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Glossary Glossary

Glossary

k-NN k-Nearest Neighbor.
AFFIRMATIVE Attenuation of Fluid by Fast Inversion Recovery

with Magnetization Transfer Imaging with Vari-
able Echoes.

BTS Brain Tissue Segmentation.
CBIR Content based image retrieval.
CBR Case based reasoning.
CDK Centroid Distance Key.
CDT Composite Distance Transform.
CSVD Clustered Singular Value Decomposition.
DF-WKNN Difference Weighted k-NN .
distE Effective distance.
DS-WKNN Distance Weighted k-NN .
FSE fast spin-echo.
GA Genetic Algorithm.
GM Gray matter.
KLT Karhunen-Loève Transform.
MRI Magnetic Resonance Imaging.
MST Minimum Spanning Tree.
MTC Magnetization Transfer Contrast.
NMSE Normalized Mean Square Error.
PCA Principal Component Analysis.
PCE Percentage Of correctly estimated tissue volumes.
POE Percentage Of Overestimated tissue volumes.
PUE Percentage Of Underestimated tissue volumes.
SI Similarity Index.
WM White matter.
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1 INTRODUCTION

1 Introduction

Brain Tissue Segmentation (BTS) is used in clinical research to quantify the dif-
ferent types of brain tissue depicted in MR images. e segmentation can be done
manually by an expert (radiologist), who points out voxels and labels them. is is
very time-consuming and laborous work and is hard to reproduce.

Over the years automated segmentation methods have been proposed and suc-
cesfully applied. Some of these segmentation methods use algorithms from pattern
recognition. One of those methods is the k-Nearest Neighbor (k-NN ) method.

e k-NN method has been succesfully applied, not only in BTS, but also other ap-
pliances. is thesis will review and compare adaptations to the k-NN method which
are applicable to brain tissue segmentation. We sought methods that can improve
classi cation quality and/or improve the speed of the classi cation.

In Section 2 we will explain the k-NN method in general and, afterwards, how
k-NN is applied in BTS more speci cally. Section 3 will explain some important
techniques used in the articles. In Sections 4 and 5 the advances of k-NN are
reviewed and compared. In Section 6 we will propose a number of methods we
think are the most promising for BTS speci cally.
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2 THE K-NN METHOD

2 e k-NN method

e aim of the k-NN method is to classify samples based on a number of their n

quanti ed features. Each sample is represented by a vector with n elements and is
placed in an n-dimensional space, called the feature space.

2.1 k-NN example

To take an everyday example for the average Dutchman: classi cation of the weather
conditions of a day e.g. bad weather or good weather. First we monitor the tem-
perature and rainfall of a couple of days. is is shown in Table 1 and Figure 1 for
10 days.

Measurement
Day Temperature Precipitation Classi cation
1 24 40 good
2 18 50 good
3 -12 100 bad
4 6 200 bad
5 30 20 good
6 0 150 bad
7 18 100 bad
8 4 60 bad
9 12 0 good
10 34 200 good
11 20 120 ?

Table 1: Overview of articles ordered by application

To each day we manually assign a label: good or bad, based on what we think is
good or bad weather. In Figure 1 the x-axis denotes the temperature and the y-axis
denotes the rainfall. Each plot mark represents a day.

Now we monitored the 11th day and want to know if it's good or bad. e most
intuitive way is to plot our new day in the graph and look at the neighborhood of
the point, like we did in gure 1. If the new day in the neighborhood of many
good days, the new day is likely to be good as well. Analogous if the new day in
the neighborhood of many bad days, the new day is likely to be bad as well. e
amount of days we look at, around our new day, is known as k. Hence we search
for the k days closest to our new day.
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2.1 k-NN example 2 THE K-NN METHOD
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Figure 1: Example 2D feature space

is is how k-NN works, but of course it doesn't work only on weather condi-
tions. e wide variety of applications is shown later on. To talk about the similar
elements of the k-NN method we introduce some conventions:

• e days with corresponding measurements are known as samples or points,

• e measured entities are known as features or dimensions,

• e 10 days which are preclassi ed are known as the training set,

• e collection of all features is known as the feature space,

• Assigning good or bad weather to a day is known as classi cation, where good
is a class and bad is a class.

Features is example can easily be extended. We now chose only 2 features, the
temperature and the rainfall. We could also have added wind speed, clouds, humid-
ity, etc. ese features would have been added to a 3rd, 4th, . . . axis in the graph
(making it impossible to show it on paper). e feature space will then become an
n-dimensional space, depending on the amount of entities measured

Feature range From the weather condition example we can see that the temper-
ature has a range of −10◦C to 35◦C and rainfall goes from 0mm to 200mm. is
is the range of the features. It's easy to see that when different features have ranges
that differ a lot, the neighborhood of a sample will differ compared to uniform fea-
ture ranges. In an additional step the feature range can be adapted to the preference
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2.1 k-NN example 2 THE K-NN METHOD

of the application. is is known as feature weighting. Enlarging a feature range
will make that feature less important, reducing it will make it more important.

Distance function e points in the neighborhood (in the feature space) of a new
point are calculated by a distance function. e distance function is usually the
Euclidean Distance. In 2D this is also known as the Pythagorean metric:

a2 = b2 + c2

or
a =

√
b2 + c2

Given points x1 and x2, b is the difference in the rst dimension and c is the dif-
ference in the second dimension, then a is the distance between points x1 and x2.

In general we don't look only at 2D. So in ND we have points X = (x1, x2, . . . , xn)
and Y = (y1, y2, . . . , yn). e Euclidean distance is then de ned by:

dEuc(X,Y ) =

√√√√ n∑
i=1

(xi − yi)2

Another possible distance function is the Manhattan distance, de ned by:

dMan(X, Y ) =
n∑

i=1

∥(xi − yi)∥

For a new sample m we calculate the distance to each point in the learning set
S and return the k points closest to m. e amount of calculations for the distance
function is thus dependent on S and the amount of dimensions. e growth of
the running time with increasing features/dimensions is also known as ' e Curse of
Dimensionality'. is is one of the reasons why we need to look for advances in the
k-NN method .

