked edges will be called a marked graph.

For unmarked graphs the meaning of common neighbors and non-common
neighbors will be defined next. For marked graphs these terms will not be used.

For a pair of vertices {u,v} a common neighbor is defined as a vertex w
where w # u, w # v and for which the pair of vertices {u,w} is in E and also
the pair of vertices {v,w} is in FE.

For a pair of vertices {u,v} a non-common neighbor is defined as a vertex
w where w # u, w # v and for which one of two situations hold. Situation 1
is: The pair of vertices {u,w} is in E and the pair of vertices {v,w} is in N.
Situation 2 is: The pair of vertices {u,w} is in N and the pair of vertices {v, w}
isin F.

For unmarked graphs a connected component is defined as the maximal set
of vertices S for which there exists a path of only real edges between every two
vertices in the set. For marked graphs a connected component is defined in
exactly the same way.

For unmarked graphs a cluster is defined as a connected component, for
which between every two vertices within the connected component there exists
a real edge. So a cluster in an unmarked graph is a maximal set of vertices C,
for which for all {u,v} € C it holds that {u,v} is in E. Such a cluster is more
colloquially known in mathematics as a clique. Clusters in marked graphs are
defined in a somewhat different way. Fur unmarked graphs a cluster is defined
as a connected component, for which between every two vertices within the con-
nected component there exists a real edge or a marked edge. So a cluster in
a marked graph is a maximal set of vertices C, for which for all {u,v} € C it
holds that {u,v} is in F'U F. This is because there is no cost to turn all of the
marked edges between vertices in a connected component into real edges, thus
forming a cluster as for unmarked graphs.

A clustering algorithm takes as input an unmarked or a marked graph, and
gives as an output a graph consisting of only connected components that are
clusters. To achieve this edges can be modified. The cost of transforming a
real edge to a non-edge is the weight of that edge. The type of graph clustering
looked at in this paper focuses on turning non-cluster graphs into cluster graphs



with as little as possible cost.

This research focuses on the fixed parameter tractable approach to the prob-
lem like described in [11]. As such every run of an algorithm will be done with
a parameter k, which is the most cost that can be expended to find a solution.
If an algorithm has determined that the cost must exceed k the algorithm ter-
minates and returns that it has failed to find a solution within % cost.

During the execution of the algorithms pairs of vertices might want to be
fixed to being a real edge or a non-edge until the end of the execution of the
algorithm. When a pair of vertices is fixed to being a real edge, this fixing is
called making them permanent. From that point on that pair of vertices will
be called a permanent edge, meaning the connection between those two ver-
tices can not be broken anymore. When a pair of vertices is fixed to being a
non-edge, this fixing is called making them forbidden. From that point on that
pair of vertices will be called a forbidden edge, meaning no connection can be
established between those two vertices.

The quality of a solution for the problem of graph clustering on a marked
graph is defined in relation to the solution for graph clustering on the same but
unmarked graph. This quality can only be measured if the marked graph is
created from an originally unmarked graph, so a comparison can be created. If
in one of the solutions a pair of vertices is a real edge and in the other solution
a non-edge (or vice versa), that pair of vertices is considered different in the
solutions. The quality of a solution for the problem of graph clustering on a
marked graph is defined as the sum of the weight of the pairs of vertices that
are considered different by the aforementioned definition. This quality can be
measured in two different kind of ways. The first and most important measure
is when comparing the two solutions looking at the weights in the unmarked
graph. In this graph no pair of vertices is marked, and every difference will
have a weight greater than 0. The second measure is when comparing the two
solutions looking at the weights in the marked graph. In this graph the marked
edges have weight 0, so if an pair of vertices that is considered different was a
marked edge in the marked graph, this difference will not add to or subtract
from the quality. What this second measure does is forgive an algorithm for
marked graphs somewhat for differing in its solution with the algorithm for
unmarked graphs on pairs of vertices that were marked.

3 Previous work

The grouping of data points comes in many shapes and sizes. In [6] graphs were
partitioned into groups such that as few as possible edges cross between groups.
Note that the vertices in these groups do not all have to be connected. This
task is equivalent to creating a graph consisting of only connected components
by removing as few real edges as possible. The paper had the extra constraint
of having to create [ equal sized groups. Moving away from the grouping of



points to specifically the clustering of points, the clustering of graphs has been
described as an interesting topic in computational biology [1]. In this and other
studies like in [12] the topic of approximating a solution to the graph clustering
problem using heuristics is touched upon. However, as Gramm et al. [10]
expressed, for biological problems where full knowledge is available and the
underlying structures a perfect solution would give are sometimes too valuable
to approximate. The area of exact solutions is thus of more interest for problems
without marked edges.

In this area there has been some research on kernelization [5, 11]. Gram et
al. [11] give a simple branching strategy with running time O(2.27%). There is
also some research towards explicitly improving the branching of the algorithm
[10], where a branching strategy with running time O(1.92%) was developed.
The core of these papers is the basis for the unmarked algorithm implemented
in this paper.

There has been research about the implementation of this algorithm as well
[7]. The most important conclusion from this paper is that an algorithm based
on [11, 10] is as expected faster than “LP based and greedy based methods for
cluster editing”. Another area in this research that became relevant later on
in this research is the clustering of weighted version of unmarked graphs. The
papers [3, 8] discuss this problem. [3] gives a branching strategy with O(1.82%)
running time. However, since the starting graphs in this paper are unweighted,
this research forgoes implementing this improved running time, since it only
focuses on weighted graphs, which is not always used in this line of research.

Then there is research on the topic of clustering graphs with missing informa-
tion. There has been research [4] that explored among other things the notion
of graphs containing uncertainty or missing information, referring to them as
general graphs (as opposed to complete graphs where the presence or absence
of every edge at the start is known). The foundation for the research in this
paper was laid by Bodlaender et al. [2]. It discusses the kernelization of graphs
with missing information. It focuses on producing a good kernel for branching
towards a cluster graph. However, this research does not consider the impact
of the missing information on the result, which this paper aims to do. Fur-
thermore, the result given, while having a strictly deterministic kernel is very
slow, due to a very quickly growing exponential running time which limits its
practical implementation, as will be shown in this research.

4 Problem approach

The research question seems to lend itself to be answered well through experi-
mentation, since the use of circumstantial information is hard to quantify only
theoretically. The initial approach was to replicate the existing algorithm for
marked graphs, and to improve upon it by extra restrictions, trying to force the
result in the direction of what is considered by this research to be a result of
higher quality.



During testing however it came to light that the existing algorithm for
marked graphs can in practice only be run with very low parameters. The
results in Gramm et al. [11] concerning the clustering algorithm for marked
graphs that are presented as interesting are the polynomial time kernel reduc-
tion, and the kernel size of O(k? + 7). And while mathematically that is a neat
result, the branching process that would follow, which is necessary to actually
get a cluster graph, is not really highlighted in the paper, but tucked away at
the very end of the third section of that paper. There the authors acknowledge
a run-time of O((k? + 7)?*) for the entire process, where k% 4 r is the kernel
size, the 2 in the exponent is for getting the number of edges (real edges, non-
edges and marked edges) in the kernel, and the & in the exponent is the input
parameter.

In the problem with unmarked graphs the total running time was O(2.27% +
[V?), where |V'| was the number of vertices, 2.27 was the branching factor, and
the k in the exponent was the input parameter. The difference between the two
running times is the way in which branching is done. In the problem with un-
marked graphs the branching was done by picking one of three pairs of vertices
(where the possibilities were reduced to 2.27 per three pairs of vertices with
clever math) per branching step, where in the problem with marked graphs the
branching is done by picking one random pair of vertices out of the kernel per
branching step, giving O((k? + r)?) options per branching step.

