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ABSTRACT

So far, the task of automatic verb classification has been widely explored through super-
vised as well as unsupervised machine learning techniques, based on syntactic and semantic
features, and strictly related to argument structure theory and Levin (1993)’s verb classes.
In the present study we go a step further than the previous research in this field (e.g. La-
pata and Brew, 2004, Merlo and Stevenson, 2001, or Sun and Korhonen, 2009) by using
automatically induced verb classes not as a goal, but rather as a starting point for a lexicon
induction experiment for individual verbs. Inspired by Rooth, Riezler, Prescher, Carroll,
and Beil (1999), a first experiment involves a clustering process of verbs represented by
co-occurrence vectors of argument nouns extracted from the subcategorization frames of
transitive and intransitive verbs; from the resulting model, a second experiment shows that
lexicons of argument nouns for fixed verbs can be created by re-estimating the nouns’ ab-
solute frequencies with respect to the same verb, modified by cluster-related probabilities
from the model. Apart from being relatively simple statistical inference steps, the relevance
of this study is also determined by the detailed and combined evaluation system used for
model selection, including a Pseudo-Disambiguation task, in-depth cluster metrics, and a
Variational Bayes Gaussian Mixture. It was found that argument selectional preference
is a good indicator of verb classes, especially for the data set that included verbs of the
alternation in which the object of the transitive is the subject of the intransitive. Moreover,
through the support of a quantitative, WordNet-based method, it was shown that such
classes are relatively little levinian. Future research could be directed to the exploration
of adjunct slots, as well as an extension of the evaluation architecture to other clustering
tasks within NLP.
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CHAPTER 1
INTRODUCTION

Understanding the meaning of key lexical elements in a sentence can help to process what
is going on, e.g. what situation is depicted, what actions are performed, what elements
contribute to it and in what manner. In particular, the verbs in the sentence are highly
informative about the latter aspects if compared, for example, to function words (e.g. arti-
cles) but also to nouns or adjectives. The study of the verb’s semantics becomes, therefore,
crucial to the overall understanding of the sentence.

Two of the of the foremost fields that attempt to explain the verb from this point of view
are syntax and semantics. Precisely, cues from these fields contribute to the explanation of
the verb’s lexical semantics, based on its relation to its arguments in different forms. For
example, it is assumed (Pustejovsky, 2016) that there are syntactical restrictions regarding
the category of arguments that a verb allows in its structure, although they are not suf-
ficient for a total explanation of its behavior. In fact, only in combination with semantic
features, such as the lexical type of the required arguments, this can be achieved to a larger
extent. But besides restrictions, an indicator of lexical semantics both in theory and in
computational work (Sun & Korhonen, 2009) is selectional preference. This concept entails
the affinity of a verb with different lexical elements or groups thereof as its arguments, in
the way that they are distributed in natural language.

Driven by linguistic theory at the syntax-semantics interface and grounded in transpar-
ent statistical evidence, I approach the lexical and compositional meaning of the verb by
an argument slot labeling experiment. Specifically, I propose an improved technique of au-
tomatic induction of slot annotation for subcategorization frames, inspired by Rooth et al.
(1999). They showed how an EM-based clustering approach directed on an automatic slot
labeling experiment yielded surprisingly well-performing results with relatively simple sta-
tistical inference steps. Compared to Erk (2007), for example, Rooth et al. (1999) trained a
model that is better able to deal with low frequency verbs. This higher coverage, resulting
in the property of estimating a lexicon for all the verbs in the corpus, makes of Rooth et al.
(1999) the preferred baseline.

As Zapirain, Agirre, Màrquez, and Surdeanu (2010) neatly resume it, the concept of
semantic role labeling refers to the operation of extracting simple event structures from
language so to identify who did what to whom, when and where. Normally, this process has
two steps: first, through syntactic queries and pre-processing, candidate predicate frames
are extracted from a source corpus; second, the lexical features of the extracted elements are
employed as statistical indicators for classification. In our case, the classification process is
carried out by means of an unsupervised clustering technique, which is the general method
that is used to divide unlabeled data into a given number of groups. The fact that the data
samples do not have a class label a priori favors an unbiased classification of verbs that may
even differ from linguistic theories. The fitted models are then used for a lexicon induction
experiment for individual verbs, by means of re-estimation steps based on the conditional
noun-verb probabilities given by the model.
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1.1 Research Questions, Contributions, and Theoretical Relevance

The present study aims to carry out two experiments by applying up-to-date computational
techniques and by motivating the methodological choices with strong explanations, both
linguistically and data-driven. The relevance of performing such a research originates from
the question of what verbal lexical semantics is and how it can be divided into more fine-
grained particles that contribute to a higher meaning representation. In this sense, it is
theoretically relevant to frame the semantic property of selectional preference in the role of
indicator of a lexical class for the slots of an argument configuration.

In brief, the problems in previous work (Rooth et al., 1999; Erk, 2007) that I address
can be summarized as follows: 1) the number of components in which the data is clustered,
i.e. one of the most important parameters, is only partially accounted for; 2) the nature
and quantity of the to be clustered verbs, together with their related co-occurrence nouns,
is not defined precisely; 3) the cluster evaluation techniques are limited to one accuracy
measure, without taking into account other statistical aspects of the different models. By
acknowledging said limits, the following general research question naturally arises:

− ”To what extent can the statistical indicator of selectional preference alone, based on
a simple clustering algorithm and without the support of external linguistic resources
(taxonomies or dictionaries), lead to the formation of semantically coherent classes
that can be used for automatic slot labeling?”

From this question, several investigation lines follow. In particular, I will explore ways
to render the clustering process decisions motivated by the data and evaluate them ac-
cordingly. Moreover, within this improved approach I make use of more advanced feature
extraction and data pre-processing techniques than those that were used in Rooth et al.
(1999). Choices for such methods and techniques partially derive from more modern re-
sources available nowadays with respect to twenty years ago. On the other hand, different
applications are used, such as a more accurate syntactic parser and specific dimensional-
ity reduction techniques, as well as a refined clustering algorithm and cluster evaluation
methods. It must be noted, however, that this research is not aiming at a state-of-the-art
performance. Instead, it will be relying on a responsible methodology with up-to-date tools.
One of the goals, in fact, is to create an evaluation system composed by the combination of
different metrics, that can be directed to other tasks in computational linguistics as well.
Concretely, I make use of metrics that are standardly used for the evaluation of EM-based
Gaussian Mixture Models, namely the Aikake’s Information Criterion, the Bayesian Infor-
mation Criterion, and the Silhouette Coefficient. Furthermore, two important contributions
of this thesis are the use of Variational Bayes Gaussian Mixture Models for evaluation, pre-
cisely for the estimation of the number of clusters to be initialized; secondly, a quantitative
evaluation of the induced verb classes by the models based on, but different from, Sun and
Korhonen (2009), which is necessary to evaluate the semantic coherency of classes in the
light of linguistic theory (Levin, 1993). Finally, a Pseudo-Disambiguation task based on
Pereira, Tishby, and Lee (1993) and Rooth et al. (1999) measures the generalization power
of the models for which the optimal number of clusters is yet computed.

The options concerning the data were expanded to three sets. Not only the transitive
and intransitive verbs of the BNC corpus Leech (1992) were considered (as in Rooth et
al., 1999), but also two smaller samples. One of these takes into account the 500 most
frequent verbs to see what effect the low frequency occurrences have on the generalization
performance of the models; the other subset includes verbs that were classified by Levin
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(1993) as belonging to the specific alternation where the object of the transitive is the
subject of the intransitive form of the same verb. The latter data set could lead to more
accurate clusters. The details of such an assumption are further explained in §3.2.5.3.
Moreover, apart from EM-based clustering also used by Rooth et al. (1999), I adopt two
other techniques: K-means and Spectral Clustering. This choice derives from the question
whether Gaussian Mixture Models apply well to the linguistic data that is used, or that
different algorithms may be preferred for future research.

1.2 Thesis Outline

This thesis is structured as follows. In Chapter 2, I present the linguistic and statistical
theory behind the approach that I embrace. In this sense, there is an introduction to the
study of verbal semantics, which leads to the essentials of distributional semantics and to
previous work in automatic verb class inference from data. Chapter 2 concludes with the
motivation of the present research in light of the background outlined in the same chapter.
Then, Chapter 3 describes the data that is used, starting from a source corpus and ending
up with three different, pre-processed data sets, including descriptions of the tools adopted
to perform transformations of the data from one form to another. The first experiment
is reported in Chapter 4, and includes how the models were fitted and evaluated, whereas
Chapter 5 presents the second experiment, namely the semantic slot labeling. The results
of Chapter 4 and 5 are further discussed in Chapter 6, in which we also encounter ideas for
future work and a conclusion.
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CHAPTER 2
THEORETICAL BACKGROUND AND RELATED WORK

In this section, the most relevant concepts and theories to the field of computational verbal
semantics are introduced. Being the topic of this thesis a combination of theoretical linguis-
tics and computational methods, the relevant background information consists of intermixed
subsections, driven by the interdisciplinary perspectives on the field of computational lexi-
cal semantics. To begin with, §2.1 reports an overview of the theory of argument structure,
selectional restritions, and selectional preference, and introduces Levin (1993), a work in
which verb classes were manually drawn based on syntactic and semantic cues, as well as
human-like intuition. §2.2.2 shows how similar verb classes can be automatically induced,
leading us through previous work in the field, up to the motivation for the approach taken
in the present research.

2.1 Verbal Semantics

Generally, the manner in which the study of semantics is approached, is twofold. On the
one side of literature we encounter the branch of compositional semantics, which analyses
meaning as deriving from the composition of elements, i.e. the manner in which single
lexical elements determine the meaning of a phrase by the way that they are organized to-
gether. The other major subfield that can be identified, is the domain of lexical semantics,
which focuses instead on the meaning of individual words. In the present thesis, the cen-
tral linguistic problem is approached by the perspective of both lexical and compositional
semantics.

Despite of the lexical semantics of content words (especially nouns) having been widely
explored, and explained to a certain extent (for an introduction to one of the main chal-
lenges in this domain, i.e. polysemy, see Pustejovsky and Boguraev, 1997) the semantic
interpretability of phrases and sentences still is problematic due to insufficient understand-
ing of the lexical meaning of its individual components. Key components in this sense are
function words (although, intrinsically, they carry more compositional than lexical mean-
ing) and verbs. The verb is of particular interest since its lexical semantics stands central
to the understanding of other elements of the same sentence, and to the semantics of the
sentence in its entirety. Intuitively, the verb provides important information about the
state, action, or event that is represented. Arguably, the verb’s compositional and lexical
semantics are partially influenced by syntax. According to a description proposed by Hackl
(2013), related to the study of semantic cues and syntactic constructions that influence
one another interchangeably and systematically, we find ourselves at the syntax-semantics
interface. A key concept in this domain is that of argument structure, which is used to refer
to a syntactic configuration produced by a lexeme, with associated semantic components
(Hale & Keyser, 1998).

The different ways in which a verb combines with other lexical elements in order to form a
grammatical sentence has also been widely studied. We may describe the different syntactic
and semantic constructions of a verb as we encounter it in natural language as the verb’s
behavior. An intuitive action to take for a better understanding of a certain phenomenon of
interest, is to create classes or categories so to group together its components. The rationale

4



behind this approach is that all members of a class share a similar pattern of features, which
were established beforehand by the experimenter. In our case, the members are the English
verbs, which have to be classified based on the subcomponents of their behavior. In the
traditional literature of this domain, many have tried to explain the verb according to the
linguistic subcomponents of the verb’s structure and meaning. A representative concept
in this context is that of θ-role theory. The main intuition is that a verb takes specific
(types of) arguments, i.e. lexical items, that are required to fill the available thematic slots
in the verb’s frame. The idea of thematic relations was firstly introduced to the research
community by Gruber (1965) and by Fillmore (1968) (who referred to this concept as case
relations), and were then widely developed by Jackendoff (1972). What we may call a
traditional system that comprehends a reduced set of discrete roles (e.g. Agent, Patient,
Experiencer, Source) was taken as a mere starting point and was later exploited giving rise
to diverse solutions to the problem of argument selection, i.e. what the founding principles
are that determine the mapping between a θ-role and a grammatical relation. To give an
example, Dowty (1989, 1991) places thematic roles in either a PROTO-AGENT class or a
PROTO-PATIENT class, which are consequently split up in a hierarchical fashion into more
fine-grained roles. The enormous quantity of roles that emerge from this does perhaps reflect
the true nature of natural language, but at the same time lacks of generalization power in
favor of a parametric framework. In order to overcome the latter barrier, Reinhart (2000,
2003) proposed the Theta System, according to which thematic roles can be reduced and
translated into combinations of binary {+ or -} features, although pioneers of such boolean
selectional restrictions were Katz and Fodor (1963). From a computational perspective
this may be seen as an efficient system, since a consistent set of configurations is required
that has as less rules and features as possible to successfully represent complex structures
of meaning. But even with a low-level feature system like Reinhart (2000, 2003)’s, the
problem in computational tasks remains that annotated data is expensive to construct. A
more detailed overview of Reinhart (2000, 2003) is offered later in this section.

Moreover, we must bear in mind that there exist arguments against the presence of a
syntax-semantics interface. So counter-argues Ravin (1990), who claims that syntax and
semantics are in fact independent from each other, and that the θ-role theory in semantics
is invalid. However, as computational work has demonstrated (see Sun and Korhonen, 2009
in §2.2.2), syntactic and semantic cues in combinations can truly be statistical indicators,
which is reason enough not to deviate from the aforementioned theoretical perspectives in
the present section.

From what we discussed, we can deduce that a central theoretical problem concerning
the semantics of the verb is argument selection: can verbal meaning be defined by some
selectional constraints that are intrinsic of the verb? But also: to what extent can verbs
that have similar selectional constraints be grouped together into classes with consistent or
uniform lexical meaning?

Pustejovsky (2016) refers to the process of accessing lexical information through syntac-
tic and semantic operations as selection. This entails a salient lexical property of the verb,
being the manner in which it is inserted in a phrase, regulated by syntactic and semantic
boundaries. For instance, based on syntactic properties, a verb may allow one argument
(intransitive), two arguments (transitive) or three arguments (ditransitive). In simplistic
terms, these are the subject, direct object and indirect object of a verb, as can be observed
in Example (1) for the verbs cry, stub, and give:

1. (a) Tom cries.

5



(b) Luke stubbed his left foot.

(c) John gave him a lesson.

