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Abstract

We have implemented a model-based segmentation framework and
used it with the Brownian bridge movement model to segment a tra-
jectory based on transport mode. We find that this setup is not very
effective at discovering transport mode transitions, but in the process, we
discover that this method is much more effective at segmenting based on
other movement patterns such as curves and acceleration than on trans-
port mode.
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1 Introduction

Increasingly many devices, like cars, mobile phones and other smart devices are
capturing GPS trajectory data. The wide availability of this data has offered
opportunities to study the behaviour of humans, objects and animals. One of
the tasks that is often performed on a dataset is segmentation. Segmentation is
the process of dividing a trajectory into a set of subtrajectories, such that every
subtrajectory holds a certain property that is not held by the entire trajectory.
This can help reveal patterns that were not visible for the trajectory as a whole,
or let us reason more precisely about the behaviour portrayed in the trajectory.
Segmentation often goes hand in hand with classification, which is the process
of assigning a class label to each of these segments.

One of the properties that it is useful to segment a trajectory by is the
transportation mode. A hypothetical person may cycle to a train station, then
walk to a platform, take a train to another station, walk to the bus station,
take a bus to another bus stop, and finally walk to their destination. This hy-
pothetical trajectory can be divided into six segments, characterised by their
transportation mode (bike, walk, train, walk, bus, walk). But the GPS device
used to record this trajectory cannot make this distinction, so the entire trajec-
tory is recorded as a single unit. A segmentation algorithm can be used to split
this trajectory into 6 subtrajectories, each corresponding to their transportation
mode. Specifically, the algorithm has to detect the points where the trajectory
switches between transport modes. Then, a classification algorithm can assign
the correct transport mode to each segment.

In this thesis, we aim implement a segmentation algorithm to find such
transitions between different transport modes. We will not implement a clas-
sification algorithm, so we are only interested in the segmentation points: the
points at which the user transitions between transport modes.

Alewijnse et al. introduced a framework for criterion-based segmentation
[1, 2]. This thesis seeks to implement this framework with the Brownian bridge
movement model (Section 4), and test it on the Geolife dataset [12, 13, 14]
(Section 6) to test how well the model performs on the task of segmenting
trajectories by the transport mode.

We find that the Brownian bridge movement model does not handle this task
very well, because it tends to detect much smaller features in the trajectory, such
as a single curve, instead of detecting a longer segment, that can be assigned to
a single transport mode.

2 Related work

2.1 Trajectory segmentation

Buchin et al. [5] segment a trajectory into sufficiently homogeneous segments
based on spatiotemporal features such as speed, heading and curvature, while
minimising the total number of segments. They define attribute functions for
these features, and criteria that ensure that these attribute values are suf-
ficiently similar within each segment. To achieve such a segmentation, they
present a greedy algorithm that runs in O(n) time for monotone criteria, and
O(nlogn) time for many other criteria. A monotone criterion is a criterion that,



when it applies to a subtrajectory 7/ C 7, it also applies to any subtrajectory
T” C 7_/.

Aronov et al. [3] present an algorithm to segment a trajectory based on
nonmonotone criteria. They split the problem into two subproblems. First,
they compute a start-stop diagram. Then, they use this start-stop diagram
to compute the optimal segmentation. They show that in general, this second
step is NP-hard, but if the start-stop diagram has certain properties, there is
a polynomial-time solution. They show two criteria that have such properties,
and corresponding polynomial-time algorithms.

Yoon and Shahabi [11] segment trajectories such that in each segment, the
object’s speed is approximately constant, while at the same time removing any
outliers using a pre-specified maximum speed between probes. They present 3
algorithms to perform this task. First, a top-down algorithm that recursively
splits the trajectory at the point that most deviates from its estimated position
if the vehicle travelled at constant speed, until this maximum deviation is less
than some threshold. This runs in O(knlogn) time, where k is the number of
splits, if an efficient data structure is used. Next, a bottom-up algorithm, that
starts with n segments of size 1, and greedily merges two adjacent segments
with the lowest merge cost until this minimum cost exceeds some threshold.
This runs in O(klogn) time where k is the number of merges. And finally, they
show a sliding window algorithm that starts a segment with the first probe, and
keeps extending this segment until it breaks the homogeneity requirement. This
runs in O(kn) time.

Guo et al. [6] use probabilistic logic to segment a trajectory based on business
points for delivery vehicles. These are places where the vehicle is stopping
to make a delivery. They first detect all stopping points, and then aim to
distinguish stopping points from traffic events like traffic lights from the business
points using a probabilistic model based on both trajectory data and attributes
from the vehicle, like electronic lock status and fueling tank cap status.

