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1. Introduction 
In the past decade, computer research is moving towards Graphics Processing Unit (GPU) computing. 
Instead of running applications on one high-performance core, GPU computing allows the creation of 
applications that runs on thousands of smaller cores in a highly parallel manner. However, the cross-
platform compatibility of General-Purpose computing on Graphics Processing Unit (GPGPU) is hampered 
by limitations of programming languages. The GPGPU programming languages are often proprietary and 
only compatible with specific devices which limits broad usability. 

In this case study, we intend to bring LightHouse 2, an interactive GPU path tracer that exclusively runs on 
NVIDIA devices [1], to non-NVIDIA environments. LightHouse 2 uses the GPGPU programming 
language NVIDIA CUDA [2] and the ray tracing library OptiX [3]. Currently, most GPGPU applications 
utilizes CUDA. The language’s popularity is backed by the fact that NVIDIA held almost three-quarters 
(74.3%) of the graphics card market share in Q3 of 2018 [4]. 

Even though CUDA is popular among developers, it is closed-source and only runs on NVIDIA graphics 
products. This vendor-exclusivity happens due to the highly optimized programming language with the 
compiler having specific hardware instructions that non-NVIDIA graphics cards cannot execute. For 
CUDA applications to run on GPUs not manufactured by NVIDIA, such as AMD [5] and Intel [6], software 
porting is required. Software porting is the act of transferring existing software to a new environment [7]. 

1.1 Objectives 

This master thesis focuses on the possibility of porting code written in a device-specific programming 
language to a language that is compatible across devices from different vendors. We use LightHouse 2’s 
rendering core as the basis of our porting project. 

The critical step is to determine the porting cost by defining a clear efficiency measure and deciding the 
significant variables. To ease maintenance and avoid feature loss because of differences in environment 
architecture, deciding a porting method using the optimal tools and programming languages is necessary. 
Reliability experiments are conducted by comparing rendering performance and image quality between the 
implemented port and the original version. 

1.2 Research Questions 

We have formulated three software porting relevant research questions that our case study strives to answer. 

1. How can we minimize the porting cost of a vendor-specific GPGPU application to a vendor-
agnostic platform? 

2. How to approach a partial closed-source part of the software in porting? 
3. Assuming performance benefits make it worthwhile to keep both implementations: How can we 

minimize the cost of maintaining the ported code with the original code in sync? 

1.3 Content Overview 

This literature review is divided into multiple sections. In Section 2, we discuss the preliminaries and 
dependencies of our case study. Section 3 presents relevant work to software porting. Section 4 describes 
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our research methodology and experiments. In Section 5, we discuss our implementation and address 
problems that occur when porting and how we solved them. Section 6 holds the experiment results. We 
evaluate the port and measure the performance of the application. We conclude our thesis in Section 7 by 
answering our research questions and discussing opportunities for porting similar projects. 

  



6 
 

2. Preliminaries 
In this section, we provide information on our GPGPU case study application’s concepts and software 
dependencies. We use the application LightHouse 2’s rendering core as the basis for our research. The 
rendering core uses path tracing to generate images and, at a lower level, uses the ray tracing library OptiX. 
To better understand the scope of our porting research, we explain further about rendering, LightHouse 2, 
and OptiX. 

2.1 Rendering 

Rendering is producing an image through rasterization, projecting three-dimensional objects onto a two-
dimensional surface. A traditional rasterization engine loops over the visible mesh triangles on the screen 
(object order algorithm) and projects one triangle to two-dimensional space, one at a time. Unfortunately, 
conventional rasterization does not account for correct physical light transport, which limits the realism of 
the produced images. 

Ray tracing is a rendering technique that uses object-geometry intersections to accumulate shading 
information, which allows the creation of photorealistic images. This technique allows the rendering of 
natural light transport phenomena such as soft shadows, reflections, and refractions [8]. The natural 
behavior of light is simulated by evaluating the rendering equation. 

2.1.1 Rendering Equation 
The rendering equation was introduced in 1986 by David S. Immel et al. [9] and James T. Kajiya [10]. The 
equation is an integral that states how light is perceived on a surface point, depending on the incoming light 
function and the bidirectional reflectance distribution function (BRDF) (Equation 1). Evaluating this 
equation generates an image render. 

