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Abstract 

According to statistical results, 20% of the Amazon basin’s original forest has been 

converted to pastures or croplands by 2018 due to the deforestation since 1970.  

Studies with large spatial scale demonstrate that these changes lead to a decrease in 

evapotranspiration and contribute to a decline in rainfall. However, the effect of this 

transformation on local precipitation is far from clear. In addition, it still remains unclear 

that the effect of afforestation on local precipitation. Through the study, it is expected 

that the results could contribute to a deeper understanding of response of precipitation 

to vegetation change. By this way, the present study performs the temporal trend 

analysis and neighboring effect analysis of the annual time-series of Amazonia and 

southeastern China local precipitation and tree cover data over the period of 1998-

2016 (except 2000) and 2001-2016 with the resolution of 0.25o by 0.25o, respectively. 

The Mann-Kendall (MK) test was applied to quantify the significance of trend and then 

regression analysis was implemented to explore if there were significant correlations 

between center position’s tree cover and its neighbor’s precipitation. In relation to 

tendencies, downward tree canopy trends were detected in the southeastern 

Amazonia. In addition, upward tree canopy trends were identified for half of the 

southeastern China. The neighboring effect is not obvious in both research area. For 

Amazonia, only 5% results show moderate correlations in each month and this number 

varies from 3 to 10% in southeastern China of each month. Generally, basing on the 

research results, it can’t be concluded that the local precipitation is associated with 

local and around tree cover ratio and studies with finer resolutions are expected in the 

future. 
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Introduction 
 

According to the United Nations’ Food and Agriculture Organization, an estimated 18 

million acres (7.3 million hectares) of forest are lost each year. Deforestation is 

regarded as one of the primary reasons for global climate change as it can affect the 

global carbon cycle and reduce local biodiversity (Bala et al., 2007; Barlow et al., 2016). 

In addition, as forest plays an important role in water cycle, the substantial loss of 

forests can impact water and energy cycle directly or indirectly (D'Almeida et al., 2007; 

Lettau et al., 1979). The direct effects of a conversion of forest to grassland on the 

water and energy budgets are relatively well known. Trees can reach water deeper in 

the ground and consequently to transpire longer into the dry season. While grasses 

are unable to reach these deeper soil layers which limits the water transpiration. 

Therefore, the excess radiation at the land surface over a dry grassland will be emitted 

into the atmosphere as sensible heat (Taylor et al., 2012). However, the effect of these 

changes in the energy balance on precipitation triggering are less clear. This study will 

focus on exploring the indirect effect of deforestation on local (0.25-degree x 0.25-

degree) precipitation and its spatial patterns. In addition, to get a better understanding 

of the relationship between tree cover ratio and local precipitation, the effect of 

afforestation on precipitation with same resolution will also be investigated.  

The Amazonian and southeastern China are selected to represent the deforested and 

afforested areas respectively (Figure 1). And the figure 2 illustrates the annual change 

of mean tree cover ratio and precipitation of the areas marked by red rectangles in 

figure 1. Generally, the tree canopy in Amazonia demonstrates a decreasing trend, in 

contrast, the tree canopy in southeastern China had slightly increased. The Amazonian 

rain forest has incurred a large-scale deforestation since 1970, when strategic 

governmental plans first attempted to promote the economic development across the 

region. And by the early 1990s, more than 10% of the basin’s original forest had been 

converted to pasture or cropland (Fearnside,1993). The situation has been sustained, 

and the latest survey shows that 20% of Amazonian forested land had been cleared 

by 2018, following with a series of ecological and social problems (INPE, 2018). Many 

macroscale studies agree that large-scale deforestation in Amazonia leads to the 

reductions in precipitation, evapotranspiration, moisture convergence and runoff, along 

with increments in surface temperature (D'Almeida et al., 2007). In contrast, 

observational mesoscale studies have linked deforestation to increased precipitation 

locally (Costa & Foley,1999; Chen et al., 2001; Costa et al., 2003; Durieux et al., 2003; 

Marengo, 2004; Negri et al., 2004). Mesoscale circulations induced by a 

heterogeneous land surface could enhance cloudiness and local rainfall (Wang et al., 

2000). One research conducted in Southwest Brazil with the resolution of 0.5o by 0.5o 

found that in the dry season due to the differential heating of the region’s varying 

forestation, there were more precipitation over the deforested and nonforested regions 

than over areas of dense forest (Negri et al., 2004). Since the deforestation in 1970, 

kinds of land cover patterns have formulated, and the neighboring effect of vegetation 

changes on the local precipitation is still unclear. Marengo (1995) proposed a 

hypothesis that the deforestation may affect the water cycle in Amazonia at subgrid, 

undetectable scales. Inspiring by this, the present project explores the relationship 

between tree cover ratio and precipitation with a finer spatial resolution of 0.25o x 0.25o, 

and try to yield a deeper understanding of the response of precipitation to deforestation. 

In contrast to the Amazon, due to the reforestation and afforestation programs, the tree 
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canopy in southeastern China has increased 34% in 2016 compared with that in 1982 

(Song et al., 2018). Generally, afforestation can mitigate the climate change as the 

growth of forest could increase carbon capture and carbon sequestration, which will 

slow the global warming. However, this climate effect of new forests depends on the 

radiant and turbulent energy fluxes over the plantations, for instance, a lower albedo 

may cause warming, which negates the climatic benefits of carbon sequestration 

(Peng et al., 2014). In the respect of the influence of it on precipitation, a large-scale 

study found that the afforestation in the mid-latitudes results in a northward shift of 

precipitation belts, and the most notable changed in precipitation over land happened 

in Brazil, including a drying of the southern edge of the Amazon forest and the increase 

in precipitation in the Sahel region of Africa (Swann et al., 2012). One model research 

conducted in east China found that the precipitation significantly increases annually in 

response to afforestation. Moreover, the rainfall is enhanced locally over the afforested 

region in summer, while in winter the increases not only occur in afforested region but 

also the adjacent ocean area (Ma et al., 2013). Differ from the past, in this study, the 

relationship of afforestation and precipitation will be investigated basing on the data 

from observations with a more precise degree.  