K K is the one true parameter of k-NN . e choice of k depends on the data
and the amount of training samples. A large k will smooth out the classi cation; it
will become less susceptible to noise, but cluster boundaries become less distinct.

Election e distance function returns the k points closest to the new sample m.
We will call the result set R. e points in R all have a class assigned to them. In
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2.2 Brain Tissue Segmentation 2 THE K-NN METHOD

the case of binary segmentation the class occurring the most in R will be assigned
to m. is is what is used most.

An other option is to label m with a set of values proportional to the amount of
occurring classes in R, this is used in Anbeek et al. (2004) and is called probabilistic
segmentation.

Samples When more samples are included in the training set, the classi cation
becomes better; the classi cation error rate will drop. eoretically, when an in nite
amount of samples is selected, the error rate will approach the Bayes error rate,
which is the minimum achievable error rate.

2.2 Brain Tissue Segmentation

is thesis' primary aim is to review k-NN advances for BTS. In this section we
will explain how BTS works and how k-NN is used in it.

One of the reasons Magnetic Resonance Imaging (MRI) is used in research
and clinical studies is because of its ability to produce multicontrast images. Mul-
ticontrast images of the brain can show different contrasts between tissues, this can
help differentiating the tissues. e multicontrast images are acquired by different
MRI scan sequences. Scan sequences which where used in Anbeek et al. (2004),
Vrooman et al. (2007), Cocosco et al. (2003) are: T1-weighted, T2-weighted and
proton density-weighted (PD). Anbeek et al. (2004) also included inversion recov-
ery (IR) and uid attenuation inversion recovery (FLAIR) He et al. (2005) Used
an MR pulse sequence protocol called Attenuation of Fluid by Fast Inversion Re-
covery with Magnetization Transfer Imaging with Variable Echoes (AFFIRMA-
TIVE). is includes Magnetization Transfer Contrast (MTC), FLAIR and fast
spin-echo (FSE). e FSE images can be used for registration, because FSE is very
fast it minimizes patient movement. AFFIRMATIVE is used to increase lesion-
to-tissue contrast and seeks to identify and minimize the sources of false lesion
classi cations in segmented images(Bedell, 1996)

e contrasts of T1-weighted, T2-weighted, proton density-weighted (PD),
inversion recovery (IR) and uid attenuation inversion recovery (FLAIR) images
are shown in Figure 2.

BTS aims at labeling the main brain tissues: white matter, gray matter and
cerebrospinal uid. Anbeek et al. (2004) also included: basal ganglia, ventricles
and white matter lesions. is is done by assigning a set of probability values to
voxels in an image. A segmented image can be used for detection of pathologic
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2.2 Brain Tissue Segmentation 2 THE K-NN METHOD

Figure 2: By altering the MR scan sequences images from the same subject are ac-
quired with different contrasts. MR brain images from left to right: T1-weighted,
T2-weighted, PD, IR, FLAIR

tissue in the human body. For example, Anbeek et al. (2004) aimed to detect white
matter lesions in brain tissue.

Image preprocessing

Masking A large part of the voxels of an MR image do not contain usefull
information, for example the voxels outside the body. ese voxels are left out of
all calculations so they do not contribute to the computational complexity. is is
called masking.

Registration To improve the probability that a piece of tissue in the body
will be represented by the same voxel position in different imaging modalities, the
images can be registered. Registering aligns different images of the same subject.
A typical application is to correct for movement of the subject in-between scans.
Other applications of registration are: (1) to align scans of the same patient with
are made over a large period of time (e.g. a month or year) or (2) to align scans of
different patients. is can be useful to track the development of a piece of tissue.

Anbeek et al. (2004) used rigid registering, Cocosco et al. (2003), Lee and
Nelson (2008) and Vrooman et al. (2007) used non-rigid registering.

e feature space is built from the voxel intensities of the images, every voxel
is used as a sample. In addition, spatial information is used, because the likelihood
of a certain tissue type in the brain is bound by a region. is feature space we can
use with the k-NN algorithm as shown in Section 2.

Feature range Similar to the temperature and rainfall in the weather condition
example the feature range of MR images acquired from different scan sequences can
differ in voxel intensity range. e voxel intensity range is used as the corresponding
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2.3 Other appliances 2 THE K-NN METHOD

range of the axes of the feature space. e voxel intensity ranges can be transformed
to be equal, which gives the features an equal weighting. Different feature range
modi cations are mentioned in paragraph 4.1.2 and 4.1.3.

Data dependency k-NN is highly data dependent (Cocosco et al., 2003). In
this paper articles are discussed from different elds and therefore the methods
are tested on different types of data. In this thesis we will only discuss published
literature based on their tests and results.

2.3 Other appliances

BTS is a typical application of k-NN . But due k-NN to its easiness it is widely
applied, as shown in this section. e advances proposed in the articles mentioned
in this thesis often aim at a speci c type of data or application. In table 2 we give
an overview of the articles per eld. ese articles are discussed in more detail in
Section 4.

CBIR omasian and Zhang (2007), Chang and Yeung (2006) used k-NN for
content-based image retrieval. Content based image retrieval (CBIR) aims at search-
ing an image from a large database of images. Metadata¹ of an image is one way
to search images, but it is cumbersome to add to images, think of your own photo
collection or all images on the internet. A CBIR system automatically analyses the
images based on their colors, shapes, histograms, texture. is makes it possible to
automatically search for images in large databases. A characteristic of CBIR is the
high variability of image content. is causes the dataset to be highly nonlinear.
k-NN is known for it's ability to perform well in nonlinear feature spaces. CBIR
often uses a Mahalanobis distance based on the image histogram.