Patterson et al. [10] segment based on three different transport modes (bus,
walk, car) using a custom Bayesian model. They also attempted to predict the
user’s future path based on their trajectory.

Zheng et al. also developed an algorithm to segment a trajectory based on
transport mode [12]. In their algorithm, they focus on finding walking segments
first, as people often walk a bit when transitioning between transport modes.
Then, they use a decision tree on three features (heading change rate, stop rate
and velocity change rate) to classifiy the remaining segments according to their
transport mode. They also build a spatial index and a graph of common change
points from their training data, to further help classify segments by identifying
potential locations of interest such as bus stops, train stations, parking garages,
etc.

Moosavi et al. [9] developed a method to compute segments in a trajectory
based on driving patterns. First, they used a Markov Model to transform the
trajectory to Probabilistic Movement Dissimilarity (PMD) space. This is a
measure of how unlikely the measured behaviour of the driver at that point is,
if it were part of the same segment. Very unlikely behaviour, like a sudden
acceleration or deceleration will have a high PMD score, and likely behaviour
will have a low score. Finally, they use a Dynamic Programming approach
to divide this PMD-signal into segments, such that each segment has uniform
behaviour.



2.2 Brownian bridge movement model

Horne et al. developed a movement model based on Brownian motion for mod-
elling an animal’s motion [7]. Since continuous tracking of the animal is impos-
sible, the only representation of their trajectory available is a discrete set of n
probes. The Brownian bridge movement model aims to model the movement
of the animal in between these probes. Section 4 describes how the Browian
bridge movement model works in detail.

Kranstauber et al. [8] later expanded upon this model by allowing different
parts of the trajectory to be modelled by different diffusion coefficients in what
they call the dynamic Brownian bridge movement model (ABBMM). This way,
different features in a single trajectory can be modelled more accurately by
using different diffusion coefficients. They showed that this approach always
yields equal or better results than the BBMM with a single diffusion coefficient.
This is also the model that we will use, as described in Section 5.1.

Buchin et al. used the Brownian bridge movement model to detect movement
patterns in animals [4]. They considered the following patterns:

Encounters, where two distance between two creatures at any time is less
than some threshold; avoidance and attraction, where two creatures visit the
same locations, rarely at the same time (attraction), or often at the same time
(attraction); regular visit, where an area is visited with a regular period; and
two different definitions for following behaviour.

3 Definitions and notation

This section describes the defintions and notation used in the rest of this thesis.

Trajectory A trajectory is a sequence of n probes, where a probe i is a tuple
(lat;,lon;,t;). Here, lat; and lon; are the latitude and longitude as recorded
by the GPS device at time ¢; for each probe ¢ (0 < i < n). In Section 5.1,
we describe how we renumber the probes in order to construct the Brownian
Bridges.

Brownian Bridge The i-th Brownian bridge is notated as 7[i,7 + 1] and
consists of probes [2i,2i + 1,2i + 2]. Section 5.1 describes how these bridges are
constructed, and explains the numberings.

Segment A segment is a consecutive subsequence of a trajectory that holds
a certain property.

Segmentation A segmentation is a set of segments that together cover the
entire trajectory, but do not overlap, except at the endpoints. The optimal
segmentation is the segmentation that matches the segmentation of the ground
truth. In our case, this is the segmentation based on transport mode as labelled
by the Geolife user (see Section 6).



4 Brownian bridge movement model

Brownian motion is a term from physics, describing the random motion of parti-
cles in a liquid or a gas. It is also referred to as a Wiener Process. The Brownian
bridge model describes Brownian motion where both endpoints are anchored to
predetermined locations. How far the motion strays away from these locations
is defined by the model parameter o2, called diffusion coefficient.

If we set the Brownian motion of a moving object to be at point A at
time 0, and at point B at some time 7', we can construct a Brownian bridge to
interpolate the location of this object between these two points. The probability
distribution of the location at time ¢ is normally distributed around the mean
and variance at that time. These can be described by the following formulae:

pt) =A+ L(B - A) o%(t) = t(1 — Lo2)

(Xi|Xo = A, X = B) ~ N(u(t),0%(t)) (1)

To illustrate this, figure 1 shows the location distributions for ¢ = %T and
t= %T for a hypothetical Brownian bridge. The mean p(t) is along the straight

line between A and B, proportional to % o2(t) is also dependent on %, with the
t
T

highest variance when = = %, and the lowest variances near t =0 and t =T

B

Figure 1: Two location distributions for a Brownian bridge (adapted from [1])

The probability density function over the entire bridge will look something
like in Figure 2 (depending on the specific parameters). The two peaks are
the endpoints A and B of the bridge. This is the sum over the probability
distribution of all possible times 0 < ¢ < T, or formally:

P(X|A,B) = /t_TOP(X,t|A,B)dt 2)

This section described how a single Brownian bridge works. Section 5.1 will
describe how an entire trajectory can be modelled using a sequence of Brownian
bridges.



