
Multi-objective LTGA

Figure 7.3: Comparison of MO-LTGA with a varying cluster ratio

The results shown in �gure 7.3 are quite clear. Using cluster ratios MO-LTGA is only
able to solve problem instances of sizesn 2 f 25; 50g. For n = 100 MO-LTGA is not able
to solve the trap function anymore. For n = 50 MO-LTGA already needs about as many
evaluations as MO-GOMEA needs forn = 100. This shows that using a cluster ratio is
asymptotically worse than using dedicated clustering in objective space for this problem.

There are a couple of reasons why using cluster ratios leads to such poor results.

� A random point is selected and the t � 1 closest points are added to the cluster.
Outliers are therefore less likely to be included in such a cluster as they have less
points close to them. The points that are most likely to be included in the cluster
are points that are closer to the middle in objective space and points that are in
hotspots. This causes the search to be biased towards the area of the objective space
that is the most crowded even though this is not necessarily an area where the most
progress can be made.

� Each generation a di�erent part of the population is optimized. Even though on
average a solution is once everyS=t generations there will be a high variance between
solutions because of the behaviour as mentioned previously. Some solutions are in-
cluded more often than others which will e�ectively decrease the e�ectiveness of the
population.

As the approach taken by MO-GOMEA to create a multi-objective variant of LTGA
seems to produce better results it might be useful to take some inspirational cues from
MO-GOMEA in order to improve MO-LTGA. In the next chapter we will take a look at
how MO-GOMEA works and how it can be used to improve MO-LTGA.

Chapter 7 29

Chapter 8

Multi-objective GOMEA

A di�erent approach to extending LTGA for multi-objective problems was done by Luong
et al. [2] with the Multi -objective Gene-pool Opti mal Mix ing Evolutionary Algorithm
(MO -GOMEA). Their research was considered as a starting point, but it was decided not
to take this algorithm as a starting point as the main goal of this thesis is to look at the
e�ectiveness of linkage learning for multi-objective problems, and at �rst MO-GOMEA
seems overly complex. MO-GOMEA performs very well against NSGA-II, but LTGA-like
algorithms can also perform very well on problems without any structure. Optimal mixing
can still work very well, even without a good FOS model. In that case it just performs
random crossover in a local hill climbing style, which for many problems makes it still a
very competitive algorithm. We can use MO-GOMEA however as a reference as the paper
includes benchmarks on baseline multi-objective problems.

8.1 Multi-objective GOMEA

MO-GOMEA di�ers in a number of ways compared to traditional LTGA. Like many multi-
objective algorithms it keeps an archive of all non-dominated solutions ever found, called
the elitist archive. Since this elitist archive has no bound it can potentially be larger than
the population size MO-GOMEA uses while searching. This means that solutions which
are in the archive may be evicted from the population in favour of a new local Pareto
optimal solution. Since every solution that makes it into the population is also added to
the archive, the archive is always equal to or strictly better than the population. When
the algorithm �nishes this elitist archive is returned as solution instead of the current
population.

In regular LTGA a linkage tree is learnt over a selection of the population, where
the selection is determined by tournament selection. In a MOP di�erent parts of the
search space may need to be treated separately. The linkage structure in one region may
be completely di�erent from another region. MO-GOMEA does this by clustering the
solutions in the population based on their position in objective space. For each cluster a
separate linkage structure is learnt. In LTGA it is standard to learn the linkage tree over
a subset of the population. This subset is selected through tournament selection. Since
tournament selection is not trivial to do in a MOP this also needs some modi�cation,
however exactly how the tournament selection is done in MO-GOMEA is not mentioned
by Luong et al. [2]. Once the model is learnt for a given cluster recombination is done.
Recombination of solutions also happens within clusters, so solutions are only recombined
with other solutions which are part of the same cluster. Clustering is done using the
balanced k-leader-means clustering algorithm.

The balanced k-leader-means algorithm is an adaptation of the k-means clustering
algorithm. In regular k-means clustering the initial k clusters are selected randomly. To
ensure a good initial spread of clusters balanced k-leader-means starts of by selecting an

30

Multi-objective LTGA

extreme point in one of the m objectives. The next leader is the point that is the furthest
away from the initial leader. Then the third leader is chosen as the point that is the furthest
away from the �rst two leaders. This process is repeated until k leaders are chosen and
regular k-means clustering is performed.

After the k-means clustering is done there is no guarantee how large each cluster is. To
ensure that each cluster has a minimum oft = 2

k jP j solutions, wherejP j is the population
size. Clusters which are too small are expanded to include their nearestt points. Clusters
that are too large are trimmed down to t points by removing the points that are the
furthest away. This means that there is overlap between clusters, an average solution is
part of at least 2 clusters, but it is also possible solutions are not part of any cluster at
all.

For extreme clusters, clusters that have the most extreme value in at least one par-
ticular objective, classic single-objective optimization is performed. Multi-objective algo-
rithms struggle to optimize these extreme regions of the objective space and therefore
single-objective optimization is preferred.

Finally the acceptance criterion is changed for the non-extreme clusters. In single-
objective optimization LTGA accept solutions that have equal or better �tness. MO-
GOMEA accepts a solution o0 over o if o0 dominates o, denoted o0 � o, if o0 is accepted
into the elitist archive, or if the �tness is the same in all dimensions (but the bits are
di�erent, this is similar to accepting equal solutions in single-objective).

8.2 Forced Improvement

To improve certain types of problems like Max Cut forced improvement has been added to
the LTGA and GOMEA family of algorithms as an optional feature. The �rst version of
forced improvement was introduced by Bosman and Thierens [15]. When optimal mixing
is unable to improve a solution, for example when there are large plateaus in the search
space, forced improvement tries to improve upon the current solution by mixing the cur-
rent solution with the best solution in the population. Forced improvement is only used
selectively, since mixing solutions with one parent solution exclusively decreases diversity.
The only situations in which forced improvement is used are:

� When after one round of optimal mixing, the solution is unchanged.

� When after 1 + blog10 nc generations the best solution in the population has not
changed. The number of generations for which the best solutions has not changed is
also called the no-improvement stretch (NIS)

Whilst forced improvement is not used for every problem, Luong et al. [2] included it in
MO-GOMEA. In MO-GOMEA forced improvement is done with a random solution from
the elitist archive for each FOS subset, instead of the best solution for all FOS subsets.
Furthermore the no-improvement stretch is rede�ned as the number of generations in
which the elitist archive remains unchanged. When forced improvement is still unable to
improve the solution, the solution is replaced by a random solution from the elitist archive.

The pseudocode for multi-objective optimal mixing can be found in algorithm 7 and
the MO-GOMEA algorithm can be found in algoritm 8.

