
Verified Translation of a Strongly Typed
Functional Language with Variables to a

Language of Indexed Gates

Rob Spoel

2019

Contents

1 Abstract 1

2 Research goal 2
2.1 Preamble . 2
2.2 Research statement . 2
2.3 Contribution . 2
2.4 Scientific relevance . 3

3 Background 4
3.1 Dependently typed programming: Agda 4
3.2 The Curry-Howard isomorphism 4
3.3 Hardware design . 5
3.4 Verified translation . 6
3.5 Embeddings and EDSLs . 7

3.5.1 Variable binding in embedded domain specific languages . 7
3.5.2 Nameless . 7
3.5.3 De Bruijn . 8
3.5.4 HOAS/PHOAS . 8

4 SKI transpiler 10
4.1 Simply-typed 𝜆-calculus . 10
4.2 SKI combinators . 12
4.3 Translation . 13
4.4 Correctness . 15

5 Π-Ware and Λ1 16
5.1 Π-Ware . 16
5.2 Plugs versus named variables . 18
5.3 Λ1 . 18

5.3.1 Type universe . 20
5.3.2 Variable bindings . 22
5.3.3 Gates . 23

6 Translation 24
6.1 Intermediate language . 24
6.2 Atomization of polytypes . 26
6.3 Stage 1 . 28

6.3.1 Translation . 28

6.3.2 Let constructor . 30
6.3.3 Case constructors . 31
6.3.4 Vector coercion . 31
6.3.5 Combinator circuits . 32
6.3.6 Reducing context . 35
6.3.7 Branching circuits . 36

6.4 Stage 2 . 38
6.5 Final translation . 39

7 Correctness 40
7.1 Equational reasoning in Agda . 41
7.2 Functional extensionality in Agda 43
7.3 Atomization correctness . 45
7.4 Evaluation semantics . 47

7.4.1 Semantics of Π-Ware and intermediate language 48
7.4.2 Semantics of Λ1 . 49

7.5 Let correctness . 50
7.6 Reduce context correctness . 53

7.6.1 Reducing gates . 54
7.6.2 Reducing compositions 55

7.7 Final correctness . 57

8 Conclusion 58
8.1 Research summary . 58
8.2 Future work . 58

8.2.1 Remaining postulates and holes 58
8.2.2 Potential follow-up . 59

List of Figures
3.1 Graph demonstrating verified translation relation 6
5.1 AND gate in Π-Ware . 17
5.2 Implementation of (𝐴 + 𝐵) in Π-Ware 17
6.1 Partial function application of gates 30
6.2 S[_]·_·_ combinator circuitry 33
6.3 P[_]·_·_ combinator circuitry 34
6.4 K[_]·_ combinator circuitry . 35
6.5 Branching circuit control flow 37

List of Agda listings
4.1 Simple type system . 10
4.2 Type context . 10
4.3 Simply typed lambda calculus language definition in Agda 11
4.4 Simply typed lambda calculus evaluation semantics 11
4.5 SKI combinators in Agda . 12
4.6 Translation of a simply-typed 𝜆-calculus Term to an intermediate

representation SKI’ . 13
4.7 Final translation of simply-typed 𝜆-calculus to SKI 14
4.8 SKI transpiler correctness proposition 15
5.1 Π-Ware circuit definition . 16
5.2 Λ1 language definition . 19
5.3 Polytypes, the type universe for Λ1 20
5.4 Mapping of polytypes to Agda types 21
5.5 Examples of common data types encoded as polytypes 21
5.6 How to transform Δ, τ to an Agda function type using Λ⟦ Δ ↣ τ ⟧ . . 22
5.7 Gates used in Λ1 . 23
6.1 Intermediate language definition 24
6.2 Definition of variable references used in the intermediate language 25
6.3 Definition of ⤋ and ⤊, to translate between polytypes and words . . 26
6.4 Definition of pad and unpad . 27
6.5 Definition of atomize . 28
6.6 Definition of Stage1.translate 29
6.7 Definition of the identity Plug 29
6.8 Definition of coerce for intermediate language 32
6.9 S[_]·_·_ combinator circuitry 33
6.10 P[_]·_·_ combinator circuitry 34
6.11 K[_]·_ combinator circuitry . 35
6.12 Definition of reduce-ctxt . 36
6.13 Definition of Stage2.translate 38
6.14 Definition of translate, which translates from Λ1 to Π-Ware . . . 39
7.1 Declaration of the translation correctness proposition 40
7.2 Agda definition of equality (_≡_) 41
7.3 Definition of +-zero using congruence cong 42
7.4 Definition of transitivity trans 42
7.5 Module for equational reasoning ≡-Reasoning 42
7.6 Simple example using ≡-Reasoning 43
7.7 Functional extensionality for Stage1.translate-correctness . . . 44

7.8 Correctness proof for translating back and forth between words
and polytypes . 45

7.9 Lemma take-++-identity . 46
7.10 Lemma unpad₁∘pad₁-identity 46
7.11 Agda standard library version of max 47
7.12 Our improved version of max . 47
7.13 Intermediate language semantics 48
7.14 Agda standard library version of take and drop 49
7.15 Our improved version of take and drop 49
7.16 Unembedding of Λ1 . 50
7.17 Correctness of letₓ_inₑ_ translation (1) 51
7.18 Correctness of letₓ_inₑ_ translation (2) 52
7.19 Correctness of letₓ_inₑ_ translation (3) 53
7.20 Correctness proposition for reduce-ctxt 53
7.21 Correctness of reduce-ctxt for gates (1) 54
7.22 Correctness of reduce-ctxt for gates (2) 55
7.23 Example lemma using coerce-vec 56
7.24 Final translation correctness proof 57

1 Abstract
In this thesis, we present a translation from an embedded hardware description
language with variable bindings (Λ1) to an embedded hardware description lan-
guage without variable bindings (Π-Ware). The host language for these embedded
languages is Agda. We take a look at type theory and how it relates to higher order
logic according to the Curry-Howard isomorphism, at different ways to implement
variable binding and finally at the translation itself. Not only do we show how to
translate to a nameless language, but we also present a correctness proof of said
translation formalized in Agda itself.

Keywords— Agda, embedded languages, Curry-Howard isomorphism, compiler-
correctness

1

2 Research goal
2.1 Preamble
Domain-specific languages (DSLs) are languages that are specialized for particular ap-
plications. They can provide benefits over their counterpart general-purpose languages
(GPLs) by providing specific structures that let users express certain solutions to certain
problems more clearly. A common approach when designing a DSL is to embed it in an
existing host language (either inside another DSL or more commonly inside a GPL).

When embedding a DSL into a host language, there are multiple possible methods for
handling variable binding. This work demonstrates a verified translation from an embed-
ded hardware description DSLwhich represents variables using named De Bruijn bindings
– which are practical for the internal representation of the DSL – to an embedded hardware
description DSL which uses nameless bindings of indexed wires – which is practical for
the compilation to actual hardware.

2.2 Research statement
Given a hardware description language with variable bindings, can we translate it to a
hardware description language without bindings but with input/output indexed wires1?
Given such a translation, can we prove that the translation is correct2 for all possible
programs that can be written in the source language? How well does a dependently typed
context3 lend itself to reason about hardware description languages?

2.3 Contribution
We start this document with some background in section 3 in the form of literature research
on topics such as dependent types, higher-order logic, and embedded languages.

We demonstrate a prototype translation in the form of the SKI transpiler, showing that
it is possible to translate from a language with bindings (simply-typed 𝜆-calculus) to a
nameless language (SKI combinators) in section 4. Furthermore, we demonstrate that we
can use Agda’s dependent type system to prove the translation’s correctness, based on the
Curry-Howard isomorphism.

In section 5, we introduce a new hardware description DSL – based on J. P. Pizani
Flor’s work – called Λ1 (pronounced lambda one, named after the working name of 𝜆𝜋-
Ware also by J. P. Pizani Flor). We demonstrate a complete translation from Λ1 to Π-Ware
in section 6 before highlighting some parts of the correctness proof in section 7.

1Section 5.2: Plugs versus named variables
2Section 3.4: Verified translation
3Section 3.1: Dependently typed programming: Agda

2

2.4 Scientific relevance
As hardware becomes more and more complex, the need for streamlined verification so-
lutions becomes more and more pressing. Finding faults in circuits after their worldwide
distribution is a scenario from which it is hard to recover, as the Intel FDIV bug in the mid
90’s [Intel, 2004] demonstrates.

With the growing popularity of dependently typed programming languages such as
Coq andAgda, there is an opportunity for a new hardware design language solution that can
provide more mathematical soundness guarantees for the chips of the future. Verification
and validation of hardware design play a considerable part in the cost of hardware design
[Rekhi and Purasai, 2003]. Streamlining both of these steps into a single language could
provide big savings as well as better scaling for big and small manufacturers alike.

For such a potential language to be attractive to developers, it is important to provide
user-friendly abstractions of the underlying wires and plugs. For this reason, we believe
it is of scientific significance to research the translating from higher-level user-space lan-
guages to lower-level machine-space languages, where a dependently typed context can
provide strong mathematical soundness guarantees.

3

3 Background
3.1 Dependently typed programming: Agda
Agda is a dependently typed programming language based on Martin-Löf type theory
[Bove et al., 2009, Martin-Löf, 1984]. It has a functional syntax which is close to that of
Haskell. However, its type system is fundamentally different from Haskell’s. The term de-
pendent in the phrase dependently typed refers to the fact that types can depend on values.
This means that, in Agda, types and values can be mixed freely. This is fundamentally
different from the paradigm that most computer scientists are more closely familiar with,
polymorphism. Polymorphism provides abstraction over types in types. A familiar exam-
ple in the programming language Java is the abstract type java.util.List. The abstract
type can be specialized, i.e. turned into a complete type, by passing in another type. A de-
pendent type system provides abstraction over values in types. Any Agda expression can
be used in a type’s definition to provide such values. Notably, these expressions can also
depend on other terms that came before it in the type definition. This lets programmers
define arbitrary constraints on types.

This expressibility comes at a cost, however. All expressions in Agda must be total.
For all possible inputs of an expression, the expression must not produce an output which
is undefined nor cause an infinite recursion. The Agda type system needs to be able to
determine whether two types are equal, and thus needs to be able to execute any Agda
expression in finite time.

Agda is often written in an interactive workflow. Whilst all Agda functions must be
total, developers maywant to (partially) leave implementations open to revisit in the future.
The Agda compiler therefore supports the concept of ”holes”. At any time, a developer can
leave a hole open inside the program by typing a ? . The next time that the program gets
compiled, the compiler will attempt to type-check the hole and replace the question mark
with a marker in the form of {! !} . If the developer is using an editor with interactive
Agda support, such as Emacs4 or Atom5, the editor will display a list of open holes and
their types. This workflow lets developers move on with their programwhile keeping track
of lines of code that need to be revisited. If a type-checked hole’s type depends on another
value which still contains holes, the compiler will use temporary type-variables to indicate
that it was not able to fully determine the constraints on this particular hole.

3.2 The Curry-Howard isomorphism
The Curry-Howard isomorphism [Sørensen and Urzyczyn, 2006] states that there exists
a correspondence between formal logic systems and computational calculus, or in other
words, between proof theory and type theory. According to the Curry-Howard isomor-
phism, dependent types correspond to higher order logic.

4https://agda.readthedocs.io/en/latest/tools/emacs-mode.html, accessed on 2019-05-01
5https://atom.io/packages/agda-mode, accessed on 2019-05-01

4

https://agda.readthedocs.io/en/latest/tools/emacs-mode.html
https://atom.io/packages/agda-mode

With this isomorphism in mind, Agda can be used as a proof system. Logical state-
ments can be expressed in the form of Agda types, and a proof is given by constructing a
value of that type. This is also called a constructive proof. Crucially, constructive proofs
can not be created using proof strategies in the form (¬¬𝑝 ⇒ 𝑝) and (𝑝 ∨ ¬𝑝).

In classical mathematics, a common proof pattern is to try and show the absurdity of
the negation of a proposition. By proving that the negative of a proposition (i.e. ¬𝑝) is not
valid, it must follow that the proposition itself is valid (i.e. (¬¬𝑝 ⇒ 𝑝)). For example, in a
proposition of the form ”There is an 𝑥 for which𝑓(𝑥) holds true”, in classicalmathematics,
one might try to start a proof in terms of ”Imagine there is no such 𝑥...”, and then end on
”Since this is impossible, the opposite must be true”. In a constructive proof system, just
showing the absence of the opposite is not enough to prove a proposition to be true. One
has to actually provide (or construct) the 𝑥 in question. Similarly, the axiom of excluded
middle (𝑝 ∨ ¬𝑝) places an unwanted restriction on possible values of 𝑝. It states that all
𝑝 must be either true or false, but doesn’t leave open room for propositions which may be
undecidable or otherwise undefined. In Agda, we cannot rely on these classical axioms
and must instead always construct constructive proofs.

Agda’s type checker forms a system in which we can do logical reasoning using ex-
isting functional programming techniques as well as more advanced dependently typed
programming techniques. We mentioned the importance of all Agda expressions needing
to terminate in order for the type checker to finish its static analysis in finite time. In the
context of logical reasoning, it’s also important for all functions to not be infinitely looping
or otherwise undefined, in order to maintain the soundness of the system.

3.3 Hardware design
Moore’s law, which states that the number of transistors on a circuit doubles approximately
every two years, is likely not to hold up forever. In fact, some posit that there is a hard limit
on miniaturisation of circuitry given by Heisenberg’s uncertainty principle, where quan-
tum effects will cause unwanted interference if transistors get too close to one another
[Powell, 2008]. Instead of improving the raw performance of general-purpose computing
circuits by upping the number of transistors, another popular method to create high perfor-
mance chips is to implement certain algorithms directly in hardware in the form of ASICs:
application-specific integrated circuits. One very recent example of ASICs being used in
the wild is for Bitcoin mining. Where miners used to run their block hashing algorithms
on general computing chips like CPUs and GPUs, the ongoing competition for Bitcoin
rewards has pushed everyone towards the most efficient and fastest computing methods of
these well-defined algorithms.

Since the 1980s, researchers have been researching functional programming languages
to design and reason about hardware [Sheeran, 2005]. Functional programming and hard-
ware design match up very nicely, not in the least because FP makes it easier to rea-
son about program properties. Besides standalone functional hardware description lan-
guages made from scratch (e.g. 𝜇-FP [Sheeran, 1984]), several embedded domain specific
languages (EDSLs) have been created as well (e.g. Lava [Bjesse et al., 1998], ForSyDe

5

[Sander and Jantsch, 2004], HAWK [Matthews et al., 1998]).
Dependently typed programming is in many ways the logical next step after functional

programming, a successor of sorts. A dependent type system can offer advantages over
simple FP in the creation of domain specific languages [Oury and Swierstra, 2008]. This
together with the demonstrable effectiveness of functional languages for hardware descrip-
tion makes a language such as Agda very well-suited as a host of a hardware EDSL.

