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Summary  
 

During the last decades, wetlands have been determined as one of the most valuable ecosystems 

on Earth. Despite their importance for both humanity and nature, they are also one of the most 

rapidly degrading land cover types. In order to implement and evaluate effective policy for 

wetland preservation, large-scale monitoring and characterisation of wetlands is needed. The 

use of satellite-based remote sensing techniques has proven its use for this purpose. However, 

wetland mapping and characterisation by using remote sensing is challenging. 

 

The recently launched Sentinel-1 satellites acquire radar images with a relatively high spatial 

and temporal resolution, using C-band dual-polarimetric (VV/VH) sensors. This new data-rich 

information source provides a unique opportunity for more accurate wetland monitoring from 

space. In this research, the temporally dense Sentinel-1 radar time series data was applied for 

wetland characterisation and its use was assessed. The combination of Sentinel-1 and Sentinel-

2 data was also applied to additionally assess the use of Sentinel-1 when combined with optical 

satellite data. 

 

In order to assess the use of Sentinel-1 data for wetland characterisation, four different machine 

learning classifications were done in the St. Lucia wetlands in South Africa, based on a 

classification scheme with three levels of wetland characterisation: (1) general wetland 

delineation, (2) the classification of wetland vegetation types and (3) the classification of surface 

water dynamics. The sole use of Sentinel-1 and the combined use of Sentinel-1 and Sentinel-2 

were both applied. As the C-band radar system aboard Sentinel-1 was expected to have limited 

capabilities in mapping high-vegetated wetlands, an additional set of classifications was done 

excluding these high-vegetated wetlands. Each classification was done in a Monte Carlo 

simulation of 100 Random Forests in order to obtain reliable results.  

 

It was found that Sentinel-1 radar data is useful for mapping low- to medium-vegetated 

wetlands. However, it is incapable of distinguishing high-vegetated wetlands from upland 

forests. The combined use of Sentinel-1 and Sentinel-2 delivered significant accuracy 

improvements compared with the sole use of Sentinel-1. The value of Sentinel-2 was especially 

observed for general wetland delineation.  
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1 Introduction  

1.1 Background 

1.1.1 Wetlands and their Degradation 

During the last decades, wetlands have been determined as one of the most valuable ecosystems 

on Earth. As of 2018, 168 countries are signed under the Ramsar Convention, which is a global 

environmental agreement developed in 1971, aimed at the conservation and wise use of 

wetlands (Ramsar Secretariat, 2016). Some important functions of wetlands are water storage, 

water purification, shoreline protection, processing of carbon and other nutrients, food security, 

and the support of a large biodiversity in plants and animals (Millennium Ecosystem 

Assessment, 2005; Ramsar Secretariat, 2016). In addition, these functions of wetlands are 

essential in achieving the Sustainable Development Goals (SDGs) as stated by the United 

Nations (Ramsar Secretariat, 2018). It is assumed, that at least 11 of the 17 main SDGs are 

supported by the functions of wetlands.  

 

Despite the importance of wetlands for both humanity and nature, they are also one of the most 

rapidly degrading land cover types. The Millennium Ecosystem Assessment (2005) has 

estimated that approximately 50% of all global wetlands has been lost during the 20th century. 

Extensive irrigation practices, extraction of groundwater, and the change of wetlands into urban 

or agricultural lands are the main causes. It is also stated that wetlands are degrading at a rate 

faster than any other ecosystem. To prevent further loss of wetlands and implement and evaluate 

policy for wetland preservation, it is important to monitor the total extent of wetlands and also 

to characterise different wetland types. Nowadays, many attempts have already been done to 

map and characterise wetlands on a local, regional or global scale and several methods have 

been used. 

 

1.1.2 Monitoring of Wetlands 

On-site monitoring of wetlands is highly informative, but is also expensive (Gallant, 2015). In 

addition, many wetlands are in remote and inaccessible locations. Therefore, field monitoring 

is only possible for a small subset of global wetlands. Monitoring on a larger scale is needed to 

provide regional or global information about wetlands. In order to obtain such large scale 

information, satellite-based Earth observation is the most effective mean (Mahdavi et al., 2018; 

Ozesmi & Bauer, 2002). Satellite-based Earth observation is widely used for automated land 

cover classifications in general, where the combination of satellite images and machine learning 

methods, such as Support Vector Machines, Decision Trees and especially Random Forests, has 

proven its use (Keshtkar et al., 2017; Rodriguez-Galiano et al., 2012). 

 

Two main techniques for satellite-based Earth observation are optical and radar remote sensing. 

Optical sensors usually operate in the visual and infrared portions of the electromagnetic 
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spectrum and sense the solar reflectance of the Earth surface. Optical remote sensing has the 

advantage that many spectral bands of reflectance can be distinguished, providing a variety of 

information about land cover and land use. Although optical remote sensing has been used for 

wetland mapping in many ways, it has often been found to be insufficient for this purpose 

(Bourgeau-Chavez et al., 2009; Ozesmi & Bauer, 2002), mainly because it is can only acquire 

useful data during the day and in cloud-free weather. Therefore, considerable effort has also 

been put in the use of radar remote sensing for wetland mapping. Radar sensors operate in the 

microwave range of the electromagnetic spectrum and transmit pulses sideways in order to sense 

backscattering. Radar is capable of providing different characteristics of the Earth surface than 

optical sensors are. It can be highly informative for wetland detection, because radar 

backscattering is sensitive to surface properties like moisture, roughness and especially the 

occurrence of water bodies (Henderson & Lewis, 2008). Radar remote sensing has another 

advantage that it can operate in all weather conditions during day and night, because it is not 

dependent on sunlight as illumination source and clouds are easily penetrated by radar pulses. 

Therefore, radar remote sensing can achieve a higher temporal density in useful images than 

optical remote sensing. This is an advantage for mapping wetlands that are highly dynamic in 

terms of flooding. Especially because many wetland areas are located in tropical or coastal 

regions that experience periods of persistent cloud cover (Clint Slatton et al., 2008; Li et al., 

2006; Novresiandi & Nagasawa, 2015), radar is the most efficient mean for mapping. Longer 

wavelength radar systems are also capable of penetrating vegetation to a certain extent. As water 

bodies can occur at subcanopy level, this is a valuable quality of radar for wetland detection in 

highly vegetated areas, such as swamp- or mangrove forests (Ozesmi & Bauer, 2002). A 

disadvantage of radar is that there is a limited availability of open data (Guo et al., 2017). Also, 

pre-processing of radar data can be time-consuming.  

 

In the past, mapping and characterising wetlands by using remote sensing has had several 

limitations. An important factor is that wetlands are difficult to delineate from other land cover 

classes. Wetlands are not unified by a common land cover type or vegetation type, but only 

share the characteristic ‘presence of water’ (Gallant, 2015). Besides delineating wetlands from 

other land cover classes, the characterisation of different wetland types is also challenging. 

Although different wetland types have their distinctive characteristics, they also share some 

ecological characteristics with each other (Bunn et al., 1997), and with other non-wetland land 

cover types (Henderson & Lewis, 2008). Wetlands can also be highly dynamic in terms of their 

flooding levels, resulting in different spectral or backscattering information during time 

(Gallant, 2015). For this reason, satellites need a short revisit time in order to accurately map 

areas that experience temporary flood events. Moreover, when flooding is present under a 

forest’s canopy its detection is difficult or even impossible when using shorter radar 

wavelengths or optical data (Rosenqvist et al., 2007). Because of the low spatial resolution of 

most satellite images it is also difficult to identify smaller wetland areas. In the past, this has led 

to underestimations of the total extent of wetlands (Ozesmi & Bauer, 2002). For accurate 

mapping, a relatively high spatial resolution is needed. Although the use of optical data has been 
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determined to be inferior to radar data for wetland mapping, optical data is often used as a 

complement besides radar to improve mapping accuracies (Henderson & Lewis, 2008; Ozesmi 

& Bauer, 2002).  

 

Another difficulty for large-scale wetland characterisation, is the difference in wetland 

definitions (Amler et al., 2015), which has resulted in the use of different wetland classification 

schemes around the world (Mahdavi et al., 2018). Some of the wetland classification schemes 

are highly detailed. Although these complex classification schemes are useful for on-site 

characterisation, they are less suitable for remote sensing-based classifications, as such level of 

detail is often beyond what satellite sensors can deliver. Therefore, remote sensing-based 

classifications often use higher-level characteristics, where vegetation types and dynamics in 

surface water are determined as key characteristics of wetlands (Keddy, 2010; Mitsch & 

Gosselink, 2006; Tiner, 1999). 

 

1.1.3 Sentinel-1 Radar 

As part of the Copernicus programme of the European Space Agency (ESA), the Sentinel-1 

radar mission provides a unique opportunity for more accurate wetland monitoring from space. 

The first Sentinel-1 satellite was launched in 2014. Currently, there are two Sentinel-1 satellites 

in orbit, which carry a C-band Synthetic Aperture Radar (SAR) system, acquiring data in single- 

and dual-polarimetric modes (European Space Agency, 2018). The ESA provides Sentinel-1 

radar images free of charge. The Level-1 Ground Range Detected (GRD) products have a 

relatively high spatial resolution (10 metres in pixel size) and temporal resolution (6 days revisit 

time at the equator). The combination of these relatively high resolutions is a good specification 

when compared with other radar satellites, such as ERS1/2 and Envisat (Li et al., 2016). Many 

studies have verified that a higher spatial resolution can improve the accuracy of wetland 

monitoring (Guo et al., 2017). The higher temporal resolution can provide a better accuracy in 

order to deal with the dynamic flood levels that occur in wetlands (Cazals et al., 2016). 

Therefore, the Sentinel-1 radar images are promising for better results in wetland mapping. 

 

1.2 Problem Statement 

With Sentinel-1 available now, for the first time radar data is provided free of charge in high 

spatial and temporal resolutions. The data gives the opportunity for new insights in wetland 

mapping methods. Regarding this newly available data, several studies have already been done 

for wetland mapping and characterisation. However, the focus in these studies has been mainly 

on single-date analyses (Chatziantoniou et al., 2017; Kaplan & Avdan, 2018a; Whyte et al., 

2018), specific types of wetlands (Cazals et al., 2016; Kaplan & Avdan, 2018b; Mleczko & 

Mróz, 2018; Mróz et al., 2016; Tsyganskaya et al., 2018), specific wetland characteristics 

(Huang et al., 2017; Muro et al., 2016; Tian et al., 2017; Xing et al., 2018), or used a non-

globally applicable approach (Mahdianpari et al., 2018). It is not yet clear what value the high-

resolution and temporally dense data has for accurate wetland delineation, and for detailed 
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mapping of the two most important wetland characteristics, defined as: vegetation types and 

surface water dynamics. 

 

Research aimed at the potential of Sentinel-1 data for mapping and characterising wetlands in 

multiple levels is necessary to exploit the new data-rich information source and assess its value. 

First, it is needed to assess to what extent the dense Sentinel-1 time series data is capable of 

delineating wetlands from non-wetlands in general. Wetlands are here defined in their broadest 

sense, as all areas that can be classified between upland and permanent water. There have been 

no studies yet that exploit the use of Sentinel-1 time series data for this single purpose. Second, 

the use of Sentinel-1 time series data for characterising differences in wetland vegetation types 

needs to be studied, as this has been a challenging aspect for C-band radar in the past. Third, the 

use of Sentinel-1 time series data for characterising wetlands in terms of their surface water 

dynamics needs to be studied, especially in combination with their vegetation types. Recent 

studies have looked at many wetland characteristics separately, but no assessments have been 

done to map the complex systems of wetlands in a comprehensive way using Sentinel-1 time 

series data. It is needed to assess how the complexity of wetlands influences the accuracy of 

wetland classifications using this new data. A multi-level approach using Sentinel-1 time series 

data is necessary to investigate this.  

 

As optical data has proven its use as a complement besides radar for wetland characterisation, 

a valuable addition for an assessment of Sentinel-1 time series data is to test its combined use 

with optical data from Sentinel-2. A comparison between the sole use of Sentinel-1 time series 

data and its combined use with Sentinel-2 can place the assessment of Sentinel-1 more in 

perspective. This comparison can also indicate the value of using optical data besides the 

Sentinel-1 time series data.   

