N
= VU F Utrecht University
U

Minimising Total Tardiness for Stochastic Resource and
Machine Scheduling Problems

Jan Posthoorn

Master’s Thesis
ICA-4145666

Supervisors:
dr. J.A. Hoogeveen
dr. ir. J.M. van den Akker
R.W. van den Broek MSc

Department of Information and Computing Sciences
Utrecht University
Netherlands
August 2019

Contents

1 Introduction

2 Formal Definition

3 Small Example

4 Related Work

4.1

4.2
4.3

Stochasticity L
4.1.1 Deterministic RCPSP
4.1.2 Baseline Scheduling o o
4.1.3 Stochastic RCPSP
Robust Scheduling
Other approaches and problem settings
4.3.1 Scheduling Policies
4.3.2 Online Setting L
4.3.3 Machine Scheduling
4.34 Related Problems
4.3.5 SUIVEYS

5 Research Questions

6 Machine Scheduling

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8

6.9
6.10
6.11

6.12

6.13

Problem Setting L
Solution Representation L
OVEIVIEW . . . o o e e
Initial Solution L
Neighbourhoods
6.5.1 Shift
6.5.2 SWaD
Neighbourhood Selection
Simulated Annealing oL
Evaluation oL
6.8.1 Percentile Evaluation 0o
6.8.2 Simulation Evaluation 0 L
6.8.3 Normal Approximation Evaluation
Generating Instances oL oL e
Experimental Setup
Parameter Tuning Lo
6.11.1 Parameter Tuning Run 1
6.11.2 Parameter Tuning Run 2 oL
Results Parameter Tuning L o
6.12.1 Parameter Tuning Results Run 1
6.12.2 Parameter Tuning Results Run 2
Final comparison e

co co @O [=2]

NeJ

10
12
12
12
13
13
14

14

7 Resource Constrained Project Scheduling

7.1 Problem Definition
7.2 Schedule Representation and Execution
7.2.1 Fixed Flow Representation
7.2.2 Partial Order Schedule Representation
7.3 Evaluation e
7.3.1 Percentile Evaluation
7.3.2 Simulation Evaluation
7.3.3 Normal Approximation Evaluation
7.4 Local Search e
7.4.1 Local Search: POS Representation
7.4.2 Local Search: Fixed Flow Representation
7.4.3 Local Search: Example 0
7.5 Experimentso
7.5.1 Parameter Tuning L

7.5.2 Results
8 Final Conclusions
9 Further Research

10 Appendix

30
30
30
30
31
32
32
32
32
34
34
35
37
41
41
44

53

54

56

1 Introduction

Scheduling problems often become difficult for humans to solve when there is too much to plan at
once, or when there are too many constraints involved. This is one of the reasons why research
into scheduling problems is important. Also, scheduling problems are not limited to one indus-
try, but are very common in many places around the world. One such scheduling problem is the
project scheduling problem. This is a very common scheduling problem with applications in many
industries like for example, product development, construction, software development, factories, pro-
duction processes, renovation and many more. Also, outside of industry there are applications, like
coaching a team or planning a vacation or a wedding. A well-studied project scheduling problem
is the resource constrained project scheduling problem (RCPSP). Here the tasks require some re-
sources to be performed, like machines, or manpower, or tools for example. These resources have
a limited capacity and are renewable, so once a task finishes using some resources, they are free
to be used by any other task. An example of such a resource constrained project scheduling prob-
lem is a software project. Our resources are the different kinds of employees that we need for the
project. These can be for example, programmers, testers and designers. Our tasks are things like
designing/programming/testing the user interface of the software. Clearly there are some constraints
between these tasks, for example, a tester cannot test a piece of software before it has been created
by the programmer. The project manager may assign some due dates to some milestones of the
project like the first working prototype. If someone proposes a schedule for the software project,
then we can compare the planned completion times of the milestones to the due dates that the
project manager made in order to get a feel for the quality of the schedule. We can then see if we
expect to make all our due dates and if not, how much tardiness we have.

We will be looking at the resource constrained project scheduling problem with a focus on the
stochastic variant of the problem. We look at the stochastic variant of RCPSP because it has not
been extensively studied like the traditional RCPSP and because it has practical applicability. The
best studied variant is the deterministic variant. The most well-studied objective for machine- or
project scheduling is the maximum completion time, also called makespan. The makespan is defined
as the finishing time of the last task in the schedule. In the general and stochastic settings it is
common to look at the (expected) makespan as an objective. For the stochastic setting robustness
is something that is also often considered, but there is no consensus on what a good definition for
robustness precisely is.

As an objective we will be looking at the total tardiness which is the sum of the tardiness of
all the tasks in our schedule. Objective functions based on tardiness have been studied before but
not to the extent that makespan objectives have. We feel that tardiness is a very useful objective
because in many cases we do not only care about the completion time of the whole schedule but
we also care about the completion time of the individual parts of the schedule. For example, if
we have a project that consists of multiple milestones, we do not only care about the final project
completion, but also about competing these milestones on time.

The RCPSP (resource constrained project scheduling problem) is in its basic form already a hard
problem. Blazewicz et al. proved that the RCPSP is A/P-hard in the strong sense [2]. This gives
the indication that the stochastic variant will also be quite difficult to solve efficiently.

We will focus on stochastic resource constrained project scheduling with robustness in mind. We
will also look at the traditional RCPSP because many ideas and concepts concerning this problem
might generalise to the stochastic variant of the problem.

The rest of this article has the following layout. In Section 2 we will talk about the formal
definition of the problem we study. After that we give a small illustrative example in Section 3
about project scheduling. Then a literature overview of related works will be given in Section 4.

Then we talk about the research questions we want to answer in Section 5. Continuing on in Section
6, we talk about the work we did on machine scheduling and in Section 7 we talk about what we
did for the resource constrained project scheduling problem. Then in Section 8 we give our final
conclusions about the research and in we finish with some remarks about further research in Section
9.

Variable Description

n Number of tasks

R Number of resources

Dj Processing time of task j

P; Probability distribution of the processing times of task j
d; Due date of task j

T4 Resource requirement of resource ¢ by task j

R; Resource availability of resource 4
G = (V, A) | Precedence graph

C Completion time of task j
Tardiness of task j

.

3

Table 1: The variables and parameters of the RCPSP

2 Formal Definition

There are many variants of the RCPSP and to get a better overview of what people are studying some
notation was introduced. Using the adaptation made by Brucker et al. [5] to the original Graham
notation [15] for resource constrained project scheduling problems the problem we are looking at is
denoted as PS|prec, stochasticprocessing| > T;, which means we are looking at project scheduling
with precedence constrains and stochastic processing times and our objective is to minimise the total
tardiness. We will now discuss what all these elements really entail. There is a project with n tasks
and we must complete each task in order to complete the project. There is also a dummy task 0
which represents the start of the project. Each task has a given processing time of p; and a given
due date d;. The dummy task has a processing time of 0 and an infinite due date. There are R
types of resources and each task j has a value r;; which represents how many units task j requires
of resource ¢ during its execution. All resources are renewable and will be released by a task once
it completes. A task requires all its resource requirements to be met during the whole duration of
its execution. At each moment in time there are R; units of resource ¢ available. There are also
precedence constraints between the tasks. These constraints are given in the form of a precedence
graph G = (V, A), where V is the set of all tasks and A represents the precedence constraints. If
G contains an arc from task j to task k this means that we can only start task & when we have
finished task j. These are finish-start zero-time lag precedence constraints. G contains an arc from
the dummy task 0 to each task, which represents that we cannot start any project task before we
start the project. The main objective is to minimise the total tardiness over all tasks. We define
the tardiness T of task j using its completion time C in a given schedule, and its due date d;. The
lateness L; of task j is defined as C; — d; and the tardiness, T} of task j is defined as max(0, L;).
This combined gives us the following objective: minimise : Z?Zl max(0,C; — d;), or shortened:
minimise : Y7 T

The stochastic resource constrained project scheduling problem (SRCPSP) is an extension of
the RCPSP. It is the same as the RCPSP described above but there are some key differences. We
now associate a probability distribution with the processing time of each task instead of using a
deterministic value. The processing time is defined by a set P; C R* which contains all possible
realisations of the task processing time. Another difference is that we now want to optimise the
expected total tardiness with respect to the processing time. Other than these extensions it is the
same as the traditional RCPSP. Table 1 contains a summary of all variables and their descriptions.

Task A B E F G
(0 75: 1) (0 75: 1) (0.75: 1)
e (0.9: 2) | (0.9: 2) (0.9: 2)
Probabilities)) (0.2: 2) | (0.2: 2)) (0.2: 2) | (1.0: 3)
(0.1:3) | (0.1:3) | 575 | (00m: 3) | @1 3) | (0/0s: 3)

Table 2: The probability distributions of the processing times of the tasks in the example

3 Small Example

Here we will give a small example project to illustrate stochastic resource constrained project schedul-
ing. We will first describe an example problem and then show an example schedule we can create.

In Figure 1 you can see 7 non-dummy tasks in an example project about making paint. The goal
of the project is to make magenta paint from blue and red paint and to verify that all the paints that
we make conform to our standards. Each task has a name represented by a single letter and each
task has a short description of what it represents. Lastly each task contains a list of numbers. The
bottom left number defines the due date (d;), the one after that defines the resource requirement
for resource type 1 (r1;), the last one is the resource requirement for resource type 2 (r2;). The first
resource type represents paint machines and the second one represents workers. An arc in this figure
represents a precedence relation, we can see for example, that we need to complete task A before we
can start executing task C, in other words, we need to make paint before we can test that paint. All
tasks can only be started after the dummy Start task, and all tasks must be completed before we
can perform the dummy End task. These dummy tasks have an infinite due date and a processing
time of 0. We will now look at the problem of finding a schedule for this problem instance. We have
2 machines available and 3 workers. The full probability distributions for the processing times for
all the tasks can be found in Table 2

A possible schedule can be that we start with task A, then start tasks B and C in parallel
and after task B we perform task D. Next, we start task E, and lastly, we start tasks F and G
in parallel. The resource profile for workers and paint machines can be found in Figures 2 and 3
respectively. These figures assume that all the processing times turn out to be equal to their most
likely value. It can be easily verified that we do not violate any of the precedence constraints and
using the figures it can be seen that we also do not violate any of the resource constraints. The
colours in these figures have no meaning for the scheduling problem, they are just there because this
example is about coloured paint.

If we have the total tardiness as our objective, we can see that B, D and G finish later than their
due date with the processing times as seen in example Figures 2 and 3, which gives them a positive
tardiness. The total tardiness for this example schedule becomes: 1+ 2 + 2 = 5. If we evaluate all
the 216 possible combinations of processing times, we can compute that the expected total tardiness
of this schedule is 7.74675. We can also see that in the worst-case, we get a total tardiness value of
30.

pu3

z'z's

SouoEw :_maamww & S9. < :_mnmm,% ,mm e
wired ues|d wur m__f L wr m“n NI
9
z'1'8
ured
ejuabew axepn
El
HE_omnw T'0't Z2'T's
euabew 1sa) ured Ww_ 9L [ured uw_ e
4

uels

Figure 1: A small example about making paint

3

2

1
Figure 2: The worker resource usage of the schedule
0 2 4 6 8 10

2

1

Figure 3: The paint machine resource usage of the schedule

4 Related Work

RCPSP is a well-studied scheduling problem, just like machine scheduling. There are some variants
like the stochastic variant of machine scheduling or RCPSP that are less well-studied but have great
practical applicability. RCPSP is a generalisation of machine scheduling, we can not only schedule
machines, but more general resources in the RCPSP setting.

The rest of this section will be structured in the following manner. First in Section 4.1 we will
look at approaches to solve the stochastic RCPSP. Then in Section 4.2 we will look at also taking
robustness into account. Continuing on in Section 4.3 we will look at other approaches and related
settings. And lastly in Section 4.3.5 we talk about some surveys that have been done on machine
scheduling and RCPSP.

4.1 Stochasticity

There are many approaches on how to deal with stochasticity within SRCPSP. Below we will discuss
some of these approaches. We will start by looking at the deterministic RCPSP in Section 4.1.1.
Next, we will look at an approach called baseline scheduling in Section 4.1.2 and lastly we will look
at more general approaches for stochastic scheduling in Section 4.1.3.

4.1.1 Deterministic RCPSP

Before we consider the stochastic variant of the problem, we will first look at the deterministic case.
Many of the ideas of the non-stochastic variant of the problem might still be usable in the stochastic
variant, that is why it is worthwhile to study this.

Vanhoucke et al. [30] looked at the deterministic RCPSP with minimising weighted earliness-
tardiness penalty costs as objective. They develop a branch-and-bound algorithm. They generate
lower bounds by solving the same problem, but without the resource constraints exactly, we call this
the subproblem. If the solution to the subproblem does not violate any resource constraints, they
have found the optimal solution. Otherwise they look at the first resource conflict in the schedule
and add new precedence constraints between the tasks in the conflict as a branching strategy. They
branch on the set of minimal delaying alternatives which are a minimal subset of tasks which resolve

the resource conflict when delayed. They compute a solution to the subproblem in the following way.
First, they set the finishing time C; for each task to be its due date d; or later. This is done based
on the precedence relations of the tasks and their d;. Next, they look for sets of tasks, which can be
shifted backwards in time and decrease the earliness-tardiness penalty. They continue shifting until
no single shift will result in an improvement. They use this subproblem for a lower bound for their
branch and bound algorithm.

Shadrokh and Kianfar [28] study the Resource Investment Problem (RIP), which is an extension
of RCPSP where the number of resources available R; during the project is given but we can buy more
resource units of each resource for a cost. The objective function they look at is weighted tardiness
plus weighted resource cost. They use a genetic algorithm with crossover, mutation, immigration
and local search. The local search works roughly as follows. For each type of resource, look at the
tasks which are being executed at the time we use the maximum number of units of this resource
type. Then we check if we can shift some of these activities and whether it results in a better
solution.

Luciano et al. [23] look at an application of RCPSP. Their case involves the docking of ships
at a port. Here the docking spaces are the resources. They study multi-mode resource constrained
project scheduling problem, which means that tasks can have multiple modes of execution. For
example, a task can be completed faster, but this takes more resources. The question they want
to answer is the following: What are the ideal arriving times for a set of ships by minimising the
earliness and tardiness cost. They use a genetic algorithm to solve the problem. They use crossover
and mutation. They evaluate their solutions using simulation. They look at random arrival dates
multiple times and evaluate their individuals on multiple instances to get a more realistic view of
the proposed solution. They also apply some form of local search to the individuals where they try
to change the modes of the tasks and see if this gives better solutions.

4.1.2 Baseline Scheduling

A common approach is to first generate a baseline schedule (also called preschedule or predictive
schedule); this is a schedule in which we ignore the stochastic part and create a deterministic schedule
and afterwards or during execution changes can be made to this schedule. A possible strategy is
setting all the processing times p; equal to the expected value of the stochastic processing times
E(P;) and using these new processing times in the creation of the schedule.

Deblaere et al. [12] try to create stable baseline schedules that optimise the makespan. They
say that a schedule is stable when it can prevent disruptions from propagating. This is not a very
precise definition, and again just like robustness, there is no consensus on what a good definition
for stability is. Their baseline schedules satisfy all the precedence constraints and all renewable
resource constraints, but the schedules are made with deterministic processing times. They develop
three integer programming-based heuristics to solve this stability problem. They define stability as
solution robustness. Solution robustness is robustness in the starting times of the jobs. This means
that we want a low amount of deviation in the starting time of each job. They achieve stability in
their baseline schedule by allocating the resources in such a way that processing time disruptions
have minimal effects on the rest of the schedule. Their approach is reactive, and it tries to stabilise
the baseline schedule. This means that they try to create their baseline schedule in such a way that it
will stop disruptions from propagating and thereby influencing the rest of the baseline schedule. The
first heuristic tries to minimise the number of extra arcs that are imposed by the resource allocation.
They determine for every unit of resource the sequence of tasks that it services. This will give rise
to a new set of implied precedence constraints. They solve the resource problem by modelling it as
a flow network, where the flow represents the flow of resources. Then they find a feasible resource

flow. Then they use a procedure called chaining to construct a chained Partial Order Schedule
which represents a set of solutions of the RCPSP with a temporal graph. This can be used as a
baseline during execution and when disruptions occur the schedule can be changed resulting in the
need of a reactive scheduling procedure. They show that all their proposed heuristics work better
than existing algorithms on small to medium sizes instances.

