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Introduction

1.1 Research Problem

Decision support systems and automated classification are a vast area of research
in the intersection of medicine and artificial intelligence. Significant accomplish-
ments are delivered in the last decade, thanks to the revolution of computer vision.
Sophisticated algorithms already outperform human experts on tasks as image clas-
sification Krizhevsky et al. (2012) and facial recognition Taigman et al. (2014).

Recent techniques in whole slide image processing1 and cost reduction in dig-
ital storage has made the digital evaluation of stained tissue feasible. Combined
with the improvement of computer power, this created an entirely new field on the
cutting-edge of medicine and artificial intelligence. This area produced impressive
results in the past few years, such as the automated detection of melanoma Esteva
et al. (2017), classification of retinopathy Gulshan et al. (2016) and neural networks
outperforming radiologists Rajpurkar et al. (2018).

Models created for diagnostic purposes, need to be more explainable and reliable
than those in many other fields. It is less critical why Google recommends a web-
site based on a query, but when an algorithm diagnoses an individual with severe
disease, the patient would like an explanation of why it decided to do so. That
process is called the explainability of a network and is an important area of research
Montavon et al. (2018).
Most of these models are trained using supervised learning. In the case of histopatho-
logical analysis, this means that the input is composed of stained tissue slides, and
the corresponding output labels are benign or malign 2. The model is trained with
these examples and gets tested on new data afterward.

Classifying microscopic images is a labor-intensive task and has a relatively size-
able inter-and intra-observer error Jackson et al. (2017), Su et al. (2016). Recent
research proves that automated classification of histopathological tissues has an error
rate similar or even better than a highly trained pathologist Bejnordi et al. (2017).

1The process of scanning and digitally representing tissue slides. For more information, see
chapter 3: Histopatholgy

2This is just for the sake of an example. More sophisticated models can attach a probability to
the chance of tissue being malign.
A central definition in pathology is the difference between benign and malign. Benign is good, and
malign is bad. Cancer is malign; a tumor can be either malign or benign.
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So why is the pathologist still looking through his microscope? The simple expla-
nation is that not all these promising results are used in day to day hospital care.
There is a significant distinction between theoretical results and the implementation
of such algorithms. Several factors attribute to this, such as the black box problem,
the cost of pathological automatization and implementation issues.

‘A successful solution would hold great promise to reduce the workload of pathol-
ogists while at the same time, reduce the subjectivity in diagnosis Madabhushi &
Lee (2016).’ The ability to mine ”sub-visual” image features from digital pathol-
ogy slide images, features that may not be visually discernible by a pathologist,
offers the opportunity for better quantitative modeling of disease appearance and
hence possibly improved prediction of disease aggressiveness and patient outcome
Madabhushi & Lee (2016).

There is a pressing need for computer-assisted diagnoses to relieve the workload
on pathologists by sieving out benign areas so that pathologists can focus on the more
challenging to diagnose suspicious cases. For example, approximately 80% of the 1
million prostate biopsies performed in the United States every year are benign; this
suggests that prostate pathologists are spending 80% of their time sieving through
benign tissue Gurcan et al. (2009).

1.2 Aim and Scope

This thesis aims to explore the status quo of histopathological classification and
discuss prospects. Does the classification of histopathological images work, and
why is it not used in daily hospital care? Subsections within this question that are
addressed are the following: Methods of classifying; State of the art classification
results; Theory of classification; Current pitfalls and how to address these in the
future.
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2

Neural Networks

2.1 Neural networks

A neural network (NN), also called a multilayer perceptron, is loosely inspired by
the human brain. A typical NN consists of an input layer, one or more hidden
layers, and an output layer. Each of these layers holds n nodes, and all the nodes
inside these layers are connected with weights. The weights of the network can be
thought of as a line connecting a node in layer l to a node in layer l − 1 — the
higher the weight, the more value it represents in the next node. All nodes have a
certain threshold that determines whether the node should be active or not. This
threshold is called the bias. A single neuron receives its input from the output of
its n predecessors, multiplied with n corresponding weights and an added bias b.
This value goes through an activation function f before it transmits its output to
the neurons in the next layer.

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

In the figure above, a single neuron is figured. It receives input from three input
nodes ~x = [x1, x2, x3], these input values are multiplied with their corresponding
weights wT = [w1, w2, w3] which results in the input of the neuron. After that, the
bias is added, and the product sum is passed through the activation function before
generating its output. An often used activation function is the sigmoid:

f(x) =
1

1 + e−x
(2.1)

The reason for its popularity is that it is easily differentiable and squashes the output
of each node between 0 and 1. Activation functions allow the model to introduce
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non-linearity into it. This means that without using an activation function, the
model can only represent linear functions.