Two points can be made about the algorithm for unmarked graphs not being
much faster than the algorithm for marked graphs. Firstly, having a parame-
ter k£ in the exponent does prevent either of the algorithms from ever solving
problems where many steps are required. Secondly the O(|V|?) does prevent
the algorithm for unmarked graphs from running on graphs with very many
vertices because of the long kernelization time.

However, as for the second point: extremely large graphs with very few ed-
its required to create cluster graphs is not a very interesting problem. This is
because assuming the pairs of vertices to be changed are distributed uniformly
most cases would consist of having a few clusters with one non-edge, or hav-
ing one real edge between two otherwise (almost) complete clusters. This is
demonstrated by the following randomly generated graphs with a large number
of vertices and a small number of steps to a solution:
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Figure 1: 2 randomly generated graphs with each having 40 vertices divided
into six clusters. Graphs are generated by same algorithm used for testing.
Visualization is by a self-written force-spring model.

The graph on the left requires fourteen steps to make into a cluster graph,
the right graph requires twelve steps. Parameters of £ = 12 are quite high as
will be visible in the results in Section 7. Both graphs are not even that large,
and already it is clearly visible that even when they are quite some steps away
from a cluster graph, clustering is only a trivial matter, and does not reveal
new and interesting information. The interesting problems are where multiple
cluster graphs can be made with the same order of magnitude number of steps,
so not being able to run the algorithm on graphs with many vertices with a low
parameter is not an issue.

The first point of not being able to solve problems where many steps are
required is somewhat valid since as Section 7 will show both algorithms fall of
at a parameter k that is not too high. However, there is still a significant differ-
ence in the parameters with which the algorithms can still be run. After some
experimenting it has been established that using the algorithm for unmarked
graphs about 500 branching operations per second could be done, and using the
algorithm for marked graphs about 270 branching operations per second could
be done, which was later reduced to 20. This reduction will be elaborated upon
in Subsection 5.4. The difference between 500 and 270 comes from the overhead
of setting every marked edge at the end of each branch, and is thus somewhat
dependent on the number of marked edges left before starting branching. For
the sake of simplicity 270 and for later runs 20 will be used in calculating the
cutoff point instead of setting a hard time limit, since most graphs will not per-
form orders of magnitude slower or faster. Since the branching number of 2.27
is larger than 2 (and the branching number for the algorithm for the marked
graphs is definitely larger than 2), the number of branches approaches the num-



ber of branching operations, so it can be assumed that respectively about 500,
270 and 20 branches per second can be checked. The following table gives the
time both algorithms would take for their branching phase for a few parameters
that might want to be used, given that respectively 500, respectively 270 and
20 branches per second can be visited.

k run-time in s k run-time in s k run-time in s
2 0.01 8 1.41 14 192.92
3 0.02 9 3.20 15  437.94
4 0.05 10 7.26 16  994.13
5 0.12 11 16.49 17 2256.67
6 0.27 12 37.44 18 5122.65
7 0.62 13 84.98 19 11628.44
Table 1: Expected run-time of branching in algorithm for unmarked graphs

k r run-timeins k r run-timeins k r run-time ins
2 4 1517 3 0 1968.30 4 0 15907286.28
2 5 24.30 3 1 3703.70 4 1 25836138.67
2 6 37.03 3 2 6561.33 4 2 40814668.80
2 7 54.22 3 3 11059.20 4 3 62902085.34
2 8 76.80 3 4 17877.07 4 4 94814814.81
2 9 105.78 3 5 27T887.17 4 5 140084664.30

Table 2: Expected run-time of branching in algorithm for

runs with lower parameters

marked graphs in

k r run-timeins k r run-time ins k r run-timeins
2 4 204.80 3 0 26572.05 4 0 214748364.80
2 5 328.05 3 1 50000.00 4 1 348787872.10
2 6 500.00 3 2 88578.05 4 2 550998028.80
2 7 732.05 3 3 149299.20 4 3 849178152.10
2 8 1036.80 3 4 241340.45 4 4 1280000000.00
2 9 1428.05 3 5 376476.80 4 5 1891142968.00
Table 3: Expected run-time of branching in algorithm for marked graphs in

runs with higher parameters

From Table 2 and Table 3 it is clearly visible that the pool of problems that
can be tackled with the current algorithm for marked graphs is very limited in
theory, while Table 1 shows that problems with a respectable size (considering it
is an NP-complete problem) can be solved by branching with the algorithm for
unmarked graphs. This was the inspiration to not only make a new algorithm
which performs better in quality of its result, but also orders of magnitude faster



than the current existing algorithm for marked graphs, so it can be applied to
small, but real problems, and not only to toy problems of very small size.

The newly developed algorithm is created with a run-time in the order of
magnitude of the algorithm for unmarked graphs. As such besides comparative
testing with the current algorithm for marked graphs a new benchmark will
be created for the solving of marked graphs of larger size. In the following
subsection the tests to be run will be laid out. Section 5 will then spell out the
exact design and implementation of the algorithms.

4.1 Methodology

As mentioned, the main goal was to improve on the quality of the result of the
algorithm, and to vastly improve its run-time. The quality of the result has
been described in Section 2, but to shortly reiterate: The quality of a solution
to the problem of clustering a marked graph, is the distance in cost from the
solution to the problem of clustering the same but unmarked graph. This can
of course only be measured if the unmarked graph is available. In reality this
will not be the case, but that is what this experimentation is for, to test how
well the algorithms perform, so when this information is not known there is an
indication of how close the solution is to the optimal one (on average). To get
this measure the marked graphs must be created from unmarked graphs, so the
results from two different clustering algorithms can be compared.

For different input parameters k and different graph sizes tests will be run.
For each combination of k and graph sizes multiple tests will be run. For lower
k and lower graph sizes more of these tests will be run, and for higher k& and
graph sizes fewer. This is because for higher k and graph sizes it is harder
for the algorithms to find solutions. To give the algorithms a chance to find a
solution at higher k and graph sizes more time per run will be available to the
algorithm, but as a trade-off fewer tests are performed to compensate for the
extra time this costs.

A single test consists of six main parts. The first is the generation of an
unmarked graph. This is done with an approximate target distance d from a
cluster graph, which will be explained in Subsection 5.1. Then this graph is
marked by a marking method that is explained in Subsection 5.2. Then the
three algorithms are run, with parameter k being d+ 2. This difference between
the expected distance and parameter is so more tests actually succeed, because
for this research results where a result could not be found because k was too
low are not usable, since they can not be compared, nor say something about
the running time of the algorithms. The algorithm for unmarked graphs is run
on the unmarked graph, which will be elaborated on in Subsection 5.3, and the
existing and new algorithms for marked graphs, which are going to be laid out
in Subsections 5.4 and 5.5, are run on the marked graph.