 

1.3 Research Objective 

As stated, the use of Sentinel-1 data for wetland mapping and characterisation needs to be 

studied. Therefore, the main objective of this research is to assess the use of temporally dense 

and high spatial resolution Sentinel-1 radar time series data for mapping and characterising 

different wetland types. The research objective will be reached by answering the following 

research questions: 

 

1. How accurate can wetlands be mapped within different levels of characterisation, using 

Sentinel-1 time series data? 

2. What is the accuracy improvement for wetland characterisation when combining 

Sentinel-1 time series data with optical data from Sentinel-2? 

3. How and to what extent are the accuracies of the produced maps affected by the 

complexities in wetland characteristics? 
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The first research question is aimed at an assessment of the use of Sentinel-1 data for different 

levels of wetland characterisation, considering the most important wetland characteristics. The 

second question is aimed at assessing the combined use of Sentinel-1 with optical data from 

Sentinel-2. The third research question is aimed at the evaluation of the results obtained in the 

first two questions. Here, the focus lies on the complexities, such as vegetation flooding and 

water dynamicity, that make wetlands a challenging land cover type to map. 

 

1.4 Societal and Scientific Relevance  

Scientific relevance 

Many remote sensing-related studies have been done with the purpose of wetland mapping and 

characterisation. Different radar wavelengths, polarisations and combinations with other data 

sources have been used. The freely available Sentinel-1 data and its resolutions, polarimetry and 

wavelength, are a new unique combination of sensor characteristics. The capabilities of this 

radar satellite system need to be researched in the domain of wetland mapping, in order to assess 

the value of this new system in relation to other wetland mapping methods. 

 

Societal relevance 

The seriousness of concerns about the rapid degradation of wetlands is underlined by the global 

recognition of wetland importance by the Ramsar Convention. Also, many of the recently 

defined SDGs of the United Nations are supported by the functions of wetlands. In order to 

implement and evaluate effective policy for wetland preservation, large-scale monitoring and 

characterisation of wetlands is needed. During the last decades, radar remote sensing has proven 

its use here, although mapping has been challenging due to wetlands being highly dynamic and 

complex as a land cover type. The new Sentinel-1 data, which is free of charge and has a high 

spatial and temporal resolution, provides the opportunity for better monitoring of wetlands. The 

use and value of this data needs to be researched, in order to use the data effectively in the future 

and make it of assistance in wetland preservation. 

 

1.5 Reading Guide 

The following chapters give an outline of the research that has been conducted towards the use 

of Sentinel-1 radar time series data for wetland mapping and characterisation. Chapter 2 gives 

an overview of remote sensing-based methods for wetland mapping. The use of both radar and 

optical remote sensing are shortly discussed within this domain. Also, several past studies 

related to wetland mapping using Sentinel-1 are described. Chapter 3 gives an overview of the 

methodology used for this research. The study area, used data, pre-processing steps, reference 

data, classification methods and validation methods are outlined here. In Chapter 4, the results 

are presented per classification level. In Chapter 5, the main results are discussed and some 

limitations in the research methodology are pointed out. Chapter 6, the concluding chapter, gives 

a brief overview of the main findings. Also, recommendations for further research are done 

here.     
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2 Theory 

In this chapter, the theoretical background of this research is outlined. Chapter 2.1 discusses the 

theory and classification schemes for wetland delineation and characterisation. In Chapter 2.2 

the use of radar- and optical remote sensing for wetland mapping is discussed. Here, the use of 

Sentinel-1 data and past wetland research using this data is outlined more in detail. Chapter 2.3 

gives an overview of the concepts discussed.  

 

2.1 Wetland Delineation and Characterisation 

The broadest wetland definition is “A land transitional between terrestrial and aquatic 

systems”, as defined by Cowardin et al. (1979). During the last decades, many other definitions 

of wetlands have been established. As a result, a severe challenge for wetland research is that a 

uniform wetland definition within land cover classifications does not exist (Amler et al., 2015), 

which makes delineation of wetlands difficult.  

 

Besides general wetland delineation, the characterisation of different wetland types is even more 

complex, as there are also no uniform definitions for distinct wetland classes. This has resulted 

in several different wetland classifications schemes, which have been established and 

acknowledged on national and global scales (Tiner et al., 2015). Two of the best-known and 

most comprehensive examples are the classifications used by Ramsar (Ramsar Secretariat, 

2009) and the US Fish & Wildlife Service (as designed by Cowardin et al., 1979). These multi-

level classification schemes distinguish respectively 40 and 55 wetland types and are highly 

detailed. However, this also makes them less suitable for remote sensing-based classifications, 

where such level of detail is often beyond what satellite sensors can deliver. In existing remote 

sensing-based wetland classifications that do have a high level of detail, it is often found that 

they are limited to classifications within one certain wetland type, such as swamps, marshes or 

peatlands (Rosenqvist et al., 2007), or to classifying one certain characteristic, such as water 

depth, water periodicity, quality of water, vegetation types or soil types (Semeniuk & Semeniuk, 

1997). 

 

For characterising wetlands with remotely sensed data in a more comprehensive way, several 

classification methods have already been designed to distinguish wetland types. A well-known 

example of a such a comprehensive classification is the distinction of wetlands in bogs, fens, 

marshes and swamps. The Canadian Wetland Classification System (CWCS) (National 

Wetlands Working Group, 1997) is a well-known description of such a classification and is 

widely used due to its overarching geographical application (Mahdavi et al., 2018). However, a 

wetland being classified in one of these four types is often determined by higher level 

characteristics, of which some are easier to classify using remote sensing, such as vegetation 

types and surface water dynamics. Also, when using machine learning-based classifications, 
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acquiring training data with limited resources is much easier for vegetation types and surface 

water dynamics than for the classes used in the CWCS, which often require on-site observations. 

 

According to Tiner (1999), many remote sensing-based wetland characterisations have there 

basis in classifying vegetation types. However, he stated that the focus on vegetation types alone 

is insufficient and characterisations of hydrology and hydric soils are also necessary to 

comprehensively characterise wetlands. This is confirmed by Mitsch & Gosselink (2006) who 

stated that the three core components of wetlands are soil type, vegetation type and dynamics 

in water levels. Keddy (2010) stated that the dynamics in water levels is the most important 

characteristic in wetlands, because this affects many other processes within a wetland, such as 

the development of the other two main characteristics: soil- and vegetation types. In earlier 

studies aimed at remote sensing-based characterisation of wetlands, radar data has shown its 

capabilites especially for mapping vegetation types and surface water dynamics (Henderson & 

Lewis, 2008). The characterisation of soil types often requires on-site measurements. 

 

For the characterisation of these two important wetland characteristics, several examples exist, 

using radar or including radar data in multi-sensor analyses. Classifications of wetlands based 

on surface water dynamics have been done by i.a. Bourgeau-Chavez et al. (2005), Moser et al. 

(2016), Rosenqvist et al. (2002), Schlaffer et al. (2016) and Ward et al. (2014). They used radar 

data in time series analyses to classify wetlands in terms of their flooding levels. More 

comprehensive classifications of wetlands, in terms of both surface water dynamics and 

vegetation types, have been done by i.a. Hess & Melack (1994), Hess et al. (2003), Martinez & 

Le Toan (2007) and Töyrä & Pietroniro (2005). In these studies, wetland vegetation types are 

often characterised in ordinal categories, like herbaceous, shrubby and forested wetland. The 

use of the U.S. National Vegetation Classification Standard (NVCS) (Federal Geographic Data 

Committee, 1997), which is a basic ordinal vegetation classification scheme with several 

distinct classes, has proven its usefulness for delineating different vegetation classes in 

wetlands.  

 

2.2 Remote Sensing-Based Wetland Mapping 

2.2.1 Wetland Mapping Using Radar Remote Sensing 

Radar remote sensing has been widely used for wetland mapping. The main advantages of radar 

for this purpose are that it is very sensitive to water, it is not limited by blockage of clouds, it is 

not dependent on daylight as illumination source, and it is capable of penetrating vegetation to 

a certain extent. Two important characteristics of a radar sensor are its wavelength and 

polarimetry. These concepts and their relation to wetland mapping are briefly outlined below. 

 

Wavelength 

Radar sensors transmit and receive pulses within a certain wavelength band (Figure 1). The 

most common wavelength spectra used in remote sensing-based wetland characterisations are 
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C-band (3.75 – 7.5 cm) and L-band (15 – 30 cm) (Henderson & Lewis, 2008). In general, the 

larger the wavelength, the more penetration in Earth surface objects is possible. These 

penetration capabilities of radar systems are especially of importance for wetland mapping, 

because this enables the detection of water bodies at subcanopy level in high-vegetated 

wetlands, such as swamp- or mangrove forests. This detection is possible due to a scatter 

mechanism called ‘double-bounce scattering’. In vegetated wetlands, this occurs when radar 

waves penetrate vegetation canopy and thereafter double bounce between a water surface and 

tree trunks or wooded vegetation (Hess et al., 1990; Richards et al., 1987). This results in a high 

backscattering value. 

 

 

 
Figure 1: Radar bands and their corresponding frequency (f) and wavelength (λ) (Lee & 

Pottier, 2009). 

 

 

Double-bounce scattering in forested wetlands is especially well observed using longer-

wavelength radar systems, such as L-band or P-band, because these systems are capable of full 

penetration in most forest’s canopies (Hess et al., 1995; Wang et al., 1995).  Therefore, for 

wetland characterisation in forested wetlands, the use of L-band has demonstrated to be superior 

to C-band. Another advantage of L-band radar is that specular reflection from water surfaces is 

better observed in wavy conditions, making L-band better capable of distinguishing water and 

upland. After the launch of ESA’s BIOMASS satellite in 2021, which will carry a P-band radar 

system aboard (European Space Agency, 2019), the use of an even longer wavelength can be 

explored for wetland mapping from space. Wang et al. (1995) already acknowledged that P-

band systems can outperform L-band for subcanopy flood detection in the most densely forested 

wetlands.  

 

Despite the fact that L-band is favoured for mapping flooded forests, Wang et al. (1995) also 

noted that C-band had a modest potential for mapping subcanopy flooding. Many subsequent 

studies aimed at mapping flooded forests using C-band systems (e.g. ERS, Envisat, Radarsat) 

obtained varying results (Henderson & Lewis, 2008). The ability of C-band to penetrate a 

forest’s canopy and observe small amounts of double-bounce scattering is dependent on a 

variety of factors working in tandem (e.g. radar polarimetry, radar incidence angle, canopy 
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closure, canopy volume, tree species) (Kasischke & Bourgeau-Chavez, 1997; Townsend, 2002; 

Wang et al., 1995). Although mapping high-vegetated wetlands is sometimes possible using C-

band, its capacities can best be used for mapping lower-vegetated wetlands, such as herbaceous 

or shrubby wetlands, where C-band is favoured over L-band (Henderson & Lewis, 2008). For 

mapping such wetlands, less vegetation penetration is needed.   

 

Polarimetry 

A second important characteristic of a radar sensor is its polarimetry. This determines whether 

pulses are transmitted and received either in horizontal (H) or vertical (V) orientation at the 

sensor (Figure 2). This distinguishes three key polarisation modes, stated below (the first letter 

denotes transmission and the second letter denotes receive): 

- Single-polarimetric: operating in a single mode of transmit and receive orientation (HH, 

HV, VH or VV). 

- Dual-polarimetric: transmitting in a single orientation and receiving in both (HH and 

HV or VV and VH) or transmitting and receiving in the same orientations (HH and VV). 

- Quad-polarimetric: transmitting and receiving in all four combinations of orientation 

(HH, HV, VH and VV). 

 

 

 
Figure 2: Radar polarimetry. The orientation of transmit and receive can 

be either vertical (red) or horizontal (blue) (www.gisgeography.com). 

 

 

For wetland characterisations using radar, HH-polarised images have shown the best results, 

mainly because double-bounce scattering from flooded vegetation and specular reflection from 

water bodies are best observed in this mode (Baghdadi et al., 2001; Brisco et al., 2011). 

Although HH mode is better at observing double-bounce scattering during subcanopy flooding, 

VV mode has also shown moderate capabilities to do this under the right circumstances 

(Townsend, 2002). The use of a cross-polarised (VH or HV) component besides a co-polarised 



17 

 

(VV or HH) component is useful, because cross-polarisation performs well at measuring the 

occurrence of vegetation, due to volume scattering in leaves and twigs (Kuga et al., 1990).  