3.4 Verified translation
The words «compiler» and «transpiler» do not actually hold any real semantic difference.
Both terms refer to pieces of software that translate a program description from one lan-
guage to another language. In the way that these terms are usually used, a compiler will
translate a user-level language to a machine-level representation, whereas a transpiler will
translate between user-level languages. However, the terms «user-level» and «machine-
level» aren’t well-defined classifications in the context of programming languages. For all
intents and purposes of this work, «compiler correctness» is synonymous to «transpiler
correctness».

The core idea behind verifying a compiler is to prove equality between evalua-
tion of the source language and the target language. Dependent types let us formu-
late this equality as a type, for which we can write a constructive proof. There is a
well-cited paper in the area of compiler correctness within dependently typed languages
[Mckinna and Wright, 2006]. In this article, McKinna and Wright describe the working
of a verified compiler for an embedded expression-based language to an embedded stack-
machine language, similar to low-level machine code.

The relationship between source language and target language, and the verified trans-
lation from one to the other, can be expressed as a graph (See figure 3.1).

Given a code in a source language Lₛ, we can evaluate this code using the semantic
evaluation rules of that language by passing in some params in the source language’s value
universe Uₛ. Alternatively, we can translate the code into a program of target language Lₜ.

code ∶ Lₛ program ∶ Lₜ

resultₛ ∶ Uₛ resultₜ ∶ Uₜ

translate (code)

eval(code)

exec(program)

convert (resultₛ)

Figure 3.1: Graph demonstrating verified translation relation

6

By converting the params to the target language’s value universe Uₜ, we can execute the
program passing in the converted input. The result of both evaluating the source language
or executing the target language should land on the same result (after converting).

Note that even though we used different terms evaluate and execute to describe the
running of either the source or the target language statements, they are conceptually the
same operation, just on different inputs.

3.5 Embeddings and EDSLs
3.5.1 Variable binding in embedded domain specific languages
When talking about EDSLs, one has to differentiate between shallow and deep embeddings
in the host language [Gibbons and Wu, 2014, Boulton et al., 1992]. In a deeply embedded
DSL, syntactic structures are represented as data types inside the host language to allow
quantifiable inspection. This is extra work for the developer of the library, but provides
invaluable benefits when reasoning about the semantics of the embedded language, espe-
cially in a dependently typed context. A shallow embedding avoids such work, and only
offers a mapping between the embedded language’s syntax and the host’s semantics. The
deep embedding has the major benefit of splitting up the definition of which language con-
structs exist and how they have to be interpreted. This lets us inspect expressions of the
embedded language without having to reflect on the definition of the shallow embedded
semantics.

When developing a deeply embedded language, the library author has different choices
for the representation of variables, each with their own caveats.

3.5.2 Nameless
In the context of variable binding representation techniques, nameless refers to a sys-
tem where there are no variable bindings. Perhaps the most famous example of name-
less binding is combinatorial logic, for example using the SKI basis [Smullyan, 1985,
Curry et al., 1972].

In SKI combinator calculus, the combinators 𝑆, 𝐾 and 𝐼 form the three basic building
blocks out of which programs can be constructed. Composing any two terms also forms a
valid term, through application. The basic terms’ semantics are defined as such:

𝐼 𝑥 = 𝑥
𝐾 𝑥 𝑦 = 𝑥

𝑆 𝑥 𝑦 𝑧 = 𝑥𝑧 (𝑦𝑧)

Even though the denotational semantics of these terms use variable identifiers 𝑥, 𝑦 and
𝑧 for their internal representation, the language of SKI combinator calculus only allows

7

the terms 𝑆, 𝐾 and 𝐼 , as well as their compositions through functional application. A
legal expression in this language does not contain any variable bindings.

3.5.3 De Bruijn
De Bruijn is a system of variable binding commonly used when expressing 𝜆-calculus. It
is a notation which identifies a variable occurrence with the distance to the location of
the binding 𝜆 [De Bruijn, 1994, Turing, 1937]. Traditionally, in 𝜆-calculus, a new lambda
abstraction would introduce a new named variable that can be referred to in the body of
the abstraction. This naming scheme however comes with caveats. One has to consider
how to handle non-uniqueness of names. This can be especially troublesome if a variable
in an expression has to be replaced by a second expression that contains a free variable
of the same name (𝛽-reduction). Another difficulty with this naming scheme arises when
one attempts to establish equivalence between two expressions where the only difference
lies in the names of the bound variables.

The De Bruijn system solves these ambiguities, since each reference points directly
to its binding location. The main disadvantage is that it is harder to find usage of a given
variable throughout an expression for a human observer, since the identifier may change
its value depending on the number of lambda abstractions in the expression at any given
point. However, this representation makes it much easier to reason about expressions for
a computer system, for example in a dependently typed proof assistant such as Agda.

3.5.4 HOAS/PHOAS
The approaches for variable binding discussed above can be implemented entirely inside
the data typewhich represents the deep embedding. Another strategy can be to use variable
binding of the host language. The host language usually has an advanced binding system
which deals well with naming and shadowing and other cases where there are multiple
definitions. Using the host language binding constructs is referred to as higher-order
abstract syntax, or HOAS for short. A very simple example of lambda calculus using
HOAS:

data L ∶ Set where

Lam ∶ (L → L) → L

app ∶ L → L → L

app (Lam f) x = f x

8

The Lam constructor takes a function of the type (L → L), which represents the body of
the lambda abstraction. A user who wants to create something of this type would typically
feed in an anonymous function (a lambda expression) in the host language, and use the host
language’s binding constructs to represent the embedded language’s bindings, for example
as such:

id = Lam (λ x → x)

Note how the binding of the named variable x is the host language’s binding, but how
it represents the binding in the embedded language.

The data type L, in the way it is presented above, is actually not legal Agda code.
The Lam constructor is problematic. Agda only allows inductive appearances of the type
in strictly positive positions. By looking at the Lam constructor as a function that takes a
function as an argument, we can see that the first occurrence of L is contravariant in that
position. This leads to a type system error in Agda. In order to see why this could be
problematic, look at the following example:

ω = Lam (λ x → app x x)
Ω = app ω ω

If Agda were to try and evaluate Ω, it would construct a term that is the combinator
equivalent of (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥), of which the normal form does not terminate. This is un-
acceptable in the context of dependent types, since the type checker would run into an
infinite loop if this were allowed. All valid expressions must be total in order for the static
type checking phase to be guaranteed to terminate. Furthermore, we can’t accept such un-
defined values in our types without making the logic they represent unsound. A solution
to this problem is to use «parametrized higher-order abstract syntax», or PHOAS for short
[Chlipala, 2008]. Let’s add a parameter to the L data type:

data P (a ∶ Set) where
Lam ∶ (a → P a) → P a

Var ∶ a → P a

By adding the type parameter to the data type P, the Agda type checker will catch ill-
typed constructs such as Ω as defined above. The Lam constructor no longer has negative
occurrences, and will be accepted by Agda. Lastly, we added the Var constructor to lift
objects of type a to P a.

There is work by [Atkey et al., 2009] which converts expressions of untyped
𝜆-calculus back and forth between HOAS and De Bruijn representation embedded in
Haskell. Since the Haskell type checker is less restrictive than Agda’s, this issue did
not become a problem in their implementation. Only after they moved to simply typed
𝜆-calculus did they run into what they refer to as exotic types. For their work, they also
chose to add a type parameter to their higher-order abstract syntax in order to ensure
well-typedness of their embedded language.

9

4 SKI transpiler
In this chapter, we investigate the feasibility of translating a language with typed variables
to a language without such constructs, as well as proving correctness of said translation.
It goes without saying that we use Agda as the platform for this work.

4.1 Simply-typed 𝜆-calculus
The simply-typed 𝜆-calculus is an extension of the 𝜆-calculus which we already saw in
3.5.3 and 3.5.4. Its type system is simple, because it only consists of the unit type (𝜄) and
the function constructor (→). Simply-typed 𝜆-calculus is a very interesting language to
study the effects of type systems. However, this is not the focus of this chapter. Instead,
we intend to translate the simply-typed 𝜆-calculus into a nameless representation, in order
to show that it is possible to go from a language which has variable bindings in the form
of De Bruijn indices to a nameless language.

data U ∶ Set where

unit ∶ U

⇒ ∶ U → U → U

⟦_⟧ ∶ U → Set

⟦ unit ⟧ = ⊤

⟦ σ ⇒ τ ⟧ = ⟦ σ ⟧ → ⟦ τ ⟧

Agda listing 4.1: Simple type system

Wemodel the simple type system in Agda listing 4.1. The type universe is represented
with U. The translation which relates the type universe to the Agda type system is defined
with ⟦_⟧.

Ctx = List U

Agda listing 4.2: Type context

The term context is often used to mean very different things in different situations. In
the frame of reference of this work, we use context to refer to a list of types (See Agda
listing 4.2), which are used to capture the free variables in a given expression.

10

data Ref ∶ Ctx → U → Set where

top ∶ ∀ {Γ τ} → Ref (τ ∷ Γ) τ
pop ∶ ∀ {Γ σ τ} → Ref Γ τ → Ref (σ ∷ Γ) τ

data Term ∶ Ctx → U → Set where

app ∶ ∀ {Γ σ τ} → Term Γ (σ ⇒ τ) → Term Γ σ → Term Γ τ

lam ∶ ∀ {Γ σ τ} → Term (σ ∷ Γ) τ → Term Γ (σ ⇒ τ)
var ∶ ∀ {Γ τ} → Ref Γ τ → Term Γ τ

Agda listing 4.3: Simply typed lambda calculus language definition in Agda

The simply-typed 𝜆-calculus is encoded in the Term data type (See Agda listing 4.3).
Terms are indexed with a context Ctx which defines the types of free variables that appear
in the term. Furthermore, terms are also indexed with a type U. Agda’s type checker
will only let us create valid terms that are type-safe. This is due to the intrinsically typed
[Reynolds, 2000] nature of the object language Term in the host language Agda.

Pay special attention to the var constructor, which takes a Ref as a parameter. Ref

encodes a specialized version of Peano numbers, where top represents zero and pop repre-
sents the successor operation. The specialization lies in the fact that Ref is indexed with a
context and a type. Each call of lam pushes a new type onto the context stack of its argu-
ment term. This allows var calls to refer to that binding by encoding the depth of lam calls
in its stack of pop and top calls.

The intrinsic design of our embedded simply-typed 𝜆-calculus language also lets us
define a meaningful evaluation function, which, given an expression in the object language
together with a list of values for free occurring variables, will run the described program
by mapping each term to the host language’s semantics (See Agda listing 4.4).

data Env ∶ Ctx → Set where

nil ∶ Env []

cons ∶ ∀ {Γ τ} → ⟦ τ ⟧ → Env Γ → Env (τ ∷ Γ)

eval ∶ ∀ {Γ τ} → Term Γ τ → Env Γ → ⟦ τ ⟧

eval (app t₁ t₂) env = eval t₁ env (eval t₂ env)
eval (lam t) env = λ x → eval t (cons x env)
eval (var ref) env = env ! ref

Agda listing 4.4: Simply typed lambda calculus evaluation semantics

11

4.2 SKI combinators
We touched upon SKI combinator calculus in section 3.5.2. To reiterate, they represent a
Turing-complete language without any variable bindings.

data SKI ∶ U → Set where

S ∶ ∀ {a b c} → SKI ((a ⇒ b ⇒ c) ⇒ (a ⇒ b) ⇒ a ⇒ c)
K ∶ ∀ {a b} → SKI (a ⇒ b ⇒ a)
I ∶ ∀ {a} → SKI (a ⇒ a)
· ∶ ∀ {α β} → SKI (α ⇒ β) → SKI α → SKI β

apply ∶ ∀ {τ} → SKI τ → ⟦ τ ⟧

apply S x y z = x z (y z)
apply K x y = x

apply I x = x

apply (c₁ · c₂) = apply c₁ (apply c₂)

Agda listing 4.5: SKI combinators in Agda

We’ve directly encoded S, K, and I as Agda constructors in Agda listing 4.5 by using
implicit type variables and recreating the expected shape for these combinators as their
index of the type SKI. Similar to our definition of Term, this leads to an intrinsic embedding
in Agda using the type universe U. We can combine these combinators using _·_. We’ve
also included an unembedding function here called apply, which is the SKI equivalent of
eval on the simply-typed 𝜆-calculus side. The name apply was chosen to avoid confusion
between these semantic evaluation methods.

12

4.3 Translation
Translating arbitrary Term expressions directly to SKI is not always possible. Terms that
appear inside the body of a lam are open, i.e. they contain references inside them which
are bound outside of the term. It will only be possible to translate closed terms to a SKI
representation. To work around this restriction, we introduce an intermediate translation
of possibly open terms to an intermediate representation SKI’, which supports bindings in
Agda listing 4.6.

data SKI’ ∶ Ctx → U → Set where

S ∶ ∀ {Γ a b c} → SKI’ Γ ((a ⇒ b ⇒ c) ⇒ (a ⇒ b) ⇒ a ⇒ c)
K ∶ ∀ {Γ a b} → SKI’ Γ (a ⇒ b ⇒ a)
I ∶ ∀ {Γ a} → SKI’ Γ (a ⇒ a)
· ∶ ∀ {Γ α β} → SKI’ Γ (α ⇒ β) → SKI’ Γ α → SKI’ Γ β

⟨_⟩ ∶ ∀ {Γ τ} → Ref Γ τ → SKI’ Γ τ

cmp’ ∶ ∀ {Γ τ} → Term Γ τ → SKI’ Γ τ

cmp’ (app t₁ t₂) = cmp’ t₁ · cmp’ t₂

cmp’ (lam t) = lambda (cmp’ t)
cmp’ (var x) = ⟨ x ⟩

lambda ∶ ∀ {Γ σ τ} → SKI’ (σ ∷ Γ) τ → SKI’ Γ (σ ⇒ τ)
lambda S = K · S

lambda K = K · K

lambda I = K · I

lambda (c₁ · c₂) = S · lambda c₁ · lambda c₂

lambda ⟨ top ⟩ = I

lambda ⟨ pop x ⟩ = K · ⟨ x ⟩

Agda listing 4.6: Translation of a simply-typed 𝜆-calculus Term to an intermediate representation
SKI’

The intermediate representation carries a context to capture the freely occuring vari-
able bindings. Translating from Term to SKI’ is trivial in the case of app and var, where we
recursively compile each part of the application and store the variable reference, respec-
tively.

The difficulty lies in translating the lam constructor. We introduce a helper function
lambda to remove a variable binding from the SKI’ expression and transform it into a
new SKI’ expression of an embedded function type. In essence, we are building a new
expression in the form of a function which takes the previous variable binding as an input,
thereby eliminating the binding.

13

This new function input will replace the value of the first reference within the context
(of the type σ in the type signature above). Our function lambda has to define how to
pass or discard this input value for each possible SKI’ expression. In the case of simple
occurrences of either S, K, or I, we can discard the input value. This is achieved by applying
the combinator K, which does exactly that: it discards an argument. In the case of an
application _·_, we need to recursively call lambda on each part of the application and also
duplicate the input value for use in both parts. This is achieved by applying the combinator
S, which applies an input to two expressions. Finally, in the case of a variable binding ⟨_⟩,
we need to inspect the De Bruijn index of that variable. If it is indeed the variable that is
being replaced by our function input, we inject the input using the identity combinator I.
For other variable bindings, we just reduce the De Bruijn index by one to make sure the
reference points to the correct location in the context, which will also have been reduced
by one element.

