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Abstract 

This thesis revolves around the unorthodox paper of Whittle (2015). Whittle’s paper is 

unorthodox because it does not conform with the Cantorian orthodox position regarding set 

cardinality and set size. We will explain some key concepts necessary to understand Whittle’s 

paper and the analysis thereof. In this analysis we will offer some criticism on his arguments. 

We will conclude among other things that finite concepts are always at play in the human 

mind and this should be taken into account when researching beyond finite concepts.  
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Introduction 

This thesis revolves around the unorthodox paper of Whittle (2015). Whittle’s paper is 

unorthodox because it does not follow the Cantorian orthodox position. We will elaborate on 

this orthodox position further in this thesis. The subject of Whittle’s paper is about set theory 

and includes infinite sets. We assume the reader knows about the basics of set theory, often 

referred to as naïve set theory.  

As written by Bagaria (2019), “Both aspects of set theory, namely, as the mathematical 

science of the infinite, and as the foundation of mathematics, are of philosophical 

importance.”. Set theory is important due to it being the foundation of mathematics. Almost 

anything mathematical that we deem true can be rewritten in set theoretic language and in 

turn be proven. For example, “1 + 1 = 2”can be proven within their own system that is 

number theory but also in set theoretic language. So set theory is able to unify all kinds of 

math into one language. The set theoretic language itself is not useful to make proofs with. It 

is the idea that as a foundation all kinds of math now have underlying connections as they 

should have. 

In set theory there are finite and infinite sets. As the names suggest, finite sets contain a finite 

amount of elements and infinite sets contain an infinite amount of elements. Difficulties arise 

when addressing the size of an infinite set. This problem stems back from at least the time of 

Galileo Galilei. Galileo described a paradox that led him to conclude that infinite sets did not 

have the relations “greater”, “smaller” and “equal” (Galilei, 1638/1954). Many years later 

Georg Cantor appeared and proved that there are multiple cardinalities of infinite sets (Hosch, 

2016). The cardinality of a set could be seen as the size of a set. If there are infinite sets of 

different cardinalities then there could also be infinite sets of different sizes. This means that 

relations such as “greater”, “smaller” and “equal” do exist. The works of Galileo and Cantor 

clashed but neither work apart seemed problematic. Galileo’s work was more philosophical 

while Cantor’s work was mathematical. We will see that Whittle’s paper is also more 

philosophical in nature. We will be analysing Whittle’s paper and offer some criticism on his 

arguments. Our conclusion will include a review on Whittle’s paper and a few remarks about 

future papers on the subject. This thesis is in no way a hostile attack on Whittle’s position or 

academic status. The author of this thesis was interested in the subject and coincidentally 

chose Whittle’s paper.  

The relevance of this thesis regarding Artificial Intelligence revolves around computability 

theory. In simple words the theory is about whether a mathematical problem can be solved or 

not. Computers are used to try to compute some of these mathematical problems. Some 

infinite sets, such as the natural numbers, are important to talk about in computability theory 

but also in general. The natural numbers occur throughout the daily life of a simple citizen 

but for scholars they means much more. Scholars use the natural numbers to count, to 

calculate and it is with these numbers that we can partially convey mathematical ideas with 

each other.  

For example, if we asked a mathematical question to a computer such as, “What are the even 

numbers?”, that computer will run an algorithm that will try and solve this question. This 

algorithm is capable of classifying numbers. A number could be assigned to have the value of 

“true” or “false”. The number 1 could be mapped to false and the number 2 could be mapped 

https://en.wikipedia.org/wiki/Galileo_Galilei
https://en.wikipedia.org/wiki/Galileo_Galilei
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to true. We can call this mapping of numbers to truth-values an answering schema. Now let 

us take another set that contains all the possible algorithms that we, as humans, can build and 

that computers can run. The set that contains all the possible answering schemas has a greater 

cardinality than the set of all possible algorithms. This means that there are mathematical 

questions that cannot be computed by algorithms. In other words, there are incomputable 

mathematical problems. 

The relevance of this thesis regarding Artificial Intelligence also revolves around infinity 

itself. In order to understand infinity we have to understand how infinite sets behave. The set 

of natural numbers or the set of real numbers are often used in math but these sets are also 

infinite sets. In order to understand infinite sets, we need to at least understand these two 

individual sets mentioned before. 

Key concepts 

In this section a few concepts revolving around infinite set theory will be explained. They are 

needed in order to gain a better understanding of the analysis of Whittle’s paper and how they 

are at play in Whittle’s paper and in general. The concepts are explained in a form for those 

who are not familiar with them, or need a refresher.  

Part-whole principle 

There is a common and intuitive notion called the part-whole principle. If we were to have a 

regular banana then this would be the whole. Suppose we now cut the banana in half leaving 

us with two parts. It seems obvious that one part banana is not as much as a whole banana in 

terms of mass. We, as humans, do not expect to cut a banana in two pieces and to end up with 

each part to be equal to a whole banana. This would result in one banana turning into two. If 

this was the case we could end world starvation! In other words, a part of a banana surely 

cannot be greater than or equal to the whole banana.  