4.1.3 Stochastic RCPSP

In all these previously mentioned settings, we assume that all information like processing times
p; of tasks, due dates d; etc. is known beforehand and is deterministic. Or we just ignored the
stochastic part of the problem in the creation of the schedule. A more realistic model in many
cases is a stochastic model where for example the p; of a task is modelled by a random variable P;.
It is also not very realistic that all these distributions are known beforehand, but approximations
can be made. Another goal that can be achieved by using stochastic processing times is to model
disruptions or other unforeseen circumstances that can occur during the schedule’s execution, this
will be discussed in Section 4.2.

Chalrabortty et al. [7] use a branch and cut approach to find a good solution for the RCPSP with
stochastic processing times. Their objective is minimising the makespan. With this aim in mind,
they develop six heuristics for solving the problem. All these heuristics are based on the branch
and cut approach. Because it is hard to find a single heuristic that works well in a wide variety of
cases, developing multiple heuristics using the same underlying tools has some advantages. They
assume that the variability of the input data is bounded by some parametric form they describe
and with this form they apply robust optimisation to solve the problem, because they transformed
the stochastic problem into a deterministic robustness problem which is easier to solve, and which
is more studied. They do this by modelling uncertainty of the processing times in a parametric
way. They use the resource and precedence constraints to find some cuts for their branch and cut
approach. They generated resource cuts based on the sets of tasks that can never be executed at the
same time. They also generated cuts based on precedence relations. Because the P; of a task has a
parametric form, they use this to explicitly enumerate some of the precedence constraints to derive
cuts from that. According to their results this approach works better when the instances get large
(100 tasks or more) compared to other exact approaches. But their approach does require quite a
bit of time.

4.2 Robust Scheduling

In many practical applications we do not only want good schedules (schedules that minimise the
objective function), but also want our schedule to be resilient or robust. When robustness is consid-
ered it often becomes a second objective next to the normal objective function. There is no general
definition of robustness, but many measures have been proposed to measure robustness. A common
concept in these is the concept of slack. There are two main slack-based definitions. Total slack
is the amount of time by which the C; of a task can exceed its earliest possible completion time
without delaying the project completion time. And free slack is the amount of time by which the
C; of a task could be delayed without affecting the earliest start time of its immediate successors
in the project. Another important aspect of robustness is what kind of robustness we want. Do we
want solution robustness (deviation in start times of jobs) or quality robustness (deviation in project
duration)?

Van de Vonder et al. [29] compared three approaches that all used buffers to make a project
scheduling solution more robust. Two of their heuristics are based on the principle of critical chain

10

buffer management by Goldratt [14]. The other heuristic is based on adapted float factor model
developed by Leus [22]. They evaluated these approaches using simulation and concluded that none
of the approaches dominated the other approaches for both solution- and quality robustness under
varying circumstances. This shows that it is hard to find a general method for generating robust
solutions.

Hazir et al. [18] look at the expected net profit as an objective function, where we lose some
money for each time unit we are late for a job in accordance with the tardiness penalty and earn
some money for each time unit we are early for a job in accordance with the revenue rate . Their
works as follows. They first find a solution that maximises the net profit and look at the objective
value this gives. They call this value the ’threshold budget’. Then for the second phase they solve
again but with an inflated threshold budget as an extra constraint on the budget, now they optimise
for robustness, for them this means maximising the project buffer size, instead of optimising for net
profit. The project buffer size is defined as the difference between the project deadline and makespan,
divided by the deadline. This comes down to minimizing the makespan. They considered quite a
few other measures that all try to measure robustness. Some examples are: average slack, weighted
sum of slack, slack combined with a utility function which gives diminishing returns for giving more
slack to a single task, dispersion of slack, percentage of potentially critical tasks, project buffer size.
The measures were compared by first generating a baseline schedule according to some fixed policy
and calculating the value of the measure for this schedule. Then they run a simulation multiple
times and compute the correlation with the performance measures they defined. These measures
are PM; the proportion of runs in which the project finishes on time and PM; the average delay
in project completion time as percentage of the project deadline. They conclude that the project
buffer size is the best measure. They also conclude that the inflation of the budget for the second
phase greatly increases the robustness.

Chtourou and Haouari [8] also try to solve the stochastic RCPSP and their focus is on finding
robust solutions. They use a two-stage priority rule-based algorithm. They develop a heuristic and
in the first stage they run this heuristic many times and because of the randomness in some parts
of the heuristic, many different solutions are generated. They look for the smallest makespan value
they encounter, and this will be the threshold for the next stage. In the next stage they use a
different heuristic that must find a solution with at most the threshold makespan and which is as
robust as possible. They tried many combinations from 16 heuristics and 12 robustness measures
all found in literature, to find the best combination for their algorithm. They used simulation as
a validation tool. Their robustness measures also use slack, but they also sometimes include the
number of immediate successors of a task. The heuristics consist of some method of destruction and
reconstruction of the schedule and a priority rule for selecting tasks to add to the schedule. Their
experiments show that, when comparing robust and non-robust schedules with that same makespan
value according to the first phase, the robust schedules outperformed the non-robust scheduled in
terms of makespan most of the time according to the simulated results.

Artigues and Leus [1] also try to solve the stochastic project scheduling problem with robustness
in mind. Their primary objective is minimising the makespan. They define robust as performing
well across all scenarios, they translate this into optimising for the minimax absolute regret. This
means that they want the worst-case to be as good as possible. They looked at a scenario relaxation
approach which solves the problem for only a subset of all possible scenarios. They choose to only
look at the extreme scenarios. Each scenario is a realisation of the processing times P;. They use a
MILP to get the best earliest-start policy for a given scenario. These policies will be explained in
Section 4.3.1. They start with one scenario and keep on computing a lower and upper bound for the
absolute regret until the lower bound is equal to the upper bound. They improve these bounds by
adding more scenarios which are the worst-case scenarios for the optimal earliest-start policy from

11

the previous round. Doing this until the lower- and upper bound are equal is their exact approach,
which is very slow according to the authors. Then they propose a heuristic that solves the problem
in the same manner but now they stop when the lower and upper bound are reasonably close, which
is the case when the difference between the upper- and lower bound divided by the lower bound is
smaller than a fixed epsilon.

Van den Broek et al. [4] looked at the related problem of generating robust shunting plans.
These shunting plans are also subject to resource and precedence constraints. They generate a
baseline schedule and a simple scheduling policy which can reschedule parts of the baseline schedule
if disruptions occur. The baseline schedule is a partial order schedule and the scheduling policy is
the earliest start time policy. The goal is to find a robust baseline schedule. They define robustness
of a schedule as the likelihood that all trains depart on time from the shunting yard. The main topic
of this paper is about how to measure robustness in this setting. They compare multiple measures
like, sum of total slacks, sum of free slacks, makespan, and some more complex measures like the
probability that the makespan is smaller than a certain value or an approach based on E(P;), which
can be computed by solving a linear program. They make the observation that if a path is longer
then the likelihood of a disruption appearing on a path is higher. They also propose 2 measures
that use normal distributions to approximate processing times in combination with paths. One of
these measures is the minimum probability that a path completes before its deadline, over all paths.
They compare 13 different measures in total for approximating the robustness. The evaluation is
done using simulation of the shunting plans for 2 real world locations. They show that measures
that use normal distributions as approximations of P; have a high correlation with robustness.

4.3 Other approaches and problem settings

The next four subsections will be about other approaches to deal with stochastic scheduling or other
related problems to RCPSP and possible approaches to solve them.

4.3.1 Scheduling Policies

Another way of solving a stochastic scheduling problem is by not creating a schedule but by formu-
lating a policy. Using this policy at every decision point we can decide which task(s) we will execute
next. The most common policy is called the elementary policy, which can only use the information
obtained by executing the schedule up to this point.

Emmons and Pinedo [13] showed that for the stochastic machine scheduling case with stochastic
processing times P;, due dates d; and weights on identical parallel machines we can still do well.
They minimise total weighted tardy jobs and prove for multiple different problem settings what the
optimal simple scheduling policy is when assuming that all processing times are independent. These
scenarios include pre-emption for example.

Creemers [9] showed that we can still get good results with fewer assumptions about the distri-
butions of the processing times. He uses phase type distributions to approximate the underlying
distribution. With these new distributions he can now create an optimal algorithm using stochastic
dynamic programming and Markov chains, but this approach does not work well on large instances,
and it only finds the optimal simple policy. Because we use multiple distributions to approximate a
distribution this can give us some extra decision points to make for example pre-emption choices.

4.3.2 Online Setting

Another related setting is the online setting. In this setting, the jobs that need to be scheduled are
unknown in advance and during project execution they are revealed, and we need to schedule them.

12

Gupta et al. [16] looked at stochastic online machine scheduling, with minimising the expected total
weighted completion time as the objective. They show that their online algorithm is an (144 + 72A)-
competitive algorithm and that this bound is tight. Here A is the squared coefficient of variation
of a random variable. The algorithm schedules tasks based on the instantaneous expected increase,
which is the cost for a machine m if we would schedule all the jobs currently scheduled on m in
decreasing order of weight over expected processing time. They schedule the new job on the machine
with the lowest instantaneous expected increase.

4.3.3 Machine Scheduling

Machine scheduling is a well-studied special case of RCPSP. Here we have only one type of resource,
namely machines, and all our tasks must be executed on these machines. In the RCPSP setting
all units of a resource are equivalent (each person/machine/tool/...), but there are some variants of
machine scheduling where not all machines are the same. In some cases when we make assumptions
about the distributions in the stochastic variants of the problem we can get some optimality results.
If we look at the multiple identical machine scheduling problem with pre-emptions, Bruno et al. [6]
assumed that the processing times P; followed an exponential distribution. Using the memorylessness
property of this distribution they proved that a SEPT (Shortest expected processing time first)
policy is optimal when optimising for total expected flow time or weighted completion time, and
that a LEPT (Largest expected processing time first) policy is optimal in the case of makespan
optimisation. This was later extended by Kampke [21]. He determines the optimal policies for more
general cases where SEPT and LEPT are not always optimal. He generalises the objective function
and under some restrictions adds resource and precedence constraints while still being able to find
the optimal scheduling policy.

Wu and Zhou [31] make no assumptions about the underlying distribution of stochastic variables,
but they only look at the single machine case. In their problem settings the processing times and the
due dates are stochastic variables. The objective function they consider is the expected maximum
lateness. They first develop a way to solve the deterministic case and then extend it to the stochastic
variant. They use dynamic programming to solve the problem. This exact approach becomes slow
when the instances get large, because of this they also develop 3 heuristics. The first heuristic is based
on the earliest due date first rule. They assume that the due dates are exponentially distributed for
the heuristics, and they schedule the tasks with the smallest exponential parameter A\ first. Their
other two heuristics work in a similar way, but they also take the processing time into account next
to the parameter \.

Passage et al. [26] used a local search approach for solving the machine scheduling problem. They
used approximations based on normal distributions to find good estimates of the expected makespan
to guide the local search effectively, because using simulation is time too consuming. They show
that the maximum of two normal distributions can be approximated quite well by another normal
distribution in many cases. The accuracy they achieve with this approach is comparable with running
300 simulations per iteration of local search, but their approach is much faster. They also compare
multiple local search approaches, namely ILS and VND.

4.3.4 Related Problems

Another related scheduling problem is the job shop scheduling. Here each job has a list of operations
that need to be completed in a specific order and each operation needs to be performed on a specific
machine. Job shop scheduling is a special case of RCPSP. If we say that n is the number of jobs and
m is the number of machines, we can model it by adding n + m resource types all with a capacity
of 1. Here the first m resource types correspond to the machines and the other n resource types

13

represent the jobs and these are needed to enforce that multiple operations of the same job cannot
be scheduled at the same time. One approach to solve this problem based on a decomposition was
described by De Bontridder [11]. He wanted to minimise the total weighted tardiness in a job shop
scheduling setting. He used a tabu search approach to determine the order of the jobs on each
machine and with that given he can solve a maximal cost flow problem to find the optimal starting
times for all jobs given their ordering on the machines.

A common project modelling method is PERT (Project Evaluation and Review Technique).
Using the PERT method, a PERT network can be created which represents the project with all
its individual tasks and precedence relations between them. If the processing times of tasks are
independent and exponentially distributed, we get a Markovian PERT network. Creemers et al. [10]
tried to tackle the problem of creating schedules for Markovian PERT networks. Their objective was
the net present value, where each task generates a cash flow ¢;, positive or negative at its start. To
account for change of value of money over time we define a variable r as the applicable continuous
discount rate. The present value of the cash flow ¢ at time ¢ equals ce™"¢. They compute all sets of
tasks that can be performed in parallel and use recursion to find the optimal solution.

4.3.5 Surveys

For a recent survey on stochastic machine scheduling, we refer to Pinedo [27]. For surveys on RCPSP
we refer to Herroelen et al. [19], Herroelen and Leus [20], Hartmann and Briskorn [17] and Bréié et
al. [3].

5 Research Questions

All these questions that are formulated below are about SRCPSP with total tardiness as objective,
but we will also answer these questions for the simpler machine scheduling case. We want to see
what answers to our questions might change for this related problem setting. In Section 6 we will
give some more insights about the machine scheduling problem and how it is related to the RCPSP.

The first question is: How to best assess the expected total tardiness? Because of the stochastic
and complex nature of the problem it is very difficult and time consuming to determine the expected
value of the objective exactly. Therefore we will look at alternative methods to get an assessment of
the expected total tardiness. Our next question is How to best use local search to solve our problem?
In this case our problem refers to the SRCPSP or the machine scheduling problem. The problem
instances quickly get too large to be solved in an exact manner, that is why we will focus on a local
search-based approach. We want to answer these two questions for both the machine scheduling and
the SRCPSP setting.

14

6 Machine Scheduling

Before we look at the full resource constrained project scheduling problem, we will first look at a
simpler variant of the problem: the machine scheduling problem. The machine scheduling problem
is the same as the RCPSP where we have a single resource type and each task requires one unit of
this resource type during execution. Other than that, they are the same. This single resource type
represents the machines where we need to schedule our tasks on. We can have multiple units of this
resource, or in other words, multiple machines.

6.1 Problem Setting

We will start with the problem definition of the machine scheduling problem. There are n tasks,
and we must complete each task. There is also a dummy task 0 which represents the start of the
project. Each task has a given processing time of p; and a given due date d;. The dummy task
has a processing time of 0 and an infinite due date. We also have m machines, and each machine
can process one task at a time. There are also precedence constraints between the tasks. These
constraints are given in the form of a precedence graph G = (V, A). Here V is the set of all tasks
and the set A represents the precedence constraints. If A contains an arc from task j to task k this
means that we can only start task k& when we have finished task j. These are finish-start zero-time
lag precedence constraints. G contains an arc from the dummy task 0 to each task, which represents
that we cannot start any project task before we start the project. We use the term direct precedence
constraints, for these precedence constraints. The main objective is to minimise the total tardiness
over all tasks. The tardiness of a task is the penalty we assign to the task if we complete it after its
due date . We define the tardiness 7 of task j using its completion time C; in a given schedule, and
its due date d;. The lateness L; of task j is defined as C; —d; and the tardiness, T} of task j is defined
as max(0, L;). This combined gives us the following objective: minimise : E?Zl max(0,C; — d;),
or shortened: minimise : 3 7_, Tj.

We will look at the stochastic extension of the machine scheduling problem. In this variant of
the problem we associate a probability distribution with the processing time of each task instead of
using a deterministic value. We assume that all processing times are independently distributed and
follow the same type of distribution with expected processing time p; and variance o7 = o*(D)p3.
Here 02(D) is a given constant. For task j, we denote the stochastic processing time by P;. Another
difference is that we now want to optimise the expected total tardiness with respect to the processing
time. Other than these extensions it is the same as the machine scheduling problem.