Below a simple neural network with one input layer, two hidden layers, and
one output layer is shown. When for example, the task of an NN is to classify the
presence or absence of a tumor, the output layer consists of two neurons representing
the two output values: 1. present or 2. absent.

x1

x2

x3

x4

x5

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer 1

h
(2)
1

h
(2)
2

Hidden
layer 2

ŷ1

ŷ2

Output
layer

To further formalize neural networks, a few definitions are needed:

wk
ij: weight for node j in layer lk for incoming node i.

bki : bias for node i in layer lk.
aki : product sum plus bias for node i in layer lk.
oki : output for node i in layer lk.
rk: number of nodes in layer lk.

The matrix equation for calculating the output values of the nodes in a layer is
denoted as:

σ =



ol−10

ol−11
...

ol−1n



w0,0 w0,1 . . . w0,n

w1,0 w1,1 . . . w1,n
...

...
...

...
wk,0 wk,1 . . . wk,n

 +


bl0
bl1
...
blk




The first vector represents all output of the neurons in the preceding layer. The
matrix consists of all the weights connecting the neurons in the previous layer to the
current one, and the last vector contains the biases corresponding to each neuron.
The σ represents the activation function that is applied to all the product sums,
generating the output value for each neuron in the current layer. A short notation
of the formula for this calculation reduces to the following math:

ol = σ(Wlo
(l−1) + bl) (2.2)
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2.2 Training a network

After training for sufficient epochs1, we want the generated output label to resemble
the expected output label, i.e., the network classifies the input correct. To train for
sufficient epochs does not sound very accurate, and it indeed is not. The number
of epochs is one of the hyperparameters of a NN. Hyperparameters make up an
essential part of training a network. More on this is addressed later in this chapter.
To achieve the goal of classifying the input correct, we want the network to learn.
What we mean by learning is that the network adjusts all its parameters in such a
manner that it produces the desired output for a given input. To train the network in
accomplishing this resemblance is an optimization problem that uses a cost function
to measure how far away the network is from accurately classifying the input with its
corresponding label. To train the network, we need a few components: a feedforward
neural network θ, a cost function, an optimization tool, hyperparameters and a
dataset consisting of N input-output pairs denoted

X = {(~x1, ~y1), . . . , (~xN , ~yN}) (2.3)

where ~xi is the input and ~yi is the desired output for input ~xi.

2.2.1 Forward propagation

As briefly addressed above, one of the ingredients required to train the network
is a feedforward neural network. The method by which we propagate over this
network is called forward propagation. As the name suggests, the input data is
fed in the forward direction through the network. Each hidden layer accepts the
input data, processes it as per the activation function, and passes its output to the
succeeding layer. Forward propagation generates the desired output values we can
use to calculate the cost function. This process is repeated every epoch to calculate
the current error after the weights have been updated.

2.2.2 Gradient Descent

Gradient descent is a technique for minimizing the above-mentioned cost function.
A typically used analogy to describe Gradient Descent is a ball rolling down an
irregular surface. If the ball is placed on a hill, it will roll down, coming to rest
at the bottom of a valley Abu-Mostafa et al. (2012). Note that if there exists only
one minimum, the ball will always roll into this global minimum. However, in most
cases, the function will be made up of many variables and contains multiple local
optima. Therefore, finding this global optimum is not always feasible.
To minimize the error, gradient descent needs a cost function. This cost function
can best be imagined as a ’surface’ in a high-dimensional space.
Minimizing the cost function implies minimizing the error rate and therefore maxi-
mizing the accuracy. An often used cost function applied to gradient descent is the

1An epoch is the process in which all the input data has been propagated once through the
network
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Mean Squared Error (MSE). MSE is defined as:

C(ŷ, y) =
1

2

∑
i

(ŷ(i) − y(i))2 (2.4)

Note that if the expected output of the network differs a lot from the generated
output, the cost will be high, and if it close to the expected output, the cost is
small.
Gradient Descent works by calculating a gradient, taking a step in the direction of
this gradient multiplied by the learning rate and repeats this process until it ends
up at a minimum. The algorithm for efficiently calculating this gradient is called
backpropagation.

Figure 2.1: A simplified visual representation of gradient descent Patterson & Gibson
(2017)

2.2.3 Backpropagation

Backpropagation efficiently calculates the gradient for the gradient descent algo-
rithm. It is a method used in artificial neural networks to calculate the gradient
that is needed to adjust the weights and biases used in the network. The backprop-
agation algorithm decides how much to update each weight and bias of the network
after comparing the predicted output to the desired output given an example. Ac-
cordingly, it is needed to compute how the error changes with respect to each weight.
For a more mathematical description of backpropagation, we refer to appendix B.