This principle dates back to at least around 300BCE (van der Warden & Tasibak, 2019) in 

Euclid’s Elements. In this textbook there are five Euclid’s common notions. The fifth one is, 

“The whole is greater than a part”. Even if the textbook only concerned itself with geometry, 

this principle does not only hold in geometry. We don’t even think about this principle 

consciously as it is so integrated into our daily lives. We want to drink some milk and 

understand that the carton will be empty after a few glasses. We understand that biting off a 

piece of a cookie will not result in a whole cookie in our mouth.  

In set theory this principle is also present and is most clearly observed in the finite space. 

Suppose a set A with the numerical elements 1, 2 and 3, and let us suppose this is our whole. 

Now let us take a part, set B with the numerical elements 1 and 2. It is true that the whole (set 

A) is greater than its part (set B), because A has one more element in it than B. So if there is a 

proper subset X of the set Y, then Y will be greater than X. 

Hume’s principle, cardinality and Cantor’s theorem 

To clarify for further use: a one-to-one correspondence is between two sets and a one-to-one 

correlation is specifically between the elements of two sets. 

As Crispin Wright (1999) wrote: 
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It was George Boolos who, following Frege’s somewhat charitable lead at 

Grundlagen §63, first gave the name, “Hume’s Principle,” to the constitutive principle 

for identity of cardinal number: that the number of Fs is the same as the number of Gs 

just in case there exists a one-to-one correlation between the Fs and the Gs. (p. 6) 

The Fs can be seen as elements from a set and the Gs can be seen as elements from another 

set. The one-to-one correlation between the Fs and Gs means that every element F 

corresponds to one and only one element G and vice versa. So if the Fs are elements of a set 

A, and the Gs would be elements of the set B, then there would be a one-to-one 

correspondence between the sets A and B. Since the set A and the set B have a one-to-on 

correspondence, it would mean that A and B share the same cardinal number in Cantor’s 

terminology. The cardinal number indicates the number of elements in a set, so the orthodox 

view agrees that the cardinal number of a set is the same as the size of a set. Thus the size of 

A and the size of B would be the same. A one-to-one correspondence, also called a bijection, 

is formally defined in terms of the notions injective and surjective:  

 Definition 4.4.2. Let A and B be sets, and let f : A➝B be a function. 

(1) The function f is injective (also called one-to-one  or monotonic) if x ≠ y implies 

f(x) ≠ f(y) for all x, y ∈ A; equivalently, if f(x) = f(y) implies x = y for all x, y ∈ A.  

(2) The function f is surjective (also known as onto or epic) if for every b ∈ B, there 

exists some a ∈ A such that f(a) = b; equivalently if f⋆(A)  = B.  

(3) The function f is bijective if it is both injective and surjective. (c.f. Bloch 2011, 

155) 

Cantor defined that sets would have the same cardinality (also the cardinal number) if and 

only if there is a bijection (also a one-to-one correspondence) between them. So the set A 

containing the numerical elements 1, 2 and 3 has the same cardinality as the set B containing 

alphabetical elements a, b and c, since we can let the elements in one set uniquely correlate 

with elements in the other set. For example a function from A to B, 1 maps to a, 2 maps to b, 

and 3 maps to c. So we can construct a bijection between A and B and this results in the two 

sets sharing the same cardinality. 

So if there is no bijection between two sets, their cardinality would not be the same. Cantor 

showed that the cardinality of a set is strictly smaller than the cardinality of its powerset, the 

set of all subsets (Hosch, 2016). This is also known as Cantor’s theorem. He used this on 

infinite sets to show that it is possible to have infinite sets that do not share the same 

cardinality. Suppose were to iterate this powerset over an initial infinite set, we would get the 

power set of the power set of the power set… and so on. Our first infinite set cannot share the 

same cardinality of its powerset and this powerset in turn cannot share the same cardinality of 

its powerset and on and on. So there are multiple infinite sets that do not share the same 

cardinality. 

An infinite set is called countably infinite when this set has a bijection with the set of natural 

numbers. An infinite set is called uncountably infinite when this set does not, or cannot have 

a bijection with the set of natural numbers. 
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Galileo’s paradox 

Galileo Galilei describes an interesting paradox in which the terms part-whole principle and 

one-to-one correspondence are important. What follows is not what Galileo said in his exact 

own words but a reconstruction in modern words. The paradox consists of a few premises 

that together result in a contradictory conclusion. We will briefly explain some 

(mathematical) terms before presenting the premises and conclusion. 

Squares are numbers that are the result by multiplying a number with itself. The latter number 

is also called the root. So the square 9 would have 3 as its root because multiplying 3 with 

itself results in 9. Non-squares are thus the numbers that are not squares, for example 2 and 5.  

Premise 1: The number of positive integers, consisting of squares and non-squares together, 

is greater than just the number of squares.  

Premise 2: The number of squares is the same as the number of roots, because every square 

has its own root and vice versa. 

Premise 3: The number of positive integers is the same as the number of roots because every 

positive number is a root. 

Notice that premise 1 has the part-whole principle at play, and that premise 3 is actually a 

one-to-one correspondence between the positive integers and the roots. Combining the 

second and third premise results in Statement 1. 