Finally the resulting cluster graphs will be analyzed in comparison to each
other and the input graphs. The information gathered from each test consists
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of the following:

Whether both algorithms for marked graphs were compared to the al-
gorithm for unmarked graphs. This is only applicable when all three
algorithms successfully found a cluster graph. The next items are only
considering these tests:

The number of marked edges in the marked graph
The number of clusters produced by the algorithm for unmarked graphs

The cost of the steps taken by the algorithm for unmarked graphs to find
a cluster graph

The cost of the steps taken by the existing algorithm for marked graphs
to find a cluster graph

The cost of the steps taken by the new algorithm for marked graphs to
find a cluster graph

The cost of the difference between the result of the algorithm for unmarked
graphs and the result of the existing algorithm for marked graphs, when
taking the weights from the unmarked graph

The cost of the difference between the result of the algorithm for unmarked
graphs and the result of the existing algorithm for marked graphs, when
taking the weights from the marked graph

The cost of the difference between the result of the algorithm for unmarked
graphs and the result of the new algorithm for marked graphs, when taking
the weights from the unmarked graph

The cost of the difference between the result of the algorithm for unmarked
graphs and the result of the new algorithm for marked graphs, when taking
the weights from the marked graph

Whether the new algorithm was compared to the algorithm for unmarked
graphs. This is applicable when at least the algorithm for unmarked
graphs and the new algorithm for marked graphs found a cluster graph.
Whether the old algorithm for marked graphs successfully found a cluster
graph is irrelevant here. The next items are only considering these tests:

The number of marked edges in the marked graph
The number of clusters produced by the algorithm for unmarked graphs

The cost of the steps taken by the algorithm for unmarked graphs to find
a cluster graph

11



e The cost of the steps taken by the new algorithm for marked graphs to
find a cluster graph

e The cost of the difference between the result of the algorithm for unmarked
graphs and the result of the new algorithm for marked graphs, when taking
the weights from the unmarked graph

e The cost of the difference between the result of the algorithm for unmarked
graphs and the result of the new algorithm for marked graphs, when taking
the weights from the marked graph

e Whether the algorithm for unmarked graphs failed because no solution
could be found.

e Whether the existing algorithm for marked graphs failed because no solu-
tion could be found.

e Whether the new algorithm for marked graphs failed because no solution
could be found.

e Whether the algorithm for unmarked graphs failed because it ran out of
time.

e Whether the existing algorithm for marked graphs failed because it ran
out of time.

e Whether the new algorithm for marked graphs failed because it ran out
of time.

Then the average (where applicable) of each test performed per k£ and input
size is calculated and stored. This data will then be analyzed to conclude an-
swers for the three questions of this research. Firstly whether the new algorithm
performed better in accordance with the given quality measure than the exist-
ing algorithm. Secondly whether larger parameters and thus larger and more
complex graphs can be clustered. And if so thirdly what the minimum quality
is expected of future algorithms on problems with those k& and graph size, by
giving a benchmark.

4.2 Hypothesis

There are two questions this paper aims to answer. The first one being whether
making use of available information in the form of marked edges can improve the
quality as defined in this paper of cluster graphs created from marked graphs.
Since the decision has been made to also make the algorithm an approximation
algorithm, the question the results will more specifically answer is whether mak-
ing use of available information in the form of marked edges can improve the

12



quality as defined in this paper of cluster graphs created from marked graphs
even with an approximation algorithm.

The expectation is that the new algorithm will perform quite well. Because
few marked edges will end up in clusters on average, very few clusters will be
formed that are not present in the solution of the algorithm for unmarked graphs,
and thus since the distance between the results will be small, the quality will be
considered very good, even though the algorithm is done through approximation.

However, since the parameters k used to compare the existing algorithm
for marked graphs and the new algorithm for marked graphs are expected to
be quite low because of the expected intolerance of the existing algorithm for
marked graphs for high parameters k, it is also expected that the existing al-
gorithm for marked graphs will perform decently well. With low parameters
simply few mistakes can be made. The strongest result would come from a lot
of marked edges that get set differently, which could make a difference in quality,
but this could very well average out to a low amount of incorrectly determined
marked edges with such small graphs.

In conclusion, the hypothesis about the quality difference is that the new
algorithm for marked graphs will perform only slightly, maybe negligibly better
than the existing algorithm for marked graphs on such small parameters.

The second question is whether the new algorithm for marked graphs can
take on larger problems, in this case larger graph sizes and higher parameters
k.

The hypothesis for this is that the new algorithm for marked graphs will
vastly outclass the existing algorithm for marked graphs, and will be able to
solve a lot more problems, from low to high parameters k and graph sizes,
and that there will be a limit where the existing algorithm for marked graphs
will simply not be able to solve anything, where the new algorithm for marked
graphs can still come up with solutions.

5 Design and implementation

There are five main parts of the implementation that are relevant for this re-
search. In this section the how and why of the design of each of the parts will
be explained, and a description of the practical implementation for each of the
designs will be given.

5.1 Generating unmarked graphs

Generating unmarked graphs is done according to four given parameters. These
are:

e Number of vertices in the graph n

e Number of clusters in the graph c

13



e Probability of a pair of vertices belonging to the same cluster being a real
edge a

e Probability of a pair of vertices belonging to different clusters being a real
edge b

The clusters are created using a bucket system. In this system ¢ buckets are
created, where each bucket represents a cluster. Each bucket gets assigned at
least one element. Then the rest of the elements are randomly divided over the
buckets. This is somewhat resemblant of the G(n, M) variant of the Erdés-Rényi
random graph model as defined in [9)].

Next the edges are created according to the G(n,p) variant of the Erdés-
Rényi random graph mode as defined in [9]. In this model each edge has a
probability of existing independently from the other edges. This translates to
our model in the way that each pair of vertices has a probability of being in
the set £ or N independently from the other pairs of vertices. In this case the
probability of whether a pair of vertices {u, v} is in E depends on whether u and
v are put in the same bucket in the previous step, representing whether they
are supposed to be in the same cluster or not. The probability that a pair of
vertices belonging to the same cluster are initialized as a real edge is a, and the
probability that they are initialized as a non-edge is 1 —a. Correspondingly the
probability that a pair of vertices belonging to different clusters are initialized as
areal edge is b, and the probability that they are initialized as a non-edge is 1—b.

This way of creating graphs ensures control over the approximate number
of connected components, and thus clusters in the graphs (whether there are a
lot or a few) without exactly predetermining the graph. Furthermore it gives
some control over how far the generated graph should stray from a cluster
graph. If the first probability would be set to 1 and the second to 0 one would
end up having generated a cluster graph. The further those probabilities are
moved from those values, the more steps it will take to find the set of clusters
determined during the bucketing process, and even a different cluster graph
within fewer steps might be found, which enforces the idea that this generation
is not too deterministic.

To evenly distribute the pairs of vertices that are keeping the graph from
being a cluster graph, all pairs of vertices should have equal odds of not be-
ing as would be expected in a cluster graph based on the initial buckets. This
means that the odds of a pair of vertices that are not in the same cluster being
a real edge should be the same as the odds of a pair of vertices that are in the
same cluster being a non-edge, thus @ must be 1 — b. Since a and b can now be
expressed in one another, the number of steps that would be necessary to turn
the graph into a cluster graph can now simply be approximated, which is n *x b
(or n * (1 —a)). Reversely, if the graph size and desired testing parameter k
is known, the probabilities of a¢ and b can be calculated such that the resulting
graph has on average k pairs of vertices that need to be changed to get a cluster
graph based on the initial buckets. However, since this is a probability distribu-
tion, sometimes less and sometimes more k is desired. As mentioned in Section
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4.1, because of this the probabilities are calculated with expected distance d as
a=1-(d/n) and b = d/n, and for the corresponding test set the parameter k
will be set as k = d 4+ 2 to ensure that more of the graphs are solvable with k&
or fewer steps.

The generator does have a small fail-safe built in, where the probability
of a pair of vertices belonging to the same cluster can not be set lower than
the probability of a pair of vertices belonging to different clusters, because that
would result in all of the clusters becoming loosely connected components, which
would be connected to most or all of the other loosely connected components,
resulting in a tangled mess where no cluster graph could be found in a reasonable
number of steps.

Finally after this generation is complete all the real edges and non-edges get
the weight 1. This represents an unweighted graph, the only starting unmarked
graphs that will be experimented with. However, having weighted pairs of
vertices will be necessary in algorithms later on, so they are created in advance.