Figure 2: Probability density function for a Brownian bridge (taken from [7])

5 Description of the algorithm

We can model a trajectory using a series of Brownian bridges. This process is
described in section 5.1. Each of these bridges must be assigned a diffusion co-
efficient. This is the model parameter that describes the shape of the Brownian
bridge. We describe how we can compute the likelihood of a candidate diffusion
coefficient being used to describe a given Browian bridge. The optimal diffusion
coefficient for a bridge is the one that has the highest likelihood.

Then, we describe the information criterion we use to prevent oversegmen-
tation in Section 5.2.

Next, we describe how we select a representative set of candidate diffu-
sion coefficients for the Brownian bridges (Section 5.3), and finally, we describe
the dynamic programming algorithm that assigns a diffusion coefficient to each
Brownian bridge (Section 5.4). Each consecutive set of Brownian bridges with
the same diffusion coefficient is considered a separate segment.

The optimal segmentation for the entire trajectory is the one that minimises
the information criterion. This function aims to maximise the likelihood of the
diffusion coefficient for each individual Brownian bridge, while at the same time
not oversegmenting by giving each bridge its own segment. For the convenience
of the reader, this section will use the same notation as [1, 2].

5.1 Modelling a trajectory using Brownian bridges

The trajectory probes are used to create a sequence of Brownian bridges. Each
bridge consists of 3 probes, where the first and third probe form the endpoints
of the bridge, and the second probe is used as an attribute of the bridge. The
endpoint of one bridge is also the first point of the next bridge. The probes
that are used as endpoints - these are the even numbered probes in the original
trajectory - are renamed and renumbered as 7(7). The odd numbered probes are
renumbered as 7°(i). The diffusion coefficient of each bridge is also identified
by its corresponding bridge id. With this notation, bridge ¢ consists of probes
7(i), 7°(i) and 7(i + 1), and has diffusion coefficient 2 (7). See Figure 3 for a



graphical example.

Figure 3: A sequence of Brownian bridges is constructed. Note the overlap of
the endpoints of the bridges, and the renumbering of the probes (from [1])

If there is one probe left over after constructing the last bridge, this probe
is simply discarded in the bridge creation process. The total number of bridges
is therefore |1 - (|| —1)].

The likelihood of diffusion coefficient s2, for Brownian bridge 7[i,i + 1] is

1 —[|7° () = p(@)]]
2m02(i) 'eXp( 202(7) ) 3)

where, substituting the parameters of the bridge into the formulas in in

L(c?|7[i,i +1]) =

section 4, with a = %
it1—ti
(@) = 7[i] + a7t + 1] — 7[7]) 02(i) = (tis1 — t)a(l — a)o2,

Since the bridges are assumed to be independent, likelihood of a diffusion
coefficient given multiple Brownian bridges 7[i’,i] equals the product of the
likelihood for the individual bridges:

i—1

L(op|7[i", ) = H L(op,|70j. 5 +1]) (4)
log(L(o7,|7[i',1]) Z log(L(o7,|7[j, 5 +1])) ()

The optimal diffusion coefficient for the whole trajectory is the one that
maximises the likelihood over 7[0,n]|, and therefore also maximises the log-
likelihood.

This is the standard Brownian bridge movement model as described by Horne
et al. [7]. That model models an entire trajectory with the same diffusion coef-
ficient. The dynamic Brownian bridge movement model (ABBMM) introduced
by Kranstauber et al. [8] allows for multiple diffusion coefficients in the same
trajectory. We will use this model to describe the trajectory, because not only



can it allow us to describe a trajectory more accurately [8], it also lets us use the
resulting diffusion coefficients in the segmentation process. Every consecutive
stretch of bridges with the same diffusion coefficient will be considered a new
segment.

