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Abstract

In light of climate change mitigation, the European Union and its member states aim to increase
their share of renewable energy in the energy system. Some of these resources, such as wind turbines
and solar PV panels produce Variable Renewable Electricity (VRE). Due to its intermittent nature
VRE can pose a problem to this system. Numerous research has looked into addressing the
variability by strategically placing VRE technologies in a large geographical area so that their
variance is decreased or their correlation with the electricity demand is increased. This thesis uses
portfolio theory to further investigate how VRE technologies can better be integrated in the
electricity system by maximizing the covariance between VRE production and electricity demand.
Northwest Europe is chosen as a case study area and the temporal scope was set at 2030. In
addition, Demand Response (DR) is added to the optimization to further investigate maximizing
this covariance. An unconstrained, constrained and constrained DR scenario are created. The
results show that the unconstrained scenario exhibit the highest covariance across all scenarios and
the maximum covariance portfolio of this scenario has an increase of 55 % compared to the
maximum return portfolio. However, the variance of the unconstrained scenarios is also higher.
The correlation coefficient between VRE production and demand is also calculated. By using DR,
a maximum correlation of 0.29 is attained. This demonstrates that while the unconstrained
covariance analysis yields the highest return and covariance, the constrained scenarios exhibits
lower variance and higher correlation. The results indicate that maximizing the covariance might
not be the best optimization technique to determine the most optimal integration of VRE
technologies in the energy system as maximizing correlation or minimizing variance is potentially
better. Nevertheless, DR contributes to both maximizing the covariance and correlation.
Furthermore, the results show that attention should be given to what extend and where VRE assets
should be installed from an energy system point of view, because they can alter the variance of
production, production itself, as well as the covariance and correlation between production and

demand.



Preface

In front of you lies the culmination of 5 years of academic studies. During this time, climate change
has shifted from being something that mostly occurs in the future to something that occurs at this
very moment. The Paris agreement was signed during this time, indicating that society wants to
curb the effects of climate change. Part of the solution is changing the way society uses and
produces energy. The change of such a complex system requires vast alterations and new
technologies. This thesis aims at increasing the understanding of one of these solutions, strategically
placing of VRE assets so that they are able to better integrate in the energy system. This is important
as potentially it can reduce the need of other resources and technologies while increasing energy

security.



Table of Contents

Lo InErodUCtion. ..o 1
1.1 Literature RevVIEW......ccovuiiiiiiiiiiiiiiccc 2
1.2 RESEATCh QUESTONS +evvvvrererrsrrseeeeeeeeeeeeeeeeeeeeesessseseesseseeeeeeeeesssesssseesesee s eeeseeeeeeeeees 7

2. Data & Methodology ......c.coviiiiiiiiiiiiiiiiiiiic s 8
2.1 Weather Data . ocueeceieiiiciciccec et 9
2.2 POWeEr CONVEISION «uuviiiiiiiiiiieiitieiitee ettt ettt ettt et eeasae e s e e e eareeesaneeas 10
2.3 Capacity COnStraiNt . ...ccuiiuiiiiiiiiiiiiiccc e 21
2.4 Expected installed capacity .....ccoceceeueviiiiiniiiiiiniicicececee e 25
2.5  Electricity demand........c.coeoiiiiiiiiiiiniiiiee e 26
2.6 Portfolio ANalysis.......cccueieiiriiriininiiicee e 27
2.7 Demand ReSPOnse.......ccocueiviiuiriiiiiiiiiiniiiiieieinieiiieiet sttt 29
2.8 Portfolio Optimization Post Processing ..........ccoecevieueirieinieirinieiniiiiicieiecneee, 30

3. RESULLS ot 32
3.1  Capacity Factor and Potentials ........cccoueoiriniiiiiininiiiiiiecccccnceesc 32
3.2 Demand ReESPONSE.....ciriiriiiiiiriiieiieietcteieree ettt 34
3.3  Unconstrained optimization ......c.ccceueuivieueiiniiinieuinieieiiieiieieieieees e 35
3.4 Constrained OPtMIZAION ..vevieveuieuirieieiieienieieit ettt ettt sae e saessenean 38
3.5 Demand Response SCenarios ........cceceeueiririenieirienieininieieteieieeeresteeeesienee e 43
3.6 Scenario COMPArISON ...ccuiiiiiiiiiiiiiiiiiiieie e 46

4. DHSCUSSION teinitiintieiieeit ettt ettt ettt et e et e e bt e e it e e bt e sate e bt e eabe e bt e sabeenbeesaaeeaneas 50
4.1  Comparison to other WOrk ......cccccieiriiiiiiiniiiiiiiiciccccce e 50
4.2 Limitations & Future Research........cccecveviieiiiiiniieiiiieiceceeeeeee e 52
4.3 ImPliCAtiONS ..cooveuiviiiiieiiiiiciici e 54

5. CONCIUSION ittt e sttt e bt et et e bt et e et e naeenee 56

6. Acknowledgements ........cccouciiiiiiiiiiiiiiiii e 58

7. BIblIoGraphiy ....ccouiiiiiiiiiiii e 59

Appendix A: Suitability values for CLC classes......c.couvueirieininiiniiiniiciniciiececececnee 70

Appendix B: Time zones and missing demand data...........ccccoeiviiiininiiinininiiice, 72

Appendix C: Scenario RiStOGrams........coucveiriirieiiinieiiircictneceeeeeee s 73



List of Figures

Figure 1: Efficient frontier risk refers to the variability...........cccocooiiiie, 5
Figure 2: Flow chart of designed energy model..........ccooiiiiiiniiiiiiiiiiiiccecceee 8
Figure 3: Model outline Solar PV power conversion............cccocevveirniiiiiniiininecceseeceseeeeeeenees 11
Figure 4: Model outline Wind Power Conversion ...........cccccouveiiinniieiinniiineicceseeeeeeeeeenens 16
Figure 5: Offshore original and multi-turbine power curve........cccccoviviiviniiniiiniiicecce 20
Figure 6: Flow chart maximum capacity conStraing ...........c.cocoeviiniriiiiiiiniiiicceeeceecs 21
Figure 7: CF of solar farm and solar rooftop for 2010 up t0 2019 .c.cc.ocviiririiniiiinininicirieiecirieeercaens 32
Figure 8: CF of wind offshore and wind onshore for 2010 up t0 2019 ......ccccoivirriivriiiiiiricienne, 33
Figure 9: 2010 Electricity demand with demand response, adjusted for 2030 projection..........cccceueunens 34
Figure 10: 2010 Electricity demand without demand response, adjusted for 2030 projection................ 34
Figure 11: Demand response activation for 2010, adjusted for 2030 ..........ccoccviniiiniiiniiiniiiiiicne, 35
Figure 12: Efficient Frontier Unconstrained covariance analysis..........c.ccccoeveinirreiiniircinnnnienienenn. 35
Figure 13: Correlation-Return graph unconstrained sCenario.........c.ceeeveerireenrcrinininrcrneencrnenereeneenns 36
Figure 14: Max-return asset locations and installed capacities for the unconstrained scenario ................. 37
Figure 15: Max-covariance asset locations and installed capacities for the unconstrained scenario........... 38
Figure 16: Percentage of locations chosen for portfolios on the efficient frontier, unconstrained scenario38
Figure 17: Constrained efficient frontier of the covariance and Return.........cccooviiiiiiiiiniiinnn. 39
Figure 18: Correlation-Return graph constrained scenario...........cocovvevveeririnirnnincrnneneeeeereeeaenns 40
Figure 19: Max-return asset locations and installed capacities for the constrained scenario. .................... 41
Figure 20: Max-covariance asset locations and installed capacities for the constrained scenario. .............. 42
Figure 21: Percentage of locations chosen for portfolios on the efficient frontier, constrained scenario ... 43
Figure 22: Covariance efficient frontier for DR and constrained scenario ..........cocccoevevriiiiiniinccnncnne 44
Figure 23: Correlation between Return and demand using demand response .........cccoveevcrnieercnnnnn. 44
Figure 24: DR sensitivity analysis covariance, changing the magnitude (in MW) and duration .............. 45
Figure 25: DR sensitivity analysis correlation ..........c.ccoieiiiiiiiiiiiniiniiiscineeseseee e 46
Figure 26: Variance-return graph of the unconstrained and constrained scenario...........cccooovvvueerevenenene. 47
Figure 27: Histograms percentage of demand met of four portfolios for 9 years of data. .........ccccucuenneeene 49
Figure 28: Model wind offshore locations versus already installed wind turbines. ........c.cccooooeiienninne. 51



file:///C:/Users/Teun/Dropbox/thesis/teun's%20thesis/working%20document/Final%20version.docx%23_Toc16844188
file:///C:/Users/Teun/Dropbox/thesis/teun's%20thesis/working%20document/Final%20version.docx%23_Toc16844191
file:///C:/Users/Teun/Dropbox/thesis/teun's%20thesis/working%20document/Final%20version.docx%23_Toc16844193

List of Tables

Table 1-1: Summary of selected previous research on reducing the variability of VRE in the electricity

SYSTEIIL wutuuuiiitiiuttiiteite et e tr e sas s ab s d bbbt s bt s aa s e ha s e ht s et e e e s s as e R oAb e d e s e s e e sas e sas e e 3
Table 2-1: ERAS5 variables used in this thesis.......c.ceoiririeiriiiiriiiiiiieeeeeeeeeeeesesee e 10
Table 2-2: Solar panel azimuth and tilt angles............cccoiiiiiiiii 14
Table 2-3: Turbine specifications used for selecting turbine.........c.cccoeveviniiiiinniiiinince, 17
Table 2-4: Wind speed classes .......ccociiriririiiiiiiiieee e 18
Table 2-5: Reference locations for multi-turbine method ........c.cococviiriiiiniiiniii e 19
Table 2-6: Average wind speed and standard deviation for offshore and onshore location....................... 19
Table 2-7: Suitability variables and their references, the range is 0-100..........ccoceeviiniriiiiiniiniiiee, 23
Table 2-8: Aued and maximum power density for solar panels.........cccocoveviivnnininnnincnnninee, 24
Table 2-9: Power densities per wind turbine..........cccooiiiiiiiiiiiiiiiiiiiiiiice e 25
Table 2-10: Expected installed capacity in 2030 ....c.c.ccevriiriiiirniiiiniiericieecreeeeree et 26

Table 3-1: Results of max return & max covariance portfolios of unconstrained and constrained

OPUIMIZATION SCEMATIOS +.nvevvevtretetirtieterteatetes ettt ettt eb et b e te s et e s ebesteebesae e b et e s et e s eseebeebente e b et e s enee s eneeais 48