Following Pustejovsky (2016), the argument structure of the verbs in Example (1) can
be formalized as follows:

2. (a) cry(arg1)

(b) stub(arg1, arg2)

(c) give(arg1, arg2, arg3)

It is worth underlying that the number of arguments of a function such as each of the
three verbs in Example (2), is the number that is required to render the predicate complete
in terms of its available argument slots. In natural language, complete would thus indicate
that the expression that contains or constitutes the predicate is grammatically well-formed.
We refer to the necessary number of arguments of a verb as its valency or valence, what
— in logic and mathematics — is called the arity of a function. Therefore, phrases that
behave as optional arguments of a verb (i.e. adjuncts), are not considered as a requirement
for the grammaticality of an expression. Example (3a) shows the transitive verb pass with
two mandatory arguments Mary and Jack and one optional adjunct the salt. In fact,
the argument structure of a transitive verb is formally different from a ditransitive verb
(compare 2c and 3b).

3. (a) Mary passed the salt to Jack.

(b) pass(arg1, arg2)

Moreover, the property of argument selection can be regarded as pointing into two
similar directions: selectional restrictions versus selectional preference. On the one hand,
selectional restrictions prevent the predicate from accepting more or less arguments than
its valence allows. A violation of this restriction would result in ill-formed expressions. To
give an idea, Example (4a) takes two arguments instead of one, (4b) takes one instead of
two, and (4c) takes two instead of three:

4. (a) *Tom cried the girl.

(b) *Luke stubbed.

(c) *John gave him.

Apart from the valency restrictions, selectional constraints also control for the syntactic
category of the argument, i.e. the type of phrase a predicate requires, and the number,
i.e. the singular or plural form (Pustejovsky, 2016). These two aspects are represented in
Example (5), where the intransitive verb meet is taken as an example of how only a plural
noun phrase is allowed as arg1.

5. (a) The guys met.

(b) meet(arg1[cat : NP, plural : +])

A third restriction originates from a semantic feature of the lexicon, namely animacy.
Example (6) illustrates how the violation of this binary feature causes the sentence to be
ill-formed.
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6. (a) *My shoe giggles.

(b) giggle(arg1[cat : NP, animacy : +])

Note that a verb may not have any restriction at all regarding animacy or number,
making the explicit indication of it redundant. For instance, in Example (6b) a number
restriction is omitted since it does not apply to the verb giggle.

Nevertheless, it is clear that such a low number of restrictions is insufficient to account
for the full spectrum of lexical aspects of the argument, including their semantic role in the
predicate and sentence. This brings us back to Reinhart (2003), who’s system of binary
features could offer a deeper insight of the lexical problem in question. Her proposal is
relatively simple, transparent and organised, making it thereby directly accessible to com-
putational approaches, especially because of its quantitative, boolean nature. The baseline
of her system consists of two binary features, namely ±c and ±m. c stands for Cause change,
whereas m indicates the presence of Mental state in the lexical expression of the argument.
The various combinations of these features together give rise to a series of clusters (not to
be confused with the term cluster in the next chapters, which indicates a component of a
clustering model), which point at specific, by context determined theta-roles, inspired by
Dowty (1991). In Example (7) it can be observed how different clusters can be formed and
related to a proto-role on the right:

7. (a) [+c+m] - agent

(b) [+c−m] - instrument

(c) [−c+m] - experiencer

(d) [−c−m] - theme / patient

(e) [+c] - cause

(f) [+m] - sentient

(g) [−m] - subject matter / locative source (Typically Oblique)

(h) [−c] - goal / benefactor (Typically Dative (or PP))

(i) [ ] - arbitrary

The Theta System provides combinations of ±c and ±m, only ±c or ±m, or an empty,
arbitrary role. In this manner, the argument structure of a verb can be formalized as follows:

8. V ([+c], [−c−m]), where V= open, break, melt, etc.

(a) The wind / Max / the key opened the door

(b) The storm / Max / the stone broke the window.

(c) The heat / Max / the candle melted the ice.

The labeling of the arguments with similar feature clusters seems more precise than the
selectional restrictions that we observed in example (6), i.e. the sole syntactic category and
animacy aspect.

As previously discussed in this section, besides restrictions there also exists and aspect
of argument selection named selectional preference. The idea is that a verb not only occurs
with specific lexical elements in its argument slots with a different frequency compared to
other verbs and other nouns (i.e. lexical preference), but also that these lexical elements

7



can be grouped together into a higher taxonomic rank. For example, the transitive verb
eat, for the sake of explanation, has a lexical preference that is highest for he as arg1 and
apple as arg2, and lowest for, say, stone and roof as the same two arguments. Instead, in
terms of selectional preference, larger lexical groups could be formed and assigned to the
argument slots of the verb by abstracting over the individual lexemes and extracting a set
of essential, discrete features. These higher lexical classes can be described in the same
fashion as the feature clusters by Reinhart (2003). A way of representing such preferences
will be explained in §2.2.1.

As for most scientific descriptions of a certain phenomenon, splitting the latter up into
groups or classes is a intuitive way of representing it, as well as a control used to verify that
the features that are considered indicators of a certain phenomenon are able to discriminate
the different examples in the data. In other words, creating groups of instances of the data
is a way to test whether observations of apparent patterns in the data can lead to valid
generalizations. In the case of the verb, the question of what lexical semantic traits —
coarse-grained or atomic — define its meaning, is still pending. In §2.1.1, I present a piece
of manual verb classification research that also inspired computational approaches.

2.1.1 Levin’s Verb Classes

A major work in verb categorization has been proposed by Levin (1993). Her study can
be regarded as the theoretical and intuition-based foundation of a large slice of current
computational research. Despite the fact that the verb classes that Levin (1993) defines,
have validity for the English language only, this categorization illustrates the way in which
semantic and syntactic features in combination with one another can lead to classes of
verb senses that are more or less consistent with human-like intuition, and that are se-
mantically coherent. However, since no automatic verb classification task has achieved an
accuracy that is substantially higher than 80% (Sun & Korhonen, 2009) (see 2.2.2 for a
more detailed follow-up) even with sophisticated linguistic features, it is clear that the fine-
grained semantic particles that the verb may be composed of, are yet far from discovered
or explained.

The work of Levin (1993) has two parts. The first part describes a list of diathesis
alternations, followed by a set of verb classes in part two that are partially based on the
former. Diathesis alternations are ”alternations in the expressions of arguments, sometimes
accompanied by changes of meaning” (Levin, 1993). A specific verb may participate in such
an alternation, for example break in the following two sentences:

9. (a) The girl broke the window.

(b) The window broke.

The example expressions in (9) represent a case of the causative-incohative alternation,
where the verb break allows two different argument structures to express the same action of
the window breaking, although with a small difference in meaning concerning the cause of
the action. Similarly, the locative alternation allows two different argument configurations,
made possible by a use of different prepositions, too:

10. (a) Sharon sprayed water on the plants.

(b) Sharon sprayed the plants with water.
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At the same time, semantically similar verbs to spray, like cover and pour, do not display
the a positive grammatical judgment as for (10):

11. (a) *Monica covered a blanket on the baby.

(b) Monica covered the baby with a blanket.

12. (a) Carla poured lemonade into the pitcher.

(b) *Carla poured the pitcher with lemonade.

Through the extended examples and descriptions of diathesis alternations in English,
Levin (1993) shows how the low-level argument structure properties do not suffice for an
explanation of the verb’s behavior. In fact, the speaker’s natural intuitions and knowledge
about which encodings of the verb are or are not allowed by grammar is highly discrimina-
tive, and may therefore reside also outside the lexical expression of a word. We commonly
refer to this difficult to represent, and hardly to encode concept as world knowledge.

The impact of Levin (1993) has been of such an importance that her framework of
sense-grounded verb classes has been extended to a digital level throughout the years. The
result thereof is VerbNet (Kipper-Schuler, 2005)1, a collection of fine- and coarse-grained
classes inspired by Levin (1993) (see Kipper-Schuler, Korhonen, Ryant, and Palmer, 2006
for information about such extensions) with mappings to the taxonomic resource WordNet
(Miller, 1995), but also to PropBank (Kingsbury & Palmer, 2002) and FrameNet (Baker,
Fillmore, & Lowe, 1998).

In light of the linguistic theories on theta relations that I just described, we are now
familiar with the theoretical context that is relevant to the present thesis. In order to ap-
proach verbal semantics with as few theoretical assumptions as possible, statistical modeling
at the lexical level may seem an adequate solution. In the next section (§2.2.1) an overview
is presented of distributional modeling.

2.2 Verb Classes from Data

2.2.1 Distributional Semantics in a Nutshell

At the background of the approach and computational implementation that the present
study adopts, we find the distributional hypothesis (DH). Although I deviate from the pure
DH, I consider a short introduction to such a perspective in place.

According to the DH, the meaning of a lexeme can be estimated by the words that
it goes together with, i.e. by its context. For example, given an unknown word besariz
and several contexts in which it occurs, we can attempt a good guess of what the word in
question refers to:

13. (a) I love using a besariz, in fact I have two of them.

(b) The chef was cooking Dutch paella with a besariz.

(c) A pleasant metallic sound is produced when you flip a besariz and tick on it.

(d) At Ikea, besarizes are very, very cheap.

1https://verbs.colorado.edu/verbnet/
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Given the knowledge of the reader regarding kitchen utensils, they would probably
interpret besariz as a type of cooking pan or a similar object. In fact, the word pan could
naturally replace the word besariz in all the four proposed contexts, whereas the word
water, for instance, would not fit in any of them. We refer to distribution of a lexeme as the
manner in which it is distributed in natural language (i.e. in which contexts it occurs). This
is directly related to the properties of argument structure given by Pustejovsky (2016) who,
regarding the topic of argument selection in §2.1, claims that ”one of the most important
properties of a verb is an encoding of what phrases it can appear with in the language”.
Nevertheless, a distinction must be made between the general approach of distributional
semantics and ours. In fact, a computational implementation of a context usually refers
to its representation in the form of a vector, which can be binary when the pure absence
or presence is relevant for the task, or count-based when the distribution of the context
co-occurrences for a given word is requested. The vectorized representation of the context
is then used as an approximation of the word’s lexical semantics. As we will see in §3.2,
however, the direct relationship between vector and meaning is not of our interest. Instead,
the vectors will encode the lexical distribution of the arguments over the verbs in question
in order to form semantically coherent verb classes.

The origins of the DH can be encountered in Harris (1954), who argued that ”difference
of meaning correlates with difference of distribution”. From that moment on, distribution-
alism found its way and developed itself into several fields, such as Psychology (Osgood,
1952) and Linguistics. According to Lenci (2018), however, a distributional framework was
seen as an alternative to the more traditional formal and logical approaches to semantics
only after its exploit in information retrieval, caused by a raise in popularity of statistical
NLP in the nineties.

In Linguistics, a distributional semantics approach has been applied to several tasks.
One of the first, and perhaps one of the most intuitive suggestions, came with Garvin
(1962). He acknowledged the limits of the approaches to linguistic analyses at that time,
due to restricted rule- and dictionary-based methods in the fields of machine translation
and information retrieval (IR). In the same field of IR, Salton, Wong, and Yang (1975)
proposed a more concrete vector space model, which was able to encode and represent
semantic similarity relatively successfully and as an alternative to formal semantics. Also
compared to taxonomic resources, (e.g. WordNet by Miller, 1995) which are based on
human-like perceptions of the world’s semantic relations, distributional models offer a more
theory neutral option that is almost solely based on statistics. It comes natural, then, to
prefer a statistical approach as little prior assumptions must be made, so that relatively
unbiased linguistic patterns (that may even contrast human intuition) can be discovered.

2.2.2 Automatic Verb Classification

What follows, is a short overview of studies that treat the topic of automatic verb classifi-
cation, which forms an experimental foundation of the present approach. The idea behind
this overview is that it would help gain an better understanding of where the present study
broadly bases its techniques on, and also how it goes a step further, as explained in §2.2.5.
Some of the studies described adopt a supervised machine learning method, meaning that
data examples (e.g. verbs) are labeled with a class prior to classification. In unsupervised
techniques (usually clustering-based), only the potential features as statistical indicators
are defined, without prior labeling. Supervised methods are overall more accurate than
unsupervised methods, but are also biased by the yet established label.
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2.2.2.1 Merlo and Stevenson (2001): Automatic verb classification based on statistical
distributions of argument structure

Merlo and Stevenson (2001) report on a series of supervised learning algorithms to classify
three types of optionally intransitive verbs based on their argument structure: unergatives,
unaccusatives and object-drop verbs. They achieved a 69,8% accuracy score on this task.
The features that were used for training are all linguistically motivated and consist of the
following: transitivity, causativity, animacy, and two additional syntactic features being
the use of passive or active voice and the use of the past participle or simple past POS
tag. The data was collected from two corpora: an automatically tagged, combined corpus
(primarily Wall Street Journal (WSJ)) of 65 million words, and an automatically parsed
corpus of 29 million words (a subset of the WSJ). As for the experimental methodology,
Merlo and Stevenson (2001) investigated several supervised learning algorithms (decision
tree induction, rule learning, and two types of neural networks), finding an approximately
equal performance rate for all classifiers, For testing, 10-fold cross-validation was used in
one run of experiments, whereas a single hold-out training and testing approach (N−1-fold
cross-validation) was used in the other.

2.2.2.2 Lapata and Brew (2004): Verb class disambiguation using informative priors

Lapata and Brew (2004) approached the problem of verb class disambiguation building
informative priors. They showed how to train and use a probabilistic version of Levin
(1993)’s classification, taking as input a partially parsed corpus and returning a probability
distribution over the available verb classes for each combination of a verb and its syntactic
frame. The assumption is that, in a given frame, the choice of a class for a polysemous
verb is considered as maximizing the joint probability p(class,frame,verb). They showed
that subcategorization information acquired automatically from the BNC corpus could lead
to important cues for verb sense disambiguation. As only the most preferred class is pre-
dicted, the result of Lapata and Brew (2004)’s work is not more (but also not less) than
an informative prior for a complement a verb classification system. Since the model does
not take into account selectional restrictions, discourse, or pragmatic information, the prior
yields especially useful information when knowledge to the former aspects is not accessible.

2.2.2.3 Li and Brew (2008): Which are the best features for automatic verb classification

One of the best performing supervised methods in terms of F -measure, is that of Li and
Brew (2008). They used a Bayesian Multinomial Regression for classification, training
on features that were extracted from the large Gigaword corpus (collection of samples of
recent newswire text data). They regarded this log-linear modeling framework, which is
similar to Maximum Entropy, as the most appropriate algorithm for automatic verb class
induction, outperforming SVMs. Specifically, it works efficiently with large numbers of
features and extremely sparsely populated matrices (Li & Brew, 2008). Their main finding
is that subcategorization frames are not the most effective features for this task; instead, the
suggestion is to use both syntactic and lexical information together as predictors. Combining
these aspects can be done in multiple ways: dependency relations, co-occurrences, adapted
co-occurrences, subcategorization frames + co-occurrences.