 

Because the different modes of radar waves interact differently with objects on the Earth 

surface, each of the four (or three, as HV and VH do not deliver major differences) possible 

modes delivers different information. Although single-polarimetric radar can be useful to detect 

calm water bodies, it is not very effective for more complex wetland characterisations, because 

the information delivered in single mode is not comprehensive enough (Mahdavi et al., 2018). 

The maximum number of backscattering values (four) is acquired in quad-polarimetric mode. 

This mode delivers the most comprehensive information for land cover classifications. Still, the 

use of a dual-polarimetric mode – which delivers only half the backscattering values compared 

with the quad-polarimetric mode – can have its benefits. An important advantage of dual-

polarimetric radar is that it can acquire data with a wider swath width and can therefore cover 

larger areas of Earth surface in a certain time (Ainsworth et al., 2009).  

 

The most important disadvantage of a dual-polarimetric mode is the impossibility to make use 

of advanced polarimetric decompositions, which demand quad-polarimetric data. The use of 

polarimetric decompositions (e.g. the Cloude-Pottier, Touzi, Freeman-Durden or Yamaguchi 

decompositions) has proven its great potential for wetland mapping (Furtado et al., 2016; 

Mahdianpari et al., 2017). However, data coverage provided by quad-polarimetric systems is 

very limited. 

 

The use of dual-polarimetric radar still gives the possibility to extract indices or ratios from the 

separate polarisations. Often, a ratio between two polarisations is taken (e.g. VV/VH or 

HH/HV). Also, the normalized difference between two polarisations is regularly used as a 

variable for wetland characterisation (Guo et al., 2017). 

 

2.2.2 Wetland Mapping Using Optical Remote Sensing 

Optical remote sensing has been used for general land cover classifications in many ways. The 

ability of optical remote sensing to split surface reflectance into multiple wavelength bands 

makes it a valuable technique to detect different processes on the Earth surface. However, the 

limitations of optical remote sensing, being in need of daylight and being unable to penetrate 

clouds and vegetation, make it less useful for wetland mapping specifically. Especially in 

temporally dense time series analyses, which are preferred over single-image analyses, the 

hindrance of cloud cover is a large disadvantage in the use of optical data. In the past, multiple 

studies have reported that the sole use of optical sensors is insufficient for accurate wetland 

mapping (Bourgeau-Chavez et al., 2009; Ozesmi & Bauer, 2002). Especially in highly dynamic 

wetland areas that are subject to persistence cloud-cover, the use of optical data is limited. 

 

Still, the information provided by optical sensors can be complementary to radar data 

(Henderson & Lewis, 2008; Ozesmi & Bauer, 2002). Multispectral sensors can be used to 
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measure reflections in certain wavelength bands in the visible and infrared portions of the 

electromagnetic spectrum. Reflectance values from these bands can be used either as individual 

measures, or as ratios or indices of multiple bands combined. Related to wetland 

characterisation, the use of red-edge reflectance or near-infrared (NIR) reflectance as single 

bands can be useful (Mahdavi et al., 2018). When compared to the use of single bands, the 

strength of indices lies in their ratioing aspect, which reduces many forms of multiplicative 

noise (e.g. illumination differences, cloud shadows, atmospheric attenuation, certain 

topographic variations) present in multiple bands and throughout multiple dates (Chen et al., 

2002; Huete et al., 2002). Several indices related to vegetation and water can be of assistance 

for wetland characterisation. These are briefly outlined below. 

 

Vegetation index 

The Normalised Difference Vegetation Index (NDVI), which is the most widely used vegetation 

index, is a measure for the normalised difference between near-infrared (NIR) and red 

reflectance (Kriegler et al., 1969). As live vegetation has a high reflectance in the NIR portion 

of the electromagnetic spectrum and a low reflectance in the red, it is an often-used indicator 

for the amount of photosynthetically active biomass. NDVI can discriminate vegetation and 

non-vegetation, as well as wetlands and non-wetlands. For wetland characterisations, NDVI can 

also be of value for classifying different types of vegetation. 

 

Water indices 

The Normalised Difference Water Index (NDWI) is a measure for the normalised difference 

between the green and NIR reflectance (McFeeters, 1996). The approach of the NDWI is very 

similar to the NDVI, but in this case the index is an indicator for the occurrence of water bodies. 

Therefore, the NDWI is a valuable measure for wetland characterisation. Xu (2006) reported 

that the NDWI as proposed by McFeeters (1996) showed better results for water body detection 

when the short-wave infrared (SWIR) band is used instead of the NIR band. As a result, he 

developed the Modified NDWI (MNDWI), which is the normalised difference between the 

green and SWIR reflectance.  

 

Other wetness-related indices are the Normalised Difference Moisture Index (NDMI) for the 

normalised difference in NIR and SWIR (Gao, 1996), and the Normalised Difference Pond 

Index (NDPIo; o denotes ‘optical’, to indicate the difference with the NDPI related to radar data) 

for the normalised difference in SWIR and green reflectance. However, relative to the 

(M)NDWI, these indices are not frequently used for wetland characterisations. The NDMI is 

aimed at measuring moisture in vegetation and is less useful for water body detection (Gao, 

1996). The NDPIo is no more than a negative from the MNDWI, because it uses the same 

spectral bands, but in the opposite order of extraction. Therefore, using both MNDWI and 

NDPIo has no added value in machine learning-based land cover classifications. 
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2.2.3 Studies Applying Sentinel-1 Data for Wetland Mapping  

Data acquisition of the Sentinel-1 satellites is done with a C-band (with an exact wavelength of 

5.55 cm) dual-polarimetric SAR system. Being dual-polarimetric means in this case that data is 

acquired in VV and VH mode over land, except in the polar regions, where HH and HV mode 

are used (European Space Agency, 2018).  

 

As the Sentinel-1 images are currently providing openly available data with better spatial and 

temporal resolutions, they are an interesting new data source in the domain of radar-based 

wetland mapping. Regarding this newly available data, several studies have been done for 

wetland mapping and characterisation. These past studies have focussed mainly on single-date 

approaches, specific wetland types, specific wetland characteristics or a non-globally applicable 

use. These studies, of which many also incorporated optical data, are briefly summarised below. 

 

Single-date approaches 

Chatziantoniou et al. (2017), Kaplan & Avdan (2018a) and Whyte et al. (2018) integrated 

images from Sentinel-1 and Sentinel-2 for wetland mapping. Although they obtained a high 

accuracy for wetland classifications, their analyses were based on images from a single date, 

thus neglecting the multi-temporal aspect. All authors recommended the use of a multi-temporal 

approach for further research. As stated by Gallant (2015), the use of multi-temporal images is 

important for accurate wetland characterisation, due to the dynamics of surface water in these 

areas.  

 

Multi-temporal approaches aimed at specific wetland types 

Several studies have applied a multi-temporal approach for wetland mapping with Sentinel-1 

data. Cazals et al. (2016) used Sentinel-1 data in a multi-temporal approach to analyse the 

hydrological dynamics of a marsh wetland. They reported the great potential of dense Sentinel-

1 time series data for seasonal flood mapping. Multi-temporal approaches have also been 

adopted by Mroz et al. (2016) and Mleczko & Mróz (2018), who tested Sentinel-1 for mapping 

herbaceous wetlands. They concluded that the use of Sentinel-1 data obtained relatively 

inaccurate results for this purpose. Tsyganskaya et al. (2018) researched the use of Sentinel-1 

time series data to detect temporary flooded vegetation within wetlands and proved the value of 

Sentinel-1 here. Kaplan & Avdan (2018b) used Sentinel-1 time series data, combined with 

optical and thermal data, to classify wetlands as swamps, bogs or sedimentary bogs. They 

studied and confirmed several correlations between radar, optical and thermal variables. Many 

of these studies have illustrated the great potential of Sentinel-1 time series data, especially for 

monitoring variations in seasonal floods with a high temporal frequency. However, these studies 

have focussed on specific wetland types. Therefore, their generic and global applicability for 

wetland characterisation in general is discussable.   

 

 

 



20 

 

Multi-temporal approaches aimed at specific wetland characteristics 

Several multi-temporal approaches with Sentinel-1 data to map specific characteristics of 

wetlands have also been done. Huang et al. (2017), Tian et al., (2017) and Xing et al. (2018) 

used Sentinel-1 time series to classify wetlands based on flood frequencies. They proposed 

successful methods to indicate surface water dynamics in wetlands, based on per-image 

classifications of water and non-water. Muro et al. (2016) used Sentinel-1 time series data to 

detect short term wetland changes in two European Ramsar sites. Their research was also mainly 

focused on analysing one characteristic, namely surface water dynamics.  

 

Multi-temporal approach not globally applicable 

Mahdianpari et al. (2018) used Sentinel-1 time series data, combined with optical data from 

Sentinel-2, to classify wetlands according to the CWCS. Their study area, being in a near-polar 

region, gave them the advantage of using both VV/VH and HH/HV modes of Sentinel-1. A 

main finding in their study was that the combined use of both Sentinel-1 and optical data 

significantly improved the results. Unfortunately, the use of both dual-polarimetric Sentinel-1 

modes is not globally applicable.   

 

2.3 Conceptual Framework 

Figure 3 shows an overview of the concepts discussed in this chapter. It is a graphical display 

of the relevant domains within both land cover classifications and remote sensing. Together 

they comprise the potential use of Sentinel-1 for wetland characterisation.  

 

 

 
Figure 3: Conceptual framework for wetland characterisation. 
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3 Methodology 

This chapter describes the methodology of this research, of which a detailed overview can be 

found in Figure 4. In Chapter 3.1 the used study area is described. In Chapter 3.2 the data 

acquisition and pre-processing steps of the Sentinel-1 and Sentinel-2 data are outlined. Chapter 

3.3 describes the used wetland classification scheme, based on three different levels. In Chapter 

3.4 the used reference data and the acquisition of training- and validation samples is outlined. 

Chapter 3.5 describes the classification methods. In Chapter 3.6 the validation methods are 

discussed.  

 

 

 
Figure 4: Workflow for data acquisition, pre-processing, classification and validation. 

 

 

3.1 Study Area 

The characterisation of wetlands, by using Sentinel-1 data and the combination of Sentinel-1 

and Sentinel-2 data, was applied in the St. Lucia wetlands (also known as the iSimangaliso 
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wetlands) in South Africa. The St. Lucia wetlands are a UNESCO World Heritage site and an 

official Ramsar site. The used study area is a smaller region within the actual site as defined by 

Ramsar (Figure 5). This sub area was chosen in order to reduce the processing time for the 

classifications. The selected region was determined to be suitable as a testing area, because it 

has a variety of wetlands types. All wetland types as defined in the classification scheme in 

Chapter 3.3 occur within this area. The size of the area is approximately 640 km², which 

corresponds to 6.4 million pixels of full resolution Sentinel-1 and Sentinel-2 data per image 

band.  

 

A side note for this specific wetland area is that it has been subject to a restoration process. The 

goal of this restoration is to enlarge the water inflow into the area. During the 21st  century, the 

St. Lucia wetlands had been subject to severe droughts, which reached their peak during 

February 2016 (iSimangaliso Wetland Park, 2017). Since the start of the earliest summer rainfall 

in October 2016 the water levels have been more stable. The restoration project had been a 

contributory cause in this. 

 

 

 
Figure 5: Map of the study area. The study area is a sub-area of official St. 

Lucia wetland boundaries as defined by Ramsar.  
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3.2 Data 

3.2.1 Sentinel-1 Data and Pre-processing 

The Sentinel-1 data product was acquired and pre-processed in Google Earth Engine (GEE) 

(Google, 2018a), using its JavaScript-based code editor. The Sentinel-1 Level-1 data provided 

within GEE is Ground Range Detected (GRD) and has a 10-metre resolution. The instrument 

mode is Inferometric Wide Swath (IW). In the study area images are only acquired in ascending 

mode. This means that the side-looking orientation of the sensor is always the same, namely 

west to east. GEE was chosen as a tool for pre-processing, because of its capacities to process 

large amounts of data within a cloud-based platform.  

