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Abstract

We propose a method to generate hollow offset surface meshes from CT data using
distance fields, in general and in the context of the 3mensio software package. Our
method improves on several shortcomings of the currently implemented morpholo-
gical offsetting method, like a blocky appearance of the offset surface, and uneven
distance between the original surface and the offset surface. Our distance field ap-
proach is very robust, and performs consistently for a wide range of tested anatomy
and across different levels of CT voxel scaling. Our new method is able to return
an offset mesh from CT segmentation data in an acceptable amount of time: mostly
below 20 seconds, even for very large segmentations.
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1 Introduction

1.1 Medical imaging

Medical imaging has been used for decades to take a look at internal structures
of the human body, without needing to perform invasive surgery. Tomographic
techniques like CT and MRI can be used to retrieve multiple cross-sectional images
of the human body from different angles, which have greatly improved over the
past few decades.

Creating a 3D representation of such a tomographic scan is commonly done
by volume rendering, where the cross-sectional images are stacked on top of each
other and combined with image processing algorithms to produce a 3D voxel
grid. Representing the tomographic data in this way allows for a more intuitive
visualization of three-dimensional structures than looking at the 2D image slices.

To get an even better spatial awareness of tomographically scanned structures,
3D printing enables doctors and patients to hold a physical model in their hands.
This can help patients understand what is going on inside their body, and doctors to
gain increased understanding of the problem and even practice a procedure on the
printed model before performing actual surgery.

1.2 3D printing and 3mensio

Recent developments in CT technology have created new use cases in the field of car-
diology, with increased scanning speeds allowing imaging of moving structures like
the heart and surrounding blood vessels. This allows for the precise planning that is
needed for new procedures like TAVR (Transcatheter Aortic Valve Replacement).

3mensio [1] is an actively developed and widely used product line which allows
for visualization and extensive analysis of CT scans of the heart and surrounding
vessels, which is a huge help for the planning of such non-invasive cardiac proced-
ures. Certain parts that are of interest to the user can be easily segmented from the
original CT data and manipulated in several ways.

The 3mensio product line is able to create volume renderings from CT data,
and also contains a 3D printing module. As 3D printing software generally only
accepts a polygonal mesh as input, the volume rendering needs to be converted to a
polygonal mesh.

3mensio is already capable of performing this conversion and exporting the
mesh to a file that can then be sent to a 3D printer. Two kinds of meshes can
be exported: a blood volume, which is a solid mesh of the actual blood volume
inside scanned structures, and a hollow mesh which is obtained by generating a
wall around the blood volume. The thickness of the wall is configurable, which is
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important because different combinations of 3D printer and printing material result
in different minimal wall thicknesses that are needed to achieve a stable 3D printed
model. A large range of supported minimum thickness for different materials and
technologies can be seen on the websites of companies that offer 3D printing services,
like Neratek [2] and Materialise [3]. An example of such a 3D printed wall model
can be seen in Figure 1. A transparent plastic is chosen to print this left atrium, so
light can shine through and provide a clear view of the inside.

Figure 1: 3D printed model of a left atrium, exported from 3mensio
and then manually tweaked, smoothed and finally printed.

1.3 Points of improvement

3mensio’s 3D printing module is not perfect, and the exported mesh on which the
3D printed model from Figure 1 is based has undergone a lot of manual labour
before printing. Based on this, and after several discussions with the development
team of 3mensio, multiple points of improvement for the 3D printing module were
pointed out. These are explained in short below, in no particular order:

1. Segmentation of the CT voxel volume is done via a 1-bit mask, denoting
whether a certain voxel is included in the segmentation or not. Because of this,
meshes generated directly from these segmentations can be quite jaggy. Some
simple interpolation methods are already implemented to improve on this,
better methods may be possible.

2. The walls generated around blood volumes are very blocky in appearance at
the moment. This is most likely due to the method of adding wall thickness
to the blood volume, as well as the implemented interpolation method used
in the conversion from voxel volume to polygon mesh. The outside walls of
generated hollow meshes look a lot worse than the inside walls. Reducing
blockiness of the outside walls without decreasing quality of the inside walls
is preferred.

3. Many methods for polygon mesh smoothing have been developed over the
years, and a simple smoothing mechanism is already implemented in 3mensio.
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Right now, a simple algorithm is used to perform the smoothing, which can
be run multiple times to achieve a higher level of smoothing. The current
smoothing implementation has several unwanted properties, like a loss of
small details and, more importantly, shrinkage of the mesh. When smoothing a
blood vessel or heart feature, this results in a decrease in diameter, which is not
desirable. Especially for smaller vessels, this effect can be quite pronounced.

Preservation of small details is the most important for the inside walls, as these
are directly based on the input CT data. Being able to smooth just the outside
walls may also be a desirable functionality because of this.

4. CT data can be quite noisy, which can introduce artifacts and imperfections
(like holes or weird edges) in the generated segmentations and polygon meshes.
Some measures to combat this have already been implemented, but this could
be improved upon.

5. Polygon meshes that are currently generated by the 3D printing module can
contain a very large amount of triangles, resulting in an equally large file size.
In a lot of cases, the amount of triangles can be lowered without significantly
changing the shape of the mesh. When more space savings are wanted, several
methods to simplify meshes exist, all with their own pros and cons. In the
current version of the 3mensio 3D printing module, a mesh simplification
option is already built in (by using a variant of quadric error metrics with a
configurable maximum error [4]), but it can be improved upon. The maximum
error is not adhered to correctly, and another way of mesh simplification may
even be better all around. Simplifying only the outside wall may be preferable
here too, as we want to alter the inside wall as little as possible.

6. One of the tools provided is setting the wall thickness of segmented blood
vessels or heart features. The current implementation has the side effect of
closing off any openings at the extremities of the segmentation. These closed
openings need to be opened by hand at the moment, this functionality is
provided in 3mensio’s user interface. It would be desirable to handle this
automatically, without creating unwanted new holes. When segmenting a
portion of a large blood vessel it should be relatively easy to detect where the
vessel is "cut off", but detection of smaller branch vessels is not trivial and
could prove quite a challenge.

7. A polygon mesh can only be properly 3D printed if it has certain properties.
Most importantly, the mesh needs to be a manifold for the 3D printer to
be able to distinguish the inside from the outside. Any cavities which are
completely closed also need to have an opening added to them, so surplus
printing material can escape these cavities. Furthermore, the mesh needs
to be oriented and possibly supported in such a way that it can be properly
printed. Automatically detecting and fixing potential printing problems would
improve the 3D printing module.

8. Multiple different (semi-)automatic segmentation algorithms are implemented
in the 3mensio software package, with each algorithm being tuned for seg-
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mentation of specific heart features. In general, the resulting segmentations
could be improved by looking at their borders. In many cases, there will be
quite a harsh difference in CT radiodensity value on the border between heart
features. Thresholding on some fixed radiodensity value is mostly not possible
however, as every person and every CT scan is different, and even in a single
CT scan, radiodensity values can differ quite a lot across the span of a certain
heart feature.

Most of the segmentation algorithms that are currently in place already use
some tricks to improve border detection, but this can always be improved
more.

1.4 Priorities

To choose which points of improvement to actually research and follow up on, we
start by thinking about common use cases, and the properties that we want the final
polygon meshes to have for these use cases.

One of the most common use cases for the exported meshes is for doctors: They
can use the 3D printed models to gain a better understanding of the anatomy of a
patient. This can be useful in pre-operational planning or for practicing a difficult
procedure, to explain a procedure to a patient, or even to try out if custom-made
medical devices like stents will fit.

Looking at this use case, it is desirable that the surface mesh represents the
imaged anatomy as faithfully as possible. The only input data we have to generate
the mesh is in the form of CT scans, which are imperfect by nature and often
contain artifacts. This means a difficult balancing act needs to be performed: we
want to filter out obvious imperfections from the CT data, but without making
too many assumptions on what is an imperfection and what is actually correct.
By looking at the known anatomy of heart and vessels, a lot of artifacts can be
filtered out relatively safely, and this is already done in multiple ways by 3mensio’s
segmentation algorithms.

Important to note here is that the inside of the hollow wall models is of most
value and importance here, as it is directly generated from the blood volume CT
data. The walls are computationally generated around this blood volume, and thus
are very likely to not be faithful to the actual walls. Segmenting the actual walls from
CT data may be possible, but is a topic which is outside the scope of this research.

When we look at the meshes that are currently output by the 3mensio 3D printing
module (Figure 2), one thing immediately becomes clear: the walls generated
around blood volumes show very apparent blockiness. The mesh generated directly
from the blood volume itself does not suffer from this problem nearly as much,
which means the method of generating the walls themselves should have room for
improvement. If the blood volume does not exhibit blockiness, something is going
wrong when the wall generated from this blood volume does. Fixing this problem
was chosen as the first priority.
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A closer look at smoothing would tie in with this well, as less smoothing would
be needed if the generated walls look better to begin with. If smoothing is still
wanted, it would be optimal if it was possible to only apply smoothing to the
outside of the wall, as faithfulness to the actual anatomy is most important on the
inside. Smoothing could lead to a loss of smaller details, as well as shrinkage of the
inside diameter.

(a) Volume rendering (b) Blood volume mesh (c) 0.5mm wall mesh

Figure 2: Different renderings of an aortic root, with a zoomed
in view to show the blockiness of each rendering.

Currently, the 3mensio team does not give any guarantees concerning the ana-
tomical correctness or faithfulness of the 3D models they export, which is logical
because of their current appearance. Improving the appearance and faithfulness
of the models would bring the 3D printing module closer to a state where such
guarantees could be given, which would in turn increase the usefulness of the
models.

1.5 Research questions and thesis structure

The preceding sections lead us to the main objective of our research: "develop and
evaluate algorithms that improve the walls generated around CT volumes".

This objective needs to be specified further, but to find out the correct entry point
to improve the walls generated around blood volumes, we need to first find out
how the walls are currently generated. An extension to the existing method may be
sufficient to improve the blood volume walls, or an entirely new method may be
needed. We take a look at this in Chapter 2.

We discuss relevant literature after that, in Chapter 3, to get an understanding
of the methods by which the walls around blood volumes could be improved.
At the end of this chapter, we will choose a course of action and further specify
the research questions, in Section 3.4. After this, we propose an improved wall
generation method and describe the process of implementing it in Chapter 4.

We also need to determine whether an eventual new implementation actually
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improves over the current implementation. For this, we formulate the following
additional research question:

"Do the resulting surface meshes have better properties than the surface meshes
that are generated from the 3mensio software package today?"

To answer this, we need to ask some more questions:

"What are the desired properties of surface meshes in the context of CT data rep-
resentation, and how can these properties be measured and compared?"

An extensive evaluation comparing 3mensio’s wall surface meshes with our new
meshes is performed in Chapter 5.
Finally, we discuss the results and provide entry points for future research in
Chapter 6.

10



2 Current implementation

2.1 From CT data to blood volume surface mesh

CT scans can be loaded via 3mensio’s user interface, after which the blood volume of
interest can be segmented via several (semi) automatic methods. The segmentations
can be tweaked further by hand if needed. This process is shown in Figure 3.

The CT data is stored as a 3D array of voxels, and the segmentation is represented
as a binary mask over this 3D array. A "1" denotes a CT voxel belongs to the
segmentation, and "0" denotes it is not part of the segmentation. 3mensio stores this
3D array efficiently in an RLE volume (Run Length Encoding volume). This is a
set of runs, with each run denoting a sequence of "1" voxels, and its location in the
original CT volume.

(a) Volume rendering of entire heart
and surrounding structures

(b) Left atrium automatically
segmented (in blue)

(c) Optional manual removal of
incorrectly segmented structures

(d) Final segmentation (right),
and generated surface mesh (left)

Figure 3: The process of segmenting a left atrium (left upper heart chamber)
and generating a blood volume surface mesh, from a CT scan.

The binary mask 3D array is given as input to a Marching Cubes [5] implementa-
tion, one of the most commonly used algorithms for generating surface meshes from
volumetric data. An optional interpolation method is also given to the algorithm,
which can look at the Hounsfield[6] value range of the blood volume in the CT data,
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and the Housnfield value of voxels right beside the blood volume.

This produces triangle meshes which look quite good, as can be seen in Figure
2b.

2.2 CT voxel scaling

Every CT scan (stored as a DICOM file) has a certain X, Y, and Z scale, which is actu-
ally more like spacing: it describes the actual distance (normally in millimeters) in
real world space between voxel centers. For the X and Y axis, this can be interpreted
as the pixel size of a 2D image, called a slice in the context of CT data. The Z scaling
is often called the slice thickness, and is the distance in millimiters between two
slices. This information can also be found in the DICOM standard, which is nicely
documented online by Innolitics [7].

CT scans come in many different resolutions, depending on the imaging equip-
ment used, the amount of radiation the patient can safely be subjected to, and the
part of the body that is studied. CT scans are often made with a lower resolution
in the context of the heart, because the heart is always moving. Scans with a lower
resolution can be performed more quickly, which leads to less warping in the res-
ulting CT data due to the moving heart. Because of the way CT scanners work, the
resolution is mostly decreased on the Z axis, as this lowers the amount of physical
rotations the CT scanner needs to make around the patient.

(a) 1/1/1 scaling

(b) 1/1/2 scaling

Figure 4: Comparison of
the skewness of mesh

triangles with changing
voxel scaling.

If the X/Y/Z scale of a CT scan is not perfectly
1/1/1, the voxels contained within are not perfectly cube-
shaped. Marching Cubes however assumes that the in-
put voxel field has cube-shaped voxels. When we would
not do anything to account for this, we would end up
with skewed meshes that do not represent the actual
dimensions of the imaged anatomy.

This problem can be solved in quite a simple manner,
because Marching Cubes works on a per-vertex basis. We
let Marching Cubes find the X/Y/Z position of a triangle
vertex first, still using the original binary voxel field
coordinates. This also allows us to perform Hounsfield
threshold interpolation which depends on CT data, as we
can simply look at the same coordinates in the CT data
as we do for the binary voxel field. Afterwards, we then
scale the X/Y/Z coordinates of the vertex by the X/Y/Z
scale for the CT data the voxel field is based upon. When
we do this for every vertex, we end up with a mesh that
is correctly scaled and represented in world space. A
side effect of this though, is that the triangles which are
formed by the vertices become increasingly skewed as
the scaling deviates more from 1. This can be seen in
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Figure 4, where a mesh generated from a simple cube
bool field is shown. In Figure 4a the cube bool field is 10x10x10 voxels, with voxel
scaling being set to 1/1/1, which results in triangles with mostly equal proportions.
In Figure 4b the cube bool field is 10x10x5 voxels, with the voxel scaling being set to
1/1/2. We get a cube of the same dimensions here, but the scaling results in skewed
triangle proportions. As the Z scale is increased here, the triangles are elongated
along the Z axis as well.

2.3 Morphological wall generation

A solid mesh of the blood volume is not the final goal: we want to use this blood
volume as a mold, and generate a wall around it to get a hollow mesh which looks
more like the structure the blood was flowing through. To achieve that, some 3D
morphological operations are applied to the binary blood volume voxel field. First,
a closing operation is performed, which is a dilation followed by an erosion. The
dilation is performed with a structuring element with a size of the desired wall
thickness, increased by 1. This is done because next, the erosion is performed with a
structuring element of size 1. The result is a binary voxel volume which is dilated
by the desired wall thickness, while also closing off small holes in the original blood
volume. Because CT scans can be noisy, the binary masks can be as well. The erosion
step is performed to ensure that the blood volume is actually solid.

After this, the final step is to subtract the original blood volume from the dilated
blood volume, with the resulting binary voxel volume now being a hollow wall
around the blood volume. These steps are shown for a simple case in Figure 5. The
resulting binary voxel volume can then be fed to the Marching Cubes algorithm to
generate a hollow wall triangle mesh.

(a) Blood volume mask (b) Dilated blood volume (c) Blood volume subtracted
from dilated volume

Figure 5: The process of wall generation around a blood volume, shown for a single slice of
a mask of a superior vena cava (a large vein leading deoxygenated blood into the heart).

As can be seen in Figure 2c though, the resulting mesh is very blocky in appear-
ance. One reason for this could be the aforementioned interpolation method, which
does not work for the dilated wall. This is because the voxels in the dilated part of
the volume do not contain Hounsfield values denoting blood, which renders the
interpolation threshold non-effective.
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Another fact which can be seen by looking closer at Figure 5c, is that the wall
thickness is not quite uniform everywhere, even for this simple case. This is likely
because of the grid-wise application of the morphological operations or the shape
and size of the structuring element, which causes walls to be thicker in directions
not parallel with the X, Y or Z axes. We will explore these observations further in
later chapters.

2.4 Voxel scaling and wall generation

CT scans come in many different resolutions, with accompanying scaling for the
X, Y, and Z axes. The scale needs to be taken into account when generating the
offset voxel fields. If no scaling would be applied here, the offset would not be
same on all axes if we scale the final mesh vertices to world space later on. 3mensio
had thought of this already, and made sure to scale the structuring element used
for the morphological operations accordingly: the element is scaled by 1 divbi the
segmentation scaling, so that the correct scale is achieved in the final mesh (where
the segmentation scaling is applied).