Based on the research objectives the following research question is formulated: 

How does the land cover change influence the local rainfall patterns in the Amazon 

and southeastern China? 

In order to answer the main question, following sub-questions needed to be answered: 

1. whether rainfall increases or decreases with the change of tree canopy; 

2. what the spatial size of this effect is; 

3. how does it relate to the amount of deforestation or afforestation; 

 

 

Figure 1. The maps showing the research areas. (a) Amazonia; (b) southeastern China 

 

(a) (b) 
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Figure 2. The average annual tree canopy and precipitation change of selected areas in 
Amazonia(a) and southeastern China(b). 

  

(a) (b) 
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Methodology 

Data 
Deforestation and precipitation data with the format of Network Common Data Form 

(NetCDF) are derived from TRMM and MEaSUREs projects respectively. The Tropical 

Rainfall Measuring Mission is a joint mission between the National Aeronautics and 

Space Administration and the Japanese Aerospace Exploration Agency designed to 

monitor and study tropical rainfall, and especially to improve understanding of the 

distribution and variability of tropical precipitation (Kummerow et al., 1998). The 3B42 

product includes daily precipitation rates at 0.25o resolution and is available from 1998 

to 2018. The NASA Making Earth System Data Records for Use in Research 

Environments (MEaSUREs) Vegetation Continuous Fields (VCF) Version 1 data 

product (VCF5KYR) provides global fractional vegetation cover at 0.05 degree (5,600 

meter) spatial resolution at yearly intervals from 1982 to 2016. Fractional vegetation 

cover (FVC) is the ratio of the area of the vertical projection of green vegetation above 

ground to the total area, capturing the horizontal distribution and density of vegetation 

on the Earth’s surface. The three bands included in each VCF5KYR Version are: 

percent of tree cover, non-tree vegetation, and bare ground. The available precipitation 

data of Amazonia is from 1998 and that of southeastern China is from 2000 and the 

vegetation change data of 2000 is not included in VCF5KYR product, by this way, the 

research period of two areas are 1998-2016 (except 2000) and 2001-2016 respectively. 

The research area of Amazonia contains 13433 grid cells within 15.125oS to 9.875oN, 

and 77.875 to 44.875oW. The research area of southeastern China contains 3149 grid 

cells within 23.125 to 34.625oN, and 105.775 to 122.475oE (Figure 1). 

Following figure derived from Song’s paper relies on VCF5KYR product, showing a 

long-term change (1982-2016) of tree canopy (TC) cover, short vegetation (SV) cover 

and bare ground (BG) cover globally. Every land pixel is characterized by its per cent 

cover of TC, SV and BG, representing the vegetation composition at the time of the 

local peak growing season (Song et al., 2018). 

 

Figure 3. A satellite-based record of global TC, SV and BG cover from 1982 to 2016. Target 
research areas are in the red boxes. Circled numbers in the color legend denote dominant 
change directions: 1, TC gain with SV loss; 2, BG gain with SV loss; 3, TC gain with BG loss; 
4, BG gain with TC loss; 5, SV gain with BG loss; and 6, SV gain with TC loss (Song et al., 
2018). 
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Statistical analysis 
The whole statistics analyses were achieved in Matlab, and the main methods are 

Mann-Kendall (MK) test and regression analysis. The program is listed in the appendix 

I. 

Preliminary Data Processing In this study, the relationship between monthly 

precipitation and the tree canopy in each year is explored. As the TRMM data is daily, 

the first step in the analysis process is to add up the daily precipitation to get the 

monthly precipitation (Appendix I). Due to the difference between resolutions of two 

data product, one grid in TRMM product contains 25 grids in VCF5KYR product (Figure 

3), by this way, the next step is transferring the resolution of VCF5KYR product into 

0.25ox0.25o. The following equation is used (Appendix I): 

𝑇𝑛𝑒𝑤 = (∑𝑇1

25

1

)/25 

Mann-Kendall test The Non-parametric Mann-Kendall test is commonly employed to 

detect monotonic trend in series of environmental data, climate data or hydrological 

data. The null hypothesis, H0, is that the data come from a population with independent 

realizations and are identically distributed. The alternative hypothesis, HA, is that the 

data follow a monotonic trend. The Z-transformation can be calculated after the test, 

and for the certain confidence level α, if |Z| ≥ Z1−α/2, the H0 is refused which means 

that the data has significant increase or decrease with the confidence level α (Pohlert, 

2016). The procedure is as follows (Huang et al., 2013): 

S = ∑ ∑ sgn(xj − xi)

n

j=i+1

n−1

i=1

 

sgn(xj − xi) = {

+1, xj > xi
0, xj = xi
−1, xj < xi

 

First, the above formula is applied to calculate the statistic S (Eq.2), and the n is the 

sample size. S is approximately normally distributed when n≥8, with the mean and the 

variance as formula (Eq.4) and (Eq.5): 

E(S) = 0 

V(S) =
n(n − 1)(2n + 5) − ∑ tii(i − 1)(2t + 5)

n
i=1

18
 

Where t i is the number of the ties of extent i. The standardized statistic (Z) for one-

tailed test is formulated as: 

Z =

{
 
 

 
 
s − 1

√Var(s)
, S > 0

0, S = 0
s + 1

√Var(s)
, S < 0

 

In this study, the MK test is conducted to find the grid that the tree cover ratio or 

precipitation of it had significant changed in the research period with the significance 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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level of 95%(Appendix I). The H0 is that there is no significant trend of tree cover ratio 

in the target grid cell or there is no significant trend of the precipitation in the target grid 

cell. The results than be used as the benchmark for the analysis of neighboring grid 

cells. 