Since a closed SKI’ expression, i.e. one with an empty context, contains no variable
bindings, it can be converted to a SKI expression trivially. The cmp’ function maintains the
context of the input Term, so closed terms are translated to closed SKI’ expressions which
in turn can be translated to SKI expressions. This completes our translation of simply-typed
𝜆-calculus to SKI:

closed ∶ ∀ {τ} → SKI’ [] τ → SKI τ

closed S = S

closed K = K

closed I = I

closed (c₁ · c₂) = closed c₁ · closed c₂

closed ⟨ () ⟩

cmp ∶ ∀ {τ} → Term [] τ → SKI τ

cmp = closed ∘ cmp’

Agda listing 4.7: Final translation of simply-typed 𝜆-calculus to SKI

14

4.4 Correctness
The compiler correctness property is expressed as follows in Agda:

correct ∶ ∀ {τ} → (t ∶ Term [] τ) → apply (cmp t) ≡ eval t nil

Agda listing 4.8: SKI transpiler correctness proposition

It states that, given a closed Term (i.e. no free variables, i.e. an empty context) of any
type (τ ∶ U), compiling the term and evaluating the resulting SKI combinators using apply

is equivalent to evaluating the term directly.
The complete version of the correctness proof code is not included inside this docu-

ment for conciseness’ sake. We refer to the code accompanying this document. However,
we can give a high-level description of what is going on. The type signature of correct
states that given any closed term t of any embedded type τ, compiling the term to a SKI
representation and applying it should give the same result as evaluating the term directly.

Agda can only check structural equality, so this requirement is stricter than just seman-
tic equality. The strategy to prove this is to prove a similar correctness proof between term
evaluation and the intermediate SKI’ interpretation, which can include De Bruijn variables.
Some notable lemmas that were required for this proof were: one to prove the correctness
of the lambda function above, and one to prove that the environment is treated equally in
the evaluation of terms and the application of the intermediate SKI’ expressions.

15

5 Π-Ware and Λ1

5.1 Π-Ware
Π-Ware is a deeply embedded domain specific language to describe hardware, which uses
Agda as the host language [Flor et al., 2014]. It allows for the simulation, synthesis, and
verification of hardware design. At the heart of Π-Ware lies the circuit data type ℂ (Agda
listing 5.1). This data type defines how basic building blocks in the form of gates are
interconnected in order to form a working circuit. It uses dependent types to guarantee the
soundness of the number of connections between composited circuit elements.

data ℂ[_] (G ∶ Gates) ∶ {s ∶ IsComb} → Ix → Ix → Set

Gate ∶ ∀ {g# s} → ℂ[G] {s} (|in| G g#) (|out| G g#)
Plug ∶ ∀ {i o s} → Vec (Fin i) o

→ ℂ[G] {s} i o

⟫ ∶ ∀ {i m o s} → ℂ[G] {s} i m

→ ℂ[G] {s} m o

→ ℂ[G] {s} i o

∥ ∶ ∀ {i₁ o₁ i₂ o₂ s} → ℂ[G] {s} i₁ o₁

→ ℂ[G] {s} i₂ o₂

→ ℂ[G] {s} (i₁ + i₂) (o₁ + o₂)
DelayLoop ∶ ∀ {i o l} → ℂ[G] {σ} (i + l) (o + l)

→ ℂ[G] {ω} i o

Agda listing 5.1: Π-Ware circuit definition

The circuit data type is parametrized with a set of basic gates as a record of type
Gates, the choice of which is up to the user. Two popular options are BoolTrio and Nand.
The former contains logical negation, logical conjunction and logical disjunction. Each
gate has a number of input and output wires. Notice how the Gate constructor above calls
the ∣in∣ and ∣out∣ functions, which works on the Gates record taking an argument for the
gate identifier g#, in order to specify the number of input and output wires for the given
gate.

Furthermore, the circuit data type is indexed with an enumeration (s ∶ IsComb) to
indicate if the circuit contains loops (indicated by ω) or not (indicated by σ). The circuit is
also indexed with two numbers Ix for input and output wires respectively. In order to get a
better feel for the input and output wires, imagine that the entire circuit defines a function
from a vector of the size of the number of input wires to a vector of the size of the number
of output wires.

See figure 5.1 where we present an illustration of a simple example circuit consisting
of a single Gate named AND from the BoolTrio set of Gates. It does not loop (indicated by

16

(Gate AND) ∶ ℂ[BoolTrio] {σ} 2 1

Gate
AND

Figure 5.1: AND gate in Π-Ware

{σ}). Finally, it takes 2 inputs and produces 1 output.
Circuits can be composited either in sequence (_⟫_) or in parallel (_∥_). By composing

gates in parallel, the user creates a circuit that has the number of inputs and outputs of both
gates added together. These gates can then be composited sequentially to create longer
circuits which represent multiple chained logical steps.

By default, sequential composition will just map each output wire with index 𝑖 to the
input wire with index 𝑖. If this is not the desired effect, the user can employ the Plug

constructor. Looking at the code of the Plug constructor, we can see it uses a vector of size
o, where each element is a number in the range [0, 𝑖 − 1]. This lets users remap the wiring
of outputs of circuits by composing the original circuit with a plug. Not only that, but by
omitting or repeating certain indices in the vector, it also allows for the forgetting or the
duplication of certain outputs respectively.

((Plug (0 ∷ 0 ∷ []) ⟫ Gate NAND) ∥ (Plug (0 ∷ 0 ∷ []) ⟫ Gate NAND)) ⟫ Gate NAND

𝐴
Gate
NAND

𝐵
Gate
NAND

Gate
NAND

𝐴 + 𝐵

Figure 5.2: Implementation of (𝐴 + 𝐵) in Π-Ware

See figure 5.2 where we present an illustration of how plugs, gates, and constructed
circuitry can be composed in parallel and in sequence to produce more complex behavior.
In this example, we first duplicate both the inputs (labeled 𝐴 and 𝐵 for convenience) using
a Plug which outputs it’s 0th input twice before connecting them to their own NAND gate
respectively. These operations are composed sequentially in order to generate the ”left

17

hand side” circuit which takes two inputs and produces two outputs. Finally, we apply
sequential composition to connect the two ”left hand side” outputs to another NAND gate, to
produce our final output 𝐴 + 𝐵.

In order to loop backwires from the output of a circuit back to its input, the user can use
the DelayLoop constructor. Note how this is the only constructor which places a restriction
on its argument’s circuit, ensuring that its implicit index {s ∶ IsComb} must be equal to σ.
It constructs a circuit with the combinational index set to ω to indicate the looping nature
of the resulting circuit. All other constructors inside ℂ maintain the combinational index
of their given input.

5.2 Plugs versus named variables
The circuit data structure ℂ uses indexed inputs and outputs. If a user wants to design a
circuit with sequential composition, the Agda type checker will ensure that the number of
outputs of the first circuit matches the number of inputs of the second circuit. However,
the user has to pay attention themself that the wires are connected in a way that reflects
the logical structure they are trying to build. Π-Ware’s use of indexed gates and lack of
variable bindings means that it is, similarly to SKI combinators, nameless (See section
3.5.2).

This representation is very close to the actual hardware representation of gates and
wires, which is evident by the descriptions of the data structures given here. However, it
requires the user to keep very precise track of outputs and inputs of circuits. This process
is prone to human error when designing more complicated circuits.

Existing high-level programming languages have had support for named variables
instead of indexed inputs and outputs for a long time. Using named variables creates self-
documenting code, reducing the chance for human error during development. They also
provide a user-friendly method to share computations across several parts of the program.

5.3 Λ1
At the end of J. P. Pizani Flor’s master thesis which introduces Π-Ware, there is mention
of future work of a higher-level applicative interface language that would be nicer to use
for circuit designers [Flor et al., 2014]. This follow-up work has since been published
[Flor and Swierstra, 2018], presenting a new language called 𝜆𝜋-Ware. 𝜆𝜋-Ware comes
in two flavors: λB and λH. These variations use De Bruijn variable bindings (See section
3.5.3) and HOAS style bindings (See section 3.5.4), respectively. We’ll be focusing on
the former, especially since a program of the latter can be unembedded into an equivalent
program of the former.

The λB language inside 𝜆𝜋-Ware is indexedwith a type universe and a type context, and
also parametrized by a set of logical gates similar to Π-Ware. It offers several constructors,
for example for referring to variables, for introducing sharing through let-binding, and for
application.

18

During the development of the proofs for this thesis, 𝜆𝜋-Ware was still under active
development. For this reason, we’ve made the decision to fork this language. Our fork
offers many of the same features as 𝜆𝜋-Ware, with a few differences. Most notably, the
absence of a loop constructor and a modification of the type universe.

We’ve named this fork Λ1 (pronounced lambda one), after the working name that was
used while J. P. Pizani Flor was developing the embedded language of 𝜆𝜋-Ware. See Agda
listing 5.2 for the formal definition of this fork.

data Λ₁ ∶ (Γ ∶ Ctxt) → (Δ ∶ List Uₚ) → (τ ∶ Uₚ) → Set where

⟨_⟩ ∶ ∀ {Γ} → (g ∶ Gate)
→ Λ₁ Γ (inputs g) (output g)

#[_] ∶ ∀ {Γ τ} → (r ∶ Ref Γ τ)
→ Λ₁ Γ [] τ

$₁ ∶ ∀ {Γ Δ α β} → (f ∶ Λ₁ Γ (α ∷ Δ) β)
→ (x ∶ Λ₁ Γ [] α)
→ Λ₁ Γ Δ β

letₓ_inₑ_ ∶ ∀ {Γ Δ α τ} → (x ∶ Λ₁ Γ [] α)
→ (e ∶ Λ₁ (α ∷ Γ) Δ τ)
→ Λ₁ Γ Δ τ

,₁ ∶ ∀ {Γ α β} → (x ∶ Λ₁ Γ [] α)
→ (y ∶ Λ₁ Γ [] β)
→ Λ₁ Γ [] (α ⨂ β)

case⨂_of_ ∶ ∀ {Γ Δ α β τ} → (xy ∶ Λ₁ Γ [] (α ⨂ β))
→ (f ∶ Λ₁ (α ∷ β ∷ Γ) Δ τ)
→ Λ₁ Γ Δ τ

inl₁ ∶ ∀ {Γ α β} → (x ∶ Λ₁ Γ [] α)
→ Λ₁ Γ [] (α ⨁ β)

inr₁ ∶ ∀ {Γ α β} → (y ∶ Λ₁ Γ [] β)
→ Λ₁ Γ [] (α ⨁ β)

case⨁_either_or_ ∶ ∀ {Γ Δ α β τ} → (xy ∶ Λ₁ Γ [] (α ⨁ β))
→ (f ∶ Λ₁ (α ∷ Γ) Δ τ)
→ (g ∶ Λ₁ (β ∷ Γ) Δ τ)
→ Λ₁ Γ Δ τ

Agda listing 5.2: Λ1 language definition

19

5.3.1 Type universe
So far, the type safety provided by the Π-Ware circuit data type ℂ (after being fed with
a parameter for the Gates to be used) consisted only of the input and output wire count.
Using the input and output sizes of circuits as typing provided us with certain soundness
guarantees, most notably the absence of short-circuits.

An alternative approach would be to index the circuits by the actual type of atomic
data being transported over each input and output wire. We haven’t touched on what can
actually be transported along these wires, and just assumed that we were always talking
about single bits. However, Π-Ware does not restrict us to transport only bits on wires.
Since Π-Ware is a deep embedding rather than a shallow embedding (See section 3.5.1),
the behavioral semantics of the language are defined separately from the language’s struc-
ture. Π-Ware allows any data type that is finite and enumerable to be used as the so-called
Atom to be transported over the wires.

Λ1 uses a method of indexing input and output types separately. Instead of a type
class that can be implemented for atomic data which can be transported along wires, it
introduces a finite type universe similar to the Haskell reflective type universe, being a
universe of products of sums. We present the definition of this type universe (named Uₚ)
in Agda listing 5.3.

data Uₚ ∶ Set where

𝟙 ∶ Uₚ

⨂ ∶ Uₚ → Uₚ → Uₚ

⨁ ∶ Uₚ → Uₚ → Uₚ

Agda listing 5.3: Polytypes, the type universe for Λ1

The p in Uₚwas chosen to refer to the term «polytype», since Uₚ can be used to represent
any non-recursive generic type through induction over that type’s structure. In Agda, all
datatypes are defined as a list of constructors, where each constructor can have any number
of arguments of arbitrary types themselves. The sum type represents an alternation. As
such, the list of possible constructors for a datatype can be encoded as a sum over all
possible constructors:

MyDataTypeₚ = Constructor¹ ⨁ (Constructor² ⨁ (… ⨁ Constructorⁿ))

The product type represents a combination. Each constructor can be encoded as a
product of its arguments:

Constructorⁱₚ = DataType¹ ⨂ (DataType² ⨂ (… ⨂ Datatypeᵐ))

20

It has been shown that a type universe such as this one is enumerable for non-recursive
types [Altenkirch et al., 2007], which means we can atomize any non-recursive composi-
tion of Uₚ into Atoms to be transported over wires in Π-Ware. More about this in section
6.2.

The Λ₁ data type has an index τ of type Uₚ to specify the output type of the circuit.
The inputs of a circuit are described by a list Δ of Uₚ. This is different from the published
design of 𝜆𝜋-Ware, which only has a single index on λB for the type universe. λB gets away
with just a single polytype index since it uses a type universe that includes function types
through an arrow constructor. This lets it define inputs and outputs directly in that index.

By removing the function constructor from the definition of Uₚ and instead encoding
the inputs and output of any Λ₁ program explicitly in its type definition, we can forbid
higher-order types. This means we can guarantee that, whenever we are given a circuit of
Λ₁, it will not contain any contravariant occurrences of type variables.

We also provide a function Tₚ to map types in Uₚ to their corresponding Agda type in
Agda listing 5.4. This allows us to create values in Agda that belong to an (un)embedded
type (Tₚ τ).

Tₚ ∶ Uₚ → Set

Tₚ 𝟙 = ⊤

Tₚ (σ ⨂ τ) = Tₚ σ × Tₚ τ

Tₚ (σ ⨁ τ) = Tₚ σ ⊎ Tₚ τ

Agda listing 5.4: Mapping of polytypes to Agda types

Bool ∶ Set

Bool = Tₚ (𝟙 ⨁ 𝟙)

pattern false = inj₁ ⊤.tt

pattern true = inj₂ ⊤.tt

∧ ∶ Bool → Bool → Bool

false ∧ b = false

true ∧ b = b

Maybe ∶ Uₚ → Set

Maybe A = Tₚ (𝟙 ⨁ A)

pattern nothing = inj₁ ⊤.tt

pattern just x = inj₂ x

is-just ∶ ∀ {A} → Maybe A → Bool

is-just nothing = false

is-just (just) = true

Agda listing 5.5: Examples of common data types encoded as polytypes

21

Finally, in Agda listing 5.6, we also present a method to transform the list of input
types together with a single output type as used in the indices of Λ₁ into Agda function
types. We introduce a new datatype ΛSet which lets us store the tuple of Δ and τ in an
alternative representation. Note how, even though we are technically reintroducing an
arrow constructor, there is no way to create higher-order function types, because this arrow
constructor strictly only allows adding of first-order (i.e. non-arrow) types Uₚ to the left-
growing type term.