Statement 1: The number of squares is the same as the number of positive integers. 

Combining Premise 1 with Statement 1, it results in a contradiction. It cannot be true that the 

number of positive integers is simultaneously equal to or greater than the number of squares. 

Galileo believed that the relations “greater”, “smaller” and “equal” between infinite sets did 

not exist in combination with Premises 1 to 3 because if they did exist then it would lead to 

this paradox. 

Cantor’s notion of size, the orthodox stance 

The followers of the orthodox stance follow Cantor’s notion of size1. This notion consists of a 

few basic claims, which can be combined together to form implications. The claims are what 

Cantor believed in or has mathematically proven. We are not directly quoting Cantor in this, 

as “Cantor’s notion of size” is a simplified term of what we think Cantor believed was the 

meaning of size correlated with his mathematics. 

Fact 1: Sets A and B have the same cardinality iff there is a bijection between them. 

Fact 2: The cardinality of a set A is strictly lower than the cardinality of its powerset P(N). 

(See Cantor’s theorem) 

                                                           
1 This is a simplification of the actual worldly representation. We are constructing “Cantor’s notion of size” to 
simplify the way of addressing what we mean with the orthodox view but without being too vague about some 
key elements such as size and cardinality. Followers of an unorthodox view are those who do not agree on all 
the listed Claims and Implications of “Cantor’s notion of size” and thus those who do not agree with the 
orthodox view. So in the actual worldly representation of the orthodox view there are more concepts than just 
the ones we have listed. 
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Claim 1: The word ‘size’ means the same as cardinality.  

Applying Fact 2 with an infinite sets results in Implication 1.  

Implication 1: There are infinite sets with smaller cardinalities than their powersets.  

Combining Fact 1 with Implication 1, or just following Implication 1, it is clear that there is a 

second implication. 

Implication 2: There are infinite sets that do not share the same cardinality. 

Now lastly if we were to combine Claim 1 with Implication 2, we end up with a third 

Implication. 

Implication 3: There are infinite sets that do not share the same size.  

Fact 1 and Fact 2 will be called the basics.  

Due to the fact that the basics are mathematically sound it follows that when Cantor’s notion 

of size is attacked, it will be on the other fronts. To attack a sound theorem would not seem to 

be very fruitful. To attack Implication 1 would also be the same as attacking the basics. This 

is simply a re-iteration of Fact 2 with infinite sets. The same follows for Implication 2. What 

is left to attack is then Claim 1 and Implication 3. To attack this Claim and Implication means 

to argue with the definition of size if it is not cardinality for infinite sets. 

Analysis of Whittle’s paper 

Whittle (2015) starts by agreeing that he is not challenging Cantor’s mathematics but the 

significance of it. He says, “I should underscore that I am not, in any way, going to challenge 

Cantor’s mathematics: my arguments are aimed solely at the standard account of the 

significance of this mathematics.” (p.3). He continues with “Cantor cannot be said to have 

established that there are different sizes of infinity.” (p. 3). So Whittle argues against the idea 

that Cantor sufficiently proved that there are different sizes of infinity. Note that this is the 

same as Implication 3. He presents two claims that follow from combining the Cantorian 

notion of cardinality and the Cantorian notion of size and calls them C1 and C2. Whittle’s 

“Cantorian notion of cardinality” is equal to Fact 1 and Whittle’s “Cantorian notion of size” 

is equal to Claim 1. Whittle’s goal in the paper is to show that two claims, C1 and C2, are not 

justified. They are listed below. 

(C1) For any infinite sets A and B, A is the same size as B iff there is a one-to-one 

correspondence from A to B. 

(C2) For any infinite sets A and B, A is at least large as B iff there is a one-to-one function 

from B to A. 

There are a few topics on which Whittle gives some arguments in order to refute these two 

Cantorian claims. In the first topic Whittle indirectly attacks the implication of Cantor’s 

theorem. He claims that Cantor’s theorem cannot have proven that there are multiple sizes of 

cardinality. His argument revolves around the similarity between proofs for Russell’s 

Paradox and Cantor’s theorem. The second topic is a direct attack on the logical structure of 

the claims; specifically the size-to-function direction.  
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Whittle’s first topic 

Whittle’s goal in this first topic is to show that the implication of Cantor’s theorem cannot 

have anything to do with size. He claims that his version of the proof for Russell’s Paradox is 

very similar to the proof for Cantor’s theorem. Because of this similarity, Whittle claims that 

the implications of Cantor’s theorem and Russell’s Paradox fall or stand together. He shows 

that the implication of Russell’s Paradox cannot be about size through an indirect matter and 

thus concludes that the implication of Cantor’s theorem cannot be about size either. 

Russell’s paradox arises when we consider a set that contains all sets that are not members of 

themselves. If that set contains itself, then it should not contain itself. If that set does not 

contain itself, it should contain itself. Whittle gives a derivation of a proof of this paradox. 

The structure of Whittle’s version of the proof for Russell’s paradox is written as a proof by 

contradiction and is structured to be very similar to the proof for Cantor’s theorem. First an 

assumption is presented that there is a one-to-one function2 from pluralities to objects. 