11



2.2.2.4 Sun and Korhonen (2009): Improving verb clustering with automatically acquired
selectional preferences

As for unsupervised learning, Sun and Korhonen (2009) performed relatively well. They
used a variation of Spectral Clustering, useful for high dimensional feature spaces, based on
the MNCut algorithm, which was also the implementation choice of Brew and Schulte im
Walde (2002). They tested a set of features that is similar to the one considered by Joanis,
Stevenson, and James (2008), finding that the best combination of predictors consisted of
subcategorization frames together with semantic cues. In order to evaluate their clustering
method, Sun and Korhonen (2009) employed several measures: the first one consists of
the modified purity score, a global measure which evaluates the mean precision of clusters,
while the other one is a weighted accuracy score. By regarding the former as a precision
indicator and the latter as recall score, a final, weighted F -measure was computed between
the two.

2.2.3 Studies on Selectional Preference in Computational Semantics

The lack of annotated data but abundance of plain text corpora indicate the need of lin-
guistic features that are directly extractable from texts on which to apply some automatic
pre-processing, but no manual labeling. Resnik (1993, 1997) proved as first that the the-
oretical concept of selectional preferences (SPs), the typicality of arguments in relation to
a specific predicate, can be a statistical indicator in an NLP task. Moreover, in compu-
tational linguistics, SPs have proven very useful for syntactic disambiguation (Hindle &
Rooth, 1993), word sense disambiguation for nouns, verbs, and adjectives (McCarthy &
Carroll, 2003), and semantic role labeling (apart from Rooth et al., 1999, also Gildea and
Jurafsky, 2002, although the latter system was created to predict the thematic role for a
word in a sentence and was depending on FrameNet, whereas the former did not make use of
other resources). Concretely, Resnik created a language model that was capable of formal-
izing selectional preference strength of a predicate in terms of relative entropy (information
theory; see Kullback and Leibler, 1951) and prior-posterior probability distributions over
the classes:

SR(p) = ΣcPr(c|p) log
Pr(c|p)
Pr(c)

(2.1)

where PrR(c) is the prior distribution of a class c occurring as the argument in predicate-
argument relation R. The idea of SR(p) is that it measures how much information predicate
p provides about the latent class of its argument. The ground-truth classes adopted are
WordNet synsets, which makes the model depending on an external taxonomic source and
therefore different from the fully authomatic approach by Rooth et al. (1999)2. The SP of
p for synset c is defined as the contribution of c to p’s selectional preference strength SR(p):

AR(p, c) =
1

SR(p)
Pr(c|p) log

Pr(c|p)
Pr(c)

(2.2)

Relatively recent research on automatic induction of SPs and semantic role labeling
comes with Erk (2007). She proposes a model using corpus-based semantic similarity metrics
(e.g. cosine similarity and Lin et al., 1998’s mutual information score), obtaining lower error
rates than both Resnik’s WordNet-based model and the EM-based clustering model based

2See Brockmann and Lapata (2003) for an evaluation and comparison of (WordNet-based) SP acquisition
models
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on Rooth et al. (1999), but with worse coverage, preventing to successfully deal with sparsity.
Erk (2007)’s model does not rely on external lexical resources or manual annotations, and
applies semantic role labeling following an existing collection of verb frames (FrameNet,
Baker et al., 1998), learning different preferences for the different senses of a word. It is
worth noticing that the EM-based model trained by Erk (2007) for the sake of comparison,
differs from Rooth et al. (1999) in terms of accuracy, reporting accuracy scores of around
65%-69% and 80%, respectively. I will take said performances as a benchmark for the
clustering results in Chapter 4. Similarly, Ó Séaghdha (2010) created a series of topic
models for SP induction, based on Latent Dirichlet Allocation and evaluated on human
plausibility judgements. These models obtain a high coverage accuracy, accounting for
infrequent predicate occurrences.

A different path of research is the one approached by Bergsma, Lin, and Goebel (2008).
They suggested learning selectional preferences in a discriminative way, by training a col-
lection of Support Vector Machine classifiers to recognise what lexical elements are more
or less likely used as arguments for a given predicate. However, the generation of semantic
classes they performed, led to 3620 clusters, a number for which they did not account, apart
from being relatively high independently from the size of the corpus data. The number of
components will be a central methodological issue in the present study and will be explained
more in depth in Chapter 4.

2.2.4 Rooth et. al (1999): Inducing a Semantically Annotated Lexicon via EM-Based
Clustering

Compared to the studies described in §2.2.2, Rooth et al. (1999) use a similarly trained
model as a starting point for a second step. Precisely, besides an initial verb classification
process, an automatic induction phase is carried out to create lexicons of subject and direct
object arguments for fixed transitive and intransitive verbs. The notable aspect of their
approach is that the statistical methods used are relatively simple and do not rely on
external resources such as WordNet or FrameNet, apart from a necessary source corpus.
First, simple count vectors are created that register the distribution of specific nouns over the
argument slots of transitive verbs (one subject slot, one direct object slot) and intransitive
verbs (one subject slot). Thus, each verb will have a total of three co-occurrence vectors,
one for each potential slot: transitive subject, transitive object, intransitive subject. These
different uses of specific verbs with respect to a fixed lexicon of nouns Ln, i.e. the set of
all nouns that occur as subject or direct object argument for the set of verbs in question,
are clustered, giving rise to classes that share similar distributional patterns over Ln. The
second step involves the creation of a lexicon of nouns for the argument slots of individual
transitive and intransitive verbs. This is based on an adjusted frequency score, resulting
from the re-estimation of the nouns’ absolute frequencies for a fixed slot together with
the probabilities of all nouns’ frequencies extracted from the cluster in which the verb in
question was classified.

2.2.5 A Combined Approach: Motivating the Present Research

Given the research in automatic verb classification seen in §2.2.2, one way to further explore
that field is to find syntactic, semantic, or other types of linguistic features that may improve
the performance of the classifier. Such an approach is theoretically interesting, since an
atomization of believed meaning components into further fine-grained particles would not
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only contribute to a more accurate computational model, but would also tell what syntactic
and semantic cues are effectively discriminating for the meaning of two verbs, as well as
their weight in a major meaning representation. In the end, however, it is questionable
what an accuracy improvement of a few percentages of the verb classifiers contributes to
the research area. Instead, taking a step further than only building a classifier model, by
carrying out an NLP task on top of it, would provide a concrete contribution to the field.
Inspired by Rooth et al. (1999) (which obtained more promising results than similar research
as described in §2.2.3), the present research not only shows how verbs can be automatically
grouped together, but also how the same model can be used in a second experiment to
estimate a lexicon of arguments for individual verbs.

The choice for an unsupervised machine learning approach derives from the fact no
annotation is required, and that patterns are automatically learned from this unlabeled
data, contrarily to the studies described in §2.2.2.1, §2.2.2.2, and §2.2.2.3. This is desirable,
since no strong linguistic framework of verb classes that could bias the experiments is
assumed beforehand.
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CHAPTER 3
THE DATA

In this chapter, I explain the choices that were made with respect to the original data
source and the transformations thereof, up to the data sets that are used for the clustering
experiments in Chapter 4 and 5. First of all, I introduce the source corpus in §3.1, motivating
the choice of basing the experiments on the corpus in question rather than on a different one,
and reporting some descriptive statistics that are directly related to it. In a second phase,
starting from the raw corpus data, I report how elaborated feature extraction and data
pre-processing steps have been brought to completion, including parsing details in §3.2.2
and a dimensionality reduction technique in §3.2.4. The result of these data preparation
procedures applied on the initial corpus yield three data sets, a description of which is given
in §3.2.5. These data sets are formed in such a way that they are ready to be fed to the
machine learning algorithms in Chapter 4.

3.1 The Corpus

The data was gathered from the same linguistic source that was used in Rooth et al. (1999),
being the British National Corpus (BNC) Leech (1992). Although the real usage of a par-
ticular language should be reflected by the lexical distribution of any similar corpora of
sufficiently large size, using the approximately the same corpus directly entails the preser-
vation of a meaningful comparison of the results. Besides, the BNC was also used as data
source in Erk (2007)’s strictly related work, as described in §2.2.3.

The BNC is a collection of British English textual records of written and spoken data
(90% and 10%, respectively). It is a synchronic corpus and displays language use of the
late 20th century, which makes it relatively representative of current British English. Fur-
thermore, the BNC can be regarded as a balanced corpus given its composition of different
source types, such as newspapers, journals, periodicals, fiction books, context-controlled
speech and natural speech (Leech, 1992).

The total size of the BNC counts a 100 million words. In order to access the XML
version of the BNC1, the NLTK (version 3.4) (Loper & Bird, 2002) corpus reader tool was
used.

3.2 Feature Extraction and Data Pre-processing

3.2.1 Hardware and Software

A substantial part of this research was technical in nature. Usable data structures had to
be created out of an initial corpus, and had later to be used for training a series of models.
Finally, models had to be tested and the results had to be visualized. For these purposes,
computational tools were used. In this section, I introduce the hardware on which compu-
tations were performed across the entire study, as well as the main software specifications.
Besides, I provide details about the packages that were used for the data preparation and

1http://www.ota.ox.ac.uk/desc/2554, accessed on April 18th, 2019
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manipulation, whereas further technical information about the two experiments is given in
§4.4 and §5.1.

The laptop on which the data was handled is a Lenovo ideapad 330S-15IKB, with a
processor Intel Core i7-8550U (8th Gen), 8,00 GB of RAM, CPU @ 1.80GHz, 2001 Mhz,
and running on Microsoft Windows 10 Home. I used Python 3.7.3 through Spyder 3.3.5
computing environment. The most relevant package that I used for data pre-processing
and storage is SciPy (Jones, Oliphant, Peterson, et al., 2001–) 1.2.1, which allowed me to
handle highly sparse data structures (from dictionary-like structures to scipy.sparse.dok, to
scipy.sparse.csr)2. The Scikit-learn library (Pedregosa et al., 2011)3 was widely exploited
for both data preparation and modeling.

With respect to computation times, worth reporting is the fact that the parsing process
described in §3.2.2 lasted approximately 3 to 4 hours, while the creation of sparse data
structures in §3.2.3 took between 30 and 60 minutes. Minor data transformations did not
exceed 20 minutes of time.

3.2.2 Parsing

Within the feature extraction phase, the first step is to parse the sentences of the BNC. The
NLTK corpus reader already provides the boundaries between sentences and part-of-speech
tags for the individual words. In this way, full sentences that include at least a verb are
easily extracted, and segments without a predicate (e.g. titles) are ignored. The resulting
potential sentences with at least a transitive or intransitive verb were then parsed in order
to extract the verb and its noun argument(s). For this task I used EasyCCG, an A*-search-
based, state of the art parser4 (Lewis & Steedman, 2014), to convert unstemmed sentences
of the BNC into syntactically and semantically interpretable data. Rooth et al. (1999) used
a head-lexicalized context-free grammar parser (Carroll & Rooth, 1998) that reaches per-
formances of 79% precision and 75% recall. The EasyCCG parser, instead, was developed
15 years later and benefits from computational advances and improved linguistic theories
in this temporal window, obtaining an accuracy of above 98%. Unlike dependency parsers
like Stanford parser (D. Chen & Manning, 2014), EasyCCG makes a distinction between
arguments and adjuncts. Hence we decided to use it, in addition to overall accuracy. Pre-
cisely, Combinatory Categorial Grammar (CCG) generates constituency-based structures
based on logic combinatory power, and is able to represent linguistic structures well, such
as argument-structure theory and semantic set-theory. The first linguistic arguments for
basing the grammar on combinators were put forth by Steedman (1987, 2000) and Szabolcsi
(1992). In short, CCG theory labels words in a sentence with simple POS-tags or, instead,
with a more complex combinator that tells how the word that it is assigned to combines
with other, adjacent words in a sentence into a higher phrase. As we can observe in Figure
3.1 and 3.2, individual elements are combined in incrementally larger combinations up to
the declarative sentence S[dcl]. In Figure 3.1, a transitive sentence is represented, whereas
in Figure 3.2 an intransitive sentence is displayed. The parsing system works such as so
to assign a specific combinatory label to the verb, depending on the manner in which it
combines with its arguments in the sentence. In both example parses the verb is twisted,
which takes in both cases an NP to the left (indicated by a backslash character), being the
subject NP[nb] The boy and The boy’s ankle. Next, the verb in the transitive sentence also

2https://docs.scipy.org/doc/scipy/reference/sparse.html, accessed on April 18th, 2019
3https://scikit-learn.org/stable/, accessed on April 18th, 2019
4http://homepages.inf.ed.ac.uk/s1049478/easyccg.html, accessed on April 18th, 2019
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Figure 3.1: Example of CCG parse of a transitive sentence.

Figure 3.2: Example of CCG parse of an intransitive sentence.

takes an NP[nb] to the right (indicated by a forward slash character) as the object, which,
in the case of Figure 3.1, is his ankle.

The settings of EasyCCG were left at default values, including the option of skipping
sentences that are longer than 70 words to maintain a solid parsing accuracy, and therefore
yielding a coverage of above 98.0% of all sentences.

3.2.3 Creating a Co-occurrence Matrix

From the parsed sentences of the BNC, the verbal instances that take as arguments only a
subject NP (S[dcl]\NP) or both a subject NP and a direct object NP ((S[dcl]\NP)/NP) were
extracted. This process resulted in the creation of 5.111.245 tuples, consisting of (n1, v)
pairs and (n1, v, n2) triples. The frequency of extracted tuples summed up to 14.979.954
tokens. Prior to extraction, verbs and nouns were lower-cased, as well as lemmatized.
Lemmatization of nouns was performed through the NLTK WordNet Lemmatizer5 (Loper
& Bird, 2002), whereas verbs were lemmatized with the Pattern lemmatizer6 (Smedt &
Daelemans, 2012) given a higher performance in terms of coverage (8.500 common English
verbs). Although the latter tool lacks of applicability to uncommon verbal entries, this is not
a problem for the feature vectors since the majority of them are hapax legomena or, in any
case, extremely rare. In other words, a lemmatized hapax legomenon will weight the same

5https://www.nltk.org/ modules/nltk/stem/wordnet.html, accessed on April 18th, 2019
6https://www.clips.uantwerpen.be/pages/pattern-en, accessed on April 18th, 2019
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as its unlemmatized counterpart. Conversely, we do not want to consider different inflected
forms of a more common verb as to be clustered independently the one from another.