Λ⟦_⟧ ∶ ΛSet → Set

Λ⟦ τ ⊩ ⟧ = Tₚ τ

Λ⟦ σ ⇀ τs ⟧ = Tₚ σ → Λ⟦ τs ⟧

data ΛSet ∶ Set where

_⊩ ∶ Uₚ → ΛSet

⇀ ∶ Uₚ → ΛSet → ΛSet

↣ ∶ (Δ ∶ List Uₚ) → (τ ∶ Uₚ) → ΛSet

ε ↣ τ = τ ⊩

(x ∷ Δ) ↣ τ = x ⇀ (Δ ↣ τ)

Agda listing 5.6: How to transform Δ, τ to an Agda function type using Λ⟦ Δ ↣ τ ⟧

5.3.2 Variable bindings
Λ1 uses De Bruijn indices to bind variable references. Since the language is defined
recursively, any subterm has no direct knowledge of the terms that encompass it. Each term
therefore carries with it a context Γ, which contains type information for the environment
in which the term is being used. Γ works as a lookup table for type information, with the
De Bruijn index of a variable being used as the index into the list.

22

5.3.3 Gates
We have removed the parametrisation of a gate library, instead hardcoding a set of gates.
The translation of primitive gates is not of interest to this work. By choosing a fixed set
of gates, the translation code is cleaner and easier to follow. It also allows us to depend
on these basic gates when constructing building blocks to translate certain constructors,
as we will see in section 6.

data Gate ∶ Set where

TRUE FALSE NOT AND OR ∶ Gate

Agda listing 5.7: Gates used in Λ1

23

6 Translation
6.1 Intermediate language
When we translated Simply Typed Lambda Calculus with typed variable bindings to SKI
combinators without any bindings in section 4, we used a strategy that involved an interme-
diate language. The intermediate language was chosen to be close to the target language,
which is supposed to be bindingless. However, we included a list of types as a context Ctx
and allowed for an additional term constructor for references.

When translating from Λ1 to Π-Ware, we choose a similar approach. First, we translate
to an intermediate language (See Agda listing 6.1) which is almost identical to the target
language Π-Ware, but also includes some type context for a term that represents a reference
to a binding. It helps to visualise the references as holes in the completed circuit. The holes
are always in the shape of missing circuitry on the input, since this is where the circuit
expects the value of a specific variable. The context dictates how many output wires each
placeholder has. In the second stage, when we translate the intermediate language to the
target language, we need to connect the circuitry which represents the value of the variable
binding to the outputs of the placeholder as we replace them. The goal is to replace every
placeholder and end up with a circuit that does not need placeholders, and thus represents
a valid Π-Ware circuit without variable bindings.

data IL[_] (G ∶ Gates) ∶ (Γ ∶ Ctxt) → ℕ → ℕ → Set where

G⟨_⟩ ∶ ∀ {Γ} → (g# ∶ Gate# G)
→ IL[G] Γ (#in G g#) (#out G g#)

Grnd ∶ ∀ {Γ o} → IL[G] Γ 0 o

Plug ∶ ∀ {Γ i o} → i ⇇ o

→ IL[G] Γ i o

⟫ ∶ ∀ {Γ i j o} → IL[G] Γ i j

→ IL[G] Γ j o

→ IL[G] Γ i o

∥ ∶ ∀ {Γ i₁ o₁ i₂ o₂} → IL[G] Γ i₁ o₁

→ IL[G] Γ i₂ o₂

→ IL[G] Γ (i₁ + i₂) (o₁ + o₂)
Var ∶ ∀ {Γ τ} → Ref Γ τ

→ IL[G] Γ 0 (sz τ)

Agda listing 6.1: Intermediate language definition

Looking at the definition of our intermediate language, it should be immediately ob-
vious that it is very close to Π-Ware. There are some differences, however. Most notably,

24

the addition of the (Γ ∶ Ctxt) index on IL[_]’s type. The added constructor Var holds a
variable in the form of a contextualized reference Ref (See Agda listing 6.2). Note that this
reference only contains information about the type of the variable, not the value. We don’t
care about the value of the reference until we actually run the circuit, at which point we
provide the evaluation function with a list of values, one for each item in the context. We
will need evaluation semantics for this intermediate language later on in the correctness
proof in section 7.4.

data Ref ∶ Ctxt → Uₚ → Set where

top ∶ ∀ {Γ τ} → Ref (τ ∷ Γ) τ
pop ∶ ∀ {Γ σ τ} → Ref Γ τ → Ref (σ ∷ Γ) τ

Agda listing 6.2: Definition of variable references used in the intermediate language

We already took a look at an equivalent Ref data type in section 4.1 The Ref datatype’s
implementation lets us refer to freely occuring variables in the context in a De Bruijn
fashion (See section 3.5.3). It uses repeated calls of pop to encode the remaining iteration
steps into the list of types (Γ ∶ Ctxt). For example, (top) ∶ Ref (α ∷ β ∷ γ ∷ []) α represents
a reference to the first type, α. Next, (pop top) ∶ Ref (α ∷ β ∷ γ ∷ []) β represents a reference
to the second type, β. Note how the dependent type system is enforcing a sound reference
chain into the context as we unzip the structure of pop calls.

While designing the intermediate language, there were two options to use as the type
universe for the binding context. One option is to stay closer to the target language Π-Ware
and to store the number of output wires for each reference. The alternative option is to stay
closer to the source language Λ1 and to store the type from that type universe (as shown
in section 5.3.1). Even though both strategies should be manageable to bring to a working
solution, we’ve chosen the latter option for our solution. When compared against numbers
and arithmetic operations, the structured type data from the type universe of polytypes Uₚ
is easier to manage in a dependent programming environment. The structured type data
contains some information that tends to get lost when dealing with raw numbers.

Finally, the definition of IL[_] also contains a constructor for Grnd. This was added
as an easy way to add null inputs inside the circuit, by essentially attaching the input wire
to a ground. We technically don’t need this constructor, but it eases the implementation
effort and increases the readability for certain components that are needed later.

25

6.2 Atomization of polytypes
The domain of Λ₁ is different from that used in Π-Ware. Where Λ₁ circuits input and output
polytypes Uₚ, Π-Ware circuits work on vectors of Atom for their input and output. Since Π-
Ware lets users use any Atom with the only restriction being that it is enumerable, it makes
sense for us to use the simplest possible Atom, namely Bool. We refer to a vector of Bool as
a word, or W in the code.

First, let us introduce a translation between polytyped values and words. We showed
an alternative representation of input types and output type of Λ₁ using a datatype ΛSet

in section 5.3.1. As we will see in the correctness proof in section 7, we will need the
ability to atomize the unembedding of the Λ1 circuit in order to be able to compare the
behavioral equality of circuits translated to Π-Ware to programs in Λ1. When we speak
about atomizing the circuit, we mean the translation of inputs and outputs of the circuit
from the space of polytypes to the space of words. This lets us feed Λ1 programs with a
word for the input and get a word as output. To achieve this, we require the translation
of the circuit output from polytypes to words, but also the translation of the input word to
polytypes. See Agda listing 6.3.

⤋ ∶ ∀ {τ} → (v ∶ Tₚ τ) → W (sz τ)
⤋ {𝟙} = []

⤋ {σ ⨂ τ} (x , y) = ⤋ x ++ ⤋ y

⤋ {σ ⨁ τ} (inj₁ x) = false ∷ pad₁ (sz τ) (⤋ x)
⤋ {σ ⨁ τ} (inj₂ y) = true ∷ pad₂ (sz σ) (⤋ y)

⤊ ∶ ∀ {τ} → (w ∶ W (sz τ)) → Tₚ τ

⤊ {𝟙} = ⊤.tt

⤊ {σ ⨂ τ} w = ⤊ (take (sz σ) w) , ⤊ (drop (sz σ) w)
⤊ {σ ⨁ τ} (false ∷ w) = inj₁ (⤊ (unpad₁ (sz σ) (sz τ) w))
⤊ {σ ⨁ τ} (true ∷ w) = inj₂ (⤊ (unpad₂ (sz σ) (sz τ) w))

Agda listing 6.3: Definition of ⤋ and ⤊, to translate between polytypes and words

Remember that polytypes Uₚ can be used to describe any data type by performing
induction over its generic structure. The function ⤋ lets us transform a polytyped value v

into a word w. Conversely, the function ⤊ transforms a given word w back into a polytyped
value v. Of course, the size of the word is dependent on how many bits we need to encode.

The unit type 𝟙 doesn’t need any bits to represent its possible values, since there is only
a single value possible. Product types _⨂_ represent tuples. They require enough bits to
encode both parts of the tuple. Hence, we translate product types into words by translating
each part of the tuple into words and concatenating them. Finally, sum types _⨁_ describe
a choice between two polytypes. We need a single bit in order to encode which choice has

26

been made, and then we need to encode the polytype that was actually chosen as well.
However, there exists a caveat when encoding the chosen polytype in σ ⨁ τ. Our size

function sz just returns a single size that would guarantee to fit the given polytype. Since
the two possible polytypes σ and τ can potentially have different sizes, we need to choose
the larger of the two sizes as the size for σ ⨁ τ. This in turn means that when encoding the
smaller of the two polytypes, we need to pad the result with some dummy bits to meet the
word-size requirement. See Agda listing 6.4.

Note that we are using our own custom max function for natural numbers (_⊔₂_). The
Agda standard library does provide a max function, but it doesn’t allow for easy inspection.
We will go into more detail around (_⊔₂_) and the improvements it brings over the standard
Agda one in section 7.3. For now, suffice it to say that type arguments which use (_⊔₂_)
can be inspected by using compare₂, which tells us which of the two operands was greater
(or less-or-equal respectively) and by how much.

We can use this property to implement the necessary padding ofmeaningless bits when
required for the translation of a polytype into a word. When translating a polytype value
(inj₁ x) of type {σ ⨁ τ}, where x is of type σ, we can just translate x directly into a word
of (sz σ) and pad it up to a size of (sz τ) using pad₁. Conversely, pad₂ allows us to do the
same when dealing with the other operand of {σ ⨁ τ} (i.e. padding y from (inj₂ y) to up
to sz σ bits).

In a similar fashion, when translating from words back to polytypes, we need to ”un-
pad” the word. This throws away the meaningless bits from the word and allows us to
translate the meaningful bits back into a polytyped value.

pad₁ ∶ ∀ {m} n → W m → W (m ⊔₂ n)
pad₁ {m} n w with compare₂ m n
pad₁ {.m} .(m + k) w

∣ lesseq m k = w ++ replicate false
pad₁ {.(m + suc k)} .m w

∣ greater m k = w

pad₂ ∶ ∀ m {n} → W n → W (m ⊔₂ n)
pad₂ m {n} w with compare₂ m n
pad₂ .m {.(m + k)} w

∣ lesseq m k = w
pad₂ .(m + suc k) {.m} w

∣ greater m k = w ++ replicate false

unpad₁ ∶ ∀ m n → W (m ⊔₂ n) → W m

unpad₁ m n w with compare₂ m n
unpad₁ .m .(m + k) w

∣ lesseq m k = take m w
unpad₁ .(m + suc k) .m w

∣ greater m k = w

unpad₂ ∶ ∀ m n → W (m ⊔₂ n) → W n

unpad₂ m n w with compare₂ m n
unpad₂ .m .(m + k) w

∣ lesseq m k = w
unpad₂ .(m + suc k) .m w

∣ greater m k = take m w

Agda listing 6.4: Definition of pad and unpad

Finally, we present a function atomize in Agda listing 6.5 which is able to take func-
tions in the ΛSet space and let us run them in the W→W space. We achieved this by piecewise
transforming chunks of the input word into polytyped values to partially apply to the ΛSet

27

for each input type inside Δ. Once all inputs are exhausted we can transform the output
back to a word.

atomize ∶ ∀ {Δ τ} → Λ⟦ Δ ↣ τ ⟧ → W→W (sz-list Δ) (sz τ)
atomize {[]} l = const $ ⤋ l

atomize {σ ∷ Δ} l = λ i → atomize {Δ} (l $ ⤊ {σ} (take (sz σ) i)) (drop (sz σ) i)

Agda listing 6.5: Definition of atomize

6.3 Stage 1
In our two-step translation approach, the first stage is by far the more complex one of the
two. The first stage is all about translating Λ₁ terms to an intermediate language represen-
tation. We need to convert every possible constructor in Λ₁ into equivalent constructions
made out of gates and plugs. The only thing we get to keep is variable bindings.

6.3.1 Translation
We present the definition of our first stage’s translate function in Aga listing 6.6. As
expected, primitive gates and variable bindings can be translated directly into our inter-
mediate language. Tuples (_,₁_) are simply representable by compositing each part of the
tuple using parallel composition.

28

translate ∶ ∀ {Γ Δ τ} → Λ₁ Γ Δ τ → IL[ΛBoolTrio] Γ (sz-list Δ) (sz τ)
translate ⟨ g ⟩ = G⟨ g ⟩

translate #[r] = Var r

translate (f $₁ x) = (translate x ∥ PlugId’)
⟫ translate f

translate (letₓ x inₑ e) = (translate x ∥ PlugId’)
⟫ reduce-ctxt (translate e)

translate (x ,₁ y) = translate x ∥ translate y

translate (case⊗ xy of f) = (translate xy ∥ PlugId’)
⟫ reduce-ctxt-twice (translate f)

translate (inl₁ { } {α} {β} x) = G⟨ FALSE ⟩

∥ left-pad (sz α) (sz β) (translate x)
translate (inr₁ { } {α} {β} y) = G⟨ TRUE ⟩

∥ right-pad (sz α) (sz β) (translate y)
translate (case⊕_either_or_ {α = α} xy f g)

= branching-circuit {a = sz α}
(translate xy)
(reduce-ctxt (translate f))
(reduce-ctxt (translate g))

Agda listing 6.6: Definition of Stage1.translate

For function application (_$₁_), we just attach the input (translate x) to the first set
of wires of (translate f), using an identity plug (See Agda listing 6.7) for the remaining
input wires. Our PlugId’ function is smart enough to implicitly use the correct number of
wires, which can also be zero. This means this definition works for both total and partial
function application. See figure 6.1 for an illustration.

We achieve the implicit choice of the correct number of identity wires by letting Agda
decide the size of the parameter n implicitly. The standard library function allFin provides
us with a simple enumeration of numbers (0, ..., 𝑛 − 1) which map each output to the
corresponding input.