Whittle calls this (V) and explains that uppercase variables range over pluralities, lowercase 

letters range over objects, and that the law ‘ext’ denotes a function from pluralities to objects. 

So ‘ext(X)’ denotes the extension of X 

(V) ꓯXꓯY(ext(X) = ext(Y) ↔ ꓯz(Xz ↔ Yz)) 

Second it is supposed a plurality R that consists of objects x such that for some plurality Y, 

ext(Y) = x and x is not in x. Now there are two cases. The first case is that if ext(R) is in R, 

then it follows that ext(R) is not in R. The second case is that if ext(R) is not in R, then it 

follows that ext(R) is in R. Either way a contradiction follows, thus the first assumption has 

to be false. 

To make the similarity between the two proofs clearer we will quote Whittle on the way he 

presented the proof for Cantor’s theorem: 

Proof. Suppose that f is a one-to-one function from P(A) into A, and consider C = {x 

∈ A: ꓱy ∈ P(A) such that f(y) = x and x ∉ y}. But now consider f(C). And suppose 

first that f(C) ∈ C. Then (by the definition of C, and the fact that f is one-to-one) it 

follows that f(C) ∉ C. So f(C) ∉ C. But then (by the definition of C again) f(C) ∈ C: 

which is a contradiction. (p.5) 

The assumptions made in the proof for Russell’s Paradox share the same structure as the ones 

in the proof for Cantor’s theorem. The proof for Cantor’s theorem is also written as a proof 

by contradiction and also starts with the assumption of a one-to-one function, but between a 

set and its powerset. Secondly, in the proof of Cantor’s theorem there is an assumption C that 

serves the same role and is defined in the same way as plurality R according to Whittle. Then 

the two cases of whether f(C) is in C or not in C are similar to the cases of whether ext(R) is 

in R or not in R. In both proofs we arrive at a contradiction and conclude that the first 

assumption made has to be false. This means that it is shown that a one-to-one function 

cannot exist in both proofs. So we see that Whittle has purposefully structured a proof for 

Russell’s paradox to be very similar to the proof of Cantor’s theorem. 

                                                           
2 A one-to-one function must not be confused with a one-to-one correspondence. A one-to-one function can 
also be referred to as an injective function. 
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Whittle makes this analogy between the two proofs so he can claim that the proof for 

Cantor’s theorem and his version of the proof for Russell’s paradox are “really just the same 

argument in slightly different settings.” (p. 5). He also claims that there is a close analogy 

between the implications that come forth from these proofs. The implication from Cantor’s 

theorem is that a powerset P(A) is always greater than A. The implication from Russell’s 

paradox is that there are more pluralities than objects. Whittle believes this analogy is so tight 

“that these two implications must stand or fall together.” (p. 6).  

Whittle is not yet directly arguing directly against the definition of size in this case. However 

to say that Cantor’s theorem cannot have anything to do with size while it does uses 

cardinality seems to be an implicit attack on Claim 1. 

Counter argumentation about the similarity of the two proofs 

Whittle does not give an argumentation as to why exactly these proofs are similar. We have 

given a shallow explanation why these proofs are similar. We have only touched the surface 

of this similarity of proofs but not given any in depth mathematical proof as to why exactly 

they are so similar and that we thus can claim that their implications fall or stand together. As 

Whittle has not provided any proof at all we can say that this claim of similarity is 

mathematically weak in this case.  

There is however an paper written by Yanofsky (2003) that does link Cantor’s theorem with 

Russell’s Paradox using mathematical concepts. So it is possible that there is a strong 

mathematical resemblance between these two concepts. However to say that their 

implications fall or stand together is a whole other claim to make. To demonstrate we will use 

an example of plants. Suppose that there are two plants named Pimmel and Frummel, and 

that they are growing in similar ways. The plants need around the same amount of water, 

sunlight and love. This similar process of growth is like the similarity between the proof of 

Cantor’s theorem and the proof of Whittle’s version of Russell’s Paradox. However, because 

the plants grow in similar ways, it does not mean that Pimmel and Frummel will blossom 

with the same colour of flowers. We can indeed say that the flowers look alike but are not 

identical just like the implications from the proofs. However, we cannot claim that “because 

Pimmel did not grow a pink flower, Frummel cannot grow a pink flower either.”. This is 

similar to Whittle’s idea that because the implication of Russell’s Paradox cannot be about 

size, then the implication of Cantor’s theorem cannot be about size either. We conclude that 

regardless of the proofs being similar or not, the claim that the implications of these proofs 

fall or stand together is mathematically weak in Whittle’s case.  

Whittle’s first topic continued 

Whittle believing he has established that the implications of the two proofs fall or stand 

together, he continues by trying to let the implication of the proof for Russell’s Paradox fall. 

This would mean that the implication of Cantor’s theorem also falls and thus an attack on the 

initial two claims. 

Whittle gives another version of (V) that he calls (V*). Whittle says the φ(z) stands for a 

formula of our language. So (V*) is a schema. 