 

Regression analysis Regression analysis is a 

set of statistical processes for estimating the 

relationships among variables. For this study, the 

tree cover ratio is the independent variable (X) 

and precipitation is regarded as the dependent 

variable (Y), meanwhile, as there is only one 

independent variable, the simple linear 

regression analysis is implemented (Eq.7).  

Y = β0 + β1X + ϵ 

Through the analysis, the relationships can be 

expressed mathematically in terms of a 

correlation coefficient (R) which varies from -1 to 

+1, where ±1 indicated the strongest possible 

agreement and 0 means the strongest possible 

disagreement. In addition, the R-squared value 

(coefficient of determination) is used to evaluate 

the goodness-of-fit of the regression model and can be interpreted as the proportion 

of response variation “explained” by the regressors in the model. In general, R2=1 

indicates that the fitted model explains all variability in dependent variable, while R2=0 

indicates no linear relationship.  

First, the regression analysis is conducted to detect the relationship of tree cover ratio 

and the local precipitation. Second, in order to explore whether the neighboring effect 

is different in each direction as well as the scope of this effect , the grid cell which tree 

cover ratio have significantly changed is selected as the central cell and the regression 

analysis is applied on its tree canopy and 24 surrounding cells’ precipitation (Figure 4 

& Appendix I). Furthermore, as the relationship of tree canopy and surrounding mean 

precipitation is not clear, the regression test is also used to detect the connection 

between tree canopy and 9 or 24 surrounding cells’ mean precipitation (with the 

resolution of 0.75o and 1.25o, respectively) (Figure 4). 

Figure 4.The diagram of statistical 
analysis. The regression analysis in 
conducted between green grid cell and 
surrounding 9 or 24 white grid cells. 

(7) 
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Results  

Mann-Kendall test 
 

 

Figure 5.The MK test results of Amazonia and China. (a) shows the grid cells where the tree 
cover ratio has significant upward or downward trend in the Amazonia from 1998 to 2016 
(except 2000). (b) is the result of southeastern China from 2000 to 2016. Strong upward trends 
happened in the yellow grid cells, while significant downward trends occurred in the blue grid 
cells. 

Tree cover ratio trend Figure 5 is the Mann-Kendall trend test result of tree cover 

change in Amazonia and southeastern China, and the grid cells that tree cover ratio 

had significant upward or downward trends with the confidence level of 95% are 

marked by yellow points and blue points, respectively. The Amazonia research area 

contains 13,433 grid cells and 1,504 of them had undergone significant tree canopy 

ratio change, and the significant vegetation changes had occurred in1,566 of 3,149 

grid cells in southeastern China. In the figure 5a, large-scale deforestation occurred 

mainly in the southeastern part of the Amazonia, while near the coastline in the 

southwest, the tree cover ratio had significantly increased. However, the most negative 

trends took place along the same coastline. More upward trends distributed 

dispersedly in the middle and northern Amazonia. In contrast, the significant increase 

of tree canopy had happened in half of the research area in southeastern China since 

2000 and only few downward trends are observed in northeastern area, close the 

coastline.  

Precipitation trend Figure 6a illustrates the Mann-Kendall results of the monthly 

precipitation in Amazonia. Strong increasing trends occurred relatively less and 

distributed dispersedly, and can be found in the northeastern part in February and the 

middle region in March and July. In contrast, the distribution of significant decreasing 

trends is more concentrated and can be observed in the southwestern corner for each 

month. In January, March, June, September and October, significant decreases took 

place in the northern part of the Amazonia. Furthermore, large-scale downward trends 

can be observed in the southeastern region in July and August.  

Figure 6b gives the spatial distribution of significant trends in precipitation detected by 

the Mann-Kendall test in southeastern China. In general, the consistently similarity is 

not found among the trends of precipitation in different months. In January, February 

and December, the precipitation in western region of research area demonstrates a 

decreasing trend, while the increasing trends more happened in the eastern region in 

May, June, October and November. Strong decreasing trends can also be found in the 

northern part of July and northwestern of December. The interesting thing is that in 

(a) (b) 
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September, the upward trends occurred in large amount of grid cells across the 

research area from west to east.
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Figure 6.The MK test result of monthly precipitation in Amazonia (a) from 1998 to 2016 (except 2000), and in southeastern China (b) from 2000 to 2016. The 
green region means that there was no significant change in the research period, while the precipitation in yellow and blue grid cell had significantly increased 
and decreased, respectively. 

(a) (b) 
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Regression test 
 

 

Figure 7. The regression analysis results of tree cover ratio and local precipitation (a), and the results of the cells that tree cover ratio had significantly changed 
(b) of Amazonia (p=0.05) The grid cell which two variables have strong correlation is marked by red circle (b). 

 

(a) (b) 
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Figure 8. The regression analysis results of tree cover ratio and local precipitation (a), and the results of the cells that tree cover ratio had significantly 
changed (b) of southeastern China (p=0.05) 

(a) (b) 
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Local regression test Figure 7a and figure 8a illustrate the regression results of each 

cell in Amazonia and southeastern China, respectively. Overall, large-scale of high 

correlation relationships (R2>0.49, p=0.05) didn’t occur in both research areas. In 

addition, for southeastern region of Amazonia, tree cover ratio and local precipitation 

are completely unrelated in June and July. When only considering the cells that tree 

cover ratio had significantly changed, it is obvious that few grid cells with strong 

correlation between two variables are detected in the analysis. For Amazonia, the 

majority of cells with R2 larger than 0.8 (p=0.05) are found in the northwestern corner, 

along the coastline of the research area (figure 7b). Other points of which two variables 

had moderate correlation (0.25<R2<0.49, p=0.05) distribute through the whole region. 

When it comes to southeastern China, grid cells with R2 larger than 0.5 (p=0.05) 

distribute centrally in the southern part in January, northwestern part in April, 

northeastern part in May and middle region in September. 