5.2 Information criterion

If we simply compute the optimal diffusion coefficient for each bridge, we will
end up with n different segments of length 1. To combat this, we need to
artificially limit the number of segments in our result. This can be done by
introducing a penalty factor for each new segment. Candidate segmentations
with a larger number of segments might have a higher total likelihood, but
they will be penalised by a higher penalty factor as well. Therefore, we will
not compare the candidate segmentations by just their likelihood, but by an
Information criterion, which includes this penalty factor. For this purpose, we
use the Bayesian information criterion (BIC). The general form of the BIC is:

BIC =k -In(n) —2-In(L) (6)

where n is the size of the input, in our case the number of probes, L is
the likelihood of the candidate model (thus In(L) is the loglikelihood), and k
is the number of parameters. In our case, k is the number of segments in the
segmentation. After experimenting with this information criterion (Section 7),
we found it to yield inadequate results, so we altered the function to allow us to
tweak the performance of the algorithm by introducing a new factor p, which
we can adjust in our experiments (Section 7.3):

IC=k-p-ln(n)—2-In(L) (7)

5.3 Selection of the candidate diffusion coefficients

We will try to select the optimal diffusion coefficient for each bridge from a
discrete set of candidate diffusion coefficients. In order to get the most repre-
sentative set of candidate diffusion coefficients, we devised the following process:
First, we compute the optimal diffusion coefficient for each individual bridge.
Remember, the likelihood of a diffusion coefficient o2, for bridge 7[i, 4 + ] is:

—[I7°() — p(@)]]
202 (i) )

1
Llolrlii i) = 5 o 0
We can compute the optimal value of o2, by taking the derivative. For the
purpose of readability of this section, we will substitute p = ||7°(i) — u(i)|| and

q = (tiJr] — tl)a(l — Oé).



L(U,2n|7'[i,i +i]) =

1 —p
- ex
2mqo2, P 2qo2,

dL(o2 |7[i,i +1]) 1 5 —p
ml 1% = .9 . .
do?, Gract 2T alon o) (9)
1 —p
_ . .92
Graon P20 T

om
_ve(zE)  ew(s)
- dmg*(02,)3 2mq(02,)?

Equating this to 0 gives us the value of 02, where the likelihood is maximised.

dL(o2,|7[i,i +1])

=0
do2,
pexp(2;f7zn) exp(z;rp?n)
4rq?(02,)®  2mq(02,)?
pexplagz)  explggs) (10)
4rq2(02)3  2mq(02,))?
p =
2qo2,
2 _ P
Jm = 2q
Replacing p and ¢ again gives us:
PO ) "

m Q(ti_._l — tl)OL(l — O[)

This means that we can compute the optimal diffusion coefficient for a bridge
in O(1) time, or for all bridges in O(n) time. Then, we sort these n values and
take the + - (i + 0.5)th percentiles from that set (where 0 < i < k) to get k
candidate diffusion coefficients that are most representative of the entire set.

We will call this set of candidate diffusion coefficients V', and index it with v,
where 0 < v < k and k = |V|.

5.4 Dynamic programming algorithm

With these techniques, we can now compute the optimal segmentation using a
dynamic programming algorithm. We will compute Opt;, the optimal segmenta-
tion of 7|0, 4], in increasing order of ¢. In order to do this, we need to maintain a
dynamic programming table OptLastFized, where each OptLastFized; , stores
the optimal segmentation of 7[0,4], where the last segment uses diffusion coef-
ficient v.

When we compute OptLastFixedy ,, the resulting segmentation will always
contain one segment of length one. The IC of this segmentation is simply the
likelihood of diffusion coefficient v plus the penalty factor:

ICy,, = —2 - log(L(v[[0, 1)) + p (12)

10



After computing this for all v, it is trivial to determine Optg: this is simply the
v that gave the lowest IC for OptLastFixedy,.

For all OptLastFized;, with i > 0, there are two possibilities to consider.

The first option is that Opt;_; (this is the optimal segmentation from the
previous step) is appended with a new segment consisting of only bridge ¢. This
will henceforth be called the Append option. In this case, IC; , = IC(Opt;_1)+
p—2In(L;(v)).

The second option is OptLastFixed;_1, (the previous segmentation that
ended with the same diffusion coefficient), but with the last segment extended
with bridge ¢. This will be referred to as the Eztend option. In this case,
ICi,v = ICl-_LU -2 IH(LZ(’U))

Alewijnse et al. have proved [1, 2] that these are the only two possibilities
for OptLastFized; ,, and that therefore this greedy choice is correct.