2.2.4 Hyperparameters

Hyperparameters, as presented above, are a critical element in training the network.
Hyperparameters are the variables that determine the networks structure and the
variables that determine how the network is trained. These parameters are set be-
fore the training process begins. This is contrary to a parameter, which is changed
during the training of the network Goodfellow et al. (2016).
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Network Structure

1. Number of hidden layers and nodes in each hidden layer.
A common way to determine how many hidden layers to add is to keep adding
them until the test error does not improve anymore. A to shallow network can
cause underfitting.

2. Activation function
Until now, the only activation function discussed is sigmoid. However, many
activation functions can be used to optimize the performance of the network.

Training Parameters

1. Learning rate
The learning rate α is already briefly addressed in the section about Gradient

Descent. In plain English, this parameter determines how fast the network
learns. If it learns to fast, it might overshoot the optimum and might not
converge. If it learns too slow, it will converge but slows down the learning
process. A popular way to deal with this trade-off is to use a learning rate
proportionate to the slope of the gradient vector. ‘The size of the learning rate
is limited mostly by factors like how curved the cost function is. You can think
of gradient descent as making a linear approximation to the cost function, then
moving downhill along that approximate cost. If the cost function is highly
non-linear (highly curved) then the approximation will not be very good for
very far, so only small step sizes are safe’ Goodfellow et al. (2016). Those step
sizes are determined by the batch-size.

2. Batch size
The batch size is the number of input-output pairs that will be propagated
backward through the network, before the weights and biases are adjusted.
‘Figure 2-2 shows the paths taken by three Gradient Descent algorithms in
parameter space during training. They all end up near the minimum, but
Batch GD’s path actually stops at the minimum, while both Stochastic GD
and Mini-batch GD continue to walk around. However, don’t forget that
Batch GD takes a lot of time to take each step, and Stochastic GD and Mini-
batch GD would also reach the minimum if you used a good learning schedule’
Goodfellow et al. (2016).
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Figure 2.2: Comparison of Stochastic GD, Mini-Batch and BarchGéron (2017)

3. Number of epochs
An epoch is a complete learning cycle in which the network processes all train-
ing examples. A rule of thumb is to increase the number of epochs until the
validation accuracy starts decreasing.

2.2.5 Regularisation

Regularisation is particularly important in neural networks with a huge amount of
parameters. Convolutional neural networks, the networks that are exceptionally
good at recognizing images, consist of an explosive amount of parameters because of
the enormous input space. Regularisation techniques are used to avoid overfitting
in these networks.

Dropout
Dropout is one of the most common techniques to avoid overfitting in deep NN’s.

As the name suggests, it drops out neurons in a particular layer according to a
probability. By using this technique, the network does not rely too much on a
specific set of features, which could induce overfitting.

2.3 Deep Learning

Deep learning is a subset of neural networks. A deep neural network is a neural
network with a lot of hidden layers. A commonly used definition is that a neural
network is ’deep’ when it has more than two hidden layers. So why is a deep neural
network better than a non-deep neural network? That is a topic of discussion in
research and is still undecided. However, empirical results show that a deep NN
classifies better than a shallow one and therefore it is commonly used.
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Figure 2.3: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. The test set accuracy
consistently increases with increasing depth Goodfellow et al. (2016).

2.4 Computer Vision

For more specific tasks, specialized ANN’s are created, such as Convolutional Neural
Networks to roughly emulate the human visual system. People are continually look-
ing at the world surrounding them and are subconsciously making predictions about
what they see. This seeing apparatus is trained during their life and is the reason
a trained pathologist can make accurate predictions whether a particular piece of
tissue is malign or not. This task has recently shifted to computed processing of
visual information, hence computer vision. Computer vision is the branch that has
to do with images and videos. It seeks to automate tasks the human optical system
can do. An artificial neural network specialized in this task is the convolutional
neural network.

2.4.1 Convolutional Neural Networks

A convolutional neural network (CNN) is a specialized version of a neural network.
It is called convolution because it convolves over an image. A CNN is especially
useful in classifying images, the reason why it is so popular and successful in classi-
fying histopathological slides. A few reasons why CNN’s work so good are
(i) the availability of much more extensive training sets, with millions of labeled
examples;
(ii) robust GPU implementations, making the training of huge models practical and
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(iii) better model regularization strategies, such as dropout.
In this section, we explore how a CNN sees and understands the images we feed
it. The function of a CNN consists out of two important tasks: extracting fea-
tures through the convolutional and pooling layers, and classification through its
fully-connected layers. The more convolutional layers used, the more intricate the
detected features will be. The first layers identify lower level features like edges
and orientation. The deeper we look into the network, the more high level features
patterns we encounter. To illustrate what a low-level feature is, two pictures of a
dog are presented below.

Figure 2.4: Filtered image of a dog using horizontal edge detection.