6.2 Solution Representation

We will not consider unforced idle time in the solution, because it is not useful for this problem.
This means that a machine can only be idle if there are no more tasks planned on the machine or
if the next task planned on the machine is not yet available. The reason for this is the following,
if we have a schedule with some unforced idle time and we remove this idle time the schedule will
never get worse. The completion times of some tasks might decrease, and this can’t have a negative
impact on the total tardiness. Because of this requirement we can represent our solution/schedule as
a Partial Order Schedule (POS). This means that we can represent our solution as directed acyclic
graph. In this graph the vertices represent the tasks and the arcs represent the order in which we
need to perform tasks. Between each pair of consecutive tasks on a machine we add an arc. This
graph contains m chains which are the chain of tasks on each machine. These chains consist of all
the tasks which are scheduled on a specific machine. There are also arcs between tasks for which

15

we have precedence constraints. This means that we can also have arcs between the chains of the
different machines. This graph must clearly be acyclic otherwise we could never execute the schedule
while honouring all precedence constraints.

We also add an extra dummy task at the start of each machines schedule. These dummy tasks
are used by the local search operators and have no other purpose. We call this set of tasks the
"”dummy tasks’. This set of dummy tasks does not include the dummy precedence task which is used
as a starting point for the precedence constraints. We will call the set of all tasks, including the
dummy tasks, ’all tasks’. And lastly, we will call the set of all tasks excluding the dummy tasks the
‘real tasks’.

6.3 Overview

We will use a local search approach based on simulated annealing to try and solve this problem. We
will first describe the components of the local search approach in a high-level manner and then each
of the important components will be discussed separately in the upcoming sections. First, we will
generate an initial solution as described in Section 6.4. Then we will use simulated annealing, as
described in Section 6.7, with the neighbourhoods described in Section 6.5 to improve that solution,
in a first improvement manner. After each step we will evaluate our new solutions with one of the
methods described in Section 6.8. Then we use simulated annealing to determine if we should accept
the new solution or not. In each step we use the method described in Section 6.6 to select which
neighbourhood we will apply. We repeat this until we failed to improve the solution 5000 times in a
row and then we check all possible neighbours in all our neighbourhoods to check if we are indeed
locally optimal. If we are, we stop, if we are not, we apply the improvement we just found and
continue the procedure of trying random neighbours from random neighbourhoods. We also stop
the search after half an hour because of time constraints. How the parameters were determined for
all these methods can be found in Section 6.11. How all the instances for the parameter tuning and
other experiments were generated can be found in Section 6.9. The setup that was used for all the
experiments is described in Section 6.10.

We choose to use an approach based on local search because we choose the problem setting for
its practical applicability, and exact methods are not feasible for problem instances of practical size.

6.4 Initial Solution

Before we can start our local search, we will need to have some starting point. In this section we
describe how we generate our initial solution. We start out by dividing the set of all real tasks into
three parts: the available tasks, the unavailable tasks and the planned tasks. The planned tasks
are all tasks which are assigned to some spot in the schedule. The available tasks are all tasks for
which we have planned all their predecessors but not themselves. And lastly, the unavailable tasks
are all tasks for which not all predecessors have been planned yet. After initialising all the task sets,
we repeat the following steps until we have scheduled all tasks. We first pick a random available
task and schedule it at the end of the already scheduled sequence on a random machine. Next, we
move the newly planned task to the set of planned tasks. Then we look at all the successors of the
newly planned tasks and check if we can move them from the unavailable set to the available set.
Continuing in this fashion gives us an initial solution.

16

6.5 Neighbourhoods

We define 2 neighbourhood/local search operators: the shift and the swap. In the following sections
we will discuss how these operators work, how we can check if a specific shift /swap is allowed and
how we can randomly generate shifts/swaps. For explaining the next sections, we will need to define
some terms.

First, we will define the direct- and implied predecessors/successors. The direct predecessors of a
task j are all the precedence predecessors of task j. The set of implied predecessors of task j contains
all the precedence predecessors of task j, this also includes the predecessors of its predecessors. There
is more, we also include all the resource predecessors and their implied predecessors. The resource
predecessors are the machine predecessors, but we define it in the more generic way to make sure
that we can use the same definition when we talk about the RCPSP. In other words: The implied
predecessors of task j, are all its direct predecessors and their implied predecessors, combined with
its resource/machine predecessor and the implied predecessors of the resource/machine predecessor.
The direct- and implied successors are defined in a similar manner. An important note is that the
direct predecessors/successors are not dependent on the schedule, but the implied predecessors are,
because they depend on the resource/machine predecessors/successors. Because of this, they can’t
be determined in advance before the search.

6.5.1 Shift

The shift operator shifts a single task to a different place in the schedule. This can also be to a
different machine. We define the shift by a pair of tasks (7'1,72). We will call T'1 the place task
and T2 the shift task. We will shift the shift task to the spot after the place task. We can select T'1
randomly from the set of all tasks (including the dummy tasks). We can then select T2 from the set
of real tasks. In this manner we can select all possible shifts, but not all shifts are always allowed.
What is allowed cannot be totally determined in advance because it depends on the current schedule.
We can check if we can place task T2 after task T'1 by checking if the set of implied predecessors of
task T'2 placed after task T'1 does not have any overlap with the set of implied successors of task 72
placed after task T'1. If this is the case, the shift is feasible. We then perform the shift by moving
task T'1 directly behind task T°2.

6.5.2 Swap

The swap operator swaps the places of 2 different tasks in the schedule, which can be placed on the
same or on different machines. We define the swap by a pair of tasks (7'1,72). We can select T'1
and T2 randomly from the set of real tasks. In this manner we can select all possible swaps, but
not all swaps are always allowed. What is allowed cannot be totally determined in advance because
it depends on the current schedule. In a similar manner as we did for the shift, we can compute the
set of implied- predecessors and successors for both tasks and check that there is no overlap between
the set of predecessors and successors for both tasks. We can then perform the swap by switching
the placing of task T'1 and task T2 in the schedule.

6.6 Neighbourhood Selection

Because we have multiple neighbourhoods that can be used during the search, we need a method
to decide which method to use at what time. Currently we only have two neighbourhoods, but
later on there will be more. We use a method for this that computes the expected score decrease
for each neighbourhood and uses that information to determine a selection probability for each

17

neighbourhood. The idea behind this approach is that the ’optimal’ probabilities for each operator
can be different during, for example, the start of the search compared to the end of the search. This
method should hopefully solve this problem by determining the probabilities dynamically during the
search.

The advantage of this method is that it is adaptive to the search and will encourage the selec-
tion of neighbourhoods that are currently performing well. To prevent overfitting the probabilities
associated with the neighbourhoods we introduce some parameters. We introduce 3 parameters:

e expectation adaptation Ag
e probability adaptation Ap
e minimum probability mp

We want to prevent that a neighbourhood is no longer selected because it is currently not
very effective compared to the other that is why we introduce a minimum probability for each
neighbourhood. The adaptation parameters are there to prevent overfitting. We want to prevent
that if we make a single very good move in a neighbourhood that that neighbourhood immediately
starts dominating the other neighbourhoods.

We initialise all operators with an equal probability and set the expected value of applying each
operator to zero.

If we call the expected decrease of neighbourhood i: E(i) we update this expected decrease in
the following way: E(i) = (1 — Ag) * E(i) + Ag * A, where A is the difference in score between
the old and new schedule. Then we determine the minimum value of all the expected decreases
ming ;). We then compute the adjusted total as ET =" | (E(i) —ming ;) where n is the number
of neighbourhoods. Next, we compute the new probability for operator i as Py, (1) = (1 —n*mp) *
((E(i) — ming))/ET) + m,. Then we set the probability P(i) = (1 — Ap) * P(i) + Ap * Ppew(i).

I will now explain why the result is always a proper probability distribution again. If we look at
(1—nxmp) in formula for P,,e, (i) we see that we first compute the fraction of the distribution that
we need to distribute over all the operators, this is most likely smaller than 1 because of the minimum
probability we assign to each operator. We defined ET as the sum over all (E(i) — ming;), this
means that the sum over all operators for the second part ((E(i) — ming;))/ET) would equal 1.
And lastly, we add mp to each P, (i) to make it a proper probability distribution. There is one
edge case for this approach. If all the E(i)’s are equal, ET is equal to 0, and in the formula for
Pyew (i) we would divide by 0. If we detect this problem, we can randomly slightly perturb all the
E(i)’s and try again. It is very unlikely that after this step all the E(i)’s will be equal again.

In Section 6.11 we give some information about which parameter values were used for the experi-
ments. When choosing values for the parameters there are some restrictions. The the first restriction
is that Ap and Ap € [0,1]. A higher value for any of these parameters will cause the probabilities
to change more quickly and fit the currently observed fitness landscape better. A too high value
for these parameters will make this method vulnerable to outliers and a too low value might cause
the method too not adequately adapt its probabilities to the current operator performance. The
mp must be chosen between [0, u], where u is the reciprocal of the number of operators that we are
using.

6.7 Simulated Annealing

To increase the effectiveness of the local search we will use simulated annealing instead of just
hill climbing. It works like this. If we find a new solution we look at its estimated total tardiness
according to our current evaluation method, see Section 6.8 for more details on this, and we compare

18

this with the estimated total tardiness of the previous solution. If the score of the new solution is
lower, we always accept it as our new solution. If the score is higher, we will accept the new solution
with a certain chance. This chance of accepting the new, worse solution is described in Equation
1. In this equation, e is Euler’s constant, eval() is the evaluation function we are using, z is the
previous solution y is the new solution and T is the temperature parameter.
eval(e) —eval(y) (1)

Simulated annealing has three parameters. The first one is the starting temperature Ts;q.:. The
second one is () which represents the frequency with which we reduce the temperature. The third
one is «, the factor with which we reduce the temperature we have the restriction that 0 < o < 1.
The cooling schedule works like this. The temperature T starts at the starting temperature Tipq
and after we complete @) local search iterations we multiply 7" by a. In Section 6.11 we give some
insight about how the parameters of this approach are selected.

p=e

6.8 Evaluation

After we apply one of the local search operators we get a new schedule and we want to be able
to evaluate this schedule in some manner to compare it to the original schedule. We need this
evaluation to decide which schedule is "better’ according to some function. We distinguish between
three evaluation methods. These will be described in the sections below.

6.8.1 Percentile Evaluation

A simple approach is just taking a fixed percentile of the processing time distribution for each task
and then computing the starting- and completion times for each task using the schedule.

Given a solution and problem definition, we get a partial ordering of the tasks which we can use
to generate an ordering in which we can compute the starting- and completion time of each task. The
starting time of a task is the maximum of the completion time of all its predecessors (implied and
direct). The completion time of a task is its starting time plus its processing time, which will just
be a fixed percentile of its processing time distribution. We can then compute the total tardiness,
by computing the tardiness for each task. This approach just ignores all the stochasticity of the
problem. Instead of using the expected processing time for each task we can also use a certain fixed
percentile of the processing time. If we choose a high percentile we will be pessimistic with respect
to the processing times, but this might give a buffering effect for the schedule which might turn out
to work better.

Many distributions have closed form equations to compute these percentile values and in case
this equation does not exist one can always find good approximations for these values.

6.8.2 Simulation Evaluation

The simulation approach is very similar to the percentile-based approach. But this time we sample
the processing times of each task according to its distribution. With this sample of the processing
time we can evaluate the solution like we explained in Section 6.8.1. This sampling can easily be
done with using inverse transform sampling. If we do this sampling and evaluating multiple times,
we can get a good approximation of the expected total tardiness by averaging the results. We use a
set of samples that are re-used. The idea behind this is the following: by not changing the samples
every iteration we give the local search some time to optimise for a fixed set of samples. If we would
change the samples every iteration it might be the case that the local search would not properly

19

converge. This will be tested and you can read about the results of these tests in Section 6.11.
This evaluation method can be controlled with two parameters. The first is the simulation count.
This represents the number of simulations that we will do to get an estimate of the expected total
tardiness. The next parameter is the replace percentage. This is the percentage of processing time
samples that are replaced each time we replace part of the samples. After |V|? local search steps
we replace a certain percentage of the processing time samples. Here |V| is the number of real
tasks. This set of samples is reused for each evaluation we do. When we sample, we sample all the
processing times of all the tasks and use this set of p;’s as one sample. The p;’s of different samples
are not mixed. If we use a certain sample, we use a fixed set of p;’s.

6.8.3 Normal Approximation Evaluation

The starting time of each task depends on the completion time of its machine predecessor and
the completion time of its direct precedence predecessors. The starting time of a task is in fact
the maximum of the completion times of all these tasks. This is because non-forced idle time is
not allowed in the schedule. We will assume the completion times of all predecessors are normally
distributed and compute the maximum over all these completion times and assume that that is
normally distributed again. Using equations 2, 3 and 4, we can approximate X = max(Ny, Na),
where N is a normal distribution with parameters (u;,0?) and Ny is a normal distribution with
parameters (jg2,03). We then assume that X is normally distributed again. p is the correlation
coefficient of N7 and N5 which we will assume to be 0 during all our experiments. In the equations
®(x) denotes the cumulative distribution function of the standard normal distribution and ¢(x)
denotes the probability distribution function of the standard normal distribution. These formulas
are enough to approximate the new distribution because we know that 0?(X) = E(X?) — E(X)?.
We use a specific ordering of these tasks while computing the maximum. First, we take the
immediate machine predecessor on the same machine into account. Then we take the remaining
direct precedence constraints into account. We ignore the direct precedence constraints which come
from tasks that are scheduled on the same machine, because their influence is already taken into
account by the immediate machine predecessor. When we have a distribution for the starting time
of a task we get the distribution of the completion time of the task by adding the means of the
starting time and processing time together and the variance of the starting time and processing time
together. This approach gives us a normal distribution for the starting- and completion times for
each task and we can use the expected values of these distributions to approximate the expected
total tardiness of the schedule. For more details about this approach we refer to [25], [26] and [24].

0= \/0'% + 02 — 2poi03 (2)
B(X) = (12 1 (M2 1) 4 o) @
B(X?) = (0} + i) o(BoE2) + (03 + i) et + (m +)t (B) @)

6.9 Generating Instances

We generate the instances in the following way. First, we select the number of real tasks, |V|,
machines m, precedence constraints |A|, and the scaling factor o2(D) between the processing time
and the variance. We select the minimal and maximal mean for the normal distributions. We also
compute the average of these numbers and call it p. We then set the minimal due date to 0 and the

20

maximal due date to |V|* p/m. Now that we have all the ingredients we need for generating the
instances we can start. For each task we sample the mean and due date uniformly between their
minimum and maximum. For each of the precedence constraints we select 2 different tasks (77, 7T»)
at random. We then need to check that this new constraint does not conflict with the current set
of constraints. A new precedence constraint (77, 75) is in conflict with the current set of precedence
constraints G(V, A) if there exists a path in G from Ty to T3. This would create a cycle in the
precedence constraints, and this makes the resulting problem unsolvable. If we select such a pair of
tasks, we just select a new pair of tasks and try again. We repeat this until we have generated the
number of constraints that was asked for.

In Table 3 and Table 4 you can see some settings that were used to generate some of the instances
that were used for the machine scheduling experiments. The processing times for these instances
are normally distributed.

6.10 Experimental Setup

There are two goals with these experiments. The first goal is optimising the parameters for the
evaluation methods, the second goal is to compare the three different evaluation methods. We will
first need to find the proper parameter settings for each evaluation method before we can compare
them. For a given problem instance, evaluation method and set of parameters we run the algorithms
as described in Section 6.3. When we terminate the search, we perform a million simulations to get
a good approximation of the expected total tardiness of the final solution. For each experiment we
measured this final score and the time used in the local search. For each combination of evaluation
method and parameter we repeated the experiment ten times. All experiments were run on a 64-bits
Windows system with an i7-6500U CPU and 8GB of DDR4 RAM.