5.2 Marking unmarked graphs

In this research a pair of vertices being marked represents a lack of knowledge
about whether the connection between those two vertices would be observed as
present or as absent if it would be possible to observe it, so whether they should
be real edges or non-edges in the graph. If a pair of vertices is marked in an
otherwise tight cluster, it might seem obvious that it should be a real edge. If
a pair of vertices is connecting two disjointed clusters, it might seem obvious
that it should be a non-edge. Later on it will be shown that this ‘obviousness’
is handled by the kernelization part of the algorithms. However, whether you
can easily guess the true state of a marked pair of vertices or not, it does not
affect the reason that it is marked, namely that somewhere in the graph there
is missing data. In this research the assumption was made that the lack of
knowledge is uniformly distributed, so every pair of vertices has equal odds of
being marked.

From this assumption the choice was made to pick a certain percentage of
pairs of vertices to be marked, and to mark that number of pairs of vertices
picked randomly. This is again akin to the G(n,p) variant of the Erdés-Rényi
random graph mode as defined in [9].

5.3 Algorithm 1.

The first algorithm, which solves the problem of graph clustering on unmarked
graphs has its implementation based on Gramm et al. [11]. The paper describes
a kernelization algorithm consisting of three rules. It goes on to describe a
simple branching strategy yielding a run-time together with the kernelization of
O(3*+|V|?) and a more refined branching strategy yielding a run-time together
with the kernelization of O(2.27% + |V |?).
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5.3.1 Kernelization

The implemented algorithm firstly performs the kernelization as described by
the three rules. Their exact definitions and the proof for their correctness and
time bound of these rules can be found in the paper they originate from. Here
only a rough idea of their working and their implementation will be given. These
rules are designed for unweighted graphs, but they can be used for weighted
graphs as well. Wherever the description of the rules speak of a number of pairs
of vertices, for weighted graphs you could replace the value with the total weight
of those pairs of vertices. This is also how every rule was implemented.

Design of Rule 1. Rule 1 states that if two vertices v and v have more than
k common neighbors, which as mentioned in Section 2 are the vertices they have
in common, it would take more than k steps to separate them for the end result,
so the two vertices would have to be connected, and thus the pair of vertices
{u, v} should be a real edge. If {u,v} is a non-edge, turn it into a real edge, and
reduce k by the weight of the pair. Then, when they are connected the pair of
vertices should be marked as permanent, indicating the pair of vertices can not
be changed anymore. The same goes for two vertices {u, v} that have more than
k non-common neighbors, which as mentioned in Section 2 are vertices being
neighbors of only one or the other of the two vertices. These two vertices can
not be connected in the end result, as it would take more than k steps to join
all the neighbors of one vertex to the other and vice versa. In the same way as
previously, the pair of vertices {u,v} should be turned into a non-edge if it is
a real edge (again reducing k by the weight of the pair of vertices), and in any
case be made forbidden. If both of the cases would apply it is obvious that a
conflict is reached, and there is no solution for the entire graph for the given k.

Implementation of Rule 1. This rule is implemented by creating two queues
in which initially pairs of vertices are placed that either have more than k
common neighbors, or have more than & non-common neighbors. Then a loop
is performed until both queues are empty. In each loop an element from a non-
empty queue is taken, and the appropriate above described action is performed
on it. Then a check is done if turning pairs of vertices from real edges into
non-edges and vice versa results in more instances of Rule 1 than in the initial
assessment. If these occur, the pairs of vertices for which the rule newly holds
are placed in the queue. These pairs of vertices however can not be permanent
or forbidden. If a pair of vertices is already permanent, and according to this
newly triggered rule it should be made forbidden (or vice versa), then there is
a contradiction, and the algorithm fails, since no solution can be found within
k steps.

Design of Rule 2. Rule 2 states firstly that for every triangle of vertices, if
two pairs of vertices are known to be permanent, the last pair of vertices must
be permanent, since otherwise those three vertices will be part of a connected
component that is impossible to make into a cluster. Secondly it states that
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for every triangle of vertices, if one pair of vertices is known to be permanent
and one pair of vertices is known to be forbidden, the last pair of vertices can
not be permanent (and thus must be forbidden), because if it were to be made
permanent those three vertices would be part of a connected component that
would be impossible to make into a cluster. The rule does not say anything about
triangles of vertices for which two pairs of vertices are known to be forbidden,
since the last pair of vertices could still be a real edge or a non-edge (so forbidden
or permanent), while all of the vertices could still end up in valid clusters.

Implementation of Rule 2. For this rule to trigger some pairs of vertices
will already have to be permanent or forbidden. So in the implementation there
is no preprocessing for this rule. This rule is implemented within the loop
mentioned in the implementation of the first rule. When the first or the second
rule triggers and indicate that a pair of vertices will have to be made permanent
or forbidden, it is placed in a queue. When it is dequeued and the appropriate
action is taken, every triangle of three vertices that this newly set permanent of
forbidden pair of vertices is in is checked, to see if Rule 2 holds in any way. If
it does, the pair of vertices in the triangle of three vertices that must be made
permanent or forbidden is placed in the corresponding queue that was created
for Rule 1. Here the same contradiction rule holds, if after checking Rule 2 a
pair of vertices can be found in both queues no valid end result can be found,
and the algorithm terminates. Incidentally this check is performed after the
check for Rule 1, but since after setting the pair of vertices no other action to
change a pair of vertices is performed in the loop, these two could just as well
have been swapped up.

Rule 3. Rule 3 states that all connected components which are clusters can
safely be deleted from the graph.

The implementation of this rule is quite straightforward. After all actions
for Rule 1 and 2 have finished a depth first search is performed from every (not
yet visited) vertex, and by counting the vertices and checking if the degree of
every vertex in the search tree matches the number of vertices in the search, it
can be determined if a connected component is a cluster, and if so its vertices
are marked to be removed from the graph.

5.3.2 Branching

After the kernelization is done and some vertices are not yet marked to be
removed from the graph it means that according to Rule 3 not every connected
component is a cluster yet. A branching will have to be performed to see if in
the remaining k steps a cluster graph can be found. Before the branching is
performed a new graph is created and every vertex from the kernel that is not
marked to be removed is copied to it, preserving the state of the pairs of vertices.
In practice this speeds up the branching process, compared to performing the
branching algorithm on the entire graph, because every pair of vertices that
is not in the kernel anymore does not have to be checked anymore. However,
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for the end result all of the vertices are still required, so the removed clusters
are saved separately, and if branching has successfully terminated, they are all
reinserted, giving the final cluster graph.

Design The branching process in [11] is described as follows: While k is larger
than 0 and the graph is not a cluster graph yet, at least one set of three vertices
must be present for which two of the pairs of vertices are real edges, and one is
a non-edge. This structure being present is preventing a connected component
from being a cluster. When such a triplet is found, a branching should be done.
Two different branching structures are described. The first branching described
is a branching in three ways. The first branch, called B1, is to turn one of the
pairs of vertices that is a real edge into a non-edge and make it forbidden. The
second branch, called B2, is to turn the other pair of vertices that is a real edge
into a non-edge and make it forbidden. Furthermore in this branch the pair of
vertices that is still a real edge has to be made permanent, and the other pair
of vertices that is a non-edge also has to be made forbidden. The third and last
branch, called B3, is to turn the pair of vertices that is a non-edge into a real
edge, and make all three pairs of vertices permanent. This gives a branching
factor of 3, and thus results in a run-time of O(3*) for the branching part of
the algorithm. This branching was initially implemented.