There is a significant limitation in the precision of this method though. We want
to be able to choose the wall thickness more precisely (with a floating point value for
example), but the binary voxel field only allows dilation by entire integer increments,
being the X/Y/Z coordinates. On top of that, the structuring element used for
the morphological operations is also a binary 3D grid with the same limitation.
Scaling this structuring element with a non-integer X/Y/Z scale would lead to
significant rounding errors. The error would also not be consistent, as the scale
would have a large impact on the rounding error, and this scale differs a lot between
CT scans. Scaling below 1 would be optimal, as this means the rounding errors are
scaled down as well in the final meshes. It may be possible to decrease rounding
errors across the board by upsampling the binary voxel fields before applying the
morphological operations and scale them down afterwards, however this would
increase computation time significantly, and memory usage would also increase to
store the upsampled fields. We will compare wall meshes generated from CT scans
of varying scales in Chapter 5, and discuss the input data set in depth in Section
5.2.

The rounding that needs to be performed on the dimensions of the structuring
element is always done to the upside, to make sure that a wall of at least one voxel
thickness is always generated, and no holes in the walls occur.
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3 Related literature

In the following sections we discuss relevant literature that led us to our final
implementation plan. We look at the use of distance fields as an alternative to
morphological operations to generate walls around CT blood volumes in Section 3.1.
Different methods for generating surface meshes from volumetric data are discussed
in Section 3.2, and we take a look at mesh smoothing algorithms in Section 3.3. We
conclude this chapter by formulating our final research questions in Section 3.4
using the knowledge gained earlier in this chapter.

3.1 Distance fields

In the current version of 3mensio, walls around CT blood volumes are generated
by applying a series of morphological operations, as described in Section 2.3. The
resulting walls are very blocky, and the problem gets worse if thicker walls are
wanted. This is because the desired wall thickness always gets added in one single
pass. The thicker the desired wall, the larger the structuring element used, which
results in a more blocky appearance. When using a commonly used wall thickness of
3 millimeters, the blockiness is so bad that only very aggressive smoothing can hide
it. This would have the side effect of a lot of small details being lost. Implementing
a better method that can generate less blocky walls around segmented volumes
would hugely increase the appearance of the resulting wall meshes.

Generating a hollow mesh can be seen as generating a surface with some offset
from the original mesh and subtracting the original (smaller) mesh. Distance fields
are often used to generate offset surfaces because of their flexibility: once computed,
surfaces with varying offsets can easily be deduced from the distance field.

To check whether distance fields can provide more accurate offset surfaces than
the current morphological approach can, the free open source software package
MeshLab [8] can help out. This software package contains an option called "Uniform
mesh re-sampling", which can be used for creating meshes with a certain offset
from the original mesh. In MeshLab’s implementation, this offset mesh is obtained
by utilizing Euclidean distance fields, and running Marching Cubes for a certain
distance value in the generated field [9][10]. This allows us to quickly compare offset
meshes generated via a morphological approach and via a distance field approach.

The result can be observed in Figure 6, where it is very evident that the offset
surface generated by MeshLab’s distance field approach is far superior over the
surface generated by the morphological approach as currently used in 3mensio.
Smoothing is barely even needed on the surface generated by MeshLab, there is
barely any apparent blockiness as it is.

There is one big downside to MeshLab’s solution: performance. The offset mesh
from Figure 6b took more than 3 minutes to calculate on an Intel Core i7-3770 at
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3.40GHz, while 3mensio’s morphological approach took mere seconds to come up
with its result.

(a) 3mensio 1.5mm offset mesh (b) MeshLab 1.5mm offset mesh

Figure 6: Comparison of 3mensio’s and MeshLab’s offset surfaces, both using a 1.5mm
positive offset (adding thickness around the original solid mesh). Images made in MeshLab.

Quite a bit of previous research has been done on more efficient algorithms for
obtaining Euclidean distance fields or an approximation thereof, most of which are
a trade-off between performance and accuracy. Jones et al. [11] give a nice overview
of different methods that can be used to efficiently approximate Euclidean distance
fields.

The main concept that increases performance is the Distance Transform (DT),
where the distance to the surface is initialized to 0 for the "boundary voxels", which
are the voxels that intersect the surface. For all other voxels, the distance is propag-
ated from those initial boundary values, and this can be done is several ways. The
two most used options are the Chamfer DT and the Vector DT, which both use some
kind of template to combine neighbouring voxel’s distances to approximate a new
voxel’s distance. Chamfer DT’s use scalar values for distances, while Vector DT’s
use vectors, which makes them more accurate but also a bit more computationally
expensive and memory hungry.

Another aspect to look at is the propagation scheme. A sweeping scheme starts
in one corner of the distance volume and systematically continues to the opposite
corner row-by-row or column-by-column. Several passes in different directions
are often needed to prevent errors, this is also dependent on the distance or vector
template used. A wave-front scheme works differently, it propagates distances from
the original surface in the order of increasing distance until all voxels have been
visited. This wave-front scheme has the benefit that it can be stopped as soon as the
desired offset is reached, which can save a lot of computation time.

The most promising Vector Distance Transform found in literature is VCVDT
(Vector City Vector Distance Transform), first described by Satherley and Jones[12],
which is both quicker and more accurate than competing methods.
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Figure 7: The four structuring
elements used by 4VCVDT.

The authors describe that VCVDT
can be implemented using a sweep-
ing scheme using 4 passes (two for-
ward, two backward), the structuring
elements for these passes can be ob-
served in Figure 7. VCVDT can also
be extended to 8 passes (4 forward, 4
backward). This 8VCVDT is on average
over 5 times more accurate when com-
pared to the second best Vector DT at
the time (EVDT), while taking a compar-
able amount of time. Even more accur-
acy can be obtained by not initializing
the boundary voxels at 0 distance, but
computing sub-voxel accurate distances
from the boundary voxels to the actual
surface (a sub-voxel accurate distance
shell).

There are still some special cases where significant errors can occur however,
which Satherly and Jones are mostly able to fix through an additional pass through
the distance field to recalculate sub-voxel accurate distances [13]. Using their so-
called hybrid approach, more than 90 percent of distance voxels is correct when
compared with the true Euclidean distance field, with the remaining voxels only
containing a very small average error. All of this is achieved while being almost 30
times as fast. The calculation still takes about 5 minutes on the test data the authors
use (the UNC CTHead [14]), but the hardware used is more than 15 years old so
modern hardware should be able to do it in way less time. If performance is still not
good enough, a look can be taken at parallelization options, or a version with less
passes could be implemented to trade some accuracy for more performance.

3.2 Polygonal mesh construction

Marching Cubes [5] is very commonly used to create a polygonal mesh from volu-
metric data. An improved version of this algorithm called "Marching Cubes 33",
proposed by Chernyaev [15] and implemented by Lewiner et al. [16] is currently
being used in 3mensio. This implementation improves on the original Marching
Cubes algorithm in that it guarantees topological correctness, i.e. a manifold mesh.

Topological correctness and preservation of sharp features are two points on
which the original Marching Cubes algorithm fails. Over the years, several improve-
ments on the original algorithm have been proposed. Marching Cubes 33 [15], like
mentioned before, guarantees topological correctness. This algorithm does however
not fix the preservation of sharp features, as can clearly be seen in Figure 4.

Bhattacharya and Wenger [17] list several improvements on Marching Cubes,
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like multiple slightly different implementations of Dual Contouring, and propose
a new method which is based around the merging of cubes near sharp edges. The
preservation of sharp edges and corners claimed by the authors looks promising,
but topological correctness of this method needs to be researched further.

Cubical Marching Squares, an algorithm proposed by [18], claims to solve both
problems, but an implementation by the authors is not available, and people who
tried have not been very successful. It seems like a very complex algorithm to
implement. A previous Master Thesis on implementing Cubical Marching Squares
was conducted by Rassovsky [19], of which a partial implementation was the result.

Dietrich et al. [20] propose a way to improve the quality and decrease the
blockiness of meshes generated by Marching Cubes, by modifying the grid on
which Marching Cubes operates. Furthermore, it seems relatively straightforward
to implement this method as an extra step in already existing Marching Cubes
implementations, which makes it a flexible potential improvement to the already
existing Marching Cubes implementation in 3mensio.

The Marching Cubes algorithm in 3mensio is currently run on a binary voxel
array (the segmentation mask), with an optional interpolation method using the
original floating point CT data and the average Housnfield value of the blood
volume. This results in quite smooth surfaces if a blood volume mesh is constructed.
This interpolation method is not effective when constructing offset wall meshes
however, as they are not connected to the blood on which the interpolation threshold
is based. Another interpolation method needs be thought out for the offset walls,
while leaving the same interpolation method intact for the inside wall (which is
connected to the blood volume).

The distance field from the previous section can play a big role in this. As the
distance field is a grid containing floating point numbers, we can construct an
interpolated mesh surface from this field at the desired offset. To be able to use
different interpolation methods for inside and outside walls though, we need to be
able to determine if we are constructing a polygon for the inside or the outside wall.
We can use a combination of the blood volume binary voxel field and the offset wall
binary voxel field for this, which we will explain in more detail in Section 4.3.

Another interesting approach is described by Glanznig et al.[21], where the
isovalue which is used for Marching Cubes is slightly altered in different ways to
deal with noise and artifacts. This may be interesting to implement in some way, as
CT data is noisy by nature.

3.3 Mesh smoothing

The outside walls of polygon meshes currently generated by 3mensio’s 3D printing
module clearly show the blockiness that goes coupled with using the Marching
Cubes algorithm without proper interpolation. Aggressive use of the currently
implemented smoothing algorithm can mitigate some of this, but this also results in
a big loss of smaller details.
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Mesh shrinkage is a common side effect that occurs when applying multiple
passes of simple averaging smoothing algorithms (like the algorithm currently in
use in 3mensio), which is unwanted as we want the dimensions of exported meshes
to be as close as possible to the actual body structures they represent. Applying the
3mensio built-in smoothing option on several segmented structures has shown that
shrinkage is not a big issue for large heart features or vessels like the aorta or the
ventricles. However for smaller vessels, like coronary arteries, aggressive smoothing
can cause significant shrinkage.

This can be seen in Figure 8, where aggressive smoothing causes the diameter
of the coronary artery to decrease quite dramatically. The main priority of this
research is the implementation of distance fields to generate less blocky meshes,
which need less smoothing to begin with, but it would still be preferable to find a
smoothing algorithm that does not suffer from shrinkage, and mitigates blockiness
while leaving as much detail intact as possible.

(a) No smoothing: 3.7mm (b) 5x smoothing: 3.3mm (c) 50x smoothing: 2.3mm

Figure 8: Comparison of the diameter of a coronary artery, after applying
varying amounts of 3mensio’s smoothing option. Images made in 3mensio.

Research on smoothing algorithms showed some promising candidates. Taubin
[22] describes and evaluates a method of back and forth Laplacian smoothing
which achieves a nice smoothing effect without shrinkage. Belyaev and Yutaka [23]
compare multiple smoothing algorithms (including Taubin’s smoothing algorithm)
and come up with an algorithm themselves, based on linear diffusion of surface
normals. The method they propose preserves sharp features and is quite resistant to
oversmoothing, but in their paper nothing is disclosed on whether shrinking occurs
using their smoothing algorithm.

Both smoothing methods are available in the freely available open source soft-
ware package MeshLab [8], which makes it possible to quickly compare each al-
gorithm’s smoothing performance on the same meshes. A comparison of the differ-
ent smoothing methods (with MeshLab’s default settings) is shown in Figure 9. It
can be seen that Taubin’s smoothing algorithm achieves similar smoothing when
compared to 3mensio’s result, with the added benefit that Taubin’s smoothing will
not cause shrinking when applied over multiple passes. This makes it an interesting
candidate for implementation.

Application of Belyaev and Yutaka’s method (called TwoStep Smooth in Mesh-
Lab) results in a very nice smooth mesh while still keeping sharp features intact.
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However, this method causes some peculiar artifacting and creation of sharp edges
which were not part of the original unsmoothed mesh. Extensive testing with differ-
ent parameters or a combination with other methods may mitigate some of this, but
the initial results show that this algorithm may not play nice with meshes exported
from 3mensio.

(a) No smoothing applied (b) 3x 3mensio smoothing

(c) Taubin smooth (default settings) (d) TwoStep smooth (default settings)

Figure 9: Different smoothing algorithms applied on a 1.5mm offset
wall mesh of an aortic arch. Images made in MeshLab.

3.4 Reformulated research questions

Following our literature research, we have chosen to look further into an efficient
distance field approximation method to improve the mesh quality of outside walls
specifically. Using the distance field, we can generate a binary voxel field that
represents the wall. Also, we will modify the existing marching cubes algorithm so
it utilizes the distance field for interpolation on the wall surface, to get rid of the
blocky appearance.

If time allows, we will also be looking at improving smoothing and decreasing
artifacts. Distance fields can possibly help out in both of these categories too, for
example by using it for low-pass filtering around the surface. The existing method
used for simplification of meshes could even be improved, by using distance fields
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to keep track if some maximum error distance has been reached. Just using the
distance field for interpolation on the mesh surface for Marching Cubes will most
likely bring the biggest improvement to the appearance of the meshes though, so
this is the first priority.

When looking at the points of improvement in Section 1.3, we want to improve
on the first two points in that list, and can possibly improve on the first five points
in the list if we can achieve all our goals, significantly increasing the usefulness of
the exported meshes.

We can now reformulate the research questions as follows:

1. How well do distance fields work for generating hollow wall surface meshes
from segmented CT volumes?

1.1. How well can a hollow offset mask be generated from a solid blood
volume segmentation mask using distance fields?

1.2. How well can distance fields be utilized for interpolation in the Marching
Cubes algorithm?

2. Do the resulting surface meshes have better properties than the surface meshes
that are generated from 3mensio workstation today?

2.1. What are the desired properties of surface meshes in the context of CT
data representation?

2.2. How can these properties be measured and compared?
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4 Implementation

The basic (binary) version of VCVDT was implemented in the 3mensio software
suite, it is however not yet confirmed if the resulting distance fields are actually
correct, we will look into this first.

In its current form, the VCVDT implementation is able to approximate the
complete Euclidean distance field of most segmentations in about 5 seconds, ranging
up to 10 seconds for very large segmentations. Exporting a surface mesh from the
3mensio 3D printing module takes about 5 seconds on average right now, if the time
for computing the distance field is added to this the performance is still acceptable.
Performance is not critical, but it would be preferable to keep total export time below
10-15 seconds. All the above times were measured on one of 3mensio’s systems,
running an Intel Core i7-3770 at 3.40GHz. We will evaluate the performance more in
depth in Section 5.5.

The planned improvements to be implemented can be split in multiple parts:

1. Nothing is known about the correctness of the current binary VCVDT imple-
mentation. We will evaluate its output and fix the algorithm if the output is
not as can be expected. This will be discussed further in Section 4.1.

2. The current VCVDT implementation uses a binary segmentation mask, it is
not sub-voxel accurate yet. Making the algorithm sub-voxel accurate should
give a big improvement in accuracy. We will try to achieve this by roughly
using the method described in section 4 of the VCVDT paper by Satherley and
Jones[12]. This means we will first generate a surface mesh from the blood
volume, using the blood volume segmentation mask, after which we calculate
the exact distance from this surface to voxels crossing the surface, together
with the sign (whether the voxel is just inside or just outside the surface).
These distance values and sign are stored in the corresponding voxels, and this
voxel field can then be given as input to the current VCVDT implementation to
calculate the rest of the distance field. This will be discussed further in Section
4.2.

3. The currently implemented VCVDT algorithm stands on its own. It takes a
binary segmentation mask as input, and returns a voxel array containing the
distance field. The logic to use this distance field is not implemented yet: it
should be used to generate another binary voxel array with the desired offset
(configurable by the user), after which the offset binary voxel array and the
original blood volume binary voxel array can be combined to get a mask of
the wall structure. This final mask can then be given to Marching Cubes to
generate a surface mesh of the offset wall. This will be discussed further in
Section 4.3.

4. Marching Cubes is already implemented and used to construct surface meshes
from binary voxel arrays, with a single optional interpolation method. If we
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feed a wall voxel array to the current Marching Cubes implementation, it will
still generate blocky outside walls, because the default interpolation method is
only suitable for surfaces directly in contact with the blood volume. We need
to modify the Marching Cubes algorithm to accept two interpolation methods:
the existing method for inside walls, and the distance field for outside walls.
We also need to enable the algorithm to distinguish between these two walls.
This can be achieved by using the original blood volume binary voxel field
together with the wall binary voxel field, and is discussed further in Section
4.4.

5. As we have already seen in Section 2.2, segmentations can vary significantly
in their scale and resolution. Our new proposed method also needs to be able
to handle this, and we discuss this in Section 4.5.

6. It may be possible to use distance fields for repairing artifacts, smoothing and
simplifying meshes, as the distance fields can be used as a baseline to compare
proposed mesh changes to. The difference between some distance field offset
and some proposed new vertex position can be seen as an error, and thus the
distance field can be used to keep track of the total error over time. This may
be useful when smoothing or simplifying a mesh, to keep the total error below
some maximum value. We perform some initial research on this in Section 4.6

4.1 Binary VCVDT correctness

To assess whether 3mensio’s binary VCVDT algorithm is working correctly, its
results can be compared with results from the several VCVDT papers that are
available. After contacting one of the main authors of the VCVDT papers (M.W.
Jones), a ground truth, sub-voxel accurate distance field for the UNC CTHead was
obtained, together with some information on how this field was generated. This
field was generated by first constructing a polygon mesh from the UNC CTHead
using the Marching Tetrahedra algorithm, a variant of Marching Cubes, using a CT
Hounsfield value of 400. Afterwards, the exact Euclidean Distance was calculated
for each and every voxel in the distance field. The raw CT data from the UNC
CTHead was also obtained [14], and converted to a representation that 3mensio can
work with. A binary VCVDT distance field was then generated from this data using
3mensio’s implementation, and the results compared with the obtained ground
truth distance field.