OptLastFixed;_1 , is chosen to be the option that has the lowest I/C'. Note
that if v = Opt;_1.v, the Append option will never be chosen, because the only
difference between the two options is then the addition of the extra penalty
factor by adding a new segment.

Append: Opt;_y appended with the one-bridge segment 7[i — 1,1].
i—1 3
Opt;_4

- L

Extend: OptLastFized;_y, with the last segment extended by 7[i —1,1].
J 1—1 i

OptLastFired;_y,

Figure 4: OptLastFized; , is always one of exactly two possibilities (taken
from [1])

In each cell of the table, we store the total IC' of the segmentation up to that
point, along with a reference to which previous segmentation it expanded upon.
When the entire table has been computed, we can take the entry with the lowest
IC in the final row (Opt,,—1), and backtrack to find the complete segmentation.
The algorithm will return the indices and lengths of the segments in number
of bridges. In order to convert this to the number of probes, we multiply the
values by two.

5.5 Runtime

The selection of the candidate diffusion coefficients takes O(n) time. The dy-
namic programming algorithm takes O(n - |V]) time. Backtracking at the end
takes O(n) time. Therefore, the entire process can be done in O(n - |V]) time.
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6 Geolife data set

To test the segmentation algorithm, we used version 1.3 of the Geolife dataset
[12, 13, 14]. This dataset was recorded as part of Microsoft’s Geolife project,
which was started in 2007 by Zheng et al. It contains trajectories as recorded
by 182 unique users during a five year period (april 2007 - august 2012). The
entire dataset contains 17,621 trajectories.

73 users have labelled their trajectories with a transportation mode. Using
this labelling, we could determine the ground truth segmentation of each of these
trajectories. Unfortunately, most trajectories only contained one transportation
mode, so they were unsuitable to test our segmentation algorithm. In order to
get a good view of the behaviour of our algorithm, we decided to only consider
the trajectories that had three or more segments in their ground truth. Figure
5 shows the distribution of the number of segments in the ground truth of the
remaining trajectories. Most of the remaining trajectories have 3 segments. The
highest number of segments in a single trajectory was 15.

500

400

300

200

Number of trajectories

100

i
3 4 5 ] 7 8 9 10 11 12 13 14 15

Mumber of segments

Figure 5: Number of segments in the ground truth
399 trajectories had between 0 and 1,000 probes (Figure 6a). There were 36

trajectories with more than 10,000 probes, and the highest number of probes in
a trajectory was 56,781.
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Figure 6: Number of probes per trajectory

Because of the lower number of trajectories of larger sizes, and for ease of
visualisation in the Experiments section, we only show the results on trajecto-
ries with fewer than 5000 probes. After making this selection, there are 911
trajectories left with an average of 1,531 probes.

7 Experiments

Our algorithms behaviour can now be defined by two parameters: the penalty
factor p and the number of candidate diffusion coefficients k.

7.1 Measure of segmentation quality

In order to evaluate the performance of our algorithm, we need a way to com-
pare segmentations to the ground truth. For this purpose, we introduce three
measures. A segmentation can be represented by the starting probe index of
each segment. We denote the segmentation as Sy. ., and the ground truth as
Go...m-

The first metric Qs measures how far away our segmentation points are
from the real segmentation points. For each S;, we find the nearest index j in
G, and sum the differences. Obviously, this measure will have a bias towards
segmentations with a low number of segments. In fact, every segmentation with
only one segment (starting index 0) will have a score of 0.

The second metric @, does the exact opposite: it measures how far away the
ground truth’s segmentation points are from our segmentation points. For each
Gj, we find the nearest index ¢ in S, and sum the differences. This measure
has a bias towards segmentations with a large number of segments. In fact, if
a segmentation has n different segments (of length 1), the G4 score will always
be 0.

13



Both of these measures have their obvious biases, but they can both give an
insight into the behaviour of the algorithm. The best segmentation is the one
that minimises both. Therefore, the third metric Q; is a weighted average of
Qs and Q4 (0 < o < 1). We will start the experiments with a = 0.5.

Qs = ;Frgllnm 1S; — Gy (13)
Qo= goi:rg){ir}, [5i = Gl (14)
Qt =« Qg+(1_a) Qs (15)

7.2 Number of diffusion coefficients

In our first set of experiments, we will look at the effect of the number of
diffusion coefficients k£ on the quality of our segmentation. We expect a higher k
to produce more segments per segmentation, and a lower (better) quality score.
It is easy to see that if k = 1, every bridge will be assigned the same diffusion
coefficient, and the result will be a segmentation consisting of one segment of
length n, where n is the number of bridges. This means that @, = 0, and
Q= Qg-

We run the algorithm with k € {1,...,10} on all trajectories, and look at
the average number of segments and quality of the resulting segmentations. We
find that the results greatly depend on the size of the trajectory, so we show the
results grouped by number of probes in the trajectory.