CBR In Case based reasoning (CBR) new problems are solved by the knowledge
of old/solved problems. e system contains a knowledgebase with problems and
their solutions. ese are stored in a prede ned format.

1. A new problem is presented and it will be rewritten into the format.

2. the system will retrieve the problems and solutions that are most similar to
it.

¹Metadata of an image can be text containing information about the content of the image
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2.3 Other appliances 2 THE K-NN METHOD

Field Authors

Medical Imaging

Anbeek et al. (2004)
Cocosco et al. (2003)
He et al. (2005)
Lee and Nelson (2008)
Vrooman et al. (2007)

CBIR Chang and Yeung (2006)
Castelli and omasian (2003)

omasian and Zhang (2005)
omasian and Zhang (2007)

CBR Ahn and Kim (2008)
Zuo et al. (2008)

Gene expression Xiong and wen Chen (2006)

General classi cation
Zhuang et al. (2007)
Yu et al. (2007)
Jagadish et al. (2005)

Table 2: Overview of articles ordered by application

Content-Based Image Retrieval
Case Based Reasoning

3. It can construct a solution to the new problem.

4. e solution can then be validated by the user

5. If needed the solution is added to the system

In step 2 a k-NN algorithm can be used to search for the similar problems, this
is what is used in Ahn and Kim (2008). CBR can be applied to areas in which
multi-variate decision making is common, including manufacturing, nance and
marketing (Ahn and Kim, 2008).

general classi cation Others, like Jagadish et al. (2005), Zhuang et al. (2007),
Zuo et al. (2008), Zhang and Zhou (2007)and Hu et al. (2008) tried to look at
k-NN classi cation in a more general way and sought optimizations that don't aim
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2.3 Other appliances 2 THE K-NN METHOD

at one application or type of data speci cally. ey assume a dataset with high
dimensionality, because this is a large performance issue of k-NN as explained in
Section 2. Because we think these methods may prove to be advantageous with
BTS, these methods have been included in this thesis.

2.3.1 Advances per category

e articles propose optimizations or extensions to the k-NN method . Some ar-
ticles combine multiple methods at once. An overview per optimization-category
is given in table 3.

12



2.3 Other appliances 2 THE K-NN METHOD

Category Subcategory Autors Method

Learning

Feature
Weighting
and selection

Anbeek et al. (2004) zero-mean
Cocosco et al. (2003) range-matching
Vrooman et al. (2007) comparing
Lee and Nelson (2008) Genetic algorithm

K Ahn and Kim (2008) Genetic algorithm

Feature space
Clustering

Jagadish et al. (2005) iDistance
Zhuang et al. (2007) CDK

Automated
learning

Cocosco et al. (2003) pruning

Searching

Distance
function

Chang and Yeung (2006) kernel-based
Dudani (1976) Distance weighting
Jagadish et al. (2005) iDistance
Yu et al. (2007) iDistance
Zhuang et al. (2007) iDistance
Zuo et al. (2008) Difference weighting

Feature
reduction

Hu et al. (2008) PCA
omasian and Zhang (2007) KLT

Graphs and
trees

Cocosco et al. (2003) MST
Jagadish et al. (2005) B+-tree
Zhuang et al. (2007) B+-tree

omasian and Zhang (2007) OP-tree
Yu et al. (2007) B+-tree

Workarounds Partitioning omasian and Zhang (2007) disk resident tree
He et al. (2005) FSPc and PCA

Table 3: Overview of articles ordered by advance type. Note that an article can
have multiple optmizations and can occur multiple times in the table.

Karhunen-Loève transform
Minimum Spanning Tree

cfeature space partitioning
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3 TECHNIQUES

3 Techniques

e articles discussed in this thesis have used a wide variety of techniques. In this
section we explain some of the important techniques.

3.1 Principal Component Analysis

e variability of dimensions in a high dimensional data set can differ a lot. A pop-
ulair method to analyse and reduce the dimensionality while preserving the dimen-
sions in which the variance is high is called Principal Component Analysis (PCA).

is method is also refered to as the Karhunen-Loève Transform (KLT), for ex-
ample in omasian and Zhang (2007). In this section we will shortly describe the
PCA method, a more elaborate description is given in Pearson (1901)

First the feature space is centered by translating the coordinate system origin to
the mean of the sample points. A kernel matrix K is made by augmenting the M

data vectors (x1, x2, . . . , xn) in a row-wise manner. K is now a matrix of dimen-
sions M × n. en make a covariance matrix K̂. en, by solving the eigenvalue
equation for K̂, we get eigenvalues: ϵ1 ≥ . . . ≥ ϵp and eigenvectors: α1, . . . , αp.
Where p is the dimensionality. When p is chosen smaller than the row rank of
K, insigni cant dimensions are ignored. e k principal components can now be
choosen.

(a) Original 2D dataset (b) 1st Principal Component (c) Axis Aligned

(d) Data projected (e) Reduced to 1D

Figure 3: PCA: Step-wise data dimension-reduction.
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3.2 Genetic algorithms 3 TECHNIQUES

Intuitively, a dataset can be seen as clustered points shaped like an ellipsoid
(Figure 3a and 3b). In some directions the variability of the data is high and in other
directions it is low. PCA nds the directions of the high variabilities. By projecting
the data on those directions, the directions with low variability are removed (Figure
3e). In k-NN this results in a lower computational complexity, since the feature
space is of lower dimension after PCA.