Neighboring effect. In order to explore the neighboring effect of tree cover ratio on 

different directions and distances, the regression analysis is than conducted between 

the grid cell which tree cover ratio have significantly changed and 24 grid cells centered 

around it (figure 4). In total, 36,076 and 33,336 groups of data in every month of 

Amazonia and China are analyzed, respectively. For Amazonia, the distribution of 

different ranges of R2 in each month is similar that approximately 20% of results have 

low correlations (0.09<R2<0.25, p=0.05) and less that 5% show moderate correlations 

(0.25<R2<0.49, p=0.05) (Figure 9). The percentages of R2 larger than 0.25 in February, 

May and September are nearly as twice as that in other months. For southeastern 

China, data sets with low correlation account for 22-30%, and that with moderate 

correlation account for 3-10%. Moreover, the high percentage occurred in January and 

September. 

The maps that showing the neighboring effect results of Amazonia in May and 

southeastern China in January, since there are more results with higher R2, are 

displayed in the figure 10. For Amazonia, in the southwestern corner of the research 

area, near the coastline (red circle in figure 10a), moderate correlations are found 

between the neighbors. In contrast, the results of regression tests conducted on the 

same area with the data sets covering the tree canopy and local precipitation indicate 

no correlation. In addition, data sets with R2 is larger than 0.49 are not found in other 

area. When it comes to southeastern China, it is obvious that the data sets from 

southern and part of northern region (circled in figure 10b) are moderately correlated 

which is consistent with the finding of local regression test in the same area in January. 

Meanwhile, the neighboring effect seems to be effective in each direction, and still 

exerts influence on the farthest cells (the linear distance is near 71km) from the center. 

Figure 11 and 12 demonstrate the results of the neighboring effect on mean 

precipitation in Amazonia and southeastern China. For Amazonia, similar to other 

regression results, extremely few moderate correlations are detected in both scales. 

In addition, the moderate correlations that found in the analysis with resolution by 0.75o, 

also happened in that with 1.25o. However, in November, Amazonia, moderate 

correlations are only detected in the southern part (marked by red circle) with the 

resolution of 1.25o (figure 11b). For southeastern China, the results are very similar 

with both resolutions, furthermore, they resemble to the local regression results that 

the moderate correlations are discovered in the same area in each month (figure 12). 
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Figure 9. The histogram showing the results of neighboring effect analysis of Amazonia (a) and southeastern China (b), respectively.  

(a) (b) 
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Figure 10. The 

maps showing 

the neighboring 

effect results of 

Amazonia (a) in 

May and 

southeast China 

in January(b). 

The same as the 

diagram in the 

figure 3, 24 maps 

in (a) and (b) 

illustrate the R2 

between the 

central cell’ tree 

cover ratio and its 

24 neighbors’ 

precipitation.  

(a) 
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(b) 
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Figure 11. The maps showing the regression analysis test results of tree canopy and mean precipitation of 9 (a) and 24(b) surrounding cells in Amazonia.  



18 
 

 

 Figure 12. The maps showing the regression analysis test results of tree canopy and mean precipitation of 9 (a) and 24(b) surrounding cells in southeastern 

China.  
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Discussion  
In relation to tendencies, the present study suggests that large-scale decrease trends 

of precipitation happened in July and August in the southeastern Amazonia, which is 

consistent with the large amount of areal deforestation. However, on the basis of 

regression results, strong correlations between tree cover ratio and precipitation are 

not found at the same time and place, meanwhile, when integrating all results, it has 

been discovered that the deforestation in Amazonia seems to exert little influence on 

local and around precipitation. The reasons behind it are various, apart from the local 

vegetation, there are many large-scale weather disturbances that can influence the 

rainfall, for instance, the sea surface temperature, continental surface heating and El 

Nino Southern Oscillation events (Chen et al., 2001; Marengo et al., 1993; Marengo et 

al., 1998).  

Except the factors mentioned above, the resolution of dataset may also affect the 

results (D'Almeida et al., 2007; Negri et al., 2004). In two studies of the impact of 

deforestation on precipitation over the Amazon, Durieux et al. (2003) examined 10 

years of 3-hourly infrared data with the resolution of 2.5o x 2.5o, while Negri et al. (2004)  

analyzed 14 years of 8-hourly data with the resolution of 0.5o x 0.5o of the same 

research area (8 to 13oN, 60 to 65oW). They obtained opposite results in the end, the 

study with better degree of resolution found an increased probability of rain over the 

deforestation in August, during the transition from dry to wet season, while the other 

one did not. The reason is regarded to the resolution, Negri explained that when 

compared to the 0.5o by 0.5o cell, the topography and vegetation patterns were more 

complicated in the cell of 2.5o. Meanwhile, both of them in agree with the statement 

that the sharp meridional gradient in precipitation make the effect of deforestation more 

complex, which is more obvious in the dry season.  

The resolution of the neighboring effect in present study is 0.25o-1.25o, however, the 

results contrast with that found by Negri. Through comparing the analysis technique, it 

is found that the precipitation data analyzed by Negri are the average for 1960-78 and 

1979-90 in each month. Thus, the difference between the results may due to the study 

period: 1960 to 1990 and 1998 to 2016, respectively; and the diverse of time scale, 

one is an inter-decadal study while the present study is inter-annual.  

Significant increases of tree cover ratio are observed in most part of southeastern 

China, while the precipitation in each month displayed different tendencies. 

Decreasing trends mostly happened during the winter period in the northern part, while 

in the summer period, especially in September, large-scale of increasing trends 

appeared. The reason is regarded as the influence of the East Asian monsoon (Zhou, 

2011). Similar as the discovery in Amazonia, when comparing the figure 5b against 

figure 7b, it is found that few proportions of the significant trends of precipitation can 

be ‘explained’ by the local tree cover ratio. This phenomenon can be observed 

obviously in January, that moderate correlations are detected at where the 

precipitation didn’t change significantly. This finding supports the statement that the 

precipitation in southeastern China is more influenced by the East Asian summer 

monsoon and East Asian winter monsoon (Gemmer et al., 2011; Zhou, 2011). 