⇇-id ∶ ∀ n → n ⇇ n

⇇-id n = allFin n

PlugId’ ∶ ∀ {G Γ n} → IL[G] Γ n n

PlugId’ {n = n} = Plug $ ⇇-id n

Agda listing 6.7: Definition of the identity Plug

29

…x

…

f …

Figure 6.1: Partial function application of gates

Both translations for the sum-type constructors in-left inl₁ and in-right inr₁ are simi-
lar to each other in nature. They closely follow the logic described in section 6.2, where we
encode a single bit to indicate the choice that the sum type represents. After this indicator
bit, we encode the actual chosen circuit by recursively calling translate on the body of the
sum-type constructor. We potentially need to pad the result of that translation with some
dummy output wires in order to reach the required number of output wires as dictated by
the maximum between the two possible sizes of the sum-type operands.

6.3.2 Let constructor
The letₓ_inₑ_ constructor introduces a new variable binding. Looking back at the defini-
tion of this constructor, we can immediately see that the let-body is an expression that has
an added element in its context:

(x ∶ Λ₁ Γ [] α) → (e ∶ Λ₁ (α ∷ Γ) Δ τ) → Λ₁ Γ Δ τ

However, our translate function only transforms from Λ₁ to ILwith identical contexts.
Similarly, our circuit composition functions, _⟫_ and _∥_, also only operate on IL circuits
with identical contexts. This poses the question; how can we fit together the two inherently
different Λ₁ expressions x and e?

The answer is that we need to reduce the context. By “reducing the context”, we mean
that we remove the added element from the context, and instead add it as an element of
the inputs. More on this in section 6.3.6.

Finally, now that we’ve transformed the circuit from a circuit with a variable in its
context to one with an input to feed the variable’s value, we can just feed our translations
of the variable’s value x into this reduced circuit the same way that we fed an input to our
(partial) function application constructor _$₁_. The reduce-ctxt function will be called
every time that we go under a variable binding, in order to map all occurrences of variable
bindings to their appropriate inputs.

30

6.3.3 Case constructors
The translations for our two case switch constructors that let us operate on product types
and sum types respectively are very close in nature to the let constructor. The product
case constructor case⊗_of_ is already mostly a glorified let constructor for all intents and
purposes. Just like the evaluation for a let expression just adds the chosen value x to
the evaluation environment list before evaluating the main body e, the evaluation for a
product case expression just adds both components of xy to the evaluation environment
list separately before evaluating the main body f. During the translation of the product
case constructor, we need to reduce the context twice to remove both components of xy
from the context. We use a separate function reduce-ctxt-twice for this rather than just
calling the reduce-ctxt function twice. More about this choice in section 6.3.6.

Lastly, the sum case switch constructor actually presents the control flow with a
branching path. The logic for this is outlined in section 6.3.7.

6.3.4 Vector coercion
Agda’s dependent type system lets users reduce terms based on their structural equality.
In the case of integer arithmetics, this means that Agda’s type system will not evaluate the
value of a given arithmetic expression to any sort of normal form. In fact, since arithmetic
expressions can contain arbitrary bindings, a consistent normal form cannot necessarily be
guaranteed by static analysis. Instead, the arithmetic expressions are compared syntacti-
cally. If a user wants to reduce two terms that are arithmetically equal but not syntactically
equal, such as for example (𝑎+𝑏) and (𝑏+𝑎), the user can provide some rewrite clauses. By
providing the type system with an equality lemma which states that ∀ {a b} → a + b ≡ b + a,
Agda can replace instances of (𝑎 + 𝑏) with (𝑏 + 𝑎), thereby achieving structural equality
and the ability to reduce the term to refl, the Agda constructor for reflective equality.

However, function definitions that make extended use of rewrite are hard to examine.
When writing proofs about such functions, the author of the proof will need to pay special
attention to take the rewrites into consideration. This often leads to cryptic errors by
the type-system when the author makes small mistakes. We would often run into such
problems when writing the correctness proof as discussed in section 7, especially when
dealing with vectors that represent inputs and outputs of circuitry.

Instead of using rewrites of integer arithmetic for vector length encoding in our trans-
lation implementation, we’ve opted to introduce the concept of coercion. A simple but
powerful definition lets us coerce a circuit’s input or output vectors from any integer arith-
metic structure to any other equal structure. Since the caller needs to provide the equality
relationship as an argument, we can use this argument when inspecting the function during
our proofs later on. This has proven to be far easier to handle when compared to rewrite

statements.
Note the simplicity of the definition. Since there is only one possible constructor refl

for the argument i ≡ i’, we start our function definition on that case switch. Once refl has
been filled in, Agda is able to structurally reduce IL[G] Γ i’ o to IL[G] Γ i o, allowing
us to just pass the input as the result. This is as expected, since we are not changing the

31

coerceᵢ ∶ ∀ {G Γ i i’ o} → i ≡ i’ → IL[G] Γ i o → IL[G] Γ i’ o

coerceᵢ refl e = e

coerceₒ ∶ ∀ {G Γ i o o’} → o ≡ o’ → IL[G] Γ i o → IL[G] Γ i o’

coerceₒ refl e = e

Agda listing 6.8: Definition of coerce for intermediate language

definition of the circuit. However, at the call-site of this coercion function, the caller can
choose to transform the circuit’s input (or output) to any equivalent arithmetic structure.

6.3.5 Combinator circuits
In section 3.5.2, we showed a computational system SKI that consists of three combinators
𝑆, 𝐾 , and 𝐼 , which can be combined to formmore complex terms. Each of the combinators
serves a different purpose. In this section, we show how to recreate the semantics of these
combinators in our intermediate language circuitry.

Sequential and parallel combinators

𝑆𝑥𝑦𝑧 = 𝑥𝑧(𝑦𝑧)

The 𝑆 combinator is often called a substitution operator. It takes the output of (𝑦𝑧)
and uses it as the second argument passed to 𝑥 in the expression (𝑥𝑧(𝑦𝑧)). Another way
to see this combinator is as a way to sequentially pass the same value into the argument
list of two different functions. We’ve created our own version of such a combinator in our
intermediate language as S[_]·_·_ and called it the sequential combinator.

32

S-bypass ∶ ∀ {G Γ} k i → IL[G] Γ (k + i) (k + (k + i))
S-bypass k i = coerceₒ (+-assoc k k i) $ PlugDup k ∥ PlugId i

S[_]·_·_ ∶ ∀ {G Γ i j o} k

→ IL[G] Γ (k + i) j
→ IL[G] Γ (k + j) o
→ IL[G] Γ (k + i) o

S[_]·_·_ {i = i} k x y = S-bypass k i ⟫ PlugId k ∥ x ⟫ y

Agda listing 6.9: S[_]·_·_ combinator circuitry

𝑘

𝑖

𝑘

𝑘

𝑖

x

𝑘

𝑗

y 𝑜

Figure 6.2: S[_]·_·_ combinator circuitry

Since circuits work with wires, we need to provide the combinator with a number of
wires k to indicate howmany wires of input we want to duplicate. The wires get duplicated
using a bypass construction, so that we can attach them as the first input of each argument
circuit x and y.

At this point, we also introduce a new combinator circuit to supplement the sequential
one, namely a parallel combinator P[_]·_·_. This combinator circuit provides an easy
way to copy k input wires and partially apply them to both argument circuits x and y by
attaching them as their first inputs.

33

P-insert ∶ ∀ {G Γ} k i₁ i₂ → IL[G] Γ (k + (i₁ + i₂)) ((k + i₁) + (k + i₂))
P-insert k i₁ i₂ =

coerceᵢₒ (+-assoc k i₁ i₂) (+-assoc (k + i₁) k i₂) $ PlugCopyK i₁ k ∥ PlugId i₂

P[_]·_·_ ∶ ∀ {G Γ i₁ o₁ i₂ o₂} k

→ IL[G] Γ (k + i₁) o₁
→ IL[G] Γ (k + i₂) o₂
→ IL[G] Γ (k + (i₁ + i₂)) (o₁ + o₂)

P[_]·_·_ {i₁ = i₁} {i₂ = i₂} k x y = P-insert k i₁ i₂ ⟫ x ∥ y

Agda listing 6.10: P[_]·_·_ combinator circuitry

𝑘

𝑖1

𝑖2

𝑘

𝑖1

𝑘

𝑖2

x

y

𝑜1

𝑜2

Figure 6.3: P[_]·_·_ combinator circuitry

Kill combinator

𝐾𝑥𝑦 = 𝑥

The 𝐾 combinator is usually referred to as the constant function. When we demon-
strated our SKI transpiler in section 4.3, we used the 𝐾 combinator inside the function
lambda to reduce the context of terms whenever we wanted to introduce a new dummy
parameter, whose only purpose was to satisfy the requirement for an additional (unused)
input parameter. We are achieving a similar feat with our combinator K[_]·_ for circuits. It
takes in a circuit x and adds k dummy input wires which are are not connected to anything.
For this reason, in the context of circuitry, we’ve dubbed this the kill combinator.

34

K[_]·_ ∶ ∀ {G Γ i o} k → IL[G] Γ i o → IL[G] Γ (k + i) o
K[k]· x = PlugNil k ∥ x

Agda listing 6.11: K[_]·_ combinator circuitry

𝑘

𝑖 x 𝑜

Figure 6.4: K[_]·_ combinator circuitry

Identity combinator

𝐼𝑥 = 𝑥

The 𝐼 combinator represents identity. We don’t need to write any custom circuitry for
this combinator, since we can just use an identity such as PlugId’ (See Agda listing 6.7)
that maps each output to the corresponding input.

6.3.6 Reducing context
The goal of context reduction is to move a binding from the head of the context list to
the head of the list of inputs. One way to visualise this change is to think of it as adding
a new input to the circuit, and attaching the wires of this input to every place inside the
circuit where the variable binding was used. This lets us share a value for the binding – for
example, in the form of the output of another circuit – among all the different places where
that value is needed. This is similar to the bracket abstraction used in our SKI transpiler as
shown in section 4.3. We present the context reduction logic for our intermediate language
in Agda listing 6.12.

Our goal is to create a circuit with (sz τ) extra input connections, since τ is the type
that we are removing from the context. In the case of the first three constructors, we don’t
actually need the value of the binding that we are removing. We can use our kill combinator
to add the required wires without attaching them to the given circuit. Our sequential
combinator lets us copy the new input wires to the start of two sequential circuits while
keeping their sequential attachment structure intact. Similarly, the parallel combinator
lets us do this while keeping the parallel attachment structure intact. In both cases, we

35

reduce-ctxt ∶ ∀ {G τ Γ i o} → IL[G] (τ ∷ Γ) i o → IL[G] Γ (sz τ + i) o
reduce-ctxt { } {τ} G⟨ g# ⟩ = K[sz τ]· G⟨ g# ⟩

reduce-ctxt { } {τ} Grnd = K[sz τ]· Grnd

reduce-ctxt { } {τ} (Plug x) = K[sz τ]· Plug x

reduce-ctxt { } {τ} (x ⟫ y) = S[sz τ]· reduce-ctxt x · reduce-ctxt y

reduce-ctxt { } {τ} (x ∥ y) = P[sz τ]· reduce-ctxt x · reduce-ctxt y

reduce-ctxt { } {τ} (Var top) = coerceᵢ (sym $ +-right-identity (sz τ)) $
PlugId (sz τ)

reduce-ctxt { } {τ} (Var (pop i)) = K[sz τ]· Var i

Agda listing 6.12: Definition of reduce-ctxt

recursively call reduce-ctxt to make sure that the new input wires are connected where
they are required in the body of these circuits.

Finally, in the case of a variable reference, we need to inspect exactly which variable
reference is in our hands. Remember from our variable constructor definition that the
variable references are encoded in a De Bruijn fashion. In the case when the reference we
encounter is not the one that we are currently trying to reduce from the context of bindings,
we can safely kill the input wires, as there is no dependency between variable references.
We just need to reduce the De Bruijn reference identifier by one, since, in the new reduced
context, it refers to an earlier element of the list. In the case when we are actually dealing
with the reference which we are removing from the context, we use an identity Plug to
connect the new input wires into this location of the circuit.

At the end of section 6.3.3, we mentioned a special function for reducing the context
twice. The reason we cannot simply call the reduce-ctxt twice can actually be inferred
from its type signature. Given an intermediate language circuit with a context (α ∷ β ∷ Γ),
calling reduce-ctxt would result in a remaining context (β ∷ Γ) with the initial context
variable being moved to the input (sz α + i). A second call to reduce-ctxt will not result
our desired output (sz α + sz β + i), but instead an input of (sz β + (sz α + i)).

For this reason, we’re introducing a special function reduce-ctxt-twice to take two
elements from the context list and add them to our input in the desired order.

6.3.7 Branching circuits
To translate the sum case switch constructor of Λ₁, we introduced a helper function – aptly
named branching-circuit – that takes the two circuit bodies f and g and implements the
branch in the control flow between the two, depending on the payload xy. As a rough
outline, we implemented the circuit as a pipeline of sequentially arranged stages. The first
bit of xy is extracted, since this is the decision-maker bit in the control flow. We feed

36

this bit together with the rest of xy into a demultiplexer to separate the values of x and
y respectively. These values are then fed into the circuitry for rdc-f and rdc-g, context
reduced versions of f and g respectively. Finally, the outputs of both these circuits are
attached to a multiplexer, again using the decision bit to output the correct one of the two.

(xy ∶ IL[ΛBoolTrio] Γ 0 (1 + (a ⊔₂ b))) →
(rdc-f ∶ IL[ΛBoolTrio] Γ (a + i) o) →
(rdc-g ∶ IL[ΛBoolTrio] Γ (b + i) o) →
IL[ΛBoolTrio] Γ i o

𝑖

xy

1

𝑎 ⊔ 𝑏

demux

𝑎

𝑏

𝑖

𝑖

𝑏

𝑖

rdc-f

rdc-g

1

𝑜

𝑜

mux 𝑜

Figure 6.5: Branching circuit control flow

Looking at the circuit diagram in figure 6.5, we can see two new components that are
not part of the argument circuitry, namely demux and mux. These represent a demultiplexer
and a multiplexer, respectively.

The demultiplexer takes two inputs: one selector wire of a single bit, and one actual
input of the maximum size between 𝑎 and 𝑏, also referred to as size (𝑎 ⊔ 𝑏). The selector
wire will determine whether the first 𝑎 wires of the actual input will get output to the first
𝑎 output wires, or whether the the first 𝑏 wires of the actual input will get output to the last
𝑏 output wires.

The multiplexer takes three inputs: One selector wire of a single bit and two candidate
inputs of identical size. The selector wire determines which of the two candidates gets
passed to the output.

We refer to the code accompanying this document to see how we implemented the
demultiplexer and multiplexer circuit fully in our intermediate language. The inner work-
ings of multiplexers and demultiplexers are not controversial in terms of correctness and
as such are not as interesting to the research goal at hand. We do note that the imple-

37

mentation depends on the use of AND, OR, and NOT gates, which is why the signature of
branching-circuit shown below the circuit diagram is hard-coded to use the ΛBoolTrio

gates.