It must be noted here that 3mensio’s binary VCVDT implementation can not
generate signed distance fields at the moment. Only the exterior unsigned distance
is calculated, all interior distances are set to 0. To be able to make a fair comparison,
we generated a binary mask at a CT Hounsfield value of 400, eroded that mask
with a kernel of size 1, and subtracted that eroded mask from the original mask to
obtain a binary voxel shell. We then ran VCVDT on that shell, which resulted in
a distance field with distances also calculated for the interior. The distance field
was still unsigned though, we fixed this by negating all distances that were also
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negative in the ground truth distance field. We also subtracted 0.5 from all the
distance values, to mitigate the systematic overshooting of distance that is taking
place. Binary VCVDT measures distance between the center of every voxel, but the
ground truth field is measured from a mesh that lies between voxels, which means a
shorter distance, by approximately 0.5 on average.

In Figure 10 we show that the initial VCVDT implementation was not generating
correct distance fields. In Figure 10a some sudden changes in distance can be
observed, and Figure 10d shows how this corresponds with big differences with
the ground truth distance field. It was found that the two backward passes were
implemented in the wrong order, swapping those around fixed the problem. Figure
10b shows the fixed VCVDT distance field, without any sudden changes in distance,
and Figure 10e confirms that the difference between the VCVDT distance field and
the ground truth are very small. A slice of the ground truth distance field is shown
in Figure 10c for reference.

(a) Initial VCVDT (b) Fixed VCVDT (c) Ground truth

(d) Difference between initial
VCVDT and ground truth

(e) Difference between fixed
VCVDT and ground truth

Figure 10: Comparison of the same axial slice of the initial and fixed VCVDT distance field
and their differences to the ground truth distance field. Positive distances/differences are

coloured green, while negative distances/differences are coloured red.

The distance and error values for the initial and fixed VCVDT implementation,
as well as the values from the VCVDT paper, are shown in Table 1. It can be seen
that the initial VCVDT implementation has a very large maximum error, with the
average error also being significantly larger as should be expected from binary
VCVDT. The fixed VCVDT implementation fares a lot better: its average error is
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actually lower than Jones’ implementation. The minimum and maximum error are
not quite the same though, it almost seems like our fixed VCVDT’s errors are shifted
a bit to the positive side (this can also be seen in Figure 10e). This is likely caused
by an incorrectly created input binary shell, the erosion performed there might not
be correct. Another explanation might be incorrect fixing of the overshooting of the
distances. Whatever the cause, we have not been able to completely fix this. The
most important message here is that we are very close to the expected values for a
binary VCVDT implementation.

Min dist Max dist Min error Max error Avg error
Initial impl. -5.500 127.153 -1.232 9.992 0.646
Fixed impl. -5.399 123.991 -0.594 2.146 0.216
Jones impl. Unknown Unknown -1.732 1.739 0.258
Ground truth -5.849 124.273 0.000 0.000 0.000

Table 1: Distance and error values for the different VCVDT implementations being
compared, for the UNC CTHead

4.2 Distance shell computation

The next step is to generate a sub-voxel accurate distance shell, which can then be
used as input for the VCVDT algorithm to obtain a sub-voxel accurate complete
distance field. A surface mesh was generated from the thresholded CT data using
the existing Marching Cubes implementation, to be used for computing the distance
shell. There are two main ways to approach the actual shell generation process:

– The binary VCVDT algorithm is initialized with a binary voxel volume over
the original CT data, with foreground voxels initialized to a distance of 0, and
all other voxels to some large value. For all foreground voxels, the closest
triangle of the surface mesh can be found, by looping over all triangles and
computing the distance vector and its length, and finally storing the shortest
vector in the voxel. This is very computationally expensive, as the entire
surface mesh (which can consist of over a million triangles) is iterated for
every foreground voxel.

– A quicker approach is to create bounding boxes around every triangle of the
surface mesh, and computing the distance vector and its length for all voxels
that are inside this bounding box. This has the advantage that the surface mesh
only needs to be iterated once, and the size of the bounding boxes can also
easily be changed, to enable the computation of a wider or narrower distance
shell.

The second method was implemented, and is able to compute an unsigned
distance shell for the UNC CTHead in a few seconds, depending on the size of the
bounding boxes.

25



There are two main aspects to this implementation. First, we need to build
the code structure to compute the needed distances efficiently. Algorithm 1 shows
pseudocode of the implemented structure. After initializing the distance field to
some large value, we loop over all triangles of the mesh, and construct an axis-
aligned bounding box (AABB) that encloses all three vertices of each triangle. We
can then add some optional padding on all sides of the bounding box, to create a
wider or narrower distance shell. We then loop over all voxel gridpoints contained
in the bounding box, and get the closest point on the triangle from each voxel. If
the length of the vector between the voxel and the closest point is shorter than the
length of the vector already stored in the distance field, we replace the vector with
the one we just found. We store the distance vectors instead of the distances, because
the vectors will later be used as input for the VCVDT algorithm to be propagated.

Algorithm 1 Distance shell generation structure pseudocode

1: function COMPUTESHELL(indices, vertices)
2: distanceField←new Array3D<float>()
3: distanceField.Fill(largeValue)
4: numTriangles← indices.Length/3
5: for i < numTriangles do
6: A← vertices[indices[3 ∗ i + 0]].Position
7: B← vertices[indices[3 ∗ i + 1]].Position
8: C ← vertices[indices[3 ∗ i + 2]].Position
9: boundingBox ← AABB.FromPoints(A, B, C)

10: boundingBox.Dilate(padding)
11: for all z in boundingBox.Z do
12: for all y in boundingBox.Y do
13: for all x in boundingBox.X do
14: P←new Vector3(x, y, z)
15: closestPoint← GetClosestPoint(P, A, B, C)
16: di f f Vector ← closestPoint - P
17: if di f f Vector.Length < distanceField[x, y, z].Length then
18: distanceField[x, y, z]← di f f Vector
19: end if
20: end for
21: end for
22: end for
23: end for
24: return distanceField
25: end function

Next, we need a way to actually get the closest point on the triangle (lets call
this point Q) from each voxel gridpoint (lets call this point P). A nicely explained
algorithm for obtaining the closest point on a triangle from a point in 3D is described
by Ericson [24], pseudocode for an optimized implementation is also shown in his
book. This algorithm finds the closest point on the triangle by first projecting P onto
the plane created by the three triangle vertices, after which this point is converted to
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barycentric coordinates.

If all three barycentric coordinates are between 0 and 1, it means the projected
point lies within the triangle itself (on the triangle face). Otherwise, the values of the
barycentric coordinates can be used to determine what vertex or edge P is closest to.
This results in seven possible regions to be considered, shown in Figure 11.

When the projected point is inside the triangle (region 0), the barycentric co-
ordinates can be used to compute Q. In case the projected point is closest to one of
the edges (region 1, 3, or 5), Q can be found by projecting P onto the corresponding
edge. Finally, if the projected point is closest to one of the vertices (region 2, 4, or 6),
Q is simply the corresponding vertex location itself.

The knowledge of the closest triangle feature will prove important a bit later on,
for correctly determining the sign for the distance field.

4.2.1 Signed distance

A signed distance field is desired for two main reasons:

1. We only want to generate wall meshes with a positive offset (i.e. outward from
the original mesh), because we want to keep the original blood volume the
same. To be able to reliably do that, we need to know the sign.

2. We want to use the distance field for improved interpolation for the marching
cubes algorithm, and for smoothing and removal of artifacts. To be able to
perform these actions on the inside of the walls (for which the distance offset
is 0), we need a signed distance field.

Figure 11: The seven different
regions to be considered when
computing the closest point on

a triangle.

Computing the sign correctly in all cases has
proven to be a challenge. A brute-force method
would be to shoot rays through the mesh and check
the amount of intersections that occur to determine
the sign, but this would mean that the entire mesh
needs to be considered for every ray. This could
be improved by utilizing an acceleration structure
(like an octree), but it still seems like an inefficient
solution.

A more efficient approach is to utilize the normal
vectors of the triangles. Taking the dot product of
the triangle normal and the vector (P - Q), yields a
value of which the sign determines on which side
of the triangle the point lies. However, this is more difficult than it seems at first,
as different cases need to be considered to correctly determine the sign using this
method.

When we know the positions of the three points of a triangle, it is straightforward
to compute the face normal of that triangle by taking the cross product of two of its
edges. The dot product between this face normal and the (P - Q) vector gives us a
correct sign in a lot of cases, but not all.
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Figure 12 shows an example of a case where the face normal does not return a
consistent sign. Here, parts of two triangles are shown (as 2D line segments) with
their face normals n1 and n2. In this case, Q can be a vertex or a point on an edge,
that is shared by both triangles. When taking the dot product between (P - Q) and
either n1 or n2, we get two different signs, but wat we want is to get the same sign
in both cases.

Figure 12: Example of a case
where the face normal can result in

an inconsistent sign.

It seems that this error may occur in all cases
where the projection of P onto the triangle plane
does not fall within the triangle. When looking
at the seven regions from Figure 11 again, only in
the case of region 0 can we use the face normal to
compute the sign reliably.

For cases 1, 3, and 5, Q lies on an edge that is
shared by exactly two triangles (given that we are
working with a correct manifold mesh). For these
cases, we can add the face normals of the triangles
together, to get a correct edge normal that we can
use to reliably determine the sign. By adding the
two normal vectors together, we effectively create
an unweighted average normal vector.

It is important here that the normal vectors are of normalized length, because
otherwise the average is not unweighted and we can get a bias towards either face.
As the face normals are calculated by taking the cross product of two edges, not
normalizing this cross product means the normal vector is longer if the edges of the
triangle are longer, i.e. if the triangle is larger, and has a larger area.

Figure 13: Incident angles
used as weights for the

angle-weighted
pseudonormal.

Cases 2, 4, and 6 are the most difficult to deal with,
as in these cases, Q is a vertex that can be shared by
a varying amount of triangles. In this case, simply
adding the normalized-length face normals together
(which leads to an unweighted average normal vector)
does not lead to a correct normal in a lot of cases, as we
will demonstrate a bit later. Some weighting is needed
to fix this, and there have been multiple weighting
methods proposed for this in literature.

Baerentzen and Aanaes [25] propose the so-called
angle-weighted pseudonormal as an option that can
be used to reliably determine whether a point lies
inside or outside a mesh. Figure 13 illustrates how
this weighting by angle works. To compute the angle-
weighted pseudonormal nP for vertex P, we look at all
the faces indicent to P. For each of these faces, the face
normal is multiplied by its indicent angle (the angle
between the two edges of the face that connect to P). These normals are added
together, which results in nP.

To show why this works, we modeled a simple four-sided pyramid and sub-
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divided one of its faces in different ways, after which we computed vertex normals
with different weighting methods. We chose four methods for computing the vertex
normal from the incident face normals:

1. A simple unweighted average.

2. An area-weighted average, which, as discussed before, is achieved by not
normalizing the individual face normals before adding them together.

3. The angle-weighted average just described.

4. An average, weighted by both the area and the angle.

The resulting pyramids are shown in Figure 14, with the different normals for
the top vertex also shown. Less then four normal vectors are seen per pyramid,
as some normals seem to exactly overlap. The correct normal vector should point
vertically, which can be seen to be n2 in all cases.

Figure 14a shows a pyramid with one face split vertically into 4 smaller faces.
When computing the area-weighted or the angle-weighted pseudonormal, we get
n2 as a result, which is correct. This seems intuitive, as both the total angle and the
total area of the four split faces is the same as if it was one big, undivided face.

When weighting by both area and angle, we get n1, which is biased towards the
larger, undivided face because we are multiplying a large angle by a large area for
that face, instead of adding the multiple of four small angles and four small areas
together.

The simple unweighted average is shown as n3, which is biased towards the
subdivided face because the normal in that direction is now added four times to the
final normal vector.

Figure 14b has the same face split vertically into 8 parts, and is added to show
that the errors described for Figure 14a are even bigger here (n1 and n3 are even
further away from n2).

(a) Vertical 4-split (b) Vertical 8-split (c) 1 subdivision (d) 3 subdivisions

Figure 14: A pyramid with one face subdivided in different ways, with the top vertex
normal computed in different ways. Images made in MeshLab and edited for clarity.

Figure 14c shows one of the triangle faces subdivided into smaller faces, but
now with just one face touching the top vertex. When computing the area-weighted
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or the angle-area-weighted average, we get n1 as a result. Just four faces are incident
to the top vertex this time, and all with the same incident angle. Only the area
is different for the subdivided face, which is why these two weighting methods
both give the same normal vector (which is biased towards the larger face, and not
towards the smaller, subdivided one).

When weigthing by angle or just by a simply averaging the 4 face normals
without weighting, we get n2 as a result, which is correct. Because we have 4 faces,
all with the same incident angle, and with the same amount of faces touching the
top vertex on each side of the pyramid, both computation methods come up with
the same result.

Figure 14d has the same face subdivided some more, and is added to show that
the error described for Figure 14c is even bigger here, n1 is even further away from
n2.

We can conclude that the angle-weighted pseudonormal is the only weighting
method out of the methods considered, that comes up with the correct normal vector
for all cases shown, while the other methods mess up in some cases.

Algorithm 2 shows in pseudocode how the angle-weighted vertex normals are
generated by looping over all vertices just once. Also shown is how each vertex
stores a list containing the face normals of all faces that the vertex touches. This
list is used for cases 1, 3, and 5 from Figure 11 to compute the edge normal: we get
the list of face normals for each triangle vertex, and compare them. For each edge
(pair of vertices), exactly two face normals are in both of their face normal lists, after
which they can be added together to get the edge normal.
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Algorithm 2 Mesh normals computation pseudocode

1: function COMPUTENORMALS(indices, vertices)
2: numTriangles← indices.Length/3
3: for i < numTriangles do
4: A← vertices[indices[3 ∗ i + 0]].Position
5: B← vertices[indices[3 ∗ i + 1]].Position
6: C ← vertices[indices[3 ∗ i + 2]].Position
7:

. Calculate face normal and add it to FaceNormals list per vertex
8: f aceNormal ← Normalize(CrossProduct(B− A, C− A))

9: vertices[indices[3 ∗ i + 0]].FaceNormals.add( f aceNormal)
10: vertices[indices[3 ∗ i + 1]].FaceNormals.add( f aceNormal)
11: vertices[indices[3 ∗ i + 2]].FaceNormals.add( f aceNormal)
12:

. Calculate weights for angle-weighted pseudonormal
13: angleA← AngleBetween(B− A, C− A)

14: angleB← AngleBetween(C− B, A− B)
15: angleC ← AngleBetween(A− C, B− C)

. Add the weighted face normal to each vertex normal
16: vertices[indices[3 ∗ i + 0]].Normal+ = f aceNormal ∗ angleA
17: vertices[indices[3 ∗ i + 1]].Normal+ = f aceNormal ∗ angleB
18: vertices[indices[3 ∗ i + 2]].Normal+ = f aceNormal ∗ angleC
19: end for
20: end function

We now have a way to reliably compute the normal vector for all of the seven
cases from Figure 11, and thus the sign for the distance shell. When looking at
Algorithm 1 again, the sign is computed at line 18, and stored in the diffVector
as a fourth component (x, y, z, sign). These vectors can be given as input to the
VCVDT algorithm, which then propagates the distance vectors as well as the sign,
throughout the entire distance field.

4.2.2 Results

We can now compare our signed subvoxel-accurate VCVDT distance field against
the signed ground truth distance field directly. In Figure 15 a zoomed-in part of a
slice of the signed distance field generated from the UNC CTHead is shown, with
the sign computed using just the face normals (a), unweighted vertex normals (b),
and angle-weighted vertex normals (c). The ground truth distance field is shown in
Figure 15d for reference. The sign errors in (a) and (b) are clearly visible as bright
red spots, while (c) has no such sign errors.

The distance and error values for the subvoxel-accurate signed distance fields
generated using different normal weighting methods, as well as the values from the
subvoxel-accurate field from the VCVDT paper [12], are shown in Table 2. What can
be seen is that the angle-weighted vertex normals are by far the superior method
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(a) Only face normals (b) Unweighted
vertex normals

(c) Angle-weighted
vertex normals

(d) Ground truth

Figure 15: Comparison of a zoomed-in part of the same axial slice of the subvoxel VCVDT
distance field. Positive distances are coloured green, while negative distances are coloured
red. Distance colouring has been normalized to (-2, 2) to show the sign errors more clearly.

to compute the sign for the distance shell. The other methods show huge negative
errors, which is likely because of an incorrect sign in the shell that is then propagated
through the entire distance field.

Min dist Max dist Min error Max error Avg error
Face normals -98.437 124.346 -196.801 8.214 1.779
Unweighted -59.180 124.346 -118.358 4.691 0.292
Angle-weighted -5.902 124.346 -0.870 2.146 0.091
Jones impl. Unknown Unknown -1.873 1.393 0.013
Ground truth -5.849 124.273 0.000 0.000 0.000

Table 2: Distance and error values for different normal weighting methods for computing
the sign, for distance fields generated from the UNC CTHead

The average error is not as low as the values that the Satherley and Jones achieve
in their VCVDT paper, this is possibly due to the ground truth distance field being
generated from a Marching Tetrahedra mesh, while our fields are generated from a
Marching Cubes mesh. Computing the ground truth for such a complex case would
take many hours unfortunately, so we did not do that.