(V*) ꓯX(ꓯz(Xz ↔ φ(z)) → ꓯY(ext(X) = ext(Y) ↔ ꓯz(Xz ↔ Yz))) 
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The second part of (V*) that starts with ꓯY is actual the same as (V). The part that is 

different in (V*) is that Whittle added the part in the beginning with (ꓯz(Xz ↔ φ(z)). 

According to Whittle, this part ensures that there are not more definable pluralities than 

objects. Recall the implication of Russell’s Paradox that there are more pluralities than 

objects. So (V*) cannot be problematic like (V). However, Whittle shows that (V*) is 

problematic and in the same way as the proof for Russell’s Paradox with the exact same 

steps. So even if the attention is restricted to definable pluralities we still arrive at a 

contradiction. This idea now is that (V*) “cannot have anything to do with size because there 

are not too many definable pluralities to allow each to get its own object.” (p.8) and since (V) 

and (V*) have the same diagnoses, (V) cannot have anything to do with size either. This is 

also supported by the fact that (V*) is a weaker version of (V). What cannot be true in (V*) is 

a fortiori a reason that (V) cannot be true either. According to Whittle the implications of the 

proof for Cantor’s theorem and Russell’s Paradox would stand or fall together. So if the 

implication of (V) and its diagnosis, which is essentially a proof for Russell’s Paradox, 

cannot be about size, then the implication of Cantor’s theorem cannot be about size either. 

Counter argumentation using Skolem’s paradox 

The way Whittle argues that (V*) cannot be about size, so (V) cannot be about size due to 

their similar diagnoses sounds awfully familiar like the similarity between the proof of 

Cantor’s theorem and the proof of Whittle’s version of Russell’s Paradox and that their 

implication fall or stand together. As explained before with the plants Pimmel and Frummel 

we will say that even if there is a mathematical similarity between (V*) and (V), it does not 

necessarily mean that their implications fall or stand together.  

Our next argument will revolve around (V*); specifically the claim that formulas are just 

objects. We notice that Whittle might be mixing up different mathematical levels when he 

claimed that there are no more definable pluralities than objects. He supports this claim by 

saying “there are no more definable pluralities than there are formulas to do the defining; 

since formulas are objects” (p.7). By saying that a formula is an object does not seem right. 

The formula is part of the language and thus cannot be in the domain or model itself. It does 

not seem plausible in this case to quantify over formulas with a language that is made up 

from these same formulas. We think it is similar to an interesting concept named Skolem’s 

Paradox that also revolves around different levels of math. Vann McGee (2015) wrote a 

response to Whittle that also revolves around this concept of different levels of math. We will 

first quote and elaborate on McGee before explaining Skolem’s Paradox. 

McGee wrote as a response to Whittle: 

For a given countable language L, we can enumerate the real numbers definable in L, 

and we can define a real number r, different from every number on the list. The 

definition of r isn’t given in L, however, r is defined semantically, and the semantic 

theory of L is developed, not in L itself, but in the metalanguage richer than L in 

expressive power. (p. 26) 

McGee says that the definition of an object r isn’t given in a language L. Whittle claims that 

formulas are just objects. This means that the definition of Whittle’s formulas are not given in 

a language. However, Whittle’s formulas are what the language is composed of. If the 

formulas cannot be given in the language that is composed of these same formulas then it 
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seems like a clear contradiction. McGee also mentions that there is a metalanguage richer 

than L in expressive power that is related to our mention of different levels of math. In 

semantics and philosophy there is the metalanguage and the object language. The 

metalanguage is used to talk about the object language and the analysis thereof. The object 

language is the language of the system itself. The metalanguage would be of a higher order 

logic. (Hodges 2018). We provide an example with a sentence such as “This sentence is 

false” written in the object language that is English. In order to analyse this sentence we need 

a metalanguage. In this case our metalanguage is also partially in English. This sentence 

could be classified as true or false and this is done in the metalanguage. In the object 

language a word such as “false” as seen in the sentence does not hold such higher order logic. 

We would arrive at a problematic situation if we do not separate the object language from the 

metalanguage. “This sentence is false” could be true in the metalanguage but if we take “This 

sentence is false” literally and with the same higher order logic, then the sentence is 

simultaneously true and false. In Whittle’s case he could be mixing up the metalanguage and 

the object language in claim that formulas are just objects.3 

We will now explain Skolem’s Paradox that uses two theorems, the Löwenheim-Skolem 

theorem and Cantor’s theorem. Whittle does not mention this in his paper but these concepts 

express the situation of different levels of math better than the object language and 

metalanguage example and could cause complications for his position. 

Starting off as written by Bays (2014): 

In 1915, Leopold Löwenheim proved that if a first-order sentence has a model, then it 

has a model whose domain is countable. In 1922, Thoralf Skolem generalized this 

result to whole sets of sentences. He proved that if a countable collection of first-order 

sentences has an infinite model, then it has a model whose domain is only countable. 

This is the result which typically goes under the name the Löwenheim-Skolem 

theorem. 