The significant neighboring effects are detected in the northern part of southeastern 

China, that the tree cover ratios of central cells exert moderate impacts on 

precipitations of its neighbors.  However, same correlation also happened in the local 

regression test. When considering that the afforestation program is organized and the 
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change of areal forest cover is very similar, there is a possibility that the moderate 

correlations in this area may be due to the similarity existing in forest cover ratio data. 

In order to prove this hypothesis, the tree canopy and precipitation data of 25 grid cells 

(marked by yellow square in figure 10b) where moderate correlations happened more 

is analyzed. From figure 13, high correlations (R2>0.49) and very high correlations 

(R2>0.81) happened in almost all results. Comparing to the neighboring effect results 

in figure 10b, it is clear that the significant neighboring effect are detected between the 

cells that the tree cover ratio is highly correlated. This finding supports the hypothesis 

above, meanwhile, points out that the neighboring effect results are unreliable. 

 

Figure 10. (a) is the correlation relationship between tree canopy in peripheral and central cells; 
(b) is the correlation relationship between precipitation in peripheral and central cells. 

Basing on the present results, the strong neighboring effect of tree canopy on 

precipitation is not found in both research area. One limitation is the coarse resolution 

of precipitation (0.25o x0.25o), as the resolution of original tree canopy data is 0.05o, in 

order to unify the resolutions of two variables, the average value of tree canopy is 

applied. Some features may lose during this process, resulting in the unreliable of the 

results. For future studies, a resolution within 0.05o-0.1o is recommended as a better 

data base to explore the research question in this thesis. Furthermore, due to the 

afforestation program in China is organized, the strong similarity happened in the forest 

canopy data in Southeast China, and absolutely has impact on neighboring effect 

results. How to diminish this influence should be explored in the future study. 
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Conclusion  
Amazonia and southeastern China have experienced large-scale of deforestation and 

afforestation, respectively. Understanding the response of precipitation to those 

changes is an important requirement to estimate the impacts of land cover change on 

water cycle. The Mann-Kendall test conducted with satellite girded data of tree canopy 

and precipitation with the resolution of 0.25o illustrates the spatial distributions of 

significant trends. The regression analyses presented in this study give a spatially 

consistent picture of precipitation–tree canopy relationships of Amazonia and 

southeast China. The main findings are summarized as follows: 

1. In relation to tendencies, present study suggests that large-scale deforestation 

occurred mainly in the southeastern part of the Amazonia, while the tree cover 

ratio had significantly increased near the coastline in the southwest. And the 

most negative trends took place along the same coastline. In total, the tree 

canopy of 11.2% grid cells had underwent significant changes. For the 

precipitation in Amazonia, relatively less upward trends occurred, and 

downward trends concentrated in the southwestern corner for each month and 

southeastern region in July and August. When it comes to southeastern China, 

half (49.7%) of the annual series of tree canopy presented significant upward 

trends. Opposing this, significant increasing trends of precipitation are only 

found in September across the research area and few regions during the 

summer and autumn period. Furthermore, strong downward trends happened 

in the northern part during the winter period. 

2. The neighboring effect is not obvious in both research area. For Amazonia, low 

correlations account for approximately 20% in each month, only 5% results 

show moderate correlations as well as high correlations are extremely few. For 

southeastern China, data sets with low correlation account for 22-30%, and 

that with moderate correlation account for 3-10%. According to the results that 

the high proportion of cells with moderate correlation appeared in January. 

Although moderate correlations had been detected in the northern region of 

southeastern China in January, the credibility of this is not high since this may 

result from the high similarity existing in tree cover ratio data in that area. 

3. On the basis of the results, it can’t be concluded that the local precipitation is 

associated with local and around tree cover ratio. In addition, the current 

research results can’t make an answer to the sub-question 2 and 3. Future 

studies with a finer resolution are expected. The present study, as well as future 

studies, will be helpful in estimations of response of the precipitation to 

vegetation change. 
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Appendix  

Appendix I Statistical Analysis 
Precipitation monthly in Amazonia 

 

 

 

 

 

clear all 

close all 

clc 

month = [31,28,31,30,31,30,31,31,30,31,30,31]; 

m = 1; 

     total_precip=zeros(1,1); 

    for j = 1:12 

        imax = month(j); 

        for y = 1998:1999 

            for i=1:imax 

                total_precip=zeros(1,1); 

                precip = ncread(['3B42_Daily.',num2str(y,'%4d'),num2str(j,'%02i'), 

num2str(i,'%02i') 

'.7.nc4.nc4@precipitation[408%3A540][139%3A239],lon[408%3A540],lat[139%3A239]'],'preci

pitation'); 

                total_precip =total_precip+precip; 

                m = m+1; 

            end 

            data_p{j,y-1997}= flipud(total_precip); 

            clear total_precip 

        end 

    end 

    m = 1; 

    for j = 1:12 

        imax = month(j); 

        for y = 2001:2016 

            for i=1:imax 

                total_precip=zeros(1,1); 

                precip = ncread(['3B42_Daily.',num2str(y,'%4d'),num2str(j,'%02i'), 

num2str(i,'%02i') 

'.7.nc4.nc4@precipitation[408%3A540][139%3A239],lon[408%3A540],lat[139%3A239]'],'preci

pitation'); 

                total_precip =total_precip+precip; 

                m = m+1; 

            end 

            data_p{j,y-1998}= flipud(total_precip); 

            clear total_precip 

        end 

    end 

    data_p_monthly=data_p; 

    save ('result.mat','data_p_monthly','-append') 

 

Published with MATLAB® R2018b 
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Precipitation monthly in southeastern China 

clear all 

close all 

clc 

month = [31,28,31,30,31,30,31,31,30,31,30,31]; 

m = 1; 

     total_precip=zeros(1,1); 

