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Abstract

In many languages, memory is managed by a garbage collector. Region based
memory management forms an alternative and is used in the Rust and MLKit com-
pilers. Most of the work is done ahead of time, by splitting the heap into regions,
which have a lexical lifetime. Whereas Rust forces the programmer to write region
annotations, they can be automatically inferred in MLKit using a type and effect
system.

To improve the accuracy and reduce poisoning, we designed a higher ranked re-
gion analysis. We implemented this in the Helium Haskell compiler, such that we
can analyse a real world language like Haskell with higher-rank precision. Further-
more, this will give us insights in the integration of regions with other optimization
passes.
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1

Introduction

In high level languages like Haskell [37], memory management is implicit. The program-
mer does not have to specify when memory can be released. Instead, the compiler and
runtime must assure that unused objects will be released. This can be done with a garbage
collector, which scans the heap for unreachable objects at runtime. Garbage collectors
can be made very efficient. A much used argument is that the amortized cost of garbage
collection tends to zero, when the available memory goes to infinity [6, page 206]. How-
ever, in practice we do not have infinite memory and the garbage collection will thus
impact performance.

The interest in memory management comes partially from the memory wall. The
performance of processors has increased a lot more than the speed of memory, which
thus increases the relative cost of memory operations [57, 41]. This is very relevant to
programs written in functional languages like Haskell, as they typically allocate a lot of
objects and use many pointers. This may cause that the caches, which modern processors
use to lower the cost of memory operations, perform poorly.

Stack allocation [17] can be more efficient than heap allocations [53, 42], as they have
lower deallocation cost, provide better cache locality and cause less fragmentation than
heap allocation. The limitation of the stack discipline is that values cannot ‘escape’: all
values must have a lexical lifetime in the function which allocates them. Region based
memory management [54] provides a solution to this, by essentially allowing a function
to allocate objects in stack frames of a previous function call on the call stack. Region
based memory management was researched in the MLKit compiler [53] and has lately
been popularized in the Rust programming language [39].

The memory of a program is represented as a stack of regions. In a lambda calculus,
regions can be implemented by adding two constructs [54]:

• letregion ρ in e

• e at ρ

The letregion construct allocates a region, evaluates the expression, deallocates the
region and returns the value computed by the expression. The expression may thus use
the region ρ for intermediate values, but its return value should not be stored in that
region. The regions have a lexical lifetime and thus form a stack of regions.

The at construct must be used for all expressions that directly allocate an object (such
as closures and data types). It denotes that the object should be placed in the specified
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region. The position of those region-constructs can automatically be inferred [52] for a
well typed functional program.

The size of a region can be unbounded. Instead of allocating the regions directly on
the stack, we will allocate the regions on the heap and put pointers to the regions on
the stack. Regions on the heap are represented as a linked list of blocks, such that they
can grow when needed. As some of the advantages were lost, this approach gave large
overhead. Tofte et al. [52] did however notice that most of the regions contained only
one value.

To reduce the overhead, a multiplicity analysis was developed [55], which gives an
upperbound on the number of objects that will be placed in a region. Finite regions can
now be allocated on the stack. Based on experiments, more than 90% of the allocations
were done on the stack for many programs.

1.1 Memory leaks

Region based memory management can cause unbounded memory leaks. Situations exists
where many objects, which will not be used, cannot be released. The same applies to
garbage collection, or in fact any implementation of automatic memory management: the
question whether some object will be used later on is undecidable, as a consequence of
the halting problem. Region based memory management and garbage collection are thus
both an approximation, and they are incomparable: some memory can be reclaimed by
garbage collection which cannot be reclaimed by a region implementation, and the other
way around [21].

A garbage collector treats all reachable objects as live, whereas reachability does not
mean that it will be used later on. If a program constructs a list and the list will only be
used to compute its length later on, then the elements of the list may be reclaimed. A
garbage collector cannot do that, whereas those values may be put in a separate region
with region inference and can thus be released before the list is released.

For the other way around, consider the following Haskell function. This example can
cause a memory leak with region based memory management.

f :: [Int] -> [Int]

f xs = [1, 2] ++ drop 2 xs

Function f removes the first two elements of the list and append values 1 and 2. Lists
are represented as linked lists in Haskell. All list nodes are required to be in the same
region. Consider that function f is applied N + 1 times (on its own output). This will
cause that 2N nodes are in the same region as the output list, but those nodes are not
reachable and thus form a memory leak.

1.2 Runtime

The required runtime for region based memory management consists of three functional-
ities [9]. First, we must be able to construct a new region. For finite regions, we allocate
a block on the stack and for infinite regions we allocate a block on the heap.

Second, we must perform allocations of objects in regions. We do so by keeping a
pointer in a block, pointing at the first free position. This pointer is increased after each
allocation. When a block is full, which may only happen for infinite regions, we allocate
a new block on the heap, which is linked to the previous block as a linked list.

Third, we must be able to release a region and implicitly deallocate all objects allocated
in the region. For finite regions allocated on the stack, we move the stack pointer back.
For infinite regions, we put the first block of the linked list on a free list. Later regions
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will reuse those blocks from the free list. Deallocations can thus happen in constant time,
independent of the number of objects in the region [9].

1.3 Type and effect system

Program analyses can be written as a type and effect system [43], which works by anno-
tating the underlying type system of a language with additional information. This may
be information on either the value (for instance the sign of a number) or the computation
of that value (for instance, resource usage). The analysis itself can then be written by
adapting an existing type inference algorithm.

We implemented the higher ranked region analysis in Helium, which uses a type system
based on System Fω, which is an extension of System F [20] with data types.

τ ::= (→) Function type

| τ τ Type application

| ∀α. τ Quantified type

| α Type variable

| !τ Strict type

| D Data type

| ( , ) | ( , , ) | . . . Tuple of arity n > 1

| () Unit type (tuple of arity 0)

(1.1)

We write τ1 → τ2 for (→) τ1 τ2 and (τ1, τ2) for (, ) τ1 τ2. The type τ in a strict type
!τ must have kind ∗ and cannot be a strict type; we do not allow the type !!τ . We do
not make the kinds of type variables explicit, as we do not need this information in the
analysis.

We write τ1[α := τ2] for the substitution of type variable α with τ2 in type τ1. We add
the normalization rule (∀α. τ1)τ2 = τ1[α := τ2] to the type system. We will not consider
name collisions in this thesis.

The type system supports tuples of all arities larger than 1, but we will usually only
give details on tuples of arity 2 in this thesis, as larger tuples behave similarly.

The arity of a type is the number of value arguments that it accepts, ignoring type
arguments.

arity(τ1 → τ2) = 1 + arity(τ2)

arity(∀α. τ) = arity(τ)

arity(τ) = 0 if τ is not a function type or a quantification

(1.2)

1.4 Higher ranked analyses

Higher ranked type inference, which allows polymorphic functions as arguments, is unde-
cidable [45] and thus require annotations from the programmer. For instance, consider a
function which takes the identity function as its argument. An explicit type annotation
is needed when writing such function in Haskell.

f :: (forall a. a -> a) -> Int -> Bool -> (Int, Bool)

f id x y = (id x, id y)

However, as analyses are usually less expressive than a type system, they can be made
higher ranked depending on the analysis [51, 30, 34].
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Different calls to an argument of a function will not interfere with each other. In
practice this will mean for region inference that a function \f x y -> let u = f x in

let v = f y in (u, v) will not enforce that x and y are stored in the same region, nor
that u and v are in the same region.

The main differences between our analysis and an ordinary type and effect systems
are the following:

• We assume that the program is already typed. The analysis thus does not have to
infer the types, it only has to fill in the annotations

• We do not have annotations on the left hand side of a function. Normally one would
have annotations there. Instead, the annotation on a function is actually a function
taking the annotations of its argument.

1.5 Research questions

Research question 1. Can region inference be made higher ranked?

Other program analyses have been made higher ranked, which made them more precise
for higher order functional programs.

Research question 2. Can the existing work on higher ranked type and effects systems
be adapted to a real programming language like Haskell?

Previously, higher ranked analyses were implemented on a toy language, without poly-
morphism and data types. Can the same methods be used, when extending such language
with polymorphism and data types?

Research question 3. Can the region based memory management be integrated in the
Helium compiler?

The Helium compiler performs optimizations such as tail recursion, strictness analysis
and thunks with multiple arguments. What are the implications of those optimizations
on the region analysis and runtime?

1.6 Contributions

Compared to the work by Tofte e.a. [53], we designed a different region inference algo-
rithm. This algorithm is higher ranked and adapted to Haskell and thus to lazy evaluation.

We extended the existing work on higher ranked analyses [51, 34, 30] in different ways.
We modified the lambda calculus for annotations as used in [51] to handle polymorphism
in the source language. We propose a different solution to the lack of a canonical form
of lambda functions, which complicates the computation of fixpoints. However, this
approach will need to be worked out further in future work, as it is not yet general
enough for all programs. Finally we applied the techniques to region inference, which
required making the annotation language even larger.

The analysis was implemented in Helium, a compiler for Haskell developed at Utrecht
University. Due to time limitations, the code generation of the regions was not imple-
mented. The implementation has two known bugs. For some mutual recursive functions,
the assignment of additional region arguments is wrong. The containment constraints
for data types may cause cyclic constraints, as described in chapter 9.1.1. Furthermore,
we did not have enough time to implement annotations on data types, but we discuss
the design for those in chapter 11.1.3. The implementation was implemented in the
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branch codegen-llvm-regions of Helium, which can be found at https://github.com/
Helium4Haskell/helium/tree/codegen-llvm-regions.

Besides the region inference analysis itself, various other changes to the compiler
were needed. The largest of them was to make the intermediate languages of Helium,
Core and Iridium, typed. As this was a rather large change, we haven’t made the code
generation for deriving typed. We modified the thunk evaluation scheme, as the old
scheme made it hard to reason about programs statically. Furthermore, we implemented
tail call optimization, which converts tail recursive function to loops in Iridium. We added
a simple strictness analysis, which only operates on the first order parts of a program.
It does support strict fields. These two passes were implemented as they have a large
influence on the region inference.
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2

Analysis overview

The goal of the region inference analysis is to decide where regions are allocated and,
for every object, in which region it will be allocated. As objects may have nested fields,
we may assign multiple regions to an object such that its fields are allocated in different
regions. We do so by assigning multiple region variables to a value, depending on its type.
This is formalized in chapter 3.

The analysis infers constraints on those regions. Those constraints are contained in
annotations. To handle higher order functions, these annotations are functions taking
both the annotations and regions of the argument.

The analysis will try to unify regions, to reduce runtime overhead and improve accu-
racy. Furthermore, it analyses which regions do not escape out of a function, as we then
can decide to allocate the region within that function.

2.1 Structure

The remainder of this thesis is organized as follows. We will introduce the general region
inference, by introducing region variables in chapter 3, the types of annotations in chapter
4 and the annotation language in chapter 5. We then consider the backend of Helium in
chapter 6, to give some context on the implementation of the region inference analysis. We
present the implementation of the region inference analysis in chapter 7 and discuss the
interaction with other compiler optimizations present in the Helium compiler in chapter
8. In chapter 9, we give the details on the graph-based algorithms which we use in the
analysis.
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3

Region arguments

Region inference decides for each object, in which region it will be allocated. We reference
those regions using region variables, which are denoted by ρ1. Nested fields of an object
may be allocated in different regions.

Each value is annotated with region arguments. As nested fields may be placed in
different regions, we may assign multiple region arguments. The number of region ar-
guments of a value depends on its type. We need different regions for a value as thunk
and as an evaluated value. We may also need regions for nested fields, for instance the
elements of a tuple or a list. We write ρ̂ to denote a tree-structure of region arguments
and use tuples of regions to structure multiple region arguments. As we will see later, the
tree structure of tuples is necessary to handle polymorphism.

ρ̂ ::= ρ

| (ρ̂, ρ̂, . . . )
(3.1)

Note that the tuple may also be empty (a unit), which we use for types which do
not require additional region arguments, such as integers. We have two special regions,
the global region ρglobal and the bottom region ρ⊥. The lifetime of the global region is
the full execution of the program. This region is used for global variables and for code
that cannot be analysed, for instance because complex data types are used. The bottom
region has no meaning at runtime. All regions outlive the bottom region, but no other
region is outlived by the bottom region. It is used in the analysis for regions which do
not escape out of a function.

We call the “type” of the region arguments the region sort, denoted by P̂ . A region
sort is either a monomorphic sort, denoting a single region, a (possibly empty) tuple of
region sorts or a polymorphic region sort.

P̂ ::= P Monomorphic region sort

| P 〈 α τ 〉 Polymorphic region sort

|
(
P̂ , P̂ , . . .

)
Tuple

(3.2)

1P and ρ are the Greek letter rho.
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The tuples of region sorts allow us to create a tree of region arguments. A leaf of
that tree may be a polymorphic region sort, which is used for values of a polymorphic
type. When instantiating such polymorphic type, the polymorphic region sorts will be
replaced by the region sorts of the instantiated type. That is, we replace the node of the
polymorphic region sort by a subtree of the instantiated type.

In many examples, we use integers, which would normally not be heap allocated. This
is because they fit in a word and have the same size as a pointer. However, in the examples
we assume that integers are heap allocated for brevity. In an implementation, one may
just forget the region arguments of integers after the analysis, such that no special case
is needed for values which are not heap allocated.

We write ρ̂ : P̂ to denote that regions ρ̂ have region sort P̂ . For clarity, we will
sometimes interleave both tree structures and for instance write (ρ1 : P, ρ2 : P ) instead
of (ρ1, ρ2) : (P, P ).

3.1 Region assignment

We define a mapping PΓ : τ → P̂ from types of kind ∗ to region sorts. For strict types, we
need one region to store the value and for other types we need one region for the thunk
and one for the evaluated value. Depending on the type, we may also need regions for
nested values, for instance the elements of a thunk, which are found in P ◦Γ . The subscript
Γ represents the effect environment, which contains information on the data types of the
program. We will later extend the effect environment with the variables which are in
scope.

PΓ(!t) = (P, P ◦Γ(t))

PΓ(t) = (P, P, P ◦Γ(t)) if t is not strict
(3.3)

Function P ◦Γ gives the region sort for the fields of a type. For types which do not have
fields, like integers or unit, we thus get an empty tuple. For functions we also do not have
additional region parameters, as we will later specify the regions of the arguments and
return value in the annotation on the function. For each element of a tuple, we need a
region to store the thunk for that element, a region for the evaluated value and a region
for fields of the element.

The region sort of data types is found in the effect environment Γ. We will later
discuss how region arguments are assigned to data types.

P ◦Γ(τ1 → τ2) = ()

P ◦Γ(()) = ()

P ◦Γ((τ1, τ2)) = (P, P, P ◦Γ(τ1), P, P, P ◦Γ(τ2))

P ◦Γ(D τ1 . . . τn) = P̂ if the region sort of data type D, instantiated with

t1 . . . tn, in environment Γ is P̂ .