Skolem’s paradox arises when we take the axioms of set theory that are a collection of first-

order sentences. If there is a model that corresponds to this collection then there is also a 

model that is only countable as explained by the Löwenheim-Skolem theorem. Remember 

that with the implication of Cantor’s theorem that is proved by these axioms that there are 

uncountable sets. So in this only countable model whose domain is only countable there are 

uncountable sets. It is this strange idea that makes Skolem’s Paradox seem problematic at 

first. As further written by Bays (2014): 

Skolem’s paradox shows that the line between countable and uncountable sets is, in a 

fairly deep sense, the first place where our model theory loses the ability to capture 

cardinality notions. This fact helps to explain why Skolem’s Paradox may continue to 

look paradoxical. 

                                                           
3 One could say that the formulas Whittle mentions are in the metalanguage but treats them as objects in the 
object language by saying it is an object. To fully analyse Whittle’s claim of formulas being objects in terms of 
object language and metalanguage is beyond the scope of this thesis. We are simply trying to convey that 
there are different levels of math and languages that can be considered important in an argument against 
Whittle’s claim. 
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In the case of Skolem’s Paradox in which a countable model contains uncountable objects, 

one must ask how the model is defined as countable and also how an object in this model is 

defined as uncountable. To say that a model is countable means that this model has a one-to-

one correspondence with the set of natural numbers. This one-to-one correspondence does 

not take place in the model itself. To say that an object is uncountable (for example the set of 

real numbers), it would mean that there cannot be a bijection between this object and the set 

of natural numbers. This attempt to create a bijection but not being able to takes place within 

the model itself. This is why Skolem’s Paradox seems problematic at first but after closer 

inspection does not really seem problematic anymore. Skolem’s Paradox does demonstrate 

that notions such as cardinality (and size) cannot always be captured clearly in set theory. 

For explanatory purposes we will sketch a scene in which a box contains orbs. The box is 

equal to the model and the orbs are equal to objects within that model. The box is countable 

so we can successfully count the box4. In this case we can point to the elements that 

coincidentally are orbs and count them. So each orb would count as one element. This 

counting is done outside of the box. Now if we want to count an individual orb in the same 

way we counted the box, we need to step inside the box otherwise the orb will just be counted 

as one element like before. So now what happens when we are counting the elements of the 

orb, we are not outside of the box anymore. The place of counting the box and the place of 

counting the orb is not the same. It is this idea of different levels that matters. 

This mix up of the difference of the places of where functions are defined is similar to 

Whittle saying that objects are just formulas. The two functions that do the counting in the 

previous explanation are not on the same level because if we do treat them as being on the 

same level we arrive at a problematic situation. Whittle says that objects are formulas but by 

doing so he pulls the formulas from the language level and the object level of the model into 

one level, which is essentially the same mistake that happens in Skolem’s Paradox but with 

functions of different levels.  

Whittle’s second topic 

Whittle’s goal in his second topic is to attack C1 and thus C2. He does this in two parts. In 

the first part Whittle’s briefly argues that C1 “does not state what it is for two sets to be of the 

same size” (p.9). The second part is about splitting C1’s bidirectionality into two parts; the 

function-to-size direction and the size-to-function direction. Whittle then argues that the size-

to-function direction has not been sufficiently proved. He does this by arguing against an 

orthodox argument for the size-to-function direction and by presenting another way to 

establish that there cannot be an one-to-one function between a set and its powerset that does 

not revolve around size. The latter is essentially a different way of presenting Cantor’s 

theorem but without using the concept of size. 

Whittle says: 

                                                           
4 The one-to-one correspondence can be seen as counting. So a countable set can be successfully counted. To 
count a box seems trivial because there is only one box. But in this case we are interested in the amount of 
elements that are contained in this box. So we want to know the cardinality of the box with regard to what is 
in the box. For the sake of the explanation you do not need to worry about infinite concepts because counting 
would take forever and the box would never be counted and thus no one-to-one correspondence could be 
established.  
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“For the size of a set (infinite or otherwise) is an intrinsic property of that set: that is, 

it is a property that a set had purely in virtue of what it is like; it is not a property that 

it has in virtue of its relations to distinct sets, or to functions between it and such 

sets.” (p. 9) 

Recall C1 - two sets being the same size if and only if there is a one-to-one-correspondence 

between them. According to Whittle this one-to-one correspondence does not define what 

size is between two sets. This means that C1 cannot say anything about the size of two sets. 

Whittle does say that C1 and C2 can still be true but that they do not capture the nature of the 

same-size relation and in turn the at-least-as-large relation. Unfortunately Whittle gives no 

alternative on what he thinks size should be for infinite sets, if cardinality and a one-to-one 

correspondence are not sufficient enough. 

Counter argumentation on Whittle not giving an alternative 

Even if it is true that size does not equal cardinality and that the nature of how size behaves is 

not entirely captured in C1 and C2, there is little in Whittle’s argument to justify this. Whittle 

also says that it is still possible for C1 and C2 to be true. However by doing so it would mean 

that he agrees with Cantor’s notion of size and so the discussion would end here. Another 

possibility could be that Whittle thinks that size does not equal cardinality and this leads to 

the claim that C1 and C2 do not fully capture the nature of size but can still be true. So 

perhaps Whittle means to say that cardinality partially describes size. 