 

The entire study area is covered by a single Sentinel-1 image footprint, so mosaicking of 

multiple images was not needed (Figure 6). As stated in Chapter 3.1, the study area had been 

subject to droughts until late 2016. Therefore, it was chosen to select images from after this 

period for the analyses, from October 2016 until October 2018. This two-year period covers two 

cycles of wet seasons (usually around January – March) and dry seasons (usually around May 

– September), starting and ending in the transition between these extremes. This selection 

resulted in a total of 61 Sentinel-1A images, with a 12-day revisit time (Table 1). The full 

temporal resolution of 6 days revisit time could not be used, because Sentinel-1B images were 

not available in GEE. Still, the revisit time of 12 days was considered to be dense enough for 

accurate classifications. 

 

 

 
Figure 6: The image footprint of the Sentinel-1A images in ascending mode. 
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Table 1: Acquisition dates of the 61 Sentinel-1A GRD images used for the analyses. 

 2016 2017 2018 

January  8th, 20th  3rd, 15th, 27th  

February Peak drought 1st, 13th, 25th 8th, 20th 

March  9th, 21st  4th, 16th, 28th  

April  2nd, 14th, 26th 9th, 21st  

May  8th, 20th 3rd, 15th, 27th  

June  1st, 13th, 25th 8th, 20th 

July  7th, 19th, 31st  2nd, 14th, 26th 

August  12th, 24th  17th, 19th, 31st  

September Drought ending 5th, 17th, 29th  12th, 24th  

October 4th, 16th, 28th 11th, 23rd  

November 9th, 21st  4th, 16th, 28th   

December 3rd, 15th, 27th  10th, 22nd   

 

 

Within GEE, the acquired Sentinel-1 images were already pre-processed using the following 

steps (Google, 2018b): 

- GRD border noise removal: Removes low intensity noise and invalid data on scene 

edges. 

- Thermal noise removal: Removes additive noise in sub-swaths to help reduce 

discontinuities between sub-swaths for scenes in multi-swath acquisition modes. 

- Radiometric calibration: Computes backscatter intensity using sensor calibration 

parameters in the GRD metadata. 

- Terrain correction (orthorectification): Converts data from ground range geometry, 

which does not take terrain into account, to sigma nought values using the SRTM 30-

metre DEM. 

 

Besides these pre-processing steps done for the data product in GEE, several additional steps 

were taken. First, all areas with extremely high and low incidence angles were excluded. This 

resulted in masking out the edges of all images. The images were then clipped to the extent of 

the study area as displayed in Figure 5. Speckle noise reduction was applied with a 5 x 5 pixel 

median filter. This filter is a moving window that takes the median value of a 5 x 5 pixel area 

and assigns this value to the window’s centred cell. Apart from coastal dunes at the shores, the 

study area is relatively flat. Therefore, no radiometric terrain flattening was applied. A pre-

processed radar image of the entire study area can be found in Appendix 1. 

 

The VV and VH backscattering values were used for the wetland classifications, complemented 

with the ratio between VV and VH (VVrVH) and the Normalized Difference Polarisation Index 

for VV and VH (NDPI). An overview of these variables derived from the images can be found 

in Table 2. The used temporal statistics for these values were mean, median, standard deviation, 

maximum and minimum, which were calculated over the two-year period. An overview of the 

used temporal variables can be found in Table 3.



Table 2: Overview of derived variables from the 61 Sentinel-1 images. 

Value Description Equation  

VV Backscattering value for vertical transmit and vertical receive. NA 

VH Backscattering value for vertical transmit and horizontal receive. NA 

VVrVH A ratio to indicate the VV backscattering relative to the VH 

backscattering. 
𝑉𝑉𝑟𝑉𝐻 =  

𝑉𝑉

𝑉𝐻
 

NDPI A ratio to indicate the normalized difference between the VV 

and VH backscattering.   
𝑁𝐷𝑃𝐼 =  

𝑉𝑉 − 𝑉𝐻

𝑉𝑉 + 𝑉𝐻
 

 

Table 3: Overview of used Sentinel-1 temporal variables. 

VV VH VVrVH NDPI 

Mean Mean Mean Mean 

Median Median Median Median 

Standard deviation Standard deviation Standard deviation Standard deviation 

Maximum Maximum Maximum Maximum 

Minimum Minimum Minimum Minimum 

 

 

In total, this resulted in a stacked image with 20 values per pixel, representing the temporal 

statistics of Sentinel-1 data for the two-year period. It was assumed that that noise by outliers, 

which would especially affect the maximum and minimum, were reduced by the median filter 

in the pre-processing steps. After the calculation of these temporal variables the resolution was 

reduced to 30 metres, by using the mean pixel values of a 3 x 3 window. This was done because 

processing is much faster in a coarser resolution. A 30-metre resolution was considered to be 

high enough for detailed wetland mapping. 

 

3.2.2 Sentinel-2 Data and Pre-processing 

Sentinel-2 data from the same two-year period was used as additional data for the classifications 

of wetlands. The Sentinel-2 satellites are equipped with a multispectral sensor, distinguishing 

13 spectral bands in the visible, NIR and SWIR portions of the electromagnetic spectrum 

(Figure 7). The first satellite (Sentinel-2A) was launched in June 2015 and the second (Sentinel-

2B) in March 2017 (European Space Agency, 2018). This meant that the used data within the 

two-year period obtained a higher temporal density after March 2017. 

 

The Sentinel-2 data was also acquired and pre-processed in GEE, where the images are 

provided as a Level-1C product representing Top of Atmosphere (TOA) reflectance. Images 

are provided with a 10-metre resolution for the shorter wavelengths and a 20- or 60-metre 

resolution for longer wavelengths or narrower bandwidths. 
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Figure 7: Graphic display of spectral band measurements of the multispectral sensor aboard the Sentinel-2 

satellites (European Space Agency, 2015). 

 

 

In order to remove the most clouded images from the time series, only images with a cloud-

cover less than 40% were selected. Mosaicking was not needed, because the Level-1C data in 

GEE is provided in tiles and not as separate images. After filtering the most clouded images, 

image tiles remained from 160 distinct days for the study area. Masking of remaining clouds 

and cirrus was done for all these images by using threshold values for band 2 (for the removal 

of dense clouds) and band 10 (for the removal of cirrus clouds). A pre-processed optical image 

of the entire study area can be found in Appendix 2. 

 

Within the total period of two years, quarterly median composites were produced. This means 

that for all the images within a three-month period, the median pixel values were taken. The 

use of these median composites is preferred over using the single images, because disturbances 

(especially due to inaccuracies in cloud masking) that highly affect the temporal variables can 

be neutralised. The first quarter (October, November and December 2016) was removed from 

the analyses, because persistent cloud cover during this period restricted the use of a proper 

median composite here. The final result comprised seven median composites of Sentinel-2 

images. An overview of the used median composites is given in Figure 8. 

 

 
                           

  2016 2017 2018  

  
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

 

 Median  

composites 

Excluded    Composite 2    Composite 4    Composite 6    
 

 
   Composite 1    Composite 3    Composite 5    Composite 7 

 
                           
Figure 8: Overview of used time frames for the seven quarterly median composites of Sentinel-2. 
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Two indices were calculated for each quarterly median composite. These were the NDVI for 

vegetation detection and the MNDWI for water body detection. An overview of these 

calculated variables can be found in Table 4. The used temporal statistics for these values were 

the same as for Sentinel-1, namely mean, median, standard deviation, maximum and minimum, 

which were calculated from the seven median composites within the two-year period. An 

overview of the used temporal variables can be found in Table 5. 

 

 

Table 4: Overview of derived variables from the seven Sentinel-2 median composites. 

Value Description Equation  

NDVI A measure to indicate the occurrence of vegetation based on the 

normalised difference in NIR (band 8) and red (band 4) 

reflectance. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

MNDWI A measure to indicate the occurrence of water bodies based on 

the normalised difference in green (band 3) and SWIR (band 11) 

reflectance. 

𝑀𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
 

 

 

Table 5: Overview of used Sentinel-2 temporal variables. 

NDVI MNDWI 

Mean Mean 

Median Median 

Standard deviation Standard deviation 

Maximum Maximum 

Minimum Minimum 

 

 

In total, this resulted in a stacked image with 10 values per pixel, representing the temporal 

statistics of Sentinel-2 data for the two-year period. After the calculation of these temporal 

variables, the resolution was also reduced to 30 metres, by using the mean pixel values of a 3 

x 3 window. For the classification of wetlands by using both the Sentinel-1 variables and the 

Sentinel-2 variables, the images were overlaid into a stacked image of 30 variables in total. 

 

3.3 Classification Scheme 

3.3.1 Levels and Classes 

For the comprehensive characterisation of wetlands, a classification scheme was designed 

based on three levels. These levels were defined conform the most important wetland 

characteristics as described in Chapter 2.1: vegetation types and surface water dynamics. Prior 

to these two levels, one classification level was defined to delineate wetlands from uplands 

and permanent water. In the subsequent classification levels four vegetation types and three 
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types of surface water dynamics were distinguished. An outline of the classification and the 

distinct classes within the levels is given below: 

- Level 1 classification: General wetland delineation  

▪ Permanent water 

▪ Upland 

▪ Wetland 

- Level 2 classification: Classifying vegetation types  

▪ Non-vegetated wetland 

▪ Low-vegetated wetland 

▪ Medium-vegetated wetland 

▪ High-vegetated wetland 

- Level 3 classification: Classifying surface water dynamics  

▪ Permanently moist wetland 

▪ Temporarily flooded wetland 

▪ Permanently flooded wetland 

 

A graphical overview of this classification scheme can be found in Figure 9. The red dotted 

line in the figure indicates the classes for high-vegetated wetlands. Sentinel-1, being a C-band 

radar system, has limited capabilities to detect these high-vegetated wetlands. It was expected 

that including these wetlands in the classifications would disturb the results to a certain extent. 

For example: misclassifications in Level 1 due to high confusion between upland forests and 

high-vegetated wetlands would force the classification of many uplands into meaningless 

subclasses in Level 2 and Level 3. This would lead to confusion in Level 2 and Level 3, that 

could be traced back to errors that actually occurred in Level 1. In order to avoid such 

confusions when evaluating the use of Sentinel-1 data for wetland characterisation, two 

different sets of classifications were done: one with high-vegetated wetlands included and one 

with high-vegetated wetlands excluded. It was expected that the latter would reduce confusion 

in Level 2 and Level 3 caused by errors in Level 1.  

 

In total, this classification scheme leads to ten wetland classes and two non-wetland classes. 

Excluding the high-vegetation classes means that seven wetland classes are distinguished. The 

combinations ‘permanently moist, non-vegetated wetland’ and ‘permanently flooded, non-

vegetated wetland’ do not exist within this scheme. The first combination would be a highly 

unlikely phenomenon. The second combination defines the same as the Level 1 class 

‘permanent water’ and can therefore not be defined as a wetland. As a result, a non-vegetated 

wetland is always defined as ‘temporarily flooded’ within this scheme.  
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Figure 9: Classification scheme. 

 

 

3.3.2 Class Definitions  

In order to classify the different wetland types, definitions were established for each class. 

These definitions were used to select suitable reference samples for the classifications, which 

is further described in Chapter 3.4. The definitions in Level 1 are simple: Upland comprises 

all terrestrial land cover types (e.g. forests, grasslands, urban areas, agricultural land, bare soil) 

and permanent water comprises all areas that are covered with water at least 80% of time. 

Wetlands are all areas in between these definitions of upland and permanent water. The 

definitions of classes as defined in Level 2 and Level 3 are outlined more detailed in Table 6 

and Table 7. The definitions for vegetation types were derived from the classes defined by the 

NVCS (Federal Geographic Data Committee, 1997). Examples of each wetland class displayed 

in high-resolution aerial images can be found in Figure 10. 
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 Permanently moist Temporarily flooded Permanently flooded 

Non-

vegetated 
NA 

 

Permanent 

water 

Low-

vegetated 

   

Medium-

vegetated 

   

High-

vegetated 

   

Figure 10: Aerial images of examples of wetland classes. Images in the class ‘temporarily flooded’ were 

taken during a flood event. The brownish colours indicate the occurrence of water (Google, 2018c). 

 

 

Table 6: Definitions used for Level 2: vegetation types. 