Chapter 8 31

Multi-objective LTGA

Algorithm 7: Multi-objective Optimal Mixing
Input : An individual o, a cluster C, a FOS F and elitist archive P.
Output : An improved o�spring solution o.
changed false
for F i 2 F do

o0 o
p Random(C) /* Random donor from the cluster */
o0

F i pF i /* Copy over the bits from donor to child */
addedToArchive updateArchive(P; o)
if o0 6= o and (o0 � o or addedToArchive or f (o0) = f (o)) then

if addedToArchive or o0 � o then
NIS 0 /* Only if it is strictly better. */

end
changed true
o o0

end
end

/* Do forced improvement if necesary */
if : changedor NIS > 1 + blog10 nc then

changed false
for F i 2 F do

p Random(P) /* Random donor from the elitist archive */
o0

F i pF i /* Copy over the bits from donor to child */
addedToArchive updateArchive(P; o)
if o0 6= o and (o0 � o or addedToArchive or f (o0) = f (o)) then

if addedToArchive or o0 � o then
NIS 0 /* Only if it is strictly better. */

end
changed true
o o0

end
end

end
if : changedthen

o Random(P)
end
return o

32 Chapter 8

Multi-objective LTGA

Algorithm 8: Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm
Input : A given population size S
Output : A local Pareto set P.
P ;
NIS 0
population InitializeRandomPopulation (S)
for i 2 population do

updateArchive(P; i)
end
while : TerminationCriterion() do

C performClustering (P; k)
for Ck 2 C do

Fk LearnLinkageT ree (Ck)
end
for individual 2 population do

l getCluster(C; individual)
if isExtremeCluster (l) then

individual SO-Optimal -Mixing (individual; C l ; F l ; P)
else

individual MO -Optimal -Mixing (individual; C l ; F l ; P)
end

end
end
return P

In order to improve the performance of MO-LTGA it may prove fruitful to incorporate
some aspects of MO-GOMEA into MO-LTGA to solve its performance problems. Chapter
9 will focus on these adaptions.

Chapter 8 33

Chapter 9

Multi-objective Linkage Tree
Genetic Algorithm with clustering

As shown in chapter 7 the approach taken with MO-LTGA is inferior to a clustering
approach. To make MO-LTGA more competitive, as it will also be compared to other
algorithms, and make sure that the sampling/clustering method does not prevent the
algorithm from performing decently, MO-LTGA is adapted to be more like MO-GOMEA.
As there is no source code available for MO-GOMEA and from the paper it is not 100%
clear how everything is implemented, like the multi-objective tournament selection, the
implementation is slightly di�erent from MO-GOMEA.

Three features of MO-GOMEA are carried over to MO-LTGA:

� Use clustering with a �xed amount of clusters

� Perform single-objective optimization in extreme clusters

� Forced improvement

The clustering method MO-GOMEA uses is described in section 8.1. MO-LTGA will
use a slightly di�erent clustering method. Ideally when partitioning a population of size S
among c clusters, each cluster has exactlyS

c clusters. MO-LTGA solves this problem by
modifying the standard k-means clustering algorithm in a way that clusters have a �xed
size. The reason for this is that with MO-GOMEA's clustering method a solution can
be part of multiple clusters. In LTGA an o�spring solution replaces its parent solution if
it is equal or better. However this will lead to problems if a solution is part of multiple
clusters. The same parent will be used for recombination multiple times, but what happens
if another cluster already threw that parent out of the population? It is not clear how this
is handled in the MO-GOMEA paper. To avoid this scenario a clustering method is used
that divides the population in such a way that each solution is part of exactly one cluster.

In standard k-means clustering, each iteration a new mean is calculated and points
are assigned a cluster which mean they are closest to. This process is repeated until the
clusters are stable, but there is no guarantee on the �nal size of each cluster. In order to
ensure the size of each cluster, when assigning points to a cluster, a point is only allowed
to be added to that cluster if the size of that cluster does not exceedS

c . Otherwise that
point will be assigned to the next closest cluster that does not exceed its size.

This method does have two drawbacks however. Firstly the algorithm is no longer
guaranteed to converge to a stable arrangement. Without restrictions on cluster size with
k-means clustering the mean squared error is guaranteed to decrease or remain equal. Now
with this new size restriction the algorithm will stop as soon as the mean squared error
stops decreasing. Secondly as the algorithm just �lls a cluster until it is full, a situation
might occur where a point p1 could get assigned a cluster� and �ll it up and push a next

34

Multi-objective LTGA

point p2 to cluster � , even thoughp1 is closer to � than p2.
For extreme clusters single-objective optimization is performed like MO-GOMEA.

Even if a cluster is the extreme cluster in multiple objectives, single-objective optimization
can only be done in one objective at a time. If such a scenario occurs one objective is se-
lected randomly to perform single-objective optimization in for that particular generation.

The implementation of forced improvement is identical to MO-GOMEA's as described
in section 8.2. The pseudocode for MO-LTGA is identical to MO-GOMEA's as described
in algorithm 8 as the di�erences between the two algorithms are contained within the
various subroutines.

9.1 MO-LTGA with clustering: Experimental Study

In this experiment MO-LTGA with clustering is compared to MO-LTGA with sampling.
The setup for this experiment is identical to the experiment in section 7.3. Figure 7.3 is
included as reference.

Figure 9.1: Performance of MO-LTGA with clustering with a varying amount of clusters
with and without forced improvement compared to MO-LTGA with sampling

Figure 9.1 shows both the number of evaluations required as well as the resulting pop-
ulation size needed as found by the bisection process. The performance of MO-LTGA with
clustering is much more in line with MO-GOMEA. With the exception of MO-LTGA with
3 clusters for a problem size of 400 without forced improvement, all variants are able to
solve the trap - inverse trap functions up to the maximum size of 400. The general per-
formance characteristics of all variants are the same. The number of function evaluations
required scales polynomially with the problem size. When comparing the number of eval-
uations to MO-GOMEA as shown in �gure 7.2 we can see that MO-LTGA requires more
function evaluations than MO-GOMEA, but it is still in the same order of magnitude.
Just like MO-GOMEA the number of clusters has no large impact, although it seems that
more clusters require slightly more function evaluations.

When looking at the population sizes things get more interesting. Luong et al. [2]
includes a similar graph and the population size required by variants of MO-GOMEA is
between 40 forn = 25 to 100 for n = 400. If we take a look at the population sizes for
MO-LTGA the picture looks very di�erent. The required population sizes ranges from in
between 90 and 200 forn = 25 up to 250 to 600 for n = 400.

Chapter 9 35

Multi-objective LTGA

Lastly if we look at how forced improvement a�ects performance it appears to not have
a signi�cant inuence on the number of required function evaluations, but it does lower
the population size needed.

Conclusions

One clear conclusion that can be taken from �gure 9.1 is that using cluster ratios is inferior
to using dedicated clustering. Cluster ratios perform asymptotically worse than clustering.
The stochastic process of picking a point in the objective space and performing linkage
learning and recombination in that part of the objective space iteratively without ensuring
a good spread over the objective space across multiple iterations performs worse than just
dedicated clustering. Using a variant of balanced k-leader-means clustering has the same
performance characteristic as MO-GOMEA, with and without forced improvement. The
only di�erence is that MO-LTGA needs a larger population as the problem size increases,
whilst MO-GOMEA barely sees any increase in population size. Forced improvement does
not change the performance in any signi�cant fashion. Forced improvement was initially
added to improve the performance of LTGA-like algorithms on MAXCUT by Bosman and
Thierens [15]. As it has no signi�cant impact it is better to exclude from the algorithm. It
is yet another special corner case feature and it is better to keep the algorithm as simple
as possible.