The resulting matrix counted 41.916 verb vectors in combination with the weights given
by 113.674 noun-based co-occurrence feature vectors. The 41.916 verb vectors are the re-
sult of 13.972 verbal entries that are present in the active transitive or active intransitive
structure in the BNC, each with the three possible slot options ”.tr:s”, ”.tr:o”, and ”.intr:s”
(abbreviations for ”transitive:subject”, ”transitive:object”, and ”intransitive:subject”). As
we will see in §3.2.5, the matrix described in the present section is the underlying data
structure of the ALL data set and its subsets F500 and LEV. However, before being fed to
the clustering process, further transformations of the data were applied. The first modi-
fication is normalization, performed sample-wise (i.e. verb-wise) and not feature-wise (i.e.
noun-wise), with l2 norm (Pedregosa et al., 2011). Normalizing is a form of scaling the data
so that factors as absolute frequency do not affect the weight of a vector excessively. For
example, a verb that occurs far more often than another may differ in frequency, but not
in the distribution of the nouns over their argument structure; bringing the vector counts
to the same scale overcomes the problem of different weightings due to absolute frequency.
Moreover, the models that were created with normalization showed a clearly more equally
distributed data over the classes, whereas unnormalized data caused one highly populated
verb class with > 95% of the data, and mostly singleton clusters. Given these consequences,
it can be inferred that such a skewed distribution is relatively uninformative, as discriminant
patterns in the data are evidently missed by the algorithm.

In the next section, §3.2.4, a second, major process that was applied on the data is
described. Herein I describe how SVD works, a form of dimensionality reduction, what
settings are chosen, and a motivation for using technique in question.

3.2.4 Dimensionality Reduction: Singular Value Decomposition

Given the high dimensionality of the feature space, I applied truncated Singular Value
Decomposition (SVD) through Scikit-learn (Pedregosa et al., 2011) to reduce the number of
vectors of the term count matrix. Precisely, SVD is the matrix reduction algorithm in Latent
Semantic Analysis (LSA), originally proposed by Deerwester, Dumais, Furnas, Landauer,
and Harshman (1990) and used for a wide range of NLP applications (see Jurafsky and
Martin, 2014 for examples). According to Lenci (2018), it is the most commonly used feature
extraction technique in distributional semantics, not only because of its computationally
efficiency, but also for the fact that it keeps the informativity of the dimensions intact with
respect to the original, non-factorized input data. Specifically, SVD is a type of matrix
factorization that has the effect of combining co-occurrence columns, so to give weight to
the more informative or salient features in the data. Using Lenci (2018)’s notation and
descriptions, SVD factorizes an m × n co-occurrence matrix M into the product of three
other matrices, where z = min(m,n):

Mm×n = Um×zΣz×z(Vn×z)
T (3.1)

Here, Σz×z is a square diagonal matrix containing singular values that are sorted in de-
scending order. The latent dimensions in the input data are represented by the columns of
the matrices U and V , and are ordered by the amount of variance in the data that they
respectively account for. Based on the choice of a parameter k that is given at the time of
applying SVD, the first k singular values (i.e. the values in Σz×z) and the first k singular
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vectors (i.e. the columns in U and V ) are kept, returning a final matrix.
A drawback of SVD is that the higher level abstractions produced by these feature com-

binations are, apart from hardly interpretable, mere approximations. However, the result is
the best approximation of M that maintains the variation in the data. Concretely, a certain
amount of information is lost during the matrix factorization, but this is counterbalanced
by the improved weighting of informative patterns in the data. Standard values for the
number of first dimensions to keep range approximately between 50 and 500. As we want
to lose as little information as possible from the feature vectors, 500 is the preferred value
for said parameter.

3.2.5 Data Sets for Clustering

The parsing, feature extraction and pre-processing steps have transformed the semi-raw
corpus data into a form that is manageable for the unsupervised machine learning algorithms
that will be adopted in Chapter 4. In the present section, I outline the three final data
sets that result from the aforementioned processes. Note that the selection and filtering of
verbs that give rise to the different data sets are applied before normalization and SVD,
which means that the smaller data sets in §3.2.5.2 and §3.2.5.3 do not originate from the
larger cleaned data set in §3.2.5.1, but are the result of a similar process starting from the
extracted BNC tuples.

3.2.5.1 The ALL Data Set

The first data structure is the ALL data set. It directly derives from the extracted transitive
and intransitive verbs of the BNC. The ALL data set includes, as anticipated in §3.2.3,
14.979.954 tokens, given by 13.972 verb types (41.916 vectors). SVD reduces the features
to 500.

3.2.5.2 The F500 Data Set

The motivations for a second data set, F500, originate from the fact that the ALL data set
is highly sparse, with 90% of the occurrences pointing to the 500-1000 most frequent verbs
in the corpus. As a matter of comparison, I take the subset of transitive and intransitive
cases of the 500 most frequent verbs into account when analysing the clustering results of
all verbs in this specific alternation. F500 counts 13.405.110 tokens from tuple extraction,
500 verb types and 1.500 vectors. SVD reduces the features to 500. The F500 data set can
be inspected in Appendix A.

3.2.5.3 The LEV Data Set

A third data set is created from the original corpus by considering only verbs that bear the
property of belonging to the transitive alternation. In order to select such set of verbs, I ex-
clusively considered the verbs described by Levin (1993) that display a transitive-intransitive
alternation, and more precisely those showing the particular argument configuration where
the object of the transitive is the subject of the intransitive. This group includes the Middle
Alternation, the Causative Alternations — covering the Causative-Inchoative Alternation,
the Induced Action Alternation, plus other cases — and the Substance/Source Alternation.
This data set has the property of being potentially more robust than the previous two,
despite the fact that it contains less verbs (both tokens and types) and that overall they
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are relatively uncommon. The rationale behind this choice is this that clusters of the model
will still be the result of a training phase based on three vectors per verbal entry, but with
the peculiarity of being two of them, the .intr:s and the .tr.o, distributed more similarly
to each other than the same vectors for the ALL and F500 data sets. LEV counts 448.250
tokens, 368 verb types and 1.104 vectors. SVD reduces the features to 500. The LEV data
set can be inspected in Appendix A.
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CHAPTER 4
EXPERIMENT 1

4.1 Task: Unsupervised Verb Classification

In this chapter, I present the first of the two experiments. The first experiment consists in
the creation of a Gaussian Mixture Model based the verb vectors from the three data sets
ALL, F500, and LEV, from which we retrieve cluster-wise probabilities of the noun-verb
pairs in the transitive and intransitive cases. Besides, two other algorithms are adopted,
which are all described in §4.2. In §4.3, the evaluation methods are explained, followed
by technical details in §4.4. The evaluation results and related model selection process is
widely described in §4.5. The resulting verb classes are analysed in the light of Levin (1993)
classes in §4.6 (qualitatively) and §4.7 (quantitatively).

4.2 Clustering Algorithms

4.2.1 Gaussian Mixture Models: Expectation-Maximization

In machine learning models, we can distinguish two types of clustering: hard-bounded and
soft-bounded. Hard clustering entails that clusters do not overlap, i.e. a data point either
belongs to a specific cluster or does not, whereas clusters may overlap in soft clustering, i.e.
a data point may belong to multiple clusters but with a different degree of belief or weight
for each cluster. Mixture models, as opposed to K-Means (see §4.2.3) for example, are a
type of soft clustering that is strictly probabilistic. In fact, each cluster is a Gaussian or
Multinomial generative model. The distributional parameters of the clusters, φ, µ, and σ,
are automatically estimated by means of the Expectation-Maximization (EM) algorithm.
The EM-based clustering method that I adopt will result in a Gaussian Mixture Model
(GMM).

The problem that EM solves is the following: given a data point xi in a binary classi-
fication problem (for the sake of simplicity), not only its source distribution (i.e. class A
or class B) is unknown, but also the parameters of this distribution. This fact makes it
impossible to guess whether xi is more likely to belong to a distribution instead of another,
since knowledge of φ, µ, and σ of both distributions is needed to estimate the source of a
set of data points, but at the same time knowledge of the source is needed to estimate φ,
µ, and σ for class A and class B. The EM algorithm operates in two steps: first, p(A|xi)
and p(B|xi) are computed so as to determine to what extent it is likely that xi came from
source distribution A (E-step); second, φ, µ and σ of A and B are adjusted in order to fit
the data points assigned to them (M-step). These steps are iterated until convergence, with
the distributions moving from their initialized positions until all examples are included in
either one of them. See Dempster, Laird, and Rubin (1977) for further reference.

4.2.2 Spectral Clustering

While an intrinsic evaluation of the Gaussian Mixture Models (see §4.3) is indicator of per-
formance that is relative to specific hyperparameters and data sets, it does not tell how
well the algorithm itself does on this task. Specifically, it would be relevant to compare its
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performance against other clustering algorithms used in computational semantics, thus to
validate how reasonable it is to pursue research in this domain via EM-based modelling.
Given the high performance obtained by Sun and Korhonen (2009) on a verb sense classifi-
cation task, I propose their best machine learning method as term of comparison: Spectral
Clustering (SPEC). Although they used a variation based on the MNCut algorithm (Meila
& Shi, 2001), I will adopt the more standard clustering method originally proposed by Ng,
Jordan, and Weiss (2002), used in Jinxiu Chen, Ji, Tan, and Niu (2006) on an NLP task and
in Brew and Schulte im Walde (2002) on German verb clustering and explained later in this
section. Moreover, as a baseline, K-means (KM) will be used. As proven in a replication of
the experiment of Sun and Korhonen (2009), SPEC is expected to outperform KM also on
this task, given that the input data is similar.

In SPEC, clusters are defined by affinity (or adjacency) rather than exact location in
the feature space. Concretely, a symmetric affinity matrix G is constructed where Gij ≥ 0
is a similarity measure (e.g. the quadratic distance) for each data point i with respect
to another data point j, given an enumerated sample. By means of Principal Component
Analysis (PCA), similar eigenvectors with smallest eigenvalues (except 0, which is distance
between a data point and itself) of this rank-deficient matrix are identified and projected to
a lower dimensional space1. Finally, a clustering method clM is applied on the Laplacian
matrix L, i.e. the matrix representation of a graph (since the algorithm is based on graph
distance). L is given by:

L = D −G, (4.1)

where D is the diagonal matrix returned by:

Dii =
∑
j

Gij (4.2)

The choice for clM in the last phase of SPEC goes to KM, given that it is our baseline
algorithm, making a comparison with SPEC straightforward.

4.2.3 K-Means

KM is one of the most used clustering methods and works as follows. First, a number of
centroids are randomly initialized in the feature space. Second, KM will iterate over two
steps: 1) data points are assigned to a cluster based on the lowest geometrical distance
from the different centroids; 2) the position of the centroids are adjusted by moving them
towards the average of the points assigned to each of the components. As already mentioned
in Section 4.2.1, one of the differences between EM-based and KM-based clustering is that
the former is a form of soft clustering, whereas the latter is an instance of hard clustering.
We may expect that, given the complexity of the linguistic data in question, GMMs yield
higher performance. In fact, where a hard boundary assigns either a class label or not, a
soft boundary allows a data point (e.g. a verb or noun) to belong to different components
to different extents in likelihood. Precisely, in terms of verb classes, a verb (or set of verbs)
may belong to more than one cluster depending on its sense and on its allowed alternations,
causing clusters to be more close to each or even overlap.

1In Mathematics, the spectrum of a matrix is the set of its eigenvalues, hence Spectral Clustering
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4.3 Methods for Cluster Evaluation

The advantage of training a model via unsupervised learning is that little prior assumptions
or decisions have to be made about the classes to be drawn. This allows specific patterns
in the data to emerge, avoiding biases and confound factors to a large extent that may be
caused by the experimental settings. On the other hand, drawbacks are mostly present in the
evaluation techniques with regards to a fitted model and in the choice of hyperparameters to
adjust with regards to a model to be fitted. Specifically, the data sets that are processed in
the present study are unlabeled: we do not dispose of a ground truth value or gold standard
that would be necessary to straightforwardly compute a majority class label (purity score)
for a specific cluster, and consequently an accuracy measure for the overall model. This fact
discards evaluation metrics that require the set of true labels to be known, such as Adjusted
Rand index (ARI) used by Mucha and Haimerl (2005) to evaluate hierarchical clustering
models in a dialectometry study, and Normalized Mutual Information (NMI) score adopted
by Jinying Chen and Palmer (2004) for EM-based cluster analysis in a Chinese verb sense
discrimination task. As we will see in §4.3.1, Rooth et al. (1999) compute the accuracy
measure through a Pseudo-Disambiguation task. By doing so, we obtain a helpful insight
in what the Gaussian components look like, and what the performance differences are
among models with a different number of components. At the same time, however, other
technical problems arise, as well as a poorly grounded linguistic explanation concerning
model selection by Rooth et al. (1999).

I therefore propose alternative evaluation metrics in §4.3.2: Aikake’s Information Cri-
terion, Bayesian Information Criterion, and Silhouette Coefficient. Said measures are stan-
dardly used for GMM evaluation. Since a single metric is not always able to provide a
definitive answer for which model to use, a weighted analysis of these metrics is provided
through representation and visual inspection. Furthermore, in §4.3.3, I propose a tech-
nique to solve the problem of the number of clusters to be inferred, namely a Variational
Bayes Gaussian Mixture Model. The outcomes of the former metrics and the outcome of
the latter are then reported and compared in §4.5, which will produce an approximated
number of clusters. Finally, in §4.5.4, the latter parameter will be coupled back to the
Pseudo-Disambiguation accuracy.

4.3.1 Pseudo-Disambiguation

The clustering models in Rooth et al. (1999) were evaluated on a pseudo-disambiguation
(PD) decision task based on Pereira et al. (1993). This method measures the likelihood of
a noun n as an argument of a verb v and a verb v′, where the pair (v, n) is extracted from
the original corpus and the pair (v′, n) is artificially composed and completely unseen. The
goal of this decision task is to measure how well the model can generalize over unseen verbs,
indicating the degree of information that the model has with regards to relations between
nouns and verbs.

Concretely, I created an evaluation set E of (v, n, v′) triples by cutting a test set Etest of
3.000 unique (v, n) pairs out of the original BNC corpus. The original corpus was first trans-
formed into a list Eoriginal containing 9.868.709 (v, n) pairs for the ALL data set, 8.847.966
pairs for the F500 data set, and 283.149 pairs for the LEV data set. Consequently, I re-
moved all occurrences of the unique types in Etest from Eoriginal, leaving a reduced training
corpus Etrain. For all three data sets ALL, F500, and LEV, the same transformations and
evaluation procedure was applied, but independently the one from another. In this way,

23



Eoriginal and Etrain had a different size for each data set and related training and evaluation
of the resulting models.

Intuitively, v, n, and v′ must all three occur in the Etrain, although in different verb-noun
combinations than in Etest. Furthermore, verbs and nouns in the E must have a frequency
fq in the Etrain of 30 ≤ fq ≤ 45.000. Instances that did not meet this requirement were
discarded. The choice for this restriction comes from the consideration that overly frequent
verbs and semantically empty verbs (i.e. light verbs) should not be taken into account in the
clustering process, as their contribution is relatively uninformative and could potentially
skew the data distribution. Therefore, the upper boundary of 45.000 was chosen, which
stands in proportion to the cut-off of 3.000 used by Rooth et al. (1999), given that our total
data size is ≈ 15 times larger (15 × 3.000 = 45.000). The lower boundary of 30 indicates
the necessity of a minimum number of examples in order to render the vectors sufficiently
robust.