3.2 Genetic algorithms

e one true parameter of k-NN is k, but with the introduction of different opti-
mizations of the method, it is possible other parameters are introduced. e values
of the parameters can be heuristically set like in Cocosco et al. (2003). But it is
also possible to automatically search for the optimum. Genetic Algorithms (GAs)
are build on principles of genetics and evolution and implement 'survival of the
ttest' and 'natural selection', with the aim of nding a heuristically optimum in

the parameters.
Suppose we have a set of d values S = {xi : x ∈ F, 1 ≤ i ≤ d} where F

denotes all possible feature values and d the dimensions. e powerset of S, P(S)
contains all possible combinations of values. A GA searches for So ∈ P , which is
heuristically optimal. is is done in iterations, which are called generations. We
will describe the a GA in steps:

(Step one) In the rst generation we chose a class of subsets of S, A(S). In
which the values of S are randomly chosen.

(Step two) With a tness function f , we can calculate the performance of S. In
the case of k-NN f can be the distance function applied on a learning set and a test
set and then be compared to the gold standard. e element of Ag that performs
best Si will be the prototype in the next generation.

Si = {x : x ∈ A , argmaxf(x)}

(Step three) In the next generation the values of Si are the base for new sets
Ag+1. e values per set are differentiated by:

• altering only some values by random, called mutation or

• interchanging different subsets of S by random, called cross-over.

(Step four) Repeat steps 2 and 3 until a terminating condition is met, which
can be for example:

15



3.3 Evaluating results 3 TECHNIQUES

• e tness function reached a minimum score,

• a pre-set number of generations is reached or

• the result of f doesn't change enough

e generations cause the tness function to converge to a heuristically optimal
result, it is the best the algorithm found with the restrictions. e algorithm is
terminated and will return the set which it found to be the best.

A problem with the algorithm arises when the converging gets stuck in a lo-
cal optimum, but global sub-optimum. is can be overcome by cross-overs and
mutations that change the value set a lot.

3.3 Evaluating results

3.3.1 Gold standard

For evaluation of a classi cation of a test set one can let human experts classify
the test set and compare the results of the k-NN algorithm and the experts. e
classi cation done by human experts is called the gold standard.

e "Leave-one-out" strategy is often used to validate the training set. e gold
standard set minus one sample is used for the training, afterwards the sample which
was left out is used to validate the training set by classifying it.

3.3.2 Comparisons

To compare classi cation a test set is usually already classi ed (the Gold standard),
so the true classi cation is know. e k-NN algorithm is run on a training set,
which doesn't contain samples from the Gold standard set, and the results are com-
pared to the gold standard.

e most common way to compare the gold standard and the k-NN classi ca-
tion is the Similarity Index (SI). To calculate the SI you rst have to count the:

• True-positives(TP): the amount of correctly classi ed positive voxels

• True-negatives(TN): the amount of correctly classi ed negative voxels

• False-positives(FP): the amount of incorrectly classi ed positive voxels

• False-negatives(FN): the amount of incorrectly classi ed negative voxels

16



3.3 Evaluating results 3 TECHNIQUES

Now we can calculate the Sensitivity (True positive Fraction), Speci city and
False Positive Fraction).

Sens = TPF =
TP

TP + TN

Spec =
TN

TN + FP

FPF = 1 − Spec =
FP

FP + TN

e similarity measures are the similarity index (SI), overlap fraction (OF), extra
fraction (EF) also known as the percentage overestimated tissue volumes (POE),
percentage underestimated tissue volumes (PUE), percentage correctly estimated
tissue volumes (PCE):

SI =
2(Ref ∩ Seg)
Ref + Seg

OF =
Ref ∪ Seg

Ref

POE = EF =
Ref ∩ Seg

Ref

PUE =
Ref ∩ Seg

Ref

PCE =
Ref ∩ Seg

Ref
Anbeek et al. (2004) used probabilistic segmentation and they adapted their

evaluation method correspondingly with the Probabilistic Similarity Index, Proba-
bilistic Overlap Fraction and Probabilistic Extra Fraction:

PSI =
2Px,gs=1∑

1x,gs=1 +
∑

Px

POF =
∑

Px,gs=1∑
1x,gs=1

17



3.3 Evaluating results 3 TECHNIQUES

PEF =
∑

Px,gs=0∑
1x,gs=1

where:

•
∑

Px,gs=1: Sum of all voxel probabilities, where in the gold standard the
voxel value = 1,

•
∑

Px,gs=0: Sum of all voxel probabilities, where in the gold standard the
intensity value = 0,

•
∑

1x,gs=1: Sum of all voxels in the gold standard,

•
∑

Px: Sum of all probabilities in the probability map.

Probabilistic segmentation is a more generic way to express the result of a k-
NN query. Instead of the result being the one class that occurs most in the k-
nearest neighbors, with the probabilistic method the result is the set of fractions
the k-nearest neighbors consist of. From this result a binary segmentation can be
constructed by thresholding. Or a probability map can be constructed by making
images per class of the result set.
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4 ADVANCES

4 Advances

4.1 Learning

is section is about the initial lling of the feature space also known as the learning
phase. e quality of the classi cation is dependent on the learning set. A carefully
chosen set can result in better classi cations.

4.1.1 Features

k-NN Is known for its sensitivity to parameter scaling and the presence of irrele-
vance or noisy features (Lee and Nelson, 2008). ere are different methods pro-
posed which aim at optimizations based on features, some of those methods are
mentioned in this section. is section is about the optimization based on the fea-
ture space.

4.1.2 Feature normalization

e multi-spectral data from MRI has different feature ranges, Anbeek et al. (2004)
used variance scaling in order to align the features. e variance scaling was achieved
by:

x′ =
x − x̄

σ

in which x is the feature value, x̄ is the mean feature value and σ is the standard
deviation.

Cocosco et al. (2003) uses a method called histogram range-matching to nor-
malize the features. It cuts off a pre-set percentile from the absolute maximum and
minimum².

Vrooman et al. (2007) compares that method to a method that rescales to have
zero mean and unit variance. After testing the two methods it is concluded that
the range-matching method (Cocosco et al., 2003) gives a better result, as shown
in section 5.1.1.