CF
CLC
DR
DHI
DNI
ECMWEF
EU
GHI
IEC
MCVA
MVA
NaN
PV
SAPM
SD
SSRD
VRE

Abbreviations

Capacity Factor

Corine Land Cover

Demand Response

Diffuse Horizontal Irradiance

Direct Normal Irradiance

European Centre for Medium-Range Weather Forecasts
European Union

Global Horizontal Irradiance

International Electrotechnical Commission
Mean Covariance Analysis

Mean Variance Analysis

Not a Number

Photovoltaic

Sandia PV Array Performance Model
Standard Deviation

Surface Solar Radiation Downwards

Variable Renewable Energy

Vi



0,

)4
Ipoa
Ipoagirect
I POAgif sky
I POAgif reflect
Oq
a;
DNIextra
P, eff.,at
P dco0
ypdc,x
Tcell,a,t
Tre f
PR
Uiom
Tit
CF
u
h

Zy

Ps

Nomenclature

Asset

Angle of incidence

Tile

Solar zenith angle

Relative azimuth

Total irradiance on a tilted plane of array
Direct irradiance received on a plane of array
Sky diffuse irradiance received on a plane of array
Sky reflect irradiance received on a plane of array
Albedo

Anisotropy index

Extra-terrestrial irradiance

Effective power output of asset a at time ¢t
Rated power of solar cell

Temperature coefficient of module

Cell temperature of asset of asset a at time t
Reference temperature (25 °C)

Performance Ratio

Wind speed at 10 meters

Outdoor temperature at 2 meters

Capacity Factor

Wind speed

Height

Surface Roughness

Normalised standard deviation

Wind speed standard deviation according to [2]
Wind speed offset

Discrete single turbine power curve element

vii



ps
Pm
Nwake

Navail

fi

Apanel
Aused_tilted
Aused

aref

Et,2030,country
Et,2030
de
Ayear,country

E203O,country

CayrE

caq

pd,p

04

Probability Distribution

Adjusted turbine power curve element

Wake efficiency
Availability of Turbines
Suitability Factor

Area weighting

Land cover suitability
Nature reserve suitability
Area solar PV panel
Used titled area

Used area

Reference solar altitude
Maximum power density

Diameter

Maximum power constraint
Adjusted to 2030 electricity demand for country

Electricity demand in 2030

Electricity demand

Expected increase in demand from year to 2030

Expected electricity demand country

Return portfolio

Weight of asset a

Normalized electricity demand

Expected installed VRE capacity

Expected installed VRE capacity per technology for each country
Correlation between electricity demand the return of the portfolio
Standard deviation portfolio

Standard deviation demand

viii



1.Introduction

Considering climate change mitigation, the uptake of renewable energy technologies in the
European Union (EU) will further increase in the future [3]. Herein solar Photovoltaic (PV) and
wind power play an important role. The 2030 EU energy framework target states that 32% of the
final energy consumption must come from renewable resources by 2030 [4]. It has been shown
that in the case of Germany if the share of solar PV and wind turbine exceeds 30% of the total
energy production that either energy has to be wasted, transported or stored [5]. The growth of
VRE can therefore be a problem for the electricity system as especially these two resources are
weather dependent and produce Variable Renewable Electricity (VRE) [6]. The electricity system
traditionally relies on power production that is manageable in terms of when production can be
turned on or off. VRE being variable makes it thus more difficult to balance supply and demand.
Especially when injecting larger shares of wind and solar energy in the system than that are

currently installed [5,7,8].

Several technologies and methods have been proposed to accommodate the variability of VRE
[6,9]. They aim to solve this variability by either controlling power production, energy storage,
increasing interconnection or Demand Response (DR) [5,10]. DR means demand pattern can be

altered by using e.g. smart grids, or altering the time of industrial energy intensive production

[5,11].

However, there is also another option that is not able to accommodate the variability at the source
of the problem, before it arises. This solution is to strategically place wind turbines and solar panels
at different locations in a larger area [12,13]. This placing has the aim to put the VRE technologies
in places where in total they can produce electricity with the smallest possible variation in
production or follow the demand most closely. Especially combining wind and solar can increase
VRE stability in the electricity grid [13,14]. The amount of additional options needed to integrate
the shares of VRE can therefore be decreased. However, the premise of most of the strategic
installation VRE research is the ‘copper plate’ assumption [13—16], meaning that electricity can be
transported freely inter and intra country. This means that if VRE technologies are strategically

placed additional funding could still be necessary for increasing the transmission grid.




1.1 Literature Review

Multiple methods have been used to identify sets of optimal locations of VRE technologies to
reduce energy production variability [13,17-19]. An overview of their research is summarized in
Table 1-1. It shows that there is a high variation in the way research is conducted, in their inclusion
of VRE technologies as well as in data sources and spatial resolution. Generally, these studies use
multi-year weather or electricity data. The optimization in these studies was performed to reduce
the residual between energy demand and production using nonlinear optimization [19] or linear
least square regression [16,18]. Other studies aimed at maximizing power production/capacity
factor while minimizing the volatility in (hourly) production using portfolio theory [13,15,20], or
minimizing the variability of wind power and the ratio of energy variability and energy input [17].
While the characteristics differ, these studies showed that a reduction in VRE variability leads to

overall lower maximum power production compared to maximizing for power production.

However, some of this research does not explicitly consider electricity demand [13,15,20].
Including electricity demand in the optimization will improve the optimization as electricity
production variation that matches the electricity demand is not penalised. Other studies do include
electricity demand [16,18,19], however, these studies only use a few year(s) of electricity demand
data while using 40 years of weather data. The disadvantage of this is that the link between weather
patterns, e.g. rise in solar irradiance and temperature, do not correspond well to the electricity
demand at that time. Furthermore, these studies either optimized for maximum power production
or minimal residual demand. This means that trade-offs between having maximum power
production or exactly following demand could be overlooked. For example, when minimizing
solely for variability it is unclear how much variability needs to be “sacrificed” to gain more
renewable electricity output. This demonstrates the advantage of using portfolio theory, as it not
only shows the solution at maximum return or minimum production but also identifies the

solution in between these points which can show these trade-offs [12,13,15,21,22].



Table 1-1: Summary of selected previous research on reducing the variability of VRE in the electricity system.

Authors Optimization Wind  Solar PV Spatial Locations Electricity demand ~ Demand  Ranged
turbines resolution  included matched in Response  solutions*
optimization
Cassola, Burlando, Minimizing wind power v x Individual x x x x
Antonelli, & Ratto variability weather
[10] station
data
Grossmann, Selecting out of 67 pre-defined x v 1°(~110 x v L v x 2 x
Grossmann, & sites to reduce solar PV 90 km)
Steininger [18] variability
Van der Vliet [19]  Matching the VRE production 4 v 0.5° v 4 x 2 x
with the electricity demand
Zappa & Van den  Mixing the spatial distribution v v 0.75° v v x x
Broek [16] of VRE to minimise residual
load by maximizing the
correlation.
Portfolio theory based research
Rombauts, Maximizing the average v x Individual x x x v
Delarue, & capacity factor of wind power weather
D’haeseleer [14] while minimizing hourly wind station
power fluctuations data




Roques, Hiroux, Maximizing wind power v x National x x x

& Saguan [13] production and minimizing wind

variability, at all times and power

specifically during peak hours production
Shahriari & Aggregation of wind and solar v 4 2kmx2 von x x
Blumsack [9] PV power plants to increase km

the overall availability factor.

Hu, Harmsen, Reducing the variance of wind v v 0.5°x v x x
Crijns-Graus & and solar PV assets while 0.667°

Worrell [14] maximizing their return

Tejeda, Gallardo,  Reducing the variability of v v 0.25°x v v o4 x
Dominguez, et al.  wind output 0.25°

(23]

! Given in aggregated large regions. * Storage is used for curtailment. *Ranged solutions refers to finding sets of locations that show solutions not only
at the extremes, e.g. where the variability is minimized or the output is maximized, but also the solutions that lay in between these points. “Unclear if

hourly demand pattern is used. Uses one year of demand data.




Portfolio theory is an economic theory first coined by Markowitz in 1952 [24]. A portfolio refers
to collection of assets [25]. Each distinct portfolio has a unique division of the shares of the assets.
Originally this theory aimed to select optimal portfolios consisting of sets of investments that
reduce the risk compared to selecting just an individual investment. Diversifying the assets in the
portfolio the right way can reduce the risk and increase the return. The theory stipulates that the
set of optimal portfolios should have a maximum return for each level of risk. This set of portfolios
constitute the efficient frontier, an example is shown in Figure 1. Every point on the line represents
a portfolio that cannot increase its return without increasing its risk or decreasing its risk without
reducing its return [15]. The return, originally refers to the expected return of an investment, and
risk, to the variance of return of the portfolio. In short, the theory outlines that picking the “right”

set of investments decreases the variance compared to picking one investment.

A Optimal portfolios will
all lie on this curve

(efficient frontier)
Very high risk/very
high return

Portfolios above
the curve are not
attainable

5

Medium risk/
medium return

Portfolios that lie below

the curve are not efficient.
They have greater risk than
is necessary to achieve
the same return

Return %

Very low risk/
very low return

v

Risk % (standard deviation)

Figure 1: Efficient frontier risk refers to the variability [12]

When applying portfolio theory to energy system planning, the expected return can cither be the
investment cost of the new technologies in the energy system, the actual financial return or the
energy produced [21]. The variability can refer to the variability in cost, in financial return or in
energy produced. Generally, the asset is replaced by locations of VRE or different energy sources.
Applying portfolio theory to energy planning is favourable compared to other methods because it

can produce portfolios of wind and solar technologies that minimize the variability of VRE, while



also showing the trade-offs between having high return (energy output) or low variability (VRE

variability) [13].

The results of portfolio analysis can be a set of portfolios consisting of VRE technologies that have
maximized electricity produced under the same variability, or portfolios that have minimized
variability under the same electricity produced [20]. These portfolios construct the efficient
frontier from the point where the variance is globally minimized to the point where the return is
globally maximized [15]. Therefore, using portfolio theory makes it possible for policy makers or
system operators to identify optimal locations of VRE power plants. They can opt to optimize
locations to either having more renewable energy produced or having less volatile energy
production, allowing for more insightful decision making. Also, if policy makers or system
operators know what level of production variability the system can accommodate, they can identify
what maximum energy output can be achieved, subject to their maximum variability constraint.
They could promote these regions so that energy producers or prosumers are more inclined to

install VRE technologies in these regions.

Previous portfolio-based research, however, did not look at matching the VRE production and
demand since they analysed the variance of production or the monetary variance [13,15,20,21].
Matching the electricity demand profile more closely with VRE generation will identify locations
of these power plants that can be more easily accommodated in the electricity system. To better
match the supply and demand, the covariance between energy demand and VRE production could
be used instead of the variance itself. Doing so would identify portfolios that have various degrees
of covariance, meaning that they cither perform better or worse in relation to matching the energy
demand, while exploring the trade-off with higher or lower energy production. Including

covariance thus extends the application of portfolio theory in energy systems planning.