Figure 2.5: Filtered image of a dog using vertical edge detection.

This is essentially what a filter does in a CNN. In the first image of the dog, the
filter detects horizontal edges and in the second one, it detects vertical edges.

At the most basic level, a CNN is a special sort of neural network that contains
at least one convolutional layer. A common CNN receives an input image, runs
it through a number of convolutional layers, a nonlinear activation function, one
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or more pooling layers (downsampling), and a feedforward network and outputs a
classification label.
A computer does not recognize images the same way as humans do. Their input
consists entirely out of numbers. More specifically, a 2-dimensional array for black
and white photos. For colored images, the data consists of a 3-dimensional array —
the red-blue-green pixel values make up the third dimension in this array.

The first layers in a CNN are looking for simplistic features such as horizontal or
vertical edges that can be seen in the pictures of the dog above. The deeper layers
are looking for more complex patterns.
Pooling is used to downsize the image; it reduces the number of hyperparameters
and therefore reduces the computation required for training the network.

2.4.2 Convolutional layer

The convolution layer uses filters that perform convolution operations as it scans the
input image with respect to its dimensions. The hyperparameters of the convolu-
tional layer consist of the filter size and stride. The resulting output O is called the
feature map, this map has all the features calculated from the Hadamard product
in the input layers and filters. In the figure below, this process is portrayed.

Mathematically, the convolution operation is quite simple. Suppose we have N
x N matrices called A and B.
Let Mij denote the entry in the ith row and jt column of matrix M. A • B is called the
Hadamard product and multiplies each index in matrix A with the corresponding
index in matrix B.

Stride

The stride S is defined as the number of squares in the matrix to move after each
convolution.

Figure 2.6: The working of a convolutional layer Afshine Amidi (2018)

2.4.3 Pooling layer

A pooling layer is used for the downsampling of features, typically applied after
a convolution layer. It reduces the dimensionality of each feature map to reduce
the number of parameters and computations in the network, therefore controlling
overfitting. There are two types of operations that a pooling layer can do; max and
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average pooling, where the maximum and average value of the features are taken
respectively. A pooling layer summarises the features of the convolutional layer, this
leads to better generalization. The reason for its functionality is that a convolutional
layer represents a very specific feature of a particular image. The pooling layer is
used to represent this as a more general feature that is less prone to rotations and
locations in the picture.

Figure 2.7: Max pooling Afshine Amidi (2018)

Figure 2.8: Average pooling Afshine Amidi (2018)

2.4.4 Forward feeding layers

The convolutional and pooling layers represent the high-level features of the input.
The forward feeding layers use these features for classifying the input image into
a class based on its training examples. Forward feeding layers also intro the non-
linearity as discussed above. An FC layer is a plain vanilla NN attached to the
convolutional and pooling layers.
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Figure 2.9: Overview of a convolutional neural network consisting of the various elements
described above Esteva et al. (2019).
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3

Histopathology

To get a better grasp on the intuition behind the automated classification of histopatho-
logical slides, a brief introduction is needed in histology (from the Greek histos,
‘tissue’ and logica, ‘study’) and histopathology (from the Greek pathos, ‘suffering’).
Histology is the study of the microscopic structures of tissues, whereas histopathol-
ogy is the study of diseased cells. Histopathology plays a vital role in today’s practice
of medicine and is used as a gold standard for many diseases, including nearly all
types of cancer. To fulfill such a diagnostic assessment, an individual first has to
follow a six-year residency after a medical degree to become a pathologist. Most
pathologists even specialize in a specific tissue afterward. The ability to classify
tissue accurately requires at least twelve years of practice. We can, therefore, con-
clude that the classification of pathological tissue is a complicated task. The start
of the pathological process begins with the collection of the tissues. This may be
done using surgery, biopsy, or autopsy. After that, the tissue is either fixed using
chemical fixation or frozen. To make the tissue visible, various pigments are used to
stain the tissue. The most frequent used pigments are hematoxylin and eosin given
the tissue its typical pink, purple look. Hematoxylin is used to stain nuclei blue,
while eosin stains cytoplasm and the extracellular connective tissue pink Griffin &
Treanor (2017).