P ◦Γ(α τ1 . . . τn) = P 〈α τ1 . . . τn〉

(3.4)

3.2 Instantiation

Region sorts may be instantiated, which means that a type variable is substituted with
some type. If we instantiate the type variable of a polymorphic region sort (P 〈 α τ 〉),
we expand it to the region sort of the instantiated type. A substitution of type variable
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α with type τ in region sort P̂ with effect environment Γ is written as P̂ [α := τ ]Γ. We
define the substitution using the substitution on types, written as τ ′[α := τ ].

P [α := τ ]Γ = P

P 〈α′ τ1 . . . τn〉[α := τ ]Γ =

{
P ◦Γ(τ τ1[α := τ ] . . . τn[α := τ ]) if α = α′

P 〈α′ τ1[α := τ ] . . . τn[α := τ ]〉 otherwise(
P̂1, . . . P̂n

)
[α := τ ]Γ =

(
P̂1[α := τ ]Γ, . . . P̂n[α := τ ]Γ

) (3.5)

The monomorphic region sort does not change in a substitution. For a polymorphic
region sort, we must apply the substitution to the type arguments, which are denoted by
τ1 . . . τn in equation 3.5. Furthermore, we must check whether the type variable α′ in
the polymorphic region sort is being instantiated. If that is the case, we must replace
the polymorphic region sort with the sort of the instantiated type, which function P c

Γirc
yields. Otherwise, we still leave it as a polymorphic region sort. For tuples, we propagate
the substitution to its elements.

3.3 Lifetime relation

The analysis computes a relation on the lifetimes of region variables in a program. We
express this relation using ≥, which means “lives at least as long as”. For brevity we will
however say “ρ1 outlives ρ2” instead of “ρ1 lives at least as long as ρ2”. The relation
is reflexive and transitive, which is also known as a preorder [48] and can be seen as a
partial order modulo unifications.

Given a relation R, we write x ≤R y for (x, y) ∈ R, x ≥R y for (y, x) ∈ R and x ≡R y
for (x, y) ∈ R ∧ (y, x) ∈ R.

We have two special regions, ρglobal and ρ⊥. The global region, ρglobal has a lifetime
of the full lifetime of the program. This is used for global variables, which should not be
deallocated during the execution of the program. The global region must be the top in a
lifetime relation R. That is, for all ρ, ρglobal ≥R ρ. The bottom region, ρ⊥, must be the
bottom element of the relation, thus for all ρ, ρ ≥R ρ⊥.

Definition 3.3.1 (Reflexive relation). A relation R ⊂ S × S on set S is reflexive if for
all x ∈ S, (x, x) ∈ R holds [48].

Definition 3.3.2 (Transitive relation). A relation R ⊂ S × S on set S is transitive if
(x, y) ∈ R ∧ (y, z) ∈ R implies (x, z) ∈ R for all x, y, z ∈ S holds [48].

Definition 3.3.3 (Lifetime relation). A lifetime relation R ⊂ P × P is a reflexive,
transitive relation, such that for all ρ, ρglobal ≥R ρ and ρ ≥R ρ⊥. We write R for the set
of all lifetime relations.

We write a lifetime relation R as Ja ≥ b, c ≥ d, . . .K, where all pairs ρ1, ρ2 should be
present as ρ1 ≥ ρ2 between the brackets, for which ρ1 ≥R ρ2 and ρ1 6= ρ2, ρ1 6= ρglobal
and ρ2 6= ρ⊥. That is, we specify all outlive-relations, except for reflexivity, ρglobal as top
element and ρ⊥ as bottom, as we leave those implicit.

Definition 3.3.4 (w, partial order on lifetime relations). We say that a lifetime relation
R1 is at least as precise (or constrained) as R2 and write R1 w R2 if for all ρ1, ρ2,
ρ1 ≥R2

ρ2 implies ρ1 ≥R1
ρ2.

From the definition of w it follows directly that R1 w R2 is equivalent to R1 ⊇ R2.
Thus, w is a partial order.
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We write Ja ≥ b, c ≥ d, . . .K∗ for the smallest lifetime relation satisfying the given
constraints, namely the transitive closure [48] of these constraints with ρglobal added as
top element.

Definition 3.3.5 (t, join of lifetime relations). We define the join of lifetime relations
R1 and R2, denoted by R1 t R2, as the smallest lifetime relation R such that R w R1

and R w R2.

Finally, we write ⊥ for an empty relation.

3.4 Region sort of data types

The region sorts of data types are constructed in the following way. First we start by
finding the binding groups of data types. Each binding group contains one or more data
types, such that there is no mutual recursion between binding groups, ignoring recursion in
a function type. The dependencies between binding groups thus form a directed acyclic
graph. We process the binding groups in a topological order. This is similar to how
binding groups of functions are dealt with in the type inferencer of Helium [23].

All data types in a binding group will get the same region sort. We write temporarily
to the effect environment that all these data types have zero region arguments. With this
environment we compute the sort regions of all fields of all constructors in the binding
group. These sorts are concatenated and flattened to a single list, which becomes the
region sort of all data types in the binding group.

Finally we construct a mapping between the resulting list and the fields of each con-
structor. For recursive positions, we instantiate the regions with the same region argu-
ments.

3.5 Containment

The containment property means intuitively that the fields of a value outlive the value
itself. For instance for a tuple, the elements should live at least as long as the tuple. We
formalize this with a containment function CΓ : τ → P̂ → R, taking the type and regions
of a value and returning a constraint between those. The type should be of kind ∗ and
the region arguments should have sort PΓ(τ).

CΓ(!τ, (ρ2, ρ̂3)) = C◦Γ(τ, ρ2, ρ̂3)

CΓ(τ, (ρ1, ρ2, ρ̂3)) = Jρ2 ≥ ρ1K t C◦Γ(τ, ρ2, ρ̂3)
(3.6)

For non-strict values, we require that the region in which the value is stored outlives
the region containing the thunk. This prevents that an evaluated thunk points at a
deallocated value.

Note that ρ̂3 may not just be a single region, but may represent an empty list (for
types without additional region arguments) or a list of region arguments. The constraints
between these regions and the region of the value (ρ2) are specified in C◦Γ : τ×P × P̂ → R.
First we consider tuples. A tuple has three region arguments for each field, namely a
region to store the thunk, one for the value and one for nested fields of the element. The
last of these can itself be a list of multiple region arguments. We require that the region
containing the thunk outlives the region of the tuple itself and that the region of the
value outlives the thunk. Implicitly this means that the region of the element value must
outlive the region of the tuple. Furthermore, the element in the thunk may have more
region arguments in ρ3, which can give more constraints.
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C◦Γ((τ1, τ2), ρ, (ρ1t, ρ1v, ρ̂1, ρ2t, ρ2v, ρ̂2))

= Jρ1v ≥ ρ1t, ρ1t ≥ ρ, ρ2v ≥ ρ2t, ρ2t ≥ ρK∗

t C◦Γ(τ1, ρ1v, ρ̂1)

t C◦Γ(τ2, ρ2v, ρ̂2)

(3.7)

For polymorphic values, we have one polymorphic region variable assigned for the
fields of that type. We require that that region outlives the region of the evaluated value.
Note that this region argument may later be replaced by multiple region variables, when
the type variable of this polymorphic region variable is instantiated.

C◦Γ(α τ1 . . . τ2, ρ, ρ1) = Jρ1 ≥ ρK (3.8)

Finally, we have no further containment rules for types without region arguments for
nested fields.

C◦Γ(τ, ρ, ()) = ⊥ (3.9)

3.5.1 Containment for data types

We require for data types that all nested region variables outlive the region of the value.
Furthermore, we require all containment relations of the fields of the constructors. The
latter is only needed for consistency for the garbage collector. These constraints would
still be generated when pattern matching or constructing objects, but as a garbage col-
lector must always be able to follow pointers, we must add those additional containment
constraints. This has the consequence that containment constraints may become cyclic.
If that occurs, we must unify these region arguments of the data type, as we would run
into problems later if we generate cyclic outlive constraints. An example of this is shown
in chapter 9.1.1.
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4

Annotation sorts

Besides region arguments, we will also assign annotation arguments to values. Whereas
region arguments are concrete in the sense that they directly represent the region in which
a value is stored at runtime, annotation arguments are more abstract as they describe
the relations between region variables. To be more precise, annotations describe relations
between the regions of the arguments and the return value of a function.

In this chapter, we introduce the types of annotations. We call those types sorts.

s ::= R Relation

| ( s ) Tuple

|
[
s; P̂

]
l
→ s Function

| ∀α. s Quantification

| Ψ〈 α τ 〉 Polymorphic sort

l ::= |→ | ∅

(4.1)

A relation, R, is a lifetime relation on regions. A tuple sort is used for types with
multiple annotations, similar to the tuple used in region sorts.

The function sort is used to retrieve the regions and annotations of an argument or
return value of a function (in the source language). We may limit how region arguments
are used in a function. We annotate region arguments with a lifetime context, denoted
by l. The lifetime context |→ , pronounced local bottom, denotes that those argument may
only be used on the right hand side of an outlives constraint (≥). Thus, the function may
not give constraints on the lifetime of those region variables, but these region variable
can be used to give constraints on other region variables. When we do not annotate the
region argument with such arrow, it may be used on both sides of the outlives constraints.
We write l for the lifetime context, l ::= |→ | ∅. This lifetime context only applies to the
region arguments of an annotation function.

The quantification sort is used for polymorphic values. Note that this quantifies over
types instead of sorts. Similar to region sorts, we also have a polymorphic sort here. This
sort will be replaced when its type variable is instantiated.



Chapter 4. Annotation sorts 16

4.1 Instantiation

Quantified sorts can be instantiated with a type. When doing so, we substitute all
occurrences of the type variable with the instantiated type. If the type variable is used in
a polymorphic region (P 〈α τ〉) or annotation sort (Ψ〈α τ〉), we will substitute that sort
with the regions or annotations of the instantiated type.

A substitution of type variable α with type τ in sort s in effect environment Γ is
denoted by s[α := τ ]Γ. For brevity we won’t consider name collisions. We define the
substitution using the substitutions on types (τ ′[α := τ ]) and on region sorts (P̂ [α := τ ]Γ).

R[α := τ ]Γ = R

(s1, . . . sn) [α := τ ]Γ = (s1[α := τ ]Γ, . . . sn[α := τ ]Γ)([
s1; P̂

]
l
→ s2

)
[α := τ ]Γ =

[
s1[α := τ ]Γ; P̂ [α := τ ]Γ

]
l
→ s2[α := τ ]Γ

(∀α′. s) [α := τ ]Γ = ∀α′. s[α := τ ]Γ

Ψ〈α′ τ1 . . . τ2〉[α := τ ]Γ =

{
ΨΓ(τ τ1[α := τ ] . . . τn[α := τ ]) if α = α′

Ψ〈α′ τ1[α := τ ] . . . τn[α := τ ]〉 otherwise

(4.2)

4.2 Annotation assignment

Similarly to region sorts, we define a mapping ΨΓ : τ → s from types to sorts. We
annotate a function type τ1 → τ2 with annotations which describe the constraints on
the regions of the return value. The assigned annotation has a function sort, taking the
annotations and regions of τ1 and returning a tuple of two elements. The first element
has sort [(), P ] → [(), PΓ(!τ2)] |→ → R and is a function taking the region of the previous

thunk, used for partial applications as described below, and the region variables of the
return value. The function returns the constraints on those return regions in terms of the
other regions. The second element of the tuple contains the annotations of τ2.

ΨΓ(τ1 → τ2) = [ΨΓ(τ1);PΓ(τ1)]→ ([(), P ]→ [(), PΓ(!τ2)] |→ → R, ΨΓ(τ2)) (4.3)

For other types, we propagate the annotations on nested functions. For instance, for
a tuple type, we create a tuple with the annotations of the elements.

ΨΓ(Int) = ()

ΨΓ(()) = ()

ΨΓ(!τ) = ΨΓ(τ)

ΨΓ((τ0, τ1)) = (ΨΓ(τ0),ΨΓ(τ1))

ΨΓ(D τ1 . . . τn) = s if the annotation argument sort of data type D,

instantiated with τ1 . . . τn, in environment Γ is s.

ΨΓ(α τ1 . . . τn) = Ψ〈 α τ1 . . . τn 〉

(4.4)

We thus assign both region and annotation variables, which we will clarity with an
example. Consider a value of type Int -> Bool. This value gets two region arguments,
namely one for the function if it is not yet evaluated to weak head normal form and one
where the region is stored after evaluating to weak head normal form. These regions thus
have a direct meaning at runtime. Furthermore we assign an annotation variable, which
describes the relation between the argument of the function, of type Int, and the result,
of type Bar.
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4.2.1 Partial applications

When partially applying a function, a thunk object is constructed containing a pointer
to the function and its arguments. Thunks may form a linked list, which happens when
calling a partially applied function, whose arity is at least two. As an example, consider
the following code:

f x y z = x + y + z

a = f 1

b = a 2

Variable b contains a thunk object, pointing at a. We thus need a containment con-
straint, saying that the region of thunk a outlives the region of thunk b. The annotation
function thus needs to get the region of the previous thunk as an argument. We give this
region variable in an additional lambda, [(), P ], as seen in the sort of a function:

ΨΓ(τ1 → τ2) = [ΨΓ(τ1);PΓ(τ1)]→ ([(), P ]→ [(), PΓ(!τ2)] |→ → R, ΨΓ(τ2))

Note that this argument is only used for partial applications. When partially applying
a function with only the first argument, as we do in the definition of a, we use this region
as well. In this case, the thunk will not point at a previous thunk. Instead it points at a
function, whose lifetime is the full execution time of the program. We thus instantiate this
region argument with the global region, ρglobal. This will not give additional constraints,
as the global region always outlives all regions.
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5

Annotation language

The analysis works with annotations from a typed lambda calculus, typed with the sorts
introduced in the previous chapter. We introduce the annotation language in this chapter.
We start by introducing the syntax and give some insights on the design of the language
with regards to the features of the source language, Haskell. We discuss the sorting rules
(the type system of the annotation language) and the evaluation rules.

The syntax of the annotation language is shown in figure 5.1. The simplest annotation
is bottom, ⊥, which means that there are no constraints on the argument and return
regions of some function.

A lambda or an abstraction is written as λ
[
ψ : s; ρ̂ : P̂

]
l
7→ a. It introduces both

region and annotation variables. It is used to accept the annotations and regions of
arguments and the return value of a Haskell function. Introduced annotation variables
can of course be used in the body of a lambda and are denoted by a ψ. The abstraction is

a ::= ⊥ Bottom

| λ
[
ψ : s; ρ̂ : P̂

]
l
7→ a Abstraction

| ψ Variable

| a [a; ρ̂]l Application

| J ρ ≥ ρ K Relation

| ∀α. a Quantification

| a {τ} Instantiation

| ( a ) Tuple

| πn(a) Projection

| a t a Join

| fix : s. a Least fixpoint

| fix escape
[
n; P̂

]
: s. a Least fixpoints with escape check

(5.1)

Figure 5.1: Language of annotations
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annotated by a lifetime context, which denotes on which sides of the outlives constraint
(≥) the region variables may be used, the same as the lifetime context on a function sort.