What we did do however, is take a more simple mesh, and use that to reconfirm
that our implementation is able to produce satisfactory results.
We chose the "Suzanne" mesh (see Figure 16d) that is provided with the free, open
source Blender software package [26]. This mesh is sufficiently simple that we can
compute the exact Euclidean distance field to compare our implementation against.
We scaled up the original mesh 20x to get a distance field of sufficient dimensions,
the results can be found in Table 3. These values show that our subvoxel-accurate
VCVDT implementation is able to generate distance fields that are very close to the
exact Euclidean distance field, and the binary VCVDT error values are also what
can be expected.
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Min dist Max dist Min error Max error Avg error
Binary VCVDT -17.417 60.835 -0.499 2.170 0.336
Subvoxel VCVDT -19.289 60.943 -0.246 0.253 0.005
Exact Euclidean -19.284 60.943 0.000 0.000 0.000

Table 3: Distance and error values for binary VCVDT, subvoxel-accurate VCVDT, and
ground truth, for distance fields generated from the Suzanne mesh.

In Figure 16 a zoomed-in part of a slice of the signed distance field generated
from the Suzanne mesh is shown, comparing binary VCVDT, subvoxel-accurate
VCVDT and exact Euclidean distance. A 3D rendering of the original mesh is shown
in Figure 16d for reference. The blocky appearance of the binary VCVDT is clearly
visible in these images, while there is no discernible difference between the subvoxel-
accurate VCVDT and the exact Euclidean field (which can be expected when looking
at the low error values from Table 3).

In the next section, we will look at the generation of offset surface meshes using
the signed distance fields we are now able to generate.

(a) Binary VCVDT (b) Subvoxel-accurate
VCVDT

(c) Exact Euclidean (d) Mesh view

Figure 16: Comparison of a zoomed-in part of the same axial slice of the distance
field generated from the Suzanne mesh. Positive distances are coloured green,

while negative distances are coloured red.

4.3 Offset surface mesh generation

With the ability to generate accurate signed distance fields from thresholded CT data,
we can now look at using these distance fields to generate offset surface meshes. In
the old implementation, offset surface meshes are generated from offset voxel fields
that are computed from the blood volume voxel field using basic morphological
operations (see Section 3.1). It was already shown (using MeshLab, see Figure 6)
that distance fields can provide superior offset surface meshes.

The goal in this use case however, is more than a simple offset surface mesh.
The original surface that is used as the source for generating the signed distance
field, is generated from CT data denoting the blood inside a blood vessel or heart
structure. The goal is to obtain a 3D model of the wall of a blood vessel or heart
structure, which can be done by first generating a surface with a positive offset from
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the blood volume, resulting in a larger structure. When the original blood volume is
then subtracted from this offset surface, the result is a hollow structure denoting the
wall around the original blood volume.

In practice, we can generate a hollow wall surface mesh by running the Marching
Cubes algorithm with the voxel field of the hollow wall as input. To obtain this
wall, we used the distance field to generate a binary voxel field with the foreground
voxels being all voxels with a distance smaller than the desired positive offset. When
subtracting the original blood volume foreground voxels from this, a binary voxel
field denoting the the hollow wall is obtained.

The results of this can be seen in Figure 17. A slice of the binary voxel field of
the original blood volume can be seen in Figure 17a, after which we generated a
3mm wall using the old morphological method in Figure 17b, and the new distance
field method in Figure 17c. Some wall thickness measurements have been added to
show that the wall thickness is not consistent for the old morphological method, and
also thicker than the 3.0mm that the algorithm was told to generate. The distance
field method shows a way more consistent wall thickness, that also neatly adheres
to the desired 3.0mm as configured. A zoomed in slice of the generated distance
field is shown in Figure 17d.

(a) Blood volume
binary field

(b) Old morphological
wall binary field

(c) New VCVDT wall
binary field

(d) VCVDT Distance
field

Figure 17: Comparison of the same axial slice of several binary voxel fields and the
distance field, generated from a superior vena cava. The wall offset for

generating (b) and (c) was configured to be 3.0mm.

In Figure 18 we show the outsides of the wall surface meshes that are generated
from the voxel fields from Figure 17. What can be observed, is that the mesh gener-
ated using the old morphological method is thicker and has a blockier appearance
than the VCVDT generated mesh. All three meshes are quite rough in appearance
because they do not use any kind of interpolation for the Marching Cubes algorithm,
and no smoothing is applied at all. What we will show in the next section, is that
the distance field can be used for interpolation of both the inside and the outside of
the hollow wall surface meshes, to greatly improve their appearance.
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(a) Blood volume mesh (b) Old morphological
wall mesh

(c) New VCVDT
wall mesh

Figure 18: Side by side view of the three surface meshes, generated via
Marching Cubes, using the three binary voxel fields from Figure 17.

4.4 Marching Cubes interpolation

The Marching Cubes algorithm can take advantage of linear interpolation. When
using a binary voxel field as input for Marching Cubes (as we are doing), the
triangle mesh surface is generated exactly halfway between 0 and 1 voxels, as they
both weigh equally in determining the location of each triangle’s vertices. Linear
interpolation allows the 0 and 1 voxels to be weighted in some way, leading to a less
blocky appearance of the resulting surface

There are two cases to consider here, the inside and the outside of the wall need
to be handled differently. Interpolation of the inside wall surface was was already
performed by 3mensio, with some differences depending on the segmentation
method used for the blood volume:

– If the segmentation was obtained by thresholding by a certain Hounsfield
intensity value or value range, interpolation is performed by using the CT
data: for every pair of 0 and 1 voxels, the corresponding Hounsfield values are
used, together with the average Hounsfield value of the entire segmentation
volume as the boundary isovalue.

– If the segmentation was obtained via other more involved manners, like edge
detection or region growing, there is no average Hounsfield value that can
reliably be used for interpolation. In these cases, the weight of every pair of 0
and 1 voxels is determined by applying a Gaussian with standard deviation
1 on each of the voxels (i.e. the more voxels around a certain voxel are 1, the
higher the Gaussian result will be). This is then combined with a boundary
isovalue of 0.5 to perform linear interpolation. This method is quite simple
and it does not take the CT intensity values into account, but it still leads to
a great reduction in the blocky appearance of the mesh surface without too
much loss of detail.

No interpolation for the outside of the wall was implemented by 3mensio, which
makes sense, as the outside wall is obtained by simple morphological operations on
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the binary blood volume segmentation, and not by thresholding on some Hounsfield
value or other more involved manners. This rules out the option of using the CT
data for interpolation. The Gaussian described above is still an option to reduce
some of the blocky appearance of the surface mesh, but this will also lead to some
more loss of detail, and maybe to a deviation from the configured wall thickness.

The distance fields we are now able to generate consist of floating point values,
which allows for each mesh surface triangle’s position to be biased towards the
distance field voxel with the value that is closest to the thickness we are using as
the threshold for Marching Cubes. This allows for a closer estimation of the actual
surface that is embedded in the distance field, when compared to the binary voxel
mask field, which would result in a blocky mesh (as can be seen in Figure 18).

The proposed method for interpolation is still slightly different for the inside
and outside wall:

– The outside of the wall is derived from the distance field, where the threshold
is some fixed positive distance that denotes the offset from the blood volume.
The distance field consists of sub-voxel accurate floating point distances, which
means interpolation will work nicely. The offset thickness value is used as the
threshold for interpolation here.

– The inside of the wall is the border of the blood volume, as segmented from
the original CT data. With the newly obtained distance fields, we can simply
use a zero distance value as the threshold for interpolation, as a zero thickness
value corresponds to the original surface. However, we still use the original
CT data in our new process where possible, as we use a surface mesh of
the blood volume as the basis for generating the distance fields. We use
Hounsfield interpolation for this surface mesh if applicable, or apply the
Gaussian otherwise.

Effectively, the only difference between the interpolation for the inside and the
outside wall is the distance value used. For both walls, the interpolation function
takes the distance field and the desired thickness value (0 for the inside wall, and
the configured wall thickness for the outside wall).

The Marching Cubes algorithm still needs to know when to use either one of
the distance values. To start with, Marching Cubes determines border voxel pairs
in the hollow wall voxel volume (all pairs of two adjacent voxels with one being
foreground and the other being background). When looking at these two voxels
for which the interpolation function needs to be chosen, the original blood volume
voxel field can be used, as this is the inverse of the hollow part of the wall voxel
field.:

– If one voxel is foreground in the blood volume voxel field, and the other voxel
is background in the blood volume voxel field, we are looking at the inside
of the wall, and the interpolation function using Hounsfield values should be
used.

– If both voxels are background in the blood volume voxel field, we are looking
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at the outside of the wall, and the interpolation function using distance field
values should be used.

4.5 VCVDT and voxel scaling

As we discussed in Section 2.4, it is crucial to account for the X/Y/Z scaling of the
CT data somewhere in the pipeline from segmentation to final wall mesh, to make
sure that the mesh is correctly sized an proportioned. For the old morphological
wall generation method, this caused problems with rounding errors when applying
the morphological operations.

For our new VCVDT wall generation method, we took a different approach. We
take the binary voxel field of the blood volume of a segmentation, and generate a
mesh from that directly. During this step, we already apply the aforementioned
scaling, so the resulting mesh is already of the correct proportions in world space.
We then take this mesh as the basis for our distance field, by generating a distance
shell from the mesh (Section 4.2). We then propagate the distance shell values using
VCVDT, until we have filled our distance field entirely. This entire distance field is
made up of voxels that are perfectly cubed (1/1/1 scaling), because the field is based
upon a correctly proportioned mesh. We can now generate binary voxel fields at any
desired offset without needing to worry about scaling, which causes the offset to be
consistent, and independent from the scaling of the original input segmentation. We
will confirm this in in Chapter 5.

We still have the limitation of integer coordinates of the distance field voxels,
so the offset binary voxel field is still blocky by nature. We can however use the
floating point distance values of the distance field for vertex position interpolation
when building meshes using Marching Cubes, to approach the actual offset very
closely. Because of this, upsampling the resolution of the distance field to decrease
the offset error caused by integer voxel coordinates is not needed, as long as we can
apply interpolation when generating a mesh from the binary field.

It is important to apply the scaling at the start of this pipeline, before the distance
field is generated. In an early version of our implementation we did not apply scaling
when building the blood volume mesh from which the distance shell is generated,
but at the end of the pipeline when generating the final wall mesh. This results in
the distance field not being proportional, with the proportions and resolution being
identical to the input segmentation voxel field. To make sure the actual distances
stored in the distance field voxels were correct, we scaled the distance vectors before
calculating their length.

If we generate offset voxel fields from distance fields that are constructed this
way, we end up with voxel fields like the ones we get for the old morphological wall
generation method (Section 2.2 and 2.4): they are incorrectly scaled, but the wall
thickness is also scaled. If we apply scaling when generating the final offset mesh
from these voxel fields, we again get offset meshes which are correctly proportioned.

A problem arises when doing this though: if the scaling is above 1 on any axis,
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there is a risk of holes when generating thin walls. If, for example, the Z-scale of
some segmentation is 2, the distance stored in every voxel in the distance field can
increase by up to 2 as well (this would occur for a surface that is aligned with the X-Y
plane in this case). If we then want to generate a wall that is less than 2 millimeters
thick, we would omit the only wall voxel that separates the inside from the outside,
which results in a hole if we subtract the original blood volume voxel field.

This is illustrated in Figure 19, where we created a binary voxel field of a sphere
with a radius of 20mm, and skewed it such that it needs a 1/1/2 scale to be correctly
proportioned. We then proceeded to generate a wall of 1.5mm thickness around
it and generate a mesh of the wall, using both our early and final implementation.
As the Z scale is 2, and the wall thickness is less then 2, we can see in Figure 19a
that holes appear as the surface becomes closer to being perpendicular to the Z axis
when using our early implementation. Walls perpendicular to the X or Y axis do not
show holes, as the X and Y scale are both lower than the configured wall thickness.

In Figure 19b we see the same 1.5mm wall around the skewed shpere being
scaled correctly using our final implementation. No holes how up here, as we
perform the scaling before generating the distance field. In Figure 19c we see a
1.5mm wall generated around a correctly proportioned sphere using 1/1/1 scaling.
In this case, the meshes generated using the early and the final implementations are
equivalent.

(a) 1/1/2 scaling, early
implementation

(b) 1/1/2 scaling, final
implementation

(c) 1/1/1 scaling

Figure 19: Comparison of 1.5mm thick walls around a sphere with different scaling,
generated using the early vs. the final implementation. Images made in MeshLab.

The voxel size for our final implementation is 1x1x1mm, which means that holes
would still appear if we want to generate walls that are thinner than 1mm. This
could be fixed by generating the distance field and resulting binary voxel fields
using a higher resolution, but this would increase computation time and memory
requirements significantly. As the final wall meshes are meant to be 3D printed, and
most printing materials do not support walls thinner than 1mm, we chose not to
implement the support for thinner walls at this time.
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4.6 Smoothing using distance fields

The distance fields we are now able to generate from segmentations can also be a
useful tool when smoothing or simplifying meshes generated from those distance
fields. The fields can be used as a baseline to compare mesh changes to. The differ-
ence between some distance field offset and some proposed new vertex position can
be seen as an error, and thus the distance field can be used to keep track of the total
error over time. This can be useful when smoothing or simplifying a mesh, to keep
the total error below some value.

We chose to look a bit closer at using distance fields for smoothing of the gener-
ated wall meshes. As the inside wall is directly based on the originally segmented
CT data, we do not want to smooth that, we only want to look at smoothing the
outside wall. Our current Marching Cubes implementation allows us to distinguish
the inside wall from the outside wall, from a binary voxel field it is given, so this
should be no problem. Smoothed outside walls can prove useful when the wall
meshes are 3D printed in a clear material, as this would provide a clearer view
of the inside. In Figure 1 we saw a 3D printed model in a clear material, and the
inside structures are somewhat visible from the outside. However, this model would
further benefit from more aggressive smoothing of the outside wall to provide an
even clearer view.

As an initial idea, we opted to apply a 3D Gaussian filter to the entire distance
field, and generate wall meshes from that. This gives us control over the amount of
smoothing via the standard deviation (commonly denoted by σ) of the Gaussian,
which determines the amount and contribution of neighbouring voxels that are
used for smoothing. Discrete Gaussian kernels can be computed on the fly via
the Gaussian function, or be generated beforehand and be hard-coded. For our
initial testing we opted for the latter, and we generated the discrete kernels using a
handy online calculator by Theo Mader[27], which also shows how wide the discrete
kernels should be to sufficiently approximate the Gaussian function.

The Gaussian has the nice property that it can be applied in succession in different
directions while still providing correct results, and we made use of this by applying
the 1D Gaussian kernel in the Z direction of our distance field first, using the result
for the Y direction, and the result of that for the X direction. The result is a distance
field that is evenly smoothed in all directions.

After that, we can then generate a zero thickness binary field from the non-
smoothed distance field, and a binary field at the desired thickness from the
smoothed distance field. Then we can subtract the two to get a hollow wall binary
field which can then be given to Marching Cubes. Both the non-smoothed and the
smoothed distance field are handed to Marching Cubes as well for interpolating
the inside wall and outside wall vertices respectively. We smoothed the distance
field with a standard deviation of 1, 2, and 3, and the resulting wall meshes (with a
configured thickness of 3.0mm) for a left atrium are seen in Figure 20. We can see
that a lot of smaller bumps are removed with a σ of 1, with a lot of bigger crevices
being smoothed out with a σ of 2. We see diminishing returns with a σ of 3, and as
Gaussians with a larger standard deviation take significantly longer to apply, we
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chose to continue with the σ = 2 setting.

(a) No smoothing (b) Gaussian with σ = 1

(c) Gaussian with σ = 2 (d) Gaussian with σ = 3

Figure 20: Comparison of different levels of our custom Gaussian distance field smoothing
applied on a 3.0mm thick wall around a left atrium. Images made in MeshLab.

Application of the Gaussian causes blurring of sharp edges, which in the case
of a 3D distance field means that sudden differences in distance are smoothed out,
with shallower crevices and peaks that are also less tall. Because we only use the
smoothed distance field for the outside wall and still use the original distance field
for the inside wall, this results in a change in wall thickness. A decrease in wall
thickness is something we need to look out for: we do not want the thickness to
go below our configured thickness, as this could cause holes. We implemented a
method for measuring wall thickness of our wall meshes (which we will discuss in
more detail in Section 5.3), and we find a minimal wall thickness of 2.167mm while
we configured the wall thickness to be 3.0mm.

We can also visualize the wall thickness, which we can see in Figure 21a. The
coloring was done as follows: a divergence of 0 from the configured wall thickness
is given a green color, which gradually turns blue, where a positive divergence of 1
or more is given a pure blue color. When the wall is thinner (a negative divergence),
the color gradually turns yellow to red, with a negative divergence of 1 or more
being pure red. We can see that the walls are thinnest on extremities of small bumps
in the surface. It makes sense that the Gaussian filter blurs these bumps, but because
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this does not happen for the inside wall, the wall thickness is decreased in those
locations.

(a) Original smoothed wall (b) Corrected thin walls

Figure 21: Comparison of wall thickness for an original and a corrected smoothed wall
(with sigma = 2) of a 3.0mm thick wall around a left atrium. Images made in MeshLab.