The paper also gives a more elaborate branching structure, resulting in a
lower branching factor. This branching structure still branches on the same
structure of three vertices, for which two of the pairs of vertices are real edges,
and one pair of vertices is a non-edge. However, it takes in consideration a
shortcut that can be taken. The branching is divided in three cases, of which
only one can occur at a time. The first case is that the two vertices that form a
non-edge do not share any common neighbor other than the one in the triangle
they are found in. In this case only Branch Bl and B2 are considered, so a
branching number of two applies for this case. In the second case the two
vertices u and v that form a non-edge do share at least one common neighbor x
other than the one in the triangle they are found in, and that common neighbor
is connected to the third vertex in the triangle w. In this case five branches can
be identified. The exact layout and proof for these branches can be found in the
paper by Gramm et al. [11]. In short, the five branches consist of respectively
1, 2, 2, 3 and 3 steps each. For some branches multiple steps are taken, because
taking one step, when considering the fourth vertex x leads to forced extra
steps. The last case looks similar the second, except the fourth vertex x is only
connected to the two vertices v and v in the triangle that form a non-edge, and
not to the other edge in the triangle w. Here a different branching is done, but
it still results in five branches which take 1, 2, 2, 3 and 3 steps each respectively.
From a simple recurrent relation, a* = a*~1 + a2 4+ a2 4+ a3 4 a*~3, the
branching number for this branching can be calculated to be 2.27, as indicated
by the paper. This branching was eventually implemented for this research and
used in the testing.
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Implementation The implementation of both branchings looked very similar.
The very first thing is to check whether £ is larger than 0. If not, the branching
terminates and returns a value indicating the branch has failed. If it holds the
branching on a particular branch actually starts. The branching starts with
a check whether all vertices are in clusters yet. If so the branching on this
branch terminates and returns the remaining k£ and the solution found. If not
a search is started over all triplets of vertices until a conflict triple is found,
a set of three vertices for which two pairs of vertices are real edges and the
third pair of vertices is a non-edge. As mentioned in the design such a conflict
triple must exist, otherwise all vertices would be in clusters. In the improved
version at this point it is determined which of the three cases is occurring.
After the case is determined (or simply right away for the simpler branching)
the algorithm makes the branching change as described in the design, it changes
the appropriate pair(s) of vertices, and lowers k by the correct amount for that
branching step. After this it recursively calls itself. When a branch is done and
returns, it saves the result to be used later if it is an improvement over the best
one so far, then sets the changed values back to before the branching, so the
graph looks as if that branch has not been gone into. After this it performs the
same actions on the remaining branches.

The two implementations of the branching algorithm are very similar, only
with the second one requiring a few extra checks, and a lot of extra branches.
The order in which the vertices are checked remains the same. However, during
testing it has come to light that the fourth vertex in the second and third case
of the more advanced branching, which is in the implementation always chosen
as the highest numbered vertex in the cases that it presents itself, influences
the order in which the branches are traversed. In the current implementation a
new result that is equal to the previous best result is not considered, whether
the resulting graphs are the same or different, only improvements are consid-
ered. The influence on the order was visible from the fact that running the
(deterministic) algorithms back to back on the same graph gave equally good
but different solutions. Not all graphs will have different solutions that can
be found in the same amount of steps, but for the ones that do the choice of
branching might influence the outcome. This is expected to affect the outcome
of this study, since the measure of accuracy does depend on the closeness to the
solution found by this algorithm. However, as will be elaborated on more later
on, the newly designed algorithm does save all of the different solutions with the
lowest cost, so if it performs well, at least one of the solutions should resemble
the solution chosen by the algorithm for unmarked graphs.

5.4 Algorithm 2.

The second algorithm, which solves the problem of graph clustering on marked
graphs has its implementation based on the paper by Bodlaender et al. [2].
The paper describes the graph clustering again through a kernelization based
on three rules, and an unmentioned branching process. The run-time the paper
mentions is n®M) +O((k%?+7r)?*). The polynomial time factor at the start of the
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expression signals that all operations in the kernelization process can be done
in polynomial time, and the second term indicates how long the branching will
take, considering the kernel size.

5.4.1 Kernelization

The first thing to consider for this algorithm is its kernelization. This consists
of two simple but nevertheless important rules, and a rule on which the kernel
size hinges.

Rule 1. The first rule states “Rule 3.1.1. If there is a connected component
C' with no non-edges, remove C”. The implementation of this rule is done by
checking for connected components connected by real edges, and then checking
whether these components had any non-edges between any two vertices. If not
the connected component is a cluster as defined for marked graphs, so it can
be removed. This is done by storing all of the vertices in the cluster in a list of
vertices not to be considered for the rest of the kernelization.

Rule 2. The second rule states “Rule 3.1.2. If Rule 3.1.1 does not apply
and there are more than k + 1 connected components, then answer NO”. This
rule is implemented by counting all connected components that do have non-
edges between their vertices. If this number is greater than k, the algorithm
terminates.

Rule 3. The third rule is a way to merge inseparable vertices. This is very
reminiscent of the first part of Rule 1 in the kernelization part of the algorithm
for unmarked graphs. However, because this algorithm is dealing with marked
vertices that have weight and thus cost zero, the requirement and execution
is defined somewhat differently. The requirement for the rule to trigger is the
presence of two vertices u and v where u # v which have a minimum cut between
them of at least k + 1. If that is the case the two vertices are fused together to
be represented by only one vertex for the rest of the algorithm. Lets call this
vertex z. The connection of z to all of the other vertices is handled in one of
three ways, depending on the situation.

For every vertex w where w # w and w # v one of the following three
situations can occur. Situation 1: The pair of vertices {u,w} is marked. In this
situation the new pair {z,w} gets put into the same set that {v,w} is in (E, N
or F) and inherits the weight of {v,w}. If instead {v,w} is marked the same
happens the other way around. Situation 2: The the pairs of vertices {u,w}
and {v,w} both are real edges or non-edges. In that case {z,w} will be of the
same type, and the weight of {z,w} will be the sum of the weights of {u,w}
and {v,w}. Situation 3: {u,w} is a real edge and {v,w} is a non-edge or the
other way around. In this case the values are subtracted from each other, and
the result will be the weight of {z,w}. The pair of vertices {z,w} will be a real
edge if the weight of the real edge is higher than the weight of the non-edge and
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vice versa. Furthermore the weight of the pair of vertices with the lower weight
is subtracted from k as in essence this is a number of steps taken towards a
solution. If however {u,w} and {v, w} have equal weight they cancel each other
out. In this case {z,w} becomes a marked edge, since it would get a cost of 0.
In this case also steps are taken towards the solution, and the weight of {u,w}
(or of {v,w} since they are equal) is subtracted from k.

After the new edge is established, the merger of the two old vertices will have
to be acknowledged. If they formed a non-edge before the merger, the weight of
the pair of vertices them is subtracted from k, since the merger represents the
pair becoming a real edge.

If now k has become lower than 0 the algorithm fails, since a necessary step
was taken that turned out to cost too many steps.

The newly developed algorithm uses these rules as well, but also concerns
itself with the number of marked edges. The last situation in rule 3 can add
marked edges to the graph, which at first glance might look to influence the
new algorithm that is going to use this kernelization. However, this addition of
marked edges is called for. One of the two pairs of vertices will definitely have
to be changed, but at this point it is impossible to tell which one. So together
the pairs of vertices are in a state of possibly both being turned into a real
edge or both into a non-edge, for no cost. Since this was also the definition of
a fuzzy edge and thus for this research a marked edge, the inclusion of these
newly created marked edges in the rest of the algorithm is completely justified.