Lambdas can be applied with an application, written as a [a; ρ̂]l. The application
provides both an annotation and region variables.

A relation, written as a list of outlive constraints within brackets, describes a relation
on the lifetimes of region variables. The constraints in the list must be unique and
transitively closed. Reflexivity and constraints of the form ρglobal ≥ ρ or ρ ≥ ρ⊥ are
implicit and should not be listed.

To accommodate polymorphism, we need quantification (∀α. a) and instantiation
a {τ}. Instantiating an annotation will cause that polymorphic region sorts and poly-
morphic annotation sorts of the instantiated type variable are instantiated with the given
type.

The language has tuples, as some types need multiple annotations. Tuples are repre-
sented as a comma-separated list of annotations. To extract elements out of a tuple, we
have (zero-based) projection, πn(a).

Furthermore, we have a join operator, which evaluates to the least annotation (with
respect to the partial order which we will define in chapter 3.3) greater than both of its
arguments.

To analyse recursive programs, we introduce two kinds of least fixpoint combinators.
The first fixpoint combinator, fix : s. a, evaluates to the least annotation a′ of sort
s such that a a′ = a′. This combinator is used to analyse functions with imperative
loops, as we applied the analysis to Iridium, a language with imperative control flow.
The second fixpoint combinator, fix escape[n; s] : s. a, is used for (mutual) recursive
functions. Besides computing the least fixpoint if a, it will also try to remove region
arguments from a. The removed regions may either be allocated within the analysed
function as they do not escape, or they may be unified with some other region variables.

The language features both region and annotation variables. Annotation variables,
denoted by ψ, are the ordinary variables that one expects in a lambda calculus. They
may be applied, instantiated or used as argument in an application. Region variables,
denoted by ρ, come from the domain of our analysis. They are meant to be used in
lifetime relations. To handle function calls in the source language, they may also be
passed in application. An application in our annotation language namely passes both
region arguments and annotation arguments.

5.1 Partial order on annotations

In chapter 3.3, we defined a partial order on lifetime relations, e.g. annotations of sort
R. We extend the definition to annotations of arbitrary sorts, inductively over the sorts.

Definition 5.1.1 (Partial order on annotations). Let a and a′ be annotations of sort
s without free type and annotation variables. Annotation a is at least as precise as a′,
denoted by a v a′, if and only if one of the following holds:

Lifetime relation Case s = R. The arrow −→ denotes the “evaluates to” relation,
which we will introduce below. Annotation a is at least as precise as a′ if a −→ a1,
a′ −→ a′1 and a1 v a′1 with respect to the partial order on lifetime relations from
chapter 3.3.

Function Case s = [s1; P̂ ] → s2. If for all annotations a1 of sort s and regions ρ̂ of
region sort P̂ , a[a1; ρ̂] v a′[a1; ρ̂], then a v a′.

Quantification Case s = ∀α. s′. If for all types τ , a {τ} v a′ {τ} then a v a′.
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Tuple Case s = (s1, . . . sn). If for all indices 1 ≤ i ≤ n it holds that πi(a) v πi(a′), then
a v a′.

We write a = a′ when a v a′ and a′ v a. Note that we do not define the relation on
annotations of a polymorphic sort (Ψ〈α τ1 . . . τn〉), as we only define it for annotations
without free annotation variables.

5.2 Internal & additional region arguments

Some functions may require additional region arguments, if the regions of the return type
do not suffice. An example of such a function is (.) :: (b -> c) -> (a -> b) ->

a -> c, which applies the first function after the second function. The function can be
defined as follows:

(.) :: (b -> c) -> (a -> b) -> a -> c

(.) f g x = let y = g x in f y

In this example, we do not know where we should allocate the value stored in y. We
could allocate y in the same region as the result (of type c), but that may cause that
the lifetime of y is overestimated, for instance when passing const 1 as f. Instead, we
will add an additional region argument to both the annotation of (.) and the emitted
function (after the region transform). This will become the first argument of (.). At
each usage of this function, we will pass an additional argument. This still allows the
function to be used in higher order positions, and to be partially applied.

Note that additional region arguments are not related to polymorphism: the same
problem occurs when substituting the type variables with for instance Int. However,
polymorphism complicates the assignment of additional regions, as we cannot assign a
polymorphic region sort to these regions. The additional region arguments are added
before the quantifications. We cannot add the additional region arguments after the
quantifications, as we do not know whether all usages of the function instantiate all
quantifications.

The analysis works by first assigning additional region arguments to all subexpressions
of the function. When normalizing the annotation, we try to remove some of those
additional region arguments. Regions may either be removed as they do not escape out
of the function (internal regions), or they may be unified with some other region.

5.3 Sorting rules

The sorting rules are the “typing rules” of the annotation language and describe the sorts
of annotations. We write Γ ` a : s to denote that annotation a has sort s in effect
environment Γ and we call an annotation well sorted if it has a sort.

5.3.1 Effect environment

To define the sorting rules, we must first consider the effect environment Γ, which contains
information on the data types of the module and sorts of the annotation and region
variables with their lifetime context which are in scope. A lambda adds an annotation
variable to the effect environment, which we write as Γ, ψ : s. The addition of a region
variable is written similarly, as Γ, ρ : P l or Γ, ρ : P 〈α τ1 . . . τn〉l. The l denotes the
lifetime context of the lambda which introduced those region variables. We can only
introduce region variables of a monomorphic sort or a polymorphic sort; variables of a
tuple sort are not allowed. Instead, tuples should be bound to a tuple of region variables.
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We write the introduction of a tree of region variables as Γ ++ ρ̂ : P̂ l. For a monomorphic
or polymorphic region sort, we add the region variable to the environment.

Γ ++ ρ : P l = Γ, ρ : P l

Γ ++ ρ : P 〈α τ1 . . . τn〉l = Γ, ρ : P 〈α τ1 . . . τn〉l
(5.2)

For a tuple, we must add the region variables of each element of the tuple.

Γ ++ () : () = Γ

Γ ++ (ρ̂1, . . . ρ̂n) :
(
P̂1, . . . P̂n

)l
= (Γ ++ ρ̂1 : P̂ l

1) ++ (ρ̂2, . . . ρ̂n) :
(
P̂2, . . . P̂n

)l (5.3)

We write ψ : s ∈ Γ to denote that variable ψ has sort s in environment Γ and similarly
ρ : P̂ l ∈ Γ for region variables.

5.3.2 Variables

The sort of an annotation variable is found in the effect environment.

ψ : s ∈ Γ

Γ ` ψ : s (5.4)

For region variables, we also have subeffecting. It is namely allowed to use a variable
with lifetime context local bottom as having any lifetime context, and we may use a
monomorphic region variable as a polymorpic variable or as a tuple in applications.

ψ : s ∈ Γ

Γ ` ψ : s (5.5)

ρ : P̂ l ∈ Γ

Γ ` ρ : P̂ l (5.6)

Γ ` ρ : P̂ |→

Γ ` ρ : P̂ (5.7)

Γ ` ρ : P l

Γ ` ρ : P̂ l (5.8)

Note that in the notation that we use, P is syntax, namely the monomorphic region sort
and P̂ is variable, denoting a region sort. Rule 5.8 thus says that if a variable has the
monomorphic region sort, then it may be used as any region sort.

As lambdas take a tree structure of region variables, we will also extend the region
sorts to these structures.

∀i. Γ ` ρ̂i : P̂i

Γ ` (ρ̂1, . . . ρ̂n) :
(
P̂1, . . . P̂n

)
(5.9)

5.3.3 Lambdas & applications

For a lambda, we add the annotation argument and the region arguments with the lifetime
context of the lambda to the type environment.

Γ, ψ : s1 ++ ρ̂ : P̂ l ` a : s2

Γ ` λ
[
ψ : s1; ρ̂ : P̂

]
l
7→ a :

[
s1; P̂

]
→ s2 (5.10)
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We enforce that the argument of an application has the sort specified in the sort of
the left hand side. The region arguments should have the appropriate lifetime context.

Γ ` a1 :
[
s1; P̂

]
l
→ s2 Γ ` a2 : s1 Γ ` ρ̂ : P̂ l

Γ ` a1 [a2; ρ̂]l : s2 (5.11)

5.3.4 Lifetime relation

A lifetime relation consists of outlive constraints of the form ρ ≥ ρ′. For each outlive
constraint we require that if both operands are polymorphic, then they should be poly-
morphic on the same type. Furthermore, the left hand side must have lifetime context
any and cannot be local bottom. We enforce this by first defining the sorting rules for
lifetime relations with one outlive constraint.

Γ ` ρ : P Γ ` ρ′ : P l

Γ ` Jρ ≥ ρ′K : R (5.12)

Γ ` ρ : P 〈α τ1 . . . τn〉 Γ ` ρ′ : P l

Γ ` Jρ ≥ ρ′K : R (5.13)

Γ ` ρ : P Γ ` ρ′ : P 〈α τ1 . . . τn〉l

Γ ` Jρ ≥ ρ′K : R (5.14)

Γ ` ρ : P 〈α τ1 . . . τn〉 Γ ` ρ′ : P 〈α τ1 . . . τn〉l

Γ ` Jρ ≥ ρ′K : R (5.15)

The sorting rule for a lifetime relation with multiple constraints says that all con-
straints on their own should be valid.

n ≥ 2 ∀i. Γ ` Jρi ≥ ρ′iK : R

Γ ` Jρ1 ≥ ρ′1, . . . ρn ≥ ρ′nK : R (5.16)

5.3.5 Quantification and instantiation

To handle polymorphism of the source language, the annotation language and sorts have
quantifications. The argument of an instantiation must have a quantified sort, which we
will then instantiate using the given type.

Γ ` a : s
Γ ` ∀α. a : ∀α. s (5.17)

Γ ` a : ∀α. s
Γ ` a { τ } : s[α := τ ]Γ (5.18)

5.3.6 Tuples

Tuple annotations get the tuple sort, with the sorts of all elements. The projection takes
an element from a tuple. Note that the projection is zero-based.

∀i. Γ ` ai : si
Γ ` (a1, . . . an) : (s1, . . . sn) (5.19)

Γ ` a : (s0, . . . sn−1) 0 ≤ k < n

Γ ` πk(a) : sk (5.20)
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5.3.7 Join and bottom

Both operands of a join should have the same sort, which is also the sort of the join itself.

Γ ` a1 : s Γ ` a2 : s

Γ ` a1 t a2 : s (5.21)

The bottom annotation may have any sort.

Γ ` ⊥ : s (5.22)

5.3.8 Fixpoint combinators

The fixpoint combinator takes a function of sort [s, ()] → s and evaluates to its least
fixpoint, which has sort s.

Γ ` a : [s, ()]→ s

Γ ` fix : s. a : s (5.23)

The fixpoint combinator with escape check has more constraints. Sort s should be a
function taking additional region arguments (P̂ , which were introduced in chapter 5.2),
and returning an annotation of the sort of a function whose arity is at least n.

Γ ` a : [s; ()]→ s s =
[
(); P̂

]
→ ΨΓ(τ) arity(τ) ≥ n

Γ ` fix escape
[
n; P̂

]
: s. a : s (5.24)

5.4 Evaluation rules

We will introduce the evaluation rules of the annotation language in this section. We write
a −→ a′ to denote that a well sorted annotation a evaluates to a′. In these evaluation
rules, we will not consider name collisions and alpha conversion. In our implementation
we namely used De Bruijn indices [15], which prevents name collisions and make normal-
isation easier as there is no freedom in choosing names. For clarity, we however do not
use De Bruijn indices as examples are more clear with proper variable names.

The “evaluates to” relation is reflexive and transitive.

a −→ a (5.25)

a1 −→ a2 a2 −→ a3
a1 −→ a3 (5.26)

5.4.1 Sub-annotations

The subexpressions (sub-annotations) of annotations may be evaluated.

a −→ a′

λ
[
ψ : s; ρ̂ : P̂

]
l
7→ a −→ λ

[
ψ : s; ρ̂ : P̂

]
l
7→ a′ (5.27)

a1 −→ a′1 a2 −→ a′2
a1 [a2; ρ̂]l −→ a′1 [a′2; ρ̂]l (5.28)

a −→ a′

∀α. a −→ ∀α. a′ (5.29)

a −→ a′

a {τ} −→ a′ {τ} (5.30)
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∀i. ai −→ a′i
(a1, . . . an) −→ (a′1, . . . a

′
n) (5.31)

a −→ a′

πi(a) −→ πi(a
′) (5.32)

a1 −→ a′1 a2 −→ a′2
a1 t a2 −→ a′1 t a′2 (5.33)

5.4.2 Tuples

A projection extracts an element from a tuple. The index is zero-based.

πi((a1, . . . an)) −→ ai+1 (5.34)

5.4.3 Join

A join of two lifetime relations evaluates to the smallest lifetime relation containing both
operands. The algorithm that we use is discussed in chapter 9.2

Jρ◦1 ≥ ρ•1, . . .K is the smallest lifetime relation satisfying ρi ≥ ρ′i for i = 1 . . . n+m

Jρ1 ≥ ρ′1, . . . ρn ≥ ρ′nK t Jρn+1 ≥ ρ′n+1, . . . ρn+m ≥ ρ′n+mK −→ Jρ◦1 ≥ ρ•1, . . . ρ◦k ≥ ρ•kK
(5.35)

The join is associative, commutative and idempotent.

(a1 t a2) t a3 −→ a1 t (a2 t a3) (5.36)

a1 t a2 −→ a2 t a1 (5.37)

a t a −→ a (5.38)

Bottom is the identity of the join.

⊥ t a −→ a (5.39)

Furthermore, we have some rules on how joins and bottoms distribute over other
annotations. For quantifications and lambdas, we move the union inward. With alpha
conversion, we can assure that the type variable, region variables and annotation variable
have the same name on both sides. As we used De Bruijn indices in the implementation,
naming is no problem and we do not need to perform renaming here.

(∀α. a1) t (∀α. a2) −→ ∀α. a1 t a2 (5.40)

(
λ
[
ψ : s; ρ̂ : P̂

]
l
7→ a1

)
t
(
λ
[
ψ : s; ρ̂ : P̂

]
l
7→ a2

)
−→ λ

[
ψ : s; ρ̂ : P̂

]
l
7→ a1 t a2 (5.41)

∀α. ⊥ −→ ⊥ (5.42)

λ
[
ψ : s; ρ̂ : P̂

]
l
7→ ⊥ −→ ⊥ (5.43)

For applications and instantiations, we move the joins outward.