Defined class Description NVCS description NVCS thresholds 

Non-vegetated Wetlands with no vegetation, 

such as mudflats. 

Non-vegetated or sparsely 

vegetated. 

<10% vegetation cover. 

Low-vegetated 

(herbaceous) 

Wetlands with herbaceous 

vegetation, such as low-

vegetated marshes. 

Vascular plants without 

significant woody tissue 

above the ground. 

<0.5 metre in height. 

<25% shrub- or forested 

cover. 

Medium-vegetated 

(shrubby) 

Wetlands with shrubby 

vegetation, such as higher 

vegetated marshes. 

Woody plants that exhibit 

several erect, spreading, or 

prostate stems that give a 

bushy appearance. 

>0.5 metre in height. 

<5 metre in height. 

>25% shrubby cover. 

High-vegetated 

(wooded/forested) 

Wetlands covered by trees, 

such as swamp- or mangrove 

forests. 

Woody plants, usually 

with a single main stem 

and a definite crown. 

>5 metre in height. 

>25% forested cover. 
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Table 7: Definitions used for Level 3: surface water dynamics. 

Defined class Description Thresholds 

Permanently 

moist 

Wetlands that have a constant occurrence of low amounts of 

water, but do not experience severe floods.  

Flooded: <20% of time. 

Temporarily 

flooded 

Wetlands that are subject to severe flood events with high 

amounts of water. 

Flooded: >20% of time and 

<80% of time. 

Permanently 

flooded 

Wetlands that are constantly or nearly constantly flooded 

with high amounts of water. 

Flooded: >80% of time. 

 

 

3.4 Reference Data 

3.4.1 Data Sources 

As stated in Chapter 3.3, the classification of wetlands was based on three levels. In order to 

acquire reference samples from the study area to use as training- and validation data, several 

land cover datasets, local studies, data analyses and aerial or satellite images were used. These 

are described in Table 8, Table 9, Table 10 and Table 11 respectively. More specific, the 

classification level where the source was used for the collection of reference samples is stated 

under ‘Level’. 

 

 

Table 8: Description of land cover datasets used as input for the selection of reference samples. 

Dataset Description Author/reference Level 

Global Surface Water 

Dataset 

30-metre resolution map of global dynamics in 

surface water from 1984-2015.  

Pekel et al. (2016) 1, 3 

Tropical & Subtropical 

Wetland Distribution 

231-metre resolution classification of wetland 

types in tropical and sub-tropical regions. 

Gumbricht et al. (2017) 1, 2 

South African Land 

Cover Dataset 

30-metre resolution general land cover 

classification of South Africa 

GeoTerraImage (2015) 1, 2  

NFEPA Wetlands Vector map with classification of wetland types 

in South Africa. 

(Council for Scientific and 

Industrial Research, 2011a) 

1, 2 

NFEPA Wetland 

Vegetation 

Vector map with classification of wetland 

vegetation types in South Africa. 

(Council for Scientific and 

Industrial Research, 2011b) 

2 

Vegetation Map of 

South Africa, Lesotho 

and Swaziland 

Vector map with classification of general 

vegetation types in South Africa. 

Rutherford et al. (2007) 2 
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Table 9: Description of local studies used as input for the selection of reference samples. 

Author/reference Description Level 

Clulow et al. (2013) Land cover classification of the Mfabeni mire site within the St. Lucia 

wetlands. 

1, 2 

Lück-Vogel et al. (2016) Detailed land cover classification in the surroundings of the St. Lucia village.  1, 2 

Maseko et al. (2017)  Land cover classification in the entire area of the St. Lucia wetlands. 1 

Whyte et al. (2018) Land cover classification in the entire area of the St. Lucia wetlands. 1, 2 

 

 

Table 10: Description of datasets used for analyses as input for the selection of reference samples. 

Dataset Description Author/reference Level 

Shuttle Radar 

Topography Mission 

(SRTM) 

30-metre resolution global digital elevation model. Used 

as an extra check for wetland and upland delineation. 

Farr et al. (2007) 1 

Sentinel-1 SAR Ground 

Range Detection 

10-metre resolution C-band SAR images. Temporal 

signatures for VV and VH backscattering were used as an 

indicator for surface water dynamics. 

European Space 

Agency (2017a) 

3 

Sentinel-2 Level 1C 10- and 20-metre resolution multispectral images. Derived 

variables for reference sample collection were (M)NDWI 

and NDVI. Temporal signatures for (M)NDWI were used 

as an indicator for surface water dynamics and NDVI 

measures were used as an indicator for wetland vegetation 

types.  

European Space 

Agency (2017b) 

2, 3 

PALSAR-2 Global 25m 

Resolution Mosaic 2017 

25-metre resolution HH and HV L-band SAR images from 

the PALSAR-2 sensor aboard the ALOS-2 satellite. The 

provided images were taken in 2017 and were used to 

indicate the occurrence of high-vegetated wetlands. 

Shimada et al. 

(2014) 

1, 2 

Planet satellite images 3-metre resolution global composition of satellite images 

with a high temporal resolution. Images from different 

dates can be viewed. Used as an indicator for surface water 

dynamics. 

Planet (2018) 1, 3 

 

 

Table 11: Description of aerial images used as input for the selection of reference samples. 

Dataset Description Author/reference Level 

Google Earth images  High-resolution global composition of aerial images and 

satellite images in different scales and from different 

dates.   

Google (2018c) 1, 2, 3 

Microsoft Bing Maps 

images 

High-resolution global composition of aerial images and 

satellite images in different scales.  

(Microsoft Bing 

Maps, 2018) 

1, 2 

South African aerial 

photography 

0.5-metre resolution aerial photography of South Africa. National Geospatial 

Information (2018) 

1, 2 
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3.4.2 Training- and Validation Points 

All datasets described in Table 8, Table 9 and Table 11, were loaded and geographically 

overlaid into QGIS (QGIS Development Team, 2018). The datasets from Table 10 were loaded 

within GEE, except for the Planet satellite images, which were used within the platform Planet 

Explorer (Planet, 2018).  

 

Visual interpretation and – to a lesser extent – threshold values were used to acquire suitable 

reference samples. Reference samples were initially acquired by drawing polygons. These 

reference sample polygons were drawn based on a reasonable certainty that could be derived 

from the sources described in Table 8, Table 9, Table 10 and Table 11. Polygons were only 

drawn for areas where multiple sources pointed out the occurrence of a wetland area, a certain 

wetland vegetation class or a certain type of surface water dynamics. In other words, multiple 

sources needed to have an overlap in a certain area, for that area to be determined as a reference 

sample polygon. 

 

The reference sample polygons were labelled for the wetland classes they represented in each 

level of classification, resulting in three labels per reference sample polygon. These polygons 

were used as stratification to generate the random sample points, which were subsequently 

used as training and validation for the automated wetland classifications. The use of polygons 

as stratification for generating random sample points ensured that all classes as defined in 

Chapter 3.3.1 – also spatially underrepresented classes such as non-vegetated wetland and 

permanently flooded wetland – were represented within the reference samples.  

 

The random sample points were generated with a minimum distance constraint of 45 metres, 

which is slightly larger than the diagonal distance of the 30 x 30 metre pixels in the pre-

processed Sentinel-1 and Sentinel-2 images. This constraint was needed to avoid the placement 

of multiple random sample points within the same pixel, which would eventually result in 

multiple representations of the same training- or validation sample. 

 

3.5 Classification Method 

3.5.1 Classification Algorithm 

All classifications were done within R (R Core Team, 2018). R was preferred over GEE, 

because machine learning-based classification methods are easier applied within R. Random 

Forest (Breiman, 2001) was used as method for the wetland classifications. Random Forest is 

a machine learning method that can be used for supervised classifications. It is based on the 

automatic construction of multiple decision trees, where each tree takes a random subset of 

input variables and training objects for classifications. For a final decision of an object’s 

classification, each tree gets one ‘vote’ in the end result. Random Forests have proven their 

use for classifications with large amounts of data in satellite images (Wurm et al., 2017) and 
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also for radar-based classifications specifically (Zhou et al., 2018). Random Forests 

outperform standard classification methods for land cover, because they can handle the large 

differentiation within land cover classes and noise data can be neutralised (Rodriguez-Galiano 

et al., 2012).  

 

The Random Forest classifier uses training data in order to construct the decision trees. The 

temporal variables from the Sentinel-1 and Sentinel-2 data, as described in Chapter 3.2.1 and 

3.2.2, were used as input variables. These variables were extracted from the underlying pixel 

values in the images with 200 random sample points per class. The classifications were done 

with 70% of the random sample points used as training data. The remaining 30% were used 

for validation (described in Chapter 3.6). This means that all classifications were done with a 

70% subset of 600 random sample points, except the classifications in Level 2 that include 

high-vegetated areas. In these classifications the four vegetation types were classified with a 

70% subset of 800 random sample points in total.  

 

The split in training- and validation points was done randomly before each classification. The 

number of trees in each Random Forest classification was set to 128, which is determined to 

be the optimal number in the consideration between accuracy and processing speed for 

Random Forests (Oshiro et al., 2012). To limit the tree depth and prevent the trees from 

overfitting, the minimum node size was set to 5. It was chosen to keep these parameters of the 

Random Forests the same for all classifications in all levels, in order to obtain comparable 

results. 

 

For each classification, two outputs were produced: A classified map and a Mean Decrease in 

Gini (MDG) for all used variables. The MDG is a measure of how pure a variable can be split 

at a node in a Random Forest. This measure indicates the importance of the distinct variables 

used for the classifications. Another commonly used variable importance measure is the Mean 

Decrease in Accuracy (MDA). The use of this measure as an additional result was ignored, 

because of highly comparable variable rankings for both the MDG and MDA. An important 

note for the use of such variable importance measures, is that they tend to be biased towards 

correlated variables (Nicodemus, 2011; Strobl et al., 2008). As many of the temporal statistics 

obtained from Sentinel-1 and Sentinel-2 are highly correlated, the interpretation of the MDGs 

should be done cautiously. 

 

In order to obtain a robust result and neutralise the randomness in the classifications, a Monte 

Carlo approach was used to generate the final outputs. This means that all classifications were 

run 100 times. The 100 output maps from the classifications were overlaid and the majority 

pixel values were taken to produce the final output maps. The final MDG was obtained by 

taking the mean MDGs per variable from these 100 classifications. Although the mean MDGs 

were generated from the classification, their interpretation was mainly part of the evaluation. 
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Additional outputs from the 100 classifications were a mode frequency map and a mean mode 

frequency per class. As these outputs were mainly interpreted as part of the validation, they 

are further explained in Chapter 3.6.  

 

3.5.2 Classifications 

The designed classification scheme and the used satellite images resulted in 12 possible 

classifications. These 12 possibilities are the result of the different combinations of input data 

and classification levels. An overview is given in Table 12.  

 

 

Table 12: Overview of all classification combinations, addressed with distinct abbreviations. 

 Including high-vegetation Excluding high-vegetation 

 Sentinel-1 
Sentinel-1 and  

Sentinel-2 
Sentinel-1 

Sentinel-1 and  

Sentinel-2 

Level 1 S1L1 S1S2L1 S1L1-HV    S1S2L1-HV 

Level 2 S1L2 S1S2L2 S1L2-HV S1S2L2-HV 

Level 3 S1L3 S1S2L3 S1L3-HV S1S2L3-HV 

 

 

In the Level 1 classifications, wetlands were distinguished from uplands and permanent water. 

The results of these classifications were post-classified to reduce a so-called ‘salt-and-pepper’ 

effect. This means that all isolated pixel clumps that consisted of only one or two pixels were 

removed from the output maps. The adjacency of pixels was determined in eight directions, 

which is the so-called ‘queen’s adjacency’. The values of these isolated pixels were replaced 

by the majority pixel value of its direct neighbours in a 3 x 3 window.   

 

The post-classified output maps from these Level 1 classifications were used as an input for 

the Level 2 and Level 3 classifications, where upland and permanent water were masked out. 