To further investigate the potential of maximizing the covariance between VRE and electricity
demand, Demand Response (DR) was investigated. DR or demand side management refers to
activities that alter the demand profile of electricity consumer both in time and in level to balance
the electricity system [26-28]. This can entail to lower or shift the consumers’ demand during
peak load time [29] or to balance intermittent (VRE) generation [28,30]. Until now, literature has

identified that there is a considerable potential for DR in the European power market and that the




implementation can change the optimal mix of wind and solar [27,31]. It is therefore beneficial to
investigate the role of DR on the relationship between VRE production and demand and how this

affects the overall division of wind and solar.

As a case study area, Northwest Europe is chosen. The relatively small size allows for reasonable
computation time to solve the optimization while also maintaining enough weather variability to
find different solutions [19]. The temporal scope is set at 2030 so that changes in weather patterns

and land use were minimal.

1.2 Research Questions
Based on the literature mentioned above, this thesis aims to answer the following research

questions:

e To what extent can the covariance between VRE production and demand be maximized
for each attainable energy output level, in Northwest Europe?

e What are the optimal spatial distributions for wind and solar assets in Northwest Europe,
that maximize the covariance and return?

e To what extend can DR maximize the covariance between VRE production and energy

demand?

The covariance analysis builds on mean variance portfolio analysis. The result of this analysis is the
expected return, being the VRE produced, and the covariance between energy demand and energy
produced. The result of this optimization determines both the extend, where the trade-off between
covariance and return are and the locations of the VRE technologies. The third question helps to
further investigate the covariance between VRE production and demand as part of the demand

pattern can be altered.

The outline of this thesis is as follows. Chapter 2 describes the methodology. Chapter 3 shows the
results of both the key intermediate steps as well as the results of the portfolio analysis. The results

are discussed in chapter 4, discussion. Chapter 5, describes the conclusion.



2.Data & Methodology

This chapter adumbrates the steps taken to attain answers to the research questions. Its foundation
is based on a multitude of studies [13—16,20,32]. Figure 2 shows the overall main methodological
steps of this thesis. For the optimization, Python, R Studio, ArcMap and Excel were used, at each
subsection the respective programme is mentioned as well as in Figure 2. Before data gathering
started, the geographic area was defined. Belgium, Denmark, Germany, Ireland, Luxembourg, the
Netherlands, Norway and the United Kingdom were set as the countries belonging to Northwest
Europe. In Arcmap various maps were combined to get the country outlines and sea borders [33—
35]. This thesis used the Exclusive Economic Zones to define borders at sea [31] and set a limit

was imposed at 100 km from shore for wind offshore, in line with [15,32].
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The outline of this chapter mirrors the outline diagram. Section 2.1 addresses the weather data.
The pre-processed weather data is thereafter combined with the technical specifications of wind
turbines and solar PV panels to produce the hourly power output, defined in section 2.2 Power
Conversion. In that section the power output is first calculated in power/hour, after which it is
converted to hourly capacity factor. Next, additional technical data is used together with
geographical information on land cover and bio reserves to determine the capacity constraint in
section 2.3. The expected installed capacity in 2030 and the energy demand are discussed
respectively in section 2.4 & 2.5. The energy demand, expected installed VRE capacity, hourly
power output and the capacity constraints all serve as input for the portfolio analysis, see section
2.6. The demand response optimization is outlined in section 2.7 and the post processing of the

results is described in section 2.8. The results of the portfolio analysis are presented in chapter 3.

2.1 Weather Data

The hourly electricity production by VRE technologies was determined using the hourly weather
data for Northwest Europe at uniform spatial resolution. Numerous datasets are available to
compute this [36,37]. ERAS, is a recent reanalysis weather dataset developed by the European
Centre for Medium-Range Weather Forecasts (ECMWEF) and uses past measurements and models
to map out the weather [38,39]. Contrary to its predecessor, ERA-Interim, ERA5 has higher
geographic resolution data (0.25° x 0.25°, versus 0.7° x 0.7°) and hourly intervals as well as wind
speed at 100 m [38]. Even though this resolution is low compared to satellite data [36], the weather
variation between two grid cells of 0.25° low [16], meaning that an increase in resolution will not
affect the results in a considerable way. Furthermore, ERA5 is shown to be more accurate than
another widely used weather dataset, MERRA-2, for both wind and solar power production
[36,37]. Therefore, coupled with a reduction in computation time compared to satellite data, this

study used the ERA5 dataset for the input weather data.

The ERAS5 data is pre-processed such that it is trimmed exactly to the right dimension of the case
study area. The variables used for this study and for what technology can be seen in Table 2-1.
They are further explained in their respective sections. VRE technologies, x, that are installed in

locations I are referred to as assets, d.




Table 2-1: ERAS variables used in this thesis.

Variable in ERA5 Translated meaning Section

SSRD Global Horizontal 2.2.1 Solar power conversion
Irradiance

FDIF Diffuse Horizontal 2.2.1 Solar power conversion
Irradiance

FDIR Direct Normal Irradiance ~ 2.2.1 Solar power conversion

T2m Temperature at 2m 2.2.1.VII PV array Model

Wspdrf Wind speed at 10m 2.2.1.VII PV array Model

Wspd100 Wind speed at 100m 2.2.2 Wind Power Conversion

2.2 Power Conversion
The following section explains the steps taken to convert the hourly weather data into hourly
capacity factor. First, the conversion of irradiance data into solar power is addressed. Second, the

power conversion of wind speed in wind power is described.

2.2.1 Solar PV Power Conversion

Several methods exist to convert incoming solar irradiance into power output [40—43]. Some of
the models do not take into account the diffuse component solar irradiance due to its reduced
computation time [40,41], thereby accepting a loss of at least 10% in the power output [43].
However, this study took the diffuse component into account as it more accurately represents
reality. This thesis follows the model as depicted in Figure 3 to calculate the solar PV power output.
To do this the PVLib Python library [42] was used for the computation of solar power due to its
extensive modelling possibilities[44]. The next subsections address each of the model points,

starting with the solar irradiance.
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[. Irradiance

The irradiance data was taken from the ERAS5 dataset [38]. On a horizontal surface, the solar

radiation or Global Horizontal Irradiance (GHI), is given by (7).

GHI = DNI + DHI (1)
Where DNI is the Direct Normal Irradiance (DNI), and DHI is the Diffuse Horizontal Irradiance
which represents the diffuse component [43]. The ERA5 dataset gives the Surface Solar Radiation
Downwards (SSRD) in J/m? as GHI which has to be converted to W/m? [16,47] using (2).

E
p_E @
t
Where P is the power per m?, E is the energy per m? and t the time in seconds in each time step.
To compute the irradiance on a tilted surface the direct solar beam (DNI) and the diffuse radiation

are also needed (DHI) [43]. In ERA5 notation [48], DNI is referred to as FDIR. DHI is not given
by ERAS5 and is calculated by (3).

DHI = GHI — DNI 3)

Consequently, both the DHI and DNI are converted using (2) to get their outputs in W/m?.
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II. Transposition models

Once the diffuse beam is known, GHI, DHI and DNI were used in a transposition model to
determine the irradiance received on the Plane Of Array (POA), or tilted surface [43,49].
Generally, there are two types of transposition models that determine the sky diffuse radiation on
a tilted solar panel, isotropic and anisotropic [50,51]. Isotropic models include three radiation
components to determine the radiation, direct beam, isotropic diffuse and reflected solar radiation
[51]. Anisotropic build on the isotropic model and also includes circumsolar diffuse as well as
diffuse form horizon radiation [51]. Numerous studies have evaluated the accurateness of the
different transposition models [50-57]. However, these studies do not overlap in what models are

selected for their study, making comparison difficult.

This study used the Reindl transposition anisotropic model [45,58,59]. The POA irradiance,
according to the Reindl model can be calculated using equation (4), which the Python library has

an integrated tool for.

Ipoa = Ipoagirecr + IPOAdif,sky + IPOAdif,reflect (4)
Where Ipo g ;e is the direct irradiance received on the plane, Ippy F.sky? the diffuse radiation
from the sky, and Ipga Freflect’ the diffuse radiation reflected from the ground. Ipga 4,00 i

calculated using (5).

IPOAdiT'eCt = DNI COoSs 9 (5)
Where 8 is the angle of incidence. It was calculated using the solar zenith angle 8,, the relative

azimuth,y, and the tilt of the panel, 3, see (6)

cos 8 = cos f cos 6, + sin §sin 8, cosy (6)
The ground reflected diffuse irradiance is given by (7).

1 cos 8 7)

= GHlo, >

Ipoa dif reflect

Where gy, is the albedo, set at 0.25 following the PV-lib assumption [42]. Equation (8), was used

to estimate the Ipoagif sy
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Ipoagi sy = DHI (8)

X aic056+(1—ai)<

N DNI X cos @, . 3(3)
GHI o \2

Where a; is the anisotropy index and was calculated by a; =

1+ cost(ﬁ))
— 1

DNI

. For this thesis the mean of
N extra

DNlgytrq was used to calculate the anisotropy index. The get_extraradiation function in PV Lib
[42] was used in Python for this calculation, using the default input. The last term of equation (8)
was slightly altered in the Python code such that the diffuse irradiance is still computable at night,

when the GHI = 0, so that the model is able to produce results 0 instead of Not a Number (Na/V).

ITI. Solar PV Technical Specification

To accommodate the difference between the urban and rural locations, two different types of
configurations and solar PV panels were chosen. Solar farm, where the solar panels are set up in

arrays, and solar rooftop, where the solar panels are installed on rooftops.

IV. Rooftop

For rooftop solar, the current most efficient solar panel was used, thereby assuming that this would

be the norm in 2030. Currently, this is the SunPower X series: SPR-X22-370 [60,61].

V. Solar-farm

Solar-farm scale project do not necessarily opt for the most efficient solar panels due to the higher
costs [62]. Therefore, a utility type solar panel was chosen that has a lower efficiency. It is
furthermore important that the PV modules are reliable. The Trinasolar TSM-330PD14 [63],

showed to be reliable [64], and was chosen as the utility panel.

VI. Tilt and azimuth
The optimal tilt to maximize production of energy of solar PV panels varies between countries
having a range of 32° up to 40°, and does not only depend on the latitude but also on general

weather conditions [65]. Consequently, these values were used for solar farm configurations and
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can be seen in Table 2-2. For rooftop PV the tilt angle was fixed at 35°, since there was no general
data available on the percentage of tilted roofs in the case study area nor how much the angle of

these roofs generally is. The chosen angle of 35° was in line with [16,66].

