
The NP-completeness of some lesser

known logic puzzles

Author: Mieke Maarse - 5750032

Supervisor: Dr. Benjamin Rin
Second evaluator: Prof. dr. Michael Moortgat

7.5 ECTS
Bachelor Kunstmatige Intelligentie

Utrecht University

June 28, 2019

1

Abstract

Logic puzzles have been gaining popularity and many puzzles have
been proved to be NP-complete. When a puzzle is NP-complete, it is
not feasible to try to compute a solution. In this case algorithms that
approximate the solution, or programs that are limited in input size can
be used. In this paper we use the Hamiltonian path and cycle problems
in grid graphs, and the Latin square completion problem to show that
the puzzles unequal and adjacent, towers, chains and linesweeper are NP-
complete.

2

Contents

1 Introduction 4
1.1 The Hamiltonian path and cycle problem in grid graphs 5
1.2 The Latin square completion problem 6
1.3 Structure of this paper . 6

2 Trivial proofs 7
2.1 unequal and adjacent . 7

2.1.1 NP . 8
2.1.2 NP-hardness . 8

2.2 towers . 8
2.2.1 NP . 9
2.2.2 NP-hardness . 9

3 chains 9
3.1 NP-completeness . 10

4 linesweeper 13
4.1 NP-completeness . 13

5 Conclusion 18

3

1 Introduction

Logic puzzles are puzzles that can be solved through deductive reasoning, like
sudoku or kakuro. These puzzles are satisfying to solve because, when finished,
it is immediately clear if a solution is correct, but solving one is a challenge. This
type of puzzle is gaining popularity, and so more research on the topic of these
puzzles is being done [1][2]. Puzzles are interesting because the instructions are
usually quite simple and easy to understand. The difficulty is in the structure
of these puzzles. What is even more interesting is that if two puzzles are both
in a certain complexity class, one can be solved by solving another.
Not just puzzles have complexity classes. A lot of real world problems are in
the same complexity class as these puzzles. The time complexity of a problem
is expressed as the amount of steps it takes to solve the problem as a function of
the size of the input. This way we can organise problems into different classes
of complexity. Two important classes of time complexity are the classes P and
NP. P is the class of problems that can be solved in polynomial time by a
deterministic Turing machine. NP is the class of problems of which a solution
can be checked in polynomial time by a deterministic Turing machine, or, in
other words, the class of problems which can be solved by a non-deterministic
Turing machine. It is not known if P and NP are the same class, or if P is a strict
subset of NP. A problem is NP-hard if all problems in NP are polynomial time
mapping reducible1 to it. A problem is NP-complete if it is both NP-hard and
in NP. It is assumed from now on that readers of this paper are familiar with
the contents of Introduction to the Theory of Computation by Michael Sipser
[3]. The beauty of NP-complete problems is that they are all reducible to each
other. If one NP-complete problem is found to be solvable in polynomial time,
all problems in NP are, and P = NP. The more NP-complete problems we know,
the more we have to use in NP-hardness proofs, and try to find polynomial time
solutions for, if you believe P = NP.
According to Cobham’s thesis, something can only be feasibly computed if it
can be computed in polynomial time [4]. This means that finding the time
complexity class of a problem tells us if it is feasible to create a solver. If it
is not, it can be better to approximate the solution, restrict the input size for
a solver, or find another efficient way to find a solution. If a problem is NP-
complete, finding a polynomial time solution to it is impossible if P 6= NP, and
if P = NP in this time, it is still highly unlikely you’ll find one. If you find a
polynomial time solution to an NP-complete problem, you prove that P = NP.
Many people have tried this, but nobody has succeeded. This is why knowing

1In Introduction to the Theory of Computation, on page 300, definition 7.29, Michael Sipser
gives the following definition of polynomial time mapping reducible:
”Language A is polynomial time mapping reducible, or simply polynomial time reducible,
to language B, written A ≤P B, if a polynomial time computable function f : Σ∗ −→ Σ∗

exists, where for every w,

w ∈ A⇐⇒ f(w) ∈ B.