3.1 Tumor Grade Classification

As discussed before, the job of a pathologist is not to solely assign the label benign
or malign to a tissue slide. The treatment and 5-year survival depend primarily on
the grade of the tumor. The tumor grade is the description of a tumor based on
how abnormal the cells look under a microscope. The abnormality is an indicator
of how quickly a cancer is likely to grow and spread. The factors used to determine
tumor grade differs between types of cancer NCI (2013). An important distinction
to make is that the grade of a tumor is not the same as the stage of cancer. Cancer
stage refers to the size and whether or not the primary tumor has spread. Cancer
stage is based on factors as location, tumor size, lymph node involvement, and the
number of tumors.
Depending on the type of cancer, different grading systems are used. ‘In general,
tumors are graded as 1, 2, 3 or 4, depending on the amount of abnormality. In
Grade 1 tumors, the tumor cells and the organization of the tumor tissue appear
close to normal. These tumors tend to grow and spread slowly. In contrast, the cells
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and tissue of Grade 3 and Grade 4 tumors do not look like normal cells and tissue.
Grade 3 and Grade 4 tumors tend to grow rapidly and spread faster than tumors
with a lower grade.’ NCI (2013)

If a grading system for a tumor type is not specified, the following system is
generally used Edge et al. (2010):

GX: Grade cannot be assessed (undetermined grade)

G1: Well-differentiated (low grade)

G2: Moderately differentiated (intermediate grade)

G3: Poorly differentiated (high grade)

G4: Undifferentiated (high grade)

In order to develop a particular treatment and determine a patient’s prognosis,
tumor grade plays a vital role. Generally, a lower grade indicates a better prognosis.
Higher-Grade cancer may grow and spread more quickly. It is therefore important
to not only label a tumor benign or malign but also detect the grade NCI (2013).

3.2 Whole-Slide Images

The rapid improvement in whole-slide imaging (WSI) technologies has transformed
pathology in the last few years. Following the FDA approval of the Philips IntelliSite
imaging system in 2017, whole-slide images may now be used for primary clinical
diagnosis. It is an essential step towards the complete digitalization of pathology.
Pathologists have been using WSI since the 1980s for remote pathology diagnosing
using digital image transmission. WSI is high-resolution digitization and storage of
entire glass pathology slides as digital slides. ‘These images can be stored, viewed
locally, or transmitted over a network for remote viewing Griffin & Treanor (2017).’
Remote viewing is a great advantage to consult an expert pathologist for ambiguous
cases.

The digitization of pathology would allow fewer specialized pathologists to serve
more patients while increasing diagnostic accuracy and precision. Another impor-
tant reason for the integration of WSI in pathology is that its necessary to digitize
tissue slides before a computer can read those. It is, therefore, an essential part of
the automated classification process.
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4

Automated classification

One of the questions this thesis tries to answer is whether the status quo of auto-
mated histopathological classification is reliable and accurate enough to be used in
daily hospital care. To address this question, seven articles were collected. Three
of these look at the comparison between deep neural networks and doctors in gen-
eral medicine and are discussed in section Machine learning in medicine. The other
four articles are mainly designed to compare an algorithm to a pathologist. These
papers are discussed in section Machine learning in histopathology. All articles con-
cluded that the best tool for classifying images is a convolutional neural network.
Hence, the comparisons in this section are between a pathologist and a convolutional
neural network. The variety in the papers is in the method and statistics used to
measure this comparison. Intuitively, the best way to compare a pathologist to an
algorithm is by using a third variable, the so-called ground truth of gold standard.
Consequently, the pathologist and the network can be individually examined to this
ground truth. However, such a ground truth is not always existing. To compare
the cases where such a standard is lacking, various statistical tools were used. For
a more detailed description of the statistics used by the discussed articles, we refer
to Appendix A.

4.1 Machine learning in medicine

Histopathology is not the only area of research where deep learning and, more precise
image analysis, is used to improve diagnostics and increase efficiency. One of the first
significant achievements of deep learning in medicine was in the use of an algorithm
detecting retinopathy, a signal of the presence of diabetes Gulshan et al. (2016).
The test used to diagnose retinopathy is called fluorescein angiography; the process
where a fluorescent dye is injected in the bloodstream. The color highlights the
blood vessels in the eye so they can be photographed. The results of the algorithm
are promising:

AUC algorithm
Testset 1 0.991 (95% CI, 0.988-0.933)
Testset 2 0.990 (95% CI, 0.986-0.995

Another promising algorithm is an example is of the automated detection of skin
lesions Esteva et al. (2017). Skin cancer and in particular melanoma is cancer that
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is hard to spot and does not give many infirmities early on. With the use of deep
learning applications, people can take a picture of a birthmark and let the diagnostic
algorithm run while at home. Such algorithms are cost-efficient and more critical,
can improve the detection of early manifestations of melanoma.

Overall accuracy Dermatologist Overall accuracy Algorithm
Three-class disease partition 65.78% 72.10%
Nine-class disease partition 54.15% 55.41%

Another prominent area of research is automated diagnostics in radiology. A
study was done to compare an algorithm to practicing radiologists Rajpurkar et al.
(2018). This study by Pranav Rajpurkar et al. developed a convolutional neural
network called CheXneXt that could identify the presence of 14 different pathologies
like pneumonia, pulmonary masses, and pleural effusion. The results were encour-
aging. On 10 out of 14 pathologies, the algorithm performed evenly or better than
specialized radiologists.