6.11 Parameter Tuning

In this section we will describe the setup of the parameter tuning experiments. We will describe what
settings were used and how the experiments were run. We first did some experiments to determine
the effect of the simulation count and replace percentage on the simulation evaluation method. More
details about this can be found in Section 6.11.1. After that we did some experiments to determine a
good starting temperature for the simulated annealing, and we looked at different percentiles for the
percentile evaluation method. In Section 6.11.2 we go into more details about this. We also repeated
some of the experiments from Section 6.11.1 too see if the simulation parameters and the starting
temperature influenced each other. These sections are split up like this because they use different
sets of instances for their experiments. We increased the number of instances for the parameter
experiments in Section 6.11.2 too get more representative results.

For all parameter tuning experiments we used an « of 0.975, and every 8 |N| iterations we
multiplied the temperature with «. Here |N| is the average of the size of all neighbourhoods.
The size of the neighbourhoods is roughly the number of tasks squared. For the selection of the
neighbourhoods, as described in Section 6.6, we used a Ap and Ap of 0.1 and a mp of 0.2. We
did not conduct proper experiments to determine what values work good for these parameters. The
values were determined based on intuition and some small amount of tuning by hand.

The stopping criterion we used is the same as we described in Section 6.3 but we add one more
additional constraint. We also stop after we have made 1000000 improvements. This is because
these tests are mostly for the tuning of the parameters so we can afford to maybe sometimes stop a
little earlier.

21

Instance | Task Count | Machine Count | Precedence Count | o%(D)
P1-0 20 3 0 0.5
P1-1 20 4 10 0.25
P1-2 20 3 10 0.1
P1-3 20 1 5 0.1
P1-4 20 2 5 0.33

Table 3: Parameter Tuning Instances (set 1)

Instance | Task Count | Machine Count | Precedence Count | o%(D)
P2-1 50 2 25 0.75
P2-2 50 3 25 0.5
P2-3 50 2 50 0.5
P24 50 3 50 0.75
P2-5 50 4 25 0.3

Table 4: Parameter Tuning Instances (set 2)

6.11.1 Parameter Tuning Run 1

We tried 5 different values for the replace percentage parameter: {0%, 25%,50%, 75%, 100%}. We
tried 9 different values for the simulation count parameter: {50,100, 150, 200, 250, 500, 1000, 2000, 4000}.
The results of these experiments can be found in Section 6.12.1. For this experiment to determine
good values for the simulation evaluation method we used 5 instances. All these instances were
generated with the method described in Section 6.9. The settings that were used to generate these
instances can be found in Table 3. During these experiments we used a starting temperature of 1.
This seemed like a low starting temperature but because of the small number of tasks in these first
experiments, it seemed to work okay. The small number of tasks makes it so that the total search
space is not extremely large which is why it is more likely that we will converge earlier and that is
why a quite low starting temperature works well we think.

6.11.2 Parameter Tuning Run 2

For the starting temperature we tested the following values: {1,2,3,4,5,6,7,25,50}. We then
also tested multiple percentiles for the percentile evaluation method. The values we tested were
{40, 50, 55,60, 65,70}. We also tested the influence of the starting temperature on the parameters
for the simulation evaluation method. For these parameter tuning experiments, we used a different
set of instances compared to the first parameter tuning experiments described in Section 6.11.1. We
generated 3 instances for each of the categories described in Table 4. These instances were used to
do the parameter tuning runs. The results of these experiments can be found in Section 6.12.2.

6.12 Results Parameter Tuning

We will now discuss the results of the tests that were done for the parameter tuning. The parameter
tuning was done in multiple steps that is why there are multiple sections coming up about parameter
tuning.

22

Simulation

Count

50 100 150 200 250 500 1000 2000 4000

Instance | P1-0 | 3.64 3.51 3.41 3.26 3.30 3.21 3.12 3.02 3.02

P1-1 | 22.27 22.22 | 2217 | 22.16 | 22.16 | 22.14 | 22.12 | 22.08 | 22.07
P1-2 | 76.65 76.32 | 75.78 | 76.54 | 75.58 | 75.36 | 75.34 | 75.11 75.45
P1-3 | 221.26 221.81 | 219.42 | 217.62 | 219.85 | 216.66 | 217.44 | 219.05 | 216.44
P1-4 | 3.75 3.57 3.58 3.52 3.52 3.48 3.43 3.43 3.41

Table 5: Average score per instance and simulation count

6.12.1 Parameter Tuning Results Run 1

The score metrics in all the results are the average total tardiness of the final solutions and the time
metrics are in milliseconds. All combinations for the simulation counts and replace percentages were
tested and the tables where only the simulation counts are shown take the average over all replace
percentage runs with the specified simulation count. The same goes for the tables about the replace
percentages. The tables that will be discussed in the upcoming Sections are 5, 6, 7, 8, 9, 32, 33, 34
and 35.

6.12.1.1 Simulation Count

From Table 5 we can see that as we increase the simulation count the final score also slowly decreases.
In the simulation counts tested so far, we cannot yet see the score approaching any plateau, so further
experiments are required to find the point at which the score decrease starts to taper off. But we
can already see the diminishing results from doubling the simulation count in the results.

From Table 6 we can also deduce that the time needed roughly doubles as the simulation count
doubled which means that the simulation count quickly becomes the dominant factor in determining
the total running time.

6.12.1.2 Replace Percentage

We see from Table 7 that the replace percentage of 0% seems to work best for all instances, which
is quite remarkable. We expect that the replace percentage is not important if the simulation count
becomes sufficiently large. At some point we have enough simulations to be sure that the set is quite
representative and will give a good approximation of the expected total tardiness.

We can see in Table 8 that a higher replace percentage increases the time used. We expect that
this is because replacing more samples will delay the convergence of the schedule. We expect that
the time required for replacing more samples will not have a significant impact.

6.12.1.3 Simulation Count and Replace Percentage

We also tested the interaction between the simulation count and the replace percentage as you can
see in Table 9. Table 9 only shows the results for instance P1-0. The tables for the other instances,
Table 32, 33, 34 and 35 can be found in Section 10. We can see that there are no clear interactions
between the parameters, we still see the same patterns that we saw for each parameter individually,
and we see no other apparent patterns.

23

Simulation
Count
50 100 | 150 | 200 | 250 | 500 | 1000 | 2000 | 4000
Instance | P1-0 | 361 656 | 964 | 1284 | 1553 | 2675 | 5479 | 10986 | 22128
P1-1 | 298 577 | 891 | 1129 | 1627 | 3592 | 5599 | 12298 | 24813
P1-2 | 322 592 | 828 | 1134 | 1347 | 2458 | 5032 | 8934 | 18751
P1-3 | 318 560 | 821 | 1168 | 1579 | 3417 | 6491 | 12358 | 22450
P1-4 | 308 593 | 918 | 1217 | 1653 | 3535 | 7169 | 14289 | 28006
Table 6: Average time (ms) per instance and simulation count
Replace
Percentage
100 75 50 25 0
Instance | P1-0 | 3.31 3.32 3.36 3.40 3.01
P1-1 | 22.19 22.20 | 22.16 | 22.18 | 22.04
P1-2 | 76.21 75.99 | 75.48 | 75.74 | 75.22
P1-3 | 219.78 219.67 | 220.14 | 218.75 | 216.35
P14 | 3.59 357 | 352 | 352 | 3.41
Table 7: Average score per instance and replace percentage
Replace Percentage
100 75 50 25 0
Instance | P1-0 | 5261 4690 | 5163 | 4778 | 3927
P1-1 | 7318 6497 | 3726 | 3558 | 2569
P1-2 | 4645 4999 | 4485 | 4361 | 3139
P1-3 | 5705 5445 | 5223 | 4951 | 4047
P1-4 | 6869 5895 | 6350 | 5706 | 4850

Table 8: Average time (ms) per instance and replace percentage

Simulation Count
50 100 | 150 | 200 | 250
Replace Percentage | 100 | 3.67 3.43 | 3.36 | 3.3 | 3.36
7 | 3.67 3.64 | 3.31 | 3.53 | 3.31
50 | 3.8 3.86 | 3.55 | 3.18 | 3.49
25 | 4 3.61 | 3.75 | 3.35 | 3.28
0 3.07 3.03 | 3.07 | 2.96 | 3.05

Table 9: Average score for instance P1-0 for different Simulation Count and replace percentage

settings

24

6.12.2 Parameter Tuning Results Run 2

Here we show and discuss the results of the second set of parameter tuning experiments that were
performed. More details about the setup can be found in Section 6.11.2. The tables that will be
discussed in the upcoming Sections are 10, 11, 12, 13, 10 and 15.

6.12.2.1 Starting Temperature

For the starting temperature we tested the following values: {1,2,3,4,5,6,7,25,50} with the normal
approximation method. This was done to get an idea of the range of starting temperatures that
would work best. The results of these tests can be found in Table 10. Here we see that a starting
temperature of in the range 1 till 5 seems to work best for the instances shown here.

6.12.2.2 Simulation Evaluation

Using the knowledge from Section 6.12.2.1, we performed some more tests of the simulation evalu-
ation method. Because we were unsure if the starting temperature would impact the other param-
eters of the simulation approach we tested multiple parameter settings again. For the simulation
count we tested all values in {50,100, 150, 200, 250, 500, 1000}, for the replace percentage we used
{0%, 25%, 50%, 75%, 100%} and lastly for the starting temperature we used {1, 3,5,7}.

The results of these tests can be found in the Tables 11, 12 and 13. Each table shows the results
spread over 1 of the parameters and is the average over the other parameters. As seen before in
Section 6.12.1 a higher simulation count is better for the end result and it also lowers the standard
deviation of the final score. This is all as expected. We also observed the same time scaling effect as
we saw in Section 6.12.1, where the time needed was roughly doubled as we doubled the simulation
count. These results are not shown because they contained no new insights.

6.12.2.3 Replace Percentage

For the replace percentage we also see the same effect as before, a replace of 0% is best. This can be
seen in Table 12. A replace percentage of 50% seems to perform the worst in most cases, but higher
or lower percentages only perform marginally better.

6.12.2.4 Starting Temperature with Different Evaluation Methods

If we compare Table 10, 13 and 15 we can see that results for the starting temperature are slightly
different for the different evaluation methods. The simulation method works better with a slightly
higher starting temperature. We can also see that a higher starting temperature reduces the standard
deviation for the results for the simulation approach. This effect was not present for the normal
approximation. The normal approximation approach performs better under the best settings than
the simulation approach for every instance. From this we can conclude that we would need more
simulation per evaluation to perform on a similar level to the normal approximation method.

6.12.2.5 Percentile Evaluation

In Table 14 we can see that a slightly pessimistic approach with respect to the processing time
performs best. On average the 55th percentile gave the best results. For the starting temperature,
shown in Table 15, we see similar results, as we saw for the normal approximation; a starting tem-
perature of roughly 3 seems to work best. If we compare the best results for the normal distribution
as seen in Table 10, and the best results from the simulation as seen in Table 11, and the best

25

Start Temperature 1 2 3 4 5

Instance P2-1 | 1461.38 (55.46) 1413.60 (99.92) 1401.83 (69.52) 1439.25 (115.43) | 1487.04 (125.99)

P2-2 | 2916.06 (155.85) | 2926.74 (163.51) | 2884.96 (183.24) | 2785.04 (173.91) | 2840.47 (128.09)

P2-4 | 2971.48 (57.97) 2083.49 (93.11) 2974.93 (65.04) | 2952.29 (54.56) 2952.3 (77.36)

((((
((((
P23 | 1937.49 (37.84) | 1927.40 (33.01) | 1909.44 (33.49) | 1949.78 (31.91) | 1909.44 (26.71)
((((
((((

P2-5 | 1022.42 (18.15) 1016.76 (36.00) 1031.16 (29.11) 1052.31 (33.04) 1046.27 (43.72)

Start Temperature 6 7 25 50

Instance P2-1 | 1444.51 (145.56) | 1431.23 (66.70) 1791.76 (138.82) | 2209.22 (178.87

P2-2 | 2716.24 (54.47) 2835.75 (159.79) | 3111.00 (127.28) | 3512.05 (209.22

P2-4 | 3035.01 (155.37) | 2983.63 (81.28) 3256.15 (63.35) | 3738.74 (140.09

(((()
(((()
P2-3 | 1951.03 (29. 02) 1969.28 (41.28) | 2312.02 (76.22) | 2758.28 (203.05)
(((()
(((()

P2-5 | 1055.13 (31.48) | 1084.15 (37.00) 1349.70 (72.96) | 1803.08 (110.68

Table 10: Score: average (standard deviation) per instance and starting temperature. The evaluation method is
normal approximation

Simulation Count

50 100 150 200 250

Instances | P2-1 | 1591.29 (173.46) 1530.17 (159.86) | 1495.59 (116.63) | 1455.31 (105.93) | 1456.16 (103.61)

P2-2 | 3010.68 (226.28) 2914.47 (218.93) | 2886.61 (196.74) | 2842.73 (179.60) | 2819.53 (163.77)

P2-3 | 2043.60 (115.54) 1990.39 (88.36) 1953.33 (66.60) 1943.96 (65.35) 1940.34 (60.94)
() ((((
(((((

P2-4 | 3181.72 (202.45 3087.86 (146.45) | 3051.08 (137.63) | 3046.87 (116.17) | 3032.58 (122.98)
P2-5 | 1096.75 (93.66) 1053.82 (51.14) | 1044.11 (49.47) 1039.52 (45.78) 1038.35 (39.39)

Table 11: Score: average (standard deviation) per instance and simulation count. The evaluation method
is simulation

results for the percentile evaluation as seen in Table 14 we see that is all cases except for instance
P2 — 2, the normal approximation approach performs the best. What is remarkable about this is
that the best results for the percentile evaluation are achieved when we use the 40th percentile of
the processing time. We can also see that in all cases except for instance P2 — 4, the simulation
performs the worst. For instance P2 — 4, the percentile evaluation approach performs the worst.

26

Replace Percentage
0 25 50 75 100
Instances | P2-1 | 1373.78 (63.36) 1523.97 (118.86) | 1532.69 (129.04) | 1531.64 (144.54) | 1566.43 (160.13)
P2-2 | 2681.24 (92.48) 2906.40 (188.98) | 2961.99 (183.33) | 2966.06 (207.89) | 2958.32 (196.13)
P2-3 | 1880.03 (38.49) 1983.71 (80.16) | 2015.03 (91.46) | 2003.40 (88.30) 1996.00 (78.01)
P2-4 | 2927.48 (63.19) 3102.89 (141.17) | 3127.32 (160.99) | 3120.08 (145.19) | 3122.35 (155.37)
P2-5 | 1011.14 (37.27) 1056.31 (58.04) 1066.81 (55.35) 1068.97 (67.98) 1069.31 (70.39)

Table 12: Score: average (standard deviation) per instance and replace percentage. The evaluation method
is simulation

Average Score Start Temperature
1 3)
Instances P2-1 | 1527.82 (161.52) 1504.78 (132.59) | 1484.51 (133.43)
P2-2 | 2929.23 (214.22) 2892.43 (206.27) | 2862.75 (201.43)
P2-3 | 1983.41 (100.18) 1973.54 (96.12) | 1970.21 (76.38)
P2-4 | 3102.69 (172.06) | 3075.70 (152.59) | 3061.68 (144.39)
P25 | 1058.17 (77.15) 1046.13 (59.27) | 1059.22 (48.19)

Table 13: Score: average (standard deviation) per instance and starting temperature. The evaluation

method is simulation

Percentile
40 50 55 60 65 70
Instance | P2-1 | 1504.02 (80.54) 1448.78 (103.14) | 1440.90 (78.80) 1468.54 (66.61) 1502.85 (71.70) 1531.12 (92.10)
P2-2 | 2765.50 (108.16) | 2825.76 (135.14) | 2784.88 (131.32) | 2828.95 (134.63) | 2887.29 (157.52) | 2889.5 (123.19)
P2-3 | 1968.14 (47.55) 1934.98 (40.95) 1930.51 (54.73) 1928.74 (41.42) 1955.15 (48.32) 1974.94 (39.73)
P2-4 | 3098.77 (73.57) 3057.42 (89.13) 3070.46 (100.86) | 3075.92 (125.41) | 3061.24 (81.62) 3093.64 (77.09)
P2-5 | 1045.08 (35.03) 1051.12 (45.56) 1032.04 (35.80) 1038.83 (61.71) 1065.04 (51.61) 1083.20 (91.19)

Table 14: Score: average (standard deviation) per instance and processing time percentile. The evaluation method

is percentile

starting temperature
3 5
Instance | P2-1 | 1486.83 (92.01) 1475.36 (78.59) 1485.92 (93.95)
P2-2 | 2851.18 (131.09) 2822.58 (151.35) | 2817.18 (132.77)
P2-3 | 1941.77 (49.47) 1944.76 (45.58) 1959.36 (49.83)
P2-4 | 3085.74 (100.79) 3078.14 (95.56) 3065.06 (81.43)
P2-5 | 1038.10 (73.72) 1050.12 (46.69) 1069.44 (47.91)

Table 15: Score: average (standard deviation) per instance and starting temperature. The evaluation

method is percentile

27

6.13 Final comparison

After the parameter tuning experiments, we used our approach in combination with each of the
evaluation methods with the best settings found in the previous experiments to compare the different
evaluation methods. For the percentile approach we used the 55th percentile and for the simulation
we used a simulation count of 500 and 1000. The results of this comparison can be found in Table
16.