Implementation of the rules The implementation of this kernelization is
quite straightforward. A loop is performed until no more rules can be applied.
In this loop clusters are attempted to be removed as per Rule 1, a check is done
whether more than k connected components that are not clusters are present,
and finally min-cuts larger than k are looked for, and if found handled according
to the description in the design. The min-cut is looked for by performing the
Edmonds-Karp Algorithm for finding maximum flow. The handling of the min-
cuts is done exactly as prescribed by the paper, as mentioned in the design.

After Rule 1, 2 and 3 have been applied exhaustively, if k is still above 0
and no solution has been found branching is executed.

5.4.2 Branching

Design The paper unfortunately does not give a branching algorithm. The
best indication it gives is in the line: “We have thus proved that the (k, r)-WFCE
problem has a kernel of size O(k?+7), where it is then possible to find a solution
just by trying all possible ways of editing its edges”. From this expression the
aforementioned O((k?+7)2%) is deduced. as said before, in this expression the 2
in 2k stands for getting the number of edges (real edges, non-edges and marked
edges, so every pair of vertices) from the number of vertices, and the & stands
for trying every possible combination of the pairs of vertices of total cost k.
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Implementation The branching briefly mentioned suggests an implementa-
tion where every combination of changing the sets the pairs of vertices are in
are tried, as long as the total cost of the changes remains below k. This turns
out however to be a very costly branching algorithm. The implementation for
this research uses a slight improvement, that can implicitly be deduced from the
paper. Instead of looping over all of the pairs of vertices and branching them in
the two directions of making them a real edge or a non-edge, we loop over all
of the pairs of vertices not in F' and branch on those. This results in somewhat
of the same behavior: For some branches the algorithm will reach an endpoint
because it has run out of cost to spend, for some it will reach an endpoint be-
cause all of the pairs of vertices have been branched on, even though not all k is
spent. This occurs in branches where along the way many pairs of vertices re-
main unchanged. This way we now for sure that every possible branch has been
visited (only considering the real edges and non-edge), and we know for sure no
solution has been skipped, if one is available. This last statement holds because
we can make the marked edges either real edges or non-edges for free. When a
branch has terminated all the connected components as defined in Section 2 are
checked for any non-edges between the vertices in that connected component.
If none are present all of the connected components can be turned into clusters
by changing the remaining marked edges that are connecting vertices within
that connected component to real edges for free, and changing all of the marked
edges that are connecting different connected components into non-edges for
free. If at least one connected component still contains a non-edge, the branch
returns that it has failed. This is because either there is no more k to spend, or
this particular branch has already made a decision for all of the edges whether
to change or not change them.

This alteration to the branching does not improve the worst case run-time,
namely when there are no marked edges, but it greatly improves the run-time in
practice, especially when there are lots of marked edges, which otherwise would
have all been tried both ways, resulting in a lot of extra branches on average.

As can be imagined trying every pair of vertices that is not a marked edge
as a real edge and non-edge still takes a lot of time. For the implementation
the design choice has been made to cap the maximum k to be branched on at
2. This is because if it was capped at 3, each branching would take over half an
hour. A time limit was placed on the run-time, which will be elaborated upon
in Section 6, and with a branching taking over half an hour the algorithm would
always return that it has not found a result because of running out of time. The
preference went to more often finding a result with the cap of 2 and sometimes
not finding a result because the cap was reached over not finding a result at all
because the time limit was reached every time. This does not mean that the
parameter k that the algorithm started with was capped to 2, only that after
the kernelization if the remaining k was still higher than 2, the branching would
only try to branch up until a cost of 2.

This recursive implementation checked 270 branches as mentioned in Section
4. However, with larger k and larger graphs this recursion eventually led to stack
overflows, since it is possible to recurse n*n times, where n is the graph size. To
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keep every k consistent, for larger k for all graph sizes the choice was made to
use a different implementation. In this implementation instead of recursing two
ways, recursion was only done when a pair of vertices was changed from a real
edge to a non-edge, and vice versa. To still look at all the possible variations
of changing the graph a loop was implemented. For every branch it looped
over all remaining pairs of vertices which had not been looked at yet, and for
each it did recursion by changing that pair of vertices from a real edge to a
non-edge or the other way, and leaving the other pairs of vertices unchanged.
To clarify: When in this loop the pair of vertices {4, j} had been branched on
and returned, assuming ¢ and j are both smaller than the graph size, the pair of
vertices {i,j} would be set back to its original state (in addition to the pairs of
vertices deeper in the recursion of course), and then the same branching would
be done on the pair of vertices {4, j+ 1}, thus effectively symbolizing the branch
where {4, j} would not be changed, but without having to go in recursion. This
branching method making use of a loop never encountered stack overflow issues
as expected from this implementation. However, since it does use a large loop it
severely decreased the speed of the branching algorithm, from 270 branches per
second to 20 branches per second, which is why these two values are mentioned
in Section 4. But as will be visible from the graphs in Section 7, this did not
affect the potency of this algorithm too much, since at lower k it was already
starting to perform bad.

5.5 Algorithm 3.

The final algorithm to be discussed is the newly created algorithm for the clus-
tering of marked graphs. It borrows elements from the first two algorithms,
at places simply copying existing parts of the algorithms, and together with
some additions it weaves them into a new algorithm that performs differently,
gives different results, and has different run-times. The algorithm is divided
into three distinct phases instead of two like the previous algorithms. There is
a preprocessing phase, a kernelization phase, and a branching phase.

5.5.1 Preprocessing

Design To start off there is a preprocessing phase. One of the problems this
algorithms aims to solve is the long run-time of the existing algorithm for marked
graphs. This is realized by using a heuristic. The algorithm for unmarked
graphs is deterministic, but as already mentioned previously, multiple equally
good solutions depending on the order in which branching is traversed can be
found. The same is even more so true for marked graphs. As an example: when
two vertices are each separately in a cluster of size 1, and there is a marked edge
between them, they can freely be transformed into one cluster of size 2. This
means that even following a perfect mathematically sound algorithm like the
second presented algorithm might not lead to the same solution as or one even
close to one the unmarked algorithm leads to. For this reason using a heuristic
to improve speed is deemed acceptable, as the non-deterministic nature of using
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random guesses does not worsen the result more than the previous algorithm
does with its uncertainty in the order of traversing the branches. This is also
complemented by completing multiple different searches using the heuristics,
and by having multiple results, one or more are bound to be closer to the
original solution.

Implementation The preprocessing consists of two steps. The first step is to
create a number of unmarked graphs from the marked graphs. This is done by
assigning the marked edges to be real edges or non-edges, completely at random.
Each such unmarked graph is created separately, so the unmarkings happen in-
dependent from each other, producing different unmarked graphs. The second
step is to run the unmarked algorithm on these unmarked graphs. What this
does is give a very broad approximation of a solution. The clusters that are
more likely to be present in the solution of the unmarked algorithm on the orig-
inal unmarked graph, based on the fact that the marking happened at random
as well, have a higher chance of appearing in these solutions. So when these
approximations are used, on average there should be a result between them ap-
proaching the result of the unmarked algorithm on the original unmarked graph.
These approximations will then be used later on, in between the kernelization
and the branching.

5.5.2 Overarching design

After this preprocessing the second and third phase of the algorithm begin. Be-
cause there is uncertainty, multiple solve attempts are being made. Each such
solve attempt goes through the kernelization phase. When the kernelization
phase is done, if k is still larger than 0, the kernelization has not terminated
with the message that no solution can be found, and there are still connected
components left that are not clusters, the approximations come into play. The
outcome of the kernelization is copied as many times as there are approxima-
tions. For every marked edge in the results from the kernelizations that are
going to be branched on, a choice is made whether it is a real edge, or a non-
edge. This choice depends on their state in the solution of the approximations.
If the approximation did not deliver a solution, then the states of the pairs of
vertices in the unmarked graph that was used as input for the approximated
solution is used as the approximation instead.