The non-masked areas – the wetlands – were then further classified for their vegetation types 

(Level 2) and surface water dynamics (Level 3). The output maps from all levels were overlaid, 

in order to obtain a final output: a full classification of all considered wetland types. These 

final output maps included 12 classes for the classifications with high-vegetated areas included 

and 9 classes for classifications with high-vegetated areas excluded (Figure 11).  
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 Including high-vegetation  

 Level 1   Level 2   Level 3   Full  

 NV LV MV HV   NV LV MV HV   NV LV MV HV   NV LV MV HV  

PM         PM          PM          PM          

TF          TF          TF          TF          

PF         PF          PF          PF          

 Upland   Upland   Upland   Upland 
 

 Permanent water   Permanent water   Permanent water   Permanent water 
 

                        

 Excluding high-vegetation  

 Level 1   Level 2   Level 3   Full  

 NV LV MV HV   NV LV MV HV   NV LV MV HV   NV LV MV HV  

PM      x  PM      x  PM      x  PM      x  
TF       x  TF       x  TF       x  TF       x  
PF      x  PF      x  PF      x  PF      x  

 Upland   Upland   Upland   Upland 
 

 Permanent water   Permanent water   Permanent water   Permanent water 
 

                         
Figure 11: Graphical overview of classes in the different levels. Colour differences indicate the class 

delineations. NV = non-vegetated, LV = low-vegetated, MV = medium-vegetated, HV = high-vegetated, PM 

= permanently moist, TF = temporarily flooded, PF = permanently flooded. 

 

 

3.6 Validation 

In order to assess the accuracy of the classifications, the results were validated. All validations 

were done within R (R Core Team, 2018). The validation measures were the most important 

outputs, in order to assess the use of Sentinel-1 time series data for wetland characterisation.  

 

As stated in Chapter 3.5.1, for each run in the Monte Carlo simulation of the Random Forest 

classifications, the random sample points were randomly split in classification- and validation 

subsets. The 30% used for validation corresponded to 60 validation points per class in each 

run. After the classification, which was done with the other 70% of the random sample points, 

the classified wetland types were extracted for the validation locations and compared with the 

actual wetland types. Per classification, this created 100 accuracy assessments of the 100 

Random Forest classifiers, independent from the training data. The following outputs were 

produced for validation. 

 

Confusion matrix 

The confusion matrix is a display of the amount of correctly classified and incorrectly 

classified objects, within the 30% of the validation points. The rows and columns in a 
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confusion matrix represent the classes predicted by the classifier and the actual classes. The 

predicted classes are the classifications made by the Random Forest and the actual classes are 

the labels which are given to the random sample locations conforming the reference data. For 

each classification a confusion matrix was produced 100 times, one for each run in the Monte 

Carlo simulation. The sum of these matrices was taken as a final confusion matrix. 

 

Overall accuracy 

The overall accuracy (OA) is derived from the confusion matrix and is an indicator of the 

number of pixels that is correctly classified by the classifier. It is calculated as a percentage, 

by dividing the number of correctly classified validation points by the total number of 

validation points. 

 

Producer’s accuracy 

The producer’s accuracy (PA) is derived from the confusion matrix and is an indicator for the 

classification accuracy from the point of view of the producer. It is calculated by dividing the 

number of correctly classified validation points in each class by the number of reference points 

that are in reality within that class. This percentage represents how well reference pixels of the 

class are classified. 

 

User’s accuracy 

The user’s accuracy (UA) is derived from the confusion matrix and is an indicator for the 

classification accuracy from the point of view of the user. It is calculated by dividing the 

number of correctly classified points in each class by the number of reference points that were 

classified within that class. This percentage represents the probability of a pixel being 

classified into a class that actually represents that pixel. 

 

Mode frequency map 

In addition to the accuracy measurements based on the validation data, a mode frequency map 

was generated to indicate the spatial robustness of the classification outputs throughout the 

entire study area. These maps display for each pixel the number of times this pixel was 

classified as the resulting mode of the 100 classifications. This indicates the classification 

consistency per pixel.  

 

Mean mode frequency per class 

A mean mode frequency (MMF) per output class was calculated to indicate the robustness per 

class throughout the 100 classifications. The MMF was calculated by averaging the per-pixel 

mode frequency for each output class. This measurement indicates an overall robustness per 

class in the output classifications. An advantage of this measure is that it is not limited to the 

use of separate validation points and provides a robustness indicator for the entire study area. 
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4 Results 

This chapter describes the results of the 12 distinct Monte Carlo-based Random Forest wetland 

classifications within the St. Lucia wetlands. The validations of the results are outlined per 

level in Chapters 4.1, 4.2 and 4.3. A complete overview of the results – including maps – can 

be found in Appendices 3 to 14.  

 

An overview of the OAs of the classifications can be found in Figure 12. The maps produced 

with the combination of Sentinel-1 and Sentinel-2 obtained a much higher OA than the maps 

produced with Sentinel-1 alone. Also, the exclusion of high-vegetated wetlands led to higher 

accuracies, especially when solely using Sentinel-1. 

 

 

 
Figure 12: Mean OAs of the Monte Carlo classifications and their 95% confidence intervals 

based on the 100 runs. Confidence intervals were all <1%. 

 

 

The level-based outputs of the four classification methods (S1, S1S2, S1-HV and S1S2-HV), were 

overlaid to obtain the final maps for each classification. These final maps can be found in 

Figure 13. 
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Figure 13: Overlaid maps of all levels in each classification. NV = non-vegetated, LV = low-

vegetated, MV = medium-vegetated, HV = high-vegetated, PM = permanently moist, TF = 

temporarily flooded, PF = permanently flooded, PW = permanent water, UP = upland. 

S1-HV             S1S2-HV

S1             S1S2
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4.1 Level 1 – General Wetland Delineation 

An accuracy overview of the Level 1 classifications can be found in Table 13. A full overview 

of these classifications can be found in Appendices 3, 4, 5 and 6. The OAs of these 

classifications ranged from 85.9% for S1 to 97.0% for S1S2-HV.  

 

 

Table 13: Accuracy assessments of the Level 1 classifications. OA = Overall Accuracy (%), PA = Producer's 

Accuracy (%), UA = User's Accuracy (%), MMF = Mean Mode Frequency. 

  S1    S1S2  S1-HV  S1S2-HV 

  OA:  85.9     OA:  92.7   OA:  94.0   OA:  97.0  

  PA UA MMF  PA UA MMF  PA UA MMF  PA UA MMF 

Pmt. water  99.3 97.9 99.6  100 99.6 99.4  99.4 98.2 99.4  100 99.7 99.5 

Upland  81.4 78.7 93.8  93.4 86.2 96.0  92.4 91.4 96.9  97.9 93.8 97.0 

Wetland  77.1 81.1 92.6  84.7 92.7 93.9  90.3 92.5 95.2  93.2 97.8 95.3 

 

 

The S1 classification (Appendix 3) obtained an OA of 85.9%. Confusion was observed mainly 

for the classes upland and wetland. There was a small overestimation of upland and 

underestimation of wetlands in the classification. Errors were mainly caused by the confusion 

between high-vegetated wetlands and upland forests. Visual interpretation of the output map 

and the mode frequency map showed this confusion especially at the western shore of the lake 

(approximately at -28.25 to -28.00 degrees latitude). This forested upland area was often 

wrongly classified as a wetland and the mode frequency in this area was also relatively low. 

The variables VH mean and VH median were found to be the most important for this 

classification. 

 

The inclusion of Sentinel-2 in the S1S2 classification (Appendix 4) led to an OA of 92.7%. 

Confusion was again observed mainly between the classes upland and wetland, but this 

confusion was much lower than in the S1 classification. The overestimation of upland at the 

cost of wetland was relatively large though. The indices NDVI and MNDWI, derived from the 

Sentinel-2 data, were found to be more important than the variables from Sentinel-1 for this 

classification.  

 

The exclusion of high-vegetated areas in the S1-HV classification (Appendix 5) led to an OA of 

94.0%. The confusion between upland and wetland was much lower than in the S1 

classification. Visual interpretation of the output map and mode frequency map showed the 

improvements especially at the western shore of the lake, where the upland forests were now 

more consistently classified correctly as upland. Visual interpretation of the output map also 

showed that most of the high-vegetated wetlands were now classified as upland. Just as in the 
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S1 classification, the variables VH mean and VH median were found to be the most important 

for this classification. 

 

The highest OA was obtained in the S1S2-HV classification (Appendix 6), namely 97.0%. 

Again, most of the high-vegetated wetlands were now classified as upland. The overestimation 

of upland at the cost of wetland was still relatively large. The NDVI variables were found to 

be the most important for this classification. 

 

4.2 Level 2 – Vegetation Types 

An accuracy overview of the Level 2 classifications can be found in Table 14. A full overview 

of these classifications can be found in Appendices 7, 8, 9 and 10. The OAs of these 

classifications ranged from 89.1% for S1 to 96.2% for S1S2-HV.  

 

 

Table 14: Accuracy assessments of the Level 2 classifications. OA = Overall Accuracy (%), PA = Producer's 

Accuracy (%), UA = User's Accuracy (%), MMF = Mean Mode Frequency. 

  S1    S1S2  S1-HV  S1S2-HV 

  OA:  89.1   OA:  94.2   OA:  92.2   OA:  96.2  

  PA UA MMF  PA UA MMF  PA UA MMF  PA UA MMF 

Non-veg.  99.2 98.4 98.0  99.6 98.5 98.8  99.3 98.6 98.2  99.5 98.3 98.5 

Low-veg.  92.3 86.9 95.6  96.3 94.0 96.2  91.4 86.6 95.5  96.2 93.7 96.5 

Med.-veg.  75.9 91.0 92.8  88.7 88.8 94.2  85.8 91.7 94.9  92.9 96.7 94.7 

High-veg.  88.9 89.5 95.7  92.1 95.3 96.5  NA NA NA  NA NA NA 

 

 

The S1 classification (Appendix 7) obtained an OA of 89.1%. Confusion was observed mainly 

for the class medium-vegetated wetland, which was confused with the classes low- and high-

vegetated wetland and was severely underestimated.  

 

The inclusion of Sentinel-2 in the S1S2 classification (Appendix 8) led to an OA of 94.2%. 

Compared with the S1 classification, the confusion for the class medium-vegetated wetland 

was much lower.  

 

The exclusion of high-vegetated areas in the S1-HV classification (Appendix 9) led to an OA of 

92.2%. Still, confusion occurred for the classes low-vegetated wetland and medium-vegetated 

wetland. The amount of low-vegetated wetland was overestimated at the cost of medium-

vegetated wetland.  

 

Also in this level the highest OA was obtained in the S1S2-HV classification (Appendix 10), 

namely 96.2%. The variables VH mean and VV minimum were found to be the most important 

for all classifications in Level 2. 
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4.3 Level 3 – Surface Water Dynamics 

An accuracy overview of the Level 2 classifications can be found Table 15. A full overview 

of these classifications can be found in Appendices 11, 12, 13 and 14. The OAs of these 

classifications ranged from 84.9% for S1 to 95.8% for S1S2-HV.  

 

 

Table 15: Accuracy assessments of the Level 3 classifications. OA = Overall Accuracy (%), PA = Producer's 

Accuracy (%), UA = User's Accuracy (%), MMF = Mean Mode Frequency. 

  S1    S1S2  S1-HV  S1S2-HV 

  OA:  84.9   OA:  91.7   OA:  92.7   OA:  95.8  

  PA UA MMF  PA UA MMF  PA UA MMF  PA UA MMF 

Pmt. moist  86.8 86.5 95.3  96.0 93.0 97.5  92.1 91.1 96.6  96.5 94.7 97.9 

Temp. fl.  82.5 77.8 92.4  89.2 87.9 95.2  89.3 88.9 95.7  92.6 94.8 96.1 

Pmt. fl.  85.3 91.1 88.4  89.9 94.2 93.9  96.7 97.3 97.5  98.1 97.8 97.0 

 

 

The S1 classification (Appendix 11) obtained an OA of 84.9%. Confusion was observed 

mainly for the class temporarily flooded wetland, which was overestimated at the cost of 

permanently flooded wetland. The class permanently flooded wetland also had a relatively low 

MMF throughout the 100 classifications, indicating a poor robustness of classification.  

 

The inclusion of Sentinel-2 in the S1S2 classification (Appendix 12) led to an OA of 91.7%. 

Especially the MMF of the class permanently flooded wetland improved, indicating a more 

consistent classification for this class. This class was again underestimated though, due to 

being wrongly classified as temporarily flooded wetland.  