4.1.3 Feature weighting

Lee and Nelson (2008) implemented feature weighting and feature selection with
the use of a GA (Ga's are explained in section 3.2). eir data consists of conven-
tional MRI data like T1 and T2 weighted imaging and diffusion, perfusion and

²Cocosco et al. (2003) heuristically determined that 4/0.5/4% percentiles are adequate for
T1/T2/PD mr images,
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Weight ndim Mean ± standard deviation
Sensitivity Speci city Az

none 38 0.73 ± 0.16 0.75 ± 0.07 0.77 ± 0.10
1-bit 7 0.78 ± 0.18 0.79 ± 0.06 0.80 ± 0.08
2-bit 11 0.79 ± 0.14 0.78 ± 0.06 0.81 ± 0.07
3-bit 17 0.78 ± 0.15 0.78 ± 0.06 0.79 ± 0.06
4-bit 23 0.72 ± 0.22 0.80 ± 0.07 0.78 ± 0.12

Table 4: Comparison of k-NN classi ers: without feature optimalization, 1-bit,
2-bit, 3-bit and 4-bit feature weights. With Az as the area under the ROC curve.
(Lee and Nelson, 2008)

spectroscopic images. Altogether they built a feature space of 38 dimensions. e
aim of the GA is to nd optimal weights for the features.

For a set W of feature weights: W = {w1, w2, . . . , wd}, wi is randomly chosen
and weights of 0 are allowed (in which case a feature is ltered out). In their ex-
periments they used an n-bit representation of the weights, where n ∈ {1, 2, 3, 4},
this is the precision of the weight value.

e weights are used in the distance function, for 2 points X = (x1, x2, . . . , xd)
and Y = (y1, y2, . . . , yd):

dw(X, Y ) =

√√√√ d∑
i=1

(wiXi − wiYi)2

Take a class of random W-sets. From the sets the performance is calculated
as explained in section 3.2. e aim is to nd a feature weight set in which the
weights are heurisitically optimal. A known drawback of GA's is that the result
can converge to a local optimum, but global sub-optimal solution. To overcome
this problem they included highly disruptive crossover, mutation events and many
generations.

eir results are shown in Table 4.

4.1.4 Clustering feature space

Jagadish et al. (2005) introduced iDistance. e high-dimensional feature space is
partitioned in clusters and sub-clusters using k-means clustering. en a reference
point, which usually is the cluster centroid, is determined per (sub-)cluster. For
points in each cluster the distances from those points to the cluster reference point
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Figure 4: Mapping of points in feature space to their distance to reference point.

are calculated. Per cluster a 1-Dimensional space is stored by the distances as shown
in gure 4

Afterwards the points are indexed using a B+-tree. is is shown in gure 5
A B+-tree is a tree datatype with multiple (a pre-set minimum and maximum)

children per node.
Each internal node stores keys (other reference points). Only external nodes

stores data (real sample points). k-NN Search can now be done on the B+-tree.
is is efficient because only part of the feature space is searched.
A drawback of this method is that it is very dependent on the quality of the

clustering of the data (Zhuang et al., 2007). Cocosco et al. (2003) has shown that
brain tissue data is generally very clustered, thus this method can be applied to brain
tissue data.

Yu et al. (2007) used the iDistance and made some extensions. ey proposed
PCA (explained in section 3.1) to nd the most important dimensions and possibly
reduce the feature space to those dimensions.
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Figure 5: search regions for NN query q

4.1.5 Composite Distance Key

Zhuang et al. (2007) proposed an indexing method which makes use of a Composite
Distance Transform (CDT). e rst steps of the method are similar to those of
the iDistance method used in Jagadish et al. (2005). e difference is that Zhuang
et al. (2007) doesn't prune the points by reducing it to a single-dimensional space.

e clusters are hyperspheres which are layered (sliced) by radius, this is shown in
Figue 6.

Figure 6: Corresponding slices of a cluster hypersphere

With the use of a Centroid Distance Key (CDK) which contains information
about the centroid radius, centroid distance and start distance (an absolute space
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origin), they make an index. Pre-query they have a hash-table of B+-trees each
containing clusters. e query will be mapped to the correct hash-table index,
resulting in the query only having to search in a subset of the clusters. e search
will make a searchsphere, starting out with a small radius and iteratively enlarging
to eventually contain at least k data points S. From those data points, the (|S|−k)
farthest points are removed. e result is the k nearest neighbors data points.

Figure 7: CDT indexing architecture.

4.1.6 Automated learning

e points the algorithm is trained with will de ne how new samples are classi ed.
ese points can be selected manually, by an expert, but this is prone to inter-,

intra-observer variability and labor-intessive and time-consuming (Vrooman et al.,
2007). To overcome these problems Anbeek et al. (2004), Cocosco et al. (2003) and
Vrooman et al. (2007) described methods that use automated training and selection
of training samples.

Cocosco et al. (2003) applies a method that has similarities to the previous
clustering methods. ey have a priori information that the amount of clusters is
set to N . Each cluster has a 1-on-1 relation to a class. ey make a Minimum
Spanning Tree (MST) (Kruskal, 1956) of the points in feature space. e MST is
broken up into N clusters by iteratively removing the longest edges (inspired by:
Duda et al. (2001)). Each point in a cluster should now be of the same class. If a
point is not of the same class it is pruned. Because of the extra a priori knowledge
put into the system (the amount of classes and their clusterability) this is called
semi-supervised training.
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(a) Feature space with MST (b) 2 Arrows pointing to samples which are
pruned

Figure 8: MST, (Cocosco et al., 2003)

4.1.7 K

e only real parameter of the k-NN method , k, also in uences the classi cation
(Anbeek, 2005). Ahn and Kim (2008) used a GA(explained in section 3.2) to
optimize k. ey tested their algorithm on purchase prediction and stock market
prediction, so we won't try to compare their results for reasons mentioned in section
2.2. ey, however, did show an improvement. A drawback of this method is the
high computational complexity. e method is inefficient compared to k-NN with
a heuristically chosen k. is method can be useful when a high prediction accuracy
is required.