Pathologist AUC Algorithm AUC
Cardiomegaly 0.888 0.831
Emphysema 0.911 0.704
Hiatal Hernia 0.985 0.851
Atelectasis 0.808 0.862
Other No significant difference No significant difference

4.2 Machine learning in histopathology

As seen in the preceding section, networks can classify images reasonably accurate
in various medical fields. However, the critical question is not whether an algo-
rithm can classify images; it is whether the algorithm classifies images better than a
pathologist. We will discuss some studies that made this comparison between algo-
rithms and pathologist to discover whether the current techniques could potentially
replace the expertise of a pathologist.

The research of Cruz-Roa et al. (2017) focused on a deep learning approach to
identify the extent of an invasive tumor on digitized whole-slide images. The study
compared the results to the manually annotated ground truth in the Cancer Genome
Atlas. Invasive breast cancers are those that spread from the original site into the
surrounding tissue. The origin of this tumor is either the milk ducts or the lobules.
These tumors comprise roughly 70% of all breast cancer cases Dillon et al. (2010).
An automated and reproducible methodology for the detection of invasive breast
cancer on tissue slides could potentially reduce the total amount of time required to
diagnose a breast case and lessen the inter-and intra-observer variability Van Baard-
wijk et al. (2007).
The detection performance of the ConvNet, trained with data from the Hospital
of the Unversity of Pennsylvania and University Hospitals Case Medical Center is
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measured in terms of mean Dice coefficient, positive predictive value (PPV) and
negative predictive value (NPV). They compared their CNN to 195 cases from The
Cancer Genome Atlas. The research delivered the following results:

Statistic Result
Dice 75.86%
PPV 71.62%
NPV 96.77%

The classifier has a high degree of agreement in the prediction of the presence
and extent of invasive tumor regions.

A recent study of Wei et al. (2019) did a comparison study between pathologists
and a deep neural network. They used a deep convolutional neural network to
automatically classify the histologic patterns of lung adenocarcinoma on surgical
resection sides. Their model was evaluated on an independent set of 143 whole-
slide images. It achieved a Kappa score and an agreement with three pathologists
for classifying the predominant patterns that were slightly higher than the inter-
pathologist scores.

Kappa Agreement
algorithm-pathologist 0.525 66.6%
inter-pathologist 0.485 62.7%

These results show a higher agreement among the used algorithm and a patholo-
gist than between pathologists. The results are positive since the algorithm reduces
inter observability.

A study by Bejnordi et al. (2017) compared an algorithm to a pathologist in a
simulated clinical setting. Articles like this are essential since all the papers discussed
above conclude that clinical research needs to be done before we can determine the
functionality of automated classifiers. This paper is the first step in accomplishing
this. For this purpose, a dataset was acquired by the Radboud University Medical
Center and the University Medical Center Utrecht. This dataset contains 399 slides
of sentinel node metastasis. A sentinel node is the first lymph node the breast tissue
drains its lymph-fluid in and is an important indicator of metastasis. A retrospective
study showed that expert pathologists changed the nodal status in 24% of patients
Vestjens et al. (2012). Therefore, it would be helpful if an algorithm could take
over this job and thereby reduce this statistic. The common used gold standard for
determining whether a sample contains malignant tissue is IHC staining 1.

The panel of pathologists consisted of two groups. One group without time
constraints (WOTC) and another group with time constraints (WTC). This is an
important distinction to make since a group of pathologists with unlimited time
will perform better than a single pathologist bounded to a time limit. In a clinical

1Immonohistochemistry (IHC) staining is used to exclude a human bias. IHC is a staining
process where specific antigens are targeted in tumor cells. Using this technique, all metastasis is
seen. In the article discussed above, no IHC is used by the pathologists. However, using IHC is a
normal procedure in the process of classifying images in normal care Veta et al. (2015).
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setting, however, no time constraint would be infeasible because of the massive
amounts of tissue that needs to be diagnosed. To assess the slides more realistically,
the pathologists got 2 hours to classify 129 images, the number of images the test
set contains. The other group of pathologists was not time-constrained. We show
the results of the best performing algorithm on WSI classification from Wang et al.
(2016), which used a GoogLeNet architecture Szegedy et al. (2015).

Algorithm Pathologist WTC Pathologist WOTC
AUC 0.994 0.810 0.966
Specificity 98.5% 98.7%
Sensitivity 62.8% 93.8%

Measured by the AUC, the algorithm outperforms the pathologist WTC and is
comparable with a pathologist WOTC. An important thing to notice is the differ-
ence in sentivity of a pathologist WTC and WOTC. This sensitivity means a lot of
false negatives judgments were made. It is precisely because of such statistics, that
there is theoretical huge area of improvement by using automated classification tools.