We performed some initial attempts to try and mitigate this problem, by compar-
ing the smoothed distance field with the original distance field. When we find that
some distance value in the smoothed field is significantly higher than the value at
the same location for the original distance field, we gradually decrease the distance
values in the original distance field for some range around the offending voxel. We
show pseudocode for our proposed solution in Algorithm 3.

Algorithm 3 Proposed logic for correcting thin walls in smoothed distance fields

1: function CORRECTTHINWALLS(origField, smoothField)
2: correctedField← origField.Clone()
3: threshold← 0.3
4: for all x, y, z in smoothField do
5: smoothVal ← smoothField[x, y, z]
6: origVal ← origField[x, y, z]
7: di f f ← smoothVal − origVal
8: if di f f > threshold then
9: range← sphereRange(x, y, z,−5, 5)

10: for all xx, yy, zz in range do
11: length← newVector3(xx− x, yy− y, zz− z).Length()
12: delta← di f f − (threshold/(0.5 ∗ length))
13: correctedField[xx, yy, zz]← origField[xx, yy, zz]− delta
14: end for
15: end if
16: end for
17: return correctedField
18: end function

We chose a threshold of 0.3 after some testing and found this to have good
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results. A bigger threshold would mean that the smoothed distance field is allowed
to diverge further from the original distance field, leading to thinner walls, and a
lower threshold might be too aggressive, as it leads to new bumps appearing on
the outside wall. Further on we see that we alter the distance value in the original
distance field, in a spherical range of 5 voxels around the offending voxel. We
alter the original distance field instead of the smoothed distance field, because
directly altering the smoothed field would lead to new sharp edges being created.
By altering the original distance field and smoothing that again afterwards, our
thickness correction is smoothed and looks a lot nicer. We alter the original distance
field in a range of 5 voxels around the offending voxel to further hide our correction.
As we get further from the offending voxel, we decrease the distance value less.

After applying our correction, we then apply the same Gaussian filter on the
altered original distance field, which results in the wall mesh shown in Figure 21b.
The minimal wall thickness has increased to 2.733mm, which is a lot closer to our
configured 3.0mm. Also, we can see from the image that the thin walls that were
apparent without the correction are now gone. This solution is not perfect though:
we also see a lot more sections of wall that are too thick. Changing the threshold and
the delta formula changes this behavior a lot, but optimal settings differ for every
input segmentation. Furthermore, it took over 5 seconds to apply the Gaussian once,
correct the thin walls, and then apply the Gaussian again. We did not test on a wide
variety of segmentations, so this method might not work well in all cases. We did
not pursue this any more as it is not the main goal of our research, and leave it as
further work.

42



4.7 Standalone implementation

Our new wall generation method was implemented in a test build of the 3mensio
software package, for further usage and polishing by the 3mensio development
team. For in depth evaluation outside of 3mensio we also built a standalone piece of
software, which can take a binary segmentation voxel field as input, and generate
wall meshes from that using both the old and the new wall generation method. A
screenshot of our testing software can be found in Figure 22. We made many things
configurable, to be able to quickly test all kinds of settings for a loaded segmentation.
Most importantly, we can set the wall thickness and change interpolation settings
for the blood volume mesh for the distance shell, and for both the inside and outside
wall of the final wall mesh.

We also built in functionality to run predefined tests on a whole folder of seg-
mentations automatically, which includes generating walls using both the old and
the new wall generation method using different interpolation settings, and meas-
uring the thickness and roughness of the generated walls. We use our standalone
testing software to perform an extensive evaluation in Chapter 5.

Figure 22: Screenshot of our standalone testing software, with a left atrium segmentation
loaded and an interpolated 3.0mm thick wall generated around it.
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5 Evaluation

Let us look again at possible use cases for wall meshes we are building here, and
can be exported from the 3mensio 3D printing module, as first established in the
introduction:

The main use cases for the exported meshes would be for doctors: They can
bring the meshes in the real world via 3D printing, and then use the 3D models
to gain a better understanding of the anatomy of a patient. This can be useful in
pre-operational planning, to explain a procedure to a patient, or even to try out if
custom-made medical devices like stents will fit.

Looking at these use cases, it is desirable that the meshes represent the imaged
anatomy as faithfully as possible. It is not really possible to compare CT data to a
surface mesh directly, as a surface mesh describes a single discrete surface, while CT
data can be interpreted in many ways. The segmentation step determines how the
CT data is interpreted and generates the binary voxel mask, and surface meshes are
based directly on that binary voxel field. As we did not build or change any of the
segmentation algorithms implemented by 3mensio, we do not test this.

We can more reliably look at the properties of the generated walls around the
imaged original blood volumes. First, we can measure how close their thickness
is to the desired wall thickness. We will take a look at this in section Section 5.3.
We can also measure the roughness of the generated meshes. Heart structures and
surrounding vessels are mostly soft tissues with a rather smooth appearance. This is
in stark contrast with meshes that are generated without any interpolation, as those
have a rough, blocky appearance. We will look at the improvement in smoothness
when interpolation is applied by measuring the roughness in Section 5.4.

Finally, we will take a look at the performance of all steps that need to be
performed to go from binary blood volume voxel field to wall mesh for both methods
in Section 5.5. But first, we will give more details on the data used for testing in
Section 5.1, and discuss the scaling of the data in Section 5.2.

5.1 Input data for testing

Our method of generating offset wall meshes is very general in the sense that it can
take any binary voxel field as input, and generate walls at any offset from that. If
we want to compare our method with 3mensio’s method however, we need to use
binary fields that come from the 3mensio software. 3mensio has quite a big set of
anonymized CT data to choose from, and in the end we chose 30 CT scans as test
input, spread evenly across 3 quality groups according to their Z scale: high (z-scale
0.5 or lower), medium (z-scale around 1), and low (z-scale 2.0 or higher). The Z
scale can be seen as inverse of the resolution on the Z axis: the higher the Z scale,
the more space there is between two Z slices of the CT data. CT scans are often
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made with a higher Z scale in the context of the heart, because the heart is always
moving. Scans with a high Z scale can be performed very quickly, which leads to
less warping in the resulting CT data. This however also leads to lower quality data,
which may impact the effectiveness of 3mensio’s old and/or our new wall mesh
generation method.

The 3mensio software package is able to segment several different structures
from CT data, and we chose three segmentation options for our testing: aortic root,
left atrium, and vessel. Segmentations of the aortic root have a relatively simple
topology, and thus are a baseline for which wall mesh generation should not be any
problem. Segmentations of the left atrium are a lot more complex and may pose
more of a challenge for either wall generation method. For the vessel segmentation
option, the 3mensio software looks for all connected vessels, starting from some
selected source vessel, and using some threshold range. We chose the descending
aorta and a loose cutoff threshold, which leads to the software to segment almost all
connected vessels that are present in the CT data. These segmentations are thus very
large, and also contain a lot of small and thin vessels for which it may be difficult to
generate walls.

Due to some of the selected CT scans containing just the heart area, and hardly
any other structures and vessels around it, it was not possible to create sufficiently
complex vessel segmentations for some of the CT scans. This leads to the final
amounts of input segmentations for every configuration shown in Table 4.

Quality Z-Scale Aortic Roots Left Atriums Vessel Groups
Low High 10 10 8
Medium Medium 10 10 4
High Low 10 10 3

Table 4: Amount of segmentations for each combination of Z scale and
segmentation method to be used for testing.

We compared three wall thickness settings for each of these segmentations:
1.5mm, 3.0mm and 5.0mm. We exported the original blood volume segmentation of
all these segmentations first (as 3D binary voxel fields), as well as the CT Hounsfield
values of an area a little bigger than the segmentation (to use for interpolation). Then,
we generated offset binary voxel fields from each segmentation using 3mensio’s
morphological method at 1.5mm, 3.0mm and 5.0mm, and export those as well. We
then used these voxel fields in our own custom-built testing software to generate
meshes from these voxel fields (subtracting the blood volume field from each of the
offset fields to generate hollow voxel fields).

To be able to test our VCVDT offsetting method, we needed only the blood
volume voxel fields, from which we built a mesh that was then used as input for
our distance shell computation and VCVDT propagation. We then generated offset
meshes at 1.5mm, 3.0mm and 5.0mm directly from the distance field.

As described above, the input voxel fields differ in quality (X/Y/Z scaling). To
make sure all meshes are of correct proportions, some scaling needs to be done
before we arrive at the final wall mesh. We discuss this in more detail in Section 5.2.
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Mesh generation using Marching Cubes can be done with or without interpola-
tion for the vertex positions, and we wanted to test the effectiveness of interpolation
for both the old and the new wall generation method. The interpolation methods
that are available for each method were discussed in Section 4.4.

This ultimately led us to generate four wall meshes for each segmentation and
for each wall thickness, two meshes for both the old and the new method: one
without any interpolation, and one with all available interpolation options applied.
For the old method, this means that for the inside wall, we applied Hounsfield
value interpolation for all vessel segmentations (last column in Table 4), as only this
segmentation method uses simple thresholding to obtain the segmentation, and can
thus benefit from this interpolation method. We used Gaussian interpolation for all
other segmentations. For the outside wall, we applied Gaussian interpolation for all
segmentations. Even though Gaussian interpolation was not enabled for outside
walls by 3mensio, initial testing on our side saw it working quite well.

For our new wall generation method, we first generated the blood volume mesh
using the same interpolation method that was used for the inside wall using the
old method (i.e. Hounsfield interpolation if available, or Gaussian otherwise). This
mesh was then used to compute the sub-voxel accurate distance shell, which was
then fed to the VCVDT propagation method. We will refer to this interpolation step
as the distance shell interpolation method from now on. When generating the wall
meshes from the distance field, we used the distance field values themselves for
interpolation, for both the inside and outside wall.

This combination of input segmentations, multiple wall thickness settings and
interpolation settings results in an output of about 900 wall meshes, which should
give quite a good understanding of how the old and new wall generation methods
compare.

5.2 Test data scaling

In Table 5, we list the average X/Y and Z scale for each of our three groups of
input test data. We group X and Y together, as they are the same for all of our
segmentations (and this is typically the case for all CT data). The lower the scale
on some axis, the smaller the details that can be captured on that axis. We also
list the multiplication of X*Z, which sheds some light on the overall size increase
or decrease of triangles when we scale them to world coordinates. The Z-bias (Z
divided by X) shows the proportion of the Z axis when compared to the X/Y axis.
The closer this value is to 1, the closer the shape of the voxels is to a perfect cube.

As can be seen from the table, the average X/Y scale of the chosen input data
does not vary a lot, though we see the lowest X/Y scale for the high quality test
group. We see a X/Y scale below 1 for all test groups, which means details smaller
than 1mm can be captured on the X/Y plane. When we look at the Z axis, we see
a very high scale for the low quality test group, which means there are large gaps
between the imaged slices. These scans most likely do not have great detail on the Z
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axis for this reason. For both the medium and high quality test group, we see a Z
scale below 1, with the high quality test group even being below 0.5.

Quality Avg X/Y Avg Z Avg X*Z Avg Z-bias
Low 0.625 3.233 1.975 5.654
Medium 0.648 0.872 0.567 1.594
High 0.483 0.400 0.198 0.834

Table 5: Some averages for each quality-set of input data:
X/Y and Z scale, X*Z scale, and Z-axis bias.

Looking at the X*Z scale, we see a value of almost 2 for the low quality test
group. This means that the area of triangles generated from this set of data will
be on average 2 times bigger than the voxels in the original segmentation. For the
medium and high quality test groups we find X*Z scales below 1, and for the high
quality test group it is even below 0.2: meshes generated from this test group will
contain very small triangles, thus allowing to show a lot of detail.

When we look at the Z-bias, we find a very high value for the low quality test
group. The already high Z scale is magnified by the X/Y scale below 1, which
will cause meshes generated from this test group to contain triangles that are very
skewed on the Z axis. The medium quality test group has a Z bias that is a lot closer
to 1, with the high quality test group being the closest.

Across the board, the high quality test group has the best stats, with the smallest
scaling on all axes, and the least skew for triangles generated from the data. The
small size of the triangles will however cause the resulting meshes to take up a lot
of storage.

5.3 Wall thickness

The wall meshes that are generated by 3mensio’s original morphological method
do not exhibit uniform wall thickness, as was already seen in Figure 17. Uniform
wall thickness is desirable, as this makes the outside walls resemble the inside blood
volume structure more closely. Furthermore, 3D printed models need to have a
certain minimum wall thickness to be structurally stable, depending on the material.
When walls are not uniform, thicker walls need to be generated in the hope that the
minimum wall thickness is not too thin. This would also lead to a more expensive
printing job, as the wall is also thicker than needed in some places. A clear printing
material may be used to make the inside of a model more visible, and in that case
it would be desirable to make the walls as thin as possible, making a uniform wall
thickness even more important.

When generating meshes, we give every vertex a flag denoting whether it is on
the inside or the outside wall. This allows us to measure the wall thickness for every
pair of vertices: we loop over all outside wall vertices, and for every vertex we then
look for the closest inside wall vertex. We then measure the distance between the
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two, and save that as the distance between that vertex pair. To speed up this process,
we put all inside wall vertices in a spatial grid, so for every outside vertex we need
to compare only inside wall vertices in surrounding grid cells.

After we are done with this, we can use this thickness data to compute the
minimum, maximum and average wall thickness for the mesh. We can also visualize
the distribution of the thickness via a histogram, which gives us more information
about thickness uniformity. Finally, we can color outside wall vertices depending
on the divergence from the configured wall thickness, to shed light on where thicker
or thinner wall sections are located.

Four of such colored meshes, comparing the wall thickness for the old and the
new wall generation method, can be seen in Figure 23. For both wall generation
methods we see two meshes, one without any interpolation, and one with interpola-
tion for both inside and outside wall applied. The coloring was done as follows: a
divergence of 0 is given a green color, which gradually turns blue, where a positive
divergence of 1 or more is given a pure blue color. When the wall is thinner (a negat-
ive divergence), the color gradually turns yellow to red, with a negative divergence
of 1 or more being pure red.

(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 23: Comparison of the distribution of wall thickness of a 3.0mm thick wall
around a left atrium. Images made in MeshLab.

It can clearly be seen here that the old morphological method generates walls that
are a lot thicker than the configured wall thickness of 3.0mm, with just some small
patches of the wall being the right thickness. Application of interpolation results
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in a less blocky appearance, but walls that are even a little bit thicker than with no
interpolation applied. Our new method utilizing distance fields is able to generate
walls that almost exactly match the configured wall thickness. With no interpolation
applied we see deviating thickness on the sharp edges which are caused by the
lack of interpolation, while for the mesh with interpolation applied, we only see a
few small patches having thicker walls than desired. This large difference in wall
thickness between the two methods can be explained by the method that the old
method uses to generate its offset voxel fields. As the offset can only be incremented
in steps of one voxel at a time, there will almost always be a significant deviation
from the desired thickness. This offset is rounded up to make sure no holes appear,
but this also causes overshooting of the thickness. The method is described in more
detail in Section 2.4. We will compare wall thickness between segmentations of
different quality and type in the coming sections.

To get a broader sense of the performance of each wall generation method, we
first created wall thickness histograms for each wall mesh. We grouped all outside
wall vertices of each wall mesh by their thickness into 100 bins from 0.0 to 9.9mm
(with one extra final bin being the overflow bin starting at 10.0mm), each bin being
0.1mm in size. We then converted the frequency data to percentages by dividing each
bin’s frequency by the total amount of outside wall vertices. This then allowed us to
combine these histograms of all wall meshes in several interesting ways. Combining
all wall thickness histograms for 3.0mm walls for the old and the new method,
either with or without interpolation, results in the four histograms shown in Figure
24. This gives us a view of the overall average wall thickness distribution for all
segmentations, of both wall generation methods.

(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 24: Histograms comparing the distribution of wall thickness of the old wall
generation method vs. the new method, at 3.0mm configured wall thickness.
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It becomes clear from these histograms that the old wall generation method
produces walls that are not at all uniform in thickness. The wall thickness is spread
out almost like a normal distribution across a very wide range, with the peak being a
lot higher than the desired 3.0mm. One positive thing to note is that the percentage
of walls that is below the configured wall thickness of 3.0mm is almost zero. The
average wall thickness however is 4.56mm without interpolation, and even 4.74mm
with interpolation. Gaussian interpolation is mostly applied here, which causes
sharp edges to be smoothed out, but it also seems to cause an increase in overall
wall thickness.

When looking at the new wall generation method, we can see that the wall
thickness is far more uniform on average. With no interpolation applied, we can
see that quite a significant percentage of walls is below the desired thickness of
3.0mm however, while the average is still 2.98mm. It makes sense that a lack of
interpolation always causes some deviation from the desired wall thickness. The
old method rounds up the generated wall voxels to make sure that walls never fall
below the configured thickness, while our new method does not do this. This can
be a good practice if interpolation is not always available, if a guaranteed minimal
wall thickness is important. For our new method however, we can always use the
distance field for interpolation, and we can see that in this case, the wall thickness
almost never falls below 3.0mm. The average wall thickness is 3.1mm, which is
also very close to the desired thickness. The thickness is very uniform overall, with
the majority of all walls being almost exactly of the desired thickness. A small
percentage of walls is thicker than the desired thickness, which is less of a problem
than walls being too thin if we want to guarantee a minimal wall thickness.