The function f is called the polynomial time reduction of A to B.” [3]

4

a problem is NP-complete is useful. It saves a lot of time to know beforehand
that finding a polynomial time solver is not going to happen. This is also why
we want to prove the NP-completeness of these puzzles. It is a stepping stone
to finding another way to solve these puzzles.
Sudoku and kakuro have been proved to be NP-complete [5][6], among many
other puzzles, such as pearl [7] and pipelink [8]. You can find many more NP-
complete problems in A survey of NP-complete puzzles [9]. The intention of the
authors of the survey was to motivate further research in this area. Even though
puzzles have been an interest in artificial intelligence research before [9][10],
there are still many puzzles that have not been researched yet. Four puzzles
that have not been researched before to our knowledge, are unequal/adjacent,
towers2, chains(also known as link-a-pix), and linesweeper. Unequal/adjacent
are two variants of the same puzzle. In this paper we will prove these puzzles
to be NP-complete. We will do this by proving them to be in NP, and proving
them to be NP-hard. The puzzles unequal/adjacent and towers, are Latin square
completion problems, and because of that, the NP-hardness proofs are trivial.
To prove chains NP-hard, we will show a reduction from the Hamiltonian path
problem in grid graphs. To prove linesweeper NP-hard, we will show a reduction
from the Hamiltonian cycle problem in grid graphs.
For the NP-hardness proofs for chains and linesweeper we formulate these puz-
zles as the following decision problem: is this specific chains/linesweeper puzzle
solvable?

In the next two subsections we explain the Hamiltonian path and cycle problem
in grid graphs and the Latin square completion problem.

1.1 The Hamiltonian path and cycle problem in grid graphs

Figure 1: A part
of the infinite grid
graph

In this section we will elaborate on the problem of finding
a Hamiltonian path or Hamiltonian cycle in a grid graph.
A Hamiltonian path is a path through a graph from a
start node s to an end node t. This path goes through
every node exactly once. A Hamiltonian cycle is a cycle
through a graph that goes through every node exactly
once.
A grid graph is a node-induced finite subgraph of the
infinite grid graph. The infinite grid graph is a graph of
which the nodes are connected by an edge if and only
if the distance between them is 1. In figure 1 a part
of the infinite grid graph can be seen. A node-induced
finite subgraph of the infinite grid graph exists of a finite

2Unfortunately we found a proof for the NP-completeness of towers under the name build-
ing puzzle [11] only right before the deadline of this thesis. This name was not known to us
before and we came across it by coincidence. The proof for towers in this thesis was written
before we found this paper. This paper has had no influence whatsoever in the process of
writing this thesis.

5

number of nodes from the infinite grid graph, with an
edge between nodes if and only if the distance is 1. Figure 2 is an example of a
grid graph with both a Hamiltonian path and cycle.
Finding a Hamiltonian path or cycle in a grid graph is NP-complete, and so is
answering the question whether there is a Hamiltonian cycle or path in a certain
grid graph [12]. The decision problem here is: is there a Hamiltonian path/cycle
in this grid graph?

s
t

Figure 2: A grid graph (left) with a Hamiltonian cycle (middle) and a Hamil-
tonian path (right)

1.2 The Latin square completion problem

Another NP-complete problem we will come across in this paper is the Latin
square completion problem. A Latin square is an n by n grid with the numbers
1 to n occurring exactly once in every row and every column. The Latin square
completion problem is the problem of completing an incomplete Latin square.
This problem has been proven to be NP-complete [13], even when at most three
unfilled squares exist in the grid [14]. The decision problem is to tell whether it
is possible to complete an incomplete Latin square. Figure 3 shows an example
of a Latin square, and an incomplete square with at most three unfilled cells.

1

2

3

4

2

3

4

1

3

4

1

2

4

1

2

3

1

2

2

4

1

4

4

1

3

Figure 3: A Latin square (left) and an incomplete Latin square (right)

1.3 Structure of this paper

The following sections will each be about unequal/adjacent, towers, chains, and
linesweeper respectively. This way the puzzles are ordered from the simplest
reduction to the most complicated reduction. For each puzzle we will do three
things: we explain the rules of the puzzle, we show the puzzle to be in NP,

6

and we show the puzzle to be NP-hard. Finally, we make some suggestions for
interesting future research.

2 Trivial proofs

2.1 unequal and adjacent

Unequal and adjacent are two variants of a Latin square completion puzzle with
the added constraint of signs inside the grid.
Unequal and adjacent puzzles both consist of an n by n grid that is an incomplete
Latin square, with some additions. In an unequal puzzle, there can be a smaller-
than (<) or greater-than (>) sign in between two squares. These signs indicate
that the number in one square needs to be respectively smaller than, or greater
than the number in the square next to it. An example of an unequal puzzle can
be seen in figure 4.
In the adjacent puzzle there can be a line in between two squares. The number
in one square needs to be exactly one higher than the number in the other
square. Figure 5 shows an example of an adjacent puzzle.