(a1 t a2) [a, ρ̂]l −→ a1 [a, ρ̂]l t a2 [a, ρ̂]l (5.44)
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(a1 t a2) {τ} −→ a1 {τ} t a2 {τ} (5.45)

⊥ [a, ρ̂]l −→ ⊥ (5.46)

⊥ {τ} −→ ⊥ (5.47)

5.4.4 Application

An application can be evaluated if it targets an abstraction. We then apply a substitution
to the body of the abstraction.

a1[ψ := a2][ρ̂1 := ρ̂2](
λ
[
ψ : s; ρ̂1 : P̂

]
l
7→ a1

)
[a2; ρ̂2]l (5.48)

The substitution of the annotation argument ψ is a syntactic substitution (ignoring name
collisions). The substitution of region variables is slightly different, as a lambda takes a
tree of region variables. As noted before, a single region ρ may also be passed to a tree
of region variables, which means that all variables in that tree are substituted with ρ.
Formally, we can define this substitution in terms of the ordinary syntactic substitution
(a[ρ := ρ′]).

a[(ρ̂1, . . . ρ̂n) := (ρ̂′1, . . . ρ̂
′
n)] = a[ρ̂1 := ρ̂′1] . . . [ρ̂n := ρ̂′n]

a[(ρ̂1, . . . ρ̂n) := ρ] = a[ρ̂1 := ρ] . . . [ρ̂n := ρ]

a[ρ := ρ′] = the syntactic substitution of ρ with ρ′ in a

(5.49)

5.4.5 Instantiation

An instantiation of a quantification, (∀α. a) {τ}, can be evaluated, by essentially substi-
tuting type variable α with type τ in a. We already defined such instantiation of types,
region sorts and annotation sorts. As seen in the instantiation rules for region sorts,
it may occur that a lambda gets more or fewer region arguments, when a polymorphic
region sort is replaced by the regions of the instantiated type. This would require some
additional notation to define this formally, so we instead introduce it informally in text.

The substitution is essentially propagated through the annotation. Only lambdas are
special. Consider some region variable ρ of a polymorphic region sort P 〈α τ1 . . . τn〉,
which is polymorphic in the type variable which is substituted. We find the sort of the
region variable after instantiation with P̂ = P ◦Γ(α τ1 . . . τn). We introduce new region

variables ρ̂, based on the tree P̂ . We now must substitute all occurrences of ρ in the body
of the lambda. For usages of ρ in an application, we replace ρ with ρ̂, the tree of new
region variables, as an application may contain such tree structure.

For occurrences of ρ in an outlive constraint, of the form ρ ≥ ρ′ or ρ′ ≥ ρ, we will
extend the outlive constraint elementwise. We distinguish two cases. If both operands
of the outlive constraints are polymorphic, then they must be polymorphic on the same
type, which is now being substituted. We create new outlive constraints, element wise,
matching region variables from the same positions of the two trees of region variables.
Consider that ρ is substituted with (ρ1, ρ2) and ρ′ with (ρ′1, ρ

′
2). The constraint ρ ≥ ρ′ is

then substituted with ρ1 ≥ ρ′1, ρ2 ≥ ρ′2.
If only one of the operands of the outlive constraint is monomorphic, we also create

new outlive constraints element wise. For instance, consider a constraint ρ ≥ ρ′ where ρ
is substituted with (ρ1, ρ2). We then create the constraints ρ1 ≥ ρ′ and ρ2 ≥ ρ′.
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5.4.6 Fixpoints

First we consider ordinary fixpoints, without escape check. A fixpoint contains a function,
a, which has sort [s; ()]→ s. Fixpoints are evaluated by repeatedly applying that function,
until a fixpoint is reached. We do so by repeatedly taking the function composition a ◦ a.
First we introduce a rule to perform one iteration.

fix : s. a −→ fix : s. λ[ψ : s; () : ()] 7→ a [a [ψ; ()]; ()] (5.50)

a −→ a′

fix : s. a −→ fix : s. a′ (5.51)

When a fixpoint is reached, we can break out of the fixpoint.

a [⊥; ()] −→ a′ a [a [⊥; ()]; ()] −→ a′

fix : s. a −→ a′ (5.52)

The rules for the fixpoint with escape check are similar, but we will try to remove
additional region arguments there. This procedure is described in chapter 5.6. A fixpoint
with escape check can only be evaluated if the body has no free variables, as free variables
would cause the escape check to be inconsistent.

5.4.7 Normal form

If an annotation cannot be evaluated further, we say that it is in normal form. As the
join is commutative and associative, we enforce an arbitrary order on annotations and
order the annotations in a join accordingly. Furthermore, variables and fixpoints must be
saturated, which we ensure by eta expansion.

5.5 First order fixpoints

With any fixpoint iteration, one may ask whether a fixpoint will eventually be reached.
For region inference, this is not the case. Higher order functions which take a function as
argument and apply that function repeatedly on its result are problematic. For instance,
the analysis does not find a fixpoint for the functions fix, foldr, foldl, iterate and
until from the Prelude of Haskell.

A similar problem occurred in previous work on higher order analyses by Thorand
[51]. In his context, the problem was that there was no canonical form known and the
comparisons of annotation terms was thus not possible. The annotation would reach a
fixpoint, but this could not be concluded by a syntactic comparison. As a solution, all
possible inputs to the functions were tried and their results were checked for equivalence.
The set of all inputs was finite, as their source language did not have polymorphism. As
our language does have polymorphism, this set becomes infinite. Furthermore, even for
monomorphic functions this approach would be very expensive as our analysis considers
a much larger domain than the dependency analysis by Thorand [51].

Besides the comparison, we also have the problem that polymorphic functions may
not even have a fixpoints. Polymorphic functions exist such that given any number, there
is an instantiation of the type such that the fixpoint iteration requires more iteration
than the given number. This can be shown by passing a function which iterates a tuple
like (a1, . . . an) 7→ (an, a1, a2, . . . an−1) to a higher order function like iterate. After n
iterations, each element has been on all positions. As we can make n arbitrarily large,
there is no fixed number of iterations which will result in a fixpoint.

As a partial solution to this problem, we introduce the notion of a first order fixpoint.
A fixpoint fix : s. a is in a first order fixpoint if a [⊥; ()] −→ a1, a [a [⊥; ()]; ()] −→ a2,
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a1 and a2 cannot be evaluated further, and evaluate to the same term after substituting
all variables with bottom. When a first order fixpoint is reached, we do not evaluate the
fixpoint further. This is a restriction for the code generation, as the annotation contains
a fixpoint. The first order parts of the function are however fixed, so we can reason with
those. We cannot reason about the higher order parts, the function calls, but that is not
that much of a restriction as we can already do little reasoning on higher order function
calls.

We use first order fixpoints similarly on a fixpoint with escape check. However, when
a first order fixpoint is reached, we convert the fixpoint with escape check to an ordinary
fixpoint; the escape check is based on the first order fixpoint.

The fixpoints are preserved, until we have more information on the use of the function.
For instance, we may be able to evaluate a fixpoint further if we know the annotation of
an argument passed to a higher order function. However, we have not found a general
and consistent way to make use of the additional information. What we currently do is
to check which arguments are kept constant, in the recursive calls of the fixpoint. We
inline those arguments, which may give more information on the fixpoint. This way we
can for instance analyse functions defined in terms of fix, or actually most higher order
functions as they usually tend to keep such arguments constant.

Besides of this inlining, we will also try to split a fixpoint if it contains tuples, as we
may be able to partially evaluate such fixpoint. We do so by first lifting the lambdas to the
top, even out of lambda abstractions. This can be done by adding projections explicitly.
We then create fixpoints per element of the tuples. However, as the elements of the tuple
may reference other elements, we must inline the fixpoints multiple times, which may
cause a factorial number of fixpoints. In practise this transform will be beneficial for the
performance, as many of those fixpoints can directly be evaluated.

These transformations are not sufficient to always evaluate a fixpoint. It would be
desired that we will always find an annotation without fixpoint if we analyse a first order
function even if the function calls higher order functions. Evaluation strategies to better
handle fixpoints are left as future work. A possible alternative would be to widen the
annotation and get an annotation which is an upperbound of the fixpoint. This will need
to be done in a consistent way, such that mutual recursive functions are analysed properly.

5.6 Removing additional region arguments

In the fixpoint combinator with escape check, we try to remove additional region argu-
ments. We do this with an escape check, by finding cycling outlive constraints and by
collapsing.

5.6.1 Escape check

The escape check finds regions which do not escape out of a function and can thus be
allocated within that function. A set of additional region arguments D may be allocated
within the function if there are no constraints of the form ρ1 ≥ ρ2 with ρ1 ∈ D and
ρ2 /∈ D. The escape check finds the largest set D. The implementation of the escape
check, together with other algorithms on lifetime relations, is discussed in chapter 9.

5.6.2 Cyclic outlive constraints

When an annotation gives the outlive constraints ρ1 ≥ ρ2 and ρ2 ≥ ρ1 and ρ1 is an
additional region argument, we remove ρ1 by substituting it with ρ2. This decreases
the number of region arguments, which also reduces the runtime overhead of these region
arguments, and also has the benefit that the region arguments are passed later for partially
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applied functions. Additional region arguments are passed with the direct use of the
function, thus before passing the first argument. This means that the additional region
arguments are instantiated the same for all calls to a partially applied function. Normal
region arguments for the last argument of a function may have different instantiations
for each call. This limitation of the additional region arguments is caused by the code
generation, as we need to use the results of the analysis for code generation and need to
handle partial applications in a uniform way. Substituting additional region arguments
with other regions will thus reduce the sharing between different calls of a partially applied
function. Furthermore, it also reduces the sizes of lifetime relations, which may improve
the time and memory usage of the analysis.

5.6.3 Collapsing

Collapsing is another method to reduce the number of additional region arguments. Given
two regions ρu and ρv such that ρu ≥ ρv, we will substitute ρu with ρv if ρu is an additional
region argument and the substitution will not add additional constraints on ρv. As the
latter condition is rather imprecise, we will formalize that now by introducing the term
“directly outlives”.

Definition 5.6.1 (Outlive set). The outlive set outlive(ρu) of a region ρu in a lifetime
relation R is the set of all regions ρv 6= ρu such that ρu ≥ ρv.

Note that the outlive set is the predecessor set of the relation treated as a graph,
where loops (reflexivity) are ignored.

Definition 5.6.2 (Directly outlives). We say that region ρu directly outlives region ρv if
outlive(ρu) = outlive(ρv) ∪ {v}.

Note that a region directly outlives at most one region. In first order functions, we can
find regions which directly outlive some other region by looking at the relation specified in
the normalized annotation. For higher order functions, we do not yet know all constraints
between regions. We take the main relation from the annotation, which corresponds to a
saturated call to the function, and will substitute region ρu with ρv if ρu directly outlives
ρv in that relation, ρu is an additional region argument and ρu does not occur elsewhere
in the annotation except for applications marked with lifetime context |→ . The region
may be used in applications with |→ , as that means that the region variable may only be
used on the right hand side of the outlives constraint (≥), thus the outlives set of ρu will
not change.

Furthermore, we note that annotations also contain relations for partially applying a
function. These annotations say that the additional region arguments and the regions
corresponding to function arguments must outlive the thunk. This would prevent that
additional region arguments are removed; thus these relations must be ignored for the
collapsing.

5.7 Examples

5.7.1 id specialized for Ints

As a simple example, we start with an identity function specialized to integers.

idInt :: Int -> Int

idInt x = x



Chapter 5. Annotation language 29

The analysis produces the following annotation on the identity function:

λ[(); ()] 7→
λ[(); (ρthunk : P, ρvalue : P, ())] 7→

(

λ[(); ρprevious thunk : P ]→ λ[(); (ρresult : P, ())] |→ →

J ρvalue ≥ ρresultK,
()

)

The resulting annotation starts with a lambda taking no arguments, as this identity
function does not require additional region arguments. On the second line, we see another
lambda. This lambda consumes the annotation arguments and the region arguments of
argument x of idInt. An integer does not contain any functions, so its annotation sort is
(). An integer has two region arguments, namely one for the thunk and one for the value
if it is evaluated1.

The third line contains two lambdas, which take the regions of the previous thunk
and the result. The previous thunk is only relevant when partially applying a function,
which cannot be done with a function of arity 1. The region of the thunk is used in the
resulting lifetime relation, which says that the region of the argument should outlive the
region of the returned value. This constraint originates from subeffecting. We pretend
that the returned value is stored in region ρresult, whereas it is actually stored in region
ρvalue. We are only allowed to do so if we also give the constraint ρvalue ≥ ρresult.

Note that the annotation puts no constraints on the thunk region of the argument,
ρthunk. The identity function is strict in the first argument, which means that the argu-
ment will be evaluated before returning a value. The identity function thus does not put
a constraint on the thunk region.

5.7.2 id

To illustrate annotations with polymorphism, we will now generalize the identity function
to arbitrary types.

id :: a -> a

id x = x

λ[(); ()] 7→ ∀α. λ[ψ1 : Ψ〈α〉; (ρthunk : P, ρvalue : P, ρnested : P 〈α0〉)] 7→ (

λ[(); ρprevious thunk : P ]→ λ[(); (ρresult : P, ρresult nested : P 〈α〉)] |→ →

J ρvalue ≥ ρresult, ρnested ≥ ρresult,
ρnested ≥ ρresult nested, ρnested ≥ ρvalue K,

ψ1)

Similar to the monomorphic identity function, id does not have additional region argu-
ments. After the lambda consuming the additional region arguments, we see a quantifi-
cation, as id is polymorphic. The next lambda now takes both the annotation of the
argument, of sort P 〈α0〉, and the region arguments. We now have more region arguments
than with the monomorphic identity function, as we have a polymorphic region argument
for the nested fields of x. This causes that we also have more constraints:

1Integers are in practise passed by value instead of by reference, as they fit in a word. For this
example, we don’t consider that and treat them as allocated objects.
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• We have one additional subeffecting constraint: ρnested ≥ ρresult nested.

• We get a containment constraint, saying that the nested fields must outlive the
object: ρnested ≥ ρvalue.

• Transitivity gives yet another constraint: ρnested ≥ ρresult.

Besides the lifetime relation, the annotation also returns annotation ψ1, which is the
annotation of the returned value. This annotation may be used when the instantiated
type of α is or contains a function.

5.7.3 $

We will now consider a higher order function, and as annotations will quickly increase in
size, we choose $. This operator takes a function f and an argument x and applies f to
x.

($) :: (a -> b) -> a -> b

($) f x = f x

λ[(); ()] 7→ ∀α1.∀α2.