 

The exclusion of high-vegetated areas in the S1-HV classification (Appendix 13) led to an OA 

of 92.7%. Especially the confusion between the classes temporarily flooded wetland and 

permanently flooded wetland was reduced here. Also, the MMF of the class permanently 

flooded wetland was much higher, indicating a more robust classification. Confusion was 

observed mainly for the class temporarily flooded wetland.  

 

The highest OA was obtained in the S1S2-HV classification (Appendix 14), namely 95.8%. 

Although in relatively small amounts, confusion has been observed here mainly for the classes 

permanently moist wetland and temporarily flooded wetland. The mean and median values for 

NDPI and VVrVH were found to be the most important for all classifications in Level 3. 
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5 Discussion 

The results presented in Chapter 4 give a comprehensive insight in the capabilities of Sentinel-

1 time series data and the combined use of Sentinel-1 and Sentinel-2 for wetland 

characterisation. In this chapter the main findings and limitations of this research are discussed. 

Also, the results are discussed in the perspective of findings in previous studies. In Chapter 5.1 

the results are discussed per level of classification. In Chapter 5.2 the main findings are 

summarised. Chapter 5.3 outlines the main limitations for the used methodology. 

 

5.1 Level-Based Findings 

5.1.1 Level 1 – General Wetland Delineation 

In all Level 1 classifications, confusion was mainly observed for the classes wetland and 

upland, where upland was often overestimated at the cost of wetland. The results of the S1 

classification showed an OA of 85.1%. However, visual interpretation of the output map 

revealed that the confusion of the classes wetland and upland was likely to be much higher 

than the accuracy measurements indicated. The confusion was especially observed between 

upland forests and high-vegetated wetlands. Besides the confusion, visual interpretation of the 

mode frequency map pointed out the inconsistency for classifying high-vegetated areas either 

as upland or wetland when using Sentinel-1. This indicates that C-band operating in VV/VH 

mode has a low capacity to capture backscattering differences between upland forests and 

high-vegetated wetlands, such as swamp- or mangrove forests. The occurrence of these high-

vegetated wetlands in an area obviously causes a disturbance for general wetland delineation 

when using Sentinel-1. This finding is in line with Mahdianpari et al. (2018), who observed 

the highest confusion between swamp forests (with a PA of 57% in a pixel-based classification) 

and upland when using Sentinel-1. Their OA obtained for general wetland delineation using 

Sentinel-1 was 85% (this percentage was derived from their presented confusion matrices by 

calculating only the confusion between four wetland and four upland classes), and thus very 

similar to the OA obtained in this research. 

 

The assumption of Sentinel-1 being incapable of delineating high-vegetated wetlands is 

underlined by the validation of the S1-HV classification. The large accuracy improvement here 

(85.9% to 94.0%) was caused by the decreased confusion between high-vegetated wetlands 

and upland forests. Also, the mode frequency map revealed a better robustness for high-

vegetated areas. This proves again that high-vegetated wetlands contributed largely to 

confusion in the S1 classification. Most of the high-vegetated wetlands, which were not 

included in this classification, were now classified as uplands because they were considered as 

upland forests. The S1-HV classification shows the good capabilities of Sentinel-1 for general 

wetland delineation, provided that only herbaceous and shrubby wetlands occur in an area. 

However, this finding is contradicted by Mleczko & Mróz (2018), who used Sentinel-1 time 
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series data for classifications in herbaceous wetlands and concluded that Sentinel-1 obtains 

relatively poor accuracies (with an OA of 65% for mapping six classes) for this purpose. They 

obtained better accuracies with the use of dual- and quad-polarimetric X-band radar in 

herbaceous wetlands, because this short wavelength was better at observing double-bounce 

scattering from grasses and reeds. 

 

The accuracy improvement (85.9% to 92.7%) with the inclusion of Sentinel-2 data in the S1S2 

classification was relatively high. Especially the confusion between the classes upland and 

wetland decreased. The MDG scores for the optical variables NDVI and MNDWI were also 

higher than for the radar variables. This proves that the inclusion of optical data besides 

Sentinel-1 data leads to a significant accuracy improvement for general wetland delineation 

and that the variables obtained from optical data have a high stake in this. The importance of 

the NDVI for general wetland delineation can be explained by the fact that this index includes 

the NIR reflectance, which is considered to be an important measure for wetland delineation 

(Mahdavi et al., 2018).  

 

As expected, when applying both these accuracy improving features – the exclusion of high-

vegetated areas and the inclusion of optical data – in the S1S2-HV classification, the highest 

accuracy (97.0%) was obtained.  

 

Several past studies have attempted general wetland delineation, sharing methodological 

similarities with this research, but using different satellite systems than Sentinel-1. Past studies 

obtained OAs ranging from 85% to 92% for general wetland delineation using both optical and 

radar data (Corcoran et al., 2013; Mahdianpari et al., 2017; Töyrä et al., 2002; Wright & 

Gallant, 2007). Compared to these studies, the OAs obtained in this research were relatively 

good.  

 

5.1.2 Level 2 – Vegetation Types 

In all Level 2 classifications, confusion was mainly observed for the class medium-vegetated 

wetland. This class was relatively often confused with low- and high-vegetated wetland. This 

confusion was the highest in the S1 classification. The high confusion for the class medium-

vegetated wetland – where shrubby vegetation is dominant – can be explained by the ordinal 

nature of the used classes, where this class falls in between the classes low- and high-vegetated 

wetland. The high confusion for shrubby-vegetated areas with other vegetation types is a 

known phenomenon for land cover classifications in general (Tsendbazar et al., 2016). 

 

The accuracy improvement (89.1% to 94.2%) with the inclusion of Sentinel-2 in the S1S2 

classification was relatively high. Despite this accuracy improvement, the importance of the 

Sentinel-2 variables was not observed in the MDG scores. It was expected that the NDVI 
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would have a higher importance for characterising wetland vegetation types. However, the 

Sentinel-1 variables were still the most important for this classification.  

 

The exclusion of high-vegetated wetlands in the S1-HV classification led to a small accuracy 

improvement (89.1% to 92.2%). This improvement was mainly caused by the exclusion of a 

class, which reduced the number of considered classes from three to four. Obviously, this 

contributed to an accuracy improvement, because the confusion between the classes medium- 

and high-vegetated wetland was completely removed. 

 

The highest accuracy (96.2%) was obtained when Sentinel-2 was included and high-vegetated 

areas were excluded in the S1S2-HV classification. The accuracy improvement relative to the 

S1S2 classification was again mainly caused by the exclusion of a class. Also here, a high 

importance of optical variables was not observed. The high MDG scores for the Sentinel-1 

variables in all Level 2 classifications indicate the importance of Sentinel-1 for mapping 

wetland vegetation types. Although the inclusion of Sentinel-2 improves the accuracy, 

Sentinel-1 has the highest stake in accurately mapping wetland vegetation types.     

 

The accuracy obtained with Sentinel-1 only (89.1%) and the MDG scores of its variables were 

relatively high in Level 2, when compared with classification levels 1 and 3. This implies that 

the classification of wetland vegetation types can be done relatively accurate with Sentinel-1. 

As the importance of the variables VH mean and VV minimum was high, it is likely that 

volume scattering (especially for VH in medium- and high-vegetated wetland), double-bounce 

scattering (especially for VV in low- and medium-vegetated wetland) and specular reflection 

(especially for VV in low- and non-vegetated wetland) is well observed with Sentinel-1 and 

contributes to accurate classifications of wetland vegetation types. It should be noted that the 

masking out of permanent water and especially upland prior to this classification also 

contributed to a better accuracy in this level, because the classification was demarcated to 

mapping only wetland vegetation types and confusion with upland vegetation types could not 

occur. 

 

5.1.3 Level 3 – Surface Water Dynamics 

The results of the S1 classification for surface water dynamics showed an OA of 84.9%, with 

the most inaccurate classification for temporarily flooded wetland. The class permanently 

flooded wetland had a low MMF, which indicates that this class was classified relatively 

inconsistent throughout the 100 classifications.  

 

An important note for the S1 classifications in Level 3 is that the confusion between high-

vegetated wetlands and upland forests in Level 1 forced the classification of surface water 

dynamics for areas that were misclassified as wetlands in this preceding level. This may have 

caused confusion for the S1 classification in Level 3, which could be traced back to errors 
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already made in Level 1. This is especially visible at the western shore of the lake, where low 

mode frequencies were obtained also in Level 3, because the classifier was forced to make 

meaningless classifications for surface water dynamics in upland areas. 

 

Also in this classification level, the accuracy improvement (84.9% to 91.7%) with the inclusion 

of Sentinel-2 data in the S1S2 classification was relatively high. Also, the MMF improvement 

of the class permanently flooded wetland implies more robustness for this class when Sentinel-

2 data is used besides Sentinel-1 data.  

 

An even larger accuracy improvement (84.9% to 92.7%) was observed with the exclusion of 

high-vegetated areas in the S1-HV classification. The MMF increase for the class permanently 

flooded wetland (88.4 to 97.5) was striking. On the one hand, these accuracy improvements 

were caused by a more accurate wetland delineation in the preceding S1-HV classification in 

Level 1. On the other hand, the improvements prove again the incapability of Sentinel-1 to 

map high-vegetated wetlands. In this case, the performance is poor for distinguishing classes 

of surface water dynamics in high-vegetated wetlands. 

 

As expected, the highest accuracy was also here observed for the S1S2-HV classification. For 

all classifications in level 3, the highest MDG scores were obtained by the VVrVH and NDPI 

variables. The high importance of the VVrVH and NDPI can be explained by the fact that the 

plain C-band measurements of VV and VH are mostly dominated by backscatter mechanisms 

of vegetation, and not by moisture or occurrence of water. When attempting a classification of 

surface water dynamics, this results in a high within-class variance for VV and VH variables. 

Apparently, the ratio and normalised difference between VV and VH are better at capturing 

differences in surface water dynamics. An unexpected result in all classifications in Level 3 

was that the standard deviations for both the Sentinel-1 and Sentinel-2 variables were relatively 

unimportant for classifying surface water dynamics. 

 

In past studies using different satellite systems than Sentinel-1, the classification of wetland 

vegetation types and surface water dynamics have often been integrated. Past studies that share 

methodological similarities with the Level 2 and Level 3 classifications in this research 

obtained OAs ranging from 81% to 90% for this purpose (Hess et al., 2003; Martinez & Le 

Toan, 2007; Töyrä & Pietroniro, 2005). Compared to these studies, the OAs obtained in this 

research were relatively good. 

 

5.2 Main Findings 

The results obtained in all levels with the sole use of Sentinel-1 showed accuracies in the range 

of 84.9% to 89.1%. However, high confusions were observed for classifications within high-

vegetated areas. In the Level 1 classifications, the use of Sentinel-1 data did not suffice to 

distinguish upland forests and high-vegetated wetlands. This indicates that the C-band 
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Sentinel-1 sensors cannot capture backscattering differences between these land cover types. 

In the Level 3 classifications, Sentinel-1 also seemed to be insufficient for classifying surface 

water dynamics in high-vegetated wetlands. The incapability of Sentinel-1 for mapping high-

vegetated wetlands is not surprising. Although C-band radar depending on VV mode has 

shown a moderate capability of mapping high-vegetated wetlands in the past (Kasischke & 

Bourgeau-Chavez, 1997; Townsend, 2002; Wang et al., 1995), both this wavelength and 

polarisation are inferior to the use of longer wavelengths such as L-band, and HH mode for 

this purpose (Baghdadi et al., 2001; Brisco et al., 2011; Henderson & Lewis, 2008; Townsend, 

2002; Wang et al., 1995).  

 

The inclusion of optical data from Sentinel-2 largely improved the accuracies in all levels of 

wetland classification. The NDVI and MNDWI had a high stake in this improvement 

especially for general wetland delineation. Despite optical data being determined to be 

insufficient for wetland mapping (Bourgeau-Chavez et al., 2009; Ozesmi & Bauer, 2002), this 

proves that optical data does have a significant added value in a combined use with Sentinel-1 

in wetland classifications. This is substantiated by Mahdianpari et al. (2018), who studied the 

combined use of Sentinel-1 and Sentinel-2 for wetland mapping and proved the added value 

of Sentinel-2. It is notable that they even observed higher OAs for wetland mapping with the 

sole use of Sentinel-2 than with the sole use of Sentinel-1. However, they did not classify 

dynamic aspects in wetlands, such as surface water dynamics or flood frequencies, demanding 

a high-temporal density Sentinel-2 cannot deliver. 