MO-GOMEA's clustering algorithm performs slightly di�erently. The clustering algo-
rithm that MO-GOMEA uses performs a balanced k-means clustering and afterwards each
cluster is expanded to a size oft = 2

k S, where S is the population size. MO-LTGA adapts
the balanced k-means clustering itself to ensure the cluster sizes are of a certain size during
the balancing, as explained in the beginning of this chapter. This might explain some of
the remaining di�erences in performance and the lack of increase in needed population
size, but further investigation would need to be done. This is out of scope for this thesis.

Although there are some di�erences left between MO-LTGA and MO-GOMEA they
are not of major concern at this moment. The goal is not to have the best multi-objective
evolutionary algorithm, but to have a good enough algorithm to analyze the e�ectiveness
of linkage learning. The approach taken by MO-LTGA with sampling had some major
aws which prohibited it from being e�ective enough to be used. Now with MO-LTGA
with clustering we can take a look at some other benchmark functions.

9.2 Random Linkage

To be able to look at how linkage learning a�ects the performance of MO-LTGA it needs
to be compared with a variant which does no linkage learning. In order to do this a variant
of MO-LTGA is constructed which uses a random linkage tree structure. Whereas MO-
LTGA uses a linkage tree created with the UPGMA algorithm as described in section 3.5,
this new variant will use a linkage tree that is created randomly.

LTGA creates a linkage tree by starting with a univariate FOS structure and then it
merges sets of problem variables based on joint entropy. Instead of using joint entropy the
merging of can be done at random and a random linkage tree is constructed.

Any di�erence in performance between these two variants must then be the result of
the presence or absence of linkage learning.

9.3 Linkage Learning: Experimental Study

In the following experiments a closer look is taken on how linkage learning e�ects the
performance of MO-LTGA. In each experiment a di�erent parameter is varied. In the

36 Chapter 9

Multi-objective LTGA

di�erent experiments standard MO-LTGA with clustering is denoted by MO-LTGA-LL,
where LL stands for linkage learning. The variant that uses a random linkage tree is
denoted by MO-LTGA-RL where RL stands for random linkage.

9.3.1 Clustering on � MNK and � MNNK problems

To see how using a cluster ratio compares do dedicated clustering with and without linkage
learning an experiment is done on� MNK and � MNNK instances with varying covariances
for each problem, � for � MNK and � for � MNNK. The used algorithms are MO-LTGA
with sampling and MO-LTGA with clustering, each using standard linkage and random
linkage. The results can be seen in �gure 9.2

Figure 9.2: Comparison of two clustering variants of MO-LTGA both with and without
linkage learning

There are some di�erences between the performance of all MO-LTGA variants between
� MNK and � MNNK, but they share some common trends. For� MNK with a low value of
� there is no signi�cant di�erence between clustering variants. However, when� increases
and the correlation between the objectives decreases the performance of the cluster ra-
tio algorithms plummets. For both clustering variants of MO-LTGA the linkage learning
variants always outperform their random linkage counterparts. The type of clustering al-
gorithm has a much larger impact though on performance. For� � 0:3 the random linkage
clustering variant outperforms the linkage learning cluster ratio variant. As � gets larger
and the linkage structure is shu�ed more and more di�erently between the objectives it
is of no surprise that the size of the hypervolume of the local Pareto front drops. After�
reaches 1 the size remains stable which suggests that for� � 1 the linkage structure of
� MNK is shu�ed so much that it appears to be random.

For � MNNK the results are a bit di�erent. If we look at the extremes, � = � 0:5 and
� = 1, there is quite a remarkable pattern. For � = � 0:5 the cluster variants perform
clearly better. For � = 1 The linkage learning algorithms outperform the non-linkage
learning variants, regardless of clustering used.

When � = 0, � MNK is just a single objective problem. Therefore it is not surprising
that regardless of the clustering technique it manages to outperform random linkage by
quite a margin. What is more surprising is that the performance of the cluster ratio al-
gorithms drop severely afterwards. When the correlation between the objectives decreases
using dedicated clustering performs signi�cantly better regardless whether linkage learn-
ing is used. Since it also happens for random linkage this shows that the recombination
is done more e�ciently using separate clusters, instead of one big cluster. The results of
the � MNNK instances also show this. With a very low correlation there are more Pareto
optimal points and linkage learning seems to be o� less importance, for both algorithms
the linkage learning variant perform similarly to their random linkage counterpart. There
is a large di�erence however between the two di�erent methods of clustering, which seems
to indicate that dedicated clustering performs better recombination.

Chapter 9 37

Multi-objective LTGA

For � MNNK as the correlation increases the relative performance of dedicated cluster-
ing without linkage learning drops and the performance of using a cluster ratio with linkage
learning increases. For� = 1 the problem has become a single objective problem and the
performance of both clustering algorithms becomes the same. For this type of instance the
objective space is so focused in one direction that clustering is of less importance and the
only thing that matters is whether linkage learning is used.

Conclusions

Linkage learning is a very e�ective addition for multi-objective algorithms. The more the
objective functions are positively correlated, the better linkage learning performs. If there
is no correlation between the objectives, or there is a highly negative correlation, and the
Pareto front is larger and wider, any clustering method is superior regardless of linkage
learning is used or not.

9.3.2 Clusters

In this experiment the performance of di�erent amount of clusters is compared for sev-
eral problems. More clusters means that each cluster is smaller, but also that within each
cluster solutions are closer to each other in the objective space and less function evalua-
tions are used per cluster. Something that also has to be taken into account is that for
extreme clusters single-objective optimization is used instead of multi-objective optimiza-
tion. Choosing the right amount of clusters is a non-trivial task. Too few clusters means
only single-objective optimization is performed, too many might result in clusters that are
too small for linkage learning to be e�ective.

Figure 9.3: Comparison of the performance of the number of clustersc for di�erent prob-
lems

The results can be found in 9.3. The results are very similar for random linkage and
linkage learning. For all problems MO-LTGA performs signi�cantly better with 3 or more
clusters. For 1 and 2 clusters not only are the results worse, there is also a lot more variance.
When using 1 cluster only single-objective optimization is used, since this particular cluster
is always the most extreme cluster for all 3 objectives. Forc = 2 there is a chance that

38 Chapter 9

Multi-objective LTGA

multi-objective optimal mixing is used, if one of the two clusters is the most extreme
clusters for all objectives. This is quite unlikely though, unless the objectives are very
highly correlated and 1 cluster contains the good solutions, and the other cluster contains
all the lesser solutions.