This downsizing from the initial evaluation sample of 3.000 v, n) pairs, due to these
restrictions, brings us to a final set of evaluation triples E of 2.404 (v, n, v′) types for the
ALL data set, 1.932 for the F500 data set, and 2.498 for the LEV data set.

The PD accuracy is calculated by counting how many times the latent class model pLC(·)
returns a probability that is higher for verb-noun pairs (v, n) (that do exist in the original
corpus) than for verb-noun pairs (v′, n) (that do not exist in the original corpus), out of all
evaluation triples (v, n, v′) in E. The triples for which this relationship holds, are members
of E′, a subset of E. Hence, the PD accuracy is given by the cardinality of E′ in proportion
to its superset E. Formally:

E′ = {(v, n, v′) ∈ E | pLC(n|v) ≥ pLC(n|v′)} (4.3)

PDaccuracy =
|E′|
|E|

(4.4)

4.3.2 Density, Separateness and Complexity of the Clusters

Since the model trained on the entire BNC instead of fitting a sole subpart of it as was
done in Rooth et al. (1999), we can question what the measure of generalization power
actually tells us. If we consider the BNC as a representative reflection of the English
language, than the model would not need to perform decently on unseen data, as ulterior
(v, n) occurrences would be either contained in the training data, or be relatively rare and
thus, arguably irrelevant. In that case, the Pseudo-Disambiguation task only gives us an
intuition about the model’s performance, but no attached applicability value. In order to
evaluate the models from a different perspective, we could inspect more closely the clusters
that are produced by more informative metrics, such as (i) Silhouette Coefficient (SC), (ii)
Akaike’s Information Criterion (AIC) and (iii) Bayesian Information Criterion (BIC). In
the process, also the Log-Likelihood Value (LLV) of the models will be taken into account.
First, SC indicates how the clusters that are produced by the model with respect to a
sample are formed. Specifically, it tells how well separated the clusters are and it provides
an indication of the distance of the data points from their respective centroids. The SC for
a model is computed as

SC =
(n− i)
max(i, n)

, (4.5)
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where n is the mean nearest-cluster distance of all data points from the cluster into which
they have not been classified, and where i is the mean intra-cluster distance. Results
deriving from this metric range from -1 to 1: if the SC tends to -1, samples are misclassified
to a larger extent than the case in which the SC tends to 1; if the SC approaches 0, clusters
do overlap.

Second and third, it is worth analyzing the fitted models by means of the AIC and BIC,
which are two likelihood criteria that set a penalty based on the complexity of the model.
Formally, the BIC is given by

BIC = −2 ln(L) + k ln(n), (4.6)

with L being the maximum likelihood value of the model, k the number of parameters, and
n the number of observations. Similarly, the AIC is given by

AIC = 2k − 2 ln(L) (4.7)

The difference between these two types of information criteria can be explained by the
different penalty weight that is applied for the number of parameters: 2k and ln(n)k for
AIC and BIC, respectively. Thus, we can conclude that the BIC will penalize the model
more heavily than the AIC. For both metrics, the lower the score, the better the model.

4.3.3 Variational Bayesian Estimation of a Gaussian Mixture

Since we are aiming at a fully unsupervised method to avoid as much prior bias as pos-
sible on the number of clusters to be created, I propose to adopt a Bayesian variant of a
Gaussian Mixture Model. Whereas EM yields a probability distribution over the clusters
together with a maximum likelihood estimate θ, its Bayesian extension draws a probability
distribution over θ and the latent variables. Through Variational Bayes (VB) estimation,
θ is treated as an extra latent variable, optimizing each of them one at a time. Hence, VB
computes estimates of the posterior distribution of all variables, both parameters and latent
variables, after first fitting a prior distribution to these parameters. Based on the weights
of this prior distribution, a VB Gaussian Mixture can infer its true number of components
automatically from the data, by setting posterior weights of the components to probabilities
that are close to zero. In this way, the model will highlight the components that best fit the
data, ignoring irrelevant ones. A distinction between types of components based on their
active role in the model will be explained later on in this section.

In detail, two types of prior mechanisms can be used: Dirichlet process prior and Dirich-
let distribution prior. The former defines an infinite number of components and activates
only those that are necessary. The latter defines a finite mixture model with a finite num-
ber of components, favoring a more uniform weight distribution over the components. This
difference leads to more natural classes in the first case, whereas the second option tends
to divide otherwise natural classes into sub-components that are active themselves (as each
sub-component would gain relatively more weight than the Dirichlet process prior would
allow). In view of these differences, we consider the Dirichlet process prior as the most
appropriate option to apply as less influence as possible on the natural patterns in our
linguistic data.

The main hyperparameter to be tuned is the number of components. Unlike for regular
Gaussian Mixture Models, this hyperparameter is not the effective number of clusters to
be formed, but an upper-bound. This value is the maximum number of clusters that is a
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priori believed to cover the true generative distribution of this data set. Furthermore, the
upper-bound turns out to be a summation of the redundant (inactive) and effective (active)
components in the fitted model, given the posterior weights for each component. Redundant
components will be identified by a weight that is close to 0 as produced by the algorithm.
Hence, the task is to identify a lower cut-off for the posterior weights distribution, so as to
establish which components are to be regarded either as active or inactive. The posterior
weights distribution is closely connected to a weight prior parameter, which indicates the
bayesian prior distribution that is believed to correctly describe the natural clusters in
the data. This parameter can be adjusted to a high value if it is expected that the data
in question is structured in many clusters, by giving more weight to smaller groups of
data points. The same parameter can be tuned to a lower value if it is desirable to give
more weight to the big picture in the data, hence, a smaller number of components. Our
assumption is that the prior weights are equally distributed over the components, indicating
a parameter choice of weight prior = 1

n components . The motivation for this is that we do
not want to influence the result of the VB GMM by the results of the metrics proposed in
§4.3.2 that could favor either a relatively low or relatively high number of components for
the different GMMs. For further reference on Variational Bayes Gaussian Mixture Models
consult Blei, Ng, and Jordan (2003)).

4.4 Fitting the Models: Implementation Details

The models were trained with the Scikit-learn package (Pedregosa et al., 2011), version
0.20.3. With exception for the Variational Bayes Gaussian Mixture Model — which had a
runtime of between 2 and 3 hours for the ALL data set — fitting the models lasted between
20 and 30 minutes for the ALL data set, less then 15 minutes for the F500 data set, and less
than 1 minute for the LEV data set. For visualization, Matplotlib (Hunter, 2007), version
3.0.3 was used.

4.5 Model Selection

The selection of the best model depends on several factors, such as (i) the number of
clusters — to which little importance had been given in Rooth et al. (1999) —, (ii) the
choice between the entire BNC data set (ALL) and its different subparts (F500 and LEV),
and (iii) the types of metrics (e.g. accuracy, intra-cluster distance, Variational Bayesian
inference). I will begin with showing the results of the evaluation method in Rooth et al.
(1999): Pseudo-Disambiguation (PD).

4.5.1 Pseudo-Disambiguation (Results)

As we may recall, this measure returns an accuracy score (ACC) indicating the extent to
which the model is able to generalize. In Figure 4.1, the variation of ACC is displayed
in relation to the number of clusters ranging from 5 to 100, to the given data set, and to
the clustering algorithm that was used. For all three data sets, the GMM accuracy has an
approximate positive correlation with the number of clusters, in ranges of around 60%−70%
accuracy for ALL and F500, and 70% − 83% for LEV. Nevertheless, the result of the PD
task will be taken into account in a different manner than in Rooth et al. (1999). In contrast
to the latter, I do not limit the analysis to the ACC curve over the number of components
as the representation of a general trend. Instead: (1) I compare the ACC curves for GMM,
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SPEC, and KM so to obtain an intuition regarding the measure to which GMM was a good
algorithm choice overall for this NLP task; (2) only after computing the optimal number of
components (per data set) via an in-depth cluster analysis, I retrieve the ACC value that
is related to that number. For example, if the best number of clusters appears to be 50
according to the in-depth cluster analysis, we calculate the PD accuracy for a model with 50
clusters. Even though we will come back to the PD accuracy later, I first give an overview
of the overall PD performance for both the different data sets and the different algorithms.

Figure 4.1: Pseudo-Disambiguation Accuracy comparison between all verbs (ALL ACC),
the 500 most frequent verbs (F500 ACC), and Levin’s transitive-intransitive alternation
verbs (LEV ACC). Three different clustering techniques are used in combination with these
data sets: Gaussian Mixture Models (GMM), K-means (KM), and Spectral Clustering
(SPEC).

According to Figure 4.1, the difference in PD performance between GMM and SPEC
is minimal but present for the two data sets on which it was applied, with SPEC scoring
relatively higher than GMM on F500, but lower on LEV. This fact is relatively surprising
given that LEV is smaller in size than F500, and SPEC is known to perform well on
reduced data sets. In fact, its applicability to large-scale problems is restricted because of
its computational complexity of O(t3), where t represents the number of data points (Yan,
Huang, & Jordan, 2009). On the other hand, KM achieves a similar performance on F500
and LEV in comparison to GMM, but scores clearly higher on the ALL data set: > 75%
versus 60% − 70%. We can infer from this that KM performs sensibly better on highly
sparse data sets in comparison to EM. Concerning (2), the in-depth analysis consists of the
techniques described in §4.3.2 and §4.3.3: on the one side the standard metrics AIC, BIC,
SC, and LVV, while on the other we find an inspection of the posterior weight distribution

27



of a fitted VB Gaussian Mixture Model on the same three data sets.

4.5.2 AIC, BIC, SC, and LLV (Results)

The GMM in-depth cluster evaluation results can be observed in Figure 4.2 (ALL data set),
Figure 4.3 (F500 data set), and Figure 4.4 (LEV data set).

Figure 4.2: GMM evaluation on ALL data set. Metrics: AIC, BIC, SC, LLV
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Figure 4.3: GMM evaluation on F500 data set. Metrics: AIC, BIC, SC, LLV

Figure 4.4: GMM evaluation on LEV data set. Metrics: AIC, BIC, SC, LLV
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The AIC and BIC are penalty-based metrics that directly depend on the complexity of
the model, which in our case is the number of components. The way in which Rooth et al.
(1999) interpreted the models’ performance, i.e. by the sole PD accuracy related to a range
of models in a window of [25; 100] components, does not deal with this aspect. Furthermore,
they showed the results of the semantic slot labeling experiment based on a model with 35
clusters, without accounting for that specific parameter.

For the ALL data set (Figure 4.2), although a higher number of components is more
likely to explain the data (LLV: the higher, the better), the AIC and BIC prefer a low
number of components in the range [5; 100] that is given (the lower, the better). The AIC
is particularly informative as it rapidly decreases between 25 and 75 components, with a
negative peak around 35 and 45. For this data set, but also for F500 and LEV as we will
observe, BIC is not the most appropriate metric (relatively uninformative lines or curves).
As expected for a soft-clustering algorithm like EM, the SC oscillates around 0. Besides, its
values are positive, indicating that data points are not assigned to the wrong cluster. High
peaks are registered starting from the model with 30 components and is consistent with the
intuition given by the AIC: given the peak at 35 components (despite being lower at 45),
this parameter option is confirmed as a valid candidate. A (local) maximum is registered
at 90 components, but due to the BIC we give preference to a lower model complexity.

For the F500 data set, by observing Figure 4.3 it appears that the AIC is penalizing the
model’s complexity in a similar way to the BIC, without showing a reverse bell-shape (and
consequently a reduced preference window) as for the ALL data set. A higher precision rate
comes with SC and LVV, which indicate a preference for a window between 15 and 35 as a
valid trade-off.

Ultimately, for the LEV data set in Figure 4.4, we can clearly observe that the optimal
value for the number of components is 15. Specifically, both the AIC and BIC favor a number
of components under 20, with the LVV showing a related decrease at the same value. At the
same time, the SC points to 15 as the best value for the number of components being not
only the highest, but also the only positive SC among the range of n components candidates.

In the next section, §4.3.3, an extra evaluation metric is given for the estimation of the
number of components per model. Its outcome, together with an overview of the results in
the present section, is given in §4.5.4.

4.5.3 Variational Bayes (Results)

In order to render the result of the cluster evaluation more robust, and thereby obtain
a strong estimate of the number of lexical verb categories in the transitive-intransitive
alternation for each data set, we apply a technique that is unseen in this domain so far.
Until now, we empirically compared models that were differing in the choice of the main
hyperparameter: the number of components. However, as explained in §4.3.3, this value
can be estimated automatically from the input data by means of Variational Bayes (VB)
inference. By analysing the weight distribution over the fitted clusters in a VB GMM,
the effective number of components is equal to the established upper-bound (50, in our
case) minus the number of redundant components. As we may recall, redundant or inactive
components are those that have a weight that is driven towards 0. Figure 4.5 shows the
results of three VB GMMs, one for each data set that we used so far. In particular, the
histograms illustrate the portion of components that has a posterior weight close to 0,
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indicated in red2. Concretely, we may consider as close to 0 the bin of weights in each
histogram with lowest value on the x-axis, which has the characteristic of being the highest
on the y-axis since VB GMMs tend to give a strong bias towards 0 to a relatively high
portion of upper-bound number of components. Hence, from this analysis we can deduce
that the number of redundant components in Figure 4.5 with respect to the different data
sets, is 24 for ALL, 17 for F500, and 30 for LEV. In other words, the VB inference technique
points to 26, 33, and 20, respectively, as approximations for the optimal number of clusters.

Figure 4.5: The frequency of redundant/inactive components (marked in red) versus effec-
tive/active components (marked in blue) in the VB GMM model for the three data sets
ALL, F500, and LEV, with an initial upper-bound of 50 components.

4.5.4 Putting Everything Together

We may now join together all metrics that were computed in the present chapter in order to
come up with a balanced decision on the number of components for each data set. Table 4.1
provides an overview of the predictions of said metrics. By taking both types of evaluation
scores into account, I propose that combination of AIC, BIC, SC, and LVV is used as a
baseline approximation, which is then refined by the result produced through VB inference.

Concretely, we saw that the ALL-model has a preference for 35 or 45 clusters given by
the first series of metrics; out of these two candidates we may decide for the lowest, being
it a fair in between choice with respect to the value of 26 given by VB.

2Outlier posterior weights with a value of > 0.01 (relative to a single component in each model) were
ignored in the plot so to represent on a more informative scale the difference in frequency between component
weights close to 0.
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Active n components Metric

Data set AIC, BIC, SC, LVV VB

ALL 35/45 26
F500 15-35 33
LEV 15 20

Table 4.1: Optimal number of active components in a GMM given the type of metric and
the data set.