All of these changes from marked edges to real and non-edges are, as the
name of the graph used for this suggests, approximations. This choice is made
so the edges have a cost higher than 0, so the branching terminates much faster.
However, it is a good design choice to not have them get the same weight as the
other edges, seeing as in reality their weight was lower (namely 0). Thus the
weight of every other edge gets inflated by a given number, and & gets inflated by
the same number. When branching this ensures that even though the algorithm
is bound in time by the number of marked edges that can be branched on, they
are cheaper to branch on than the other pairs of vertices.
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When the algorithm terminates, the cost of changing the marked edges gets
added to k, and k is deflated again, so the final k is as if this inflation never
happened. What has to be accounted for though is that if you input a certain
parameter k, and the cost would be exactly k, the algorithm will terminate
without finding that answer if any marked edge is altered, because that would
lead during branching to a value of k of lower than 0. So when running a test
with this algorithm, if a certain input parameter k is estimated to be required,
it is wise to raise it with a certain value, depending on the inflation and the
expected number of marked edges to be changed to account for this. In the
implementation this is also covered somewhat by the difference between d, the
expected distance from a cluster graph, and input parameter k being equal to
k+ 2. After all of the pairs of vertices are given a state of real edge or non-edge
after the kernelization, a branching is performed for each such approximation.

5.5.3 Kernelization

But firstly, the kernelization works in the following way. Kernelization is per-
formed as previously for unmarked graphs, as described in the second algorithm.
However there is an extra step after finding cluster. When a cluster is found the
number of marked edges in it are counted. If there are more marked edges in a
cluster than a certain given number, one random marked edge from that cluster
is picked, and stored in memory. For this implementation the choice is made to
make that number 2. This number is large enough to tear up too large clusters
where many fuzzy edges are potentially present. However, if a lot of real edges
are present in the same cluster this prevents the forming of a good cluster early
on. This improvement is mainly for smaller clusters where it could go either
way. In these cases relatively a lot of marked edges could sway the algorithm
to make them a cluster. With not too large graph sizes there are a lot of such
smaller clusters expected, and as such for these specific experiments the number
2 was chosen. Other choices will be discussed in Section 9. It is important to
note here that this number that is preventing certain clusters that really want to
form from forming is only holding those clusters back in the kernelization pro-
cess. During the branching process larger clusters still have a chance to form
if their structure really indicates that all of their vertices should be connected.
When the kernelization is done, and one or more marked edges have newly been
put in storage this run because of too many marked edges being in a cluster,
every pair of vertices is reset to the state they were just before the kernelization.
Then the marked edges that are in storage are all changed to non-edges, and
the kernelization is run again. This storage is not emptied, but compounds with
each retry of the kernelization. This forces the number of marked edges to be on
average lower in the end result than without this step, without being extremely
strict on which marked edges can absolutely not be in clusters. The aim for the
algorithm is to push the search for a good cluster graph in the right direction.
If it would force the search in a tight corridor, good answers might be missed
in some cases, seeing as the marking has occurred randomly. This resetting
continues until after the rules have been applied exhaustively no clusters found
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during the kernelization contain too many marked edges.

5.5.4 Branching

After the kernelization is done and all of the marked edges are assigned to
be real edges or non-edges as mentioned in Subsubsection 5.5.2, a branching
is performed for each of the approximations. Since the deliberate action has
been taken to unmark the graphs, the branching itself is taken exactly from the
algorithm for unmarked graphs, specifically the improved branching algorithm
that gives a run-time of O(2.27%).

5.5.5 Finding a solution

After the branching is done on all approximations, the best solution is selected.
Then finally the results from every attempt are compared. As said these can
vary, because of random pairs of vertices being made non-edges during kernel-
ization, and because of the random unmarkings before branching. From these
results all of the ones with the lowest steps taken are saved. In all of the tests
performed this however turned out to be just one solution, since the steps all
led to the same solution, even considering the random unmarking, or led to a
worse solution.

6 Experiments

As mentioned in Section 4.1, tests were performed for mainly the input parame-
ters k and graph size s. For each combination of k£ and s a number of tests were
run, which depended on the parameters k. Also depending on this parameter
was the number of approximations in the preprocessing of the new algorithm for
marked graphs, the number of solve attempts for the kernelization process and
the inflation of £ and the weights of the pairs of vertices that are not marked
edges between the kernelization and the branching in the new algorithm for
marked graphs. Finally the maximum number of branches that can be tra-
versed during the branching part before the algorithms return that they have
ran out of time were dependent on the input parameter k. These dependencies
exist because of longer run-times at larger graph sizes for increasing parameters
k. To keep consistency within all runs per parameter k no other factors than s
were varied. In the next subsection the specific parameters will be mentioned.

6.1 Parameters

For k = 4 and k = 5 the following parameters were used:

e Number of tests performed and taken average out of = 10
e Number of approximations = 5

e Number of solve attempts = 5
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Size of inflation between kernelization and branching = 5

Maximum number of branching steps to be taken by the algorithm for
unmarked graphs = 60000

Maximum number of branching steps to be taken by the existing algorithm
for marked graphs = 32400

For k=6, k =7 and k£ = 8 the following parameters were used:

Number of tests performed and taken average out of = 5
Number of approximations = 4
Number of solve attempts = 4
Size of inflation between kernelization and branching = 3

Maximum number of branching steps to be taken by the algorithm for
unmarked graphs = 30000

Maximum number of branching steps to be taken by the existing algorithm
for marked graphs = 16200

For k = 6, k = 7 and k = 8 some of the parameters were lowered so the
algorithms would terminate in less time.

For k =9 the following parameters were used:

Number of tests performed and taken average out of = 5
Number of approximations = 4
Number of solve attempts = 4
Size of inflation between kernelization and branching = 3

Maximum number of branching steps to be taken by the algorithm for
unmarked graphs = 30000

Maximum number of branching steps to be taken by the algorithm for
unmarked graphs in the run of the new algorithm for unmarked graphs =
3750

Maximum number of branching steps to be taken by the existing algorithm
for marked graphs = 1200
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For k = 9 the limit of recursion for the existing algorithm for marked graphs
was reached, and the switch was made to the new variant using a loop as men-
tioned in Subsubsection 5.4.2. This is the reason for the steep drop in the last
parameter. Furthermore from here on the new algorithm for marked graphs
was branching deeper, and the choice was made to lower the time for the new
algorithm for marked graphs to be more in line with the other algorithm. Since
it performs multiple branchings dependent on the number of approximation and
number of solve attempts, the choice was made to give the branching algorithm
it borrows from the algorithm for unmarked graphs twice the time as the un-
marked graph divided by the number of approximations and the number of solve
attempts.

For k =10, k =11, k = 12, k = 13, £k = 14 and k = 15 the following
parameters were used:

e Number of tests performed and taken average out of = 3
e Number of approximations = 3
e Number of solve attempts = 3
e Size of inflation between kernelization and branching = 2

e Maximum number of branching steps to be taken by the algorithm for
unmarked graphs = 120000

e Maximum number of branching steps to be taken by the algorithm for
unmarked graphs in the run of the new algorithm for unmarked graphs =
26667

e Maximum number of branching steps to be taken by the existing algorithm
for marked graphs = 2400

For all of the parameters k mentioned the tests were performed on graph
sizes of 9 up until and including 24.

Another less obvious parameter used is the number of pairs of vertices to be
marked. This number is between 20% and 30% of all pairs of vertices in any
particular graph.