4.2 Searching

is section is about extensions of k-NN that aim at improving the Searching,
also called querying. When we have a new sample we want to classify, the classic
k-NN method will search the nearest neighbors in feature space. When these are
found the new sample is classi ed as the class occurring the most in the neighboring
samples. e most important aspect with querying is the distance function. is
function determines the quality of the classi cation.

4.2.1 Distance weighting
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Dudani (1976) introduced an extra weighting for deciding the class of a sample x.
is metric is based on the distance between x and it's k-nearest neighbors. For

deciding the class of x that distance is taken into account. is method is called
Distance Weighted k-NN (DS-WKNN).

e k nearest neighbors X = (x1, x2, . . . , xk) of a new sample point x, where
X is sorted by increasing order according to the distance between a x and xi ∈ X .
A weight wi is assigned. Where wi is:

wi =
d(x, xk) − d(x, xi)
d(x, xk) − d(x, x1)

e DS-WKNN will give neighbors closer to x a higher weighting, so that they
contribute more to the classi cation.

4.2.2 Difference weighting

Zuo et al. (2008) made an extension on DS-WKNN, Difference Weighted k-
NN (DF-WKNN). Not only are they looking at the distance of a sample and
it's neighbors, but also at the correlation of the neighbors. is is shown in gure
9.

Figure 9: Assignment of weights to the nearest neighbors using: a) the distance-
weighted knn rule and b) the difference weighted knn rule.

For a new sample x, get it's k nearest neighbors (x1, x2, . . . , xk). en the
difference between the nearest neighbors D = (x1 − x, x2 − x, . . . , xk − x) is
calculated. e weight is calculated by solving the system of linear equations:

(DDT + ηtr(DDT )/k)w = 1
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Where η = 10−3 ∼ 1, which is a regularization parameter. And tr(DDT ) is the
trace of the matrix DDT .

ey extended DF-WKNN to a kernel version KDF-WKNN. e kernel func-
tion maps the space to a higher dimensional space and performs the non-kernel,
linear function there. is is the equivalent of a nonlinear function. e result is a
function which takes into account the nonlinear structure information. Figure 10
shows a kernel-version of PCA.

Figure 10: (Müller et al., 2001) An example showing the kernel version of PCA.
e function works in a nonlinear way.

Two populair kernel functions are:

• Radial basis function (RBF) kernel:

k(x, x′) = exp(−|x − x′|2/2)

• polynomial kernel:
k(x, x′) = (1 + x · x′)d

Where x and x′ are 2 samples.
e kernel distance function is then de ned as:

k(x, x′) = k(x, x) − 2k(x, x′) + k(x′, x′)

ey experimented with 30 datasets from the UCI Machine Learning Reposi-
tory (Blake and Merz, 1998). ey compared the results of WDF-WKNN, KNN,
DS-WKNN and some other non-knn classi ers. e overall average classi cation
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rate of KDF-WKNN is 87.67% , KNN is 85.19% and DS-WKNN is 85, 34%.
KDF-WKNN also outperforms the non-k-NN classi ers. e details are pub-
lished in Zuo et al. (2008).

Although KDF-WKNN has shown to improve the classi action accuracy, the
method suffers from a higher computational coplexity. e complexity of KDF-
WKK is O(md + k2d + k3) compared to k-NN which is O(md), where m is the
size of the learning set, d is the amount of dimensions and k is the amount of nearest
neighbors.

4.3 Computational workarounds

e running time of the k-NN method depends greatly on the amount of fea-
tures and samples that are selected. e features make up the dimensions in a N-
dimensional hypercube of feature space. e amount of memory it takes to store
this hypercube will be large which high-dimensional hypercubes. Also the time it
takes to build the cube can be long, which is disadvantageous when rebuilding the
cube. In this section some methods are described which deal with these problems.

4.3.1 Feature space partitioning

Building a high-dimensional feature space will be demanding on the memory re-
quirements of a PC. According to He et al. (2005) a four-dimensional feature space
with dynamic intensity range of [0, 255] has a total size of 2564 = 4GB. Higher di-
mensional feature spaces are not manageable with a PC (the average PC anno 2009
has 4GB of RAM). To be able to run the k-NN method with high-dimensional
feature spaces He et al. (2005) proposed a method that partitions the feature space
in equally divided hypercubes, called subspaces. e division has the advantage that
the feature space doesn't have to be stored as a whole in the computer RAM at once.
Because a subspace is smaller, it can be loaded on a PC. For example if the feature
space mentioned before is subdevided into 44 = 256 subspaces, each subspace will
have the size of 16MB.

By serializing the feature space it can be stored on the hard drive. e feature
space can be read out in a single lookup, thus minimizing time. (A single lookup on
a hard drive is faster than partial lookups). Within a subspace k-NN search can be
done. k-NN search within a subspace will only contain the points in that subspace,
thus saving a lot of time.
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Borders A problem arises at the borders of each subspace; suppose we are looking
for the nearest neighbors of a point near the border. e algorithm will only search
within the subspace the point is in, but it may have neighbors in adjacent subspaces.

erefore there is an overlap between the subspaces. e overlap has the size of the
Effective distance (distE). For each point the distE is assumed, points beyond the
distE are assumed not to in uence the point(War eld (1996) and Cuisenaire and
Macq (1999)). An overlap at the borders of distE thus minimizes the classi cation
error.