As for the F500-model, the uncertainty of the options window 15−35 is strongly reduced
by the result of VB: a higher number of clusters is preferred, therefore a value of 35 would
be a well-founded choice.

Finally, for the LEV-model the values returned by the two types of metric are very close
to each other, but a preference is given to 15 rather than to 20 because of the clear peak
given by the SC metric in §4.5.2.

In Table 4.2, I report the final choices about the number of components and, conse-
quently, the model(s) to be used as a starting point for the semantic role annotation phase.
Here, based on the intrinsic cluster evaluation widely explained in the present section, we
refer back to the Pseudo-Disambiguation results that were shown in Figure 4.1.

Data set n components PD-accuracy

ALL 35 63.98%
F500 35 63.37%
LEV 15 74.1%

Table 4.2: Final n components parameter for each GMM and relative Pseudo-
Disambiguation Accuracy.

From Table 4.2 it clearly appears that the F500 data set is representative of its superset,
i.e. the ALL data set. In fact, the lexical structures of both data sets are likely to be divisible
into 35 components, yielding a similar performance in terms of accuracy (63.4%− 64.0%).
Between the two models, then, usually the simplest is chosen, namely the F500-based.
However, KM-based clustering yields sensibly higher results on the ALL data set, but fails
to outperform GMM on the F500 data set. What we can infer from this, is that F500-
based models fail to generalize for the low-frequence occurrences in the data. Moreover,
it is possible that the LEV data set is structured more precisely than F500 and ALL (i.e.
composed of true alternating verbs according to Levin, 1993), as indicated by an accuracy
score of 74.1%.

Compared to the performance obtained in previous work (as introduced in §2.2.3 and
§2.2.4), the GMM accuracies for the ALL and F500 data set obtained in the present study
are not in line with Rooth et al. (1999), but they are similar to Erk (2007)’s model’s
performance. The use of K-means, instead of GMM, could possibly equal the score of 80%
on said data sets. On the other hand, the verbs in LEV contributed to a comparable score
with respect to Rooth et al. (1999).
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4.6 Results and Qualitative Analysis

The concrete outcomes of the EM clustering procedure are briefly treated in this section,
in the form of a visual inspection and qualitative analysis. A quantitative analysis follows
in §4.7.

In the light of the reasons provided in §4.5, I consider the model that is based on the LEV
data set because of its highest accuracy, and the GMM based on the ALL data set because of
its wider coverage. The F500-model, which (as we may recall) covers approximately 90% of
the data fitted by the ALL-model, does not score better than the latter, and is outperformed
by the KM algorithm. Then, let us inspect the clusters to gain a better insight — in both
the lexical and statistical sense — in the conditional probabilities of verbal and nominal
instances that are grouped together by the models.

Starting with the LEV-model with 15 components, two arbitrary examples of automat-
ically induced verb classes are given in Table 4.3 and Tables 4.4. The two overviews list
the most probable verbs given a cluster with an arbitrary label 7 and 5, as well as the most
probable nouns conditioned on the same cluster.

Class 7 (LEV)

p(v|7) p(n|7)
alter.tr:o
increase.intr:s
expand.intr:s
loosen.tr:s
decrease.intr:s
float.intr:s
compress.tr:s
compress.tr:o
reopen.tr:s
straighten.intr:s
squirt.tr:s
solidify.tr:s
spin.intr:s
energize.tr:s
lighten.intr:s

0.3383
0.3265
0.057
0.0549
0.0364
0.0361
0.0279
0.0276
0.0261
0.0218
0.0124
0.0109
0.0103
0.0082
0.0027

matron
fiend
lattre
canister
opening
lay-out
kloppenberg
smile
screen
aws
replacement
brushwork
president
making
discontent

0.3841
0.3529
0.2758
0.2275
0.1471
0.081
0.0774
0.0754
0.0681
0.0681
0.0676
0.0638
0.0591
0.0547
0.0481

Table 4.3: Class 7 of the GMM with 15 components based on the LEV data set.
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Class 5 (LEV)

p(v|5) p(n|5)
open.tr:o
move.intr:s
stand.tr:s
walk.intr:s
close.tr:o
improve.tr:s
sit.tr:o
vary.intr:s
double.tr:o
swing.tr:s
fold.tr:s
flash.tr:s
bang.tr:s
bang.tr:o
lodge.tr:s

0.2945
0.1181
0.1072
0.0997
0.0973
0.0396
0.0346
0.0332
0.0166
0.0149
0.0134
0.0105
0.0094
0.009
0.0084

wielder
basildon
melms
phi
wolf
bunny
raid
plethora
tutor
hussey
jaq
massacre
know-how
yeltsin
marseillaise

0.5756
0.3493
0.1653
0.1566
0.1141
0.1107
0.0982
0.0753
0.0595
0.059
0.0542
0.0532
0.0532
0.0489
0.0474

Table 4.4: Class 5 of the GMM with 15 components based on the LEV data set.

Tables 4.5 and 4.6, on the other hand, illustrate the most probable nouns and verbs in the
clusters 10 and 16 of the 35-component model based on the ALL data set. At a first glance,
we could observe and recognize certain lexical patterns (i.e. consistent semantic classes)
in these sets, and perhaps acknowledge a subtle difference between the LEV clusters and
the ALL clusters reflecting the difference in accuracy of the two models. However, such
observations should be backed up with quantitative arguments, which is a part that is
missing in linguistic interpretation by Rooth et al. (1999), but provided in the next section.

Class 10 (ALL)

p(v|10) p(n|10)
get.tr:s
want.tr:s
require.tr:s
win.tr:o
like.tr:o
sell.tr:o
achieve.tr:s
cross.tr:o
eat.tr:s
stop.tr:s
define.tr:o
live.tr:s
oppose.tr:s
fight.tr:s
deliver.tr:o

0.2149
0.1323
0.1014
0.089
0.069
0.0329
0.0264
0.0245
0.0223
0.0165
0.0152
0.0143
0.0128
0.0115
0.011

adulterer
crushing
tammuz
adjudge
xyz
rodent
orchids
ones
scriptures
gnat
respirator
dependant
graptolites
archdeacon
barricade

0.1683
0.1399
0.1233
0.1225
0.1208
0.1075
0.1029
0.098
0.0917
0.0899
0.0831
0.0806
0.0772
0.0749
0.072

Table 4.5: Class 10 of the GMM with 35 components based on the ALL data set.
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Class 16 (ALL)

p(v|16) p(n|16)
ask.tr:s
claim.tr:o
know.intr:s
mention.tr:s
encounter.tr:s
note.tr:o
improve.tr:o
ensure.tr:o
unveil.tr:s
restrict.tr:s
restore.tr:o
hide.tr:s
wave.tr:o
stage.tr:s
satisfy.tr:o

0.1583
0.0783
0.0783
0.0733
0.0483
0.0425
0.0341
0.0334
0.0264
0.0256
0.0227
0.0222
0.0219
0.0207
0.0164

partnership
prognosis
illness
potentiation
incidence
hartford
morbidity
coincidence
sheldrake
familiarity
scooper
functioning
smooth
dorothy
ringwraith

0.1661
0.1463
0.1439
0.1328
0.1268
0.1189
0.1142
0.1075
0.1007
0.098
0.0961
0.0842
0.0777
0.0733
0.0718

Table 4.6: Class 16 of the GMM with 35 components based on the ALL data set.

4.7 A Quantitative Analysis of the Models’ Verb Classes

The models have been extensively evaluated in §4.5 and the results described in §4.6. Data-
wise, the evaluation is well-grounded, but a qualitative analysis of the verb classes may
be insufficient for a holistic impression of the results. More precisely: how semantically
coherent are the verb classes produced by the models? Whereas Rooth et al. (1999) do
not provide a quantitative analysis, I propose a semantic evaluation method based on Sun
and Korhonen (2009) that maps back to Levin (1993)’s verb classes. Sun and Korhonen
(2009) evaluated the results of their unsupervised clustering experiment, which I described
in §2.2.2.4, by means of two test sets T1 and T2 that were originally used by Sun, Korhonen,
and Krymolowski (2008) and Joanis et al. (2008), respectively. Both T1 and T2 are subsets
of verbs retrieved from 15 to 17 Levin (1993) classes. The classes in T1 were selected at
random with one of the constraints being that each class had enough member verbs whose
predominant sense belongs to the class in question. In general, our task differs from Sun
and Korhonen (2009) in the sense that I did not create a data set of verbs from particular
Levin (1993) classes (although the LEV data set is based on a particular alternation, but
not a class), nor are the verb vectors of the same type (one vector = one verbal entry in
their approach, versus three vectors = one verbal entry in our approach). Specifically, Sun
and Korhonen (2009) first decided on a set of Levin classes to test the clustering results
against, with every class covering between 10 and 20 different verbs. Key in their approach
was the fact that every verb was given a specific label of the class to which it belonged,
besides the property of being mostly monosemous.

Since I started with an unlabeled set of verbs instead, I adopt an inverse procedure by
labeling the verbs with one or more Levin classes a posteriori. Only intransitive verbs are
taken into account, as transitive verbs are divided into two vectors and may therefore be
divided over two different clusters. First, through VerbNet (Kipper-Schuler, 2005), a list
of one or multiple coarse-grained Levin class labels (out of a total of 274) was assigned
to each verb. To perform this labeling procedure, the NLTK (Loper & Bird, 2002) the
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VerbNet corpus reader was used. Second, the models were evaluated by means of cluster-
wise measurements.

The evaluation metrics were adopted not only by Sun and Korhonen (2009), but also
by other studies in this field such as Korhonen, Krymolowski, and Collier (2008) and Ó
Séaghdha and Copestake (2008). Two metrics were used: a modified purity measure mPUR
and a weighted class accuracy wACC; the two can be regarded as a precision and recall mea-
sure, respectively, which are required to compute a weighted average F -measure. mPUR
evaluates the mean precision of clusters, which are labelled according to their prevalent
class. wACC is the proportion of members of dominant clusters within all classes. The
three metrics mPUR, wACC, and F -measure are defined as follows:

mPUR =
Σnprevalent(ki)>2

nprevalent(ki)

n verbs
(4.8)

ACC =
ΣC
i=1verbsinDOM CLUSTi

n verbs
(4.9)

F =
2 ·mPUR ·ACC
mPUR+ACC

(4.10)

The random baseline BL is computed as follows:

BL =
1

n components
(4.11)

This quantitative evaluation of the induced verb classes as in relation to those proposed
by Levin (1993) was applied on the LEV and ALL data set models. Their respective
outcomes can be observed in Table 4.7.

Data Set n components mPUR wACC F BL

ALL 35 24.56% 36.32% 29.30% 2.86%
LEV 15 24.52% 32.09% 27.80% 6.67%

Table 4.7: Results of the Quantitative Analysis with respect to the verb classes that were
produced by the ALL-based model and the LEV-based model.

The first thing to notice here, is that both F -measures outperform the baseline: 29.30%
versus 2.86% and 27.80% versus 6.67%. The second observation is that the scores are similar
for the two data sets. Compared to the F -scores in Sun and Korhonen (2009) however —
which reached values of 80% for their task — the performance is certainly lower. Intuitively,
this may be an expected outcome. In fact, our task does not include the goal of necessarily
recreating Levin (1993)-alike verb classes, and the results are affected to an important
extent by the transitive feature vectors, which also contribute information to the fitting of
the clusters. With respect to Rooth et al. (1999) and our qualitative analysis in §4.6, a
quantitative semantic analysis returns statistical information that concerns all 15 clusters
for the LEV-based model and all 35 clusters fro the ALL-based model, as well as the totality
of the verbs that are member of these clusters. On the contrary, the qualitative analysis
certainly provides an intuitive idea of how the most probable verbs for some clusters are
grouped together, but it is also true that verbs with low absolute frequencies may not be
clustered in a coherently semantic fashion.
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CHAPTER 5
EXPERIMENT 2

5.1 Task: Semantic Role Labeling with Latent Classes

The second part of this study consists of a re-estimation of the probabilities returned by our
best Gaussian Mixture Model, performed by a further EM-based inference step. Differently
from the first part of the experiment, where we obtained the probabilities of the nouns and
verbs per cluster, here we compute estimated frequencies of the argument nouns of fixed
verbs, in order to induce verb-specific lexicons for its argument slots. The formalization
that follows below of this procedure is directly taken from Rooth et al. (1999).

Given a latent class model pLC(.) for verb-noun pairs, and a sample n1, ..., nM of subjects
for a fixed intransitive verb, we calculate the probability of an arbitrary subject nεN by:

p(n) = ΣcεCp(c, n) = ΣcεCp(c)pLC(n|c) (5.1)

The estimation of the parameter-vector θ =< θ|cεC > can be formalized in the EM
framework by viewing p(n) or p(c, n) as a function of θ for fixed pLC(·). The re-estimation
formulae resulting from the incomplete data estimation for these probability functions have
the following form (f(n) is the frequency of n in the sample of subjects of the fixed verb):

M(θc =
ΣnεNf(n)pθ(c|n)

ΣnεNf(n)
(5.2)

Furthermore, for verbs in the transitive form, the estimation of the two filler nouns
n1, n2 and related clusters c1, c2 is required. We induce latent semantic annotations for
transitive verb frames. Given a LC model pLC(·) for verb-noun pairs, and a sample
(n1, n2)1, ..., (n1, n2)M of noun arguments (n1 subjects, and n2 objects) for a fixed tran-
sitive verb, we calculate the probability of its noun argument pairs by:

p(n1, n2) = Σc1,c1εCp(c1, c2, n1, n2) = Σc1,c1εCp(c1, c1)pLC(n1|c1)pLC(n2|c2) (5.3)

Again, estimation of the parameter-vector θ =< θc1,c2 |c1, c2εC > can be formalized in
an EM framework by viewing p(n1, n2) or p(c1, c2, n1, n2) as a function of theta for fixed
pLC(·). The re-estimation formulae resulting from this incomplete data estimation problem
have the following simple form (f(n1, n2) is the frequency of (n1, n2) in the sample of noun
argument pairs of the fixed verb):

M(θc1,c2 =
Σn1,n2εNf(n1, n2)pθ(c1, c2|n1, n2)

Σn1,n2εNf(n1, n2)
(5.4)

The resulting re-estimations were not computed with any packages, but manually ex-
tracted from the fitted models. In fact, each cluster displays a series of (conditional) prob-
abilities given their composition of verb vectorizations, which make it straightforward to
recompute the frequencies f(n)pθ(c|n) for the nouns given a verb.
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5.2 Results and Qualitative Analysis

The slot labeling experiment, introduced in §5.1, produced a series of examples of transitive
and intransitive verbs along with their re-estimated frequencies. A sample of them is shown
in this section.