For 3 clusters there is already quite a high chance of one cluster not being extreme
in one of the objectives, and another being extreme in 2 objectives. The results suggest
that it is bene�cial to have at least one cluster being optimized by MO-optimal mixing.
For c > 3 this is always the case. In all graphs the performance for all values ofc > 3 are
very similar. Only for � MNNK with � = � 0:4 and � = 0, instances with a spread Pareto
front, is there a slight increase in performance betweenc = 3 and c = 4. With a spread
Pareto front it is more likely that if c = m, each objective has its own cluster and only
SO-optimal mixing is used. When only SO-optimal mixing is used, there is only search
pressure in each individual objective, but not towards the center of the Pareto front.

When comparing MO-LTGA-LL and MO-LTGA-RL the general performance charac-
teristics are very similar. For the � MNK and � MNNK instances MO-LTGA-LL consis-
tently outperforms random MO-LTGA-RL for c � 2. For c = 1 the variance is too large
to de�nitively say MO-LTGA-LL is better, but as c = 1 performs quite poor in general
this is not as much of an interest.

Max Cut shows a bit of a di�erent story. Just like in the MO-LTGA with sampling
experiment in section 7.2 the scale of the y-axis is much smaller. Furthermore the di�erence
in performance of MO-LTGA-LL versus MO-LTGA-RL is very small. For c = 1 and c = 2
there is not even any di�erence between the two. For c � 3 linkage learning slightly
outperforms random linkage, but the di�erence remains very small. Especially considering
the scale of the y-axis. If we quickly compare the results for MO-LTGA with sampling
from �gure 7.1 we can see that MO-LTGA-LL performs much better than MO-LTGA
with sampling on � MNK and � MNNK with � = � 0:4 and � = 0 :0, but for � MNNK with
� = 0 :4 and Max Cut the di�erence is much smaller. For the � MNNK instance this can
be explained away by the fact that with � = 0 :4 the 3 objectives are highly correlated and
since the linkage structure is the same this problem could be considered easy. However
since each objective of Max Cut contains a single-objective Max Cut instance there is
no correlation between the objectives and the linkage structure is completely di�erent for
each objective. The Max Cut problem is the hardest of the tested problems. Despite being
such a hard problem and there not being any correlation between the objectives nor shared
linkage structure, linkage learning still outperforms random linkage for c � 3. Even when
linkage learning is not bene�cial for c � 2, for c � 3 and MO-mixing starts being used
linkage learning still manages to exploit some structure that is present ad-hoc.

9.3.3 Population Size

Determining the best population size is always a tough problem in evolutionary algo-
rithms. Whilst not the primary goal of this thesis, a baseline population size must be
set to use for all the experiments. Furthermore it is interesting to look at how the use
of linkage learning a�ects the convergence behaviour of MO-LTGA. In this test various
problems are tested with exponentially increasing population size. Tested population sizes
are: f 25; 50; 100; 200; 400; 800; 1600; 3200; 6400; 12800g.

Chapter 9 39

Multi-objective LTGA

Figure 9.4: Comparison of MO-LTGA with varying population sizes

In �gure 9.4 we can see that the performance of MO-LTGA with linkage learning
follows a strong curve. For all the tested problems performance increases with population
size until 1600 point and then drops signi�cantly as the population sizes becomes larger.
For the random linkage variant the results look very di�erent. Apart from the tests with a
population size of 25, on� MNK and � MNNK the performance of random linkage is at a
peak at 50 and only drops slowly with larger population sizes. For small population sizes
it even beats the linkage learning variant. For the Max Cut the performance of random
linkage is stable for population sizes between 50 and 1600. MO-LTGA-LL is only able
to catch up to MO-LTGA-RL's performance for population sizes between 800 and 3200.
There is not a single population size for which linkage learning has a clear advantage over
random linkage.

Random linkage outperforms linkage learning for smaller population size.However
when linkage learning is used with a population size around 800� 1600, linkage learn-
ing is equal or better than random linkagewith any population size. As linkage learning
exploits information present in the population it can be expected that a certain population
size is required for there to be enough information present in the population so that it
can be exploited. There is always the trade-o� with function evaluations. In principle
you would want to have the population size as large as possible, but since the amount of
function evaluations is limited the population will converge too slow if the population size
is too large. In all tests performance dropped with sizes equal or larger than 3200, which
is because the population has not been able to converge yet.

Conclusion

Figure 9.4 shows that random linkage performs signi�cantly better than linkage learning
for smaller population sizes. This is likely due to the di�erent behaviour of random linkage
opposed to linkage learning. In the case of smaller population sizes, populations converge
too quickly. Random linkage has however a clear advantage over linkage learning when it
comes to premature convergence. With random linkage a completely new random linkage
tree is constructed in each generation. Linkage learning constructs a tree based on infor-
mation present in the population. In the �rst generation both algorithms will generate a

40 Chapter 9

Multi-objective LTGA

random linkage tree. In the second generation, random linkage will generate a completely
di�erent linkage tree whilst the linkage tree that linkage learning creates will still have
similarities with the linkage tree generated by the previous generation. The search space
that random linkage explores is much wider than the search space linkage learning ex-
plores. However when there is too little information to go on, having a larger, albeit more
random, search space works better than a smaller more focused one, that is also random
in a sense, because linkage learning has too little information to go on. Linkage learning
converges too quickly and random linkage is able to continue searching.

Another interesting fact is that for Max Cut random linkage does not perform any
worse than linkage learning. Despite linkage learning being very useful for single-objective
Max Cut, for multi-objective Max Cut even with the right population size it is barely even
better than random linkage. Random linkage even has the advantage that it is much less
reliant on the right population size for the right performance as it has less convergence
problems.

9.3.4 Degree of Epistasis

In this experiment the performance of MO-LTGA with clustering is analyzed when the
degree of epistasis of the problem is changed from the default value.

As the � MNK and � MNNK problems are variants of NK-landscapes they have a prob-
lem parameter k that determines with how many bits each individual bit interacts as
explained in section 4.1. In the following experiment MO-LTGA with clustering is tested
on a number of � MNK and � MNNK with di�erent values for k.

Figure 9.5: Comparison of MO-LTGA with varying values of k

Problems with low values ofk are easier since subproblems are smaller and optima for
these subproblems are easier to �nd. Whenk becomes larger, it gets harder to �nd these
optima. If we look at �gure 9.5 various � MNK and � MNNK instances are tested. Linkage
learning always manages to outperform random linkage for values ofk � 9. For values of
4 � k � 8 the di�erence is quite substantial.

For small values of k the resulting problems are easy enough that random linkage
also has good results. When an individual bit, as long as it is not at the edge of the

Chapter 9 41

Multi-objective LTGA

bitstring, is permutated, the change in �tness is a�ected by k �tness functions. When k
is low this creates a fairly smooth �tness landscape on which even simple traditional hill
climbers perform well. Furthermore the total of di�erent number of �tness contributions
each subproblem can have is 2k . For small values of k MO-LTGA-LL is able to iterate
through all those combinations for all the subproblems and as the �tness landscape is
fairly smooth it acts as a standard hill climber. For values of k � 4 MO-LTGA-RL cannot
do this anymore. MO-LTGA-LL detects which bits of the problem are correlated and is
able to iterate through these combinations much more e�ciently. When k gets su�ciently
large, i.e. k � 9 the �tness landscape gets so rugged and the problem instances become so
hard that even MO-LTGA-LL is not able to detect the correlated bits in the � MNK and
� MNNK instances.