Adjusting the tilt angle due to the shadowing of other buildings, mountains or other objects were
not taken into account. The azimuth chosen was 180° degrees south in line with [16,67]. Table

2-2 gives an overview of the angles that are used in this thesis for the solar panels.

Table 2-2: Solar panel azimuth and tilt angles

Type Country Azimuth (y) Tile (B)

Rooftop All 180° 35°

Farm Belgium 180° 35°
Germany 32.5°
Luxembourg 35°
Norway 40°
The Netherlands 34°
Ireland 36°
Denmark 36°
United Kingdom 34°

VII. Solar PV model

Various PV array models convert the POA irradiance components to power output exists [68,69].
This thesis used the PVWatts model to calculate the power output per type of panel, Poff 4 ¢, from
the POA irradiance and the cell temperature [46,70]. The equation is slightly altered to

accommodate additional losses such as inverter efficiency following [16], see (9).

©)

IPOAi’t’x

standard

Peff,a,t = Pyco (1 > [1 + Ypdc,x (Tcell,a,t - Tref)]PR

Where Py is the rated power of the solar panel, Is¢qngqra the reference irradiance of 1000

W/m2, Ypac,x the temperature coefficient of the module, Ty is the reference temperature taken
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to be 25 °C, and PR, the performance ratio of the solar cell accounting for efficiency losses. A

PR value of 0.9 was chosen following [16,71]. T¢eyy o+ is the cell temperature and was calculated

using the Sandia PV Array Performance Model [72], see (10).

Teewitx = Ipoaq X €20 Momit + T, (10)
Where a and b are parameter based on the module construction, for each panel they were assumed
to bea = —3.47, and b = -0.0594 corresponding to an open rack cell glassback solar panel.
Ujom,it is the windspeed at 10m height, taken from the ERAS5 data. T;; is the outdoor
temperature, was also taken from the ERA5 database at a height of 2m, and was assumed to be the

same for both arrays and solar farms.

The capacity factor, CF,;, was then calculated by  (71). Where Py y is the rated power of the

panel selected at the site.

_ Peff,a,t (11)

After the CF values were calculated, the two solar PV configurations were merged since no solar
farm can be installed at rooftop location and vice versa. The additional benefit was, was that it

reduced the computation time.
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2.2.2 Wind Power Conversion

The transformation of hourly wind speed data into hourly wind power production is explained in
this section. A division is made between onshore and offshore locations. Figure 4 shows the steps

taken to perform the conversion.

Python
Expected Turbine
Characteristics
[]
I
L} A 4
[ H
I Wind Speed 1 Wind Speed Conversion Hourly Power Output
: (at 100m} [ (Log wind profile) (CF/hour)
I
[ »~
L
L
I
I
' Adjusted Power Curve
)
¥
~
: Turbine
Mean Wind Speed
pe Selection

Figure 4: Model outline Wind Power Conversion
The first section describes the expected turbine characteristics that define the hub height of the
turbines. In section II, the wind speed conversion is explained. In section III the average wind
speed for the time period of 1979-2019 was calculated for each grid cell. Which served as input
for the turbine selection at each location. Alternative wind power curves were constructed to
incorporate the effect of the position of wind turbines in a wind farm layout in section IV. In
section V, the adjusted power curve, the selected turbine per site and the wind speed were converted

to the hourly power output. All of these methods were programmed in Python.

I. Expected Turbine Characteristics

Wind turbines are installed either onshore or offshore which results in different technical
characteristics [32]. The EEA projected various characteristics, such as hub height, and rated power
for both onshore and offshore turbines until 2030 [32]. However, the industry is changing rapidly
as 2030 projections for onshore installed turbines are already surpassed [32,73]. Therefore, the

used specifications are outlined below and can be seen in Table 2-3.
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Onshore

In 2018, Norway has installed onshore wind turbines with an average power rating of 3.6 MW,
with a 2.7 MW average in Europe [73]. In 2015, the rotor diameter on average is 100 m and the
hub height is 85 m (increasing by 9% in 11 years) [74]. Meaning that the assumption from EEA
do not hold anymore. This thesis assumed a hub height of 100m, and the average rated power will

be used as an indication to select the onshore turbines.

Offshore

Currently, for offshore turbine, the average rated capacity is 6.8 MW [73], below the EEA
assumptions of 10 MW [32]. In 2015, rotor diameter is 115 m and increased 1.6 times 2006. The
hub height of 87 m [74] is again below the numbers of the EEA, which states a hub height of150
m and rotor diameter of 120 m respectively. For offshore locations the projections of the EEA still

hold and were used in this thesis.

To summarize, Table 2-3 presents the specifications that are used as an indication for choosing the

specific wind turbine types.

Table 2-3: Turbine specifications used for selecting turbine

Rated power (MW) Hub height(m)
Offshore turbine 10 100
Onshore turbine 3.6 120

II. Wind speed conversion
The ERA5 wind speed data was taken at 100m above ground and needs to be changed to
accommodate for the change in height for offshore turbines. The initial data gave the wind speed
in two vectors and were combined to one value. The wind speed, u, depending on height, h, was

calculated from ERA5 data using the wind speed log equation, (12), following [75-77].

(h — d) (12)
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Where hg is height at 100m and ugthe windspeed at hg. zj is the surface roughness length and d
the displacement height. This thesis uses a zyg = 0.03 for available land and zy = 0.0001 for
water [78], in line with [16]. The displacement height is the height where the effect of ground
objects on the wind speed starts to wear off and where the wind speed can be taken as 0 [77]. This
thesis, however, almost excluded all installation of wind turbines in cities and nature reserves. It is
therefore assumed that the displacement height is zero. Equation (74) was used to calculate the

wind speed at 120m.

[II. Mean wind speed

The average wind speed at the two different hub heights was calculated to determine the mean
wind speed at hub height for the period of 1979-2019. The mean wind speed together with the
expected wind onshore rated capacity, see Table 2-3, was used to determine what onshore turbine
is used. First, the turbines were selected based on their rated power. Second, the mean wind speed
was used to identify the turbine type (I, II, & III), per location based on the approach by the

International Electrotechnical Commission (IEC), see Table 2-4.

The average wind speed is not used for offshore locations where wind turbines of IEC class S are
used [79]. The power curves from the turbines in Table 2-4 were used to compute the altered

power curves.

Table 2-4: Wind speed classes

Wind Average wind speed (m s') (upper Turbine
speed class  limit) [79]

I 10 Vestas V112-3.45 [80]
11 8.5 Vestas V126-3.45 [81]
111 7.5 Vestas V136-3.45 [82]
S Not applicable MHI Vestas V164-9500 [83]
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IV. Adjusted power curve

The spacing of the wind turbines in this thesis was set at 10D downwind, 5d crosswind based on
[84,85]. Due to the spatial resolution of the weather data it was assumed that the wind turbines
were placed in wind farm formation. To account for placing the wind turbines together, a multi-
turbine model was used to smoothen the power curves [2]. This model takes into account the
memory effect of wind turbines on the average wind, by block averaging the original wind speed
time series. However, since the spatial resolution and time step of the ERAS5 data is high compared
to the studies data [2], the differences between the original wind speed data and the new wind
speed data were only minimal. Therefore, the original wind speed time series was used to calculate

the power output.

The power curves were adjusted to mimic a multi turbine layout, following the method outlined
in [2]. This method was not performed for each location, i, but for one offshore grid cell and one

onshore grid cell to reduce computation time. The locations can be seen in Table 2-5.

Table 2-5: Reference locations for multi-turbine method

Onshore Offshore

Location (latitude, longitude)  52.0/6.75 53.0/3.5

Assuming a turbulence intensity of 0.075 following [86], and an area dimension of the ERA5
area, 28 km by 28 km, the normalised standard deviation, gy, is equal to 0.05 [2]. The actual

wind standard deviation according to [2], 6y, is equal to multiplying 6;, with ug,,4. The results can

be seen in Table 2-6.

Table 2-6: Average wind speed and standard deviation for offshore and onshore location

Onshore Offshore
Ugyg(M/s) 6.30 9.69
o, 0.315 0.485

A normal distribution is generated for these locations putting in gy, in (13).
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1 _ Kk (13)
fk) = ——=e 2w

\2mal

Where k is the wind speed offset. ps, the probability distribution was calculated by integrating

over f(x). The multi turbine power curve, Pm, was consequently computed using (14).

Pm, = 2 Psq X ps (14)
q

Where Ps, is the discrete single turbine power curve element. This leads to the power curve that

is shown in Figure 5. For each turbine a new multi turbine power curve was made.

Offshore power curves V164-9.5

10

A N 00 L

Rated power (MW)
[9,]

01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Wind speed (m/s)

== Orignal power curve == \ulti-turbine power curve

Figure 5: Offshore original and multi-turbine power curve

V. Wind turbine power output

This multi-turbine power curve together with the adjusted wind speed made it possible to calculate
the power output per grid cell per time, P;¢,. The Python function power_curve out of the

windpowerlib Python library was used for this step [87].

Additionally, wake and availability efficiencies were used to finalize the calculation. The output of
wind turbines in a wind farm influence each other, referred to as array efficiency or wake effect

[32]. There is a discrepancy in literature on the value used to accommodate for wake losses
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[16,23,32,75,88,89]. This thesis used a wake effect, ,yqxe, of 10% for offshore turbines and 7.5%
for onshore turbines in line with [32]. The availability of the turbines, 4441, is decreased due to
maintenance periods and power outages, this thesis used 5.5% for both offshore and onshore

locations in line with [90]. The effective power output per location per time point was thus

computed with (75) in line with [89].

Peff at = nwakenavailpa,t (15)

Where P(t) is the power output at each time point, t, and location, i. The capacity factor was

determined using  (71). The capacity factor, CF, was calculated using equation (16).

Peff a,t (16)
Prated

CFa,t ==

2.3 Capacity Constraint

The next section describes the methods used to determine the maximum installable capacity of
solar and wind power per grid cell, see Figure 6. The first subsection explains the determination
of the usable area. The second and third subsections explain how to determine the maximum power
density of solar and wind power, respectively. The final subsection combines the usable area and

the power density to form the maximum power potential per grid cell.
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Figure 6: Flow chart maximum capacity constraint

21



2.3.1 Usable area

The area available, Agyqi1, for the production of renewable electricity was limited by a multitude
of factors, such as urban areas and nature reserves [91]. This reduction in land availability was
approximated by the suitability factor, f;, for each location of i, and technology x, inspired by
[91]. f; resulted from combining the suitability variables, a;, b; and w; in a high-resolution map
per technology. Where a;, is the area weighting, w;, is the suitability factor regarding land cover
and b; is the suitability factor for nature reserves. This map was consequently resampled to the
right resolution using bilinear interpolation option in the ARCGIS tool [92]. The initial
combination was possible as the different suitability values did not geographically overlap at high
resolution. All of the variables were set at a range of 0, meaning the area cannot be used, to a 100,

where the area can be fully used.