To give a stronger argument to argue that size does not equals cardinality would be to 

redefine the word size that does not cause complications like in Galileo’s Paradox. This is 

exactly what Benci and Di Nasso (2003) have done by developing numerosity. Unfortunately 

Whittle does not define what size is and only that it is not to be defined in terms of relations 

with other sets. 

Whittle’s second topic continued 

Whittle does think that the function-to-size direction of C1 is true - this meaning that if there 

is a one-to-one correspondence between two sets, then these two sets are the same size. In his 

argument he says it does not matter what elements a set has for its size but it matters how 

many the set has. Taking a set and removing one element and replacing it with another does 

not result in the size having changed. He continues by saying that a one-to-one 

correspondence is like replacing the elements of each set with one another. This does not 

result in change of size so the two sets have to be the same size. 

However, Whittle does not believe that the size-to-function direction of C1 is true - this 

meaning that if two sets are the same size, then there is a one-to-one correspondence between 

these two sets. For the followers of the orthodox stance, it is sufficient to show the size-to-

function direction by constructing a one-to-one correspondence between two sets that share 

the same size. The idea behind this is that if we suppose that two infinite sets are the same 

size, then one can just construct a one-to-one correspondence between these sets. Due to their 

same size, one set cannot run out of members before the other when mapping an element 

from one set to the other. So this leads to conclude that if two sets share the same size, a one-

to-one correspondence can just be constructed. 
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Whittle claims this is hopeless in the infinite case and  tries to show this by using an example 

of the set of natural numbers. He says that the set of natural numbers with an obvious order 

like 0, 1, 2, etc will not end up with a one-to-one correspondence with the set of natural 

numbers that has the order like 0, 2, 4, etc . Whittle does not continue to explain why he 

thinks this is the case.  

We think that Whittle means to say some numbers, such as 1, 3 and 5, from the second set of 

natural numbers with order 0, 2, 4, etc will be missed out. It will not be obvious where these 

elements will correlate to with elements of the other set with the order 1, 2, 3 etc. The two 

ways of ordering the elements in the set of natural numbers does not change the size of the set 

of natural numbers. It is logical that these two sets share the same size because they are the 

same set. So even if two sets share the same size, it is not always possible to just construct a 

one-to-one correspondence.  

We will demonstrate Whittle’s argument with something of our own that we think Whittle 

means. Let us take the set of natural numbers and the set of integers and construct a bijective 

function like this: 0 maps to 0, 1 maps to -1, 2 maps to 1, 3 maps to -2, 4 maps to 2 and so on. 

The order of the elements in the set of integers is now like {0, -1, 1, -2, 2, …}. If one changed 

this ordering into {0, 1, 2, …, -1, -2, …} in which the negative numbers are “glued onto” the 

end of the positive integers, then it feels like the set of natural numbers is equal to the first 

(positive) part of the set of integers. The negative integers then seems to be excess and cannot 

be linked with a natural number in an obvious way. So in this case the construction of a one-

to-one correspondence is not clear. 

Counter argumentation on construction 

Whittle does not explain at all why he think this orthodox argument of simply constructing a 

one-to-one correspondence if two infinite sets are the same size holds. He only presents the 

two ways of ordering the elements of the set of natural numbers. It is true that these two sets 

share the same size, because they are the same set. There is no obvious way to construct a 

one-to-one correspondence between these two sets. This means that even if two sets share the 

same size, it does not always mean that there will be a one-to-one correspondence between 

them. However, to say that it is not obvious how to construct a one-to-one construction does 

not mean that it is impossible. We think that these kinds of arguments – that not knowing 

something implies that it is perhaps impossible - are not helpful for scientific advancements.  

There is a story that we don’t know the origin of that revolves around the idea that non-

obvious matters are magic or not possible. Before a cavemen ever witnesses a fire, the fire is 

an unknown subject. The caveman has no idea what fire is or how it can be used. So for a 

caveman the idea of a fire is impossible and non-existing. We could say that the fire is like 

magic. One day the caveman stumbles across a fire for the first time. He notices certain 

things like the heat and its colour. After some studying, the caveman can now make his own 

fire and cook meals. However we assume that cavemen do not formally know what fires are. 

Perhaps they know how to start and maintain a fire, but not that there are multiple factors that 

contribute to these processes. Over time the caveman might be deceased but science has 

uncovered the truth about what fire actually is. Fire is not magic anymore. 

Whittle’s argument reminds us of this story because the non-obvious way of constructing a 

one-to-one correspondence between infinite sets seems to imply that it is not possible. The 
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construction is like magic. It seems that Whittle also thinks that the way elements are ordered 

in a set matters. However, in set theory the order of elements in a set does not matter and 

might not even exist. For example, the finite sets {1, 2, 3} or {3, 1, 2} are the same. This way 

of thinking might be very intuitive and finite-minded like the caveman. Just because we do 

not know how the process of constructing a one-to-one correspondence with infinite sets 

exactly does not mean it is magic or not possible. 