10000 4500 - 5000
w4000 - 4500
3500 - 4000
7a00 w= 3000 -3500
= == Z2500-3000
§ == 2000 -2500
= 5000
& = 1500 -2000
E e arc
z 1000 - 1500
2500 I == 500 -1000
0-500
0
0 2 4 6 ] 10

Mumber of diffusion coefficients

Figure 7: Average quality per number of diffusion coefficients, grouped by
number of probes

Shockingly, we find that increasing the number of diffusion coefficients in-
creases the quality score dramatically for these low numbers of diffusion coef-

14



ficients. Since this quality score needs to be minimised, this is not a desirable
outcome. Closer examination of @), and Q)4 reveals that ()5 shows the same
rapid growth as ();, while @, stays relatively constant if k& > 1. This leads us to
believe that this increasing error rate is caused by a rapidly increasing number
of segments. Figure 8 shows the segment overshoot per bucket of trajectories:
this is the difference between the number of segments in our segmentation and
the true number of segments. This confirms our suspicion, and suggests that
we need to increase the penalty factor of the algorithm in order to decrease
the number of segments generated. Additionally, since the overshoot seems to
depend on the number of probes in the trajectory, we will likely need to choose
a variable penalty factor depending on the length of the trajectory. Both figure
7 and 8 show that the effect of increasing k diminishes after k = 4. Therefore,
we will use k = 5 in the next set of experiments.

50 == 4500 -5000
= A000 - 4500
40 3500 - 4000
§ == 3000 -3500
= 30
g = 2500 -3000
3
b ; 2000-2500
@ 2U
E = 1500 - 2000
(7]
E 10 1000-1500
m
2 = 500-1000
L=
0 0-500
I
-10
0 2 4 6 8 10

Number of diffusion coefficients

Figure 8: Average segment overshoot per number of diffusion coefficients,
grouped by number of probes

7.3 Penalty factor

Next, we look at the effect of the penalty factor p on the quality of the seg-
mentation. We choose p € {1,...,20}, and again, we split the trajectories into
buckets. We expect that a higher penalty factor will decrease the number of
segments, and the average quality score will decrease, because the segmenta-
tion boundaries can better reflect the ground truth. Figure 9 shows the results.
To demonstrate the difference between the different quality measures, Figure 10
shows the average quality according to all three quality measures for trajectories
between 2500 and 3000 probes.

We can see that a higher penalty factor does indeed yield a lower quality
score. Looking at the average segment overshoot (Figure 11), we also see that
for each bucket, there is a point where the average segment overshoot is zero.
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Again, the penalty factor corresponding to this point seems to be higher for
larger trajectories.

10000 = 4500-5000
= 4000 - 4500
3500 - 4000
7500 = 3000-3500
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Figure 9: Average quality per penalty factor, grouped by number of probes
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Figure 10: Average quality per penalty factor, for three quality measures, for
trajectories between 2500 and 3000 probes
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Figure 11: Average segment overshoot per penalty factor, grouped by number
of probes
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Figure 12: Optimal penalty factor per bucket

Figure 12 shows the optimal penalty factor for each bucket. Optimal here
means lowest quality score, or a segment overshoot closest to zero. This figure
lets us make two very important observations. First, it seems that the optimal
penalty factor increases as the trajectory size increases. This means that we
cannot use a constant penalty factor, but that the penalty factor must be a
function of the size of the trajectory. The second observation is that the optimal
penalty factor for minimising the quality score is consistently higher than the
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optimal penalty factor for bringing the segment overshoot to zero. This suggests
that the segmentations with the lowest quality score have fewer segments than
the ground truth. Our data confirms this: the average segment overshoot when
using the penalty factor that yielded the lowest quality score is —1.6. And even
the resulting lowest quality scores are still in the thousands, which is not as low
as we were hoping for.

If we now look at the resulting segmentations on a map, we can study how
the algorithm performs, and where it might go wrong. We find a few examples
where segmentation points appear at or near train stations and traffic lights.
We suspect these are caused by the acceleration and deceleration of the vehicles
at these locations. But one can imagine that the frequency of such situations is
far higher than the number of transport mode switches.