 

Although its added value was showed in this research, the use of optical data has limitations 

when being used for more detailed multi-temporal analyses. For the classification of wetlands 

into only three classes of surface water dynamics, the temporal density of the quarterly 

composites of Sentinel-2 images was sufficient. However, for more detailed temporal 

classifications, such as classifications of flood frequencies as done by Huang et al. (2017), Tian 

et al. (2017) and Xing et al. (2018), the use of optical data will be limited, especially in areas 

that are subject to periods of persistent cloud-cover.  

 

Despite the fact that the inclusion of optical data led to accuracy improvements in all 

classification levels, the Sentinel-1 variables remained the most important in Level 2 and Level 

3. This implies a high stake of Sentinel-1 time series data in accurately mapping wetland 

vegetation types and surface water dynamics. Sentinel-1 only was especially accurate (with an 

OA of 89.1%) for mapping wetland vegetation types. 

 

5.3 Limitations 

A main limitation in the used methods is that the calculated accuracies of the classification 

outputs may have been overestimated due to spatial autocorrelation among training- and 

validation data. This may have happened because reference points were randomly split into 
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training- and validation subsets. As the reference points were selected with reference sample 

polygons as stratification, the likeliness of spatial autocorrelation between training- and 

validation data was the highest for classes which were spatially underrepresented in the study 

area. Examples of such classes are non-vegetated wetland and permanently flooded wetland. 

For these classes, which cover only small parts of the study area, training- and validation points 

were more clustered than for larger classes, such as upland or permanent water. In these larger 

classes, the reference points were more sparsely distributed. As a result, spatial autocorrelation 

has probably not been problematic for the Level 1 classifications, but might have been for the 

more detailed Level 2 and Level 3 classifications. To ensure a better statistical accuracy of the 

maps, more independency between training- and validation data is needed, meeting the 

requirements of stage 3 in the CEOS Validation Hierarchy (CEOS-WGCV Land Product 

Validation Subgroup, 2019). Also, a proper validation of the final overlaid maps (Figure 13) 

could not be done, because no additional independent validation data was collected for this 

purpose.  

 

Additional accuracy overestimations may have occurred due to the use of specific reference 

sample polygons as stratification for the sample points. As a result, the reference frame and 

the study area did not match. Most of the chosen reference sample polygons were areas that 

could obviously be appointed to a certain class, while areas that were more difficult to appoint 

to a class have often been neglected. In Random Forest classifications, this results in purer 

splits of the variables and thus higher classification accuracies, while the ground-truth can be 

more complex. Acquiring sample points throughout the entire study area would result in more 

representative reference data, and thus a more reliable validation (Congalton, 1988).  

 

Another limitation for the used research methodology is the reference data collection process. 

High-resolution aerial- and satellite images have been the main source of information for 

collecting reference samples. Because no detailed study of the ground-truth in the study area 

was done, errors may have occurred during this process. Still, the use of high-resolution aerial 

and satellite images for reference data collection is a widely adopted and accepted method for 

land cover classifications (Lesiv et al., 2018). The alternative of an on-site research for 

reference data collection would be extremely time-consuming for a large study area, especially 

when multi-temporal data needs to be collected.  

 

The limitations for the collection of detailed reference data also resulted in a limitation for the 

number of distinguishable classes in the used classification scheme. Especially in the Level 3 

classification, where only three classes of surface water dynamics were distinguished, a more 

detailed classification might have revealed the capabilities of the temporally dense Sentinel-1 

data in a better way. For example, a classification of flood frequencies would be more 

challenging for the time series data and might have emphasised more superiority of the 

temporally dense Sentinel-1 data over the limited Sentinel-2 data. The incorporation of 
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classification methods used by Huang et al. (2017), Tian et al. (2017) and Xing et al. (2018) 

for characterising surface water dynamics can be useful for a more detailed assessment of 

Sentinel-1 data. Their methods were mainly based on the classification of single images within 

a time series and detecting changes, instead of a classification based on temporal statistics 

obtained from an entire time series.  

 

As only the indices NDVI and MNDWI have been used as optical variables, the added value 

of optical data besides Sentinel-1 may have been underestimated. According to Mahdavi et al. 

(2018), the red-edge and NIR are valuable single-band measures for wetland delineation when 

using optical data. In this research, the NIR reflectance was only used as a reflectance measure 

within the NDVI. The red-edge reflectance, which is also measured by Sentinel-2, was not 

used. 

 

The used spatial resolution for the classifications in this research was 30 metres. Despite this 

resolution being relatively high for wetland mapping, a drawback is that the full resolution of 

Sentinel-1 (10 metres) was not used. This was done to reduce the processing time for the 

classifications.  

 

Several issues come forward regarding the scalability of the used methods for practical 

applications in wetland monitoring. While the platform GEE has proven to be a valuable tool 

for pre-processing and integrating great numbers of both radar and optical satellite images, the 

use of R was preferred over GEE for classifications. This limits the scalability of the used 

methods. Although R has more advanced options for classifications than GEE, a method using 

solely GEE would be easier applicable for large-scale wetland monitoring in practice.  
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6 Conclusion 

The newly available Sentinel-1 radar data, which is available free of charge, has a relatively 

high spatial and temporal resolution and therefore provides a unique opportunity for more 

accurate wetland monitoring from space. This research aimed at assessing the use of dense 

Sentinel-1 radar time series data for mapping and characterising different wetland types. This 

was done by assessing the sole use of Sentinel-1 time series data and the combined use of 

Sentinel-1 with complementary optical data, namely Sentinel-2 data. Sentinel-1 was critically 

assessed for its capabilities in mapping complex wetland characteristics, occurring in higher-

vegetated wetlands and wetlands with dynamicity in surface water. The research questions and 

brief answers to them are outlined below. 

 

1. How accurate can wetlands be mapped within different levels of characterisation, 

using Sentinel-1 time series data? 

The accuracy of wetland mapping with Sentinel-1 time series data varies per characterisation 

level. Sentinel-1 is found to be suitable for accurate classification of wetland vegetation types. 

For general wetland delineation and classifying surface water dynamics, inaccuracies are 

observed mainly for high-vegetated areas. Better accuracies are obtained when characterising 

areas with only herbaceous- or shrubby vegetated wetlands. 

 

2. What is the accuracy improvement for wetland characterisation when combining 

Sentinel-1 time series data with optical data from Sentinel-2? 

The incorporation of optical data from Sentinel-2 besides Sentinel-1 leads to significant 

accuracy improvements, observed at all levels of wetland characterisation. Sentinel-2 was 

particularly valuable for general wetland delineation. However, the usefulness of optical data 

is limited for mapping characteristics that demand a higher temporal density, such as flood 

frequencies.  

 

3. How and to what extent are the accuracies of the produced maps affected by the 

complexities in wetland characteristics? 

Mapping high-vegetated wetlands using Sentinel-1 data was found to be inaccurate as a high 

confusion was observed between upland forests and high-vegetated wetlands. Also, the 

complexity in wetland’s surface water dynamics affect the accuracies of maps produced with 

Sentinel-1, both for temporarily flooded and permanently flooded wetlands. Among these, 

high-vegetated wetlands subject to permanent or temporary flooding cause a considerable 

confusion in the classifications. The combined use of Sentinel-1 and Sentinel-2 helps to 

address the complexity in wetland characteristics and obtains better accuracies.  

 

A main finding in this research is that Sentinel-1 time series data gives sufficient results for 

mapping low- to medium vegetated wetlands, with mainly herbaceous or shrubby vegetation. 
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For general wetland delineation and characterising surface water dynamics, accurate maps can 

be produced within such wetlands. Also, characterising different vegetation types can be done 

relatively accurate with Sentinel-1. Therefore, it is likely that scatter mechanisms caused by 

flooding in different types of vegetation are well observed with Sentinel-1. 

 

The use of Sentinel-1 did not suffice to make accurate wetland classifications in high-vegetated 

areas. The C-band radar systems aboard the Sentinel-1 satellites operating in VV/VH mode 

have been found to be incapable of distinguishing high-vegetated wetlands from upland 

forests, because the radar systems have limited capabilities for vegetation penetration and 

observing double-bounce scattering. Mapping surface water dynamics with Sentinel-1 is also 

relatively inaccurate in high-vegetated wetlands. These inaccuracies are largely reduced when 

high-vegetated wetlands are left out in classifications. Another finding in this research is that 

the inclusion of optical data from Sentinel-2 improves the map accuracies significantly at all 

levels of wetland characterisation. Especially for general wetland delineation, optical data has 

a high stake in this. 

 

As discussed in this research, a main shortcoming of Sentinel-1 radar for wetland 

characterisation is its C-band system. The use of an L-band system has shown better mapping 

results in the past, especially due to its capabilities for mapping high-vegetated wetlands. 

Regarding the usefulness of different wavelengths, the use of the large-wavelength P-band 

system aboard the BIOMASS satellite will also be promising for wetland monitoring in the 

future. Another limitation of the Sentinel-1 sensors is that they do not acquire data in quad-

polarimetric mode. They do also not use the HH/HV mode over non-polar land, which is 

determined to have better capacities for wetland mapping.  

 

This study provided a comprehensive assessment of Sentinel-1 radar time series data for 

wetland mapping and characterisation, in a way that had not been researched before. The 

relatively high spatial and temporal resolutions of this new C-band dual-polarimetric radar 

system were tested in a study area. Besides presenting several main findings regarding the use 

of Sentinel-1 data, this research also produced several accurate wetland maps for the St. Lucia 

wetlands. Also, four generically applicable methods for wetland characterisation by using 

Sentinel-1 and Sentinel-2 data were presented.  

 

A main limitation in this research was the possible dependency among training- and validation 

data. This may have caused accuracy overestimations for the validation of the produced maps. 

In order to obtain more reliable validations, more independency of training samples should be 

ensured. Also, the use of reference data that represents the entire study area is better to obtain 

more reliability in validations. Another limitation in this research was the lack of detailed 

ground-truth data. This resulted in the use of a rather simplistic classification scheme and may 

have resulted in errors in the reference data collection process. For future research, the use of 
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high-resolution images acquired at multiple dates (e.g. using unmanned aerial vehicles) should 

provide more detailed reference data. The use of on-site measurements for multiple dates will 

most likely be too time-consuming, although very valuable. With the availability of more 

detailed ground-truth data, it is advised to make use of an extended classification for surface 

water dynamics in wetlands, in order to truly test the capacities of Sentinel-1 time series data. 

An extended classification for surface water dynamics can also be done with the absence of 

more detailed reference data, when time series analyses are done with per-image 

classifications. Another recommendation for future research is to exploit the added value of 

optical data in a better way, by incorporating individual band measures for the red-edge or NIR 

reflectance. 

 

In conclusion, the high spatial and temporal resolution images and free data access of Sentinel-

1 provide a great opportunity towards operational wetland monitoring. Despite its 

shortcomings for mapping high-vegetated wetlands and extra advantages contributed by 

Sentinel-2 data, Sentinel-1 data has proven to be a valuable mean for wetland characterisation.  
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8 Appendices 

Appendix 1 – Sentinel-1 Image 

Median composite RGB image of Sentinel-1 data in the study area. 
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Appendix 2 – Sentinel-2 Image 

Median composite RGB image of Sentinel-2 data in the study area. 
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Appendix 3 – S1L1 
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Appendix 4 – S1S2L1 
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Appendix 5 – S1L1-HV 
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Appendix 6 – S1S2L1-HV 
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Appendix 7 – S1L2 
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Appendix 8 – S1S2L2 
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Appendix 9 – S1L2-HV 
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Appendix 10 – S1S2L2-HV 
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Appendix 11 – S1L3 
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Appendix 12 – S1S2L3 

 

 

  

Mean variable importance 

Mode frequency map 

 
Classification mode map 

Confusion matrix and mean mode frequency 



74 

 

Appendix 13 – S1L3-HV 
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Appendix 14 – S1S2L3-HV 
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