 

       for j = 1:12 

        imax = month(j); 

        for y = 2001:2016 

        for i=1:imax 

            total_precip=zeros(1,1); 

            precip = ncread(['3B42RT_Daily.',num2str(y,'%4d'),num2str(j,'%02i'), 

num2str(i,'%02i') '.7.nc4.nc4'],'precipitation'); 

            total_precip =total_precip+precip; 

            m = m+1; 

        end 

        data_p{j,y-2000}= flipud(total_precip); 

      clear total_precip 

        end 

    end 

    data_p_monthly=data_p; 

    save ('china.mat','data_p_monthly','-append') 

Published with MATLAB® R2018b 

Tree caver ratio of Amazonia  

clear all 

close all 

clc 

m=1; 

for k = 1998:1999 

            treecover = ncread(['VCF5KYR_',num2str(k) '001.nc'],'Band1'); 

            treecover0=treecover(2041:2705,1496:2000); 

            treecover0(isnan(treecover0)==1) = 0; 

            

treecover1=reshape(sum(reshape(treecover0,size(treecover0,1),5,[]),2),size(treecover0,

1),[]); 

            treecover2=reshape(sum(reshape(treecover1,5,101,133),1),133,101); 

            total_tree=treecover2/25; 

            m=m+1; 

            data_t{k-1997,1}= rot90(total_tree); 

end 

for k = 2001:2016 

            data_everyyear_tree=zeros(1,1); 

            treecover = ncread(['VCF5KYR_',num2str(k) '001.nc'],'Band1'); 

            treecover0=treecover(2041:2705,1496:2000); 

            treecover0(isnan(treecover0)==1) = 0; 

            

treecover1=reshape(sum(reshape(treecover0,size(treecover0,1),5,[]),2),size(treecover0,

1),[]); 

https://www.mathworks.com/products/matlab
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            treecover2=reshape(sum(reshape(treecover1,5,101,133),1),133,101); 

            total_tree=treecover2/25; 

            m=m+1; 

            data_t{k-1998,1} = rot90(total_tree); 

end 

save  ('result.mat','data_t','-append') 

Published with MATLAB® R2018b 

Tree caver ratio of southeastern China 

clear all 

close all 

clc 

m=1; 

for k = 2001:2016 

    data_everyyear_tree=zeros(1,1); 

    treecover = ncread(['VCF5KYR_',num2str(k) '001.nc'],'Band1'); 

    treecover0=treecover(5716:6050,2261:2495); 

    treecover0(isnan(treecover0)==1) = 0; 

    

treecover1=reshape(sum(reshape(treecover0,size(treecover0,1),5,[]),2),size(treecover0,

1),[]); 

    treecover2=reshape(sum(reshape(treecover1,5,47,67),1),67,47); 

    total_tree=treecover2/25; 

    m=m+1; 

    data_t_china{k-2000,1} = rot90(total_tree); 

end 

save  ('china.mat','data_t_china') 

Published with MATLAB® R2018b 

Transforming the precipitation data for next step. 

clear all 

close all 

clc 

load result.mat data_p_monthly 

  for n=1:18 

  precip_Jan{n,1}=data_p_monthly{1,n}; 

  precip_Feb{n,1}=data_p_monthly{2,n}; 

  precip_Mar{n,1}=data_p_monthly{3,n}; 

  precip_Apr{n,1}=data_p_monthly{4,n}; 

  precip_May{n,1}=data_p_monthly{5,n}; 

  precip_June{n,1}=data_p_monthly{6,n}; 

  precip_July{n,1}=data_p_monthly{7,n}; 

  precip_Aug{n,1}=data_p_monthly{8,n}; 

  precip_Sept{n,1}=data_p_monthly{9,n}; 

  precip_Oct{n,1}=data_p_monthly{10,n}; 

  precip_Nov{n,1}=data_p_monthly{11,n}; 

  precip_Dec{n,1}=data_p_monthly{12,n}; 

  end 

save ('result.mat','precip_Jan','-append') 

save ('result.mat','precip_Feb','-append') 

save ('result.mat','precip_Mar','-append') 

https://www.mathworks.com/products/matlab
https://www.mathworks.com/products/matlab
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save ('result.mat','precip_Apr','-append') 

save ('result.mat','precip_May','-append') 

save ('result.mat','precip_June','-append') 

save ('result.mat','precip_July','-append') 

save ('result.mat','precip_Aug','-append') 

save ('result.mat','precip_Sept','-append') 

save ('result.mat','precip_Oct','-append') 

save ('result.mat','precip_Nov','-append') 

save ('result.mat','precip_Dec','-append') 

Published with MATLAB® R2018b 

clear all 

close all 

clc 

load china.mat data_p_monthly 

  for n=1:16 

  precip_Jan{n,1}=data_p_monthly{1,n}; 

  precip_Feb{n,1}=data_p_monthly{2,n}; 

  precip_Mar{n,1}=data_p_monthly{3,n}; 

  precip_Apr{n,1}=data_p_monthly{4,n}; 

  precip_May{n,1}=data_p_monthly{5,n}; 

  precip_June{n,1}=data_p_monthly{6,n}; 

  precip_July{n,1}=data_p_monthly{7,n}; 

  precip_Aug{n,1}=data_p_monthly{8,n}; 

  precip_Sept{n,1}=data_p_monthly{9,n}; 

  precip_Oct{n,1}=data_p_monthly{10,n}; 

  precip_Nov{n,1}=data_p_monthly{11,n}; 

  precip_Dec{n,1}=data_p_monthly{12,n}; 

  end 

save ('china.mat','precip_Jan','-append') 

save ('china.mat','precip_Feb','-append') 

save ('china.mat','precip_Mar','-append') 

save ('china.mat','precip_Apr','-append') 

save ('china.mat','precip_May','-append') 

save ('china.mat','precip_June','-append') 

save ('china.mat','precip_July','-append') 

save ('china.mat','precip_Aug','-append') 

save ('china.mat','precip_Sept','-append') 

save ('china.mat','precip_Oct','-append') 

save ('china.mat','precip_Nov','-append') 

save ('china.mat','precip_Dec','-append') 

Published with MATLAB® R2018b 

Transforming the tree cover data for next step 

load china.mat data_t_china 

b=cell2mat(data_t_china); 

for m=1:47 

    for n=1:67 

    t_eachcell=b([m 47+m 94+m 47*3+m 47*4+m 47*5+m 47*6+m 47*7+m 47*8+m... 