Table 5.1 shows six intransitive verbs with their respective subject head fillers. The
choice of showing precisely these verbs is not arbitrary: blush, snarl, and increase are also
reported as examples by Rooth et al. (1999) and can serve as qualitative benchmark with
respect to the original study; apart from increase, also break, melt, and slow are included
in the LEV set of verbs, hence they will be used in a qualitative comparison between the
ALL data set and the LEV data set. It must be noticed that the verbs that are present in
the LEV data set are overall infrequent. At first sight, we may observe a decent overlap
between the estimated lexicon for blush in Table 5.1 and for blush by Rooth et al. (1999),
both consisting of predominantly female proper names, among which even of a couple of
exact the same names. On the other hand, the lexicon produced for snarl does overlap less.
The other four verbs look reasonable in the light of the model’s accuracy of ≈ 65%.

Intransitive Verb Subject Slot Re-estimations (ALL)

blush snarl increase
she
anabelle
lou
sarah
he
cottle
maggie
willie
constance
year

1.6758
0.3535
0.3025
0.2103
0.1479
0.1477
0.1123
0.0963
0.0791
0.0735

masklike
clueless
he
she
alsatian
man
spider
craon
sabrina
president

1.0
0.949
0.2747
0.2095
0.1581
0.1084
0.0639
0.061
0.0592
0.0438

turnover
cost
dalles
subscription
note-rate
inmigration
ornithischosus
crop-raiding
agrarianism
income

2.1802
1.0038
1.0
1.0
1.0
1.0
1.0
1.0
0.9033
0.8916

break melt slow
fire
light
she
window
pen-nib
scuffle
kneecap
police
wave
war

2.05
1.3554
1.065
1.0434
1.0
1.0
1.0
0.7586
0.5813
0.5732

heart
snow-wreaths
englishwomen
ambitions
gelatine
rainbows
soldiery
sinew
snow
teacher

1.2495
1.0
1.0
0.7486
0.4783
0.4458
0.3686
0.3159
0.228
0.2074

newman
punk-neutrons
goalscoring
frisbee
housebuilding
depreciation
collagen
sickle
expansion
growth

1.4911
1.0
1.0
0.9345
0.6876
0.6026
0.5899
0.5473
0.5364
0.5244

Table 5.1: Re-estimations for six intransitive verbs from the ALL data set model, in de-
scending order of f(n)pθ(c|n)

.

In Table 5.2, again six verbs are shown, this time for the LEV-based model. Since blush
and snarl make not part out of the LEV set of verbs, I replaced them with two arbitrary
examples fly and harden. By analysing Table 5.1 against Table 5.2 in the form of pairwise
comparisons between the induced lexicons of the same verb, but with different source, we
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can notice that the re-estimation frequencies are overall higher for the LEV-based model.
This derives from the fact that, compared to ALL, the LEV data set is smaller in size, and
less sparse as a consequence.

Intransitive Verb Subject Slot Re-estimations (LEV)

fly harden increase
spark
firebird
khomeini
everest
spitfire
pennant
hurricanes
pheasant
hawk
fighter
tal
plane
ideas
mighty-vanned
cannonball

3.5674
2.0
2.0
2.0
2.0
2.0
1.7811
1.6885
1.6533
1.1218
1.0682
1.0616
1.0
1.0
1.0

face
sugar
sect
chitin
jew
feature
tail-stump
they
spine
voice
glue
dispute
plaster
glass
parent

1.3035
1.0
1.0
0.3928
0.3043
0.2369
0.231
0.1994
0.1772
0.1179
0.105
0.0955
0.0675
0.0635
0.0591

rate
viewing
theft
hardship
amplitude
ozone
cost
councillor
space
workload
turnover
pain
revenue
consumption
import

3.1322
3.0
2.2541
2.0
2.0
2.0
1.5149
1.459
1.4516
1.4174
1.3806
1.1136
1.0533
1.0455
1.0096

break melt slow
war
dawn
it
scuffle
riot
gathering
they
thief
wave
we
cholera
dishwasher
rolls
talks
hostility

11.1582
8.9538
5.9595
4.0
3.7098
2.6699
2.5522
2.3577
2.2259
2.0005
2.0
2.0
2.0
2.0
1.9717

ice
ambitions
snow-wreaths
solder
pundit
soldiery
gelatine
cool
rainbows
pudding
1oz
2oz
englishwomen
2oz
snowball

1.022
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.9258
0.8144
0.732

it
rate
follow-up
depreciation
regeneration
devine
bloodstream
punk-neutrons
emigrant
consolidation
goalscoring
frisbee
sickle
bidding
pace

2.2252
1.0063
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.9549

Table 5.2: Re-estimations for six intransitive verbs from the LEV data set model, in de-
scending order of f(n)pθ(c|n)

Finally, Table 5.3 and Table 5.4 report the induced lexicons for the transitive verbs
increase and break, respectively, that were produced both by the ALL-based and by LEV-
based model. Although a certain extent of overlap can be observed between the lists of
subject nouns of different data sets, and also between the lists of object nouns, the subjects
and objects of the LEV-lexicons appear more natural (e.g. less highly infrequent lexical
items).

39



Transitive Verb Subject-Object Re-estimations (ALL-LEV)

increase (ALL) increase (LEV)
subject object subject object

this
population
rate
policy
vastly
maori
opec
synthesise
authority
exercise
mip-
clo
turn
court
law

57.075
20.4428
20.4211
17.173
16.0
14.7666
13.6178
13.0
12.579
12.0844
12.0
10.5321
10.039
9.8003
8.7012

rate
number
amount
risk
pressure
chance
use
proportion
share
case
system
those
period
lead
life

34.9309
31.7857
28.055
17.6933
17.3212
17.2954
14.6785
14.3757
14.368
13.8819
12.5412
11.6817
11.0501
10.8344
10.3383

this
it
wage
smoking
carboniferous
opec
maori
worldwide
vastly
mobility
pregnancy
civilian
synthesise
charcoal
unemployment

162.4827
133.0675
20.8862
20.7101
18.0
18.0
16.0
15.7927
15.0305
15.0
14.0
13.3005
13.0
13.0
12.9909

number
proportion
likelihood
dislike
subvention
salinity
probability
1973/4
ease
disagreement
consequence
uk
thromboxane
use
token

26.1274
17.0542
13.3363
12.0
12.0
11.7615
10.8327
10.0
9.6539
9.4875
9.339
8.6724
8.352
8.1022
8.0

Table 5.3: Re-estimations for the intransitive verb increase from both the ALL and the
LEV data set model, in descending order of f(n)pθ(c|n)

Transitive Verb Subject-Object Re-estimations (ALL-LEV)

break (ALL) break (LEV)
subject object subject object

he
unigram.x
maltman
dyble
fuzzy-wuzzy
loughlin
they
wiccans
orris
ambuscade
offspinner
trustbuster
it
nofomela
plow

19.4197
19.391
10.0
8.1989
8.0
7.7504
7.0722
7.0
6.0
6.0
6.0
5.9596
5.8679
5.3351
5.2172

wilmhurst
megastores
purdah
pre-tv
terrortories
seascape
condemned
kulti
skitter
ise
mezzanine
wilsonville
gymnast
back-row
clearances

10.0
8.0
5.0
3.7132
3.6432
3.2823
3.1155
3.0602
2.7396
2.7374
2.6821
2.2949
2.2865
2.1112
2.0

he
they
i
musgrove
unigram.x
signification
skater
karen
tiananmen
babe
loughlin
blake
ashton
rovers
bolton

99.1905
45.7079
29.3255
23.0
20.0
19.0
15.1295
14.3154
12.5119
11.0
11.0
10.4683
10.4083
10.4026
10.378

silence
news
record
deadlock
stillness
spell
promise
supplicant
law
commandment
monotony
fall
wilmhurst
sharon
continuity

45.9248
31.6273
28.6126
26.4498
18.0
17.2512
16.8541
16.0
14.6091
14.0
14.0
11.3201
10.0
9.1068
9.0

Table 5.4: Re-estimations for the intransitive verb break from both the ALL and the LEV
data set model, in descending order of f(n)pθ(c|n)
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CHAPTER 6
DISCUSSION AND CONCLUSION

In view of the experiment that was set up and carried out up to this point of the study, I
share some relevant reflections in the present section, pointing out the achievements and the
limits of this work. Observations that will be proposed concern the methodological choices
that were adopted and how they contribute to a justified model.

6.1 Observations and Limitations of the Methodology

The present research aimed to set up an application related to the linguistic concept of
selectional preference. The methodology that has been applied is directly inspired by the
work of Rooth et al. (1999), but has been improved substantially, especially in terms of
evaluation. To the best of my knowledge, the combined evaluation system that was built
had not been used before in a computational linguistics task related to selectional preference
annotation or verb sense induction, and specifically tasks where clustering methods are
involved. The main parameter that had to be decided a value for — and with a certain
precision, unlike the window of possibilities proposed in Rooth et al. (1999) — was the
number of components of the model. A certain robustness of this parameter’s estimation
has been achieved by weighting out the series of metrics involved. Variational Bayes (VB)
has showed being an unsupervised data-driven indicator of the number of active components
in a Gaussian Mixture Model (GMM), weighting substantially on the reduced window of
candidate values for the parameter in question, given by AIC, BIC, SC, and LLV. At the
same time, the estimation of the lower cut-off value for the part of weight distribution to be
discarded, remains a point that is worth paying attention to. Visual inspection has revealed
being an acceptable method to detect redundant clusters (i.e. with a posterior weight ≈ 0),
but a more consistent method may be needed. The very contribution of VB is that even
in the case in which the number of classes is known, the number of active components may
slightly differ from it. This is illustrated in Figure 6.1, where a VB GMM is fitted on the
IRIS data set1, based on different upper-bound number of components (i.e. 5, 10, 15, 20,
50, 100). Here, the number of classes should be 3 (i.e. three types of flowers), but the
algorithm does not know the true class label and, independently from that, it identifies all
major patterns in the data. Again, the challenge of deciding on a lower-bound threshold
remains, which is directly necessary to prune the inactive components in the model.

1https://archive.ics.uci.edu/ml/datasets/iris, accessed on July 2nd, 2019
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Figure 6.1: Active components for different thresholds and upper-bounds in the IRIS clus-
tering model.

Furthermore, the Levin (1993)-based quantitative analysis of the verb classes in §4.7 are
a good adaptation of the method in Sun and Korhonen (2009), especially because of the
difficulty of an a posteriori labeling. The known limit of this modified purity and weighted
accuracy method, is that it is exclusively based on the intransitive verbs and its outcome
would potentially be higher for a task that is similar to Sun and Korhonen (2009).

With respect to the pre-processing and feature extraction steps, the tools described in
§3.2 have been valid choices, but with some limitations. The lemmatizers used (Smedt &
Daelemans, 2012; Loper & Bird, 2002) did not cover highly infrequent lexical elements or
noisy data of the BNC. An example is the word punk-neutrons in Table 5.2. As mentioned
before, this shortage does not influence the clustering process if these unlemmatized elements
are the only form of their respective lemma.

An issue related to the parsing is the choice to not consider functional particles, such
as prepositions, as strict part of a verb. The result of this can be observed in Table 5.2,
where the verb break encounters the noun war as first element of the induced lexicon for
its subject slot. Intuitively:

14. (a) The war breaks out.

(b) *The war breaks.

According to the same intuitions, break differs from break up and slow differs from slow
down. The question is whether a composed verb should be treated as a whole or not.
Although a verb may also have different verb senses without morphologically displaying it,
the explicitation of a particle seems to directly convey a different meaning from its individual
counterpart, as is visible in Example (13), and should therefore be taken into account.
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6.2 Future Research

Given the usefulness of Variational Bayes for the estimation of the number of components,
and its limits reported in §6.1, a valid improvement is the use of repulsive processes in the
fitting of the model. This technique is explored by Xie and Xu (2019) and Petralia, Rao,
and Dunson (2012), among others. The problem that it aims to solve is the redundancy of
clusters in a mixture, caused by excessive similarity between the clusters and a lack of a
penalty measure that would be able to remove such components. Repulsive processes are a
penalizing method for the priors in a Dirichlet process-based technique (such as Variational
Bayes) that give rise to the redundant components. Such a technique could contribute to
a further step in complete automatic, unsupervised verb classification, by estimating with
an even higher accuracy the number of classes to be initialized.

With respect to the clustering algorithms adopted, we can agree on the fact that GMMs
work best on the small data set for this task, supported by the property of being semantically
more compact than the ALL and F500 data sets. Although K-means started as a back-up
being a simpler model than (and part of) Spectral Clustering, it outperformed GMM on
the large ALL data set. Therefore, the use of it in future research on a similar task is
recommended.

Finally, it would be interesting to apply the same methodology to a different set of
verbs. For example ditransitives, although probably low in frequency, or verbs that require
a prepositional phrase in one of their argument slots. Also, it would be worth testing
whether the distribution of adjuncts over a set of verbs affects the performance of a verb
classification task. Such an experiment would show the presence or absence of an ideal,
optional adjunct slot, at least based on distributional properties. The rationale behind
this suggestion is the fact that syntactic properties of adjuncts have already been proven
successful for automatic verb classification tasks (Sun et al., 2008).

The set of languages on which a verb classification task has been applied, is still re-
stricted: apart from English, to the best of my knowledge, only Italian (Lenci, 2014),
German (Schulte im Walde, 2006) and Chinese (Jinying Chen & Palmer, 2004) have been
involved, and all in slightly different tasks. Besides recruiting more languages, it could be
relevant to apply the same classification and evaluation procedure to multiple languages,
≈equivalent corpora and parsing tools permitting. Of course, an interlinguistic analysis
is beyond the scope of this thesis, but I hope that my considerations will serve a more
elaborated idea.

6.3 Conclusion

The first point of this conclusion is and invocation to a pillar of academic research, namely
reproducibility. In the progress of science, previous research becomes fundamental as it
forms the building blocks to build further on, improving them step by step or including
them in current research. Not only because this thesis builds on previous studies that
were at times hardly reproducible, but also since it concludes a research master, the utmost
importance of replication is worth a remark. The second consideration is that the trajectory
of the present study has finally brought us back to the research question that was introduced
in §1:

− ”To what extent can the statistical indicator of selectional preference alone, based on
a simple clustering algorithm and without the support of external linguistic resources
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(taxonomies or dictionaries), lead to the formation of semantically coherent classes
that can be used for automatic slot labeling?”

In light of the two experiments have been carried out, we can claim that the clustering
has performed well given that it was fully unsupervised: no annotation or labeling, no
external resources (evaluation excluded), and no number of clusters defined a priori. The
LEV data set outperformed the other two data sets, likely because of the verbs in it belong
to the Levin (1993) alternation where the object of the transitive is the subject of the
intransitive. Although performances were lower for the ALL and F500 data sets, they are
in line with the EM-based clustering results reported by Erk (2007) on the same corpus.