Figure 4: An unequal puzzle (left) and its solution (right)3

Figure 5: An adjacent puzzle (left) and its solution (right)3

7

2.1.1 NP

To check these puzzles, two aspects need to be checked: the Latin square as-
pect and the unequal or adjacent signs. To check if the Latin square aspect
is completed, for every row and every column it needs to be checked if every
number occurs exactly once. This takes O(n2) time for an n by n puzzle. Next,
the unequal or adjacent signs have to be checked. There can be a maximum
of 2n2 − 2n of signs in an n by n puzzle. For every sign, one thing need to be
checked, so the time for checking signs is O(n2).
In total the time it can take to check the solution of an n by n unequal or
adjacent puzzle is O(n2), so unequal and adjacent are both in NP.

2.1.2 NP-hardness

As mentioned in the explanation of these two puzzles, the smaller-than or
greater-than signs and the adjacent signs do not always appear. This means
that there is a unequal puzzle and there is an adjacent puzzle that is just an
incomplete Latin square without any additional signs.
Because completing an incomplete Latin square is NP-complete [13], so are these
variants.

2.2 towers

Each towers puzzle consist of an n by n grid with an incomplete Latin square.
All squares of the Latin square grid represent a tower. The number in a square
represents the height of a tower. There can be numbers on the outside of the
grid. These numbers represent how many towers can be seen looking at the
grid from that point. The objective is to fill in the Latin square keeping to the
constraints of any numbers that may be on the sides as can be seen in figure 6.

Figure 6: A towers puzzle (left) and its solution (right)4

3Puzzles from: https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/unequal.

html
4Puzzle from: https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/towers.

html

8

https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/unequal.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/unequal.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/towers.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/towers.html

2.2.1 NP

To check this puzzle, two aspects need to be checked: the Latin square aspect
and the number aspect. We check the Latin square in the same way as with
unequal puzzle. This takes O(n2) time for an n by n puzzle. There can be up
to 4n numbers on the sides of an n by n puzzle. For every number it will need
to check a row or column of n squares, so checking the numbers takes O(n2)
time.
In total, checking if the solution to an n by n towers puzzle is correct takes
O(n2), so towers is in NP.

2.2.2 NP-hardness

As with unequal and adjacent, the numbers at the edge of the towers puzzle
are optional. Without these numbers, solving a towers puzzle, is completing an
incomplete Latin square, which is NP-complete [13].

3 chains

Each chains puzzle consists of an n by n grid with with numbers in it. The
objective is to connect pairs of the same numbers to each other with a path that
is the length of the numbers it connects. This is why numbers always appear in
pairs except from the number one. This number comes in singles and connect
to themselves. The puzzle is completed when all numbers are connected, as can
be seen in figure 7.

Figure 7: A chains puzzle (left) and its solution (right)5

5puzzle from: https://www.janko.at/Raetsel/Ketten/007.a.htm

9

https://www.janko.at/Raetsel/Ketten/007.a.htm

3.1 NP-completeness

Theorem 3.1. Chains is NP-complete

Proof idea. Showing that chains is in NP is easy, and we will do so shortly.
What is more complicated, is to prove the NP-hardness. To do so, we reduce
the Hamiltonian path problem in grid graphs to chains. We reconstruct the
grid graph in a chains puzzle by making ’walls’ made of 1’s. Then we put one
pair of numbers on the grid. One in the middle of the start node, and one in
the middle of the end node. This number will be specified in such a way that
the path has to go through every ’node’.

Proof. First we show that chains is in NP. If the solution of a chains puzzle
is correct, every number connects to another number with the same value, and
the length of the path by which they connect is the same as the value of the
numbers.
The maximum amount of numbers in an n by n chains puzzle is n2. Checking
if a path is a certain length and if two numbers are the same takes 2 steps per
number. This means checking if the solution is correct takes O(n2) time, so
chains in in NP.