We can see that the normal approximation and percentile-based approach perform very similarly
with respect to score and time. We can also see that both simulation-based approaches perform
very similar with respect to score, but as expected the one with the lower simulation count does
much better with respect to time. This means that we are nearing a point where an increase in
the simulation count does not seem to give much score improvement. Both the simulation-based
approaches are considerably slower than the normal approximation or the percentile approaches but
on the other hand the simulation-based approaches score better on 2/3 of the instances. Overall,
we can see that the normal approximation and percentile-based approaches perform quite similar
and are quite quick compared to the simulation-based approach, but the simulation-based approach
performs a bit better with respect to the final score.

Because of a lack of time we only tried instances where the processing times were normally
distributed. This might give the normal approximation-based approach an advantage because this
makes it a better approximation. This is something to take into account when looking at the results.

We expected the normal approximation-based approach to perform a bit better given the results
we saw by Passage et al. [26] but this was not the case. An important difference might be the
objective function. We are looking at expected total tardiness and not expected makespan. We
expect that the normal approximation approach works well for the expected makespan because the
makespan is defined by path of tasks which makes it the sum of many processing time distributions
and because of the central limit theorem this becomes close to normally distributed which is our
assumption at each step in the normal approximation approach. In case of total tardiness, we have
to determine the tardiness of all the tasks and not only the tasks at the end of the schedule which
might make this approach less suitable for our setting.

28

‘potlour uorjenyess pue sourisul Iod parmbal owr) pue 2109s 9} JO UOIJRIASD pIRpUR)S ‘9100s a8eIoA® o], :9T ORI,

6°666L0T | (28°08) 69921 | T0'GI89S | (£L°G8) 6F'GLTL €681¢ | (62°69) 961821 | #6'86L¢ | (£0°8L) 19'89ZT | S1-2d
T'8T007T (69°8€) 9¢°806 | L°09589 (eg'1€) £T706 v SThy (€L°8¢) 96168 v 106S (09°0¢) L2698 | ¥1-¢d
L0zseet | (0g'€F) €0PE0T | T1L°6P6LG | (GL°9S) TT'TFOT | 808128 | (92'82) #1201 | ¥#1°996% | (98'12) €L°€201 | £1-2d
zesveet | (PL91T) ST'808% | 8€799809 | (28°€0T) 16'%28¢ | ¢6°6886 | (09°SE€T) 26'610¢ | 86°2£20T | (08°€11) 1F'¥L6C | ¢1-¢d
809851 | (G6°26) SOFSPT | 6626069 | (£8°€9) 1L°19%C | 968682 | (96L8) 65°6292 | FI¥9¥07 | (GLL6) 95°685C | 11-¢d
12766866 | (91°18) 0L°0L6C | SF'T081G | (F1'98) 82°086T | €9'¢e8eT | (ST°€0T) L87L0E | 89'%86ZT | (86'8S) G€'GS6T | 0T-2d
6L6SLTT | (£0°6¥%) 9GFLIT | 9z'epses | (SFLG) G6'GSIT | 28°Geah | (£6°9) 96'SLIT | 89'Thes | (98°2h) 6F'GLIT | 6ed
8672821 | (G6'%S) L9°€T6T | ¥ 0FF99 | (02°SP) 02°€061 z'1ev9 | (€1°221) LE'G86T | 95°0F€0T | (96°68) #O'TIS6T | 8-¢d
€eer 0T | (6L°9€) 126061 | 9879585 | (86'8€) ¥8'806T | SF'88¢e | (F0°9%) 6F'S06T | 96°06LL | (86'1%) 98°8161 | LTd
2e'ceT96 | (LL°12T) 9270628 | 92.°€6L9S | (02°01T) L6°09L€ | 88°026ST | (FP¥1T) 19°L8¢ | 22’0286 | (12°112) ¥8°650% | 9-¢d
26'€6586 | (61°00T) ¥S'228T1 | ¥ cc6sy | (S2'€0T) 68°968T | G6'9266 | (06°0ST) L6'6861 | 29°6LT9 | (96'9%1) L9°9661 | G-¢d
T'seekel | (LG726) L1°289Z | 90°008TS | (67°S0T) ££°0697 0S0F | (LL'6€T) 797182 | 29°682S | (G9°G¥T) 89'898Z | ¥-¢d
8€'616.6 (0¢'%¥) 6€°098 | 91°LT1CS (9L%¥) 1668 | T¥'SLI0T (12°29) 80°88 | ¥8°€00G (60°09) 227688 | ¢2d
£'8ee601 | (¥T'16) 882607 | ¥S'Svevs | (0F°06) 887507 | LG#S969T | (06°TTT) 9€'TSTZ | #9'8809 | (F0'911) 1072612 | &¢d
TP0L12T | (£8°09) T9°96€T | LLTOFT9 | (8€°99) L9'TOVL 296068 | (S€°201) L¥"SSHT 269895 | (6£°6L) 606TFI | 1ad
Sae ouur T, (rop)3ae o100g | 3ar ouul], (rop)3ae o100g | A owIl], (aop)3ae o100g | Sar owIl], (rop)3ae o100g

00QT-uoryemuIs

00G-UoTR[MUIY

SjjuLEhRER |

[RULION

29

7 Resource Constrained Project Scheduling

We will now look at the full problem, the Resource Constrained Project Scheduling Problem (RCPSP).

7.1 Problem Definition

We already gave the formal definition of the RCPSP and the SRCPSP in Section 2, but in this
section we will talk about how we can relate these problems to the (stochastic) machine scheduling
problem.

The RCPSP includes everything from the machine scheduling problem we looked at in Section 6.
As the name implies, we also have resource constraints. These are a generalisation of the machine
constraints we had. In other words, the resources we now have can represent machines, like in the
machine scheduling problem, but we can use them for more. We can now have multiple different
types of resources. A task can require multiple units of a resource for its execution, a task can also
require different types of resources at the same time. Just like in the machine scheduling problem
we have a fixed capacity during the project execution. The resource requirements for all the tasks
are given beforehand and are deterministic. Just like in the machine scheduling case, the processing
times of the tasks are the only stochastic part of the problem. For the problem to be feasible
the resource requirement for each resource, of each task must be less than or equal to the resource
capacity for that resource. Writing this down all more formally gives us the following addition to the
problem definition. There are R types of resources and each task j has a value r;; which represents
how many units task j requires of resource ¢ during its execution. All resources are renewable and
will be released by a task once it completes. A task requires all its resource requirements to be met
during the whole duration of its execution. At each moment in time there are R; units of resource
1 available.

7.2 Schedule Representation and Execution

It is not immediately clear what the best, or most appropriate, way is to represent the schedule for
the RCPSP. We will look at 2 options for representing the schedule. It is not only a matter of 'best’
representation however. It might be that one of the representations fits a certain application better
than the other. We will look at 2 approaches. In the first approach we will schedule the tasks based
on their resource requirements and in the second we approach we will ignore the resources during
the planning and solve the resource problem later.

7.2.1 Fixed Flow Representation

The usage of the machines was clear in the machine scheduling variant of the problem because of our
choice of schedule representation. We could just schedule a sequence of tasks on each machine and
these tasks would remain bound to the machine they were scheduled upon. In our first approach we
do the same for each separate unit of each resource.

We model all the resource flow explicitly and define a partial order schedule in terms of each
resource unit instead of each task. From every resource unit we can deduce a series of precedence
constraints which give us a scheduling of the tasks. This leads to a clear and well-defined schedule,
but we might lose some flexibility during the execution of the schedule, because every part of it is
fixed. The advantage of this is that we can for example, guarantee that resources are reserved for a
certain important task, and that it will not be preceded by some much less important task chosen
on the fly; we have more control over the schedule.

30

This representation might be more suited for applications in which the type of resources we are
modelling are less flexible in nature. For example, an engineer might be less flexible than a litre of
water.

Similar to the machine scheduling representation we also add a dummy task for each resource
we have. These dummy tasks have as resource requirement the capacity of the resource for which
it is the dummy task, and zero for all other resources. We use this dummy task for our local search
operators. This way we can easily define all possible shifts. These dummy tasks have a processing
time of 0, so they don’t influence the schedule.

7.2.2 Partial Order Schedule Representation

Another option is that we will not model the flow of resource units explicitly, but we will only create
a POS of the tasks. We now model the schedule as a directed acyclic graph(DAG) of tasks where
an arc from task j to task ¢ means that we need to complete task j before we can start task i.

In this graph there will be arcs representing the precedence relations that are given as part of
the problem definition and these can’t be removed. More arcs can be added to the graph as long as
they do not create any cycles. These arcs can be used to force that a task will be completed after
its predecessor. These arcs that are added can also be removed again, but the original precedence
arcs can’t be removed.

Using this approach, it is not immediately clear how the resources will flow between the tasks,
but that is what might make this method more flexible, the flow of resources will dynamically be
determined. There are multiple ways to do this. One approach is placing each task for which each of
its predecessors in the POS are completed in a queue. This queue is just a fifo-queue, and we start
the first task in the queue when enough resources are available to start the task. We can also use
a priority-queue instead of a normal queue. Here we can, for example, add the tasks to the queue
based on their due date.

With the addition of the queuing process and a sample of the processing times we are back to the
deterministic case where we can easily compute the total tardiness. Because we assign no fixed start
times to a task and use this queue to determine the order of execution, we will always have a resource
feasible solution. Another note we need to make with this approach is that is not deterministic. It
can happen that 2 tasks are added to the priority queue with the same priority and then we need to
make an arbitrary decision on which one we will place in front of the other. Or when 2 tasks have
the same completion time and we are using a fifo-queue, we get the same problem.

For this representation to work well we need a good priority rule. We propose the recursive
priority rule that can be seen in Equation 5. In this equation the set Suc(Task;) contains all the
tasks in our POS that have an incoming arc from the task Task;. Because our POS is always a
DAG, there are no cycles so we can compute this priority value for each task. We can compute this
priority value in a bottom-up manner where we start with the tasks for which the set Suc(Task;) is
empty.

The idea behind this priority rule is that d; — E(P;) estimates how late we can start and still
expect to finish before the due date. We also want to look at the tasks that come after a certain
task because if their due date is low or if there are many tasks after the current task we can get
quite a big tardiness penalty.

Prio(Task;) = —(d; — E(P;)) — > Prio(Task;) (5)
Task;eSuc(Task;)

31

7.3 Evaluation

The evaluation methods do not change drastically compared to the ones described for the machine
scheduling in Section 6.8. We will now describe the changes that we need to make to the evaluation
methods for each type of solution representation in order to make it work.

7.3.1 Percentile Evaluation

Given the representations explained in the previous section the percentile evaluation method does not
really change. We still replace the stochastic processing times with the deterministic processing times
that are set to a certain percentile of the processing time distribution. The rest of the evaluation is
straightforward.

7.3.2 Simulation Evaluation

The case is similar for the simulation evaluation method. We can again just sample the processing
times and then solve the deterministic case without any problems.

7.3.3 Normal Approximation Evaluation

Lastly the normal approximation method. How this method works is dependent on our solution
representation because this approach uses all the predecessors of a task. The precedence predecessors
are not the problem, but the resource predecessors can be a problem.

7.3.3.1 Normal Approximation Evaluation - Flow

If we model all the flows explicitly this approach remains unchanged in essence, because we model
all the flows explicitly we know what the resource predecessors are for each task. We can just use
the same approach as we described in Section 6.8.3.

7.3.3.2 Normal Approximation Evaluation - POS

For the POS representation there are multiple approaches to solve this problem of not knowing
what the resource predecessors are. We could compute all the possible combinations of resource
predecessors, but the number of combinations would be exponential, which makes this approach
unfeasible. It is important for the local search to be effective, to have a relatively quick evaluation
method, and this approach would not achieve that.

The approach that we propose works as follows. We start by computing the priority value for
each task like we described in Section 7.2.2. We start with all the tasks without any predecessors in
our priority queue. We start by scheduling the first task from our priority queue and approximate
its completion time like we described in Section 6.8.3. We continue the same way by scheduling
according to our priority queue and approximating the completion time in the same manner. This
is not always enough to determine what the set of resource predecessors for the next task will
be, and we need to know this to approximate the completion time. If there are multiple resource
predecessors available we determine for each resource the set of predecessors that combined provide
enough resource capacity and have the earliest completion time. So we start by selecting the task
with the earliest completion time that has no resource successor yet and set it as our resource
predecessor. We continue with this process until all our resources are covered.

This approach takes a lot less time, but it is also a worse approximation. It is important to realise
that the goal of the evaluation is not to approximate the total tardiness as accurately as possible,

32

A(0) [B(1) | C(2) [D3) | E() | F(5)
1y 1 1 1 1 2 0
To; 1 1 1 2 0 2
E(P;) |2 1 2 1 4 1
d 5 3 3 TERIE 4
Prio(j) | 8 2 3 7 |4 |-3

Table 17: The task definitions for the example partial order schedule

but to be able to decide between two schedules, which one has the lowest total tardiness. As we said
before in Section 7.2.2, when we have multiple tasks with the same priority, we choose one arbitrarily
as the resource predecessor. This approach only looks at a likely predecessor for each resource unit
and only takes them into account. When we take the maximum over multiple predecessors, we start
with the resource predecessors and sort them in descending order based on their expected completion
time. This means we take the resource predecessor with the latest completion time into account
first. Next we do the same thing for the predecessors from the POS that we have not yet taken into
account and lastly we look at the precedence predecessors that we have not yet taken into account
and incorporate them into the maximum as well.

7.3.3.3 Normal Approximation Evaluation POS Example

To better illustrate the workings of the evaluation method described in Section 7.3.3.2, we will apply
the evaluation method to an example. The POS for the example can be found in Figure 4 and the
relevant parts of the task definitions for this example can be found in Table 17. In this example we
have two resource types where Ry = 2 and Ry = 2.

We will start by calculating the Priority values for all the tasks given the current POS. We do this
by starting with the task without any successors, task E' and F'. For these two tasks their priority
equals —(d; — E(P;)) because they have no successors. Next we can compute the priority for task
D, B and C. For task D we get a priority of —(ds — E(Ps)) — (—(ds — E(Ps))), for task B we get
—(dy — E(P1)) — (—(d4 — E(Py))) and similarly for task C' we get —(dy — E(P2)) — (—(da — E(Py))).
Lastly the priority for task A becomes —(dy — E(FP)) — (—(d3 — E(Ps)) — (—(ds — E(Ps))) + (—(d4 —
E(Py)))). The results of all these computations can be found in Table 17.