It is quite difficult to closely compare multiple histograms visually, which is
why we generated box plots from the histogram data as well. We could use the
histograms to compute the three quartiles needed, and used the minima and maxima
that we recorded separately. The grey boxes in each box plot show the total range
from the first to the third quartile, while the vertical line that splits the boxes shows
the median. The whiskers show the minima and maxima. In some cases, the
whiskers are so long that they are hard to visualize directly. In those cases, we cut
off the whisker and put its value on the border of the box plot. Finally, we added
the average wall thickness as well, which is visualized as the small black circle in
each box plot. Box plots comparing the old and the new wall generation method for
the three chosen wall thickness configurations are shown in Figure 25.

The same overall picture appears for each of the three tested thickness configura-
tions: the new wall generation method generates walls that are more uniform and
are a lot closer to the configured wall thickness.

What becomes clear here for the old method, is that the generated walls become
less uniform when thicker walls are generated, as can be seen from the increasing
width of the boxes. This could be explained by the nature of the morphology opera-
tions that are performed to generate the walls. Most importantly, the offset binary
field is generated in a single dilation pass, which means that a larger structuring
element is used when a thicker offset is wanted. Because the structuring element
that is used is cube-shaped, this leads to an increased deviation from the desired
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wall thickness when thicker walls are generated, especially at wall segments that do
not align with the structuring element.

For the new wall generation method, we can see that the thickness of the wall
has almost no effect on the uniformity of wall thickness. Again we can see that
adding interpolation into the mix here further increases uniformity, and this is the
case for all tested wall thickness configurations.

We see some very high maximum wall thickness values across the board. This is
likely due to the fact that when generating walls, it is possible for some structures to
touch and merge into one thick structure. This is more likely to happen for complex
structures, like is the case for our vessel group segmentations, as we will see later. It
is also clear that these are outliers, as the boxes and averages show.

(a) 1.5mm wall thickness (b) 3.0mm wall thickness

(c) 5.0mm wall thickness

Figure 25: Box plots comparing the distribution of wall thickness of the old wall generation
method vs. the new method, when configured at three different wall thicknesses.

When putting all segmentations in three groups depending on their quality (as
shown in Table 4) we can generate three box plots per wall generation method, and
compare them to find out what influence the segmentation quality has on the final
thickness of generated walls. When doing this for a configured wall thickness of
3.0mm, the plots in Figure 26 are the result.

The results here show what we discussed earlier (in Section 2.4): for the old
wall generation method, walls generated from lower quality segmentations are
less uniform than those generated from higher quality segmentations. This effect
is exaggerated when interpolation is applied. For low quality segmentations, the
physical size of the voxels is bigger. As the Gaussian interpolation that is mostly
applied covers a fixed amount of voxels, the smoothing effect of the Gaussian is
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bigger for low quality segmentations, also causing the increased spread between
minimum and maximum thickness.

For our new wall generation method we do not see this behaviour: wall thickness
is independent from scaling, as we explained in Section 4.5. We do see higher
maxima for lower quality segmentations when interpolation is applied, but these
outliers are few and far between, as Q1, the median and Q3 are almost identical
across the board. When not applying interpolation we see some counterintuitive
high maxima for high and medium quality segmentations. These are caused by
a single segmentation in each quality group skewing the maxima metric a bit,
most segmentations in each quality group show maximum wall thickness around
4 to 4.5mm. The outliers can be caused by certain structures touching in the non-
interpolated case, but decoupling again when interpolation is applied.

(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 26: Box plots comparing the distribution of wall thickness of each wall generation
method, grouped by segmentation quality, at 3.0mm configured wall thickness.

We also grouped all segmentations depending on their segmentation type (as
shown in Table 4), to find out if the complexity of the segmentation has any influ-
ence on the thickness of generated walls. These plots (again for a configured wall
thickness of 3.0mm) are shown in Figure 27.
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(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 27: Box plots comparing the distribution of wall thickness of each wall generation
method, grouped by segmentation type, at 3.0mm configured wall thickness.

We can see here that the old wall generation method is very robust when it
comes to different complexities of segmentations, with almost identical performance
across all three segmentation types. When interpolation is applied, we see some
outliers as indicated by the whiskers, but overall the wall thickness is comparable
across all segmentation types.

The new wall generation method shows increasing maxima if segmentation
complexity increases. This makes sense, as offset surfaces generated from complex
structures have a higher chance of touching each other, causing localized thick pieces
of wall. The minima do not change much, which is desirable, as deviation to the
downside might cause holes or problems with minimal required thickness for stable
3D printing.

5.4 Roughness

Next, we will evaluate the roughness of wall meshes for the different wall generation
methods. This roughness is especially apparent on outside walls generated by the
old morphological approach, because no interpolation is being used there. The
blocky appearance is not faithful to the original floating point CT data at all, so we
want to minimize the blocky appearance. Another reason smoother outside walls
are desired, is to allow a clearer view of the inside when using a translucent printing
material.

We are able to measure the roughness of a mesh by looking at the neighbouring
face normal vectors that we store for every vertex. When comparing each of the
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neighbouring face normals and picking the maximum angle, we now know how
sharp the sharpest angle between faces is at each vertex. We can use this as a
roughness measure for the entire mesh, by computing the minimum, maximum,
and average angle out of all the vertices’ sharpest angles. By putting this data in a
histogram, we can also get insight into the distribution of the roughness. Finally, we
can also give each vertex a color depending on the sharpest angle, which tells us
where on the mesh the roughest parts are located.

Four of such colored meshes, comparing the roughness for the old and the new
wall generation method, can be seen in Figure 28. For both wall generation methods
we see two meshes, one without any interpolation, and one with interpolation for
both inside and outside wall applied. The coloring was done as follows: an angle of
0 degrees is given a pure green color, which gradually turns to yellow and red as
the angle increases. An angle of 45 degrees or more is given a pure red color.

(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 28: Comparison of the distribution of outside wall roughness of a 3.0mm thick wall
around a left atrium. Images made in MeshLab.

It becomes immediately clear from these images that interpolation has a huge
effect on the roughness of the meshes. When comparing the old and the new wall
generation method without interpolation, we see a combination of flat planes (green
color) connected by sharp edges (colored red), which makes sense as we are working
with a 3D voxel grid here, which is by definition blocky. The flat planes appear
smaller in size for our new method. This suggests that the actual surface of the
segmentation is more closely followed here, as flat planes hardly appear in the
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human body.

When we look at the meshes with interpolation applied, we see a smaller differ-
ence between the old and the new wall generation method. When looking closely,
the wall generated using the old method looks a bit more rough, even though the
coloring would suggest otherwise. This is due to the difference in resolution of the
voxel grids on which the meshes are based. As we discussed in Section 4.5, our
new method always builds the final wall meshes from a cubed grid with 1mm sized
voxels. The old method however uses the original resolution of the segmentation (as
discussed in Section 2.4), which is (0.341, 0.341, 1) in the case of the segmentation
used here. This means the mesh vertex coordinates are significantly scaled down on
the X and Y axis. Because of this, angles which appear quite sharp actually consist
of multiple triangles when viewed up close, with the angle between each triangle
not being that sharp. This of course depends on the resolution and scaling of the
input, and can differ a lot between different segmentations.

Just as we did for the wall thickness measurements, we also generated roughness
histograms for each wall mesh. We want to look at the inside and outside wall
separately, so we group the roughness measurements in this manner first. We then
group the vertices of each wall by their roughness (i.e. maximum angle between
the vertex and neighbouring vertices) into 100 bins from 0 degrees to 99 degrees
(with one extra final bin being the overflow bin starting at 100 degrees), each bin
being 1 degree in size. We then converted the frequency data to percentages by
dividing each bin’s frequency by the total amount of (inside or outside) wall vertices.
This then allowed us to combine all histograms for either inside or outside walls in
several interesting ways.

5.4.1 General

Combining all inside wall roughness histograms for 3.0mm walls for the old and
the new method, either with or without interpolation, results in the four histograms
shown in Figure 29. This gives us a view of the overall average roughness distribu-
tion of inside walls for all segmentations, of both of the wall generation methods.
We expect the inside wall to be independent from the configured wall thickness, as
this is always generated from the same blood volume segmentation. We confirmed
this by combining the histograms in the same manner for 1.5mm and 5.0mm walls,
the resulting histograms were exactly the same.
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(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 29: Histograms comparing the distribution of inside wall roughness of the old wall
generation method vs. the new method, at 3.0mm configured wall thickness.

When comparing the old and the new wall generation method without interpol-
ation, we find a very high percentage of 0 degree vertex angles for both methods.
Because the mesh surface closely follows the binary segmentation mask when no
interpolation is applied, the wall surfaces in this case consist of flat planes that are
aligned with the x, y or z axis, connected by sharp edges. These planes consist of a
large amount of triangles, as Marching Cubes does not merge in-plane triangles on
its own, and this is supported by the high percentage of 0 degree vertex angles in
these histograms.

When we look at the other peaks in the histogram for the new method without
interpolation, we find just a few high peaks. These illustrate the sharp edges
between the flat planes described earlier, and the difference in measured maximum
angles is caused by the different ways in which vertices can be interconnected. The
occurrence of non-zero maximum angles is a lot more spread out when looking at
the old method’s histogram. This is because the histogram is a combination of all
inside walls that are generated for segmentations with differing resolutions and
scales. As generated triangles get more skewed when the scaling of the segmentation
is not perfectly cubed, the angles between the triangles differ also. We do not see
this behavior for the new method, because these wall meshes are always generated
from a binary voxel grid that is already cubed (see Section 4.5). This results in just a
few ways in which vertices can be interconnected across the board.

The histograms for inside walls with interpolation applied show a different
picture: the 0 degree planes have mostly been replaced by vertices that have a small
angle between them, which means the interpolation is working. We can still see a
peak at 0 degrees in the histogram for the old method with interpolation applied,
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which may mean that interpolation is not working correctly in some cases. This is
supported by the fact that some other peaks also appear, and these peaks align with
the peaks in the histogram for the old method without interpolation applied. Note
though, the difference in range on the y-axis for the histograms with interpolation
when compared to those without interpolation, the percentage of 0 degree planes is
still a lot lower when interpolation is applied. Most segmentations use a Gaussian
for interpolation of the inside wall, and the kernel used for this may not be big
enough to smooth the surface in all cases. A bigger kernel would fix this, but would
also cause a lot more loss in detail. We can see a small peak at 100 degrees for both
the old and the new method with interpolation applied, these are caused by very
sharp edges that occur in small crevices in the surface. These crevices become more
pronounced when interpolation is applied, so the edges are also more pronounced,
and thus sharper.

(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 30: Histograms comparing the distribution of outside wall roughness of the old wall
generation method vs. the new method, at 3.0mm configured wall thickness.

We performed the same comparison on outside walls, and the resulting histo-
grams are shown in Figure 30. When we look at the old wall generation method
and compare the outside wall histogram without interpolation (Figure 30a) with the
inside wall histogram (Figure 29a), we see that they are very similar. An interesting
observation is that the percentage of 0 degree vertices is even higher for outside
walls than it is for inside walls. This makes sense, as the old wall generation method
uses single-pass dilation with a cube-shaped structuring element to generate binary
wall voxel fields. This means that the flat planes we discussed earlier get larger
when thicker walls are generated, which contributes to the higher percentage here
when compared to inside walls (0.0mm "thickness" vs 3.0mm thickness). When
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looking at the roughness for all tested wall thicknesses for the old wall generation
method, we would then expect an increase in 0 degree vertices when thickness
increases, and will confirm this a bit later on in this section.

When looking at the histogram for the old wall generation method with inter-
polation (Figure 29c) we see a much lower amount of 0 degree vertices, but still
a significant peak. This has the same reason as we explained for the inside walls
with interpolation, being the limited size on which the Gaussian kernel used for
interpolation operates. We see a very nice graph otherwise, with a very low amount
of sharp edges.

When we take a look at the outside wall histograms for the new wall generation
method and compare them to the histograms for the inside walls, we can see that
they are quite similar. When comparing the histograms without interpolation
applied (Figure 29b and Figure 30b) we can see peaks in the exact same positions,
which is expected because we are working with cube-shaped voxels in both cases,
and thus with the same possible angles between triangles. We can also see that the
percentage of 0 degree vertices is higher for the outside wall than for the inside wall,
for which the same reasoning applies as for the old wall generation method.

When comparing the histograms with interpolation (Figure 29d and Figure
30d), we see similar histograms for both the inside and the outside walls. However
note that while both histograms have their peaks around 10 degrees, the histogram
for the outside walls is more condensed, and quickly drops to zero as the angle
increases. Because the outside walls are generated outwards from the inside walls,
the outside walls have a bigger area to cover. Combine this with the fact that surface
triangles are the same size for both walls, as they are generated from the same
distance field and thus have the same resolution and scaling, and we can establish
that the outside walls consist of more triangles than the inside walls. This then leads
to the conclusion that the angle between outer wall triangles must be lower overall,
and this is supported by the histograms. The peak at 100 degrees is also a lot less
pronounced for the outside walls when compared to the inside walls, and this can be
attributed to the fact that small crevices are being filled up in the offsetting process,
removing a source of sharp edges. Overall, the accumulative percentage of angles
over 20 degrees is 37.7% for inside walls, while it is just 14.6% for outside walls.

We will now look more closely at the roughness of the outside walls of each
wall generation method, by grouping them in different ways. Just as we did when
evaluating wall thickness, we generated box plots from the histogram data so we
can compare their values side by side more clearly. A roughness value of zero is by
far the most occurring, as seen before in the histograms. To prevent those values
from dominating the box plots, we chose to omit them, and mention the percentage
of zero roughness vertices separately.

5.4.2 Influence of wall thickness

Box plots comparing the old and the new wall generation method for the three
chosen thickness configurations are shown in Figure 31. What we can see right
away is that wall thickness does not have a drastic influence on wall roughness, as
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the box plots for each wall generation method show only small differences. Looking
at the old wall generation method without interpolation (Figure 31a) we see almost
identical plots for each wall thickness configuration, with a very slight decrease
in roughness as wall thickness increases. When we look at the old method with
interpolation applied (Figure 31c) we also see a very slight decrease in roughness as
wall thickness increases, but the roughness is a lot lower overall.

(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 31: Box plots comparing the distribution of outside wall roughness of the old wall
generation method vs. the new method, grouped by wall thickness.

Looking at the box plots for the new wall generation method without interpola-
tion, we again see almost identical plots for all thickness configurations, with the
only noticeable difference being the very slight decrease in average roughness as
wall thickness increases.

The plots for the new wall generation method with interpolation are influenced
the most with changing wall thickness. We find the same maximum roughness for
all thickness configurations, but here we see lower averages and quartiles as wall
thickness increases. This suggests that very high roughness occurs less when wall
thickness increases. The overal decrease in roughness makes sense when thinking
about the simple example of a small and a large sphere: for the larger sphere, the
curvature at any point will be lower than for the smaller sphere.

We see a wider range of roughness values for both wall generation methods
when interpolation is applied. As interpolation causes vertex positions to vary a
lot, the angles between them can also vary a lot more. When looking at the plots
without any interpolation, we see a wider range of roughness values for the old
method, as more angles between triangles are possible here because of differing
resolution and scaling between segmentations. For the new method, all walls are
generated from a cubed grid with 1mm sized voxels, so here a lot less variability
occurs.
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In Table 6, we collected the percentage of low and high roughness wall vertices
for each wall generation method and thickness, both including and excluding zero
roughness vertices. First, we can see that outside walls generated using the old wall
generation and the new wall generation method without interpolation (Table 6a
and 6b) contain a large amount of zero roughness vertices, but no other vertices
with a roughness below 1. This supports the data seen earlier, and the theory that
outside walls generated without interpolation consist of axis-aligned planes which
are connected by sharp edges. As we expected, the percentage of zero roughness
vertices increases as wall thickness increases, due to an increase in the size of the
axis aligned planes, with them still being made up of the same size triangles.

When looking at the percentage of high roughness vertices (max angle higher
than 45 degrees) including zero roughness vertices, we see that this decreases as wall
thickness increases, by almost the same amount as the zero roughness percentage
increases. This would suggest that the actual amount of sharp edges is not changing
much, only the size of the zero roughness planes between them. To confirm, we
also measured the percentage of high roughness vertices excluding zero roughness
vertices, and here we find a percentage that decreases a lot less with increasing
thickness, but it still decreases by a small amount. This is most likely due to crevices
being filled up as thickness increases, leading to zero roughness planes connecting
and less sharp edges being needed.

1.5mm 3.0mm 5.0mm
% exactly 0 47.028 50.838 54.833
% < 1 excl. 0 0 0 0
% > 45 incl. 0 33.619 30.877 28.065
% > 45 excl. 0 63.818 63.189 62.503

(a) Old method without interpolation

1.5mm 3.0mm 5.0mm
% exactly 0 37.464 39.619 42.187
% < 1 excl. 0 0 0 0
% > 45 incl. 0 34.007 32.113 30.162
% > 45 excl. 0 54.212 53.109 52.101

(b) New method without interpolation

1.5mm 3.0mm 5.0mm
% exactly 0 6.635 10.616 15.503
% < 1 excl. 0 2.782 3.540 4.288
% > 45 incl. 0 3.234 2.562 1.979
% > 45 excl. 0 3.513 2.914 2.373

(c) Old method with interpolation

1.5mm 3.0mm 5.0mm
% exactly 0 0.722 0.598 0.450
% < 1 excl. 0 1.109 0.874 0.684
% > 45 incl. 0 4.242 3.174 2.506
% > 45 excl. 0 4.262 3.188 2.514

(d) New method with interpolation

Table 6: Tables showing the percentage of outer wall vertices that are 0, below 1, or above
45 degree roughness (both including and excluding 0), for each wall generation method.