Next, we show the NP-hardness of chains by a reduction from the Hamiltonian
path problem in grid graphs.
For this reduction we categorise nodes in the grid graph by all combinations
of edges and show gadgets for each type as can be seen in figure 8. In these
gadgets pathways are made with 1’s, so that any path passing through a gadget
can pass through it the same way it would through a node in a grid graph.
We can piece all these gadgets together so that every node in the grid graph is
represented by a gadget. The gadgets are placed in the same position as the
nodes in the grid graph so that the gadgets in the chains puzzle connect to each
other in the same way the nodes connect in the grid graph connect to each other.
This way the possible paths in the chains puzzle are the same as the possible
paths in the grid graph as can be seen in figure 9a and b.
Now that we have a representation of the graph in a chains puzzle, we need to
add the element of finding a Hamiltonian path. To do this we add a pair of
numbers, of which one will be in the middle of the start node, and one will be
in the middle of the end node. We need to make sure that there is no way that
the path visits one node representation more than once and we need to make
sure that every node has to be visited.
Because every gadget has one square in the middle where every path that goes
through the gadget has to go through, it is not possible to visit a node repre-
sentation more than once.
To make sure the path has to visit every node, the pair of numbers will have the
value of 3m− 2 for a graph with m nodes. If the path goes through a gadget of
a node, this will add a length of three to the path. In the start and end node, it
will only add a length of two, because the number is in the middle of the node
gadget. This means that if there is a Hamiltonian path from the beginning to

10

(a) node with one edge

1

1

1 1 1

1

1

(b) gadget for the node in 8a

(c) node with two opposing edges

1 1 1

1 1 1

(d) gadget for the node in 8c

(e) node with two adjacent edges

1

1

1

1 1

1

(f) gadget for the node in 8e

(g) node with three edges

1

1

1

1

1

(h) gadget for the node in 8g

(i) node with four edges

1

1

1

1

(j) gadget for the node in 8i

Figure 8: gadgets for all different types of nodes

the end node in the grid graph, there will be a path of length 3m− 2 from the
representation of the beginning node to the representation of the end node in
the chains puzzle. This makes the puzzle solvable. An example of a grid graph
with a Hamiltonian path, and it’s reduction to a chains puzzle can be seen in
figure 9a and c. Note that there is a Hamiltonian path from node s to t in 9a,
and that the chains puzzle in 9c is solvable.

11

s t

(a) A grid graph with start node s and
end node t for a Hamiltonian path

1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

(b) The nodes of the grid graph in 8a
are replaced by their gadgets

1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

40 40

(c) The reduction of the grid graph in 8a to a chains puzzle

Figure 9: The reduction from grid graph to chains puzzle

If a grid graph has no Hamiltonian path from the beginning node to the end
node in the grid graph, it will also not be possible to find a path of length 3m−2
from the representation of the beginning node to the representation of the end
node in the chains puzzle. This means the puzzle is not solvable.

This is a polynomial time reduction because going from a grid graph with a
start and end node to its representation in a chains puzzle only takes O(m)
time for a graph with m nodes.
This means chains is NP-hard.

12

4 linesweeper

Each linesweeper puzzle is made up of an n by n grid with numbers on it. The
objective is to find a loop through the grid that takes the numbers into account.
The numbers indicate how many squares adjacent to it (both horizontally, ver-
tically and diagonally) are covered by the loop. An example of a linesweeper
puzzle can be seen in figure 10.

Figure 10: A linesweeper puzzle (left) and its solution (right)6

4.1 NP-completeness

Theorem 4.1. Linesweeper is NP-complete

Proof idea. First we show linesweeper is in NP. This is quite simple. The hard
part is showing linesweeper is NP-hard. To do so we show a reduction from the
Hamiltonian cycle problem to linesweeper. The idea of this reduction is similar
to the idea of the chains reduction. We categorise the nodes of the graph in the
same way and again build ’walls’ to represent the grid graph in a linesweeper
puzzle. Because linesweeper already has the element of the loop, we just need
to make sure it goes through every node representation exactly once. We do
this by using numbers and creating structures of pathways.

Proof. First we show that linesweeper is in NP. To check if a solution to a
linesweeper is correct, for every number on the grid the adjacent squares have
to be checked for lines, and it has to be checked if the path of the lines form
a loop. A loop covers a minimum of four squares, so the maximum amount of
numbers in an n by n linesweeper puzzle is n2 − 4. This means checking the
squares around every number will take O(n2) time.
To check if the path of lines form a loop, the path must be followed and if it
ends where it started and all the pieces of path are checked, we know it is a loop.
If there are no numbers in an n by n puzzle, the loops maximum length is n2,
so checking the loop can be done inO(n2) time. This means linesweeper is in NP.