With these priority values we can now start with the evaluation method as we described in
Section 7.3.3.2. We start with the available tasks A, B and C'. We start with task A because it
has the highest priority. There are still resources available for task C' so we will start that one as
well, because it has the highest priority of the available tasks. Then after A and C finish we have
resources to start on task B or task D. We start with task B because it has the highest priority
between the two. Task B has task A or C as its resource predecessor, we choose one randomly.
After B finished we start with E because it has a higher priority than D. Task E gets B as its
resource predecessor and A or C as its resource predecessor. Task E gets the one from A and C
that was not randomly chosen by B as its resource predecessor. If we assigned A to be the resource
predecessor of B then C' will be the resource predecessor of E and vice versa. We then continue
on with task D which gets E and B as its resource predecessors and again the one from A and C
that was not randomly chosen by B. After D finished we start task F' which only has task D as its
resource predecessor.

33

O-O—0O
O
)

Figure 4: An example partial order schedule

7.4 Local Search

The local search structure is still the same as we used for the machine scheduling problem. Details
about this can be found in Section 6.3. In the next sections we will describe the local search
operators for the schedule representations and how they work. We will start with describing the
local search operators for the POS representation because they are more similar in how they work
to the operators we defined for the machine scheduling problem. After we explain how the operators
work for both representations we will further illustrate their workings with an example in Section
7.4.3.

7.4.1 Local Search: POS Representation

We define four local search operators for this representation, shift, swap, AddOrdering and Remove-
Ordering. We will now describe these 4 operators in detail below.

7.4.1.1 Shift

First the shift. The shift works very similar to the machine scheduling shift we defined in Section
6.5.1. We select the tasks in the same manner and we compute the feasibility in the same manner.
After we found a feasible combination for 7'1 and 72 we will perform the shift. We do this by adding
a new arc from 72 to T'1 in our schedule. Next we add an arc from each non-precedence predecessor
of T'1 to each non-precedence successor of T'1. Lastly, we remove all the non-precedence incoming-
and outgoings arcs from T'1 except for the incoming arc from 7'2. These steps remove all the old
arcs from and to T'1 and they connect all the loose ends that T'1 leaves behind at its old position in
the schedule. Our schedule also includes some dummy tasks at the start to facilitate the shifting of
tasks to the front. This way we can shift a task to any point in the schedule.

7.4.1.2 Swap

The swap operator swaps the places of 2 different tasks in the schedule. The swap works the same
as the machine scheduling swap we defined in Section 6.5.2. The swap is generated in the same way,
and the feasibility is checked in the same way. When we find a feasible pair, we connect all the non-
precedence predecessors of 71 to T2 and vice versa. We also connect T'1 to all the non-precedence
successors of T2 and vice versa. Then we remove all the original non precedence- predecessors and
successors for both T'1 and T2.

34

S I
[e
~ T
~

Figure 5: Part of a fixed flow schedule representation where five resource flows are shown for a single
resource type. In this example task T'1 (shown as T7) requires two units of this resource type and
task T2 (shown as T5) requires one unit of this resource type.

7.4.1.3 AddOrdering and RemoveOrdering

AddOrdering adds an arc to the POS and RemoveOrdering removes an arc from the POS. For the
AddOrdering to be feasible the new arc we add needs to not create a cycle in the POS. As we said
before, the RemoveOrdering can be done on any arc that is not a precedence arc in the POS and
we do not allow the addition of an arc that is already present.

7.4.2 Local Search: Fixed Flow Representation

For the flow representation we only have the shift and the swap like in the machine scheduling
problem. These operations do become a bit more involved compared to the machine scheduling
variants.

7.4.2.1 Shift

In Figure 5 you can see a setting in which task 7’1 requires two units of the resource type shown and
task T2 requires one unit. In this figure only a portion of the tasks in each resource flow is shown
and the use of five resource flows is just for illustrative purposes, any other positive number of flows
would work as well.

The shift is again defined by two tasks, we will call them task 71 and task 7'2. We will shift T'1
behind T2 for all their overlapping resources. The shift is now different from the shift definition we
gave in Section 6.5.1, this is because it is very likely that the resources required by task 71 are not
a subset of the resources required by task 72. Because of this we need to select extra predecessors
for the resources that task T2 cannot cover, that are required for task 7'1. First compute the
intersection between the resource requirement for both tasks, and within each resource we randomly
match resource flows from task T'1 with resource flows from task 72. We only allow shifts where
this intersection of resources is non-empty. In other words, it does not seem logical to shift a task
behind another task if they have no overlapping resource requirements.

Figure 6 shows that we matched one of the resource units of task T'1 with the unit of task 72
and we moved the unit of task 7'1 behind the unit of task 7°2.

Now that we determined the position for the resource units from 7’1 that overlap with T2 we
will have to plan the remaining resource units. For each resource flow, we again randomly match

35

ST o S S
S S e
7]
N S S
e e

Figure 6: Part of a fixed flow schedule representation where five resource flows are shown for a single
resource type. We shifted one of the resource units of task T'1 behind the unit of task 72.

unmatched resource flows of task T'1 with resource flows that we have not selected yet for this shift
operation. For these matches the position of task 7T'1 within this flow is not yet determined. Not all
positions for task 7'1 may lead to feasible solutions. We use the flow matches between task 7'1 and
task 72 and the positions we determined for them to compute the restrictions for the positions in
the flows that we have not yet determined.

We compute these restrictions in the following manner. For each flow where the position is
determined we compute all the implied predecessors and -successors. These predecessors cannot be
successors in all the other flows and the successors cannot be predecessors in all the other flows.
This gives us an interval for each flow in which we can select a position for task T'1 to shift to.

We handle the flows for which the position has not yet been determined in random order to
prevent bias. We select the position for each flow randomly within the feasible interval and after
we select a position, we again compute the implied predecessors and -successors and update the
restrictions for the other tasks.

After we have determined the position for each flow, we execute the shift by removing task 7'1
from all its original positions and adding task 7T'1 to all the newly selected positions.

In Figure 7 we can see that we matched the remaining unit of task 7’1 with another resource
flow, this could have been any of the flows except the uppermost flow because that one already had
a unit of task 71 in it. Normally the position on the unit within the flow depends on the restrictions
that we calculated, but in this case, we don’t know the restrictions so it was placed randomly. We
moved it to the bottom flow in this example but the second or third flow would also have worked
and keeping it in the same flow would also have been an option.

7.4.2.2 Swap

The swap is also again defined by 2 tasks T'1 and T2. Because the swap is in fact a combination
of two shifts, we can use a very similar approach as described above to implement the swap. We
start again with computing the intersection between the resource requirements and again we only
allow swaps where this intersection is non-empty. We randomly match resource flows and for both
tasks we randomly select flows for the remaining unmatched resource flows. We do this in the same
manner as we described for the shift and we also compute the restrictions in the same manner. After
we have determined the position for each flow for both tasks we execute the swap by removing task
T1 and T2 from all their original positions and adding them back to the newly selected positions.

36

S 0 e N S

Figure 7: Part of a fixed flow schedule representation where five resource flows are shown for a single
resource type. We moved the other resource unit of task T'1 to a different resource flow.

7.4.3 Local Search: Example

We will now give a small example to further illustrate how the local search for both representations
works. We will start with describing the example setting. There are 2 types of resources. Resource Ry
has a capacity of 2, and resource R; has a capacity of 3. There are 5 tasks: {A(1,1), B(2,3), C(1,2),
D(1,1), E(1,1)}. Between the brackets behind each task you can see their resource requirement
for resource Ry and R respectively. There is one precedence constraint. We require that task C' is
completed before we start with task E. The due dates and processing times distributions are not
relevant for this example.

7.4.3.1 Local Search: Example flow

We will start out with the fixed flow representation. We will use the problem setting as described in
Section 7.4.3. An example schedule can be found in Figure 8 and 9. The colours have no meaning
once again, they are just there to visually differentiate the tasks. On the vertical axis you can see
the numbering of the resource flows. On the horizontal axis you can see the time.

2
1

Figure 8: The Ry resource usage of the example flow schedule

3
2
1

Figure 9: The R; resource usage of the example flow schedule

Now we will look at an example shift. We want to shift task C behind task A. For resource Ry

37

we see there is a 1:1 matching between the task C' and task A because they both require a single unit
of resource Ry. For resource R; task A once supplies one unit of this resource and task C' requires
2 units. This means that we randomly select one of the resource flows where task C' is currently
scheduled in for resource R, flow 1 or flow 3. Let’s say we select flow 3 and match it with the
supplied unit of R; from task A. We then need to select a random flow to place the remaining unit
from task C, we can choose from flow 1 and flow 3. Let’s say we select flow 3. Now for each of the
resource units from task C' that we could match with a resource unit from task A the place in the
new schedule is determined, because we place the unit directly behind the matched unit from task A.
From these matches we compute the restrictions for the resource flows on which we haven’t placed
the remaining units yet. For this example this means that we need to place our last remaining unit
of resource R; before task B because our matched resource units have task B as a successor, and
we can’t have task B be a successor of one unit, and a predecessor of another unit. This fixes the
position of this unit. Now we shift all the units to the places we just determined and the result can
be seen in Figure 10 and 11. The resulting schedule is most likely not optimal, but we wanted to
just give an example of a shift. For the sake of clarity we did not include any dummy tasks in this
example, but normally they are used to facilitate shifting tasks to the start of the schedule. These
dummies can for example be used to shift task C' in such a way that it can be performed in parallel
with task A, resulting in a more compact schedule.

2
1

Figure 10: The Ry resource usage of the example flow schedule after the shift

3
2
1

Figure 11: The R; resource usage of the example flow schedule after the shift

Next up is the swap. We will look at performing a swap between task B and task D. Just
like with the shift we will first look at the resources we can match. For resource Ry that means
we randomly choose between the units of task B to match with the unit from task D, let’s say we
choose to match flow 1 of task B with flow 1 of task D. For the other unit of task B in flow 2 there
is only one flow left to match with, which is flow 2, so we select that flow. For resource R; we do
something similar. We first randomly match flow 2 of task B with flow 2 of task D. Then we match
flow 1 of task B with flow 3, and lastly we match flow 3 of task B with the last remaining flow, flow
1.

Then we compute all the restrictions for the flows where we need to place units that follow from
our current choices. For flow 2 of resource Ry we need to place the unit somewhere after task A. We
can deduce this from our matching we made for resource R;. For resource flow 1 and 3 of rFesource
Ry we can see that we need to place our unit of task B somewhere behind task C' because of the
matching we made for resource Ry.

Now we select the spots for each of the 3 remaining units in a random order. We start with

38

resource Ry, flow 3. We can choose between 2 positions: behind C or behind F. Let’s say, we choose
behind E. Now we update the restrictions for the other flows as well. This means that for resource
Ry, flow 2, we will need to place our task behind F. This fixes the positions of the units in the other
2 flows. We are done now. The results can be seen in Figure 10 and 11. A small note we want to
make is that it might appear to be the case that the resulting schedule can be compacted, but this
is not the case in its current form. It can be compacted by the use of the operators but to see why
the resulting schedule looks this way you need to look at both Figure 10 and 11 at the same time.
From Figure 10 we can deduce that in this schedule task C' always starts after task D finishes, then
the same needs to be true in Figure 11.

2
1

Figure 12: The R resource usage of the example flow schedule after the swap

Figure 13: The R; resource usage of the example flow schedule after the swap

7.4.3.2 Local Search: Example POS

We will now look at local search for the POS. We will use the problem setting as described in
Section 7.4.3. An example schedule can be found in Figure 14. The colours have no meaning once
again, they are just there to visually differentiate the tasks. For consistency, the same tasks do have
the same colours as in Figure 8 and 9. The arc from C to E in Figure 14 is from the precedence
constraint and the other arcs where added to create this schedule.

Let’s start with the shift. We look at shifting task £ behind task D. We first remove all non-
precedence incoming arcs of task E. In this case that means we remove the arc between B and F

Figure 14: An example partial order schedule

39

and not the arc between C and E. We then add an arc between D and F, because that is the shift
we wanted to perform and we are done. The results can be seen in Figure 15.

o

Figure 15: The example partial order schedule after shifting task ' behind task D

Now we will look a swap. We will swap task A with task C. We will remove the arc from A to
C, the arc from A to B and the arc from C to D. We then add an arc from C to A, from C to B
and from A to D. The results can be seen in Figure 16.

s

Figure 16: The example partial order schedule after swapping tasks A and C'

Now we will look at the AddOrdering. We will add an arc between B and D, that is all. The
results can be seen in Figure 17.

Now we will look at the RemoveOrdering. We will remove an arc between C and D. The resulting
schedule consists of 2 components. The results can be seen in Figure 18.

Figure 17: The example partial order schedule after a AddOrdering operation, we added an arc from

el

Figure 18: The example partial order schedule after a RemoveOrdering operation, we removed an
arc between C' and D

7.5 Experiments

In our experiments we wanted to compare the following things based on multiple criteria: final
total tardiness score, time. We will also look at the standard deviation of the tardiness because the
stability of the results is also important to consider. The things we want to compare are:

e How the different schedule representations compared
e How the different evaluation methods performed with each schedule representation

Before we could run the experiments we first needed to tune the settings for all the approaches
to prevent bias from the selected parameters. In Section 7.5.1 we go into more detail about these
experiments.

7.5.1 Parameter Tuning

We used the same setup for this set of parameter experiments as we did for the machine scheduling
case, described in Section 6.11. We experimented with the starting temperature, simulation count
and percentiles. All the parameter settings that are not being explicitly tested are the same as
in 6.11. For all the tests involving the POS, we changed the mp to 0.1, because we now have 4
operators to choose from instead of 2. The instances that we used for the parameter tuning can
be found in Table 18. All instances use a different distribution for the processing times. The first

41

Instance TaskCount | PrecedenceCount | ResourceCount | o2(D)
RCPSP-PO | 50 25 4 1
RCPSP-P1 | 50 25 4 1
RCPSP-P2 | 50 25 4 1

Table 18: Parameter Tuning Instances RCPSP

instance uses an exponential distribution, the second instance uses an Erlang distribution with a
shape parameter of 4, and the third parameter follows a normal distribution. The capacities for all
the resources are randomly chosen between 1 and 4 inclusively. We refer to Section 6.9 for more
information about how the instances were generated.

7.5.1.1 Starting temperature

The results for the starting temperature experiments with the flow representation can be found in
Table 19 and with the POS representation can be found in Table 20.

The starting temperature for the POS representation is not very conclusive, for one instance a
temperature of 1 works the best, and for another one 7 works the best. For the Flow representation
we see similar results. For the machine scheduling instances we already saw that a low starting
temperature seemed to work well and because the local search for the RCPSP takes more time
I expected the same results, or an even lower starting temperature to work well, because with a
starting temperature that is too high the method has no time to converge to a good solution.

7.5.1.2 Percentiles

The results for the percentile experiments with the flow representation can be found in Table 21 and
with the POS representation can be found in Table 22.

For the flow representation the 50th percentile seemed to give the best results. For the POS
representation the winner was not so clear, but percentiles in the range [0.5, 0.6] seemed to work
well for these instances. These results are quite similar to what we saw for the machine scheduling
problem and we expect that also for the RCPSP a slightly pessimistic approach might give a buffer-
like effect which can lead to better solutions.

7.5.1.3 Simulation Count

The results for the simulation count experiments with the flow representation can be found in Table
23 and with the POS representation can be found in Table 24. For these runs a replace percentage
of 0% was used because this seemed to give the best results for the machine scheduling problem.

For the flow representation and the POS representation the results are not very conclusive. We
expected that higher simulation counts would give better results, but this does not seem to be the
case, especially for the POS representation. We expect that this is because of the half an hour
time restriction that we put on the experiments. If we increase the simulation count, we can make
more informed decisions within our local search, which makes them more effective per step. But
increasing the simulation count also has the effect of increasing the duration of each local search
step. We expect that these effects are the cause of the inconclusive results. We did not see this effect
for the machine scheduling problem, but this is because the evaluation of the machine scheduling
schedules is less complicated and can be done much faster we did not run into the 30 minute barrier
that often compared to these experiments.