        47*9+m 47*10+m 47*11+m 47*12+m 47*13+m 47*14+m 47*15+m ],[n]); 

    data_t_eachcell_china{m,n}=t_eachcell; 

    end 

https://www.mathworks.com/products/matlab
https://www.mathworks.com/products/matlab
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end 

save ('china.mat', 'data_t_eachcell_china','-append') 

Published with MATLAB® R2018b 

 

The Mann-Kendall test of southeastern China 

Z=zeros(47,67); 

for m=1:47 

    for n=1:67 

        y=data_t_eachcell_china{m,n}(1:16,1); 

        l=length(y); 

        s1=0; 

for j =2:l 

  for i =1:(j-1) 

      sgn=y(j)-y(i); 

        if sgn>0 

          sgn=1; 

        else 

            if sgn<0 

          sgn=-1; 

            else 

                sgn=0; 

            end 

        end 

       s1=s1+sgn; 

  end 

end 

Var=l*(l-1)*(2*l+5)/18; 

if s1>0 

Zmk=(s1-1)/sqrt(Var); 

else 

    if s1<0 

        Zmk=(s1+1)/sqrt(Var); 

    else 

        Zmk=0; 

    end 

end 

if Zmk>1.96 

    Zmk=Zmk; 

else 

    if Zmk<-1.96 

        Zmk=Zmk; 

    else 

        Zmk=0; 

    end 

end 

Z(m,n)=Zmk; 

n=n+1; 

    end 

    m=m+1; 

end 

Z_T_china=Z; 

save('china.mat','Z_T_china','-append') 

https://www.mathworks.com/products/matlab
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Published with MATLAB® R2018b 

The neighboring effect analysis of Amazonia 

 

clear all 

close all 

clc 

load('result.mat') 

logic           = Z_T>1.9; 

[a,b]           = size(p_eachcell_Jan); 

sel             = cell (5,5); 

data_larger     = cell (a,b); 

data_smaller    = cell (a,b); 

for i = 3:a-2 

    for j = 3:b-2 

        if Z_T(i,j) > 1.9 % the tree cover have increased siginificantly 

            for m = 1:5 

                for n = 1:5 

                    sel{m,n} = p_eachcell_Jan{i+m-3,j+n-3}; 

                end 

            end 

            sel{3,3} = data_t_eachcell{i,j}; % set the center data is the tree cover 

data 

            data_larger{i,j} = sel; 

        end 

        if Z_T(i,j) < -1.9 % the tree cover have decreased siginificiantly 

            for m = 1:5 

                for n = 1:5 

                    sel{m,n} = p_eachcell_Jan{i+m-3,j+n-3}; 

                end 

            end 

            sel{3,3} = data_t_eachcell{i,j}; 

            data_smaller{i,j} = sel; 

        end 

    end 

end 

R                   =cell(5,5); 

R_Square_larger     =cell(101,133); 

R_Square_smaller    =cell(101,133); 

for i=1:101 

    for j=1:133 

        inc=data_larger{i,j}; 

        if ~isempty(inc) 

          for n=1:5 

             for m=1:5 

                precip=inc{n,m}; 

                tree=inc{3,3}; 

                precip=precip(:)'; 

                tree=tree(:)'; 

                Precip=[ones(length(tree),1),precip']; 

                Tree=tree'; 

                [b, bint, r, rint, stats]=regress(Tree,Precip,0.05); 

https://www.mathworks.com/products/matlab
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                R_S(n,m)=stats(1,1); 

                R_Square_larger{i,j}=R_S; 

             end 

          end 

 

       end 

    end 

end 

for i=1:101 

    for j=1:133 

        dec=data_smaller{i,j}; 

        if ~isempty(dec) 

          for n=1:5 

             for m=1:5 

                precip=dec{n,m}; 

                tree=dec{3,3}; 

                precip=precip(:)'; 

                tree=tree(:)'; 

                Precip=[ones(length(tree),1),precip']; 

                Tree=tree'; 

                [b, bint, r, rint, stats]=regress(Tree,Precip,0.05); 

                R_S(n,m)=stats(1,1); 

                R_Square_smaller{i,j}=R_S; 

             end 

          end 

 

       end 

    end 

end 

Published with MATLAB® R2018b 

clear all 

close all 

clc 

load ('result.mat') 

N9=cell(101,133); 

sel=cell(3,3); 

a=cell(3,3); 

R_square=cell(101,133); 

R9=zeros(101,133); 

for i = 2:100 

    for j = 2:132 

        if Z_T(i,j)~=0 

            for m = 1:3 

                for n = 1:3 

                    sel{m,n} = p_eachcell_Dec{i+m-2,j+n-2}; 

                end 

            end 

            sel{2,2} = data_t_eachcell{i,j}; % set the center data is the tree cover 

data 

            N9{i,j} = sel; 

        end 

    end 

https://www.mathworks.com/products/matlab
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end 

for i=1:101 

    for j=1:133 

        if ~isempty(N9{i,j}) 

 

            for k=1:18 

                p=0; 

            for m=1:3 

                for n=1:3 

                if m~=2 && n~=2 

                        p1=N9{i,j}{m,n}(k,1); 

                        p=p+p1; 

                end 

                end 

            end 

            p=p/8; 

            p_y(k,:)=p; 

            end 

                    for x=1:3 

                        for y=1:3 

                                a{x,y}=p_y; 