Conclusion

The results show that for moderate values ofk on the interval [4; 8] linkage learning is
e�ective for multi-objective variants of NK-landscapes. For values of k � 3 both MO-
LTGA-LL and MO-LTGA-RL perform equally well as the �tness landscape is so smooth
both algorithms are able to get very close to the Pareto front. For k � 9 the �tness
landscape is so rugged that MO-LTGA-LL is not able to learn the underlying structure
and there is no signi�cant di�erence in performance between MO-LTGA-LL and MO-
LTGA-RL.

42 Chapter 9

Chapter 10

Scalarized LTGA

As � MNNK and � MNK are new problems, it is not possible to compare the performance
of MO-LTGA to other algorithms found in literature on these speci�c problems, since
there are not any. To do a rough comparison of how well the Pareto based MO-LTGA
performs, scalarized approach is also look at. In scalarized LTGA a number of weight
vectors are generated across the objective space, and for each weight vector regular single-
objective LTGA is applied, with either the linear weighting or the Tchebyche� weighting
as the aggregation function. As the number of function evaluations is �xed each individual
run of single-objective LTGA is given an function evaluation budged that is equal to the
total number of evaluations divided by the number of weight vectors. Scalarized LTGA
uses the exact same LTGA algorithm as is described in section 3.5 and does not use forced
improvement. MO-LTGA puts every solution that it encounters in its elitist archive. There
are multiple ways to handle this when using scalarizations. One could put the results of
the individual runs in the elitist archive, but in that way one could miss Pareto optimal
solutions that might not necessarily be considered interesting by the aggregation function.
Since adding a solution to the elitist archive is relatively cheap computationally, every
solution that is generated inside a run of single-objective LTGA is also checked against
global elitist archive and added to it if it needs to be.

10.1 Con�guration

In the following experiments MO-LTGA is compared against scalarized LTGA, iterated
local search (ILS) and for� MNNK a dynamic programming approximation (DP). The used
implementation of ILS is the same as in Thierens [1]. ILS ips single bits to perform hill
climbing. When it is stuck in a local optimum k random bits are ipped and the algorithm
starts hill climbing again. A k of 5 is used, the same as Thierens and Bosman [3]. This
procedure is repeated until all function evaluations are used. Just as in scalarized LTGA,
every solution generated by ILS is added to the elitist archive. For instances of� MNNK
an approximation of the Pareto front is generated by the use of dynamic programming.
When a linear weighting is applied to a � MNNK instance it is transformed back into a
regular NK-landscape instance which can be solved quickly using dynamic programming
as described in section 4.3. An approximation of the Pareto front can then be created by
solving these single-objective NK-landscapes for a large amount of weight vectors, in this
experiment 10:000. The resulting local Pareto set is not optimal as the amount of vectors
is not in�nite and since linear weighting is used only convex points are found, solutions
which are concave will not be found. The true Pareto front is guaranteed to be equal or
better than this dynamic programming approximation. By default scalarized LTGA uses
13 weight vectors and a population size of 100.

43

Multi-objective LTGA

10.2 Scalarized LTGA: Experimental Study

Scalarized LTGA has 2 parameters of interest that di�er from the Pareto based approach;
The population size and the amount of weight vectors for which scalarized LTGA is per-
formed. The �rst experiments will look at how these 2 parameters inuence the perfor-
mance of scalarized LTGA. The second experiment looks at how scalarized LTGA stacks
up against MO-LTGA on � MNNK and � MNK problems with a varying � and � respec-
tively.

10.2.1 Weight Vectors and Population Size

Since each run of scalarized LTGA with a certain vector can use a �xed amount of function
evaluations which is inversely proportional to the total amount of weight vectors, there is
a penalty to blindly increasing the amount of vectors. On the other side if too few vectors
are used there will not be a good spread across the objective space.

Figure 10.1: MO-LTGA compared against scalarized LTGA and ILS with a varying amount
of weight vectors �

Figure 10.1 shows the impact the number of scalarizations has on the performance
of scalarized LTGA and iterated local search. As MO-LTGA does not use weight vectors
it acts as a baseline to compare against. The results show that the performance of ILS
remains stable regardless of the number of weight vectors� if � � 13. As � increases
each individual run of ILS can perform less function evaluations, but this is made up for
by the fact that ILS is done more often towards di�erent part of the objective space.
On the NK-landscape-type problems a similar behaviour can be observed for scalarized
LTGA-RL. For � � 7 the performance remains stable for� MNK and � MNNK instances.
This is not the case for scalarized LTGA-LL. Scalarized LTGA-LL has a clear increase
in performance for � 2 f 7; 13g. When � = 3, only single-objective optimization is done
into each objective, as the number of objectives is also 3. For� 2 f 7; 13g there is at
least some spread and scalarized LTGA-LL jumps in performance, performing on par with
MO-LTGA-LL and even outperforming it for � MNNK with � = � 0:4. However when
the number of weight vectors increases and each individual LTGA-LL run is allowed less

44 Chapter 10

Multi-objective LTGA

function evaluations the performance drops and the e�ect of linkage learning dissipates
entirely. If LTGA-LL is given too few function evaluations it takes too long for linkage
learning to increase the performance of LTGA. The� MNNK instances show an interesting
pattern. For � = � 0:4 the objectives are highly negatively correlated and the Pareto front
is very large. Scalarized methods perform very well compared to the Pareto based approach
MO-LTGA takes. Another indicator of this is the fact that the gap between MO-LTGA
and DP is much bigger than with � = 0 and � = 0 :4. With � = 0 :4 the objectives are
positively correlated and the Pareto set is smaller and more concentrated in one area of
the objective space and MO-LTGA is almost on par with DP which suggests it is very
close to the Pareto set.

Another point of interest is the performance of ILS compared to scalarized LTGA-RL
and MO-LTGA-RL. It is often noted that GOMEA on its own can be an e�ective hill
climber, even if it does not have a linkage structure that can easily be exploited. The
� MNK and � MNNK instances all show that ILS always beats all LTGA-RL variants. The
boost that the LTGA-LL variants get by using linkage learning is the sole reason they
beat ILS. GOMEA on its own is not e�cient enough to outperform ILS.

In MO-LTGA the population is used to �nd the entire Pareto front in one single run,
which requires a larger population size compared to a single-objective problems. When
translating the problem back to a single-objective problem the population can be reduced
again to a size �tting for single-objective problems.