42

Starting Temperature
Instance 1 3) 7
RCPSP-P0O | 92375.81 (7374.37) 93440.77 (7917.28) | 90968.53 (7645.14) | 92492.58 (7994.05)
RCPSP-P1 | 55.25 (59.26) 66.93 (50.76) 88.60 (61.33) 78.28 (51.79)
RCPSP-P2 | 46878.57 (4426.52) 47293.16 (3978.30) | 46165.02 (5850.45) | 47604.08 (4468.62)

Table 19: Score: average (standard deviation) per instance and starting temperature. The flow represen-
tation was used and the results are the average over the normal approximation, 55th percentile and 500
simulation evaluation methods.

Starting Temperature
Instance 1 3 5 7
RCPSP-P0O | 17318.31 (5292.27) 17107.07 (4897.65) | 16846.48 (4007.29) | 16811.02 (4200.04)
RCPSP-P1 | 3.54 (5.32) 13.55 (12.27) 13.40 (10.73) 16.77 (10.40)
RCPSP-P2 | 9049.06 (5592.34) 8912.25 (5818.30) 8996.90 (5793.21) 9239.96 (5817.89)

Table 20: Score: average (standard deviation) per instance and starting temperature. The POS represen-
tation was used and the results are the average over the normal approximation, 55th percentile and 500
simulation evaluation methods.

Percentiles

Instance

0.45

0.5

0.55

0.6

0.65

RCPSP-PO

92347.91 (1412.82)

87835.46 (546.11)

94337.38 (1421.95)

91495.16 (4184.00)

RCPSP-P1

72.62 (58.95)

56.12 (34.31)

100.95 (31.37)

106.30 (28.22)

113.90 (4.45)

RCPSP-P2

46958.72 (2199.67)

45088.95 (2583.2)

48415.61 (2794.97)

46063.32 (3496.96)

Table 21: Score: average (standard deviation) per instance and processing time percentile. The evaluation
method is percentile and the flow representation was used.

Percentiles
Instance 0.45 0.5 0.55 0.6 0.65
RCPSP-PO | 15550.9 (708.74) | 14804.69 (653.07) | 14700.98 (486.51) | 14726.93 (403.20) | 14421.94 (455.01)
RCPSP-P1 | 4.16 (2.95) 4.01 (2.38) 4.04 (3.44) 3.75 (2.90) 5.02 (3.05)
RCPSP-P2 | 5519.88 (387.80) | 5434.35 (469.71) 5623.29 (380.40) 5665.41 (318.94) 5730.40 (679.87)

Table 22: Score: average (standard deviation) per instance and processing time percentile. The evaluation
method is percentile and the POS representation was used.

Simulation Count

Instance 50 100 250 500 1000

RCPSP-P0O | 13071.5 (171.84) 12779.52 (128.07) | 12627.84 (73.43) | 12632.5 (267.46) | 13050.65 (216.04)
RCPSP-P1 | 2.31 (1.36) 2.37 (1.80) 1.86 (1.06) 1.40 (0.90) 4.80 (6.12)
RCPSP-P2 | 4494.74 (434.13) 4269.46 (97.33) 4527.40 (493.60) | 4708.46 (376.08) | 4595.20 (260.82)

Table 23: Score: average (standard deviation) per instance and simulation count. The evaluation method
is simulation and the flow representation was used.

43

91597.8 (4767.37)

46476.34 (2673.84)

Simulation Count

Instance 50 100 250 500 1000

RCPSP-PO | 13127.78 (473.66) | 12679.89 (360.20) | 12623.05 (130.32) | 12862.33 (228.93) | 12456.54 (170.26)
RCPSP-P1 | 2.25 (2.04) 4.49 (5.08) 7.34 (7.36) 6.61 (3.93) 3.81 (5.59)
RCPSP-P2 | 4706.49 (256.48) 4595.95 (219.97) 4887.80 (191.31) 4452.88 (127.83) 4775.02 (252.88)

Table 24: Score: average (standard deviation) per instance and simulation count. The evaluation method
is simulation and the POS representation was used.

7.5.2 Results

Now that we have a good set of parameters, we can do perform experiments to compare the different
representations and evaluation methods.

7.5.2.1 Instances

We generated 21 instances for this set of experiments. They were once again generated like we
described in Section 6.9, with the same additions as described in Section 7.5.1 because we want
RCPSP instances and not machine scheduling instances.

In Table 25 we described the settings that were used to generate each of the instances. We varied
the number of tasks between 40, 60 or 80 tasks. We set the number of precedence relations as a
factor times the task count, the factors we used are 0, % and 1. The number of different resource
types was set to 1, 3 or 5, and the capacity of each of these resources was chosen randomly between
1 and 4 inclusively. In each instance the processing times of all the tasks followed the same type of
distribution. The options we tried were exponential-, normal- and Erlang distributions. We used a
o(D) of 0.5.

For each experiment we used a starting temperature of 3. For the experiments that used the
percentile evaluation method we used the 50th percentile for the POS representation and the 55th
percentile for the flow representation. For the simulation evaluation method we used a simulation
count of 100.

As before we ran the experiment for each combination of representation, evaluation method and
instance 10 times.

7.5.2.2 Fixed Flow Schedule Results

We will now compare the different evaluation methods for the experiments that all used the flow
schedule representation. The results for the percentile evaluation can be found in Table 26, the
result for the simulation evaluation in Table 27, and lastly, the results for the normal approximation
evaluation can be found in Table 28.

All approaches got a score of 0 on instance 21 on all runs. This is the best score that can be
achieved, so with respect to total tardiness the methods performed equally good on this instance.
For the rest of the instances, the simulation approach is clearly the best as can be seen in Table 27.
The simulation approach gets the lowest score on 16 out of the 21 other instances. On the instances
where the simulation-based approach does not get the best score, it gets the second-best score 4
out of 5 times. This makes it the clear winner for the flow representation. If we look at the time
used however, the simulation-based approach is not the clear winner. We already saw this for the
machine scheduling experiments, so this came as no surprise. On 16 out of the 21 instances the

44

Instance | Task Count | Precedence Count | Resource Type Count | Distribution
1 40 20 3 Erlang
2 40 20 3 Normal
3 40 20 3 Exponential
4 60 0 3 Erlang
5 60 0 3 Normal
6 60 0 3 Exponential
7 60 30 1 Erlang
8 60 30 1 Normal
9 60 30 1 Exponential
10 60 30 3 Erlang
11 60 30 3 Normal
12 60 30 3 Exponential
13 60 30 5 Erlang
14 60 30 5 Normal
15 60 30 5 Exponential
16 60 60 3 Erlang
17 60 60 3 Normal
18 60 60 3 Exponential
19 80 40 3 Erlang
20 80 40 3 Normal
21 80 40 3 Exponential

Table 25: The instances used for the RCPSP experiments

45

maximum allowed time of half an hour was consistently used in each run. And for the remaining
instances it gets a second place with respect to average time.

The second-best evaluation method for the flow representation is the percentile-based approach
as can be seen in Table 26. On the instances 2, 3, 5 and 7 and 21 it gets the best score and on 11
out of 21 instances it gets the second-best score. With respect to time the percentile approach is
the best. For all instances it gets the lowest average time, and only for instance 7, 10, 14 and 17 it
consistently used half an hour, which is much better than the other approaches.

Lastly, we have the normal approximation-based approach which gets the best score for the first
instance and the second-best score 5 out of 21 times as can be seen in Table 28. Also, with respect to
time the normal approximation-based approach gets the last place. On 19 out of the 21 instances it
consistently used half an hour. For the remaining 2 instances it gets a second place for instance 6 and
a last place for instance 15. We expect that the increased number of interdependencies between the
tasks compared to the machine scheduling problem worsens the quality of the approximation. One of
the reasons for this is the false assumption of a correlation coefficient of 0. Another reason is because
we approximate the maximum of many distributions by a concatenation of many pairwise maxima,
and this approximation gets worse if the size of the set of distributions we want the maximum
over increases. What was also surprising is that the normal approximation-based approach did not
perform better on the instances where the processing times were normally distributed. It seemed to
do the best on instances with Erlang distributions, but this can also be a coincidence.

Overall we can say that with respect to score the simulation-based approach is the clear win-
ner and with respect to time the percentile-based approach is the clear winner. The normal
approximation-based approach clearly performed the worst with respect to score and time.

7.5.2.3 POS Schedule Results

We will continue by comparing the different evaluation methods for the experiments that all used the
POS schedule representation. The results for the percentile evaluation can be found in Table 29, the
result for the simulation evaluation in Table 30, and lastly, the results for the normal approximation
evaluation can be found in Table 31. Just like with the flow-based representation, all approaches
got a score of 0 on instance 21 on all runs. It is clear that instance 21 is not very useful for this
comparison as it is just too easy to get a score of 0 it seems.

Just like with the flow representation the simulation-based approach is the best with respect to
score as can be seen in Table 30. For the POS representation the superiority of the simulation-based
approach is even more clear. The simulation-based approach gets the best score for all instances.
This time the simulation-based approach gets last place with respect to time. On 14 out of the 21
instances the maximum amount of time is consistently used. For all the instances the simulation-
based approach uses the most amount of time by far.

The percentile-based approach gets the second place with respect to score again, just like we saw
for the flow representation as can be seen in Table 29. It gets the second place with respect to score
for all instances. With respect to time this approach is the clear winner. On average it uses the
least amount of time for all of the instances.

And again, the normal approximation-based approach performs the worst as can be seen in Table
31. For all the instances it performs the worst. With respect to time the normal approximation-
based approach gets second place on all instances. We expect that for the same reasons as we gave
in Section 7.5.2.2 the normal approximation-based approach performs the worst. Also for the POS
representation the normal approximation-based approach did not seem to benefit from the instances
with normally distributed processing times.

Overall we can say that with respect to score the simulation-based approach is the clear winner

46

Instance | Average Score (StdDev Score) | Average Time (StdDev Time)
1 7209.58 (987.05) 422689.1 (51253.61)
2 42469.01 (3303.73) 1311458 (117814.2)
3 92569.3 (10023.41) 1798870 (3810.01)
4 34279.76 (2215.18) 524320.9 (16745.91)
5 01514.41 (9647.38) 1734839 (206165.7)
6 20336.14 (281.34) 127978.3 (11395.58)
7 96298.73 (5797.49) 1800030 (46.52)

8 14058.6 (780.79) 313987.2 (50685.9)
9 103975.2 (5290.49) 1504530 (95688.23)
10 182351.6 (5864.15) 1800050 (42.36)

11 43291.99 (3192.88) 570084.8 (17695.13)
12 53998.07 (2786.63) 1151393 (212508.3)
13 31411.44 (1198.79) 429755.2 (25967.81)
11 128130.2 (6648.70) 1800017 (18.38)

15 224.17 (79.98) 208388.4 (29576.19)
16 91.73 (32.19) 676770.8 (74979.16)
17 176.70 (134.09) 1800033 (24.71)

18 110.55 (27.29) 779643.2 (13925.15)
19 70.27 (31.87) 471418.3 (58207.71)
20 84.51 (30.30) 723809.7 (52340.08)
21 0 (0) 1745989 (170850.9)

Table 26: Score and time: average (standard deviation) per instance. The flow representation was
used and the percentile evaluation method was used.

47

Instance | Average Score (StdDev Score) | Average Time (StdDev Time)
1 7463.27 (1387.22) 1800009 (8.78)

2 43202.74 (1851.64) 1800024 (18.02)

3 100114.8 (7569.13) 1800021 (14.37)

1 33873.98 (2997.08) 1800008 (5.89)

) 95379.04 (7190.61) 1800028 (30.84)

6 20280.58 (125.76) 1678885 (118697.9)
7 99165.05 (5674.28) 1800038 (26.90)

8 13324.29 (652.37) 1800010 (7.17)

9 94054.38 (4343.17) 1800032 (21.28)

10 153316.7 (5905.02) 1800049 (41.79)

11 25090.61 (523.95) 1800011 (6.22)

12 52338.37 (2607.32) 1800013 (10.58)

13 21957.39 (580.05) 1800010 (7.20)

14 121574.9 (5952.96) 1800024 (11.89)

15 6.26 (1.75) 806187.2 (11950.69)
16 12.10 (6.55) 1756746 (49819.72)
17 1.23 (1.63) 1800040 (27.16)

18 0.62 (1.28) 1800011 (9.65)

19 0.13 (0.22) 1799875 (465.80)
20 11.74 (5.51) 1730583 (53692.64)
21 0 (0) 1800020 (18.16)

Table 27: Score and time: average (standard deviation) per instance. The flow representation was
used and the simulation evaluation method was used.

48

Instance | Average Score (StdDev Score) | Average Time (StdDev Time)
1 6961.39 (1087.12) 1800007 (8.19)

2 50740.35 (3861.91) 1800015 (11.11)

3 113299.7 (6765.49) 1800026 (25.61)

4 41660.16 (2911.22) 1800004 (4.20)

5 98976.35 (6608.08) 1800020 (23.04)

6 20890.38 (361.72) 951963.3 (409614.8)
7 104374 (7246.46) 1800023 (20.39)

8 15793.11 (724.20) 1800002 (1.95)

9 117284.5 (5950.30) 1800012 (11.52)

10 197512.1 (10348.93) 1800040 (51.80)

11 35705.81 (2022.85) 1800005 (6.60)

12 60902.68 (5520.91) 1800011 (8.76)

13 25550.13 (934.38) 1800002 (3.57)

14 140050.9 (6448.24) 1800021 (18.31)

15 310.18 (41.78) 1718157 (258816.7)
16 87.43 (28.76) 1800005 (7.18)

17 515.68 (142.78) 1800034 (18.42)

18 934.99 (76.92) 1800005 (9.13)

19 18.03 (28.63) 1800006 (5.23)

20 68.01 (32.25) 1800014 (12.95)

21 0 (0) 1800035 (24.08)

Table 28: Score and time: average (standard deviation) per instance. The flow representation was
used and the normal approximation evaluation method was used.

49

Instance | Average Score (StdDev Score) | Average Time (StdDev Time)
1 1012.12 (107.92) 13090 (10947.71)
2 7431.54 (731.86) 6234.9 (1050.91)

3 14487.15 (1151.79) 47651.3 (51799.3)
4 7605.63 (564.68) 12479.8 (17923.27)
5 12663.84 (746.85) 17709.1 (20622.29)
6 20087.05 (66.35) 8859.4 (6681.70)

7 7664.16 (612.48) 17069.4 (18660.92)
8 4306.70 (231.20) 5078.9 (1994.97)

9 17420.02 (732.83) 20874.9 (33456.18)
10 30174.41 (1127.69) 33421 (41839.6)
11 10715.18 (902.68) 9476.1 (10463.89)
12 16899.3 (494.37) 11422.7 (7030.54)
13 11860.42 (1017.02) 16381.7 (22041.05)
14 18000.96 (1043.99) 29574 (40839.46)
15 104.07 (12.34) 6861.4 (5160.52)
16 19.06 (8.48) 104785 (11503.58)
17 64.61 (14.56) 18865.9 (28129.71)
18 26.68 (11.14) 1667.6 (3528.32)
19 17.37 (16.55) 6162.5 (375.57)

20 22.65 (8.40) 41229.9 (62773.58)
21 0 (0) 274711 (27645.22)

Table 29: Score and time: average (standard deviation) per instance. The POS representation was
used and the percentile evaluation method was used.

again. With respect to time we have a clear ordering. The percentile-based approach is clearly the
best, then comes the normal approximation and lastly we get the simulation-based approach.

7.5.2.4 Schedule Representation results

Now we will also compare the results for the flow representation with the results for the POS
representation. For instances 15 and 19 the flow representation got a better average score if we
compare the best score between the 3 evaluation methods for each representation. For the other 19
instances the POS representation got a better final score. Also, the POS scores were more consistent,
for almost all cases the standard deviation of the score is lower if we compare the two representations,
this holds for all the evaluation methods. The POS representation is also much faster than the flow
representation, but due to the increased complexity of the local searcher for the flow representation
we expected this.