6puzzle from: https://www.janko.at/Raetsel/linesweeper/082.a.htm

13

https://www.janko.at/Raetsel/linesweeper/082.a.htm

Now we show the NP-hardness of chains by a reduction from the Hamiltonian
cycle problem in grid graphs.
The gadgets for nodes with different combinations of edges are made by creating
pathways over which the path is able to go. These pathways are made using
’walls’ from 0’s. 0’s create a 3 by 3 block of squares over which the path is
not able to go. The gadgets can be seen in figures 11, 12, 13, 14, and 15. In
these figures all squares over which the path cannot go are grey. This is purely
a visual aid and not actually a part of the gadgets.

(a) a node with one edge

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

1

(b) A gadget for the node in 11a

Figure 11: A gadget for a node with one edge

(a) A node with two opposing
edges

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

(b) A gadget for the node in 12a

Figure 12: A gadget for a node with two opposing edges

14

(a) A gadget for a node with two
adjacent edges

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

(b) A gadget for the node in 13a

Figure 13: A gadget for a node with two adjacent edges

There is only one way to get to and go from a node with two edges, and only
one way to get to a node with one edge. So, in the gadgets for nodes with one
or two edges, there is only one path possible for a line. This makes it possible
to just have single square wide pathways with a number along the middle of the
pathway that indicates how many squares of the pathway next to it have to be
visited. This adds the constraint that the line must go to or through this node.
This way these nodes have to be visited exactly once as can be seen in figures
11, 12, and 13.
When a node has three or four edges, there are multiple ways to go to and
from the node, so we don’t know how the paths through these gadgets will
go beforehand. Because of this, we cannot have the same single block wide
pathways as in the gadgets for the nodes with one or two edges. As figure 14
shows, in the gadget for a node with three edges, there are three possible paths
through the gadget, with the number three in the middle giving the constraint
that the node has to be visited. Figure 14c shows which squares can get visited
by the path to meet this constraint. Because all pathways are only one square
wide at the outside of the gadget, this gadget can only be visited once as there
are only three ways to get in or out of this gadget.

15

(a) A node with three edges

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

(b) A gadget for the node in 14a

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

(c) Possible paths through the
gadget in 14b

Figure 14: A gadget for a node with three edges

For a gadget with four nodes, there are four ways in or out of the gadget. A
way to stop the path visiting the node twice would be to make a single square
wide crossing. This way the path has to go through the single square in the
middle of the crossing so the middle would be blocked for any other path going
through. The problem with this is that it is not possible to make visiting this
node compulsory by adding a number. Adding a number in any square in this
construction would indicate a specific path through the node, which we do not
want. To solve this problem, we add a line going straight through the gadget
as can be seen in figure 15. This way, any path through the gadget has to
cross the pathway in the middle of this node, with the 3 along it. This three
gives the constraint that the path must go through the pathway in the middle
of the gadget. When the path goes through this pathway, it visits the middles
of the two single square wide crossings at the ends of the pathway. Once these
crossings are visited, there is no other way through this gadget anymore. So

16

this gadget has to be visited exactly once. In figure 15c a path from north to
east and a path from north to south show how this works. A path from west
to east would go straight through the middle, and other paths are a rotated or
mirrored version of the path from north to east.

(a) A node with four edges

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

(b) A gadget for the node in 15a

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

(c) A north to south path and
a north to east path through the
gadget in 15b

Figure 15: Gadget for a nodes with four edges

When these gadgets are pieced together, the representation of a graph is formed.
Because the goal of the puzzle is to find a loop that meets the constraints of
every number, and the numbers are now placed in such a way that the path-
ways represent the edges and nodes of the grid graph, the reduction is complete.
Note that the edges in a grid graph are the same as the paths between gadgets
in the linesweeper puzzle that is the reduction of this grid graph. This means
that if the grid graph has a Hamiltonian cycle, the linesweeper puzzle that is

17

the reduction of this grid graph is solvable,, and that if there is no Hamiltonian
cycle in the grid graph, the linesweeper puzzle that is the reduction of this grid
graph is not solvable.

This reduction takes O(m) time for a graph with m nodes, so it is a polynomial
time reduction. This means linesweeper is NP-hard.