Whittle’s second topic continued 

The second argument Whittle gives against the size-to-function direction revolves around the 

proof of Cantor’s theorem. Cantor’s theorem proves that there cannot be a one-to-one 

correspondence between a set and its powerset. We think that Cantor’s theorem could be a 

proof by contraposition for the size-to-function direction. The contrapositive version of size-

to-function direction would be that no one-to-one function between to sets implies that the 

size of these two sets differ. By assuming there is no one-to-one function in the proof for 

Cantor’s theorem it follows that the sets are of different sizes. Whittle argues against this by 

giving a proof of his own that is very similar to the proof of Cantor’s without using the 

concept of size.  

Whittle show that there cannot be an onto-function5 between the set of natural numbers and 

its powerset. This means that there cannot be a one-to-one correspondence either. However in 

Whittle’s proof he does not use the concept of size and thus concludes that there cannot be a 

onto function between a set and its powerset by reasons other than that of size. By simply not 

mentioning size, Whittle’s argues that he has shown that the set of natural numbers and its 

powerset cannot have a one-to-one correspondence not because they do not share the same 

size but because of intrinsic properties.  

Counter argumentation on onto function 

Whittle’s argument is about showing another way to proof there cannot be a one-to-one 

correspondence between a set and its powerset. We do not think is a strong argument. We 

think it is possible to have a process but not mention the term explicitly. For example if we 

are talking about making a banana milkshake, we would need a blender, banana, ice, milk, 

sugar and ice cream. However if we are saying we are putting these ingredients in the blender 

and turn the machine on, we do not use the word banana milkshake. We have simply blended 

these particular ingredients and end up with a beverage. To say that this process has nothing 

to do with a banana milkshake seems very strange because this process is in fact the creation 

of a milkshake banana. It is thus possible to explicitly leave certain words or terms out but 

this does not mean that they are not in some way relevant. 

Discussion 

When we first read Whittle’s paper, there were many question marks. Not all of these 

question marks have been answered by reading the paper multiple times. We are unsure if 

this is because of how Whittle constructed his paper or because of our inexperience on the 

                                                           
5 Recall that an onto function is also a surjective function. If a function is either not one-to-one or onto, then 
the function cannot be a bijection (a one-to-one correspondence) between two sets.  
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subject. Whittle is asking questions and that is not wrong by itself. However he rejects or 

disagrees with certain subjects but does not give an alternative.  

Whittle has not been very clear about his arguments as we think he could have. This made it 

harder to understand the paper and thus some arguments we have provided might not be on 

point. Many times have we had to think about what Whittle meant to convey with his 

arguments and thus our interpretation could be wrong in some cases.  

Conclusion 

There are many terms that come forth in Whittle’s paper that are not explicitly mentioned and 

are to be expected of the reader to know. We do not think this is a clear way of constructing 

papers. As most papers are meant to educate and transmit knowledge we do not think this is 

very helpful. It would be well-appreciated if papers that are not extremely in-depth could be 

written in a more clear manner that is understandable for those are new to the subject but 

have an interest in it. 

The only way to attack Cantor’s notion of size is on a philosophical front because his work is 

mathematically sound. For followers of an unorthodox stance they have to hit hard with 

philosophical arguments. However we think this is hard because we humans don’t really 

know much about the infinite. It is also easier to agree with sound math than something 

philosophical that has not been proven or cannot be proven. We do not say that philosophical 

arguments cannot be strong, because we see that Galileo’s Paradox still holds power today. 

We believe Whittle’s paper is philosophical in nature due to him indirectly attacking Cantor’s 

work and not giving an alternative like Benci and Di Nasso (2003) have done.  

Whittle has some arguments that he does not fully explain. It seems that Whittle lays the 

burden of the proof on the followers of the orthodox view. Whittle is not satisfied by the 

answers provided by the followers of the orthodox view, so he seems to lay the matter in their 

court. We understand why Whittle feels this way, but we do not think this is how scientific 

advancements work. The ultimate goal is to educate and progress on the subject. If one 

disagrees with something, then that is fine. However, we do not think that by simply claiming 

that certain statements are not sufficiently supported while providing no alternative helps to 

progress on the subject. 

We found Whittle’s paper lacking in arguments in general. This made it harder to provide 

arguments against his claims. Although we do not see a direct link between Whittle’s paper 

and Galileo’s Paradox, it seems that the intuitive part-whole principle is somehow related to 

Whittle’s arguments. These arguments that Whittle provide seem intuitive in the same way as 

the part-whole principle. Due to Whittle’s silence on alternatives it seems to echo this 

intuitiveness at the reader as something being not right but not having the proof to explain 

why. This is similar to our gut feelings that we classify as intuitive. 

Perhaps it is good to know that finite concepts are always at play inside the minds of humans. 

So if we are to take a step into a world filled with infinite concepts, it is possible we are 

limiting ourselves with concepts of the finite world. Scholars could take this into account 

when researching infinity in every way. The author too has struggled to understand Cantor’s 

work and felt that is was unnatural at first. However after more reading the author has 

decided to agree with Cantor’s work but keep an open mind for other possibilities and that 

Cantor’s work is not absolute. 
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