50

Instance | Average Score (StdDev Score) | Average Time (StdDev Time)
1 912.39 (93.84) 1800004 (3.68)

2 6219.40 (480.03) 1800010 (7.94)

3 15045.3 (1164.68) 1800013 (7.28)

4 6983.44 (258.69) 1800006 (4.01)

5 11743.59 (676.68) 1800010 (6.83)

6 18650.29 (42.30) 1800007 (4.63)

7 7184.75 (364.49) 1800008 (7.05)

8 3179.37 (96.57) 1800008 (7.89)

9 14497.21 (333.88) 1800009 (4.90)

10 21699.63 (716.74) 1800010 (7.43)

11 6347.52 (297.57) 1800005 (3.35)

12 13452.53 (494.52) 1800008 (5.77)

13 8448.27 (352.44) 1800009 (8.23)

14 14398.39 (418.87) 1800011 (9.14)

15 15.86 (7.14) 1159174 (42031.44)
16 0.41 (0.80) 1037301 (14677.13)
17 0.40 (0.52) 1544779 (21807.53)
18 0.06 (0.14) 1111994 (17949.36)
19 3.06 (3.61) 1165717 (18770.13)
20 0.08 (0.02) 1035662 (15988.72)
21 0 (0) 1039343 (15593.46)

Table 30: Score and time: average (standard deviation) per instance. The POS representation was

used and the simulation evaluation method was used.

51

Instance | Average Score (StdDev Score) | Average Time (StdDev Time)
1 1548.20 (329.46) 389599.2 (370968.8)
2 8927.22 (972.88) 1533501 (408502.9)
3 20948.8 (2576.50) 1560575 (385360.8)
4 12360.22 (1424.88) 488715.9 (206476.7)
) 15228.28 (1266.05) 1096349 (592921.4)
6 21579.61 (493.01) 2604126 (5391606)
7 10953.97 (1230.42) 1668174 (560138.3)
8 5073.66 (460.83) 1804340 (4721539)
9 21782.34 (675.29) 1980009 (1694216)
10 34946.09 (2255.49) 5038050 (5973996)
11 12010.46 (323.85) 57380.03 (24609.94)
12 20986.23 (1370.63) 2021080 (3099365)
13 15977.56 (1493.29) 1953951 (3375619)
14 20491.79 (996.70) 1497676 (968511.5)
15 134.08 (17.87) 913400.7 (2032228)
16 30.38 (4.30) 1099270 (1249184)
17 67.61 (7.56) 2154117 (330160.2)
18 68.81 (15.53) 62751.06 (14343.9)
19 24.10 (10.19) 1334912 (1615765)
20 26.55 (9.61) 1438637 (1155239)
21 0 (0) 1683391 (798348.8)

Table 31: Score and time: average (standard deviation) per instance. The POS representation was
used and the normal approximation evaluation method was used.

52

8 Final Conclusions

Now that we performed all the experiments, we will discuss the combined results for the machine
scheduling case and the resource constrained project scheduling case. We will also formulate the
answers to the questions we posed in Section 5.

We saw that for both the machine scheduling problem and the RCPSP simulation seemed to
give the best results with respect to final total tardiness score. We expected that the simulation-
based evaluation method would at least outperform the percentile-based approach in terms of score
because the percentile-based approach is a much simpler approach that simplifies the processing
time distributions into single numbers. The simulation-based approach does this as well, but it
samples the distribution, so the number can be different each time and by averaging these results
we do take more of the whole distribution into account. We also think that the flexibility of the
simulation approach given by the simulation count parameter is an advantage over, for example,
the percentile-based approach. By having this parameter the evaluation method can be tuned to
the specific settings of the application it is used in, and the user can make a trade-off between final
score and time available. This might be more difficult with the other two evaluation methods.

The percentile-based approach and normal-approximation-based approach perform quite similar
with respect to score for the machine scheduling problem. We expect that the more sophisticated
normal approximation approach does not work better because of our objective function. We expect
that it would have worked better if we would have looked at expected makespan optimisation. For the
RCPSP we saw that the percentile-based approach now outperformed the normal approximation-
based approach which is partially for the same reasons as we gave for the machine scheduling
case and partially because of the increase in the number of predecessors of tasks which makes
the approximation worse at each step. Also, for the RCPSP we did not only consider normally
distributed processing times for our tasks which also makes the approximations worse in the cases
where the processing times were not normally distributed.

In many applications time is of the essence and we saw that our best performing evaluation
method, the simulation approach, was the slowest approach for both problems. Because of this it
might be advantages in some cases to not use the simulation-based approach but use the percentile-
based approach when the amount of time available is very limited. This difference in speed was
especially notable for the RCPSP. Because the percentile-based approach performed equally or out-
performed the normal approximation-based approach for both problems with respect to score and
time we think that the percentile-based approach is the better alternative.

We saw in our experiments that the time needed for evaluation was a big part of the total time
needed that is why it comes as no surprise that the simulation-based approach performed the worst
with respect to time. We also saw for both problems that an increase in the number of simulations
per evaluation started to give diminishing returns at some point. The point at which this happens
depends on the problem and the instance being considered. This is an important point to consider
because of the linear dependence between the time and the simulation count.

In conclusion, in most cases the simulation approach is the best way to assess the expected total
tardiness although if the available time is very limited, a percentile-based approach might be more
suitable for the application. This holds for both the machine scheduling problem and the resource
constrained project scheduling problem.

We also saw that in terms of score and time the POS representation outperformed the flow
representation. This is not a completely fair comparison because the different representations have
different applications. The implementation of the local searcher for the POS representation is less
complicated which is also an advantage of the POS representation. The flow representation has much
more explicit control over the flow of the resources which might be necessary for some applications.

53

We recommend some form of local search for this machine scheduling problem and for the RCPSP
because in practice exact methods are not feasible. A good selection of operators is very important
for the success of the operators and a way to select when to use which operator as well. We think
that an adaptive operator selector is very useful and believe it outperforms a more static approach.
As we said before the simulation-based evaluation seems to work the best in most cases given our
local search approach. This holds for both problems. We do think that there are many avenues for
improvement and we will talk about them in more detail in the next section.

9 Further Research

There are still many open questions, but we had to stop somewhere with our research. In this section
we discuss some of the things that we think are still worth looking into.

For the POS representation we only gave a single priority rule for the normal approximation
method. We expect that the specific rule used can have a large impact on the performance and that
it might be worth investigating how much potential there still is. The priority rule does not take
multiple paths to the same tasks into account which is something that can negatively influence the
results.

We propose some more priority rules that might be interesting to look at. As we said before, with
our current priority rule we do not take multiple paths to the same tasks into account. We do take
this into account in the Equation 6. This priority value can still be easily computed in a bottom-up
manner so can still be efficiently computed. In Equation 7 we take a more pessimistic approach in
which we also take the standard deviation into account. This will cause the evaluation to give a
higher priority to tasks with more uncertainty which might be desirable in some cases. In Equation
8 we take the maximum instead of the sum which causes the evaluation to focus on the earliest tasks
that can give us a tardiness penalty. We also think that taking the resource requirements of the
tasks into account might be very useful because we might be able to perform some of the tasks in
parallel and we could approximate that by taking these into account.

Prioy(Task;) = —(d; — E(P})) — > —(d; — E(P)) (6)
{Task;| there is a path from Task; to Task;}
Prios(Task;) = —(dj — E(P})) — a;) — > Priog(Task;) (7)
Task;eSuc(Task;)
Prios(Task;) = max(—(d; — E(P;)), max(Prios(Suc(Task;)))) (8)

It might also be intersecting to look at the expected makespan or other optimisation criteria and
see how changing them influences the results.

A possible improvement to the local search for the flow representation can be to add more
neighbourhoods. We expect that the addition of a neighbourhood that moves the resource units of
a task to different resource flows or moves the unit within the same flow can be very beneficial.

We also came up with our own approach for selection which operator to use at what moment in
Section 6.6, but we have not compared this approach to other approaches. It would be interesting
to see what other methods are available and how they compare.

The simulation-based approach currently works the best, but the main drawback is the amount
of time the evaluation requires compared to the other approaches. It is quite likely very beneficial to
use an adaptive simulation count where at the start of the search we can get away with a lower count

54

and as we start to converge, we increase the simulation count such that we can better approximate
the expected total tardiness and better fine tune our solution. Another similar option in using the
percentile evaluation at the start and after a certain number of iterations we can switch to the
simulation-based approach. This could speed up the whole searching process quite a lot.

55

10 Appendix

Simulation Count
50 100 150 200 250
Replace Percentage | 100 | 22.44 22.21 | 22.17 | 22.23 | 22.15
75 | 22.3 22.46 | 22.18 | 22.22 | 22.13
50 22.26 22.19 | 22.29 | 22.16 | 22.14
25 | 22.3 22.18 | 22.18 | 22.15 | 22.16
0 22.04 22.04 | 22.04 | 22.04 | 22.04

Table 32: Average score for instance P1-1 for different Simulation Count and replace percentage
settings

56

Simulation Count
50 100 150 200 250
Replace Percentage | 100 | 78.77 76.43 | 75.53 | 76.27 | 77.07
75 | 78.29 76.99 | 77.16 | 76.99 | 75.15
50 | 75.53 77.18 | 75.5 | 76.03 | 75.17
25 | 75.68 75.53 | 75.75 | 76.59 | 75.05
0 74.98 75.45 | 74.98 | 76.82 | 74.91

Table 33: Average score for instance P1-2 for different Simulation Count and replace percentage
settings

Simulation Count
50 100 150 200 250
Replace Percentage | 100 | 221.41 224.88 | 220.29 | 219.79 | 219.47
75 | 224.28 222.56 | 220.27 | 219.72 | 221.02
50 | 220.51 223.2 | 223.23 | 218.6 | 217.11
25 | 221.53 219.07 | 219.02 | 215.57 | 220.54
0 218.55 219.35 | 214.28 | 214.43 | 215.55

Table 34: Average score for instance P1-3 for different Simulation Count and replace percentage
settings

Simulation Count
50 100 | 150 | 200 | 250
Replace Percentage | 100 | 4.07 3.6 | 3.52 | 3.69 | 3.71
75 | 3.88 3.61 |39 | 352|349
50 | 3.73 3.66 | 3.43 | 3.52 | 3.54
25 | 3.53 36 |37 |35 | 364
0 3.55 34 | 336|337 | 343

Table 35: Average score for instance P1-4 for different Simulation Count and replace percentage
settings

o7

References

[1]

C. Artigues, R. Leus, and F. T. Nobibon. “Robust optimization for resource-constrained
project scheduling with uncertain activity durations”. In: Flexible Services and Manufacturing
Journal 25.1-2 (2013), pp. 175-205.

J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan. “Scheduling subject to resource con-
straints: classification and complexity”. In: Discrete applied mathematics 5.1 (1983), pp. 11—
24.

M. Brcié¢, D. Kalpi¢, and K. Fertalj. “Resource constrained project scheduling under uncer-
tainty: a survey”. In: 28rd Central European Conference on Information and Intelligent Sys-
tems. 2012.

R. van den Broek, H. Hoogeveen, and M. van den Akker. “How to Measure the Robustness
of Shunting Plans”. In: OASIcs-OpenAccess Series in Informatics. Vol. 65. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. 2018.

P. Brucker, A. Drexl, R. Mdhring, et al. “Resource-constrained project scheduling: Notation,
classification, models, and methods”. In: European journal of operational research 112.1 (1999),
pp. 3-41.

J. Bruno, P. Downey, and G.N. Frederickson. “Sequencing tasks with exponential service times
to minimize the expected flow time or makespan”. In: Journal of the ACM (JACM) 28.1 (1981),
pp. 100-113.

R.K. Chakrabortty, R.A. Sarker, and D.L. Essam. “Resource constrained project schedul-
ing with uncertain activity durations”. In: Computers & Industrial Engineering 112 (2017),
pp- 537-550.

H. Chtourou and M. Haouari. “A two-stage-priority-rule-based algorithm for robust resource-
constrained project scheduling”. In: Computers & industrial engineering 55.1 (2008), pp. 183—
194.

S. Creemers. “Minimizing the expected makespan of a project with stochastic activity dura-
tions under resource constraints”. In: Journal of Scheduling 18.3 (2015), pp. 263-273.

S. Creemers, R. Leus, and M. Lambrecht. “Scheduling Markovian PERT networks to maximize
the net present value”. In: Operations Research Letters 38.1 (2010), pp. 51-56.

K.M.J. De Bontridder. “Minimizing total weighted tardiness in a generalized job shop”. In:
Journal of Scheduling 8.6 (2005), pp. 479-496.

F. Deblaere, E. Demeulemeester, W. Herroelen, et al. “Robust Resource Allocation Decisions
in Resource-Constrained Projects”. In: Decision Sciences 38.1 (2007), pp. 5-37.

H. Emmons and M. Pinedo. “Scheduling stochastic jobs with due dates on parallel machines”.
In: European Journal of operational research 47.1 (1990), pp. 49-55.

E.M. Goldratt. “Critical Chain”. In: Great Barrington: The North river press-publishing cor-
poration (1997).

R.L. Graham, E.L. Lawler, J.K. Lenstra, et al. “Optimization and approximation in determin-
istic sequencing and scheduling: a survey”. In: Annals of discrete mathematics. Vol. 5. Elsevier,
1979, pp. 287-326.

V. Gupta, B. Moseley, M. Uetz, et al. “Stochastic online scheduling on unrelated machines”. In:
International Conference on Integer Programming and Combinatorial Optimization. Springer.
2017, pp. 228-240.

58

[30]

[31]

S. Hartmann and D. Briskorn. “A survey of variants and extensions of the resource-constrained
project scheduling problem”. In: European Journal of operational research 207.1 (2010), pp. 1-
14.

0. Hazir, M. Haouari, and E. Erel. “Robust scheduling and robustness measures for the discrete
time/cost trade-off problem”. In: Furopean Journal of Operational Research 207.2 (2010),
pp. 633-643.

W. Herroelen, B. De Reyck, and E. Demeulemeester. “Resource-constrained project scheduling:
a survey of recent developments”. In: Computers & Operations Research 25.4 (1998), pp. 279-
302.

W. Herroelen and R. Leus. “Project scheduling under uncertainty: Survey and research po-
tentials”. In: Furopean journal of operational research 165.2 (2005), pp. 289-306.

T. Kampke. “Optimal scheduling of jobs with exponential service times on identical parallel
processors”. In: Operations Research 37.1 (1989), pp. 126-133.

R. Leus. “The generation of stable project plans”. In: (2003).

L.L. Lorenzoni, H. Ahonen, and A. G. de Alvarenga. “A multi-mode resource-constrained
scheduling problem in the context of port operations”. In: Computers & Industrial Engineering
50.1-2 (2006), pp. 55-65.

S. Nadarajah and S. Kotz. “Exact distribution of the max/min of two Gaussian random
variables”. In: IEEE Transactions on very large scale integration (VLSI) systems 16.2 (2008),
pp. 210-212.

G.J.P.N. Passage. “Combining local search and heuristics for solving robust parallel machine
scheduling”. https://dspace.library.uu.nl/handle/1874/371568. MA thesis. the Netherlands:
Utrecht University, 2016.

G.J.P.N. Passage, J.M. van den Akker, and J.A. Hoogeveen. “Local search for stochastic par-
allel machine scheduling: improving performance by estimating the makespan”. In: Furopean
Conference on Stochastic Optimization. 2017.

M.L. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2016.

S. Shadrokh and F. Kianfar. “A genetic algorithm for resource investment project scheduling
problem, tardiness permitted with penalty”. In: Furopean Journal of Operational Research
181.1 (2007), pp. 86-101.

S. Van de Vonder, E. Demeulemeester, W. Herroelen, et al. “The use of buffers in project
management: The trade-off between stability and makespan”. In: International Journal of
production economics 97.2 (2005), pp. 227-240.

M. Vanhoucke, E. Demeulemeester, and W. Herroelen. “An exact procedure for the resource-
constrained weighted earliness—tardiness project scheduling problem”. In: Annals of Operations
Research 102.1-4 (2001), pp. 179-196.

X. Wu and X. Zhou. “Stochastic scheduling to minimize expected maximum lateness”. In:
European Journal of Operational Research 190.1 (2008), pp. 103-115.

99