Figure 10.2: Scalarized LTGA compared against ILS with a varying population size

Figure 10.2 shows how the population size a�ects scalarized LTGA. Tested population
sizes are:f 25; 50; 100; 200; 400; 800; 1600g. Because ILS does not have a population, its
performance is stable and acts as a baseline. Figure 10.2 shows a consistent curve for the
population sizes. The performance increases until the population size hits 100 and then
drops back down for every tested problem. For� MNNK and � MNK problems a population
size of 100 is also the only population size for which scalarized LTGA-LL outperforms
ILS with linear weighting and at least matches it using Tchebyche� weighting. Scalarized
LTGA-RL is less sensitive to changes in population size compared with its linkage learning
counterpart. This is similar to MO-LTGA. With MO-LTGA, MO-LTGA-LL was also more
sensitive to changes in population sized compared to MO-LTGA-RL.

Chapter 10 45

Multi-objective LTGA

Conclusions

The scalarized approaches using the linear weighting function generally outperform the
Tchebyche� weighting. The only big exception to this is scalarized LTGA on Max Cut.
Due to the variances of the results for Max Cut it is hard to draw any more conclusions,
other than that it is also the only problem where ILS consistently outperforms all LTGA
variants. Scalarized LTGA-LL manages achieve at least on par performance with MO-
LTGA-LL for most problems and even exceeds performance on� MNNK with � � 0:0.
For � MNNK the � parameter has a direct inuence on the correlation between objectives
as � is the correlation between the objectives of each individual subproblem. As� MNNK
instances consist of many subproblems added together all the possible solutions together
approximate a multivariate normal distribution with � as the correlation. When the cor-
relation is heavily negative like with the � MNNK with � = � 0:4 graph in �gure 10.1 the
Pareto front is larger and spread across the objective space. With the scalarized method
each weight vector will target a di�erent part of the objective space and in each run new
solutions are added to the local Pareto front. When the objectives are positively correlated
the Pareto set is smaller and more concentrated towards one part of the objective space.
In this case di�erent weight vectors that target di�erent parts end up �nding solutions
in the same part of the objective space as these solutions are good solutions for a large
amount of weight vectors.

For � MNK instances the � parameter has no inuence on the correlation of the objec-
tives directly, but it only a�ects the linkage structure. If the linkage structure is the same
for all objectives there is also a perfect correlation between them. As the linkage structure
gets shu�ed somewhat some subproblems will have a di�erent linkage structure in the
di�erent objectives and have di�erent �tness contributions to the �nal �tness. As soon as
not a single subproblem has the exact same linkage structure there is no correlation left.
As a � of 0:3 is used there is a non-zero chance of this occurring, but experimental analysis
shows that all possible solutions for a� MNK instance with � = 0 :3 create a multivariate
normal distribution without any correlation.

10.2.2 Linkage Learning: MO-LTGA and Scalarized LTGA

This experiment is similar to the experiment done in section 9.3.1, but now MO-LTGA
with clustering is compared against scalarized LTGA. In this experiment we can take
a look whether a scalarized approach is better than a Pareto based one on� MNNK and
� MNK. For � MNNK the dynamic programming approximation algorithm is also included.

Figure 10.3: MO-LTGA compared against scalarized LTGA and ILS

The results in �gure 10.3 show that there is no big di�erence in performance between
the scalarized and Pareto based approach. On� MNK the scalarized variants each perform
slightly better overall than their Pareto based counterparts, although the di�erence is
very minor. On � MNNK the di�erences are slightly bigger. When the correlation is highly

46 Chapter 10

Multi-objective LTGA

negative and the Pareto front is very spread out, the Pareto based approaches dip signi�-
cantly in terms of performance. Whereas scalarized LTGA-LL manages to get close to the
dynamic programming approximation regardless of the value for� , MO-LTGA-LL gets
much closer to this approximation for when � � 0:4. Its performance drops signi�cantly
however for negative values for� . For � = � 0:5 it performs on par with ILS and scalar-
ized LTGA-RL. Also interesting to note it that wheres ILS's performance on � MNNK is
slightly better than scalarized LTGA-RL, on � MNK ILS's performance does not drop-o�
as signi�cantly as all the LTGA variants. This means that for � MNK with � � 1, ILS's
performance is only slightly worse than the linkage learning variants of LTGA. For high
values of � the shu�ing of the linkage structure is so di�erent that there is no similarity
left. The underlying linkage structure is completely di�erent for these instances in each
objective.

Conclusions

The results in section 10.2.2 somewhat overlap with those in section 10.2 in that they
show that in certain situations the Pareto based MO-LTGA performs better and in others
scalarized based LTGA has the upper edge. For both� MNK and � MNNK there is always
a big di�erence between the linkage learning variant and its random linkage counterpart
and most of the time this di�erence is also bigger than the di�erence between whether a
Pareto or scalarized based approach is taken. This again proves that linkage learning has
a signi�cant advantage on these type of problems. Another interesting conclusion is that
ILS performs well on � MNK instances where there is no similarity between the linkage
structure between the objectives.

Chapter 10 47

Chapter 11

Discussion

In this chapter a broader look is taken at all the newly introduced problems and algorithms.
The �rst half analyzes the used benchmark functions. The second half discusses MO-LTGA
and scalarized LTGA and its di�erent performance characteristics.

11.1 Analysis of multi-objective benchmarking functions

Up until now all multi-dimensional problems in literature took one of two approaches:

� Adding extra objectives by making the underlying problem return a vector instead of
a scalar value. The underlying structure of the problem is the same for each objective.
Examples of this are the trap - inverse trap problem and the� MNK landscapes by
Verel et al. [12].

� Generate a new instance of the problem for every objective. There is no correlation
of the structure between the objectives. An example of a problem that is constructed
this way is Max Cut.

In the case where the underlying structure is the same applying linkage learning is
easy. A linkage tree that is learnt on solutions in one part of the objective space can be
used to generate new solutions in a completely di�erent area of the objective space as the
structure is the same everywhere. The other extreme is Max Cut where for the single-
objective variant the structure is not created explicitly, but appears ad-hoc by the fact
that in good solutions some vertices always appear in a set together.

11.1.1 Max Cut

When Max Cut is extended to multiple objectives each objective has its own ad-hoc struc-
ture. Di�erent parts of the objective space will have di�erent structures as the structure is
a mix of the di�erent objectives. This resulting structure is very hard to exploit by LTGA
algorithms as the experiments in section 9.3 shows. The di�erence in performance of MO-
LTGA-LL and scalarized LTGA-LL compared to MO-LTGA-RL and scalarized LTGA-RL
respectively is negligible and in most cases not signi�cant. In some cases linkage learning
variants outperform random linkage, but only by a very small margin. Furthermore the
e�ect other parameters have is far bigger than any di�erence between linkage learning and
random linkage. The experiment in section 10.2 also shows that scalarized ILS is actually
a more e�ective approach than LTGA which signals that linkage learning is not e�ective
for the Max Cut problem and that the structure of multi-objective Max Cut is too di�cult
to exploit.