Next, we will look at the outside wall roughness for both methods with interpol-
ation applied (Table 6c and 6d). Here we find drastically different numbers when
compared to the cases where no interpolation is applied, with lower percentages
for both low and high roughness. The outside wall surface generated here is not
limited by the resolution of the binary voxel field (as would be the case without
interpolation). This results in a comparatively very small amount of zero roughness
vertices, with some vertices also having a roughness between 0 and 1.
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When we look at the old method with interpolation applied (Table 6c), we see
that the amount of zero roughness vertices increases significantly. This is due to
the limited kernel size of the Gaussian being used for interpolation here. The zero
roughness planes become larger when thicker walls are generated, and it seems the
size of the Gaussian is not sufficient to entirely smooth this away. We also see a
decrease in high roughness vertices for thicker walls, which is most likely due to
more crevices being filled up in the case of thick walls.

Finally we look at our new all generation method with interpolation (Table 6d).
As we saw in the histogram (Figure 30d) and box plots (Figure 31d), we see a steady
increasing percentage of vertices with increasing roughness, with the peak being
around 10 degrees. The box plots show a slightly lower median and average for
thicker walls as expected, together with a quicker drop in percentage for higher
roughness values (illustrated by the smaller Q3 box for thicker walls). Our table
here also supports this, as we see a decrease in high roughness vertices as thickness
increases. The percentage of low roughness vertices also decreases, so we find
roughness values in a tighter range as wall thickness increases. This means some
loss in detail occurs, but this is to beexpected when generating thicker walls.

5.4.3 Influence of segmentation quality

Next, we grouped the segmentations by their quality (as shown in Table 4), and
generated walls at 3.0mm, to find out what influence the segmentation quality has
on outside wall roughness. The resulting box plots are shown in Figure 32, and the
accompanying tables with percentages for low and high roughness vertices can be
found in Table 7.

For the old wall generation method without interpolation (Figure 32a), we find
a much wider spread of roughness values when segmentation quality is low. This
could be explained by the scaling of low quality segmentations, as this varies quite
significantly (Z-scale is between 2 and 5 for the low quality set, with X/Y scaling
between 0.5 and 1). This causes the proportions of the resulting wall mesh triangles
to vary wildly, and this then results in a wide variety of possible angles between
triangles, which leads to the wide spread of roughness values we see here. The
average roughness (denoted by the black circle) is also significantly higher for
low quality segmentations, which can be attributed to this same skewness of the
wall mesh triangles generated from these segmentations. As this skew is by far
the strongest on the Z-axis when compared to the X/Y axes, some edges are a lot
sharper, as a high Z distance is covered by these triangles while not a lot of X/Y
distance is covered. This effect was discussed in more detail in Section 2.2.

Our new wall generation method shows identical performance across all quality
groups, as seen in (Figure 32b). As all wall meshes generated using our new method
are based upon a cubed grid with 1mm sized voxels, this is to be expected.

When applying interpolation (Figure 32c and Figure 32d), we see that the old
method shows higher roughness when the segmentation quality is low. The reason
for this is the same skewness of triangles that is by far the highest for low-quality
segmentations (see Section 5.2), and even Gaussian smoothing cannot fix this com-
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pletely. Our new wall generation method shows a very consistent image again. We
see a slightly lower roughness for the high-quality segmentations, for which the
cause is not immediately clear, but is likely due to small differences in the imaged
structures selected for each quality group.

(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 32: Box plots comparing the distribution of nonzero outside wall roughness of each
wall generation method, grouped by segmentation quality, at 3.0mm wall thickness.

The percentages of low and high roughness wall vertices for each wall generation
setting are shown in Table 7. Starting with the old wall generation method without
interpolation (Table 7a), we see the highest percentage of zero roughness vertices for
the low-quality group. The old method scales the generated walls when generating
the final mesh, and thus the amount of scaling has an impact on the size of the zero
roughness planes. For low resolution segmentations this scale is the most extreme,
especially on the Z axis (see Table 5), and this is the reason for the high percentage of
zero roughness vertices here. We also see a decrease in high roughness vertices, but
only when we exclude zero roughness vertices. This means the higher percentage of
zero roughness vertices for the low-quality group is not the reason for the higher
percentage of high roughness vertices we see there. The skewness of triangles is by
far the highest for the low-quality segmentations, which results in a lot more sharp
angles between triangles.

Looking at our new method without interpolation (Table 7b) we see a lot more
consistency. All measured percentages increase slightly as the quality of segmenta-
tions increases. The reason for the increase in zero roughness vertices is not clear,
and is likely due to small structural differences between the chosen segmentations
for each quality group. The increase in high roughness vertices can be explained by
the fact that more small details can be embedded in high resolution scans, which
would cause some increased roughness.

When we apply interpolation using the old method (Table 7c), we again see the
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limitation of the Gaussian kernel used for smoothing. As we described before, the
size of the zero roughness planes is the largest for the low resolution group, and it
seems the size of the Gaussian kernel is not sufficient to smooth that out entirely:
the medium resolution group shows a lower percentage of zero roughness vertices.
For the high resolution group we see a slight increase again. Even the physical
size of the zero roughness planes is not bigger here, the amount of triangles that
make up the planes is a lot higher because of the lower than 1 scaling for these
segmentations. This is again too much for the Gaussian to smooth out entirely. We
see a significant decrease in high roughness vertices as the quality of segmentations
increases, which is not what we would expect as higher quality segmentations
contain more small details leading to higher roughness. The higher percentage of
high roughness vertices for the low quality group is most likely due to some high
roughness vertices of the non-interpolated case not being smoothed away entirely,
as we found a very high percentage of high roughness vertices there.

Finally we look at our new method including interpolation (Table 7d). The
differences between the different quality groups is not immediately clear here, as
we would expect consistent performance. It is true that the binary voxel fields
from which the final wall meshes are generated are all consist of 1mm sized cubed
voxels, but the distance fields used to generate these binary fields are still ultimately
based on meshes that are generated from the unscaled segmentations. Even though
interpolation is applied for those meshes, we still see skewedness of triangles
coming into play there. When we compare percentages here to the old method with
interpolation (Table 7c), we see the same pattern: the lowest percentage of zero
roughness vertices for the medium quality group, and a decrease in high roughness
vertices as quality increases. The differences are a lot less extreme for our new
wall generation method though, so the final wall meshes are more consistent in
appearance across the different quality groups.

LowRes MedRes HiRes
% exactly 0 54.275 48.365 49.875
% < 1 excl. 0 0 0 0
% > 45 incl. 0 31.831 31.424 29.377
% > 45 excl. 0 70.002 60.988 58.576

(a) Old method without interpolation

LowRes MedRes HiRes
% exactly 0 38.895 39.463 40.497
% < 1 excl. 0 0 0 0
% > 45 incl. 0 31.367 32.647 32.325
% > 45 excl. 0 51.176 53.852 54.296

(b) New method without interpolation

LowRes MedRes HiRes
% exactly 0 13.445 7.869 10.533
% < 1 excl. 0 3.034 3.749 3.838
% > 45 incl. 0 4.286 2.261 1.139
% > 45 excl. 0 5.039 2.441 1.261

(c) Old method with interpolation

LowRes MedRes HiRes
% exactly 0 0.639 0.245 0.910
% < 1 excl. 0 1.171 0.729 0.722
% > 45 incl. 0 3.988 3.135 2.391
% > 45 excl. 0 4.016 3.146 2.402

(d) New method with interpolation

Table 7: Tables showing the percentage of outer wall vertices that are 0, below 1, or above
45 degree roughness, grouped by segmentation quality, at 3.0mm wall thickness.
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5.4.4 Influence of segmentation type

Finally, we grouped the segmentations depending on their type (as shown in Table
4), to evaluate whether the segmentation complexity has any influence on the rough-
ness of outside walls. The box plots are shown in Figure 33, and the accompanying
tables containing percentages for low and high roughness vertices are found in
Table 8.

For the old wall generation method without interpolation (Figure 33a), the
average roughness is very close for all segmentation types. We expected the vessel
groups to show the highest roughness, as these are the most complex, but we find
the highest average roughness for the left atrium segmentation group, with Q3 also
being significantly higher. What may be happening here is that some small vessels
in the vessel group segmentations are fused together in the offsetting process, with
the combined structure having a lower roughness. The differences are small though,
the quality of the segmentation has a lot more influence on the roughness (as seen
in Figure 32a).

We see the same pattern when applying interpolation (Figure 33c), the left
atrium segmentations again show the largest roughness by a slight margin. The
aortic root segmentations clearly show the lowest roughness here, which supports
our expectations. The Gaussian smoothing used for interpolation here seems to be
able to remove roughness for all segmentation types, with the roughness across the
board being a lot lower than for the non-interpolated case.

(a) Old method without interpolation (b) New method without interpolation

(c) Old method with interpolation (d) New method with interpolation

Figure 33: Box plots comparing the distribution of nonzero outside wall roughness of each
wall generation method, grouped by segmentation type, at 3.0mm wall thickness.

Our new method without interpolation (Figure 33b) shows very consistent
performance across all segmentation types, with only the maxima increasing a little
bit for the complexer types. This is again caused by the constant cubed scaling of
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the voxel grids from which the wall meshes are being generated, which results in
only a few different angles between triangles being possible.

When applying interpolation (Figure 33d), we see increasing average rough-
ness as the segmentation complexity increases, with the vessel groups showing
the highest average roughness. This is an interesting contrast with the old wall
generation method, where the left atriums show the highest average roughness. As
the offsetting process is a lot more precise using our new method, and the walls are
thinner overall, less merging of structures occurs, letting the true complexity of the
vessel group segmentations shine trough.

Roots Atriums Vessels
% exactly 0 50.654 52.993 48.867
% < 1 excl. 0 0 0 0
% > 45 incl. 0 30.898 29.882 31.912
% > 45 excl. 0 62.897 64.197 62.472

(a) Old method without interpolation

Roots Atriums Vessels
% exactly 0 41.692 39.408 37.755
% < 1 excl. 0 0 0 0
% > 45 incl. 0 29.529 32.149 34.661
% > 45 excl. 0 50.653 53.027 55.644

(b) New method without interpolation

Roots Atriums Vessels
% exactly 0 10.571 12.675 8.601
% < 1 excl. 0 4.011 3.373 3.237
% > 45 incl. 0 1.295 2.744 3.647
% > 45 excl. 0 1.475 3.291 2.914

(c) Old method with interpolation

Roots Atriums Vessels
% exactly 0 0.394 0.673 0.727
% < 1 excl. 0 1.385 0.949 0.288
% > 45 incl. 0 1.438 4.347 3.729
% > 45 excl. 0 1.445 4.383 3.736

(d) New method with interpolation

Table 8: Tables showing the percentage of outer wall vertices that are 0, below 1, or above
45 degree roughness, grouped by segmentation type, at 3.0mm wall thickness.

Tables listing the percentages of low and high roughness wall vertices for each
wall generation setting are shown in Table 8. Starting with the old wall generation
method without interpolation (Table 8a), we see that the left atriums show the
highest percentage of zero roughness vertices, even though the average roughness
is highest for this group. When we look at the percentage of high roughness vertices
(including zero roughness vertices) we see that this percentage changes in the op-
posite direction that the zero roughness percentage does, which makes the increase
in high roughness vertices excluding zero roughness vertices even more jarring.
There is no clear explanation for this, though the suspicion still exists that the left
atrium do not show high roughness, but the vessel groups show lower roughness
than expected, most likely due to some complex structures merging together in the
offsetting process.

When adding interpolation (Table 8c) we see the same pattern, for which we
can give the same possible explanation. The roughness across the board is still a
lot lower because of the Gaussian smoothing taking place, but it cannot undo the
suspected merging of structures for the vessel group segmentations.

Looking at the new wall generation method without interpolation (Table 8b)
we see a decreasing percentage of zero roughness vertices when segmentation com-
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plexity increases, together with an increase in high roughness vertices. The increase
in high roughness vertices is seen both including and excluding zero roughness
vertices, meaning that the decreasing percentage of zero roughness vertices is not
the source of the high roughness increase. This means that the overall amount of
high roughness vertices actually increases, with the vessel groups having the highest
roughness as we would expect.

When we apply interpolation (Table 8d) we see an increase in high roughness
vertices going from the aortic root segmentations to the more complex left atriums
and vessel groups as expected. However, we find a slight decrease in high roughness
vertices for the vessel groups when compared to the left atriums, that we did not
see when not applying interpolation. We also see a decrease in low roughness ( < 1
degrees) vertices for this group. This would mean that the roughness of the walls in
this group is contained in a slightly tighter range than is the case for the left atriums.
The difference is not big here, and the average roughness as well as all quartiles for
the vessel group segmentations is still highest as seen in the box plots before.

5.5 Performance

So far, the benefit of generating walls using the distance field approach when
compared to the morphological approach has been quite clear. The technology also
needs to be practical to use in the real world however, which means it is important
to look at the performance of both wall generation methods. We can then determine
whether the increase in the quality of the meshes is worth the extra time it takes to
compute a distance field and generate the mesh from that. We are not necessarily
looking for very fast interactive performance here, as we are not working in a game
context where a computation time of a few milliseconds would be preferable to
be able to maintain high frame rates. It is acceptable if computation takes a few
seconds, but preferably we want to stay under the 10 second mark.

We timed the generation of wall meshes using the old morphological method
on a PC running 3mensio’s software package, and we did the same for the new
distance field method using our testing software on one of our own machines. To be
able to compare the numbers, we ran our evaluation software on a varied test-set of
20 segmentations on 3mensio’s system, so we can recalibrate the larger set of timing
values that we measured on our system. These inital performance tests are shown
in Table 9.

We see that 3mensio’s system is able to run the tests quite a big faster, about
20 percent faster for the whole wall generation process. This was expected, as our
system runs an Intel Xeon X3460 @3.8Ghz, released in Q3 2009, while 3mensio’s
system runs an Intel Core i7 3770 @3.4Ghz, released in Q2 2012. Loading and saving
of segmentations and meshes to/from storage is not included in these measurements,
so storage speed is not a factor here. We find the smallest difference for the VCVDT
step, which propagates the distance shell vectors across the entire distance field.
This may be due to the relatively simple computations that are done here.
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3mensio PC Our PC Ratio
Blood volume mesh 1.339 1.927 0.695
Distance shell 1.375 1.835 0.749
VCVDT propagation 7.951 8.491 0.936
Distance calculation 0.616 0.959 0.642
Wall mesh 1.180 1.598 0.738
Total time 12.461 14.810 0.841

Table 9: Average times in seconds measured for each step of the wall generation process for
unclipped segmentations, on 3mensio’s and our system, plus the 3mensio’s/ours ratio.

We see however that this step also takes the longest by far on both systems. An
average time of about 8 seconds is quite long considering that all times need to
be added together to completely generate a wall mesh from a given segmentation.
We even found VCVDT times of around 17 seconds for very large segmentations,
which does not lead to the performance we hoped for. There was a solution for
this: we found that the segmentations exported from 3mensio contained a large
amount of empty space around them, effectively the size of the entire body region
that was CT scanned, but not included in the segmentation. Distance field values
were being computed for all this empty space, which we do not need. By clipping
the segmentations we can remove most of that empty space, massively speeding
up the VCVDT propagation process. We still need to keep some range around the
segmentation intact, as otherwise we would not be able to generate walls around
the segmentation using the distance fields. We chose to keep a range of 20 voxels in
every direction around the segmentations intact, so we could generate walls of up
to 20mm thickness if we wanted. We then ran the tests again on both systems, of
which we recorded the results in Table 10.

3mensio PC Our PC Ratio
Blood volume mesh 0.834 1.048 0.795
Distance shell 1.381 1.791 0.771
VCVDT propagation 1.584 1.688 0.938
Distance calculation 0.118 0.176 0.670
Wall mesh 0.912 1.002 0.910
Total time 4.829 5.705 0.846

Table 10: Average times in seconds measured for each step of the wall generation process
for clipped segmentations, on 3mensio’s and our system, plus the 3mensio’s/ours ratio.

We can see improved times across the board here: the blood volume meshes
are generated faster because the Marching Cubes algorithm gets a much smaller
binary field as input. The resulting mesh still contains the same amount of triangles
though, so the distance shell computation does not benefit. The VCVDT propagation
step sees the biggest improvement by far, dropping from 8 seconds to less then 2
seconds on average. The longest times we measured in our tests were around 6
seconds, which is still massively faster than the 17 seconds we measured without
any clipping. The calculations of actual distances from the VCVDT vectors takes
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less time as well because of the smaller size of the distance fields, and the wall mesh
generation benefits from this as well. Overall we find a more acceptable level of
performance here, with average times under 5 seconds on 3mensio’s system, while
even being under 10 seconds on our slower system.

We exported binary blood volume voxel fields as well as binary wall voxel fields
(generated using their morphological offsetting method) from 3mensio’s software
package, so we could generate all wall meshes on our system. The morphological
offsetting step could only be performed on 3mensio’s system, so those are the only
measurements from their system that we use in our final evaluation, after being
recalibrated to match our system’s performance. The overall average wall generation
performance across all segmentations (as listed in Table 4) is shown in Table 11 and
Table 12, both with and without interpolation. The interpolation settings used are
the same as we used this entire chapter, and as described in Section 5.1.