Following the report by the European Environmental Agency, protected nature reserves are
classified as Natura 2000 areas and Common Database on Designated area sites [32]. In these areas
b; = 1, this is used because wind turbines have been shown to be installed in these areas in the
region selected by this study [93], but these areas still fall under protection [32]. The files were
downloaded from [94,95].

Corine Land Cover (CLC) definitions [96], were used to determine the area weighting, w;. The
CLC land types picked for each technology are given in Table A-i. Only buildings in the urban
fabric class are assumed to be able to install solar rooftop. Increase in population, from 2018-2030,

and the corresponding increase in urbanized area was not taken. The values of w; are given in

Table A-ii.

The area weighting, a; for wind onshore is unlimited by altitude. a; for offshore refers to the
maximum sea depth as floating wind turbines are not considered in this thesis. The depth was set
at 50 m, in line with [16,32]. The value ranges from 0 to 100 for each offshore location, where 0
means that the sea is deeper than 50m and 100 means the sea is shallower than 50 m. a;, for wind

offshore, solar farm and solar rooftop configuration was set at a 100.

An overview of the suitability variables and their range for each technology is given in Table 2-7.
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Table 2-7: Suitability variables and their references, the range is 0-100

Variable Wind onshore =~ Wind offshore ~ Solar PV Solar Utility
Rooftop
a; 100 0 or 100 100 100
w;, Specified values 100 Specified Specified values
see Table A-ii ~ [91] values [16] [91,97]
b; 100 100 100 100

2.3.2 Solar PV power density

Assuming the tilt for solar rooftop outlined in section 2.2.1.VI, the area used for these solar panels
is higher than the building’s footprint, following Pythagoras’s theorem. The used tilted area,
Aysed tittea for solar rooftop is 1.22 m* per m?* roof, under the used tilt value of 35°. Other limiting
factors such as chimneys or roof terraces were not taken into account. The used area for rooftop
PV, Ayseax» per solar panel horizontally is calculated using (17), where Ay gnep x is the area of the

panel.

_Apanelx (17)

Aused_tilted

Aused,x -

The Ayseq, for one panel in a solar farm is calculated using (78) following [98].

sin B; (18)
Aused,ix = Apanelx <COS b+ COS(YTef Y tan a lf>
re

Where Agrrqy is the area of one panel, B;, the tilt of the panels per country, yref, the reference
solar azimuth angle, and a; the solar altitude angle calculated by atrer = 90° = 0, 5. 0, yefis
the reference zenith angle. For all solar locations the assumption is made that the solar altitude
angle is 14° and the solar reference azimuth is 179° [99], following the location of Berlin at winter
solstice of 21 December 2016, in line with [16]. This stands in contrast with other methods that

estimate the solar altitude angle either at 10:00 or 14:00 at winter solstice [98]. However, since
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this leads to unrealistic high values for Ayseq for array operation in especially Norway, this

approach was not adopted.
The maximum power density, P, ;, per technology x, in location i,is calculated using (79).

P dc0,x (1 9)
Aused,i

A —
px,i -

Where Pgeqx is the rated power of the solar panel. The values of A;504 and Py for both rooftop
and solar farm can be seen in Table 2-8. The values are considerably higher compared to the wind
turbine power densities, see Table 2-9. This high estimation is based on the maximum power
production and assuming that the whole area can be build full of solar panels. This value is further

restricted by the usable area which result in the maximum capacity constraint, see section 2.3.4.

Table 2-8: Aucs and maximum power density for solar panels

Type Country Aysea(m?/panel) P, (MW/km?)
Rooftop All 1.4 235.7
Farm Germany 5.8 63.8
Norway 6.5 56.9
United Kingdom 6.0 617
Netherlands 6.0 61.7
Belgium 6.1 60.7
Luxembourg 6.1 60.7
Ireland 6.2 59.7
Denmark 6.2 59.7

2.3.3 Wind power density

The power density of wind turbines was determined using their rotor diameter. For offshore
locations, one power density value was calculated and for onshore locations 3 power densities were
calculated matching the different diameters for each turbine. For all locations a wind turbine
spacing of 10D downwind and 5d crosswind was used [85]. The maximum power densities, Py,

per technology, x, is given by (20).
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A Pry (20)
Px =
10D, X 5D,

Where Pty is the rated turbine power. The values of Py are given in Table 2-9.

Table 2-9: Power densities per wind turbine

Turbine Power Density (MW/km?)
V112-3.45 5.13
V126-3.45 4.35
V136-3.45 3.73
V164-9.5 (offshore) 7.06

The power density of the offshore turbine is higher than that of current wind farms [100].
However, all values are below the assumed power density values in [32], and are therefore
conservative estimates. The different power densities were combined in one map. The selection of
them depended on the average wind speed of that grid cell following the IEC approach [79]. The

values were consequently used to determine the maximum potential per grid cell.

2.3.4 Maximum capacity constraint

The result of the above mentioned approach yielded 4 suitability maps and 4 power density maps,
one for each technology. They were used for the maximum power constraints, C:Crfiax , per grid cell,

i, and technology, x. This combination was done using (21).
max

xi fx,i X pr,i (21)

Where f ;, is the suitability factor, for each technology x and location i calculated in section

C
2.3.1. Cﬁax , was set as a limit for the maximum allowable power per technology per location.
2.4 Expected installed capacity

The total installed capacity per technology per country in 2030 was used as a constraint in the

model. For onshore and offshore wind power the WindPower Europe projections for the Central

25



Scenario were used [101], with the exception of Norway offshore due to the lack of data. The
combined expected installed capacity for solar total was used and was based on [102]. Here too

Norway was not included in the data.

For Norway, the expected installed capacity for offshore wind and solar total was derived from
[103] and was converted to installed capacity using a capacity factor of 32.6% for wind offshore
[104] and 13% for solar total [105]. The resulting expected installed capacity values can be seen
in Table 2-10. The total installed VRE capacity, caygg (solar + wind) is 277.295 GW.

Table 2-10: Expected installed capacity in 2030

Country Onshore wind  Offshore wind ~ Solar Total (MW) [102]
(MW) [101] (MW) [101]
Norway 10000 10310 [103] 4391 [103]
Denmark 5000 4300 838
Germany 70 000 15 000 63 959
The Netherlands 8 000 11 500 5586
United Kingdom 15 000 22500 11 043
Ireland 5600 1 800 19
Belgium 4 400 4000 3818
Luxembourg 100 0 131
Region 118 100 69 410 89 785

2.5 Electricity demand
The hourly electricity demand was taken from [26,106] at national resolution. The data ranges
from 2010 to 2019 for the countries in the region under study. Adjustments to the data set were

made so that the whole data set was set in one time-zone. For details see Appendix B.

The hourly demand data, E¢ coyn¢ry> Was adjusted to account for a changing electricity demand in

2030, see (22).
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Et,2030,country = Et,country X Oyear,country (22)
Where Et3030,country is the adjusted electricity demand for country at each hour and
®year,country is the expected increase in demand from year up to 2030. @yeqr country Was

calculated using (23).

E2030,country (23)

Ayear,country = yearE
t=1 *“t,country

Where Ejp30,country is the expected annual energy demand of country in 2030 and
Z%’:‘fr Et country is the summed annual energy demand of country in year. Eyg30 countryWwas
based on the EU projections of 2030 taken from [107]. To conclude, the hourly adjusted energy
demand was normalized using min-max normalization, see (24).

_ de - min(de) (24)
" max(d,) — min(d,)

d

Where d,, is the original electricity demand and d is the normalized electricity demand with a

range from 0 — 1.

2.6 Portfolio Analysis

The Mean Covariance Analysis (MCVA), was performed twice. First, the model was performed
loosely constrained, where the total sum of the expected VRE capacity was set as the installation
constraint. Secondly, the constrained scenario sets the maximum installed capacity of each VRE
technology equal to the country’s expected installed capacity shown in Table 2-10. The portfolio

optimization was performed in R Studio, drawing inspiration from [14,108].

The portfolio optimization for MCVA aimed to maximize the covariance between the VRE
production and the energy demand, C ov(r , d). The MCVA is an optimization problem and was
formulated by (25). The optimization is subjected to the constraint where the weights of all assets,
Wg, should be equal to 1, and the weights of the assets should be smaller than their maximum
potential divided by the expected installed VRE capacity. For the constrained optimization the

sum of the weights of each asset should be bigger or equal to the expected installed VRE capacity
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per technology for each country, cag, over the total region’s expected capacity. T, are the return

CF values of the portfolio and d is the normalized demand data.

max Cov(r,,d) (25)
Wa
(Y
a
cglax
subject to < Wo < P
. Caa
constrained 2 Wq =
\ - CaygrE

To complete the optimization problem in R, the covariance was rewritten in matrix notation, see

(26).

- (26)
Cov(rp,d) = Cov z WoTy, d

a=1
— T .
= cov’ (ro,d)-w
Where C ov(rp, d) is the covariance between the energy demand, d, and the portfolio output, Ty.
n is the total number of assets, and 7, the return of asset a. The MCVA is a linear optimization
problem instead of a quadratic optimization problem, due to its one weight vector. To perform
the optimization the covariance was rewritten in matrix notation see (26), where cov” (14, d) is

the transpose covariance matrix and W is the weight matrix of weights wy,.

To create the efficient frontier, the optimization started with calculating the portfolio with the

highest return, Up. Hp is first rewritten to matrix notation, see (27).

My = Z Wop = p'w (27)
a

Where pT, is the expected return vector of all assets a. The first linear optimization maximized Up>
while conforming to the constraints set in (25). The second optimization set to maximize the
covariance, thus solving (25). These two optimizations yielded 2 portfolios, one with the highest

return and one with the highest covariance.
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The next step in creating the efficient frontier was to determine the return of 48 portfolios between
the maximum covariance portfolio and the maximum return portfolio using linear interpolation.
For each of these 48 returns the covariance was consequently minimized. Together, the return and

covariance of these 50 points produced the efficient frontier.

After the unconstrained optimization of MCVA, the constrained optimization was performed. The
constraints for each technology were first converted to maps in ArcGIS so that they could be loaded

into R Studio. This constrained optimization led to the second set of efficient frontiers.

2.7 Demand Response

The DR optimization was performed in Python using the Gurobi optimization software [109],
because it is both relatively fast in operation and free to use for academic purposes [109,110]. The
demand response optimization was performed on the constrained scenario because this scenario

more accurately presents reality as countries have their own VRE targets.