6.4 Stage 2
In the second stage of our translation, we need to translate from our intermediate language
IL to actual Π-Ware circuitry ℂ. We present the definition of out second stage’s translate
function in Agda listing 6.13. We only need to do this for IL circuits with empty contexts,
since the total translation pipeline only accepts Λ₁ programs without open bindings. The
only reason the first stage’s translation function accepts arbitrary inputs with potential
context is to let us use that function recursively on the bodies of constructors that introduce
bindings.

grnd-circuit ∶ ∀ {o} → ℂ[ΛBoolTrio] 0 o

grnd-circuit {zero} = Plug (⇇-nil zero)
grnd-circuit {suc o} = Gate FALSE ∥ grnd-circuit

translate ∶ ∀ {i o} → IL[ΛBoolTrio] [] i o → ℂ[ΛBoolTrio] i o

translate G⟨ g# ⟩ = Gate g#

translate Grnd = grnd-circuit

translate (Plug x) = Plug x

translate (x ⟫ y) = translate x ⟫ translate y

translate (x ∥ y) = translate x ∥ translate y

translate (Var ())

Agda listing 6.13: Definition of Stage2.translate

In the case of the Grnd constructor, we check how many null outputs were actually
requested. If none, we substitute a null plug with zero inputs and zero output. In other
words: no circuitry at all. If some dummy outputs were required, we just hook them up
to some FALSE outputs which can represent the value 0 and be grounded. We only needed
this constructor inside the implementation of our multiplexer, and it was only there to aid
the readability of the multiplexer’s implementation.

38

6.5 Final translation
In this chapter, we’ve shown how we can translate from Λ1 to our intermediate language
and how we can translate from our intermediate language to Π-Ware. All that remains is
to combine these translation steps into a final translation definition, as seen in Agda listing
6.14.

open import ⋯ .Stage1.LambdaOne2IL using ()
renaming (translate to Λ₁⟶IL)

open import ⋯ .Stage2.IL2PiWare using ()
renaming (translate to IL⟶ΠW)

translate ∶ ∀ {Δ τ} → (e ∶ Λ₁ [] Δ τ) → ℂ[ΛBoolTrio] (sz-list Δ) (sz τ)
translate = IL⟶ΠW ∘ Λ₁⟶IL

Agda listing 6.14: Definition of translate, which translates from Λ1 to Π-Ware

39

7 Correctness
In this chapter, we take a closer look at how we proved the correctness of our translation
from Λ1 to Π-Ware. To reiterate, our correctness requirement is that, for any closed ex-
pression e written in Λ1, we expect the same end result regardless of whether we translate
e to Π-Ware and run the circuit, or unembed e and translate that result into Π-Ware atoms.
Note the call to atomize in the correctness proposition’s signature below. In order to be
able to compare the Π-Ware circuit that resulted from translating e to the circuit e itself,
we need to bring both into the same input/output space. Since Π-Ware works on words
and Λ1 works on polytypes, we have the choice to bring either one into the space of the
other. We already showed how atomize brings a function in the input/output space ΛSet of
Λ1 into the input/output space W→W of Π-Ware in section 6.2.

This chapter starts by introducing some concepts used for the correctness proof, after
which we highlight some parts of the actual proof. We won’t spell out the details of the
entire proof in this document. The mathematics as described in code explain the proof
more precisely and concisely than what we could achieve in written description in the
English language. Please refer to the code accompanying this document for the full proof.
The Agda type of the translation correctness proposition – i.e. the proposition that we
intend to prove in this chapter – is as stated in Agda listing 7.1.

translate-correctness ∶ ∀ {Δ τ}
→ (e ∶ Λ₁ [] Δ τ)
→ ⟦ translate e ⟧[ΛBoolTrioσ] ≡ atomize {Δ} (unembed e ε)

Agda listing 7.1: Declaration of the translation correctness proposition

Since our translation works in two stages, we will split up the proof in two stages
as well. In the code accompanying this document, there are two different modules that
each define their own translate-correctness function. One of them is for stage one
correctness, i.e. the correctness of translating Λ1 to the intermediate language. The other
is for stage two correctness, i.e. the correctness of translating the intermediate language
to Π-Ware.

40

7.1 Equational reasoning in Agda
In Agda, we can define equality as follows:

data _≡_ {A ∶ Set} (x ∶ A) ∶ A → Set where

refl ∶ x ≡ x

Agda listing 7.2: Agda definition of equality (_≡_)

Given any x of type A, x is equal to itself. This property is more commonly known
as propositional equality. Agda has built-in ways to handle this equality property. We
briefly touched upon the interactive nature of writing Agda in section 3.1. A very common
workflow heavily involves the use of equality.

Whenever we define a type signature for a function in Agda, for example a signature
to express a certain property that we want to prove is true, we typically start off by writing
the function body as a hole:

+-zero ∶ (a ∶ ℕ) → (a + 0) ≡ a

+-zero a = ?

Agda listing: Declaration of +-zero

We can instruct the interactive Agda editor to do a case split on the possible cases for a
chosen identifier. For example, by splitting on a, we end up with the following definition:

+-zero ∶ (a ∶ ℕ) → (a + 0) ≡ a

+-zero zero = ?

+-zero (suc a) = ?

Agda listing: Case switch on +-zero

The first case will be trivial to solve, as Agda will fill in the definitions of zero as well
as _+_ to normalize the goal to zero ≡ zero, which we can fulfill with the refl reflective
equality.

For the second case, Agda will also normalize the goal, but end up stuck on the goal
suc (a + 0) ≡ suc a. We can solve this goal by applying the concept of congruence, which
states that if two values x and y are equal, for any given function f when applied (f x) and
(f y) are also equal.

41

cong ∶ ∀ {A B ∶ Set} (f ∶ A → B) {x y ∶ A} → x ≡ y → f x ≡ f y

cong f refl = refl

+-zero ∶ (a ∶ ℕ) → (a + 0) ≡ a

+-zero zero = refl

+-zero (suc a) = cong suc (+-zero a)

Agda listing 7.3: Definition of +-zero using congruence cong

In our example of proving that (a + 0) is equal to a, we were able to prove the equality
directly for each case of a. However, often we want to prove equality of two expressions
by proving that both expressions are equal to a different intermediary expression. This
concept is called transitivity:

trans ∶ ∀ {A ∶ Set} {x y z ∶ A} → x ≡ y → y ≡ z → x ≡ z

trans refl refl = refl

Agda listing 7.4: Definition of transitivity trans

By providing two proofs, that x is equal to y and that y is equal to z, we effectively
prove that x must be equal to z. This pattern of proving through intermediary steps is so
common that there is an Agda module that greatly simplifies the execution of such proofs.
This module is named equational reasoning: ≡-Reasoning.

module ≡-Reasoning {A ∶ Set} where

infix 1 begin_

infixr 2 _≡⟨_⟩_

infix 3 _∎

begin_ ∶ ∀ {x y ∶ A} → x ≡ y → x ≡ y

begin x≡y = x≡y

≡⟨⟩_ ∶ ∀ (x ∶ A) {y z ∶ A} → x ≡ y → y ≡ z → x ≡ z

x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z

_∎ ∶ ∀ (x ∶ A) → x ≡ x

x ∎ = refl

Agda listing 7.5: Module for equational reasoning ≡-Reasoning

This module provides a syntax that lets us write equality proofs in a very readable
way. In equational reasoning, we write down the explicit values for each step as well as

42

proofs to show equality between each value. This works by chaining together a number of
≡⟨⟩_ operators. The first argument of this operator is the initial value x that we wish to
prove equality about. The middle argument is an equality proof between x and a second
value y. The last argument is (surprisingly) not the target value, but rather another proof
of equality between y and z. The operator returns the transitive proof that x is equal to z. A
caller can use the QED (Quod Erat Demonstrandum, that which was to be demonstrated)
operator (_∎) to transform the final target value into a reflective equality proof. Thanks to
the right associativity of the _≡⟨_⟩_ operator, we can chain a number of steps together to
create code that is very pleasant to read.

example ∶ ∀ {A ∶ Set} {x y z ∶ A} → x ≡ y → y ≡ z → x ≡ z

example { } {x} {y} {z} x≡y y≡z = begin

x

≡⟨ x≡y ⟩

y

≡⟨ y≡z ⟩

z

∎

Agda listing 7.6: Simple example using ≡-Reasoning

While writing proofs in the interactive Agda environment, this approach to equational
reasoning also allows developers to use holes ? to let the Agda type checker assist in
finding expressions that fulfill the type requirements.

7.2 Functional extensionality in Agda
So far, we’ve seen Agda being able to deduce equality between values based on reflective
equality. We’ve also seen a few lemmas that expand this equality through congruence and
transitivity. Agda’s standard library also provides us with lemmas for – among others –
symmetry (x ≡ y → y ≡ x), substitution (x ≡ y → P x → P y) and congruence of application
(f ≡ g → f x ≡ g x). This last one is especially interesting, since we haven’t seen equality of
functions yet.

On first glance, it would seem reasonable for Agda to provide a lemma in its standard
library that states that if two functions have the same result for all possible inputs, the
functions must be the same: (∀ {x} → f x ≡ g x) → f ≡ g. However, this lemma isn’t
available by default.

In order to clarify this ommission, we have to look at the difference between inten-
sional equality and extensional equality [Univalent Foundations Program, 2013]. Inten-
sional equality deals with equality through equal definition, whereas extensional equality
distinguishes objects based on their observable behavior. Agda’s type system is an inten-
sional type system.

43

Agda’s intensional type system uses 𝛽-reduction and 𝜂-reduction to normalize terms
using their definitions in order to work out typing constraints. Extensional equality cannot
be used for this, since extensional equality only equates things that behave the same. In the
intensional type system of Agda, two functions are only equal if we can prove this using
reflexivity.

Agda’s standard library gives us a workaround for this problem. We can postulate

functional extensionality, i.e. a lemma that two functions which, for each element of their
domainmap to identical elements of their codomain, are equal to each other. This postulate
is known to be consistent. Using it will not compromise the soundness of our development.

This equivalence relation between functions explicitly states that we only care about
values. Other side effects such as running time or memory usage are not of concern.
This is good enough for our correctness proof, where we want to prove that the circuits
provide the same output value regardless of whether we run the higher-level hardware
description directly or translate it to gates and wires first, without regard for the runtime
of our unembedding functions.

Functional extensionality is important for the correctness proof of our translation. The
function signature for translate-correctness expresses an equality between two func-
tions, namely between two W→W functions. The left hand side is the result of the translation
of the Λ1 expression and the right hand side is the atomized version of the Λ1 expression.
In order to prove the correctness of the translation, we want to prove that the evaluation of
both these variants results in the same output for every possible input word. Given func-
tional extensionality postulated under fun-ext, we can rephrase our correctness proposition
for the first stage in the two-step translation pipeline as in Agda listing 7.7

translate-correctness ∶ ∀ {Γ Δ τ} {env ∶ Env Γ}
→ (e ∶ Λ₁ Γ Δ τ)
→ eval[gσ] (translate e) env ≡ atomize {Δ} (unembed e env)

translate-correctness e = fun-ext λ w → translate-correctness-ext e w

translate-correctness-ext ∶ ∀ {Γ Δ τ} {env ∶ Env Γ}
→ (e ∶ Λ₁ Γ Δ τ)
→ (w ∶ W (sz-list Δ))
→ eval[gσ] (translate e) env w ≡ atomize {Δ} (unembed e env) w

Agda listing 7.7: Functional extensionality for Stage1.translate-correctness

44

7.3 Atomization correctness
In section 6.2, we showed how we can transform back and forth between polytypes and
vectors of Π-Ware atoms (i.e. words). It seems reasonable to prove that, when we do
a back-and-forth translation, the result should be unchanged. We introduce a proof for a
proposition that specifies this in Agda listing 7.8. The proposition states that, for any value
(x ∶ Tₚ τ) of a polytype τ, translating it to a word and subsequently back to a polytype
value, the value remains identical.

⤊∘⤋-identity ∶ ∀ {τ} (x ∶ Tₚ τ) → ⤊ (⤋ x) ≡ x

⤊∘⤋-identity {𝟙} = refl

⤊∘⤋-identity {σ ⨂ τ} (x , y) = begin

⤊ (take (sz σ) (⤋ x ++ ⤋ y)) , ⤊ (drop (sz σ) (⤋ x ++ ⤋ y))
≡⟨ cong₂ (λ p q → ⤊ p , ⤊ q) take-++-identity (drop-++-identity (⤋ x)) ⟩

⤊ (⤋ x) , ⤊ (⤋ y)
≡⟨ cong₂ (λ p q → p , q) (⤊∘⤋-identity x) (⤊∘⤋-identity y) ⟩

x , y

∎

⤊∘⤋-identity {σ ⨁ τ} (inj₁ x) = begin

inj₁ (⤊ (unpad₁ (sz σ) (sz τ) (pad₁ (sz τ) (⤋ x))))
≡⟨ cong (λ z → inj₁ (⤊ z)) (unpad₁∘pad₁-identity (sz τ)) ⟩

inj₁ (⤊ (⤋ x))
≡⟨ cong inj₁ (⤊∘⤋-identity x) ⟩

inj₁ x

∎

⤊∘⤋-identity {σ ⨁ τ} (inj₂ y) = begin

inj₂ (⤊ (unpad₂ (sz σ) (sz τ) (pad₂ (sz σ) (⤋ y))))
≡⟨ cong (λ z → inj₂ (⤊ z)) (unpad₂∘pad₂-identity (sz σ)) ⟩

inj₂ (⤊ (⤋ y))
≡⟨ cong inj₂ (⤊∘⤋-identity y) ⟩

inj₂ y

∎

Agda listing 7.8: Correctness proof for translating back and forth between words and polytypes

Since Agda can’t case switch on (x ∶ Tₚ τ), as it does not have a way to know what
results of (Tₚ τ) to expect, we do a case switch on the implicit parameter τ instead and let
Agda fill in possible values for x from there.

In the case of tuples, we use a lemma of our own creation (See Agda listing 7.9) that
proves that taking m items from an m + n vector that was built using the (_++_) operator
results in the first operand. We use a similar one for dropping the first m items as well,

45

resulting in the second operand. This gives us the intermediate value (⤊ (⤋ x) , ⤊ (⤋ y)),
on which we can recursively use the proposition that we are proving.

take-++-identity ∶
∀ {A ∶ Set} {m n} {v₁ ∶ Vec A m} {v₂ ∶ Vec A n} → take m (v₁ ++ v₂) ≡ v₁

take-++-identity {m = zero} {v₁ = []} = refl

take-++-identity {m = suc m} {v₁ = x ∷ v₁} =
cong (λ z → x ∷ z) take-++-identity

Agda listing 7.9: Lemma take-++-identity

In the case of sums, we also use a lemma of our own creation (See Agda listing 7.10)
that proves the nature of unpadding a padded word results in the original word. This
lemma relies heavily on our own improved version (_⊔₂_) of a max function for natural
numbers.

unpad₁∘pad₁-identity ∶ ∀ {m} n {w ∶ W m} → unpad₁ m n (pad₁ n w) ≡ w

unpad₁∘pad₁-identity {m} n with compare₂ m n

unpad₁∘pad₁-identity {.m} .(m + k) ∣ lesseq m k = take-++-identity

unpad₁∘pad₁-identity {.(m + suc k)} .m ∣ greater m k = refl

Agda listing 7.10: Lemma unpad₁∘pad₁-identity

The Agda standard library version of the natural number max function works by re-
building a result based on the arguments passed to it. We’re introducing a version that lets
Agda keep a reference to the actual maximum argument, including the difference between
the arguments. We’re providing this max function in two flavors. The first one distin-
guishes between less, equal, and greater. The second, which is incidentally the one that is
used in the code for the transpiler, only distinguishes between less or equal and greater.
Since the implementation of (_⊔₂_) is based on the result of compare₂, we can use the same
comparison function to do case splits in our proofs.