Results For testing the method He et al. (2005) used MR images acquired with
the AFFIRMATIVE pulse sequence. ey compared a data set of 12 segmented
MR brain images to reference volumes generated by experts (Gold standard) using
4 feature dimensions. And they used a data set of 19 segmented MR brain images
to reference volumes generated by experts (Gold standard) using 3 feature dimen-
sions. ey compared the SI, Percentage Of Overestimated tissue volumes (POE),
Percentage Of Underestimated tissue volumes (PUE) and Percentage Of correctly
estimated tissue volumes (PCE) of the two setups. e results are shown in gure
11 and 12. Overall, the results show the setup using 4 features has higher scores.

e use of 4 features compared to 3, shows an improvement in segmentation
of White matter (WM) and Gray matter (GM). Because of the feature space par-
titioning the subspaces became small enough to t in the PC memory. It can be
concluded that the method makes it possible to include more features and still run
on a PC.

4.3.2 Feature space clustering

Like He et al. (2005), omasian and Zhang (2007) uses a partitioning algorithm
on the learning data-set.

Clustering omasian and Zhang (2007) rst clusters the data with the aim of
getting class-homogeneous clusters. is is achieved with Clustered Singular Value
Decomposition (CSVD) Castelli and omasian (2003) and omasian et al. (1998).
Many datasets of various application domains show local correlations. e cluster-
ing separates the heterogeneous data into clusters which itself are more homoge-
neous. As shown in Cocosco et al. (2003) this also holds for BTS-data. SVD or
PCA will introduce less error on homegeneous data. For clustering, the k-means
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Figure 11: Results from He et al. (2005) using 4 features: Quantitative comparison
of AFFIRMATIVE images. e symbols ⋄, �, △ and × represent gray matter,
white matter, CSF and lesion respectively.

clustering algorithm (Steinhaus, 1956) is used. As a post-condition each cluster
size has to t into the main memory.

PCA On each cluster PCA is performed, to reduce the dimensionality. After the
PCA the eigenvalues are obtained and sorted in nondecreasing order. e eigenval-
ues and corresponding feature dimensions are iteratively eliminated until the overall
Normalized Mean Square Error (NMSE) reached a set target:

omasian and Zhang (2007):" Given an M ×N matrix X of M images with
N features, PCA computes the covariance matrix C = XT X/M , which is decom-
posable as C = V ΛV T . e eigenvectors of matrix V are the principal components
and Λ is a diagonal matrix of eigenvalues: {λ1, λ2, . . . , λN}, whose elements are
assumed to be in nondecreasing order. e NMSE is:

NMSE =

∑H
h=1 mk

∑N
i=nh+1 λh,i∑H

h=1 mh
∑N

i=1 λh,i
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Figure 12: Results from He et al. (2005) using 3 features: Quantitative comparison
of AFFIRMATIVE images. e symbols ⋄, �, △ and × represent gray matter,
white matter, CSF and lesion respectively.

where mh is the number of points in the hth cluster, nh is the number of retained
features in that cluster, λh,i is the eigenvalue corresponding to the ith feature in the
hth cluster."

Indexing e clusters are indexed by their centroid position and radius. e ra-
dius in this case being the distance from the centroid to the farthest point in the
cluster.

OP-tree e indexed clusters can be stored on the computer hard disk by seri-
alization. Storing the feature space on the hard disk has the advantage that the
feature space can become bigger than the computer RAM and also isn't volatile
like the RAM. e feature space is optimized so clusters can be retrieved at low
cost using the indices. An example is shown in gure 13 ( omasian and Zhang,
2007)

k-NN search Within the CSVD feature space searching goes as follows:
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Figure 13: a) e partition of a two-dimensional OP-tree. b) e corresponding
hierarchical structure.

• For a new point p, nd the cluster it belongs to. at is, nd the cluster C′

which centroid has the smallest distance to p.

• Order other clusters on their distances.

• Compute the distances to the k-Nearest Neighbor points in the cluster.

• Compute the maximum distance dmax.

• Now check other clusters Ch ∈ C, for an overlap with C′, such that:

dmax > dist(P, Ch)

– Perform a range query with radius dmax centered at P (A range query
will retrieve all points within distance dmax of a query point).

– Compute the original distances of all retrieved points, and if their dis-
tance is less than dmax insert the point into the heap for k nearest neigh-
bors and update dmax.

Results Experiments were conducted on datasets: TXT55 (real-world texture
dataset with 79,814 points and 55 dimensions) and SYNTHETIC64 (synthetic
dataset with 99,972 points and 64 dimensions). Results are shown in gure 14.

ey compared the linear scan (normal k-NN ) to the CSVD method, with dif-
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Figure 14: Results from omasian and Zhang (2005). Top: TXT55 dataset, bot-
tom: SYNTHETIC64 dataset

ferent cluster sizes and different NMSE's). SVD (1 cluster) shows signi cant im-
provement over the linear scan. CSVD shows an ever bigger improvement. With
a low NMSE, little dimensions are eliminated. As more dimensions are elimi-
nated the error increases and CPU Cost decreases to some minimum. With higher
NMSE the CPU increases, which can be explained by the increased amount of
range queries executed because of the higher amount of false points are retrieved.
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5 Comparison

Some methods aim at computational speed, others at the quality of the classi ca-
tion.

5.1 Learning

5.1.1 Feature weighting and selection

A number of groups (Anbeek et al. (2004), Cocosco et al. (2003), Vrooman et al.
(2007) and , Lee and Nelson (2008)) proposed methods for feature weighting and/or
selection. Vrooman et al. (2007) compared the methods proposed in Anbeek et al.
(2004) (zero-mean-unit-variance) and Cocosco et al. (2003) (range mathing). ey
concluded the range matching method performs better, however a drawback of this
method is that it is data-dependent, opposed to the zero-mean method. eir re-
sults are shown in Table 5 and Table 6.

Zero-mean-unit-variance Range matching
BG 0.02 0.002
CSF 0.31 0.03
GM 0.16 0.01
WM 0.06 0.009

Table 5: Comparison of feature normalization methods. Standard deviation of the
normalized feature values for different methods.