λ[ψf : s; (ρf thunk : P, ρf : P, ())] 7→ (

λ[(), ρprevious thunk : P ] 7→ λ[(), (ρresult : P, ())] |→ 7→

Jρprevious thunk ≥ ρresult, ρf thunk ≥ ρresult, ρf ≥ ρresultK,
λ[ψx : Ψ〈α1〉; (ρx thunk : P, ρx : P, ρx nested : P 〈α1〉)] 7→ (

λ[(), ρprevious thunk : P ] 7→ λ[(), (ρresult : P, ρresult nested)] |→ 7→

Jρx nested ≥ ρxK t
π0(ψf [ψx; (ρx thunk, ρx, ρx nested)]) [(); ρf ] [(); (ρresult, ρresult nested)] |→ ,

π1(ψf [ψx; (ρx thunk, ρx, ρx nested)])

)

)

where s = [Ψ〈α1〉; (P, P, P 〈α1〉)]→ [();P ]→ [(); (P, P 〈α2〉)] |→

The annotation starts with consuming zero additional region arguments and two quan-
tifications. It then consumes the annotation of argument f, which has sort s. After con-
suming the annotations and regions of x, the annotation returns the constraints which
the saturated call to $ enforces and the annotations on the returned value. Both parts
contain a call to ψf . We pass the region and annotation arguments of x to ψf , which
will then give the constraints that the call itself gives and the annotations of the returned
value.

5.7.4 Partial application

As noted before, we pass a region pointing at the previous thunk to handle partial ap-
plications. As partial applications become interesting if the function takes at least three
arguments and annotations will quickly increase in size, we will not give the annotation of
such a function but instead walk through effects of the annotation. We consider function
f with arity three, to which we pass the arguments one by one.
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f x y z = ...

a = f 1

b = a 2

c = b 3

We denote the regions of a, b and c by respectively ρa, ρb and ρc. First we look
at the effects of the previous thunk region. The previous thunk argument for the first
application (stored in a) is the region of f. As that is a global function, which will thus
not be deallocated during the lifetime of the program, that region is ρglobal. We will thus
give the constraint ρglobal ≥ ρa, which we already implicitly have.

For the application passing the second argument, the previous thunk region is ρa. We
thus yield the constraint ρa ≥ ρb. Finally, when passing the third argument, we do not use
the previous thunk as the call is saturated. Region ρ3 thus does not put any constraints
on the lifetimes of ρa and ρb.

The annotations for the partial applications will also ensure that the regions of the
arguments outlive the region of the thunk. Thus, the regions of expression 1 must outlive
ρa and the regions of 2 must outlive ρb. Because of transitivity, we have that the regions
of 1 also outlive ρb, so the second partial applied value will also retain the regions of the
second argument.

If function f has additional region arguments, they will be passed before passing the
regions and annotations of the first argument. They will thus be stored in thunk a at
runtime and we thus need to give constraints that each additional region argument outlives
ρa. Because of transitivity, we will then also get constraints that the additional region
arguments outlive ρb, thus the second partial applied value will also keep the additional
region arguments in memory.
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6

Backend of the Helium compiler

The region inference algorithm was implemented in the new, LLVM [35] based backend
[16] of the Helium compiler. Helium [22] is a compiler for Haskell, mainly focussed on
generating high quality type errors [23]. In this section, we will introduce the pipeline
of the backend of the compiler and the intermediate language Iridium. After introducing
the backend, we will give details on how we construct region annotations for the Iridium
language in chapter 7. We discuss the interaction of region inference with other compiler
optimizations which are performed in the Helium compiler in chapter 8.

The compiler parses Haskell source files to a Haskell AST, on which type checking
is performed. After type checking, the program is compiled to Core, which is a simple
typed functional language with pattern matching. Core is typed using the type system
introduced in chapter 1.3. After several passes, Core is compiled to Iridium, which features
the same type system, but has imperative control flow. Functions must be top level, may
have multiple arguments and can be partially applied. It supports data types with pattern
matching [16].

6.1 Iridium

Iridium is the last intermediate language of the new backend, before we compile to LLVM.
An Iridium file consists of data types, methods, type synonyms and signatures of imported
methods. Type classes are represented as data types in this phase. A data type is defined
using the type signatures of its constructors. Signatures of imported methods are called
abstract methods and are annotated with the module name in which they are defined and
the previously computed region annotation.

A method may have type and variable arguments. The arity of a function is the
number of value arguments that the function expects. A method can be called by giving
all arguments. For laziness and partial applications, we can also create a thunk, which
represents a call to a method. If a thunk contains all arguments to a function, we say that
the thunk is saturated and it can be further evaluated to weak head normal form (WHNF).
If not enough arguments were passed, the thunk is undersaturated and represents a partial
application. Remaining arguments can be passed in later applications. A thunk may
also contain more arguments than the method expects, which we call an oversaturated
thunk. When evaluating such a thunk, we first call the functions with the first part of
the arguments, such that the call is saturated, which gives a thunk representing a partial
application. That resulting thunk is then applied to the remaining arguments.
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Expressions in Haskell which are not a function, are compiled to functions with zero
arguments. We globally create a thunk for such method, which is shared between all of
the usages of the method. We distinguish global and local variables. Global variables,
denoted by @name : τ , are used to refer to methods and local variables, %name : τ , are
local to a method.

Strict values are all represented in one word. We currently only support 64 bit ar-
chitectures, thus words are always 64 bits, but the compiler may be extended to more
architectures. Constructors with fields are heap allocated and referenced by pointer. Con-
structors without fields are not allocated, but are directly stored in a word. We put a 1
in the last bit to distinguish them from pointers. Integers are also stored in a word as
they fit in 64 bits. Non-strict values require an additional bit, which denotes whether
the value is in weak head normal form (WHNF). If that bit is false, the word points at
a thunk object. If it is true, the word contains the value, represented the same way as
strict values.

A method consists of blocks. The control flow in a block is linear, except for function
calls, similar to the control flow in LLVM [1]. The control flow between blocks is handled
by (conditional) jumps. The execution of a method starts in the first block. Other blocks
may be reached by those (conditional) jumps. A jump cannot target the first block.

6.2 Static Single-Assignment form

Variables in Iridium can only have a single assignment1, similar to LLVM [1]. This is
called Static Single-assignment form, or SSA for short [5]. Without the guarantee of
having only a single assignment, it is harder to reason about programs, as there may be
multiple assignments which lead to the value of some variable. In cases where multiple
possible assignments are desired, this is made explicit using a phi node.

A phi node describes a join of dataflow. It assigns a value to a variable, depending
on the previous block of the execution. In Iridium, we write it as %x = phi (b1 => y1:

t, b2 => y2: t, ...) and it has the semantics that variable x gets the value of yi, if
bi was the previous branch of the execution.

As the source language Haskell does not support updates of variables, we do not need
those phi nodes for variable updates. We do need them to compile pattern matching
and we also use them for tail call optimization (chapter 8.3). For pattern matching, the
code branches on the patterns of the alternatives. After branching, the control flow will
join. Consider x = case a on True -> f; False -> g. We need to assign a value to
x, depending on the branch we took. This is done using a phi node and it is written in
Iridium as follows:

entry:

case %a: !Bool constructor (

@True[0]: Bool to branchtrue,

@False[0]: Bool to branchfalse)

branchtrue:

%y1 = eval %f: Int

jump end

branchfalse:

%y2 = eval %g: Int

jump end

end:

1This chapter is adapted from the report of an experimentation project we previously did on the
Helium compiler.
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%x = phi (

branchtrue => %y1: !Int,

branchfalse => %y2: !Int)

SSA is an alternative to the lambda calculus, as a way to represent control flow or
data flow. Appel [5] noted that they are very similar. The advantages of SSA for the
Helium compiler are that LLVM is also using SSA and that it can express more (namely,
loops). With respect to the region inference this means that we can perform the analysis
on a level closer to the LLVM code.

6.3 Instructions

Iridium has various instructions; first we consider the instructions which are used as the
end of a block.

return A return instruction, return var, returns a value from a method and gives con-
trol back to the previous method on the call stack.

jump A jump instruction, jump block, unconditionally jumps to a block.

case A case instruction, case var alts, conditionally jumps to a block based on the
constructor of the argument, in case of a data type, or the value, in case of an
integer.

unreachable The unreachable, written as unreachable or unreachable var, instruc-
tion denotes that some location in the code in unreachable. It may optionally
contain a variable, if the computation of that variable causes that this location is
unreachable. This prevents that dead code elimination would for instance remove a
call to the error function of the Prelude.

Furthermore we have instructions, which may be used before these terminal instruc-
tions.

let A let instruction is written as %name = expr. It (strictly) evaluates an expression
and binds its result to a variable. Expressions are presented in chapter 6.4.

let alloc A let alloc instruction, denoted by letalloc bind, allocates thunk or construc-
tor objects. The thunks or objects may be (mutual) recursive. A bind is either a
function call to construct a thunk, targeting a method or a different thunk, or a
constructing invocation.

match A match instruction extracts fields from a constructor or tuple. The behaviour is
undefined if the object is of a different type as what the match instruction says. It
is explicit in the instantiation of the type variables of the constructor or the types
of the elements of a tuple.

6.4 Expressions

The let expression contains an expression, which is evaluated and bound to a variable.
Iridium has the following expressions:

literal Denotes an integer, float or string literal.
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call A call expression, call @name[n]
(
{τ} | var

)
, calls a method. The method name

is annotated with its arity and type. The call can provide both type and value
arguments.

instantiate An instantiate expression, instantiate var τ instantiates a polymorphic
value.

eval An evaluate expression, eval var, takes a non-strict value and evaluates it to
WHNF. If the value was already evaluated, it yields the previously computed value.

castthunk The castthunk expression, castthunk var, takes a strict value and converts
it to a non-strict value.

var A variable expression, var var, evaluates to the value of the argument. It does
not evaluate the value, thus if the argument is non-strict, the result will also be
non-strict.

phi A phi expression, phi
(
block ⇒ var

)
, represents a phi node in the control flow

graph.

seq The sequence expressions, seq var1var2 is used to mark a dependency of var1. It
yields the value of var2. It implies that var1 is life if the resulting value of this
expression is used, which prevents that var1 is removed by dead code elimination.

undefined The undefined expression, undefined τ , yields an arbitrary value. It has no
further semantics. When using such value, the program may crash. Note that this
is an undefined value, similar to the undefined instruction of LLVM [1], not the
Haskell function undefined. It is for instance in method calls to methods which do
not use an argument.

primitive Primitive expressions are used for primitive operations like integer addition,
comparisons and so on.



Chapter 6. Backend of the Helium compiler 36

6.5 Example

As an example, we consider head from the Prelude. This function takes a list and returns
the first element of the list. If the list was empty, it throws an error.

head :: [a] -> a

head (x:_) = x

head _ = error "Prelude.head: empty list"

This function is compiled to the following Iridium method, slightly modified for read-
ability.

export_as @head define @Prelude#head: { (forall a. !([a]) -> a) }

$ (forall a, %xs: !([a])): a [trampoline] {

entry:

case %xs: !([a]) constructor (

@":": (forall a. a -> [a] -> [a]) to match_case_cons,

@"[]": (forall a. [a]) to match_case_nil)

match_case_cons:

match %xs: !([a]) on @":": (forall b. b -> [b] -> [b]) {a} (%x, _)

%x_value = eval %x: a

return %x_value: !a

match_case_nil:

%msg = literal str "Prelude.head: empty list"

%msg_thunk = castthunk %msg: !String

%result = call @LvmException#error[1]: (forall v$0. [Char] -> v$0)

$ ({a}, %msg_thunk: [Char])

unreachable %result: !a

}

The header of the method contains the name of the function. The method has both
a name which is only used for the backend and should be unique, Prelude#head, and an
exported name, head, used for the module system. Functions which are not exported do
not get an exported name. The header also has a type signature and the list of arguments.

The function is strict in its argument. We pattern match on it into two branches.
The first branch is taken when the argument is a cons object. We then extract the first
element from the list, store it in %x and evaluate it.

The second branch is taken when the argument is an empty list. We then call the error
function, which will crash the program. The terminal instruction is thus not reachable,
hence we use unreachable.
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7

Region inference on Iridium

In this section, we will consider the generation of (non-normalized) annotations. As we
have a rich annotation language, we can quickly generate verbose annotations and let the
evaluation rules simplify the annotations. The analysis is performed per binding group,
which contains a set of mutual recursive functions, similar to type inferencing in Helium
[23]. Binding group are ordered such that there are no forward references, where a method
in a binding group uses a method defined in a later binding group.

The analysis per binding group is performed as follows. We start by, per method,
assigning region variables to all variables (including the arguments of the method) and
we assign region variables for the returned value. The number of region variables follows
from the region sort of its type, as formalized in PΓ(τ). However, we remove the strictness
information of the argument of the method, as strict types in a function are only relevant
for saturated calls and thus complicate partial applications. By removing the strictness
annotation, we introduce more region arguments but we do not use them. The regions
for local variables other than the arguments of the method will become additional region
arguments. Some of these will be removed in the escape check or during collapsing.

We gather outlive constraints on these region variables for the first order parts of the
method, that is, all but function calls and thunk allocations. We find the containment
constraint for each variable and we get constraints for instructions like let and match.
These constraints are explained in chapter 7.1.

Similarly, we assign one annotation variable per local variable, including the arguments
of the method. We also assign one annotation variable per method, which will denote the
annotation of a method. We gather annotation constraints on those variables (chapter
7.2). These constraints are used to assign additional region arguments, as described in
chapter 7.2.1.

These constraints are then transformed into (possibly mutual recursive) equations on
the annotation variables and annotations representing the lifetime relations that all calls
in the method enforce. We solve these constraints by introducing fixpoints, which we
describe in 7.3. At this point, we have an annotation in the annotation language, which
we simplify with the evaluation rules.
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7.1 Gathering outlive constraints

We generate the following outlive constraints per instruction:

return We generate subeffecting constraints, as the regions of the returned value must
outlive the return regions.

match We generate constraints that the region variables of the fields of the extracted
fields are the same as the related regions of the object.

letalloc For data type or tuple allocations, we generate containment constraints saying
that the regions on the fields outlive the regions on the data type or tuple value.
Thunk allocations are handled later.

let For the let instructions, we generate constraints depending on the expression. For
var, we give constraints that the regions of the left hand side are the same as the
regions of the right hand side. The eval expression is similar, but we must ignore the
thunk region. The castthunk expression is similar, but here we also give constraints
that the thunk region of the result is the same as its value region: the thunk region
is namely not used at runtime. Note that for correctness, it would be sufficient
to generate the outlive constraints in one direction, saying that the right hand
side outlives the left hand side. However, we do not loose precision by generating
the outlive constraints in both directions, as equality constraints. This will cause
that the region variables are unified, which reduces the number of additional region
arguments, which has various benefits. This removal may otherwise be handled by
collapsing. By doing it now we have smaller inputs to later steps and the collapsing
may not be sufficient for all cases.

For instantiate, we generate subeffecting constraints, that the right hand side
outlives the left hand side. The instantiation may have caused that we have more
region variables on the left. We would thus loose precision by generating the con-
straints in both directions (as equality constraints) and we thus only generate the
constraints in one direction.

For the phi expression, we generate subeffecting constraints per branch. The call
expression is handled by the annotation constraints which we introduce later. For
the other expressions, we do not have to generate outlive constraints.

After computing all these constraints and the containment constraints, we must trans-
form them into a lifetime relation. We do so by constructing the transitive closure; the
algorithm we use is described in chapter 9.1.