46

⊔ ∶ ℕ → ℕ → ℕ

zero ⊔ n = n

suc m ⊔ zero = suc m

suc m ⊔ suc n = suc (m ⊔ n)

Agda listing 7.11: Agda standard library version of max

data Ordering₂ ∶ Rel ℕ Level.zero where

lesseq ∶ ∀ m k → Ordering₂ m (m + k)
greater ∶ ∀ m k → Ordering₂ (m + suc k) m

compare₂ ∶ ∀ m n → Ordering₂ m n

compare₂ zero n = lesseq zero n

compare₂ (suc m) zero = greater zero m

compare₂ (suc m) (suc n) with compare₂ m n

compare₂ (suc m) (suc .(m + k)) ∣ lesseq .m k = lesseq (suc m) k
compare₂ (suc .(n + suc k)) (suc n) ∣ greater .n k = greater (suc n) k

⊔₂ ∶ ℕ → ℕ → ℕ

m ⊔₂ n with compare₂ m n

m ⊔₂ .(m + k) ∣ lesseq .m k = m + k

.(n + suc k) ⊔₂ n ∣ greater .n k = n + suc k

Agda listing 7.12: Our improved version of max

7.4 Evaluation semantics
The correctness proposition as stated at the beginning of this chapter depends on the eval-
uation semantics of both Λ1 and Π-Ware. Furthermore, our proof is split in two stages, just
like the translation was. First, we want to prove a correctness proposition for translating
from Λ1 to our intermediate language. Second, we want to prove a correctness proposition
for translating from our intermediate language to Π-Ware. This means that we also require
an unembedding of our intermediate language.

47

7.4.1 Semantics of Π-Ware and intermediate language
The evaluation semantics for Π-Ware are based on input and output of words. An unem-
bedded circuit is nothing more than a function which takes an input word and produces
an output word. Since the intermediate language is designed to closely represent Π-Ware,
the same applies there. The intermediate language also supports variables that exist in the
polytype universe, for which we need to additionally unembed the value that we extract
from the environment. Since the Π-Ware semantics are a subset of the Λ1 semantics, we
just demonstrate the latter in Agda listing 7.13.

plugσ ∶ ∀ {i o} → i ⇇ o → W→W i o

plugσ p w = tabulate (flip lookup w ∘ flip lookup p)

seqσ ∶ ∀ {i m o} → W→W i m → W→W m o → W→W i o

seqσ f₁ f₂ = f₂ ∘ f₁

parσ ∶ ∀ {i₁ o₁ i₂ o₂} → W→W i₁ o₁ → W→W i₂ o₂ → W→W (i₁ + i₂) (o₁ + o₂)
parσ {i₁} f₁ f₂ w = f₁ (take i₁ w) ++ f₂ (drop i₁ w)

eval[_] ∶ ∀ {G Γ i o} → Gateσ G → IL[G] Γ i o → Env Γ → W→W i o

eval[gσ] G⟨ g# ⟩ env = gσ g#

eval[gσ] Grnd env = const (replicate false)
eval[gσ] (Plug x) env = plugσ x

eval[gσ] (x ⟫ y) env = seqσ (eval[gσ] x env) (eval[gσ] y env)
eval[gσ] (x ∥ y) env = parσ (eval[gσ] x env) (eval[gσ] y env)
eval[gσ] (Var x) env = const $ ⤋ (env ! x)

Agda listing 7.13: Intermediate language semantics

The caller needs to supply the evaluation function with gate semantics (gσ ∶ Gateσ)
which define how each gate operates. Furthermore, since our intermediate language sup-
ports variables of polytypes, callers also need to provide the evaluation function with an
environment of values that act as a lookup table when evaluating the Var constructor. Note
how the evaluation semantics cast the value inside the environment from a polytype value
into a word by calling the ⤋ function. Π-Ware defines the semantics for plugs as well as
for sequential and parallel compositions. We are swapping out the Agda standard library’s
version of take and drop for our own versions (See Agda listing 7.15). Even though the
standard library provides a functional one, our version makes it easier to prove some equal-
ity lemmas.

48

take ∶ ∀ {A} m {n} → Vec A (m + n) → Vec A m

take m xs with splitAt m xs

take m .(ys ++ zs) ∣ (ys , zs , refl) = ys

drop ∶ ∀ {A} m {n} → Vec A (m + n) → Vec A n

drop m xs with splitAt m xs

drop m .(ys ++ zs) ∣ (ys , zs , refl) = zs

Agda listing 7.14: Agda standard library version of take and drop

take ∶ ∀ {A} m {n} → Vec A (m + n) → Vec A m

take zero v = []

take (suc m) (x ∷ v) = x ∷ take m v

drop ∶ ∀ {A} m {n} → Vec A (m + n) → Vec A n

drop zero v = v

drop (suc m) (x ∷ v) = drop m v

Agda listing 7.15: Our improved version of take and drop

7.4.2 Semantics of Λ1

The evaluation semantics of Λ1 use unembedded polytypes for the inputs, output and
environment of the unembedding function. In section 5.3.1, we already demonstrated the
workings of ΛSet and how, together with Λ⟦_⟧, it can be used to transform a pair of inputs
and output polytypes into an Agda function type with an arbitrary number of function
parameters. This allows us to specify the unembedding in a very native Agda way as seen
in Agda listing 7.16.

49

unembed ∶ ∀ {Γ Δ τ} → (x ∶ Λ₁ Γ Δ τ) → Env Γ → Λ⟦ Δ ↣ τ ⟧

unembed ⟨ g ⟩ env = unembed-gate g

unembed #[r] env = env ! r

unembed (f $₁ x) env = (unembed f env) (unembed x env)
unembed (letₓ x inₑ e) env = unembed e ((unembed x env) ∷ env)
unembed (x ,₁ y) env = (unembed x env) , (unembed y env)
unembed (case⨂ xy of f) env = unembed f (

(proj₁ $ unembed xy env) ∷
(proj₂ $ unembed xy env) ∷
env)

unembed (inl₁ x) env = inj₁ (unembed x env)
unembed (inr₁ y) env = inj₂ (unembed y env)
unembed (case⨁ xy either f or g) env with unembed xy env

... ∣ inj₁ x = unembed f (x ∷ env)

... ∣ inj₂ y = unembed g (y ∷ env)

Agda listing 7.16: Unembedding of Λ1

7.5 Let correctness
In order to look at the correctness of the letₓ_inₑ_ constructor’s translation, we first need to
take a closer look at the semantics of both the constructor itself as well as its translation.
The evaluation semantics of the letₓ_inₑ_ constructor dictate that the unembedding of
x is added to the head of the variable environment before unembedding f itself. When
atomized, this looks as follows:

atomize {Δ} (unembed e ((unembed x env) ∷ env)) w

50

Recalling from section 6.3.2, the translation of the letₓ_inₑ_ constructor into Π-Ware
takes the translation of x and supplements it with a parallel identity plug in order to partially
apply it to a reduced-context version of the translation of e:

(translate x ∥ PlugId’) ⟫ reduce-ctxt (translate e)

When looking at the definition of the evaluation semantics of Π-Ware, the expression
above normalizes to the following expression when evaluated. This is the expression for
which we need to show that it is equal to the atomization of the unembedding of the
letₓ_inₑ_ constructor:

(
(eval[gσ] (reduce-ctxt (translate e)) env) ∘
(parσ

(eval[gσ] (translate x) env)
(plugσ (⇇-id (sz-list Δ)))

)
) w

Using equational reasoning together with the concept of congruence cong, we can
piecewise break down this complex evaluation with equality lemmas until we arrive at the
desired atomization expression. First, let us massage this expression into a more readable
form by replacing some calls with their actual definitions:

translate-correctness-ext {Δ = Δ} {env = env} (letₓ x inₑ e) w =
let open ≡-Reasoning in ≡-Reasoning.begin

(
(eval[gσ] (reduce-ctxt (translate e)) env) ∘
(parσ

(eval[gσ] (translate x) env)
(plugσ (⇇-id (sz-list Δ)))

)
) w

≡⟨ refl ⟩

eval[gσ] (reduce-ctxt (translate e)) env
(

(eval[gσ] (translate x) env (take 0 w)) ++
(plugσ (⇇-id (sz-list Δ)) (drop 0 w))

)
⋯

Agda listing 7.17: Correctness of letₓ_inₑ_ translation (1)

51

First, we’ve restructured the function composition call _∘_ in order to pass w directly
to parσ. Second, we’ve actually inserted the definition of parσ to explicitly pass the ap-
propriate take and drop calls on w to both components of the parallel composition. We
know that the variable x inside a let constructor cannot have any inputs; we can see that
here since the expression reduces to one where we take zero atoms from the input word
w. Thanks to our effort of making the expression more readable, we can immediately see
that we can replace the call to (take 0 w) with an empty vector [] as well as the call to
(drop 0 w) with the full word w. This is possible thanks to our design of custom take and
drop functions earlier.

At this point, we can try to replace some of the parts of this expression by injecting
lemmas through congruence:

⋯

≡⟨ cong (λ z → ⋯) plug-id-semantics-lemma ⟩

eval[gσ] (reduce-ctxt (translate e)) env
(

(eval[gσ] (translate x) env []) ++
w

)
≡⟨ cong (λ z → ⋯) (translate-correctness-ext x []) ⟩

eval[gσ] (reduce-ctxt (translate e)) env
(

(atomize {[]} (unembed x env) []) ++
w

)
≡⟨ refl ⟩

eval[gσ] (reduce-ctxt (translate e)) env (⤋ (unembed x env) ++ w)
⋯

Agda listing 7.18: Correctness of letₓ_inₑ_ translation (2)

The calls to cong inside these Agda listings have been shortened by not explicitly
writing down the function body. This was done to keep this document readable. The
contents of ⋯ repeat most of the expression, just replacing the sub-expression for which
we want to replace it with an alternative (given the lemma) with z.

In the first step, we call our lemma plug-id-semantics-lemmawhich proves that identity
plugs, when applied to a word, are equal to that word itself: (plugσ (⇇-id k) w ≡ w). We
refer to the accompanying code for the implementation of this lemma.

In the second step, we recursively use the correctness proposition on x. Since we
know that x doesn’t have any inputs, (atomize {[]} (unembed x env) []) reduces to

52

(⤋ (unembed x env)) as per the definition of atomize.
At this point, we need a proposition that proves the correctness of reduce-ctxt. We

know from section 6.3.6 that, when we call reduce-ctxt on circuitry expressions, we move
a variable binding from the context into the list of inputs by transforming the underly-
ing circuitry to share the input at all the necessary positions. We call this proposition
reduce-ctxt-correctness and will take a close look at it in the next section.

⋯

≡⟨ reduce-ctxt-correctness (translate e) (unembed x env) ⟩
eval[gσ] (translate e) (unembed x env ∷ env) w

≡⟨ translate-correctness-ext e w ⟩

atomize {Δ} (unembed e ((unembed x env) ∷ env)) w
∎

Agda listing 7.19: Correctness of letₓ_inₑ_ translation (3)

Finally, we can make a recursive call to (translate-correctness-ext e w). It makes
intuitive sense that, for the letₓ_inₑ_ constructor to be correct, both components x and e’s
correctness would be necessary too.

7.6 Reduce context correctness
The proof that our reduce-ctxt function works as intended is one of the main proofs within
our correctness proof. To recap, context reduction was the method that we used to remove
variable bindings by sharing their value to all the reference sites of that variable. This is
the critical step when translating Λ1 (which has variable bindings) to Π-Ware (which is
nameless).

reduce-ctxt-correctness ∶
∀ {G τ Γ i o} {gσ ∶ Gateσ G} {env ∶ Env Γ} {w ∶ W i}
→ (e ∶ IL[G] (τ ∷ Γ) i o)
→ (x ∶ Tₚ τ)
→ (eval[gσ] (reduce-ctxt e) env (⤋ x ++ w)) ≡ (eval[gσ] e (x ∷ env) w)

Agda listing 7.20: Correctness proposition for reduce-ctxt

The reduce-ctxt-correctness proposition (See Agda listing 7.20) states that, given an
intermediate language expression e and a value x, evaluating e after reducing whilst giving
it (⤋ x) as an additional input should output the same word as evaluating a non-reduced e

53

with x being part of the environment instead. Note that since our intermediate language
uses polytypes on its environment, the type of x here is a polytyped value, which means
that we need to cast it to a word when passing it as an input on the left hand side. In the
previous section, when we made a call to reduce-ctxt-correctness, we actually passed
(unembed x env) (where x refers to the Λ1 expression of the let constructor) as the argument
for our new identifier x here.

We need to prove the proposition for the reduce-ctxt call on every possible constructor
in our intermediate language. Looking back at the actual definition of reduce-ctxt in
section 6.3.6, we used combinator circuits of our own creation to implement the sharing
of the new input. Let’s take a look at a few examples to illustrate how the proof works for
some of these combinators.

7.6.1 Reducing gates

reduce-ctxt { } {τ} G⟨ g# ⟩ = K[sz τ]· G⟨ g# ⟩

K[k]· x = PlugNil k ∥ x

Recall that evaluating gates in Π-Ware and our intermediate language doesn’t depend
on the environment. This means that we expect that, during our equational reasoning, we
will at some point manage to remove any reference to (x ∶ Tₚ τ).

reduce-ctxt-correctness {τ = τ} {gσ = gσ} {w = w} G⟨ g# ⟩ x =
let open ≡-Reasoning in ≡-Reasoning.begin

parσ (plugσ (⇇-nil (sz τ))) (gσ g#) (⤋ x ++ w)
≡⟨ refl ⟩

plugσ (⇇-nil (sz τ)) (take (sz τ) (⤋ x ++ w)) ++
(gσ g#) (drop (sz τ) (⤋ x ++ w))

≡⟨ refl ⟩

(gσ g#) (drop (sz τ) (⤋ x ++ w))
⋯

Agda listing 7.21: Correctness of reduce-ctxt for gates (1)

In fact, we can see that we are able to remove the entire empty part of our killer
plug PlugNil without needing any additional lemmas. Once again, once we wrote out the
definition of parσ explicitly with calls to our custom take and drop functions, we get a clear
picture of how we can clean up both components of the parallel composition. In this case,

54

the first part dropped away completely. Agda isn’t able to normalize (drop (sz τ) (⤋ x ++ w))
by itself, so we help it along with a lemma:

⋯

≡⟨ cong (λ z → (gσ g#) z) (drop-++-identity (⤋ x)) ⟩
gσ g# w

∎

Agda listing 7.22: Correctness of reduce-ctxt for gates (2)

The drop-++-identity lemma works very similar to the take-++-identity lemma that
we saw earlier. Both depend on our custom implementation of drop and take, respectively.
Note how the proof here follows the concept behind the implementation of reduce-ctxt
closely. We implemented the plug to kill the extra input wires that are given, since we
don’t need them for the implementation of this constructor once the variable has been
removed from the context. The steps in the proof clearly show how we first remove the
extra input and thenmassage the remainder with a lemma to bring it to the desired form. By
splitting up the proofs into smaller (sometimes reusable) sub-proofs, we create a pleasant
environment where we can write proofs that are not only sound, but also easy to follow
step-by-step.