DR for both industry and the residential sector is season sensitive [11,111]. Furthermore, the
frequency with which the demand response can be initiated differentiates across technologies
[11,27]. In other studies, the demand in DR is shifted to a maximum of 24 hours which depends
on the chosen technology [11,27,31,111]. In this thesis it was assumed that the DR potential lasts
12 hours meaning that the DR added or subtracted to the demand initially has to be re-used or

withdrawn within 12 hours from the initial start of the demand response.

The DR potential used in this study was adapted from [11]. The minimal theoretic load reduction
per country was taken as a percentage of the total peak load from [11]. The percentage was applied
to maximum load demand of each country’s 9-year demand data. This yielded 8 separate potentials
and when added together led to an estimated DR reduction potential of 22.7 GW. This potential
was also used for load decrease potential. The potential was set as the maximum allowable DR

increase or decrease for a period of 12 hours.

To do this, the maximum return portfolio’s electricity production was chosen as the frame of
reference for the DR optimization. It was chosen because for this solution the electricity return was

maximized, while for the other constrained portfolios on the efficient frontier the demand had an
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active role in determining both the covariance and electricity output. To maximize the covariance
the slope of the production and the load should be as close to each other as possible. Therefore,
the total sum of the difference in the slope should be minimized. This resulted in the optimization

problem as formulated in (27).

minz ((rp.t —7pe-1) — ((de + DRy) — (de—qg + DRt—l)))2 (28)

t=1

( —23<DR, <23

tstare+12

z DR, = 0

subject to < tstart
tstart+12

Z IDR,| < 45.4

\ tstart

Where Tpt is the return of the max return portfolio at time t, d; is the original demand time series
and d;_4 is the previous demand time series. DR, refer to the demand response and used in time
t. tseqre is the time point where the DR is initiated. The last constraint ensures that the DR stays
within the limit of 22.7 GW over the whole 12 hours. The constraint uses 45.4 GW because DR

can be both negative and positive.

The function to be minimized was squared because Gurobi does not allow for absolute values to
be in the objective function. Since squaring would eliminate the negative sign and the minima of

this function was not used in this thesis it was chosen as a replacement.

The optimization was performed multiple times where both the duration and the maximum
potential was varied from 1/4™ the potential to quadruple the potential and 1/4™ the duration to
quadruple the duration. Varying the output and duration of DR allowed for creating a sensitivity

analysis for DR.

2.8 Portfolio Optimization Post Processing
The results were post-processed to gain a better understanding of their implications. The weights

of each portfolio were converted back to a coordinate system so that they could more intuitively
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used for geographic analysis. The return of the portfolio analysis is the CF of the whole portfolio,

this was converted to average annual energy use by using the capacity constraint.

To be able to perform a clearer interpretation of what the covariance of the portfolio’s and the

energy demand means the covariance was translated into the correlation coefficient usin
&y drp &

(29).

_ Cov(p,d) (29)
B Up X 04

Pd,p
Where Oy, is the portfolio’s standard deviation, and 0y is the demand standard deviation. This
transforms the scale from -c0 < x < 00 to —1 < x < 1 making understanding of the results more
intuitive as the minimum correlations refers to that the energy demand and portfolio are negatively
correlated, the maximum correlations refers to that the energy demand and the portfolio are
positively correlated and O referring to the fact that the portfolio and energy demand are

uncorrelated.
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3.Results

The first part of this chapter presents the intermediate results, being the CF values per location for
the studied period, the maximum installable capacity under the given suitability factor, and the
effect of using DR on the electricity demand. The second part shows the results of the
unconstrained portfolio optimization. The third part shows the constrained optimization results.
The fourth part shows the effect of including DR on the constrained optimization. The last part
compares the difference between the three scenarios; unconstrained, constrained and constrained

with DR.

3.1 Capacity Factor and Potentials

The capacity factors of both solar and wind power are presented in Figure 7 and Figure 8
respectively. The CFs were the result of the methodology explained in section 2.2. Both figures
show the potential CF of each panel without land restrictions. Figure 7 shows the different CFs
over a 9-year period that occur between the two panels. It shows that there is a minimal difference
between the mean CF of each panel. This could be attributable to the fact that for the solar farm

configuration a different panel is chosen as well as a different tilt angle.
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Figure 7: CF of solar farm and solar rooftop for 2010 up to 2019
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The CF for both solar configurations is generally higher than found in [71,112]. However,
differences could be explained to the higher PR value used in this thesis as well as a difference in

tilt angle usage.

Figure 8 shows the mean CF of offshore and onshore turbines. For onshore locations it clearly
shows that mountainous areas, such as the German Alps as well as the Scandinavian mountains
have low performance compared to the flatlands and flat areas close to the sea such as Denmark,
coastal Netherlands as well as parts of the United Kingdom. The influence of land and/or
mountains continues to be seen in the CF values for wind offshore. This is especially the case for
the Norwegian fjords. The most optimal locations for wind offshore in terms of mean CF are
shown to be at the Atlantic side and the Norwegian part of the North Sea. Most likely this is due
to the lack of neighbouring land and general wind direction that is not coming from land. While
a clear difference between the two location types exists in terms of their mean-CF output, it shows

that the utilization (CF value) of wind turbines is higher compared to solar panels.

The CF values for wind both on- and offshore found by this thesis generally align with the findings
of [23,32,112]. Both show high potential for the North Sea and low potential for mountainous
regions such as the German Alps. Coastal Netherlands showed to have a higher potential than in
[32] but it is more similar to [112]. The CF for wind offshore and the coastal regions was 0.1 lower
compared to [23]. This can be explained as the wind turbine used in [23] is producing faster at its

peak power than the wind turbines used in this study.
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Figure 8: CF of wind offshore and wind onshore for 2010 up to 2019
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3.2 Demand Response

The results of the DR optimization run to maximize the constraint’s max return portfolio can be
seen in Figure 9 and Figure 10. They show the impact of the optimization on the demand.
Especially in the winter periods, the evening peak electricity demand has flattened out. When DR

is applied during the summer months the daily peak is shifted towards solar noon. Furthermore,

the evening demand, form 20:00 onwards, during the summer is higher.

Energy Demand with Demand Response Energy Demand without Demand Response
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Figure 9: 2010 Electricity demand with demand response, Figure 10: 2010 Electricity demand without demand
adjusted for 2030 projection response, adjusted for 2030 projection

Figure 11, shows this difference more clearly. A positive DR means that demand is added and a
negative DR means that demand is subtracted. In the middle of the day DR is mostly positive and
during the night while negative in the morning and before the evening starts. This can be
attributable to the fact that peak demand mostly occurs in the mornings and the afternoons.

Furthermore, solar production is highest during the middle of the day so it is expected that more

demand can be fulfilled there.

Load values (GW)
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Demand Response Activation
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Figure 11: Demand response activation for 2010, adjusted for 2030

3.3 Unconstrained optimization

The efficient frontier for the unconstrained covariance analysis, see Figure 12, shows that there is
a clear trade-off between the return of the portfolio’s and the covariance between the portfolio and
the region’s energy demand. The first part of the graph, between a covariance of 0.0056 and 0.008,
shows that accepting slightly lower return increases the covariance considerably. The last part of

the efficient frontier, between a covariance of 0.0085 and 0.0087, shows that there is more of a

trade-off between the return and covariance.

Covariance efficient frontier, unconstrained scenario
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Figure 12: Efficient Frontier Unconstrained covariance analysis
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The return-correlation coefficient graph, which uses the results of the covariance optimization,
paints a slightly different picture, see Figure 13. While the majority of the graph follows the same
trend as the covariance efficient frontier, it is more uneven. This shows that the correlation between
energy demand and the portfolio does not exactly follow the same trend as the covariance between
the energy demand and the portfolio’s return. Especially towards the end of the graph it becomes
clear that there is not a 1:1 relationship, as the maximum covariance point does not align with the

maximum correlation point for this portfolio.

Nevertheless, it shows that to maximize the correlation between renewable generation and
electricity demand, some return has to be given up. In the beginning a return sacrifice (decrease in
energy production) of 0.002 increases the correlation by 6%, and might therefore be useful. After
this, considerable more return has to be given up to increase the correlation. From the maximum
correlation point there are fluctuations in both output and return that do not increase the
correlation but do decrease the return. The fluctuation of the correlation graph is attributable to
the standard deviation of the portfolios output, which has to change in order to accommodate
maximizing the covariance. This variation occurs since the covariance follows a clear trend and the
standard deviation of the demand is constant, thus leaving the portfolio’s standard deviation as the

variable that leads to the deviation in correlation.

Correlation-return graph, unconstrained scenario
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Figure 13: Correlation-Return graph unconstrained scenario
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Latitude

The locations of both the max return portfolio and the max covariance portfolio can be seen in
Figure 14 and Figure 15 respectively. The location analysis shows that there are no locations of
solar PV installed in the portfolios along the efficient frontier. This can be attributable to the overall
lower CF’s of solar PV since this scenario aims to maximize return or maximize covariance under

maximum possible return.

The locations and installed capacity of wind offshore and onshore for the max return portfolio can
be seen in Figure 15. It shows that most of the asset locations are offshore locations in front of the
Danish coast and close to Scotland. The vast installation of wind offshore stands in contrast with
the few wind onshore locations. These are either on islands or near the coast. This can be explained

as the mean CF value of wind offshore turbines is higher than that of wind onshore.
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Figure 14: Max-return asset locations and installed capacities for the unconstrained scenario

For the maximum covariance portfolio, see Figure 15. There is a major switch from wind offshore
to wind onshore. The asset locations are mostly concentrated in Northern Norway and North-East
Scotland. For wind onshore there are only farms installed near the cost of Scotland and middle
Norway. It shows that picking wind onshore locations increases the covariance between the return

and the electricity demand.
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Figure 15: Max-covariance asset locations and installed capacities for the unconstrained scenario

This trend can also be seen in Figure 16, as the times locations are chosen for wind installation for
the portfolios on the efficient frontier are shown. The figures indicate that especially in northern
Scotland and north Norway exhibit high favourability for the installation of wind onshore. For

wind offshore the locations are also in the middle of Norway and the northeast coast of Scotland.
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Figure 16: Percentage of locations chosen for portfolios on the efficient frontier, unconstrained scenario

3.4 Constrained optimization

The efficient frontier of the constrained covariance optimization can be seen in Figure 17. It shows that
also in the constrained scenario a clear trade-off between the return of the portfolios and the covariance
exists. It could especially be beneficial to sacrifice some of the energy return for an increase in covariance,

especially where the portfolio’s return is around 0.36 as the covariance can be increased by 10 %.
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Covariance efficient frontier, constrained scenario
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Figure 17: Constrained efficient frontier of the covariance and Return

However, to get a better understanding of what exactly the trade-off is, the correlation coefficient
versus the maximum return in the constrained optimization is plotted, see Figure 18. This shows
that while the covariance between the energy demand and return of the portfolio follows a clear
curve, this is not the case for the correlation- return graph, which is similar in form to Figure 13
the unconstrained scenario. Especially at the point where the covariance is maximized there are a
lot of fluctuations. The general trends between the efficient frontier of the covariance-return plot
and the plot of the correlation coefficient versus return are however similar. For both graphs, at
first less return needs to be sacrificed for an increase in covariance/correlation and later more return

has to be sacrificed in order to get the same level of increase in covariance/correlation.