5 Conclusion

We have shown the NP-completeness of unequal and adjacent, towers, chains
and linesweeper. While writing this paper, we have tried to prove the NP-
completeness of some other puzzles, but we have not found a reduction yet.
Two puzzles that would be very interesting to see an NP-hardness proof for
are signpost from Simon Tatham’s portable puzzle collection7 and koburin from
nikoli8. We have tried to find a reduction from various versions of the Hamilto-
nian path/cycle problem, but have not succeeded.
A signpost puzzle consists of an n by n grid where every square but one is
marked with an arrow pointing north, north east, east, south east, south, south
west, west, or north west. One square is also marked with the number 1 and
one square is marked with the number n2. This last square is not marked with
an arrow. The goal is to find a path from 1 to n2 following the directions of the
arrows and going through every node. A reduction from the Hamiltonian path
problem was attempted because the puzzle is a Hamiltonian path problem. The
problem in the reduction was that once an arrow in square A faces a certain
direction, all squares in that direction can be reached by square A. This is a
problem because when a large grid is needed for a large graph, it could not be
avoided that paths were possible in the grid that were not possible in the graph,
possibly causing a puzzle to be solvable when a graph had no Hamiltonian path.

In this paper we proved unequal and adjacent, towers, chains and linesweeper
NP-complete by asking the question whether a puzzle is solvable, in other words,
if it has at least one solution. It would also be interesting to know what the
complexity of these puzzles would be if we were asking the question whether
there is exactly one solution. Asking this question would probably place these
puzzles in the complexity class US (Unique Polynomial-Time) in stead of in
NP. This class consists of problems that can be solved by a non-deterministic
Turing machine in polynomial time such that the answer is yes if and only if
there exists exactly one computation path [15].
It would also be interesting to see what existing algorithms can be used to
approximate solutions to these puzzles in polynomial time.

7signpost can be played here: https://www.chiark.greenend.org.uk/~sgtatham/

puzzles/js/signpost.html
8koburin can be played here: https://www.janko.at/Raetsel/Koburin/index.htm

18

https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/signpost.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/signpost.html
https://www.janko.at/Raetsel/Koburin/index.htm

References

[1] T. Mantere and J. Koljonen, “Solving, rating and generating sudoku puzzles
with ga,” in 2007 IEEE congress on evolutionary computation, pp. 1382–
1389, IEEE, 2007.

[2] A. M. Smith, E. Butler, and Z. Popovic, “Quantifying over play: Con-
straining undesirable solutions in puzzle design.,” in FDG, pp. 221–228,
2013.

[3] M. Sipser, Introduction to the theory of computation. Cengagae Learning,
2013.

[4] A. Cobham, “The intrinsic computational difficulty of functions,” The
Journal of Symbolic Logic, vol. 34, no. 04, p. 24–30, 1969.

[5] I. Lynce and J. Ouaknine, “Sudoku as a sat problem.,” in ISAIM, 2006.

[6] T. Seta, “The complexities of puzzles, cross sum, and their another solution
problems (asp),” 2002.

[7] E. Friedman, “Pearl puzzles are np-complete,” Unpublished manuscript,
August, 2002.

[8] A. Uejima, H. Suzuki, and A. Okada, “The complexity of generalized pipe
link puzzles,” Journal of Information Processing, vol. 25, pp. 724–729, 2017.

[9] G. Kendall, A. Parkes, and K. Spoerer, “A survey of np-complete puzzles,”
ICGA Journal, vol. 31, no. 1, pp. 13–34, 2008.

[10] J. Schaeffer and H. J. Van den Herik, “Games, computers, and artificial
intelligence,” Artificial Intelligence, vol. 134, no. 1-2, pp. 1–7, 2002.

[11] C. Iwamoto and Y. Matsui, “Computational complexity of building puz-
zles,” IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, vol. 99, no. 6, pp. 1145–1148, 2016.

[12] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter, “Hamilton paths in
grid graphs,” SIAM Journal on Computing, vol. 11, no. 4, pp. 676–686,
1982.

[13] C. J. Colbourn, “The complexity of completing partial latin squares,” Dis-
crete Applied Mathematics, vol. 8, no. 1, p. 25–30, 1984.

[14] T. Easton and R. G. Parker, “On completing latin squares,” Discrete Ap-
plied Mathematics, vol. 113, no. 2, pp. 167 – 181, 2001.

[15] A. Blass and Y. Gurevich, “On the unique satisfiability problem,” Infor-
mation and Control, vol. 55, no. 1-3, pp. 80–88, 1982.

19

	Introduction
	The Hamiltonian path and cycle problem in grid graphs
	The Latin square completion problem
	Structure of this paper

	Trivial proofs
	unequal and adjacent
	NP
	NP-hardness

	towers
	NP
	NP-hardness

	chains
	NP-completeness

	linesweeper
	NP-completeness

	Conclusion