In the table below, a short overview is presented of the research discussed above.

Benjordi et al. Wei et al. Cruz-Roa et al.
Test used AUC Kappa Dice
Result pathologist 0.810 0.485
Result algorithm 0.994 0.525 75.86%
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5

Current issues and future solutions

5.1 Black Box

One of the most substantial obstacles in deep learning networks is the problem of the
black box. The black box problem in deep neural networks is the inscrutability of its
functioning by humans. The lack of understanding does not lie in the architecture of
those networks; we do understand that. The difficulty is that we do not understand
how a deep neural network generates its output. What is a network ‘thinking’
when classifying an input image as a tumor? As already briefly addressed in the
introduction; this is not always a problem. Nevertheless, in medical care, where
the lives of patients depend on the expertise of a doctor, it unquestionably is. A
neural network is intended to detect regularities in data, not the underlying causal
relationship. This problem seems insurmountable. However, London (2019) argues
the following: ‘The knowledge of underlying causal systems is in its infancy; the
pathophysiology of the disease is often uncertain, and the mechanisms through which
interventions work is either not known or not well understood. Therefore, decisions
that are atheoretic and opaque are commonplace in medicine. Modern clinicians
prescribed aspirin as an analgesic for nearly a century without understanding the
mechanism through which it works. Lithium has been used as a mood stabilizer for
half a century, yet why it works remains uncertain. Large parts of medical practice
frequently reflect a mixture of empirical findings and inherited clinical culture. In
these cases, even efficacious recommendations of experts can be atheoretic in this
sense: they reflect experience of benefit without enough knowledge of the underlying
causal system to explain how the benefits are brought about.’

5.2 Implementation

‘While digital pathology has substantial implications for telepathology1, second opin-
ions, and education, there are also significant research opportunities in image com-
puting with this new source of ”big data” Madabhushi & Lee (2016)’. As discussed
in the theory of image classification, one of the reasons why these networks work
so good is the presence of large amounts of data. If all pathology centers shift to
a digital workplace, much more data becomes available to train and optimize the
models. This will, in turn, further reduce the variability and hence increase accu-

1The practice of pathology at a distance
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racy. Nonetheless, their sill remains several important technical, and computational
challenges that need to be overcome before computer-assisted image analysis of dig-
ital pathology can become a part of the routine clinical diagnostic workflow. One of
the central problems in the computational interpretation of digital slide images has
to do with color variations in the tissue induced by differences in slide preparation,
staining, and even whole-slide scanners. It is, however, possible that with more
data, resulting in a better-trained model, this problem will be resolved.

5.2.1 Cost of automated classifying

Another reason for the absence of the application of these algorithms is the price
tag that comes along with it. To use predictive algorithms in daily routine, the
whole pathology department needs to be digitalized. Each tissue slide needs to
digitized through whole-slide image scanners, and these are not cheap. Since not
much clinical research has been done, it is hard to calculate whether the investment
in these expensive machines will pay off by the effectiveness of automated classifying.
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6

Conclusion

6.1 Research Aims

This thesis aimed to explore and give an overview of the status quo of histopatho-
logical analysis. This field is still in its infancy, and a lot more research needs to be
done. However, the earliest studies done in this field show promising results.
Deep convolutional neural networks can classify tissue fairly accurately and even
outperform human pathologists in some areas. These encouraging results are not
integrated into hospitals yet, mainly because of the problems discussed. However,
at this very moment, the University Medical Center Utrecht is integrating the algo-
rithm discussed in the paper of Bejnordi et al. (2017) in its pathology department.
The first moves on the path to revolutionizing the field of pathology, are now taken.

6.2 Future Research

The most import future research needs to be done in the implications of letting a
computer diagnose patients. This is more of an ethical discussion, but people do not
feel comfortable with the idea of letting a computer decide about their lives. These
kinds of revolutions require some time to adapt to the concept. The feeling when
boarding on the first airplanes must have been the same. With the revolutionization
that is ongoing in this field, there is a probability that the role of the pathologist
nowadays will differ from the one in the future. Moreover, future research must be
conducted in a clinical setting. Nearly all papers released till now are theoretical,
and all argue that clinical research needs to take place before we can tell whether
the role of automated classiffcation can be a part of medical care. One of the most
important things for future research is that the computer vision specialists will need
to work intimately with pathologists to construct new and innovative solutions to
the decisive image analysis challenges in digital pathology.
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Appendix A

Statistics

A.1 Cohen’s Kappa

Cohen’s Kappa is a measurement for inter-and intra-observer agreement. It mea-
sures the percentage to which degree two independent observers agree on a classi-
fication output. Applied to the topic of this thesis, observer one is the pathologist
and observer two is the algorithm. Cohen’s Kappa measures the chance of random
agreement (AC), subtracts this chance from the observed agreement (OA) and nor-
malizes the value. A Kappa value k of 1 resembles a perfect agreement between
observer one and two whereas a Kappa value k of 0 resembles a total disagreement
between the observers.