48

Multi-objective LTGA

11.1.2 � MNNK

Nearest neighbour NK-landscapes are a very popular benchmarking problem for EAs.
Thus far the only multi-objective NK-landscape in literature is the � MNK landscape by
Verel et al. [12]. As noted in section 4.2 regular NK-landscapes barely have any structure.
In order to create a multi-objective problem based on NK-landscapes that has a clearer
structure I introduced the � MNNK landscapes in section 5.4. As� MNNK are based on
nearest neighbour NK-landscapes they have a clear structure. The experiments in sec-
tions 9.3 and 10.2 show that LTGA algorithms perform better with linkage learning on
� MNNK instances. Research has shown that for regular single-objective nearest neigh-
bour NK-landscapes LTGA manages to exploit the linkage structure, it is therefore not
very surprising that for a simple multi-objective variant that uses the exact same linkage
structure in all objectives this holds true as well. There is a� parameter that inuences
the correlation between the di�erent values of the objective vector of each subproblem.
This only inuences the spread of the solutions on the objective space. We can draw some
conclusions based on the di�erences in performance between the Pareto and scalarized
approaches in section 10.2, but this does not tell us as much about the e�ectiveness of
linkage learning in the multi-objective domain. Sure we know that if the underlying link-
age structure is identical in all objectives that linkage learning remains e�ective, but it is
more interesting to know whether linkage learning remains e�ective even when di�erent
objectives have di�erent linkage structures. � MNNK is not a benchmarking function with
which this hypothesis can be tested well.

11.1.3 � MNK

The � MNK problem introduced in section 5.5 takes a completely di�erent approach to
creating a multi-objective problem using a nearest-neighbour NK-landscape. For the single-
objective variant we saw the concept of loose linkage in section 4.4.� MNK uses this concept
to construct a multi-objective problem by making the similarity of the linkage structure
between the di�erent objectives controllable with the parameter � . The experiment in
section 10.2.2 shows how MO-LTGA and scalarized LTGA perform when modifying� .
For high values of � when the underlying linkage structure has no similarity anymore
between the objectives LTGA manages to use the ad-hoc structure that is the result of
the combination of all the separate linkage structures. This ad-hoc structure appears to
be more easily exploitable than the ad-hoc structure created by a problem like Max Cut.
This is shown by the fact that ILS outperforms LTGA when there is almost no ad-hoc
structure, but the LTGA variants are on top for � MNK, even for high values of � .

� MNK has proven itself to be a very good benchmarking function as it provides mul-
tiple parameters to control the di�culty of the instances. The di�culty of the instances
can be increased by increasingk and to a lesser extentn. Its unique property is that the
similarity of the underlying structure is con�gurable. � MNK is the �rst benchmarking
function where this is possible.

11.2 Multi-objective LTGA

Chapter 7 introduced an initial version of LTGA that works in a multi-objective environ-
ment. Several parts of LTGA had to be adapted so that it would work for multi-objective
problems. The acceptance criterion was changed to use the Pareto dominance relation and
the termination criterion was altered to no longer include �tness variance as that metric
no longer works for a multi-objective population. The most signi�cant change from regular
LTGA is that the �rst version of MO-LTGA, MO-LTGA with sampling, did not learn a
linkage tree and perform recombination from the entire population. Instead it selected

Chapter 11 49

Multi-objective LTGA

a subset of the population at random and used that subset to learn a linkage tree and
perform recombination for that generation. The idea behind this was that to optimize
across the di�erent parts of the objective space it would be best to choose solutions that
are closer together in this regard. If you would recombine solutions that are in opposite
areas of the objective space you could end up with solutions which are as good as random,
depending on the problem.

This sampling approach was the simplest approach to take, but experimental analysis
in sections 7.2 and 7.3 showed that this approach was inferior to the clustering approach
MO-GOMEA by Luong et al. [2] took. Whilst the main focus of this thesis is to look at
the e�ectiveness of linkage learning in a multi-objective environment, to be able to say
anything meaningful about this subject any experiments should be done with an algorithm
that achieves at least some acceptable level of performance. In chapter 9 MO-LTGA is
adapted to incorporate certain elements of MO-GOMEA.

This improved version of MO-LTGA, MO-LTGA with clustering, has much better
performance characteristics than MO-LTGA with sampling as shown in the experiment in
section 9.1. The di�erences between the various methods can be summarized as follows:

� MO-LTGA with sampling optimizes a subset of the objective space each generation
by randomly selection a solution and its closest neighbours.

� MO-GOMEA clusters the objective space in c di�erent clusters using balanced k-
leader-means clustering. After the initial clustering is �nished a cluster will have
jP j
c

solutions on average, wherejP j is the population size. In practice this can vary

wildly, so to ensure every cluster is equally large, every cluster is expanded or shrunk

down to a size of
2
c

jP j

� MO-LTGA with clustering clusters the objective space into c di�erent clusters using
an adapted balanced k-leader-means algorithm. During the clustering process the

size of the clusters are �xed to
jP j
c

. This means that the �nal clusters also have this

size and every solution belongs to exactly one cluster.

If there is one thing that can be learned from these experiments it is that the method
of clustering can have a signi�cant impact on the performance of a multi-objective algo-
rithm. Initially a di�erent clustering method was chosen than MO-GOMEA for simplicity
and because it was not clear from their paper how optimal mixing is performed when
a single solution is part of multiple clusters. There is still a di�erence in performance
with MO-GOMEA, which might be caused by the di�erence in clustering method. The
performance of MO-LTGA could likely be improved in the future if further research is
done into this area. Another observation that can be made about the di�erent clustering
methods is the amount of function evaluations each of the methods uses per generation.
As the sampling method only optimizes a subset of the population in each generation, less
function evaluations are used when compared to MO-LTGA with clustering. On the other
hand with MO-GOMEA each solution is part of two clusters and because the number of
function evaluations scales with the size of the clusters, twice as much function evaluations
will be used per generation.

One instance where linkage learning does not have a positive e�ect on performance is
when the used population size is too low as shown by the experiment in section 9.3.3. In
hindsight it might have been worth considering running the experiments for random linkage
with a lower population size. MO-LTGA-LL su�ers from some premature convergence
problems that MO-LTGA-RL does not have as it uses a new randomly created linkage tree
for each generation. MO-LTGA-LL needs quite a large population before it outperforms

50 Chapter 11

Multi-objective LTGA

MO-LTGA-RL.

11.3 Scalarized LTGA

In chapter 10 a di�erent approach was taken. Instead of adapting LTGA to work in a
multi-objective environment, scalarized LTGA tackles the problem by turning the multi-
objective problem back into a single-objective one. The di�erent approaches result in
di�erent performance behaviours as the experiments in section 10.2 show. The experiments
on � MNNK with the various values of � show that as the solutions in the Pareto front
get less correlated in the objective space a scalarized approach works better than a Pareto
based one. In these cases the amount of local Pareto optimal solutions increase and the
Pareto dominance relation does not manage to guide the population towards the Pareto
front e�ciently.