7.2 Annotation constraints

To handle call expressions and thunk allocations, we generate constraints. A constraint
is either an equation, saying that a variable is equal to some annotation, or it represents
a call. A constraint with an equation is used to for instance join the various annotations
off the branches of a phi node, or the annotations of all variables which are returned in a
return instruction. A constraint representing a call consists of the following information:

• The kind of the constraint, which is either a direct call, thunk allocation or an
instantiation.

• The variable name where the result of the call is stored. This is used to uniquely
identify the constraint.
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• The annotation variable of the result and its sort.

• The region variables of the result.

• The target of the call, which is either the name of a global function with its arity,
or the annotation variables and regions of a local variable.

• A list of additional region arguments for this call. This list is empty for calls to
local variables (higher order calls).

• A list of arguments. For type arguments, it contains the type. For value argu-
ments, we store the annotation and regions. An instantiation may only contain
type arguments.

7.2.1 Additional region arguments assignment

We use the call constraints we showed in the previous section, to assign more region
variables. We namely need regions for the additional region arguments of calls to global
functions. This will increase the number of additional region arguments of the function
we are assigning. We thus need to handle self or mutual recursive functions separately.
We first assign additional region arguments to the calls which are not recursive and then
assign the recursive arguments.

For self recursive functions we pass the same additional region arguments on the
recursive calls; the analysis is invariant over those region arguments. However, the escape
check and collapsing may remove additional region argument later on, which may prevent
that the region is invariant on all recursive calls.

For mutually recursive functions, we also want to assign the recursive calls to the
same method the same arguments, though the recursion may be indirect via some other
methods. We construct a call graph with the recursive calls. The graph is directed, as
we must distinguish caller and callee, and it is a multigraph, as a method may call some
method multiple times. We compute the number of additional region arguments each
method will get, by traversing the graph. We start at the method whose region count we
are computing, and follow all its edges. We keep a stack of the vertices which are on the
current path and if we reach a vertex which is already on that path, then we stop the
traversal. We have now found an (indirect) recursive call, which will be given the same
region arguments and thus does not count in the region count computation. We sum the
already assigned region arguments of each method for each time that we visited it in the
traversal and get the number of additional region arguments per method. We use that to
again traverse the graph, but this time to add the additional region arguments to each
call constraint. Recursive calls are then given the same region arguments, which we can
do now, as we know the number of additional region arguments.

7.3 Solving annotation constraints

After assigning the additional region arguments to calls, we can convert the call constraints
to equations. Each equation contains an annotation variable and its sort, which form the
left hand side, and an annotation, the right hand side. Each annotation variable that we
introduced should have exactly one equation, except for the annotations of the arguments.
We solve the equations by inlining the annotations. For loops, which may either be within
a method by the usage of (conditional) jumps, or interprocedural by the usage of calls, we
will obtain a recursive equation. We handle those by keeping a stack of all the variables
that we have already inlined during the inlining. For each variable that we encounter,
we create a fixpoint. The body of the fixpoint is the right hand side of the equation,
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after inlining. We inline that right hand side with the variable, the left hand side of the
equation, added to the stack. If we then recursively again need to inline that variable, we
will refer back to the recursive argument of the fixpoint. This way we can generate finite
annotations for methods with loops.

As many of the fixpoints are unnecessary, as the recursive argument is not used, we
have an additional pass which will remove all unnecessary fixpoints. This improves the
performance a little.
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8

Integration with compiler optimizations

8.1 Intermediate representations

In the Helium compiler, we use multiple intermediate representations, which operate on
different levels. We start with an Haskell AST, which is then desugared to Core. The Core
language is typed and we preserve that type system when going to Iridium. Having a type
system gives more high level information on the program, even though the control flow of
Iridium is low level. This architecture worked well for writing the region inference. Type
and effects analysis are best performed on functional languages, but for region inference
we saw various advantages to performing it on an imperative language. By preserving
the functional type system, we got the best of both worlds.

As Iridium contains loops, we must also take those into account in the analysis. For the
equations on annotations variable that we generate and solve (chapter 7.3), this implies
that the equations within a method may be recursive. As we already needed to support
recursive equations for recursion through calls, it did not require much work to also use
that for loops within a method. That may not be the case for all analyses; for problematic
analyses one may choose to perform the analysis before the tail call optimization, as that
is the only part of the compiler which introduces loops. Without this pass, the control
flow graph is always a directed acyclic graph.
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8.2 Pipeline

The new backend of the Helium has various passes, which are done for correctness and
performance. Details on the passes, except the region inference, are presented in [16]1.

Haskell

• Parsing

• Type checking

• Desugar to Core

Core

• Rename - Make all variable names unique

• Saturate - Make all applications saturated

• LetSort - Reduce sizes of recursive let declarations

• LetInline - Inline let declarations

• Normalize - Transform the program such that “most” subexpressions are vari-
ables

• Strictness - Promote lazy let bindings to strict bindings

• RemoveAliases - Removes aliasing of the form let x = y in e

• ReduceThunks - Reduces the number of thunks by making some simple ex-
pressions strict

• Lift - Moves nested function declarations to top level function declarations

• Transform to Iridium

Iridium

• DeadCode - Removes dead code, dead variables and dead arguments

• TailRecursion - Transforms tail recursive functions to loops

• RegionInference

8.3 Tail call optimization

Tail call optimization converts tail recursive functions into loops, which improves the
performance and may prevent stack overflows. However, tail call optimization and region
inference may influence each other negatively. First consider the case that we want to
apply tail call optimization after region inference. A tail call is a recursive call at the
end of a block, but the region inference analysis may have caused that a deallocation was
added between the call and the end of the block. This prevents the tail call optimization.
On the other hand, tail call optimization may cause that many objects are placed in the
same region, whereas they would otherwise be placed in different regions. As the analysis
can currently only assign regions for the lifetime of a whole method call, we cannot create
regions with the scope of an iteration of the loop. Instead, we currently must assign that
region for the lifetime of the whole method, which causes that objects are retained longer.
A solution would be to assign regions for the lifetime of blocks or even instructions.

We thus chose to apply the tail call optimization before the region inference analysis,
as the limitations that we get this way, can be solved by making the assignment of lifetimes

1The ThunkArity pass has been removed, as the new thunk evaluation strategy shown in chapter 8.6
made the pass redundant



Chapter 8. Integration with compiler optimizations 43

more fine grained. Furthermore, the region inference operates on an imperative language,
so we can also perform the inference on a program with loops as opposed to the region
inference in the MLKit compiler.

In the MLKit compiler, they introduced a storage mode analysis [9] to overcome
a similar problem. They applied the analysis on a functional language instead of an
imperative language, but had similar problems with tail recursive functions. The storage
mode analysis tries to reset or empty a region during its lifetime. However, this analysis
was complicated to implement and was unstable over minor program changes [53, section
9]. Alternatives to the storage mode analysis have been presented in [3], [14] and [24].

8.4 Laziness & strictness analysis

Laziness, also known as call-by-need semantics [7], may complicate making an accurate
region inference analysis. Laziness is handled at runtime by constructing an object (called
a thunk) which represents the computation. The thunk contains (references to) the argu-
ments of the computation. When the expression is evaluated, the thunk is replaced with
(an indirection to) the result. Because of containment, the arguments of the thunk must
outlive the thunk.

Consider a thunk representing the computation length xs. This will retain a large
data structure if the list is long or the elements of the list are large, whereas the result of
this computation is only one integer. Call-by-need semantics can thus cause that objects
are retained longer and this can spread throughout the program. In the example, this
may cause that regions containing list xs and its elements get a very long lifetime, as
the result of length xs is used elsewhere in the program. We note that laziness can
also reduce memory usage. The program last [1..n] can run in constant memory with
call-by-need semantics, whereas the memory usage would be linear in n when evaluated
eagerly.

Garbage collection will also suffer from laziness, as this is not specific to region infer-
ence. However, this may have a larger impact on region inference, as the analysis may
overestimate the lifetimes of arguments of a thunk. After evaluating a thunk, the argu-
ments of the thunk may be released and a garbage collector can indeed clean them up.
A region inferencer cannot do that by default, as the arguments of the thunk will have
a lifetime which is at least as long as the thunk itself. We would need to give the thunk
two lifetimes: one for the non-evaluated state and one for the evaluated state. A short
lifetime for the non-evaluated state would cause that the arguments of the thunk can be
released early. This will of course complicate the analysis. Furthermore, it appears that
many examples which benefit from this more precise region inference, can also be handled
by strictness analysis [11, 29] and some standard transformations like inlining.

To handle laziness, we thus perform a strictness analysis before the region inference
analysis. The strictness analysis is performed on the Core language, such that other
analyses on Core and Iridium can also benefit from strictness information. Furthermore,
by analysing strictness in a different analysis, the complexity of the region inference is
reduced.

The new backend of the Helium compiler did not have a strictness analysis yet. During
the thesis we implemented a simple strictness analysis, which only operates on the first
order parts of the program. It supports strict data fields.

8.5 Dead-code analysis

A dead-code analysis is performed on Iridium, which removes dead code, unused variables
and unused arguments. Removing arguments will also change the type of a method and
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impact partial application, so we can only remove an argument if all uses of the method
pass that argument. If an argument cannot be removed because a partial application
does not yet have that argument passed to it, we instead try to pass the undefined

expression of Iridium to that argument. Note that this is an undefined value, not the
Haskell undefined function.

Although one may expect that the removal of an argument only has a positive impact
on the performance, the removal may cause that a method loses all its arguments. We then
construct a global thunk for that method and its computation is shared among all uses,
which will decrease the computational costs. For the region inference this may however
cause that the additional region arguments of the method are also shared among the
usages and thus need to be instantiated with ρglobal. This is a limitation of the runtime,
as we need to pass the region arguments when constructing the thunk and thus need to
share them. If the method has additional region arguments, we thus cannot conclude
whether it is better to share the value, as it has both positive and negative implications.

8.6 Thunk evaluation & partial applications

Iridium supports multi-parameter thunks, which are used for laziness, partial applications
and higher order calls. As this impacts the usage of memory and thus region inference,
will discuss the thunk evaluation strategy here.

The LLVM backend previously used a different representation and evaluation of thunks,
which needed to change. The previous approach had unpredictable memory usage, both
in terms of the lifetimes of objects and in the sizes of allocated objects. The latter
is problematic when extending the region inference analysis with multiplicity analysis,
which analyses the sizes of regions. In this section, we present the new implementation
of thunks which we implemented during the thesis.

Push/enter and eval/apply are two classic approaches for evaluating thunks [38]. We
implemented a different evaluation strategy, which is optimized for memory behaviour
regarding caches. It does so by annotating thunk objects with more information, such
that we have to follow fewer pointers.

8.6.1 Thunk representation

A thunk is an object used at runtime to represent a lazy computation or a partial ap-
plication. It points at a function or another thunk, as thunks may be chained as linked
lists. When applying a partially applied function, we create a new thunk pointing at the
previous one. A thunk may also provide multiple arguments, thus linking does not have
to be used to create a list of arguments. This is done for performance, as linked lists are
expensive by their unpredictable memory accesses.

We distinguish primary and secondary thunks. Thunks at the start of a chain, i.e. not
pointing at another thunk, are called primary thunks. Thunks pointing at other thunks
are secondary thunks. A thunk may oversaturate the function application, which means
that too many arguments were passed to a function. Secondary thunks should provide at
least one argument. A primary thunk pointing at a function with arity zero may not be
oversaturated.

The runtime representation of a thunk consists of the following fields:

1. header: A header of the object, which may be used by the garbage collector. This
is currently not yet used.

2. next: Thunks form a linked list. This field points to the next thunk. If the thunk
is a primary thunk, than it will point at the thunk itself. This assures that we can
always dereference this field, also in case of a primary thunk.
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3. target: Points at the trampoline function of the applied function.

4. value: Contains the value of the computation after evaluating an (over)saturated
thunk. Shares the same word as the target field, as the function pointer is not
needed any more after evaluating the thunk.

5. remaining: The number of remaining arguments of the function call. If the field
is zero, then the thunk is saturated and if the field is negative then the thunk is
oversaturated. It may also contain a magic value (32766 or 32767) to denote some
state.

6. given: The number of argument given in this thunk.

7. arguments: The arguments of the thunk, in reverse order. Note that the LLVM
type, [0 x {i1, i8*}], as seen in figure 8.6.1, is an array type of length zero.
However, the real length is given and it is allowed in LLVM to index the array
outside of its bounds, assuming that enough memory was allocated. This is the
intended way to implement ‘pascal style’ arrays in LLVM [1, chapter Aggragate
Types, Array Type]. The arguments are reversed, as the trampoline function will
extract the arguments in reverse order.

8.6.2 Thunk state

We distinguish various states of a thunk:

1. unsaturated if remaining > 0 and remaining < 32766: Not enough arguments
were passed. The thunk represents a partial application.

2. saturated if remaining = 0: Exactly enough arguments were passed. The thunk
is not yet evaluated, but may be evaluated to weak head normal form.

3. oversaturated self if remaining < 0 and −remaining < given: Too many
arguments were given. The thunk is either a primary thunk or the target is not
saturated.

4. oversaturated target if remaining < 0 and −remaining >= given: Too many
arguments were given. The thunk target of the thunk is saturated or oversaturated

5. blackhole if remaining = 32767: The thunk is being evaluated.

6. evaluated if remaining = 32766: The thunk is evaluated.

struct Thunk {

i64 header;

Thunk* next;

union {

Trampoline* target;

i8* value;

};

i16 remaining;

i16 given;

[0 x {i8*, i1}] arguments;

}

Figure 8.1: The runtime representation of a thunk
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If a thunk is in the state oversaturated target, then the fields remaining and target
may not be accurate. They may have the value of a moment back in time. Consider the
following example, which is written in Haskell instead of Iridium for familiarity of the
reader.

f :: Int -> Int -> Int -> Int

f x y z = x + y + z

a = f 1

b = f 1 2 3

c = a 2 3

The expression of a is unsaturated, as we only passed one of the three arguments. The
binding of b is saturated; all arguments are passed. The binding of c is also saturated,
as we passed the two remaining arguments.

A thunk can be oversaturated if the method returns a thunk representing a partial
application. An example is shown below, where function g takes an argument and then
returns another function.

g :: Int -> Int -> Int -> Int

g x = f x

k = g 1

l = g 1 2

m = k 2 3

n = l 3

As method g takes one argument, the binding of k is saturated. The value of l is in
state oversaturated self, as it passes too many arguments and is a primary thunk.
The bindings of m and n are oversaturated, as they both pass 3 arguments. They are both
in the state oversaturated target, as their targets are saturated or oversaturated.