k =
OA− AC
1− AC

(A.1)

A.2 Confusion Matrix

The result of the in-and output of a simple classification algorithm can fall into
the following four categories: false positive, true positive, false negative, and true
negative. The result is false positive when the test, in this case, the prediction of
the algorithm, says it is malignant while it is not. True positive is when the test
classifies the sample as malignant, and it is. False-negative is when the test classifies
as benign, but in fact, it is malign, this is the most harmful and should be avoided.
Sensitivity is the number classified as true positives, and specificity is the number
classified as true negative.

Sensitivity =
true positives

false negatives + true positives

Specificity =
true negatives

true negatives + false positives
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A.3 Receiver Operating Characteristic

ROC curves provide a simple way to give all of the information. i.e., this curve
shows the specificity and sensitivity for all threshold values. The Y-axis shows the
true-positive rate (sensitivity). The X-axis shows the false-positive rate, which is
the same as (1 - specificity); these are the values that are benign but are classified
as malign. The ROC graph summarises all of the confusion matrices that each
threshold produced.

A.4 Area Under the Curve

The Area Under the Curve (AUC) is the area under the ROC-curve. It represents
the accuracy of a diagnostic test and the scores can be interpreted in the following
fashion:

.90-1 = excellent

.80-.90 = good

.70-.80 = fair

.60-.70 = poor

.50-.60 = fail

A.5 Dice similarity coefficient

The Dice similarity coefficient is used to quantify the performance of image segmen-
tation. It uses a ground truth and compares this to an automated image segmen-
tation tool. The Dice score measures the similarity between the objects. The Dice
score can be described in terms of accuracy as described in the section about the
confusion matrix:

D =
2TP

2TP + FP + FN
(A.2)

The Dice score is not only a measure of how many positives you find, but it
also penalizes for the false positives that the method finds. The Dice score is also
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penalizing for the positives that the algorithm could not detect. When applied to
detecting tumor extent, we have two ‘masks.’ Mask X is the ground truth that is
labeled by an experienced pathologist. Mask Y is the labeling of the convolutional
network. A pixel is denoted as one if it contains malignant tissue and as 0 if it does
not. The number of positives is the total number of pixels that are labeled one by
mask X. The number of true positives is the number of pixels that have value 1 in
both X and Y. The number of false positives is the number of pixels labeled malign
by Y but benign in X. The number of false negatives is classified as 1 in mask X
but as 0 in Y.
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Appendix B

Backpropagation

For simplification matters, the bias bki for node i in layer k is added to the weights
vector as wk

0i with a fixed output ok−10 = 1 for node 0 in layer k − 1. Note that

aki = bki +

rk−1∑
j=1

wk
jio

k−1
j =

rk−1∑
j=0

wk
jio

k−1
j (B.1)

Backpropagation tries to minimize the cost function with respect to the weights by
calculating ∂C

∂wk
ij

for each wk
ij:

∂C(X, θ)

∂wk
ij

=
1

N

N∑
d=1

∂

∂wk
ij

(
1

2
(ŷd − yd)2) =

1

N

N∑
d=1

∂Cd

∂wij

k

(B.2)

Furthermore, we need a cost function , C(X, θ), which defines the error between the

desired output ~yi and the calculated output ~̂yi.

C(X, θ) =
1

2N

N∑
i=1

(ŷi − yi)2 (B.3)

To calculate the cost with respect to the weights, the chain rule is applied:

∂C

∂wk
ij

=
∂C

∂akj

∂akj
∂wk

ij

(B.4)

The first term in the equation is often called the error and is denoted as:

δkj ≡
∂C

∂akj
(B.5)

The second term in the equation can be calculated from the equation of akj :

∂akj
∂wk

ij

=
∂

∂wk
ij

(

rk−1∑
l=0

wk
ljo

k−1
l ) = ok−1i (B.6)

Therefore, the partial derivative of the cost function w.r.t. a weight wk
ij is:

∂C
∂wk

ij
= δkj o

k−1
i

31



Once this gradient is calculated, the weights can be updated using the following
rule:

wij+1 = wij + α
∂C

∂wij

(B.7)

If the error goes down

∂C
∂wij

< 0

increase the weight.

If the error goes up

∂C
∂wij

> 0

decrease the weight.

The gradient vector C represents the direction of the step that is taken to mini-
mize the cost function.

−∇C =



∂C
∂w(1)

∂C
∂b(1)

...

∂C
∂w(L)

∂C
∂b(L)


(B.8)
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