The scalarized approach however has a number of problems that the Pareto based
MO-LTGA does not have to worry about. The scalarized variant introduces yet another
parameter that needs to be tuned properly, the number of weight vectors, which has a large
impact on the performance. The population size is the most disliked parameter of EAs and
there are ongoing e�orts to eliminate it, as will be mentioned in the future work section,
therefore introducing yet another parameter that will need to be tuned is only making it
harder to use. Furthermore currently the weight vectors are uniformly distributed across
the objective space. The performance might very well be improved if the weight vectors
are targeted towards the objective space. However as EAs are designed to be black-box
algorithms this is not possible to do beforehand, as there is no way of knowing what the
objective space looks like upfront.

11.4 ILS

Chapter 10 also included a scalarized ILS implementation that acted as a reference algo-
rithm. First it shows that LTGA performs relatively poor on Max Cut as discussed previ-
ously in section 11.1.1, but secondly it also shows that ILS always outperforms the random
linkage variants. This can be seen when comparing the performance of MO-LTGA-RL and
scalarized LTGA-RL in section 10.2. This means that the only reason MO-LTGA-LL and
scalarized LTGA-LL beat ILS is their use of linkage learning.

11.5 Future Work

This section discusses a number of ways in which the algorithms presented in this thesis
could be improved upon in future research.

11.5.1 Hill Climbing

There are single-objective evolutionary algorithms, like DSMGA-II by Hsu and Yu [16],
that perform a local search hill climber as part of their initialization of the population,
instead of starting with a completely random population. When learning a linkage tree
this could be bene�cial as the hill climber can let the population converge to already
expose some of the underlying structure which a linkage learning algorithm like LTGA or
DSMGA-II can then use instead of starting from a random state. Improving the starting
population by a �rst-improvement hill climber is fairly common amongst EAs, it could
be of interest to also extend this into the multi-objective domain. It is still very unlikely
however that such a method would allow MO-LTGA-LL to perform better at the very
small populations where MO-LTGA-RL performs best. If you take into account that the

Chapter 11 51

Multi-objective LTGA

population is also split across a number of clusters there are barely any solutions left to
learn a linkage tree from if the population size is only 50 or 100.

11.5.2 Changing the Linkage Model

LTGA uses a linkage tree as its linkage model. Even though most benchmark functions
have an underlying structure that cannot directly be represented by a tree structure, the
linkage tree provides a good generic model. For some problems the smaller less dominant
substructures that are not directly contained within the linkage tree are still likely to be
included indirectly. A larger node in the linkage tree could contain this substructure as a
subset, or a part of the substructure can be present as a smaller node.

Nevertheless it would be interesting to see whether MO-LTGA could be improved by
using a di�erent linkage model, as multi-objective problems create even more complex
linkage structures compared to their single-objective counterparts. DSMGA-II has shown
it is able to achieve good performance for single-objective problems compared to LTGA
whilst it uses a di�erent linkage model. Likewise the Linkage Neighbors Genetic Algorithm
and the Multiscale Linkage Neighbors Genetic Algorithm by Bosman and Thierens [17]
have shown that a linkage model based around the concept of linkage neighbours can
perform well in certain situations.

11.5.3 Parameter-less Population Pyramid

As with all EAs using the correct population size is of utmost importance for the per-
formance. To eliminate this parameter the parameter-less population pyramid (P3) was
introduced by Harik and Lobo [18]. Further research was done by Besten et al. [19] which
incorporated P3 into LTGA and improved on it further with the introduction of multi-
ple insertion. Eliminating the population size as a parameter would mean we would no
longer have to worry about using the correct population sizes and perhaps some of the
convergence issues of MO-LTGA would be solved as well by adapting this parameter-less
population pyramid.

11.5.4 Hybrid Search

The Pareto dominance relation used by MO-LTGA struggles to guide the search towards
the Pareto front in certain situations. This is mitigated in part by performing single-
objective optimization in extreme clusters. On the other hand the linear weighting of
scalarized LTGA does this very well, but is hindered by the inherent disadvantages of the
scalarized approach. It could be interesting to see if a hybrid approach where the Pareto
dominance relation of MO-LTGA is replaced by a dynamic linear weighting vector based
on the location in the objective space manages to combine the two methods.

52 Chapter 11

Chapter 12

Conclusions

The primary goal of this thesis was to look at the e�ectiveness of linkage learning for
multi-objective problems. This goal was formulated as three research questions. In this
chapter we will look back and try to answer the research questions.

12.1 Summary

The Linkage Tree Genetic Algorithm is a widely used black-box evolutionary algorithm for
single-objective problems with structure. To investigate whether linkage learning is also
bene�cial for multi-objective problems two new benchmarking functions were introduced,
the multi-objective nearest neighbour NK-landscape with correlated objectives,� MNNK,
and the multi-objective nearest neighbour NK-landscape with correlated linkage structure,
� MNK. As � MNNK uses the same linkage structure for each objective function it is not
suited well as a benchmarking problem even though it is a multi-objective problem, it
has no distinctive multi-objective structure. � MNK is a better benchmarking problem as
it allows for a con�gurable amount of similarity of the structure between the objective
functions. It is a valuable addition to the existing set of benchmarking functions as it is
the �rst problem in literature that allows this.

In order to test the e�ectiveness of linkage learning on multi-objective problems like
� MNK and � MNNK a number of new multi-objective variants of LTGA were introduced.
First was the Multi-objective Linkage Tree Genetic Algorithm with sampling which takes
a Pareto based approach to solving multi-objective problems. It turned out MO-LTGA
with sampling had performance problems due to the used clustering method. An approach
where in each generation the population is split up into a number of separate clusters, a
linkage tree is learnt for each cluster, and then recombination is performed within each
cluster, is superior to an approach where a randomly chosen part of the objective space is
optimized each generation.

An improved version called the Multi-objective Linkage Tree Genetic Algorithm with
clustering was introduced. Linkage learning improved its performance with 2 notable ex-
ceptions. For very small population sizes linkage learning performed worse than random
linkage due to convergence problems forMO-LTGA with linkage learning. On the Max
Cut problem linkage learning had no signi�cant impact when taking into account the
population size issue.

To compare MO-LTGA with a scalarized method a di�erent multi-objective variant of
LTGA was introduced, scalarized LTGA. Scalarized LTGA tackled the problem of multi-
objective optimization by turning the multi-objective problem back into a single-objective
one using a weighting function and a weighting vector. The experiments showed for� MNK
and � MNNK instances linear weighting is better and for Max Cut the Tchebyche� weight-
ing works the best for scalarized LTGA. Even though scalarized LTGA is quite a simple
and rudimentary method it stacks up quite well against the Pareto based MO-LTGA and

53

Multi-objective LTGA

it performs better when the Pareto front is widely spread across the objective space. In
cases where the Pareto front is smaller and more targeted towards a smaller area of the
objective space the Pareto based MO-LTGA performs better.

The experiments in this thesis haven proven that in most circumstances linkage learning
is bene�cial for the performance of a multi-objective LTGA variant, but there is no clear
winner between the scalarized and Pareto approaches.

54 Chapter