Figure 18 shows that in the first part of the graph, where the return decreases from 0.365 to 0.35,
the correlation increases with 4 %. Therefore, in the beginning where the return is around 0.36 it
is noteworthy to look into placing the assets in different locations. Especially when aiming to
maximize the covariance/correlation a high variation can be seen in the portfolio’s return. Slight

deviations in correlation can thus drastically influence the return.

39



0.38
0.36
0.34
0.32

0.3

Return

0.28
0.26
0.24
0.22

0.2
0.2

Correlation - Energy production, constrained

scenario
(0)
Q@ -9 o9 °e
%o
R
0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28

Correlation

Figure 18: Correlation-Return graph constrained scenario

Figure 19 shows the areas that have the maximum return for the constrained case. It shows that,

when maximizing the return, the locations are dispersed using a high share of their maximum

installable capacity in the case of offshore wind and solar PV. For the wind onshore there is more

variation, especially in the middle of Germany. Solar PV is also geographically dispersed as it is

spread out across high irradiance regions.
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Figure 19: Max-return asset locations and installed capacities for the constrained scenario.

Comparing the max-return portfolio to the max covariance portfolio shows that there is a big
difference across all technologies, see Figure 20. Solar PV is plotted twice but with different a
different index. The unlimited graph shows that there are a couple of locations where a lot of solar
PV is installed. Due to scaling, the locations with a relative lower installed capacity become invisible

and the limit graph shows this.

Especially the installation of solar PV locations as they are more concentrated now, especially for
Germany. This shift can be attributable to the difference in optimization, maximizing covariance

versus maximizing return.

Wind onshore also changes in its locations as they move from northern Germany in the max-return

portfolio to central Germany in the max-covariance portfolio. Thereby moving to lower CF zones.
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Like the onshore wind locations, the offshore wind locations also move to lower CF regions from

places around the Outer Hebrides.
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Figure 20: Max-covariance asset locations and installed capacities for the constrained scenario. Solar
installed capacity limit refers to a rescaling of the map such that lower installed capacity locations become

visible.

The maps in Figure 20 shows that there is variation in the way the locations are picked for the
constrained covariance optimization. To get a better understanding of these dynamics the locations
of all the 50 portfolios are mapped in Figure 21. This shows the robustness of installing wind
onshore in Scotland, the Dutch coast, Luxembourg and middle Germany, the middle part of the
North Sea for wind offshore. For solar PV, the areas of more installation stability are southwest

Germany, coastal Belgium and the Netherlands, the UK and central Norway.
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Figure 21: Percentage of locations chosen for portfolios on the efficient frontier, constrained scenario

3.5 Demand Response Scenarios

The DR scenario was explored to further investigate the role that DR can have to maximize the
covariance of the constrained scenario. The efficient frontier for the DR scenario shows a similar
trend as the other scenarios, see Figure 22. The Figure demonstrates that by employing DR the
covariance can be positively influenced. The portfolio with the highest return when DR is applied
has a 10% higher covariance for the max return portfolio compared to the normal constrained

scenario. At the maximum covariance point this is 6.5 %.
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Covariance efficient frontier, DR scenario
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Figure 22: Covariance efficient frontier for DR and constrained scenario

A similar trend can be observed when looking at the correlation, see Figure 23. There is about a
2.7 % increase in correlation at maximum return portfolio while there is 2.4 % increase at the
maximum covariance point. Adding DR under a 12-hour DR potential can lead to a maximum
correlation of about 30 % between the electricity demand and VRE production. The somewhat
lesser increase at the maximum covariance portfolio can be attributed to that DR is optimized for

the electricity production at the portfolio with the maximum energy output and not the maximum

covariance.
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Figure 23: Correlation between Return and demand using demand response
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3.5.1 Sensitivity Analysis DR

Iterating the DR optimization over changing DR duration as well as potential showed that the
covariance is maximized when the DR duration (of 48 hours) is maximum as well, see Figure 24.
Figure 24 shows that the variation between the covariance efficient frontiers of the DR runs is
considerable. Furthermore, while the increasing the potential and duration generally increases the

covariance of the max-return portfolio this is not true for the whole period.
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Figure 24: DR sensitivity analysis covariance, changing the magnitude (in MW) and duration (in hour)

Similar to the cases of constrained and unconstrained optimization, the DR portfolios with the
maximum covariance are not the same as the DR portfolios with the maximum correlation. Figure
25, shows that the DR scenario that has the highest potential but a duration of 24 hours produces
the largest correlation of 0.316. This further solidifies the view that maximizing the covariance
might not necessarily mean that the correlation is also maximized. The DR scenario with a 48-

hour time shift and with the highest covariance takes the second place in Figure 25.
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DR sensitivity analysis correlation
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Figure 25: DR sensitivity analysis correlation

3.6 Scenario Comparison

Figure 12 and Figure 17 side-by-side show that the covariance of the unconstrained scenario is a
lot higher compared to the constrained one. However, when comparing the correlation graphs,
Figure 13 and Figure 18, it becomes clear that this relationship is not mirrored in the correlation
between the portfolio and the energy demand, since the correlation of the constrained portfolio is
higher than that of the unconstrained one. At first, this observation might seem counter-intuitive
but the reason for this difference is that correlation is unit-less while the covariance is not. The
unconstrained scenario is able to pick higher CF output locations compared to the constrained

scenario. This results in both a higher return and higher covariance.

The correlation between production and demand is also dependent on their respective variances.
Figure 26, shows the difference between the variance of the two scenarios. The variance of both
scenarios decreases relatively more with when the return is lower. Additionally, the variance of the
portfolios of the constrained scenario is lower than that of the unconstrained scenario. This
difference explains why the correlation is higher for the constrained scenario (since computing the
correlation requires dividing by smaller numbers). Maximizing the covariance is therefore biased

towards the maximizing the return.

46



Variance-return of portfolios on the efficient frontier
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Figure 26: Variance-return graph of the unconstrained and constrained scenario

Not only is the correlation higher for the constrained scenario, there is also more variation in the
power delivered, see Table 3-1. For the max return portfolio only 0.14% of the load is met at the
point of lowest share of VRE production to demand and producing a surplus of 137 422 MW at
the maximum over-production point. The constrained scenario is better able to meet the demand,
however, at a minimum there is a considerable amount of demand unmet. DR helps in that sense
as it especially reduces the over-production. The max return portfolios are able to meet more of

the baseload demand but also have more variation in their output.

From the cumulative installed capacity presented in Table 3-1, it can be seen that wind offshore
could be the cause of more over-production, when comparing the max-return versus the max
covariance unconstrained portfolio. DR changes relatively little of the division between solar and

wind, however, directing a little more installed capacity to wind onshore.
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Table 3-1: Results of max return & max covariance portfolios of unconstrained and constrained
optimization scenarios

Installed Max-return Max-Covariance
capacity
(MW)
Scenario Unconstrained Constrained DR Unconstrained Constrained
Wind onshore 13 500 116 451 116451 196017 120 964
Wind offshore = 263 845 72 008 72 008 81278 67 495
Solar PV 0 88 835 88 835 0 88 835

% of demand met
Max Over 241% 153.9% 144.6%  215% 142.8%
production (137 422) (74 730) (49 752)  (125931) (55 622)
(MW)
Min Under 0.14% 4.4% 4.3% 0.44% 2.2%
production (-128 362) (-103638)  (-106 (-168 802) (-169 659)
(MW) 556)
Standard 46.7 25.3 24.8 43.5 22.0
deviation
Mean 90.2 60 59.7 71.6 48.0

The standard deviation (SD) and mean of the % of demand met for the various portfolios give
more insight than just the amount of over and under production, also see Figure 27. The mean
shows that while the over production and under production might be big, the mean power output
is the highest for the unconstrained scenario. However, the standard deviation of this portfolio is
also the highest. The lowest standard deviation is for the DR maximum covariance portfolio.
Nevertheless, the mean in this scenario is the lowest. This shows that having a high mean also leads

to a higher standard deviation.
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The histograms in Figure 27 further confirms this story. The constrained covariance portfolio has
the lowest mean but also the lowest SD of the four plotted portfolios. It also has the highest
certainty of meeting demand, at around 40% of the demand. Furthermore, the somewhat irregular
shape of the max-return unconstrained portfolio is smoothened out by the covariance
optimization. Additional histograms of the DR scenario and the DR scenario with the highest

correlation can be found in Appendix C: Scenario histograms .
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Figure 27: Histograms percentage of demand met of four portfolios for 9 years of data. "Refers to the
scenarios and portfolios respectively: unc stands for unconstrained, con for constrained, ret for max-return

portfolio and cov for max-covariance portfolio.
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4.Discussion

This thesis set out to investigate to what extent the covariance between energy production and
demand can be maximized. The results indicate that the locations of VRE assets have a significant
role in varying this extent. The constrained scenario further confirmed this but also showed that
the portfolio with the highest correlation and covariance do not necessarily align, as the correlation
for the constrained scenario is higher than that of the unconstrained one. The discussion is
structured as follows; first, this study’s results are compared with other literature. Second, the

limitations and future research are discussed.

4.1 Comparison to other work
4.1.1 Comparison to other literature

The principal difference between the constrained and the unconstrained scenario is that when solar
power is included, the overall correlation with the energy demand increases. This is in line with
previous research, which states that geographically dispersed solar PV can increase the correlation
between electricity production and demand [113]. Furthermore, the variance of the portfolio’s
output is also decreased due to solar PV uptake, which is in line with [13,14], as they found that
including solar in one’s portfolio decreases the portfolio’s variance but not the portfolio’s output.
It is therefore beneficial to include solar PV in the portfolios but this will have an effect on the

portfolio’s output.

The optimization performed by this study was the first of its kind. It was therefore difficult to
compare the locations chosen as well as the overall output used by this study with other studies as
also the region and expected installed capacity differed. However, it was possible to compare the
results of the locations to some extent. The asset locations of the constrained maximum covariance
portfolio match closely to [114], especially for solar PV and wind onshore. The optimization of
that study [114], aimed to minimize the standard deviation of wind and solar but using locations
based on 2020 targets. The locations found by this study are different than that of [16,19]. Possibly
this is due to the reduced area studied in this thesis as well as a difference in the optimization

problem formulation.
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The results found by [23] in their portfolio analysis for the European Union, showed that demand
can be met 6.38% with a 97.7% probability when assuming a wind total installed capacity of 240
GW. In comparison the results of this thesis showed that all portfolios exhibit a probability of
100% or 99.4% meeting 6.38% of the demand, providing superior results. The portfolios on the
efficient frontiers have at least a 97.8% probability of meeting 11% of the demand. The contrast
can potentially be explained by the difference in installed capacity and region chosen as [23] does
not include Norway and the North Sea in their analysis. Furthermore, [23] only uses 2008 demand

making actual comparison not clear cut.