There is a new entry in the tables (binary field operations), which denotes the
total time it took to generate a hollow wall binary voxel field to use for wall mesh
generation. For the old method, this includes the morphological operations to
generate the offset field, followed by the subtraction of the original blood volume
field from the offset field to obtain the hollow wall field. For our new method, this
includes the extraction of two binary voxel fields from the distance field (one being
at zero, and one being at the desired offset), followed by the subtraction of the zero
field from the offset field to obtain the hollow wall field.

Old method New method Ratio
Blood volume mesh 0 1.996 n/a
Distance shell 0 3.257 n/a
VCVDT propagation 0 1.672 n/a
Distance calculation 0 0.183 n/a
Binary field operations 0.134 0.180 0.739
Wall mesh 3.296 1.463 2.253
Total time 3.408 8.753 0.389

Table 11: Overall average times in seconds measured for the old and our new wall
generation method, without interpolation, for 3.0mm thick walls. Calibrated for our system.

When looking at the performance numbers without interpolation (Table 11),
we see that our new wall generation method takes almost three times as long to
generate the final wall mesh when compared to the old morphological method. The
main reason for this is the distance field that needs to be generated, and the blood
volume mesh that needs to be generated first to feed to the distance shell generation
step. We see that the binary field operations take less time for the old method, even
though the morphological operations for offsetting are included in this metric. This
can be mostly attributed to 3mensio’s implementation of run length encoding to
store their binary voxel fields, which we do not use. Apart from that, the total time
it takes for both methods to perform these binary field operations is quite low, and
only makes up a small fraction of the total time it takes to generate the wall meshes.

We can also observe that the actual generation of the final wall mesh from
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the binary wall voxel field (using Marching Cubes) is almost twice as fast for our
new method. This is an interesting side effect of our new method applying the
segmentation scaling as soon as generating the blood volume mesh. As we can
see, the generation of the blood volume meshes takes longer on average than the
wall mesh generation, which is due to this scaling being applied. As the high-
quality segmentations are made up of a lot more voxels, it takes more time to
generate meshes from them, and those meshes are made up of more triangles as
well. When we reach the wall mesh generation step, the distance field is being used
as a source, which is always made up of cubed, 1mm sized voxels. We will compare
the performance for the three different quality groups a bit later to confirm this.

Old method New method Ratio
Blood volume mesh 0 4.209 n/a
Distance shell 0 3.443 n/a
VCVDT propagation 0 1.679 n/a
Distance calculation 0 0.182 n/a
Binary field operations 0.133 0.180 0.739
Wall mesh 13.234 1.545 8.566
Total time 13.367 11.239 1.189

Table 12: Overall average times in seconds measured for the old and our new wall
generation method, with interpolation, for 3.0mm thick walls. Calibrated for our system.

When we look at the performance with interpolation applied (Table 12), we
see a different image. The wall mesh generation takes a very long time for the old
wall generation method, though we see no significant performance hit for our new
method with interpolation applied. We do however see that the blood volume mesh
generation takes a lot longer now. The explanation for this is the major performance
hit of the Gaussian smoothing that is predominantly used for interpolation for the
old method. This interpolation is also applied when generating the blood volume
mesh for our new method, causing the increase in time there. For wall meshes,
the old method uses Gaussian smoothing for both the inside and outside walls.
Combine this with the fact that the old method needs to handle the varying scales of
the input segmentations, with the high quality group generating a lot more triangles,
and we can see why the old method performs so poorly here. Our new method uses
the distance field for interpolation, and no complicated calculations are needed for
this: the values needed for interpolation can simple be looked up into the distance
field. All this leads to our new method actually performing better on average here,
even though both methods take longer than 10 seconds. When calibrating the results
for 3mensio’s system however, we see a total time of 9.1 seconds, which is more
acceptable. On modern systems running more recent CPU’s, we can expect even
better performance.

In Table 13 we list the overall average wall mesh generation time of both the old
and our new wall generation method, for each wall thickness configuration. What
can be seen across the board here is an increase in wall mesh generation time as
the configured wall thickness increases. This can be explained by the increasing
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amount of triangles that is needed for thicker walls: the relative size per triangle
stays constant because it relies on the size of the voxels in the binary fields used
as input for Marching Cubes. We can again see the major performance hit of the
Gaussian interpolation for the old method, while our new method sees almost no
negative impact by adding interpolation. The distance field generation times do not
change in this comparison: the distance field needs to be generated only once, after
which the binary wall voxel fields can all be generated from that same distance field.
This can be an extra advantage of our new method if walls of multiple thicknesses
of the same segmentation are desired.

1.5mm 3.0mm 5.0mm
Old method without interpolation 3.283 3.296 3.453
Old method with interpolation 12.478 13.234 13.865
New method without interpolation 1.432 1.463 1.580
New method with interpolation 1.457 1.545 1.703

Table 13: Overall average wall mesh generation times in seconds, measured for the old and
our new wall generation method, for each wall thickness. Calibrated for our system.

Next, we can evaluate the impact of segmentation resolution on performance
by looking at Table 14. At first, we found a decrease in computation time going
from the medium to the high resolution group. We looked at the computation times
of all segmentations separately to research this, and found that all but one of high
resolution vessel group segmentations are a lot smaller than all other vessel groups
across all quality groups in physical size, after having accounted for scaling. This
causes them to be calculated in a shorter time, skewing this metric. Because of this,
we opted to leave out those smaller high resolution segmentations for the remainder
of the performance evaluation, so we can perform a fair comparison.

For the old wall generation method (Table 14a and Table 14b), we see an increase
in computation time as segmentation quality increases, both with and without
interpolation. This is expected, as scaling is applied when generating the final
wall mesh for the old method, so Marching Cubes needs to handle more voxels as
segmentation resolution increases. We again see the major increase in computation
time caused by the applied Gaussian interpolation, across al quality groups.

Looking at the performance for our new wall generation method (Table 14c and
Table 14d), we see an increase in computation time for the blood volume mesh as
segmentation quality increases, as this is the step where scaling is applied for the
new method. The calculation of the distance shell also takes more time, because
higher quality blood volume meshes are used as input, which contain scaled down,
and thus more, triangles.

We see a decline in computation time across all other metrics onwards when
going from medium quality to high quality segmentations, which has a different
reason. As the high quality segmentations have scaling below 1 (see Table 5), the
resolution of the distance field is lower than that of the original segmentation. This
results in some loss in detail, but also a major increase in computation performance.
We actually see better performance than the low quality segmentations, as the

70



resolution of the low quality distance fields is higher than that of the segmentations
they are based on.

The impact of applying interpolation is a lot smaller here than it is for the old
method, and is mostly caused by the increase in blood volume mesh computation
time: here the same interpolation method is used as for the old method, which is the
expensive Gaussian smoothing in almost all cases. The increase in computation time
for the other metrics is almost zero, as interpolation plays no role in computing the
distance field. Wall mesh generation takes slightly longer as segmentation resolution
increases, but it seems that using the distance field for interpolation takes almost no
performance hit.

LowRes MedRes HiRes
Binary field ops 0.060 0.153 0.188
Wall mesh 1.645 4.209 6.288
Total time 1.705 4.362 6.476

(a) Old method without interpolation

LowRes MedRes HiRes
Binary field ops 0.060 0.153 0.188
Wall mesh 7.339 16.265 21.441
Total time 7.399 16.418 21.629

(b) Old method with interpolation

LowRes MedRes HiRes
Bloodvol. mesh 0.877 2.615 4.023
Distance shell 2.123 4.172 5.750
VCVDT 2.021 2.252 1.386
Distance calc. 0.222 0.249 0.147
Binary field ops 0.219 0.243 0.148
Wall mesh 1.710 1.902 1.469
Total time 7.173 11.433 12.924

(c) New method without interpolation

LowRes MedRes HiRes
Bloodvol. mesh 2.021 4.533 7.591
Distance shell 2.394 4.380 5.901
VCVDT 2.037 2.256 1.394
Distance calc. 0.221 0.245 0.151
Binary field ops 0.218 0.243 0.149
Wall mesh 1.809 2.035 1.485
Total time 8.701 13.692 16.672

(d) New method with interpolation

Table 14: Average wall mesh generation times in seconds for the old and our new wall
generation method, for each quality group, at 3.0mm thickness. Calibrated for our system.

Finally we look at the influence of segmentation complexity on performance
in Table 15. For the old wall generation method (Table 15a and Table 15b) we
see an increase in computation time as segmentation complexity increases. The
segmentation complexity is actually not the cause, as the required calculations do
not change as complexity changes. Rather the physical size of the more complex
segmentations is the big factor here that causes the increase in computation time.

For our new wall generation method (Table 15c and Table 15d) we see a com-
parable increase in computation time as the physical size of segmentations increases,
though one interesting result here is that computation time for vessel groups is
similar both with and without interpolation. in earlier tests, we saw an increase in
computation time with interpolation applied, because of the Gaussian interpolation
that is applied for the blood volume mesh. However, the vessel group segmenta-
tions use simpler threshold interpolation instead of Gaussian interpolation for blood
volume meshes and the inside wall for wall meshes. This results in no significant
performance hit, as looking up Hounsfield values in the original CT data is sufficient
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to get the values needed for interpolation.

We still find a total time of over 22 seconds with interpolation applied for both
wall generation methods when looking at the vessel group segmentations, and
even calibrated for 3mensio’s system we still find a time of 18 seconds. This is
worse performance than we would want, but this remains a worst case scenario. In
practical applications, most segmentations will be of small parts of the body that are
of interest, not huge segmentations of most vessels in the patient’s torso as we test
here.

Roots Atriums Vessels
Binary field ops 0.078 0.123 0.199
Wall mesh 1.417 2.938 7.787
Total time 1.495 3.061 7.986

(a) Old method without interpolation

Roots Atriums Vessels
Binary field ops 0.078 0.123 0.199
Wall mesh 6.250 16.829 21.968
Total time 6.328 16.952 22.167

(b) Old method with interpolation

Roots Atriums Vessels
Bloodvol. mesh 0.739 1.770 5.007
Distance shell 1.251 2.844 7.951
VCVDT 0.520 0.708 4.431
Distance calc. 0.056 0.076 0.486
Binary field ops 0.054 0.074 0.480
Wall mesh 0.482 0.895 3.705
Total time 3.103 6.368 22.059

(c) New method without interpolation

Roots Atriums Vessels
Bloodvol. mesh 2.247 7.026 4.872
Distance shell 1.319 2.986 8.370
VCVDT 0.523 0.709 4.455
Distance calc. 0.056 0.076 0.485
Binary field ops 0.054 0.074 0.481
Wall mesh 0.502 0.899 3.929
Total time 4.702 11.772 22.592

(d) New method with interpolation

Table 15: Average wall mesh generation times in seconds for the old and our new wall
generation method, for each type group, at 3.0mm thickness. Calibrated for our system.
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6 Discussion and future work

6.1 Discussion

For our final discussion, we will look once more at the research questions we
formulated in Section 3.4:

1. How well do distance fields work for generating hollow wall surface meshes
from segmented CT volumes?

1.1. How well can a hollow offset mask be generated from a solid blood
volume segmentation mask using distance fields?

1.2. How well can distance fields be utilized for interpolation in the Marching
Cubes algorithm?

2. Do the resulting surface meshes have better properties than the surface meshes
that are generated from 3mensio workstation today?

2.1. What are the desired properties of surface meshes in the context of CT
data representation?

2.2. How can these properties be measured and compared?

We see that all our research questions have been answered. We found that
distance fields can definitely be used to generate offset surface meshes from CT
volumes. By deducting two binary voxel fields from the distance field (one at zero
thickness, and one at the desired offset) and subtracting the zero thickness field from
the offset field, we can obtain a hollow offset volume. The vertex positions of a wall
mesh generated from such a hollow binary offset volume can be nicely interpolated
by using the same distance field, without much of a performance hit.

Our second research question has also been answered with positive results: we
generated wall meshes from a large and varied set of segmentations, and chose wall
thickness and roughness as properties to measure to get an idea of their quality and
usefulness. It can be concluded from the evaluation in Chapter 5 that our proposed
wall generation method based on distance fields is able to generate superior wall
meshes when compared to 3mensio’s old morphological wall generation method.
We see that actual wall thickness adheres much closer to the configured wall thick-
ness, and is more uniform as well. As we deducted earlier, a main reason for this
is the segmentation scaling being applied at an early stage for our method. This
means we can generate all walls using the same scaling, leading to consistent results.
Interpolating the wall surface vertex positions using the distance field leads to a
further improvement in wall thickness uniformity, as we are in that case no longer
limited by the voxel size of the binary wall voxel field that we use to generate the
final wall mesh. The Gaussian interpolation that can be enabled for 3mensio’s wall
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meshes can only use binary information to try and approximate the surface, and
this has limited effect in improving uniformity of wall thickness.

We saw that roughness of the wall surface is hugely influenced by interpola-
tion, and both our distance interpolation as 3mensio’s Gaussian interpolation is
able to vastly reduce the blocky appearance that would be apparent without any
interpolation being applied. We again see in 3mensio’s case that roughness varies
as segmentation scale changes, which our method does not suffer from, but this is
mostly due to the the way that 3mensio’s implementation handles scaling; using a
Gaussian for interpolation seems to work quite well apart from this.

As we saw in Section 5.5, Gaussian filtering is very expensive time-wise when it
needs to be applied for large or high-resolution segmentations. Even though our
new method needs a significant amount of time to compute a distance field, it can
use that field for very fast, high quality interpolation afterwards. In some cases this
means that our new method can outperform the old method when the old method
uses Gaussian interpolation. Leaving the Gaussian out of the equation though, our
method is quite a bit slower due to the time required to compute the distance field.
Both methods are able to generate wall meshes in less then 20 seconds in almost all
cases, so both solutions are equally usable in that regard.

When we look again at the use case of 3D printing, the uniformity of the thickness
of the walls generated by our proposed method is especially desired. When wall
meshes posses uniform wall thickness, we can configure the desired wall thickness
to be close to the minimal thickness that is supported by the printing material, which
leads to less printing material being needed and ultimately a lower cost to print the
wall mesh. As the mesh exporting functionality in the 3mensio software package
is primarily included for this use case, they also see the promise of our proposed
wall generation method. They plan to develop this method further, and ultimately
integrate it in a future release for its clients to use.

6.2 Future work

We can identify multiple entry points to continue research on this topic, to further
improve the usability of wall meshes generated using distance fields. Several points
of improvement we recognized in the context of the 3mensio software package in
Section 1.3 were not pursued, and some of these points can also improve our wall
mesh generation method in a general sense. We also mentioned points on which our
implementation could be improved throughout this report. We list some possibilities
for future work below.

1. Our current implementation always generates a distance field at a fixed voxel
size of 1x1x1mm. The cubed shape is integral to the consistent performance
of our proposed wall generation method, but the voxel size is not optimal in
all cases. A better approach might be to make the distance field voxel size
dependent on the scaling of the input segmentation. For high resolution input
segmentations with scaling below 1, we lose some of the imaged detail with
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our current implementation, as the scaling of our distance field is 1 and thus
lower resolution. For low resolution input segmentations with scaling above
1, we essentially waste time by generating the distance field at a higher level
of detail than the input can provide.

2. The Marching Cubes implementation that is used for generating triangle
meshes from binary voxel fields is not optimal. We already looked at this
in Section 3.2, and determined that several improved implementations exist
that are better able to handle sharp edges and fine details. We did not pursue
this, but implementing such an improved algorithm could lead to meshes that
approximate the CT scanned anatomy more closely.

3. Marching Cubes generates a triangle for every boundary voxel by default,
which results in surface meshes that can become very unwieldy and slow
to handle. This high amount of triangles is often not needed to properly
describe the surface, and mesh simplification algorithms already exist that
can reorganize the triangle structure of the surface. It proves a challenge to
keep track of the deviation from the original surface shape, and the distance
fields we can generate can be a very good solution for this, though we did not
pursue this any further.

4. Smoothing is often performed on surface meshes to improve their appearance.
In case of 3D printed models, aggressive smoothing for the outside wall
without smoothing the inside wall can be desirable to make the details of the
inside wall more clearly visible if a transparent printing material is used. We
did some initial research on smoothing the distance field instead of the surface
mesh in Section 4.6 and this approach shows some promise, but also causes
problems with wall thickness consistency. This can be interesting to look into
further.

5. Computation of the distance shell is the most expensive part of our implement-
ation time-wise, as it calculates exact distances between many blood volume
mesh triangles and distance field voxels. We already optimized this process
significantly by generating bounding boxes around each triangle, so only the
distance for voxels close to each triangle is computed, but more performance
improvement may be possible here.

6. When a part of a blood vessel or heart structure is segmented to be 3D printed,
it is in most cases desirable to end up with a wall structure with holes at the
extremities of the segmentation. Both 3mensio’s wall generation method and
our new method do not account for this, and holes need to be manually added
after wall generation. Automatic detection of these extremities and creation of
holes at those locations would be a significant improvement in workflow.

7. Even though the wall meshes generated using our new method are a significant
step forward when compared to the old morphological method, these meshes
should still not be used in situations where accuracy is critical (e.g. prefitting
implants), as no certifications or guarantees from the medical field have been
given. A large scale evaluation in collaboration with radiologists and other
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medical experts could lead to valuable feedback to increase the usability of
the wall meshes in a practical clinical environment. Such a large scale test
can also increase confidence in the consistent performance of our proposed
wall generation method, and may eventually lead to certification which would
allow generated meshes to be used for prefitting implants like stents.
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