7 Results

From all of these runs a lot of data was gathered, over 4000 data points. From
all of this data some will not be discussed, like the average number of marked
edges or average number of clusters produced by the algorithm for unmarked
graphs, since those number did not behave unexpectedly, they stayed around
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their expected values. The results that are of most interest to the problem state-
ment are which of the algorithms for marked graphs performed better according
to the quality measure, which of the algorithms for marked graphs performed
faster, or phrased differently, was completed more often within the given time
limit, and a benchmark given by the new algorithm for marked graphs.

The next two graphs answer the first question:
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Figure 2: Differences in costs.

These two graphs only focus on £k = 4, k = 5, k = 6 and &k = 7. This
is because from k& = 8 on there are very few results for the existing marked
algorithm, and the ones that are present appear to be in line with the findings
for the first four values for k.

In these graphs wherever no values could be found the line is simply left out.
From these graphs it can be observed that already the existing marked algorithm
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is struggling to find solutions. When it does find solutions it is however on par
with the existing algorithm. The hypothesis about the quality difference was
that the new algorithm for marked graphs would perform only slightly, maybe
negligibly better than the existing algorithm for marked graphs on such small
parameters.

The results are close to the hypothesis. The new marked algorithm performs
only slightly, almost negligibly worse than the existing algorithm for marked
graphs. The parameters these can be compared on are even smaller than ex-
pected, so it falls well within the confines of the small parameters mentioned in
the hypothesis. Unfortunately from these results we can not conclude that the
new algorithm performs better in quality than the existing algorithm. What
can be concluded from the difference between the first and the second graph
is that both algorithms have about an equal decrease in mistakes made when
discounting the marked edges, since the second graph looks almost like a down-
shifted version of the first graph.

The second question about which algorithm performed better overall can be
answered by the following graph:

Succesrate of algorithms

B A

WV Il il
i \/ \ \

1|
}l

Rl

= Existingmarked algorithn

——New marked algorithm

Figure 3: Success rate of the algorithms.

The green line indicates the success rate of the algorithm for unmarked
graphs. This algorithm sometimes failed because the solution took more than
k steps, and very occasionally since it ran out of time during branching. But
otherwise it had a very high success rate, which is not unexpected since that
was what the runs were tailored for.

The blue line indicates the success rate of the existing algorithm for marked
graphs. This algorithm had a lot of success for smaller k, but as k increased it
only had very limited success for small graph sizes while having no success for
large graph sizes, and from a certain point it had no success at all anymore.
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The red line indicates the success rate of the new algorithm for marked
graphs. This algorithm exhibits a very graph size dependent behavior. For
every k it performed very well for small graph sizes, even going so far as to
occasionally have more success than the unmarked algorithm, but performing
very poorly at larger graph sizes.

For low k the existing algorithm for marked graphs finds solutions a little
more often for large graphs, but otherwise the new algorithm for marked graphs
finds decisively more solutions, and can run for far larger k, thus vastly improv-
ing on the usability in practice over the existing marked algorithm.

The failure rates of the algorithms for marked graphs are divided in the
category of not finding a solution within & steps, and not finding a solution
within the time limit. The following two bar graphs indicate in red that the
algorithm failed because it ran out of time, and in blue that it could not find a
solution:

= New marked failed

ran out of time

isting marked failed

= Existing marked ran out of time

Figure 4: Failure reasons of the algorithms. The top graph is for the existing
algorithm for marked graphs. The bottom graphs is for the new algorithm for
marked graphs. The y-axis in each of the graphs is increasing k and graph size
from bottom to top.
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These graphs further clarify that the reason the new algorithm for marked
graphs failed for larger graphs was not that it ran out of time, but that it did
not find a solution. This can be explained by the fact that larger graphs contain
more marked edges. In the inflation step of the algorithm these marked edges
get a fraction of the cost of a pair of vertices to change. But these fractions
can add up, and eventually prevent a solution from being found. The solution
to this would be to estimate the number of marked edges, and thus roughly
estimate the number of extra steps needed to create a cluster graph because
of the weights of the marked edges, and add these extra steps (divided by the
inflation factor) to the parameter k before running the graph. This would slow
down the branching process somewhat, so this is a consideration that would
have to be made when running the algorithm on an unknown problem.

The existing algorithm for marked graphs however clearly fails many times
because of its inability to find solutions within the given time limit, since it runs
so slow and requires so many branching steps.

Finally a benchmark is created for algorithms for marked graphs. The next
graph shows how far currently the found solutions are on average from what the
deterministic algorithm for unmarked graphs found. It shows in blue what the
real distance is, and in red what the distance is when not considering incorrectly
set marked edges to be mistakes:
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Figure 5: A benchmark for marked graphs.

Except for the spike at & = 13 and a graph size of 14, this benchmark
indicates that quality of the result is as can be expected dependent on k, but
the distance from the solution of the algorithm for marked graphs should not
increase too rampantly.
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8 Conclusion

This research has aimed to explore whether using circumstantial information,
in this case the notion of uniform distribution of missing information, can im-
prove an algorithm for clustering marked graphs. Furthermore it has sought to
improve on the practical run-time of the currently existing algorithm for clus-
tering marked graphs. Finally it has sought to create a benchmark for quality
for marked graph clustering problems that currently can not be analyzed.

By analyzing the design and implementation of the currently existing algo-
rithms for unmarked and marked graphs their strengths and shortcomings have
become apparent. The strengths were used in creating a new design and imple-
mentation of an algorithm for clustering marked graphs, while the shortcomings
were tried to be avoided.

For the tested parameters the new algorithm does not outperform the cur-
rently existing algorithm in means of quality as defined in this paper, but also
does not under perform in comparison. Since the new algorithm uses a heuris-
tic this indicates that an improvement on the currently existing algorithm is
definitely not out of the question, but this research has not yielded one.

The practical run-time was clearly shown to be reduced in Section 7, since
many more graphs were clustered within the time bounds by the new algorithm
for marked graphs than by the existing algorithm for marked graphs. Clearly
using approximations as a heuristic greatly speeds up a search.

Finally a new benchmark was created for clustering marked graphs, which
surely can be improved upon. This benchmark will serve as a sanity check for
future development in this area, giving future research a goal to outperform.

9 Further research

Some theoretical and some practical optimizations were not implemented in this
research. Future research in this area can definitely benefit from analyzing and
implementing these. The main optimizations are:

e The branching strategy for the algorithm discussed in Bodlaender et al.
[2] could be further optimized. More research can definitely be done us-
ing that algorithm, and better implementations than recursion over all
branches or looping as discussed in this paper must be possible.

e A different heuristic could be used for the newly developed algorithm. This
heuristic has a relatively long preprocessing, since the unmarked algorithm
has to be run multiple times.

e The inflation used in the newly developed algorithm was relatively small.
This value is a trade-of between speed, quality, and solvability. Higher
inflation values could be experimented with. They would make the marked
edges relatively cheaper. This would slow the process down, but perhaps
keep less mistakes introduced during the heuristic.
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The maximum number of marked edges per cluster during kernelization is
capped at 2 in this research. Different values for this cap could be explored, and
even a dynamic cap, depending on either the number of marked edges, k, graph
size, cluster size, or a combination of those factors could be explored. This cap
could make a big difference in larger graph sizes.

Furthermore there is research to be done on how the number of marked edges
affects the quality of the results in general.

There might be applications where there are different kind of marked edges,
or where marked edges can also be real edges or non-edges. These situations
are still left to be explored.

Finally a very interesting technique that was cut from the implementation
for this research was the automated branch generation algorithm described in
Gramm et al. [10]. This automated branching could further speed up the process
when using the heuristic as described, since the automated branch generation
would greatly benefit the unmarked branching algorithm that was used in the
newly developed marked algorithm.
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