4.1.2 Comparison to already installed capacity

The findings showed that particular locations are to be preferred to increase either overall power
output, covariance or points in between. This optimization however, did not include already
installed capacities. Figure 28 shows the already installed offshore locations from [93] with the
model output locations of the constrained and unconstrained scenario. This shows that there is
little overlap between the locations chosen by the model and the locations that are already built in
real life. This means that the locations are neither optimal for optimizing the return of the whole

region or the covariance with the demand.

Legend
- Already installed wind turbines
- Combined locations
- Constrained locations

Unconstrained locations

Figure 28: Model wind offshore locations versus already installed wind turbines. Map produced by
author based on sea outline [93,115]

51



4.2 Limitations & Future Research

The constrained optimization showed that while the covariance is lower compared to the
unconstrained scenario the correlation is not. Also, the standard deviation of the constrained
scenarios was much lower. It might therefore be better to perform a mean correlation optimization.
In that way the demand pattern is more exactly followed. However, this does mean that a lower
overall electricity production needs to be accepted. In maximizing the correlation, DR could
provide a valuable addition as it increases the percentage of demand met while also decreasing the

standard deviation of this.

Various factors that influence the output of solar panels and wind turbines were not taken into
account. For example, including a factor to account for the shadow of buildings and other objects
would have provided more accurate results. Additionally, it was assumed that solar PV could not
be installed offshore and that solar PV could be installed together with onshore turbines without a

decrease of solar PV efficiency due to shadowing.

It would beneficial to conduct the analysis for a wider range of chosen technologies to further fine
tune the results. For example, picking 10 different turbines and 10 different solar panels and or
varying the physical constraints, such as tilt angle and hub height. This would allow for more

robust results.

The case study area was large enough to show a clear difference between optimizing for return and
optimizing for covariance. However, a larger area could have led to an increase in covariance. Due
to computation time constraints, this was not deemed feasible but future research could benefit by

including additional area in their study.

The weather model and thus the weather data used in this thesis was used without correction
factor'. Research has shown that by applying a correction factor to weather models, such as
MERRA and MERRA-2, it will lead to an increase in accuracy [116,117]. While ERA5 is more
accurate than MERRA-2, it still is not perfectly correlated with local data [37]. However,

correction factors were not available at the time of research and was thus not used.

L A correction factor scales the weather date such that is more accurately represents local weather data.



It was assumed that all the VRE assets could be installed in the most optimal spots. However, since
the timeframe of study is 2030, already installed assets might be still in place as the typical age of
wind turbines is 20 years [118], and at least 25 years for solar PV [63]. Additional research could
look into these locations and set them as constraints in the optimization such that these locations
have to be picked. Existing transmission infrastructure was also not taken into account. While
being somewhat approximated with the constrained scenario, adding them would portray a more

accurate representation of reality.

The usable area computed in this study is an assumption that heavily influences the outcomes of
the analysis. The constraints were computed using bilinear interpolation, which is in essence an
additional assumption. Future research could instead calculate the percentage of area of each
suitability factor in each grid cell and combine that together with the weights to form one

suitability value per grid cell.

The portfolios that lie on the efficient frontier showed that over- and underproduction occurred.
From a system analysis point of view, it would be beneficial for future research to include other
technologies to investigate what additional technologies would be needed so that the demand could
be better met. This would also show different optimal mixes of technologies when analysing the
portfolios that lie on the efficient frontier. Additionally, the total levelized cost of electricity of such
a system could be included making further selection of the optimal VRE portfolio potentially easier

and more financially intuitive.

The DR applied in this study assumed perfect foresight, activation times that are possible within
the hour and duration uniformity across the duration of DR as well as unlimited dispatch potential
per annum. However, this is not always the case in reality [11]. Furthermore, the potentials used
in this study rest on the technical potential meaning that the actual usable potential might be lower.
Nevertheless, the lowest technical DR potential in [11] was used in this thesis. The real
contribution of DR to increase the covariance might therefore be lower. Due to the unique
objective function as well as due to applying DR to an aggregated region that is somewhat unique

made comparison with other literature on the changed demand profile difficult.

The DR optimization was aimed at maximizing the max return portfolio for the constrained

scenario. However, future research could look into co-optimizing the covariance and DR such that
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maximum covariance portfolio is optimized for Demand Response. This would change the
objective function and the optimization problem. Due to time constraints this was not done in

this thesis.

A Mean Variance Analysis (MVA) could be computed together with the MCVA. This would show
the trade-offs between minimizing for variance and maximizing for covariance. Such results could

indicate where the trade-offs are and what percentage of demand can be met with an MVA.

Lastly, the weather data used in this study was historic and assumed to be a representative set of
all-weather variation. The duration of the weather data was however limited as the historic demand
data for the region was limited to 9 years. Using more of the available weather data would have
made the production part of the analysis more robust but it would also mean that additional
demand patterns needed to be created. Since estimating demand patterns from weather patterns
and other historic demand data was outside of the scope of this research, 9 years of weather data
was used. Additionally, due to climate change, both electricity production and demand will change
in the future [119,120]. However, since it is difficult to determine to what extent the climate will
change [121] by 2030 as well as only having 12 years between the data and 2030 climate change

influences were not used in this study.

4.3 Implications

The results of this thesis showed that when installing VRE technologies in locations that are solely
used for maximizing electricity output a high variation in electricity output occurs. It would
therefore be beneficial to create some sort of subsidy for electricity producers to install VRE assets
in one region instead of the other. This thesis’s findings of dispersing VRE location, rather
implicitly, aligns with existing studies and plans [16,23] to further improve transmission
capabilities in Europe as such a network can benefit the integration of VRE technologies in the

cnergy system.

The results further indicate that the model prefers wind onshore installation with respect to wind
offshore. This is in line what is currently being done in Europe, as the share of installed onshore

capacity is higher than that of offshore wind [73].
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Furthermore, while maximizing the covariance in the unconstrained scenario it still means that
there is a relative large standard deviation of the ratio between the demand and production
compared to the constrained scenarios. The portfolios selected in the constrained scenario might
therefore be preferred by grid operators or policy makers since there is less variability in their
output. A MCVA might therefore not be the most ideal optimization to select the locations of
VRE technologies. A MVA or mean correlation analysis (with a minimum ratio constrained) might

in this sense be a better fit.
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5.Conclusion

This thesis used portfolio theory to investigate to what extent the covariance between VRE
production and demand can be maximized and what effect it would have on the placement and
installed capacity of VRE assets such as solar and wind farms. Demand response was also explored
as an addition to strategically place VRE production to maximize the covariance. Herein, 9 years

of demand and weather data for the Northwest Europe was used as a basis for the analysis.

The results showed that by changing the locations and capacity of VRE assets in Northwest
Europe, the covariance between VRE production and electricity demand can be maximized,
depending on the imposed restrictions. DR can further increase this covariance. The locations of
these VRE assets were distributed across the studied region. For maximum covariance or maximum
return, the unconstrained optimization only selected wind onshore and offshore locations. When
the scenario was constrained to reflect national RES targets this distribution changed and solar PV
was integrated. This resulted in a lower overall electricity production but also more correlation
with the electricity demand. The correlation and covariance were further increased by

implementing DR.

The ratio of production and demand of the different scenarios also showed that it might be
preferred to pick portfolios with a higher correlation as they are able to meet demand in a more
consistent way. DR can perform an active role in this optimization as the covariance and
correlation can both be increased. However, optimizing for correlation comes at a cost of a decrease

in VRE output.

The locations and usage of VRE assets mostly differs across all optimizations. If possible, it is
therefore recommended to investigate the possible locations of large-scale VRE installations before
building occurs as this can greatly influence the extent other resources are needed to either fill the
gap to meet demand or to balance the electricity grid. If more variation can be accepted, a high
return or high covariance portfolio can be accepted. If smaller variation in the ratio between

production and demand is desired, a constrained scenario might be preferred.

To conclude, covariance optimization leads to portfolios of VRE assets that follow the demand to

some extent while still having relatively high VRE output. Portfolios where the correlation is higher
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show that a further lowering of the output needs to be accepted in return for a better match with
the demand. Demand response has a positive effect on both the covariance and correlation and

could be a good addition to location-optimized VRE production.
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Appendix A: Suitability values for
CLC classes

Table A-i: CLC classes used for each area based on [16], with the exception of *which are based on [91].

CLC class Onshore wind Offshore wind Solar PV Solar PV farm
Rooftop

111 X

112 X

121 X

211 X X

212 X X

221 X

222 X

223 X

231 X X

241 X X*

242 X*

243 X X

244 X*

321 X

311 X*

312 X*

313 X*

322 X

323 X

332 X X

333 X X
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523

Table A-ii: Weight factors for the suitability factor calculation

CLC class Onshore wind | Offshore wind | Solar PV Solar PV
[91] Rooftop [16] | farm[91,97]

111 3

112 52

121 11

211 70 1

212 70 1

221 70

222 70

223 70

231 80 1

241 70 1

242 70

243 70 1

244 10

311 10

312 10

313 10

321 80

322 80

323 70

332 80 1

333 80 1

523 100
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Appendix B: Time zones and missing
demand data

The first dataset is set at CET [106], while the second one is set at UT'C [26]. The data was first
adjusted from CET to UTC, this required extrapolation for the first hours for Norway and
Denmark. The whole month of January in 2010 of the United Kingdom’s hourly demand data
was missing, with the exception of the 20" of January 2010. It was assumed that for this period

the demand pattern of the UK follows the whole region’s demand pattern.

The dataset of the ENTSOE for the period of 2010-2015 “misses” an 1 hour data point each year
in October for the region, due to daylight savings. The ERAS data is set at UCT and therefore
does not take into account daylight savings. The missing values were added when daylight savings
is reset, between 01:00 and 02:00 in late October. This additional hour was filled in by linear

interpolation using the previous and subsequent hour.

Second dataset is set at UCT, there are no missing data points with the exception of the last hour,

23:00 31 December 2018, of Luxembourg which was filled in by linear extrapolation.
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Figure C-i: Histograms of max-return and max-covariance portfolios of four scenarios for 9 years of data.
YUnc stands for unconstrained scenario, con for constrained, DR for DR scenario and mDR for maximum

Appendix C: Scenario histograms
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