A thunk may also be in the state oversaturated self if it is a secondary thunk and
its target is unsaturated, which is the case for the value of p:

h :: Int -> Int -> Int -> Int

h x y = f x y

o = h 1

p = o 2 3

8.6.3 Trampoline functions

Thunks point at a trampoline function, which will be invoked when evaluating the thunk.
The trampoline function extracts the arguments from the linked list of thunks and calls
the actual function with those arguments. The trampoline function has three arguments:
a pointer to the thunk, a pointer to the last argument and the number of arguments to
the function in the first thunk. For a function with arity n, we call those parameters
thunk, ptr[n-1] and thunk remaining[n-1]. We represent those variables as arrays
here for clarity, in the implementation they are unrolled as a list of variables. Note
that thunk remaining[n-1] may be less than the arity of the function, if additional
arguments are passed in chained thunks, as thunks form a linked list. Furthermore, it
may be less than given, if the thunk is oversaturated.
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Input thunk, ptr[n-1], thunk remaining[n-1]

Output The result of the function call

next_thunk[n - 1] = thunk->next;

for (int i = n - 1; i >= 0; i++) {

argument[i] = *ptr[i];

to_next[i] = thunk_remaining[i] == 1;

next_given[i] = next_thunk[i]->given;

next_next_thunk[i] = next_thunk[i]->next;

thunk_remaining[i - 1] =

to_next[i] ? next_given[i] : thunk_remaining[i] - 1;

ptr[i - 1] =

to_next[i] ? &next_thunk[i]->arguments[0] : &ptr_i[1];

next_thunk[i-1] =

to_next[i] ? next_next_thunk[i] : next_thunk[i];

}

return f(arguments[0], arguments[i], ... arguments[n-1]);

The code is represented as a loop for clarity. In reality, the loop is fully enrolled. Arrays
are replaced by multiple variables.

Figure 8.2: Pseudocode of a trampoline

The trampoline extracts the arguments one by one in reverse order. As shown in figure
8.2, we keep track of the number of remaining arguments in the thunk (thunk remaining)
and a pointer to the next thunk in the chain (next thunk). When thunk remaining

is one, we need to go to the next thunk after extracting this argument. This can be
implemented without branching by using a select instruction [1, Instruction Reference],
which can be seen as a conditional expression that evaluates both branches. The loop
over all arguments is fully unrolled, which makes the extraction of arguments branchless.

8.6.4 Evaluating a thunk

The evaluation of a thunk depends on the state of the thunk. If the thunk is unsat-
urated then the thunk is already in weak head normal form and we can thus return a
pointer to the thunk. If the thunk is saturated, then we will write 32767 to remaining

to denote that the thunk is being evaluated.
When evaluating a thunk in the state oversaturated target, we evaluate the thunk

referenced by next first, and update that field with the resulting value. This value is a
thunk representing a partial application, as the thunk which we evaluate provides more ar-
guments. We update target with next->target and remaining with target->remaining

- given. The thunk is now in a different state and we will restart the evaluation of the
thunk with the new state.

If the thunk is in the state oversaturated self, we call the trampoline function
starting with argument &thunk->arguments[-thunk->remaining]. This will yield a
thunk representing a partial application. Using the number of oversaturated arguments
of the initial thunk, we check whether we need more evaluation, that is, if the partial
application becomes (over)saturated. If it becomes (over)saturated, then we adjust the
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initial thunk by updating next, target, remaining and given and restart the evaluation
procedure on the new state of the thunk. If the partial application remains unsaturated,
then we will not update the existing thunk, but we will instead allocate a new thunk,
containing the oversaturated arguments of the initial thunk, pointing at the thunk repre-
senting the partial application.

An alternative approach in this situation is to update the old thunk, in place. This
would however also add a constraint to the region inference that a thunk should be stored
in the same region as the resulting value after evaluation, which will cause that many
arguments of thunks will be retained for a long time. By actually doing an additional
allocation here, we may thus probably reduce the overall memory usage.

When we find a thunk in the blackhole state, we detect a loop as we are recursively
trying to evaluate a thunk which we were already evaluating. We crash the program in
this case. Finally, if a thunk is already evaluated, we will return the computed value
stored in the value field.



49

9

Lifetime relations as graphs

Lifetime relations are in the implementation represented as lists of pairs, containing all
constraints of the form ρ1 ≥ ρ2 including ones implied by transitivity, or as outlived-
by sets. The first representation is easy to work with in the evaluation of the lambda
calculus, with for instance evaluation steps with substitutions or renaming. The second
representation, with outlived-by sets per region ρ, containing the set of regions ρ′ 6= ρ
such that ρ′ ≥ ρ, is more performant for certain algorithms, including the join of lifetime
relations, the escape check and the removal of additional region arguments. That second
representation treats the relation as a directed graph, where the regions are vertices and
for each constraint ρ1 ≥ ρ2 of distinct region variables, we add an edge (ρ2, ρ1), e.g.
ρ2 → ρ1. Note that we swap the positions of ρ1 and ρ2 when going from the relation to
the graph. The successor set of a vertex v is the set of vertices u such that there is an
edge (v, u) ∈ E, and is denoted by N+

E (v). The successor sets are the outlived-by sets of
a vertex.

The relation is transitive, which implies that if there is a path from ρ1 to ρ2, then
there is also an edge (ρ1, ρ2). The relation is also reflexive, but we leave that information
implicit and do not add self loops (edges of the form (ρ1, ρ1))).

In the remainder of this section, we will consider the graph algorithms that we used.
Furthermore, we discuss the choice of the transitive closure, which makes all outlives
constraints which can be deduced using transitivity explicit, as opposed to the transitive
reduction, which enforces that all relations which can be deduced using transitivity are
left implicit.

9.1 Transitive closure

As we only defined transitivity in the context of relations, we will also need to define
transitivity in the context of graphs.

Definition 9.1.1 (Transitive graph). A graph is transitive if for each pair of vertices u,
v with a path from u to v, there is an edge (u, v).

Lemma 9.1.1. The graph representation of a lifetime relation is transitive.

Proof. This follows from the definition of a lifetime relation, which requires it to be a
transitive relation.
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When gathering constraints from a method, we may however start with a graph which
is not transitive. To convert this into a lifetime relation, we must make this graph
transitive, by adding more edges. This is formalized as a transitive closure.

Definition 9.1.2 (Transitive closure). A transitive closure of a graph G = (V,E), denoted
by GT = (V,ET ), is the smallest1 transitive graph containing edges E.

Various algorithms exist to compute the transitive closure of a graph. For our imple-
mentation we used an adaption of the Stack TC[44]. This algorithm has the following
properties:

• The successor sets are computed per strongly connected component2

• A mapping from vertex to strongly connected component is generated

• The number of union operations, which are the most expensive operations, is re-
duced

We can use the mapping from vertices to strongly connected components to reduce
the number of additional region arguments. The mapping functions as a substitution of
region variables. However, we cannot rename region variables of an argument or a return
type; we may only rename additional region arguments. A strongly connected component
can only contain one region variable which is not an additional region argument, which
thus is the region of an argument or the return value. We can thus either substitute all
regions in a strongly connected component with the single region of an argument or the
return value, or we substitute them with a new additional region argument.

The algorithm also keeps track of self loops in a strongly connected component. If
such component contains multiple vertices, then it always has a self loop, otherwise we
must have had an edge (v, v) for a component of one vertex v. However, as we don’t store
self loops as we already know that a lifetime relation is reflexive and we thus leave that
information implicit, we can remove the code which handles self loops.

Our adaption, which we call Stack TC Region, is shown in figure 9.1. As the
changes in our algorithm are small, we refer to [44] for an explanation and correctness
proof of the algorithm.

In the loop over the successors, the original algorithm Stack TC checks whether
an edge is a so called forward edge. We do not perform this check, which may cause
that a component is pushed multiple times to cstack. As duplicates are removed in the
topological sort, these will be removed later on and not cause problems with correctness.

9.1.1 Cyclic outlife constraints from containment

The input of the transitive closure algorithm is generated by gather constraints over the
first order parts of a function, function calls are thus ignored at this phase. Containment
constraints are generated for the arguments. Those constraints may be cyclic in some
conditions, which may happen with the following data type:

data A = A (Maybe A)

Let ρm be the region of the values of Maybe and ρa the region of the nested values of
type A. For clarity, we ignore the regions for thunks. As the Maybe value, in case of a
Just, contains a value of type A stored in region ρa, we have the constraint ρa ≥ ρm.
As that value of type A in region ρa again consists a value of type Maybe A and the

1We say that graph (V,E1) is smaller than (V,E2) if E1 ⊂ E2
2A maximal set of vertices such that all contained vertices are mutually reachable
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Input A directed graph (V,E) with no self loops

Output The successor sets of the transitive closure minus self loops (Succ) and the
substitution of region variables (Comp).

vstack := []

cstack := []

freshRegion := A fresh region variable index

for each v ∈ V
if v not already visited then Stack TC Region(v)

procedure Stack TC Region(v)

Root(v) := v

Comp(v) := Nil

push(v, vstack)

SavedHeight(v) := height(cstack)

for each w ∈ N+
E (v) do

if w is not already visited then Stack TC Region(w)

if Comp(w) = Nil then Root(v) := min(Root(v), Root(w))

else push(Comp(w), cstack)

if Root(v) = v then

vertices := []

Pop vertices from vstack and add them in list vertices

until and including we pop v

if vertices contains only additional region arguments then

C := freshRegion

freshRegion := freshRegion+ 1 (the next fresh region variable)

else C := the vertex of vertices which is not an additional region argument

for each w ∈ vertices do Comp(w) = C

Succ(C) := ∅
Sort the components in cstack between SavedHeight(v) and

height(cstack) into a topological order and eliminate duplicates

while height(cstack) 6= SavedHeight(v) do

X := pop(cstack)

if X /∈ Succ(C) then Succ(C) := Succ(C) ∪ {X} ∪ Succ(X)

Figure 9.1: Transitive closure algorithm Stack TC Region, modification of
Stack TC [44]
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region arguments for the recursive position are instantiated the with the same regions,
we have a nested field stored in region ρm, thus ρm ≥ ρa. One solution is to modify
Stack TC Region to accept these cyclic constraints. This will however cause that we
again generate cyclic constraints in the output and generate significantly more edges as
for each edge from or to ρa, we must also construct one from or to ρm and the other way
around. An alternative solution is to apply preprocessing to the data types, to reduce
the number of assigned region variables. In this case, we don’t need to assign separate
regions to ρa and ρm. By only assigning one region argument for those, we reduce the
number of regions and thus also reduce the number of edges in the graph representation
of a lifetime relation. We thus prefer that solution, but because of time constraints we
could not implement it in time.

9.2 Join of lifetime relations

When computing the join of annotations, we may need to compute the join of two lifetime
relations. We treat this as a graph problem, where we are given two directed graphs
G1 = (V,E1) and G2 = (V,E2), and need to find the smallest transitive graph containing
edges E1 ∪ E2.

This graph may be constructed by computing the transitive closure ofG = (V,E1∪E2),
but that may not be the most efficient way to compute the join. In out implementation,
we use an algorithm optimized for specific kinds of inputs. We expect that the domain of
the edges of the first graph has little overlap with the domain of the edges of the second
graph. We will thus probably need to add only few edges, even though we must add
O(|V |2) edges in the worst case.

For the transitive closure, it should hold that for each edge (v, w),

N+(v) ⊃ N+(w) (9.1)

This can be rewritten as N+(v) = N+(v) ∪N+(w). We use this formulation to perform
a fixpoint iteration. We will however not perform this on all edges, but only on edges
which may be the start of new shortest paths. This way we make use of the fact that the
two input graphs are transitive and the assumption that the graphs will partly operate
on different pieces of the domain. We will construct a set of possible start edges of paths,
denoted by S(E1, E2).

Definition 9.2.1. Given two transitive graphs G1 = (V,E1) and G2 = (V,E2), we define
the set S(E1, E2) as the set of all edges (v, w) /∈ E1 ∪E2 such that there is some vertex u
with (v, u) ∈ E1 ∧ (u,w) ∈ E2 or (v, u) ∈ E2 ∧ (u,w) ∈ E1.

Lemma 9.2.1. Let v and w be vertices in V , v 6= w such that there is no edge (v, w) ∈
E1 ∪E2). If there is a path from v to w in graph (V,E1 ∪E2), then for any shortest path
v, u2, u3, . . . w from v to w, it holds that (v, u3) ∈ S(E1, E2).

Proof. As v 6= w and there is no edge (v, w) in E1 nor E2, the path has at least two
edges. The path starts with edge (v, u2) ∈ E1 ∪ E2. Without loss of generality, assume
that (v, u2) ∈ E1. The lemma claims that (u2, u3) ∈ E2, so assume to the contrary that
(u2, u3) ∈ E1. As graph (V,E1) is transitive, there is also an edge (v, u3). We can make a
shorter path from v to w by removing vertex u2 from the path and directly going from v
to u3. Thus, the path that we started with is not a shortest path. This is a contradiction,
thus (u2, u3) ∈ E2 and (v, u3) ∈ S(E1, E2).

The algorithm works by repeatedly updating the successor sets of vertices in S(E1, E2).
We write n+

i (v) for the (partial) successor set of vertex v in iteration i. We start by
initializing the all successor sets based on the union of E1 and E2. The algorithm is
shown in figure 9.2.
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Input Two transitive graphs (V,E1) and (V,E2)

Output The successor sets of the transitive closure of (V,E1 ∪ E2)

n+
0 (v) := N+

E1
(v) ∪ N+

E2
(v) ∪ N+

S(E1,E2)(v)

i := 0

do

n+
i+1(v) := n+

i (v) ∪

 ⋃
(v,w)∈S(E1,E2)

n+
i (w)

 \ {v}
i := i+ 1

while ∃v ∈ V : n+
i−1(v) 6= n+

i (v)i

return ni

Figure 9.2: Algorithm for transitive closure of union

9.3 Escape check

The escape check tries to remove additional region arguments if they can be allocated
within the analysed function. We may remove a set of region variables D if for all regions
ρ1 ∈ D, there is no region ρ2 /∈ D with the constraint ρ1 ≥ ρ2. When converting this to
a directed graph, the escape check becomes a reachability check: which regions are not
reachable from the regions of the arguments and return value?

For region variables used in higher order calls, we do not know whether they escape.
If they are used in an application in the annotation with lifetime context local bottom,
the region will not occur on the left hand side of an outlives constraint, so we may still
allocate that region within the function (if there are no other constraints on that region).
For other applications, we cannot conclude that the region variable does not escape.

9.4 Cycle detection

If we find an additional region argument ρ1 which has the constraints ρ1 ≥ ρ2 and ρ2 ≥ ρ1,
we may substitute ρ1 with ρ2. For determinism, we require that if ρ2 is also an additional
region argument, then it must be defined later in the lambda introducing the additional
region arguments. If that is not the case, then the substitution should be applied with
the roles of ρ1 and ρ2 swapped.

Cycle detection is performed on a normalized annotation. From this annotation,
we extract the lifetime relation which corresponds to the fully saturated call, with all
annotation arguments substituted with bottom. This lifetime relation is converted to a
graph. As we work with transitive graphs, cycles can be detected easily. We traverse the
edges and for each edge (ρu, ρv) ∈ E, we check whether there is an edge (ρv, ρu).