7.4 Alpha factor

Up to now, we have assumed that our
segmentation should contain exactly
one segment per transport mode. If
we relax this constraint to allow for
multiple consecutive segments to rep-
resent a single transport mode, we
can use the observation above to our
advantage.  Recall that when we
used penalty factor 1 in earlier ex-
periments, the resulting segmentation
had a very high segmentation over-
shoot.

Figure 13 shows the last part of
a segmentation with penalty factor 1.
In this visualisation, the value of the
£ diffusion coefficient is indicated us-
ing a gradient scale from blue to red.
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Blue represents the lowest possible
diffusion coefficient from the candi-
date set, and red represents the high-

est possible diffusion coefficient. Ob-
viously, the number of segments here
is too large, but we can clearly see
now that the segmentation has iden-
tified deceleration and curves (both
sections with a higher diffusion coefficient) and sections with a constant speed
and straight track (blue: lowest diffusion coefficient).

Other parts of the trajectory show the same behaviour: segments around
stations that have a higher diffusion coefficient, and segments between stations
with the lowest diffusion coefficient. If we were to use this approach, the next
step would be to combine consective segments that correspond the the same
transport mode into segment. This would likely be the task of a classification
algorithm.

This means that we need to make sure that at least the true segmentation
points are in our resulting segmentation, but we will allow additional segmen-

Figure 13: Example of a part of a seg-
mentation with penalty factor 1
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tation points as well. The quality measure (), that we described in section 7.1
does exactly this. So we increase o to give more weight to the @, component
of the quality score. We have used « € {0.5,0.6,0.7,0.8,0.9,1.0}. Now, we see
that if £k = 1, Q; increases as we increase . But for all other &k, (); becomes
lower as « increases. An interesting discovery is that for certain values of a (0.8
and 0.9), there is a clear minimum quality when k = 2. Figure 14 shows the
average quality if &« = 0.8. This suggests that a distinction between a ’high’ dif-
fusion coefficient (curves, deceleration) and a "low’ diffusion coefficient (straight,
constant speed) is sufficient to segment based on this criterion.

5000 == 4500 - 5000
w= 4000 -4500
4000 3500 - 4000
L == 3000 -3500

2000 = 2500 - 3000

2000-2500

\/ = 1500-2000
2000

1000-1500

Average quality

== 500-1000

1000 0-500

0 2 - 6 8 10

Number of coefficients

Figure 14: Average quality per number of diffusion coefficients if & = 0.8

7.5 Construction of the Brownian bridges

As discussed in section 4, the bridges are constructed by taking the even probes
as bridge endpoints, and the odd probes as attribute of the bridge. But this is
a rather arbitrary choice. If we were to use the odd probes as bridge endpoints
and the even probes as attributes, the resulting likelihood functions might be
entirely different. Consider the situation in figure 15.

In the left situation, there are two bridges, both with most likely diffusion
coefficient 1. Just by looking at the bridges, one would not be able to tell that a
turn has taken place here. In the right situation, the middle bridge has a much
higher most likely diffusion coeflicient, because the middle point is far away from
the straight line between the two endpoints. To test whether this difference has
a large influence on the segmentation quality, we run the experiment again
with k£ = 5, p = 10 and « = 0.5, but this time, we discard the first probe of
every trajectory. This is comparable to if the GPS device had been switched on
several seconds later. This has the effect that every probe that used to be an
even point is now an odd point, and vice versa. We will indicate the ); from
these experiments with @ (s for skip). Then, we computed the quality ratio

QR between the original experiments and these skip-experiments: QR = Z—’E. If
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Figure 15: Two ways of building the Brownian bridges
this QR = 1, the quality is the same; if QR > 1, ¢f is higher; and if QR < 1, ¢;
is higher.

Min | 10% | Ql | Med | Q3 |90% | Max
0.088 [ 0.896 | 0.999 | 1.000 | 1.007 | 1.205 | 4.158

Table 1: Several percentiles of QR

Table 1 shows that most trajectories had a QR of roughly 1, but there were
also some significant outliers. Over 10% of the trajectories had a 20% higher
score, and another 10% had a 10% lower score. There were 33 trajectories
that had a QR > 2 and 18 with a QR < 0.5. This demonstrates the way the
bridges are constructed can have a signficant influence on the quality of the
segmentation.