7.6.2 Reducing compositions

reduce-ctxt { } {τ} (x ⟫ y) = S[sz τ]· reduce-ctxt x · reduce-ctxt y

reduce-ctxt { } {τ} (x ∥ y) = P[sz τ]· reduce-ctxt x · reduce-ctxt y

S-bypass k i = coerceₒ (+-assoc k k i) $ PlugDup k ∥ PlugId i

S[_]·_·_ {i = i} k x y = S-bypass k i ⟫ PlugId k ∥ x ⟫ y

P-insert k i₁ i₂ =
coerceᵢₒ (+-assoc k i₁ i₂) (+-assoc (k + i₁) k i₂) $ PlugCopyK i₁ k ∥ PlugId i₂

P[_]·_·_ {i₁ = i₁} {i₂ = i₂} k x y = P-insert k i₁ i₂ ⟫ x ∥ y

The sequential and parallel composition constructors use custom combinators
S[_]·_·_ and P[_]·_·_ respectively. The actual proof of reduce-ctxt-correctness for
these two cases is quite verbose, given the number of plugs and compositions that they
use. For that reason, we refer to the accompanying code for the full evidence. Even
though we’re not explaining the entire proof for these cases in this document, we do want

55

to touch on the use of vector coercion, since we introduced it in section 6.3.4 specifically
with the intent of making writing proofs easier.

We mentioned that we want to carry the transformations of vectors explicitly
rather than relying on rewrite mechanisms. The proofs for these two cases of
reduce-ctxt-correctness make use of the benefit of this explicitness. For example, let’s
take a look at the S-bypass construct. For the bypass to work, we want it to have an output
of (k + (k + i)) wires. Note the explicit placement of parentheses here. Even though we
are all intuitively familiar with the associativity of _+_ on natural numbers, Agda does
not have this intuition built-in. Due to _+_ being defined asymmetrically based on a case
switch on it’s first argument, concepts such as associativity or even commutativity are
not given. Of course, Agda’s standard library provides us with lemmas that prove these
concepts, for example by giving us equality between (k + (k + i)) and ((k + k) + i) in the
form of (+-assoc k k i).

Vector sizes are specified as a natural number on their type index. The coerce-vec

function lets us change the type of a vector by modifying its size index according to an
equality lemma. Now, when we encounter such a coerced vector in our equational rea-
soning, we need a way to transform it back to the original. We were not able to provide
a single catch-all lemma that uncoerces vectors in Agda, but we managed to write easy
lemmas proving that coerced vectors behave as expected when we pass them as arguments
to other functions. Without showing the full code of these lemmas (we refer to the accom-
panying code for that), one example to illustrate the use of coerced vectors can be found in
Agda listing 7.23. This lemma proves that take mworks on an associativity-coerced vector
as expected. We can use lemmas like this one inside steps of equational reasoning to get
rid of the calls to coerce-vec.

take-++-identity-c+a ∶
∀ {A} {m k₀ k₁} →

(vₘ ∶ Vec A m) → (v₀ ∶ Vec A k₀) → (v₁ ∶ Vec A k₁) →
take m (coerce-vec (+-assoc m k₀ k₁) ((vₘ ++ v₀) ++ v₁)) ≡ vₘ

Agda listing 7.23: Example lemma using coerce-vec

56

7.7 Final correctness
In this chapter, we’ve shown how we can use equational reasoning and functional ex-
tensionality to prove the correctness proposition which we started with. We showed and
explained some highlights of proofs inside the two-step translation pipeline. Finally, we’d
like to state the correctness proof one more time, this time with the proof’s body. For the
full implementation, we – once again – refer to the code accompanying this document.

open import ⋯ .Stage1.LambdaOne2IL using () renaming (translate to Λ₁⟶IL)
open import ⋯ .Stage2.IL2PiWare using () renaming (translate to IL⟶ΠW)
open import ⋯ .Translation using (translate)

open import ⋯ .Stage1.Properties.Correctness using ()
renaming (translate-correctness to stage1-correctness)

open import ⋯ .Stage2.Properties.Correctness using ()
renaming (translate-correctness to stage2-correctness)

translate-correctness ∶ ∀ {Δ τ}
→ (e ∶ Λ₁ [] Δ τ)
→ ⟦ translate e ⟧[ΛBoolTrioσ] ≡ atomize {Δ} (unembed e ε)

translate-correctness {Δ} e =
let open ≡-Reasoning in ≡-Reasoning.begin

⟦ translate e ⟧[ΛBoolTrioσ]
≡⟨ refl ⟩

⟦ IL⟶ΠW (Λ₁⟶IL e) ⟧[ΛBoolTrioσ]
≡⟨ stage2-correctness (Λ₁⟶IL e) ⟩

eval[ΛBoolTrioσ] (Λ₁⟶IL e) ε
≡⟨ stage1-correctness e ⟩

atomize {Δ} (unembed e ε)
∎

Agda listing 7.24: Final translation correctness proof

57

8 Conclusion
8.1 Research summary
Our initial research goal stated that we’d like to translate a hardware description language
with variable bindings to onewithout variable bindings. We’ve presented a complete trans-
lation from Λ1 (an embedded hardware description language in Agda with variable bind-
ings) to Π-Ware (an embedded hardware description language in Agda without variable
bindings). We also proven the translation to be correct, highlighting some parts of that cor-
rectness proof inside this document. We showed how to successfully and efficiently use
the dependent type system of Agda to facilitate this correctness proof, while also showing
some small potential improvements to the Agda standard library.

8.2 Future work
8.2.1 Remaining postulates and holes
This document does not provide a complete view of the translation and correctness proof
code, but rather highlights some interesting parts of it. At multiple points, we’ve referred
to the accompanying code to get a complete view. For the sake of transparency, we need
to mention that there are still a few holes left open in the code that we sadly were not able
to solve. Although the two-step translation is 100% complete, we’ve not managed to get
the same completion ratio for the first step of the correctness proof. Agda allows for an
option to interpret open holes as postulates, which lets us use the incomplete lemmas while
treating them as proven true. This means we are able to show the high-level structure of
the proof under the assumption that our lemmas are provable.

Although we’ve proven the correctness of the translation of the case⨂_of_

constructor at a high level, the translation makes use of a lemma called
reduce-ctxt -twice-correctness. We mentioned in section 6.3.6 that we need some
reordering plugs before we can reduce the context twice. Given that the hard part of the
correctness proof lies in proving the correctness of reduce-correctness, we are confident
that we could prove the remaining hole that proves the correct behavior of these reordering
plugs.

Although we spent a considerable amount of time implementing a custom multiplexer
and demultiplexer in intermediate language circuitry, and are quite confident that theywork
as intended, we did not manage to formally prove this correctness. Both these components
use a lot of composite circuitry. Although proving the correctness of these components
would have been an interesting case-study into the scalability of our correctness proof
approach using equational reasoning in Agda, we decided to focus our efforts elsewhere
given that the workings of multiplexers and demultiplexers are not very controversial.

Lastly, we did not manage to prove the correctness of the translation of our in-left
inl₁ and in-right inr₁ constructors. Although we firmly believe that our new comparison
function for natural numbers is superior to the existing one inside Agda’s standard library,

58

wewere not able to convince the type system to use it in solving the lemma around padding.

8.2.2 Potential follow-up
Besides filling up the last remaining holes in the proof, this project offers other potential
future follow-up research. For example, we made a conscious choice to remove loop-
ing constructors in order to focus the research on the translation to a nameless language.
Reintroducing loops would be interesting since it would affect the evaluation semantics
and thereby affect the correctness proof. Furthermore, it would be interesting to follow-up
this work by allowing higher-order variables inside the source language.

We hope to see further research into hardware embedded languages that are embedded
in dependent type systems in the future, as we believe there is still lots of untapped potential
in this field.

59

Special thanks

Special thanks to:

Wouter Swierstra, my mentor and supervisor during this thesis. Thanks for your patience
and for sharing your knowledge around everything Agda, type systems, and correctness
proofs to help bring this project to a successful close.

Jurriaan Hage, for your detailed and extensive review of this thesis.

My parentsCorine & René Spoel, who gave their unconditional love and support towards
my studies from beginning to end.

References
[Altenkirch et al., 2007] Altenkirch, T., McBride, C., and Morris, P. (2007). Generic

programming with dependent types. In Datatype-Generic Programming, pages 209–
257. Springer.

[Atkey et al., 2009] Atkey, R., Lindley, S., and Yallop, J. (2009). Unembedding domain-
specific languages. In Proceedings of the 2nd ACM SIGPLAN symposium on Haskell,
pages 37–48. ACM.

[Bjesse et al., 1998] Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. (1998). Lava:
hardware design in haskell. In ACM SIGPLAN Notices, volume 34, pages 174–184.
ACM.

[Boulton et al., 1992] Boulton, R. J., Gordon, A. D., Gordon, M. J., Harrison, J., Her-
bert, J., and Van Tassel, J. (1992). Experience with embedding hardware description
languages in hol. In TPCD, volume 10, pages 129–156. Citeseer.

[Bove et al., 2009] Bove, A., Dybjer, P., and Norell, U. (2009). A brief overview of agda–
a functional language with dependent types. In International Conference on Theorem
Proving in Higher Order Logics, pages 73–78. Springer.

[Chlipala, 2008] Chlipala, A. (2008). Parametric higher-order abstract syntax for mech-
anized semantics. In ACM Sigplan Notices, volume 43, pages 143–156. ACM.

[Curry et al., 1972] Curry, H. B., Feys, R., Craig, W., and Craig, W. (1972). Combinatory
logic.

[De Bruijn, 1994] De Bruijn, N. (1994). Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with application to the church-rosser
theorem. Selected Papers on Automath, 133:375–388.

[Flor and Swierstra, 2018] Flor, J. P. P. and Swierstra, W. (2018). Verified timing trans-
formations in synchronous circuits with 𝜆𝜋-ware. In International Conference on In-
teractive Theorem Proving, pages 504–522. Springer.

[Flor et al., 2014] Flor, J. P. P., Swierstra, W., and Sijsling, Y. (2014). Piware: Hardware
description and verification in agda.

[Gibbons and Wu, 2014] Gibbons, J. and Wu, N. (2014). Folding domain-specific lan-
guages: deep and shallow embeddings (functional pearl). In ACM SIGPLAN Notices,
volume 49, pages 339–347. ACM.

[Intel, 2004] Intel (2004). Statistical analysis of floating point flaw: Intel white paper.

[Martin-Löf, 1984] Martin-Löf, P. (1984). Intuitionistic type theory. Naples: Bibliopolis,
76.

[Matthews et al., 1998] Matthews, J., Cook, B., and Launchbury, J. (1998). Microproces-
sor specification in hawk. In Computer Languages, 1998. Proceedings. 1998 Interna-
tional Conference on, pages 90–101. IEEE.

[Mckinna and Wright, 2006] Mckinna, J. and Wright, J. (2006). A type-correct, stack-
safe, provably correct, expression compiler. In in Epigram. Submitted to the Journal of
Functional Programming. Citeseer.

[Oury and Swierstra, 2008] Oury, N. and Swierstra, W. (2008). The power of pi. In ACM
Sigplan Notices, volume 43, pages 39–50. ACM.

[Powell, 2008] Powell, J. R. (2008). The quantum limit to moore’s law. Proceedings of
the IEEE, 96(8):1247–1248.

[Rekhi and Purasai, 2003] Rekhi, S. and Purasai, R. (2003). The next level of abstraction:
Evolution in the life of an asic design engineer. Synopsys Users Group (SNUG), San
Jose.

[Reynolds, 2000] Reynolds, J. C. (2000). The meaning of types from intrinsic to extrinsic
semantics.

[Sander and Jantsch, 2004] Sander, I. and Jantsch, A. (2004). Systemmodeling and trans-
formational design refinement in forsyde [formal system design]. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 23(1):17–32.

[Sheeran, 1984] Sheeran, M. (1984). mufp, a language for vlsi design. In Proceedings
of the 1984 ACM Symposium on LISP and functional programming, pages 104–112.
ACM.

[Sheeran, 2005] Sheeran, M. (2005). Hardware design and functional programming: a
perfect match. J. UCS, 11(7):1135–1158.

[Smullyan, 1985] Smullyan, R. M. (1985). To Mock a Mockingbird: and other logic
puzzles including an amazing adventure in combinatory logic. Oxford University Press,
USA.

[Sørensen and Urzyczyn, 2006] Sørensen, M. H. and Urzyczyn, P. (2006). Lectures on
the Curry-Howard isomorphism, volume 149. Elsevier.

[Turing, 1937] Turing, A. M. (1937). Computability and 𝜆-definability. The Journal of
Symbolic Logic, 2(4):153–163.

[Univalent Foundations Program, 2013] Univalent Foundations Program, T. (2013).
Homotopy Type Theory: Univalent Foundations of Mathematics. https://

homotopytypetheory.org/book, Institute for Advanced Study.

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

Appendix

Code is available at https://github.com/robrene/thesis

https://github.com/robrene/thesis

	Abstract
	Research goal
	Preamble
	Research statement
	Contribution
	Scientific relevance

	Background
	Dependently typed programming: Agda
	The Curry-Howard isomorphism
	Hardware design
	Verified translation
	Embeddings and EDSLs
	Variable binding in embedded domain specific languages
	Nameless
	De Bruijn
	HOAS/PHOAS

	SKI transpiler
	Simply-typed λ-calculus
	SKI combinators
	Translation
	Correctness

	Π-Ware and Λ₁
	Π-Ware
	Plugs versus named variables
	Λ₁
	Type universe
	Variable bindings
	Gates

	Translation
	Intermediate language
	Atomization of polytypes
	Stage 1
	Translation
	Let constructor
	Case constructors
	Vector coercion
	Combinator circuits
	Reducing context
	Branching circuits

	Stage 2
	Final translation

	Correctness
	Equational reasoning in Agda
	Functional extensionality in Agda
	Atomization correctness
	Evaluation semantics
	Semantics of Π-Ware and intermediate language
	Semantics of Λ₁

	Let correctness
	Reduce context correctness
	Reducing gates
	Reducing compositions

	Final correctness

	Conclusion
	Research summary
	Future work
	Remaining postulates and holes
	Potential follow-up