The cycle detection produces a substitution map and a new graph. The map contains
the substitutions of the additional region arguments. The graph is the input graph with
all cycles removed. For each cycle, we replace all regions on the cycle with the region
with the lowest index, to achieve determinism. This graph thus also has cycles removed
of regions which are not additional region arguments. This is needed as collapsing, which
we discuss in the next section, operates on directed acyclic graphs.
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9.5 Collapsing

With collapsing, we remove additional region arguments if we won’t lose precision by doing
so. Collapsing is defined based on outlive sets in chapter 5.6.3. Outlive sets correspond
to predecessor sets (denoted by N−E ) instead of successor sets. We perform a depth first
search (DFS) in reverse direction (by following the predecessors).

For each vertex u, we first check whether it may be substituted. This can only be
done if u is an additional region argument and if u is not used in applications, except
ones with lifetime context |→ , local bottom. We check whether there exists a predecessor
v such that N−E (u) = N−E (v) ∪ {v}. If such vertex v exists, it is unique as collapsing
operates on an acyclic graph.

When designing this algorithm, we expected that the depth first search would cause
that we only needed a single traversal over the graph. However, that is not the case and
we thus currently perform multiple iterations of this procedure until a fixpoint is reached.

9.6 Transitive reduction

In our implementation we chose a representation of lifetime relations as a transitive graph,
which makes all constraints implied by transitivity explicit. The transitive reduction [2]
is an alternative, which enforces that all constraints which can be deduced by transitivity
are left out.

Definition 9.6.1 (Transitive reduction). The transitive reduction of graph G, denoted
by Gt, is the smallest graph H such that HT = GT .

The proof of uniqueness can be found in [2]. A representation based on the transitive
reduction would have the clear advantage that the structure is more compact; we store
fewer edges. However, this representation is computationally more expensive. Algorithms
[2] to compute a transitive reduction will usually do that by first constructing a transi-
tive closure, so we will clearly require more time and it may be harder to compute the
transitive reduction incrementally, for instance when computing the transitive reduction
of two graphs which are a transitive reduction. Furthermore, reachability checks are more
expensive, as we only need to check the existence of a single edge if we have a transitive
closure.

The choice of representation thus clearly brings a trade off between time and memory
usage. We chose in favour of the transitive closure representation, as the disadvantage of
increased memory usage can be mitigated in various ways. First, we will unify additional
region arguments, to reduce the number of vertices. As the number of edges is bound
from above by n2, a reduction in the number of vertices will have a large reduction in the
number of possible edges. Second, we perform the analysis per binding group. We will
thus usually only need to store a few graphs for lifetime relations. The graphs during the
analysis may be larger than the resulting annotation, as intermediate lifetime relations
may not have had additional region arguments unified. We thus may require some more
memory space for intermediate values in the analysis.
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10

Related work

10.1 Region optimizations

We quickly describe some other optimizations for region based memory management.
One limitation of regions is that they are lexically scoped. This is needed as they can
be allocated on the stack. Storage mode analysis allows a region to be reset during its
lifetime [9]. An alternative analysis allows non-lexical lifetimes [3]. Such regions can
however not be allocated on the stack.

The region analysis adds region parameters to functions. These parameters are used
at runtime to allocate objects in the specified regions. However, regions from which the
function only reads, are not needed at runtime. These are called get regions and may be
removed from the function signature [9], reducing the runtime overhead of regions slightly.

10.2 Region waste

In experiments [21] Tofte e.a. found that the main inefficiencies appeared to be caused by
infinite regions, for which the analysis could not deduce a maximal size. Those are handled
by allocating blocks on the heap instead of on the stack, which are linked together as a
linked list. Many of those infinite regions actually had only a few values, meaning that a
large part of such block was not used, which they call region waste. In their benchmark
programs the region waste was approximately 20% 1.

To reduce memory leaks, region inference can be combined with a garbage collector
based on Cheney’s stop and copy algorithm [13]. To be able to do so, the analysis needed
to be changed [18, 21]. For the garbage collector, it is necessary that there are no dangling
pointers, references to memory which has already been released. This can happen with
region inference, for instance when the inference finds that a list is only used to compute
its length. The elements of the list could then be released. However, this causes dangling
pointers and we thus need to make the analysis less precise. This is done by enforcing
that values in some object have a longer lifetime than the object itself. This had only
little effect on the performance on a range of benchmark programs [18].

1In their benchmarks, several additional optimizations were added. They used a garbage collector at
runtime to reduce memory leaks for region-unfriendly programs.



Chapter 10. Related work 56

10.3 Region inference in Haskell

JHC2, a compiler for Haskell, has implemented region inference. Details on their region
analysis lack and the work is not reported in an academic format. The website does
note that the region based system leaks memory and later versions of the compiler thus
combine region inference with a garbage collector at runtime.

10.4 As Static As Possible memory management

Proust [46] presented a memory management scheme, called As Static As Possible or
ASAP, which is also based on static analysis. Based on the analysis, deallocation instruc-
tions are added to the program. Their approach has less influence on the user, as the user
of a region based system must be aware of regions to prevent writing region-unfriendly
programs. Their system however has larger runtime costs. Region based memory man-
agement can deallocate a region in constant time, independent of the region size. ASAP
however must perform some scanning after deallocations.

10.5 Garbage collectors

Garbage collectors trace the heap at runtime for garbage. Classical algorithms include
the mark-and-sweep algorithm, which marks all live objects in the heap using depth first
traversal and then deallocates the non-live objects [40] and Cheney’s copying collector,
which copies all live objects during a traversal [13]. Generational garbage collectors are
based on the notion of infant mortality : “most objects live a very short time, while a
small percentage live much longer” [56] or “young objects are more likely to die than old
objects” [8]. The heap is divided into several generations. One generation is used for
new allocations. When that generation is full, the garbage collector traces that chapter
and surviving objects are copied to the next generation. This prevents that the whole
heap is scanned each time the garbage collector runs. Since objects are copied during a
collection, the runtime needs to keep track of all pointers from an older generation to a
younger generation, which adds minor cost to write operations [4, 31, 8].

The Glasgow Haskell compiler (GHC) [32] also uses generation garbage collection. As
objects are immutable in Haskell, update operations (writes after the construction of an
object) are rare. They only occur when writing the result after evaluating a thunk. This
causes that there are few pointers from an older generation to a young generation, which
makes the generational garbage collector in GHC efficient [47].

10.6 Escape analysis

Escape analysis provides an alternative approach to using stack allocations. The analysis
finds object allocations which do not escape the scope in which they are created. These
objects will be allocated on the stack instead of the heap. One may have advantages as
better cache usage or less heap fragmentation. When used as an addition to a garbage
collector, it will also relieve the garbage collector from tracking these objects. Escape
analysis has been applied to both functional [10] and imperative languages [19]. Region
inference can be seen as an extension to escape analysis: the latter is restricted to allocate
in the current stack frame, whereas region inference can also allocate in previous stack
frames.

2http://repetae.net/computer/jhc/jhc.shtml, accessed 2019-08-10
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10.7 Side effects per region

Lippmeier [36] presented an analysis on side effects. The analysis uses regions to group ob-
jects, and analyse per region whether side effects were performed on that region. Regions
are thus not used for garbage collection, but only to give structure to another analysis.
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Conclusion

In the introduction, we presented three research questions. First, we asked whether region
inference can be made higher ranked. The analysis that we designed and implemented
shows that this can be done. However, the analysis is constrained by the possibilities that
we have at runtime. The additional region arguments form the main restriction, as they
are shared among all calls to a partially applied function. Furthermore, the analysis is
limited by the lack of closed forms of fixpoints. We presented a possible solution for that,
by preserving a fixpoint until we have enough information to evaluate it, but we did not
succeed in finding a proper evaluation strategy such that all fixpoint can eventually be
computed.

The second research question regarded the adaption of higher ranked type and effect
systems to a real programming language like Haskell. We have seen that this significantly
complicates the analysis. The inclusion of polymorphism had large impacts on the design
of the annotation language. It caused that tuples were added to the sorts of annotations
and region variables, which are used to build tree structures. This is needed to handle
that types may have a different number of region and annotation variables. The inclusion
of polymorphism also implies that fixpoints cannot always be computed, as the number
of iterations that we need to perform may depend on the instantiation of a type variable
and become arbitrarily large.

Data types also complicate the analysis. They have a rather large design space.
Annotations on data types remains as future work.

The third and final question regarded the interaction of region inference with other
compiler optimizations. The architecture of Helium, with multi level intermediate repre-
sentations, worked out really well for these optimizations. Iridium has imperative control
flow and a functional type system, which allows us to perform tail call optimizations
before the region inference. By applying strictness analysis before the region inference,
we have to do less reasoning on laziness in the region inference analysis. However, the
optimization passes influence each other negatively on some minor cases. Especially loops
constructed by tail call optimization may need some more optimizations, for instance by
assigning finer grained lifetimes as a region currently always have the lifetime of the full
function.
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11.1 Future work

11.1.1 Soundness proofs

Given the scope of the thesis project, no soundness proof could be made. For memory
management, which is a fundamental part of a language, it would be desired to have a
soundness proof, which says that objects will not be deallocated too early.

11.1.2 Multiplicity analysis

In the MLKit compiler, the region inference was combined with multiplicity analysis which
tries to find an upper bound on the sizes of regions [55]. This allows regions to be stack
allocated, instead of heap allocated. As most regions only contain a few objects, this
greatly reduces the overhead of region based memory management. However, even with
their multiplicity analysis, many heap allocated regions still had only one or a few objects.
A more accurate analysis may reduce the overhead even further. The initial plan for this
thesis was to improve the multiplicity analysis with techniques from resource analysis,
which uses amortization to find bounds on resources like time or memory. Amortization
is an important technique in (time) complexity analysis [50], which allows to average the
complexity of operations over time. It was proposed as a manual way of analyzing the
running time of a program, but can also be used for other resources like memory and
forms the basis of automatic resource analysis [33]. It has been applied to derive linear
bounds on first order functional programs [28] and was later extended to higher order
programs [33], univariate polynomial bounds [27], multivariate polynomial bounds [25],
arbitrary tree-like data structures [26], lazy evaluation [49] and side effects [12].

It would be an interesting question to see whether region based memory manage-
ment can benefit from inferred polynomial bounds on region sizes, compared to constant
bounds. The existing multiplicity analysis can namely only infer constant bounds and
does not use amortization. Applying the techniques from resource analysis and adapting
their analysis to give bounds per region may give polynomial bounds, which would ideally
be used for code generation, but one may also use those to devise a tool that gives the
user insights in the memory usage of regions, and the regions which may leak memory.

11.1.3 Annotations on data types

The implementation of the region inference analysis does not support annotations on
data types. Given the large design space of data types, it will probably not be possible
to support all data types and we will thus need to fall back to a top annotation, which
enforces that objects are allocated in the global region, for data types which cannot be
handled. Simple data types which only use sum and product types can be handled by
concatenating the annotations of all fields in a tuple. Recursive data types can be handled
by instantiating the annotations on the recursive positions with the same values, similarly
as we do with the region arguments of data types. However, if the data type is recursive
via a function, things will quickly become complicated. First, consider a data type which
is recursive on the right hand side of a function arrow:

data A = A (X -> A) (Int -> Int)

The data type contains two functions. It is recursive via the first function. If we
instantiate the annotations of the recursive position the same, we cannot use the region
arguments and annotations arguments of data type X in the recursive positions. A solution
would be to add a lambda consuming the annotation arguments of A in front of each
annotation on this data type. In general we will pass ⊥ to this argument, but when we
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apply the first function we will pass the argument to the annotations of the recursive
position. If we do this repeatedly, we take the join of all those annotations. It becomes
more complicated however, if the data type is recursive on the right hand side, which is
called a contravariant recursive data type.

data B = B (B -> X)

This data type gets one annotation argument, as it contains one function. The naive
approach would cause that a recursive sort is assigned to this annotation argument,
namely s = [(s); (P, P, (P ))] → [();P ] → [(); (P, ())] |→ → R. However, we do not allow

recursive sorts, as we would lose strong normalization. An alternative approach uses
the fixpoint combinator which was added to the language. The idea is as follows: the
annotation of data type B gets sort [s; ()] → s, where s = [(); (P, P, (P ))] → [();P ] →
[(); (P, ())] |→ → R. Thus, s is the same as the naive sort, with the recursive reference to s

removed. To compute the effects of a function extracted from the data type, we compute
the fixpoint of that annotation.

Taking the fixpoint assumes that the function in Bar is applied with an object with
the same annotation. If that is not the case, such as in function f below, we first take
the union of the two annotations and then compute the fixpoint. This order is essential:
if we take the union of the fixpoints the analysis becomes unsound.

Haskell also allows to instantiate the type arguments of a data type in recursive po-
sition differently. This means that we cannot assign the same annotation to recursive
position, as the recursive position expects a different sort.

f :: B -> (B -> X) -> X

f b g = g b

11.1.4 Code generation

The implementation in the Helium compiler currently lacks code generation for regions.
The region annotations contain the information which the code generation should use.

The program must be transformed to add allocations and deallocations of region and
each object allocation must be annotated with a region variable. The latter can be done
with the mapping from variables to region variables, with which the analysis starts, and
the resulting region substitution of the analysis. The escape check finds which regions do
not escape out of a method and may thus be allocated within that method.

Furthermore, we must pass regions as arguments to methods, for the additional region
arguments and the regions for the return value. Note that the regions of arguments of a
function do not require a runtime representation. As regions may form a tree structure,
this must also be handled at runtime. Especially as trees may also be instantiated with
only a single region argument, it requires some design to represent those trees at runtime.
Note that we must allow to pass a single region to a tree as additional region arguments
cannot be polymorphic. They can be represented using pointers, but that would increase
the memory costs whereas we are actually trying to reduce memory costs using region
based memory management. A cache-aware implementation with local pointers, which
may be stored in a limited number of bits, may be a solution to this problem.

11.1.5 Fixpoints

The current evaluation strategy of fixpoints is not sufficient for all functions. For higher
order functions which repeatedly apply a function argument on its own result, we may not
always reach a fixpoint. Research into different evaluation strategies would help making
the region inference practical. If no such strategy exists, widening would be a solution but
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this has to be done in a consistent way such that mutual recursive functions are analysed
properly.

11.1.6 Performance

The region inference analysis currently takes a large portion of the compile time. Com-
piling the Prelude currently takes two minutes, whereas it used to take under a minute.
There are however some opportunities to either optimize the lambda calculus part of
the analysis, as the evaluation may be made more efficient, or to improve the graph
algorithms, which may have variants with lower complexity.

11.1.7 Lifetimes within methods

Regions currently get the lifetime of a method. Especially with loops generated by tail
recursion optimization, it would be beneficial to either clear a region during its lifetime or
assign shorter lifetimes to regions. For instance, by letting blocks or instructions be the
units on which lifetimes are assigned. This may either be done by adapting the region
inference algorithm or as a post-processing step, which performs small changes to reduce
the lifetimes.
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