Further inspection of the outliers showed that this discrepancy is often
caused if one of the two segmentations has a very low score, and the other
introduces one or more new segmentation points far away from the ground
truth, causing a very large increase in score. Table 2 shows an example of the
trajectory with the lowest QR, and the two segmentations. This trajectory has
3343 probes. The vertical alignment shows the closest segmentation point in
the ground truth, the distance to which is used to calculate the score. The
segmentation points in the skip row have been incremented by 1 to make them
comparable to the ground truth.

GT 0| 354 2110 2214 | 3343 || Qg | Qs Qt
Regular || O | 352 | 1246 1476 2148 3343 || 106 | 1538 | 822
Skip 0 | 352 2146 3343 || 106 | 38 72

Table 2: Segmentation points for a trajectory with a very low QR

We can see that by skipping the first probe, we lost two segmentation points,
which caused s, and therefore ()¢, to drop considerably.
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8 Conclusion, discussion and future work

After performing these experiments we can conclude that our setup by itself
was not suitable for accurately segmenting based on transport mode. Although
this method didn’t perform our desired segmentation task very well, we did find
that it was a lot more effective at segmenting based on other features such as
turns and accelerations. We suggest several improvements that could be made
to achieve better results.

Perhaps the Brownian bridge movement model is not very suitable for seg-
menting trajectories of vehicles because of their restrictions to a road network.
This model has been used before to model the movement of particles in a gas
or liquid, or the behaviour of animals like birds. Such movement is not usually
restricted by such human constructions as train tracks and traffic lights. If one
could find another model that better described movement by a vehicle on a
road/track network, that model could be used with this framework instead of
the Brownian bridge model to improve segmentation accuracy. This model also
seems to be somewhat sensitive to the way the probes are split up (as discussed
in Section 7.5).

Using the approach described in Section 7.4, a classification algorithm would
need to be implemented to assign a transport mode to each segment, and then
combine segments with the same transport mode. One could use training data
to help identify features for each transport mode, and use these to classify
the segments in the testing data. Training data can also be used to learn the
probability of transitioning between any two transport modes, as Zheng et al.
did in [12].

If the underlying road network is known, one can use a map-matching algo-
rithm and use the associated map data to aid in the classification process.
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A Implementation in tulib

The framework described in this thesis was implemented in tulib, a trajectory
processing library that is being developed by a collaboration between HERE
technologies, Utrecht University and Eindhoven University of Technology as
part of the Commit2Data project. Commit2data is a cross-sector collaboration
project between both public and private partners with the aim to further develop
the usage of Big Data.

tulib is a data structure agnostic trajectory processing library, that aims to
implement state-of-the-art algorithms and to be easily scalable to very large
datasets. Its design is inspired by the designs of CGAL and GUDHI, two ex-
isting geometry algorithms libraries. The library is designed to be very ex-
tensible to make implementation easy for a wide range of applications. This
is achieved by using design principles from generic programming, specifically
template metaprogramming, for separating algorithms, data structures and ge-
ometry from one another, and delegating the responsibility of connecting them
to the client code. This way, each component can be individually implemented,
tested, and adapted to satisfy a large variety of use cases.

At the time of writing, the monotone segmentation algorithm by Buchin et
al. [5] that was described in Section 2 was already implemented. During this
thesis project, the following components were added to tulib:

Geolife import tools The file geolife.py has been added to preprocess
the geolife data. This process filters the unlabelled probes, adds the labels to
remaining probes, and converts the datetime string to a unix timestamp. The
GeolifeProbeTraits.h and GeolifeTrajectoryTraits.h files contain traits
classes to define the input probe type and the trajectory type.

Brownian bridge movement model The file BrownianBridge.h was cre-
ated to model the Brownian Bridge movement model. It contains a Model class,
that builds a collection of Brownian bridges from a collection of probes, as de-
scribed in Section 5.1. It also contains a Maximum Likelihood Estimator class
MLE, that computes the optimal diffusion coefficients for a collection of Brown-
ian bridges, and a ParameterSelector class that selects k candidate diffusion
coefficients, as described in Section 5.3.

Model-based segmentation framework The file Segmentation.h now con-
tains a class ModelBasedSegmentation that implements the dynamic program-
ming framework as described in Section 5.4. The table dp_table is the dynamic
programming table OptLastFized;,. After computing each row of the table,
only the last Opt; is maintained, in the variable min_ic. This is used to compute
the next row of the table.

Segmentation quality measure The segmentation quality measure as de-
scribed in Section 7.1 was implemented in SegmentationQuality.h. This func-
tion computes the sum of the distances between each point in the first parameter
to the nearest point in the second parameter. Therefore, the order of the pa-
rameters determines whether @5 or @), is computed.

23