                        end 

                    end 

            a{2,2}=N9{i,j}{2,2}; 

        N9{i,j}=a; 

        end 

 

    end 

end 

 for i=1:101 

    for j=1:133 

        if ~isempty(N9{i,j}) 

          for n=1:3 

             for m=1:3 

                precip=N9{i,j}{m,n}; 

                tree=N9{i,j}{2,2}; 

                Precip=[ones(length(tree),1),precip]; 

                Tree=tree; 

                [b, bint, r, rint, stats]=regress(Tree,Precip,0.05); 

                R_S(n,m)=stats(1,1); 

                R_square{i,j}=R_S; 

 

             end 

          end 

 

       end 

    end 

end 

 for i=1:101 

     for j=1:133 

         if ~isempty(R_square{i,j}) 

             R9(i,j)=R_square{i,j}(1,1); 

         end 

     end 

 end 
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 R9_Dec=R9; 

 save('result.mat','R9_Dec','-append') 

 imagesc(R25_Jan) 

 title('Jan') 

 h=colorbar; 

set(get(h,'title'),'string','R^2'); 

set(gca, 'CLim', [0 1]); 

 

The neighboring effect analysis of southeastern China 

clear all 

close all 

clc 

load ('china.mat') 

logic           =Z_T_china>1.9; 

a               =47; 

b               =67; 

sel             = cell (5,5); 

data_larger     = cell (a,b); 

data_smaller    = cell (a,b); 

for i = 3:a-2 

    for j = 3:b-2 

        if Z_T_china(i,j) > 1.9 

            for m = 1:5 

                for n = 1:5 

                    sel{m,n} = p_eachcell_Jan_china{i+m-3,j+n-3}; 

                end 

            end 

            sel{3,3} = data_t_eachcell_china{i,j}; % set the center data is the tree 

cover data 

            data_larger{i,j} = sel; 

        end 

     if Z_T_china(i,j) < -1.9 % the tree cover have decreased siginificiantly 

            for m = 1:5 

                for n = 1:5 

                    sel{m,n} = p_eachcell_Jan_china{i+m-3,j+n-3}; 

                end 

            end 

            sel{3,3} = data_t_eachcell_china{i,j}; 

            data_smaller{i,j} = sel; 

        end 

    end 

end 

R                   =cell(5,5); 

R_Square_larger     =cell(47,67); 

R_Square_smaller    =cell(101,133); 

for i=1:47 

    for j=1:67 

        inc=data_larger{i,j}; 

        if ~isempty(inc) 

          for n=1:5 
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             for m=1:5 

                precip=inc{n,m}; 

                tree=inc{3,3}; 

                Precip=[ones(length(tree),1),precip]; 

                Tree=tree; 

                [b, bint, r, rint, stats]=regress(Tree,Precip,0.05); 

                R_S(n,m)=stats(1,1); 

                R_Square_larger{i,j}=R_S; 

               stats1_larger{i,j}=stats; 

             end 

          end 

 

       end 

    end 

end 

for i=1:47 

    for j=1:67 

        dec=data_smaller{i,j}; 

        if ~isempty(dec) 

          for n=1:5 

             for m=1:5 

                precip=dec{n,m}; 

                tree=dec{3,3}; 

                precip=precip(:)'; 

                tree=tree(:)'; 

                Precip=[ones(length(tree),1),precip']; 

                Tree=tree'; 

                [b, bint, r, rint, stats]=regress(Tree,Precip,0.05); 

                R_S(n,m)=stats(1,1); 

                R_Square_smaller{i,j}=R_S; 

             end 

          end 

 

       end 

    end 

end 

Published with MATLAB® R2018b 

clear all 

close all 

clc 

load ('china.mat') 

N9=cell(47,67); 

sel=cell(3,3); 

a=cell(3,3); 

R_square=cell(47,67); 

R9=zeros(47,67); 

for i = 2:46 

    for j = 2:66 

        if Z_T_china(i,j)~=0 

            for m = 1:3 

                for n = 1:3 

                    sel{m,n} = p_eachcell_Dec_china{i+m-2,j+n-2}; 

https://www.mathworks.com/products/matlab
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                end 

            end 

            sel{2,2} = data_t_eachcell_china{i,j}; % set the center data is the tree 

cover data 

            N9{i,j} = sel; 

        end 

    end 

end 

for i=1:47 

    for j=1:67 

        if ~isempty(N9{i,j}) 

 

            for k=1:16 

                p=0; 

            for m=1:3 

                for n=1:3 

                if m~=2 && n~=2 

                        p1=N9{i,j}{m,n}(k,1); 

                        p=p+p1; 

                end 

                end 

            end 

            p=p/8; 

            p_y(k,:)=p; 

            end 

                    for x=1:3 

                        for y=1:3 

                                a{x,y}=p_y; 

                        end 

                    end 

            a{2,2}=N9{i,j}{2,2}; 

        N9{i,j}=a; 

        end 

 

    end 

end 

 for i=1:47 

    for j=1:67 

        if ~isempty(N9{i,j}) 

          for n=1:3 

             for m=1:3 

                precip=N9{i,j}{m,n}; 

                tree=N9{i,j}{2,2}; 

                Precip=[ones(length(tree),1),precip]; 

                Tree=tree; 

                [b, bint, r, rint, stats]=regress(Tree,Precip,0.05); 

                R_S(n,m)=stats(1,1); 

                R_square{i,j}=R_S; 

 

             end 

          end 

 

       end 

    end 

end 
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 for i=1:47 

     for j=1:67 

         if ~isempty(R_square{i,j}) 

             R9(i,j)=R_square{i,j}(1,1); 

         end 

     end 

 end 

 R9_Dec_china=R9; 

 save('china.mat','R9_Dec_china','-append') 

 imagesc(R9_Dec_china) 

 title('December') 

 h=colorbar; 

set(get(h,'title'),'string','R^2'); 

set(gca, 'CLim', [0 1]); 
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