Zero-mean-unit-variance Range matching
CSF 90.9 92.2
GM 91.8 92.9
WM 93.4 94.3

Table 6: Comparison of feature normalization methods. Similarity measures (%)
for the different tissue types, using different normalization methods.

5.1.2 Automated training

Cocosco et al. (2003) made an improvement with the use of selection of the train-
ing samples. ey used a MST to optimize the learning set. In this way samples
which are calculated to not belong in a cluster are pruned from the training set.
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e training set then contains clusters of data points, which are homogeneous in
classi cation. For the use of BTS they showed this to be a valid assumption. is
method was used in Vrooman et al. (2007) in combination with non-rigid regis-
tration to further improve classi cation. In Vrooman et al. (2007) the automated
training method is compared to a manual version. It is concluded that there is no
signi cant difference between the two.

5.1.3 Optimizing K

e only true parameter of k-NN is k. Choosing a to low or to high k can cause
inaccuracy (Duda et al., 2001). Anbeek (2005) showed tests with different k's, but
were all chosen by hand. To train different training sets this can be a cumbersome
work. It is possible to search for k by iteratively increasing it and testing a set. But
due to the computational complexity of k-NN search, this is not desired. Ahn and
Kim (2008) used a GA to search for a heuristically optimal k. ey compared their
method to other methods that try to optimize k. eir results showed that the
method is as good as or sometimes better than the others. is method is still very
computationally complex, because for each k it has to calculate the performance of
a training set. Additionally, as with most GA's, the algorithm does not assures to
nd an optimum. However, for applications in which an optimal k is required, for

high accuracy, this method can be useful.

5.2 Searching

5.2.1 Distance function

Dudani (1976) and Zuo et al. (2008) aimed at improving the accuracy of the dis-
tance function. Dudani (1976) assignes a weight, based on the distance between
points. Zuo et al. (2008) includes the correlation of points in the distance func-
tion (KDF-KNN). ey showed this can improve classi cation accuracy for some
datasets. ey experimented on 30 data sets of different types of data and compared
the classi cation rates of different classi ers, among others: k-NN , DS-KNN and
KDF-WKNN. e average classi cation rates are 85.19%,85.34% and 87.67% for
k-NN , DS-KNN and KDF-WKNN respectively. e KDF-WKNN shows an
improvement in accuracy, but the computational complexity is also higher. If m

denotes the amount of training samples, and d the amount of dimensions, the com-
putational complexity of:

• k-NN is O(md)

34



5.3 Computational workarounds 5 COMPARISON

• KDF-WKNN is O(md + k2d + k3)

In terms of multiplications in the distance function.

5.3 Computational workarounds

omasian and Zhang (2007, 2005), Zhuang et al. (2007), Yu et al. (2007), He
et al. (2005) did some partitioning in feature space. e two variants are:

• partitioning based on the data and

• partitioning based on the feature space.

Jagadish et al. (2005) compared the two variants, which are shown in gure 15.
Because of the data dependency they tested on two types of data: uniform data and

(a) (b)

Figure 15: A comparison of partitioning methods: 15a on uniform data 15b on
clustered data.

clustered data. ey compared these types with the default k-NN algorithm (se-
quential scan), the iDistance (data-based clustering), and space based clustering. It
is shown, for uniform data, with a dimensionality of 8 that the space-based parti-
tioning uses 60% of the time sequential scan uses and data-based partitioning uses
45%. for clustered data, it is shown that space-based partitioning uses 20% the time
of sequential scan and data-based partitioning only 10%.
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6 Discussion

k-NN method can be easy to implement and can give good results when used with
BTS, as shown in Vrooman et al. (2007). To increase the quality of the classi -
cation and improve performance of the method we sought adaptations to the k-
NN method .

In this section we will discuss methods usable in BTS. We divided the advances
in optimizations of the learning, searching and computational workarounds.

e building of the feature space allows us to do a rst optimization. e
weighting of the features has an effect on the result of the distance function. In
BTS we have a priori information that different classes will exist in different clus-
ters (Cocosco et al., 2003). Feature weighting can be implemented to optimize the
discriminability of the classes.

Featureweighting and selection To nd heuristically optimal feature weights, the
use of a Genetic Algorithm (Section 3.2) has shown good results (Lee and Nel-
son, 2008). Lee and Nelson (2008) applied this method in BTS, but compared
to Cocosco et al. (2003), Anbeek et al. (2004), Vrooman et al. (2007), used a lot
more information: By including MR spectroscopy, diffusion and perfusion images
they acquired 38 features. e GA nds heuristically optimal feature selection and
weighting, but restricted to at most 4-bit accuracy. ey reported over tting with
higher bit accuracy. To be able to apply the GA method on a data set with lower
dimension (d < 10, like in Cocosco et al. (2003), Anbeek et al. (2004), Vrooman
et al. (2007)), the problem of over tting has to be overcome. is can be done
by increasing the amount of training samples. To further make use of GA the bit
accuracy can be increased to nd more accurate feature weights.

Clustering Because the high amount of test samples in brain tissue segmentation
studies it is useful to reduce the computational complexity of the search fase. As said
before, the data in BTS is highly clustered itself, the use of a clustering method, like

omasian and Zhang (2007), can decrease the search time to about 1
5 of default

k-NN , as shown in gure 14. is method clustering method also includes PCA
and a persistent OP-Tree. e combination of these techniques is promissing to
reduce search time while preserving classi cation accuracy.

As a last note we'd like to say that one of the main reasons of research groups
for choosing the k-NN method is the easyness to implement and understand it.
Many advances discussed in this thesis extend k-NN with methods which are more
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difficult to understand. We think k-NN should not be stained with too much of
those methods. In this way the method can also be applied in the wide variety of
elds as it is now.
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