The verb classes produced by the models were acceptable, but did not excel when
quantitatively compared to Levin (1993), even though that was not required. The same
observation is true for the induced lexicons for individual verbs, although no quantitative
analysis was performed.

To the research community, this master thesis has contributed in several ways. Precisely,
this study offers a view over a specific topic in syntax and semantics, namely the rich field
of argument structure and selection, brought to accomplishment through the use of a broad
range of data mining tools and machine learning algorithms, the creation of data sets and
of an almost full-covering evaluation architecture. Moreover, I moved beyond the founding
task of automatic verb classification, by exploiting it and inducing lexicons for individual
verbs, which works even for low-frequency verbal entries due to the model’s generalization
power. The lack of annotated data and sparsity remains a problem unless high amounts of
data can be accessed. In any case, annotated external resources have been proven helpful,
especially for evaluation.

If selectional preference alone has been shown effective for semantic verb classification,
through distributional modeling, there appears to be space for improvement. The goal
seems still to be an automatized imitation of the subtle judgments that a human speaker
can make about the restrictions and preferences of a verb with respect to its argument
configuration. Realistically, the question remains whether all that a speaker knows about a
verb is in fact intrinsic of a lexical entry, or not, or even achievable through distributional
representations.
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APPENDIX A
DATA

F500 data set [’be’, ’have’, ’take’, ’make’, ’include’, ’see’, ’do’, ’become’, ’get’, ’find’, ’show’, ’provide’, ’know’, ’need’, ’give’,

’contain’, ’offer’, ’go’, ’want’, ’hold’, ’produce’, ’say’, ’follow’, ’come’, ’play’, ’bring’, ’left’, ’set’, ’mean’, ’require’, ’reach’, ’involve’,

’represent’, ’receive’, ’used’, ’win’, ’carry’, ’run’, ’meet’, ’lose’, ’form’, ’feel’, ’write’, ’put’, ’reflect’, ’like’, ’open’, ’use’, ’cover’, ’begin’,

’face’, ’create’, ’remain’, ’hear’, ’describe’, ’raise’, ’read’, ’enjoy’, ’buy’, ’keep’, ’cause’, ’turn’, ’draw’, ’join’, ’remember’, ’support’,

’love’, ’spend’, ’lead’, ’enter’, ’develop’, ’start’, ’wear’, ’pass’, ’ask’, ’pick’, ’express’, ’send’, ’suggest’, ’live’, ’accept’, ’work’, ’reveal’,

’hit’, ’visit’, ’add’, ’stand’, ’seem’, ’move’, ’leave’, ’share’, ’affect’, ’mark’, ’own’, ’tell’, ’present’, ’look’, ’announce’, ’break’, ’suffer’,

’build’, ’lack’, ’feature’, ’can’, ’seek’, ’throw’, ’choose’, ’increase’, ’report’, ’fall’, ’sell’, ’constitute’, ’introduce’, ’change’, ’continue’,

’die’, ’pull’, ’publish’, ’walk’, ’lay’, ’drive’, ’reject’, ’sit’, ’indicate’, ’retain’, ’comprise’, ’understand’, ’reduce’, ’gain’, ’discuss’, ’cost’,

’miss’, ’demand’, ’attend’, ’attract’, ’cut’, ’beat’, ’allow’, ’shake’, ’appear’, ’examine’, ’achieve’, ’discover’, ’explain’, ’establish’, ’catch’,

’cross’, ’return’, ’record’, ’layer’, ’approach’, ’serve’, ’possess’, ’rise’, ’maintain’, ’launch’, ’happen’, ’eat’, ’stop’, ’illustrate’, ’watch’,

’close’, ’control’, ’occur’, ’strike’, ’call’, ’place’, ’grow’, ’ignore’, ’end’, ’push’, ’demonstrate’, ’adopt’, ’try’, ’drop’, ’lie’, ’acquire’,

’issue’, ’arrive’, ’score’, ’pay’, ’prefer’, ’experience’, ’employ’, ’consider’, ’speak’, ’kill’, ’encourage’, ’learn’, ’confirm’, ’think’, ’identify’,

’display’, ’lift’, ’claim’, ’imply’, ’remove’, ’occupy’, ’concern’, ’dominate’, ’complete’, ’stress’, ’recall’, ’operate’, ’exist’, ’notice’, ’study’,

’bear’, ’mention’, ’round’, ’recognise’, ’propose’, ’deny’, ’resemble’, ’favour’, ’paid’, ’combine’, ’earn’, ’highlight’, ’generate’, ’extend’,

’replace’, ’marry’, ’will’, ’collect’, ’incorporate’, ’perform’, ’hate’, ’survive’, ’help’, ’8099’, ’avoid’, ’sign’, ’welcome’, ’deserve’, ’assume’,

’emphasise’, ’touch’, ’fill’, ’prove’, ’fly’, ’expect’, ’manage’, ’define’, ’exceed’, ’shoot’, ’recommend’, ’pose’, ’cite’, ’save’, ’determine’,

’house’, ’attack’, ’enable’, ’head’, ’travel’, ’fight’, ’finish’, ’celebrate’, ’bore’, ’repeat’, ’grab’, ’obtain’, ’dismiss’, ’smile’, ’supply’, ’answer’,

’address’, ’oppose’, ’impose’, ’surround’, ’influence’, ’fit’, ’gather’, ’point’, ’roll’, ’conduct’, ’encounter’, ’teach’, ’release’, ’boast’, ’drink’,

’organise’, ’handle’, ’explore’, ’list’, ’recognize’, ’order’, ’arrange’, ’destroy’, ’observe’, ’note’, ’reply’, ’check’, ’promote’, ’outline’,

’force’, ’apply’, ’accompany’, ’promise’, ’abandon’, ’match’, ’deliver’, ’prevent’, ’blow’, ’vary’, ’sound’, ’admit’, ’pour’, ’emphasize’,

’improve’, ’capture’, ’would’, ’quote’, ’acknowledge’, ’wonder’, ’treat’, ’measure’, ’challenge’, ’paint’, ’defend’, ’nod’, ’=’, ’admire’,

’permit’, ’fear’, ’threaten’, ’shout’, ’thank’, ’remind’, ’climb’, ’last’, ’land’, ’spot’, ’undertake’, ’fail’, ’embrace’, ’stretch’, ’reinforce’,

’hand’, ’provoke’, ’pursue’, ’the’, ’select’, ’spread’, ’stay’, ’imagine’, ’emerge’, ’undergo’, ’rule’, ’let’, ’review’, ’back’, ’question’, ’kick’,

’witness’, ’exercise’, ’refuse’, ’seize’, ’founder’, ’arise’, ’ride’, ’plan’, ’yield’, ’contribute’, ’declare’, ’trace’, ’realise’, ’laugh’, ’wait’,

’advocate’, ’test’, ’mount’, ’forget’, ’echo’, ’ensure’, ’shut’, ’convey’, ’direct’, ’entail’, ’lower’, ’owe’, ’cast’, ’count’, ’slip’, ’limit’, ’press’,

’command’, ’dislike’, ’clear’, ’prompt’, ’design’, ’lit’, ’analyse’, ’exhibit’, ’prepare’, ’weigh’, ’exclude’, ’signal’, ’wish’, ’sweep’, ’invent’,

’cry’, ’resist’, ’secure’, ’perceive’, ’regard’, ’knock’, ’alter’, ’await’, ’protect’, ’disappear’, ’condemn’, ’invite’, ’overlook’, ’link’, ’toward’,

’separate’, ’please’, ’enhance’, ’detect’, ’jump’, ’envisage’, ’suit’, ’steal’, ’depict’, ’appreciate’, ’underline’, ’hang’, ’justify’, ’agree’,

’fire’, ’defeat’, ’distinguish’, ’feed’, ’greet’, ’compare’, ’believe’, ’encompass’, ’unveil’, ’inherit’, ’predict’, ’inspire’, ’investigate’, ’divide’,

’approve’, ’sum’, ’commit’, ’purchase’, ’step’, ’decide’, ’ai’, ’burn’, ’wipe’, ’restrict’, ’sang’, ’strengthen’, ’endorse’, ’absorb’, ’withdraw’,

’hide’, ’rub’, ’conclude’, ’kiss’, ’sleep’, ’wave’, ’resent’, ’tear’, ’urge’, ’shape’, ’stimulate’, ’hire’, ’contact’, ’succeed’, ’talk’, ’precede’,

’block’, ’respect’, ’organize’, ’govern’, ’embody’, ’construct’, ’wash’, ’sustain’, ’restore’, ’rang’, ’shift’, ’arouse’, ’trigger’, ’sense’, ’shrug’,

’evoke’, ’overcome’, ’stick’, ’inform’, ’matter’, ’exploit’, ’initiate’, ’pack’, ’charge’]
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LEV data set [’bounce’, ’drift’, ’drop’, ’float’, ’glide’, ’move’, ’roll’, ’slide’, ’swing’, ’coil’, ’revolve’, ’rotate’, ’spin’, ’tum’,

’twirl’, ’twist’, ’whirl’, ’wind’, ’break’, ’chip’, ’crack’, ’crash’, ’crush’, ’fracture’, ’rip’, ’shatter’, ’smash’, ’snap’, ’splinter’, ’split’, ’tear’,

’bend’, ’crease’, ’crinkle’, ’crumple’, ’fold’, ’rumple’, ’wrinkle’, ’abate’, ’advance’, ’age’, ’air’, ’alter’, ’atrophy’, ’awake’, ’balance’, ’blast’,

’blur’, ’bum’, ’burst’, ’capsize’, ’change’, ’char’, ’chill’, ’clog’, ’close’, ’collapse’, ’collect’, ’compress’, ’condense’, ’contract’, ’corrode’,

’crumble’, ’decompose’, ’decrease’, ’deflate’, ’defrost’, ’degrade’, ’diminish’, ’dissolve’, ’distend’, ’divide’, ’double’, ’drain’, ’ease’, ’en-

large’, ’expand’, ’explode’, ’fade’, ’fill’, ’flood’, ’fray’, ’freeze’, ’frost’, ’fuse’, ’grow’, ’halt’, ’heal’, ’heat’, ’hush’, ’ignite’, ’improve’,

’increase’, ’inflate’, ’kindle’, ’light’, ’loop’, ’mature’, ’melt’, ’multiply’, ’overturn’, ’pop’, ’quadruple’, ’rekindle’, ’reopen’, ’reproduce’,

’rupture’, ’scorch’, ’sear’, ’short’, ’short-circuit’, ’shrink’, ’shrivel’, ’singe’, ’sink’, ’soak’, ’splay’, ’sprout’, ’steep’, ’stretch’, ’submerge’,

’subside’, ’taper’, ’thaw’, ’tilt’, ’tire’, ’topple’, ’triple’, ’unfold’, ’vary’, ’warp’, ’blunt’, ’clear’, ’clean’, ’cool’, ’crisp’, ’dim’, ’dirty’,

’double’, ’dry’, ’dull’, ’empty’, ’even’, ’firm’, ’level’, ’loose’, ’mellow’, ’muddy’, ’narrow’, ’open’, ’pale’, ’quiet’, ’round’, ’shut’, ’slack’,

’slim’, ’slow’, ’smooth’, ’sober’, ’sour’, ’steady’, ’tame’, ’tense’, ’thin’, ’triple’, ’warm’, ’blacken’, ’brown’, ’crimson’, ’gray’, ’green’,

’purple’, ’redden’, ’silver’, ’tan’, ’whiten’, ’yellow’, ’awaken’, ’brighten’, ’broaden’, ’cheapen’, ’coarsen’, ’dampen’, ’darken’, ’deepen’,

’fatten’, ’flatten’, ’freshen’, ’gladden’, ’harden’, ’hasten’, ’heighten’, ’lengthen’, ’lessen’, ’lighten’, ’loosen’, ’moisten’, ’neaten’, ’quicken’,

’quieten’, ’ripen’, ’roughen’, ’sharpen’, ’shorten’, ’sicken’, ’slacken’, ’smarten’, ’soften’, ’steepen’, ’stiffen’, ’straighten’, ’strengthen’,

’sweeten’, ’tauten’, ’thicken’, ’tighten’, ’toughen’, ’waken’, ’weaken’, ’widen’, ’worsen’, ’acetify’, ’acidify’, ’alkalify’, ’calcify’, ’car-

bonify’, ’dehumidify’, ’emulsify’, ’fructify’, ’gasify’, ’humidify’, ’intensify’, ’lignify’, ’liquefy’, ’magnify’, ’nitrify’, ’ossify’, ’petrify’, ’pu-

rify’, ’putrefy’, ’silicify’, ’solidify’, ’stratify’, ’vitrify’, ’americanize’, ’caramelize’, ’carbonize’, ’crystallize’, ’decentralize’, ’demagnetize’,

’democratize’, ’depressurize’, ’destabilize’, ’energize’, ’equalize’, ’fossilize’, ’gelatinize’, ’glutenize’, ’harmonize’, ’hybridize’, ’iodize’,

’ionize’, ’magnetize’, ’neutralize’, ’oxidize’, ’polarize’, ’pulverize’, ’regularize’, ’stabilize’, ’unionize’, ’vaporize’, ’volatilize’, ’westernize’,

’accelerate’, ’agglomerate’, ’ameliorate’, ’attenuate’, ’coagulate’, ’decelerate’, ’de-escalate’, ’degenerate’, ’desiccate’, ’deteriorate’, ’deto-

nate’, ’disintegrate’, ’dissipate’, ’evaporate’, ’federate’, ’granulate’, ’incubate’, ’levitate’, ’macerate’, ’operate’, ’proliferate’, ’propagate’,

’ulcerate’, ’vibrate’, ’cheer’, ’delight’, ’enthuse’, ’gladden’, ’grieve’, ’madden’, ’obsess’, ’puzzle’, ’sadden’, ’sicken’, ’thrill’, ’tire’, ’weary’,

’worry’, ’canter’, ’drive’, ’fly’, ’gallop’, ’jump’, ’leap’, ’march’, ’race’, ’run’, ’swim’, ’trot’, ’walk’, ’bang’, ’beep’, ’blare’, ’buzz’, ’clack’,

’clang’, ’clash’, ’clatter’, ’click’, ’hoot’, ’jangle’, ’jingle’, ’ring’, ’rustle’, ’squeak’, ’squeal’, ’tinkle’, ’twang’, ’beam’, ’blink’, ’flash’,

’shine’, ’bleed’, ’squirt’, ’dangle’, ’fly’, ’hang’, ’lean’, ’perch’, ’rest’, ’sit’, ’stand’, ’swing’, ’bivouac’, ’board’, ’lodge’, ’settle’, ’shelter’,

’asphyxiate’, ’choke’, ’drown’, ’stifle’, ’suffocate’, ’bleed’, ’burp’]
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