𝐿"(𝑥, 𝜔") = 𝐿)(𝑥, 𝜔") + + 𝑓-(𝑥, 𝜔., 𝜔")𝐿.(𝑥, 𝜔.) cos 𝜃. 𝑑𝜔.
4

(1) 

• L7(x, ω7) is the total outgoing spectral radiance towards the direction ω7 from position x. 
• L:(x, ω7) is the emitted spectral radiance towards the direction ω7 from position x. This term is 

also known as the direct illumination part. 
• f<(x, ω=, ω7) is the BRDF of the incoming direction ω= and outgoing direction ω7 on position x. 
• L=(x, ω=) is the incoming spectral radiance from the direction ω= towards position x. 
• cos θ= is the conversion of radiance to irradiance. 

The BRDF is a distribution function that defines how an opaque surface reflects incoming light energy [11]. 
Light reflection and transmission functions are generalized as BxDF, a general distribution function that 
includes all variants. The BxDF determines how a renderer handles a specific type of material. It is crucial 
in our research that the port retains the same material behavior. 

The rendering equation is a recursive integral, which cannot be evaluated directly. It is typically evaluated 
using Monte Carlo integration, where random sampling is used to estimate the value of an integral. The 
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integration only needs to evaluate an integrand 𝑓(𝑥) at a random point to estimate the value of the integral 

∫ 𝑓(𝑥) 𝑑𝑥A
B  [12].  

+ 𝑓(𝑥) 𝑑𝑥
A

B
≈
𝑏 − 𝑎
𝑁

H𝑓(𝑋.)
J

.KL

(2) 

Monte Carlo approximates the expected value of an integral ∫ 𝑓(𝑥) 𝑑𝑥A
B  as seen in Equation 2. In this 

equation, 𝑋L to 𝑋J are members of [𝑏, 𝑎]. We can use arbitrary 𝑁 values regardless of the integral 
dimension. As more samples are taken and 𝑁 approaches infinity, the result approaches the expected value 
of 𝑓.  

𝐿"(𝑥, 𝜔") = + 𝑓-(𝑥, 𝜔., 𝜔")𝐿P(𝑥, 𝜔.) cos 𝜃. 𝑑𝜔.
4

(3) 

𝐿"(𝑥, 𝜔") ≈
2𝜋
𝑁
H𝑓-(𝑥, 𝜔., 𝜔")𝐿P(𝑥, 𝜔.) cos 𝜃.

J

.KL

(4) 

The recursive rendering integral (Equation 3) thus can be approximated using Monte Carlo (Equation 4). 
Note that we multiply the equation with 2𝜋 because we integrate over the area of a half hemisphere. By 
averaging many samples on the same pixel using the Monte Carlo approach, we can get an output that is 
statistically close to the unbiased image. Solving the rendering equation with the approximation approach 
is introduced with path tracing. 

2.1.2 Path Tracing 
Path tracing is a rendering technique that uses stochastic evaluation of the rendering equation to process 
high-level light transport phenomena (Figure 1).  

 

Figure 1. James T. Kaijya’s original path traced scene showing soft shadows, reflections, refractions, and color bleeding. 

The technique involves casting rays from the observer towards the scene to find ray-object geometry 
intersections. The path does not start from a light source; to avoid computation of unnecessary paths that 
would never reach the observer. At a geometry intersection, path tracing bounces the ray to a random 
outgoing direction while traditional ray tracing immediately ends the path. Path tracer rays terminate when 
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they hit a light source or reaches the maximum number of bounces. The path provides information to 
compute the light energy value that is transported to the observer from a light source. 

 

Figure 2. Images generated from path tracing with the difference in quality depending on the samples taken. The image on the 
left is generated with eight samples per pixel, and the image on the right is generated with 1024 samples per pixel [12]. 

A single iteration of path tracing generates a noisy image because in general, a single path is not enough to 
evaluate a pixel. Averaging multiple iterations (by taking more samples) converges the image into a more 
proper representation of the scene (Figure 2). A path tracer needs an infinite amount of ray bounces to 
obtain an unbiased image, thus requiring an infinite amount of ray evaluations. The rendering technique 
uses a stochastic evaluation to approximate the infinite ray paths and solve the rendering equation. 

Evaluating many light paths makes path tracing slow and computationally expensive. The number of 
samples is critical in path tracing, such that reducing ray bounces is generally not an option to trade for 
performance. Thus, we increase path tracing performance using accelerated structures. 

2.1.3 Performance 
The general method to improve intersection evaluation performance is by implementing a bounding volume 
hierarchy (BVH). The BVH is an acceleration structure that reduces the time and complexity for ray-object 
intersection evaluation. Constructing and traversing BVH in our case study is purely done using NVIDIA 
OptiX (see Section 2.3). We can replicate this functionality in our port either using an equivalent library or 
reconstructed using another programming language that supports non-NVIDIA devices. 

Another form of optimization is splitting the workload into several processors. Since each ray is not 
dependent on other rays, there comes an opportunity for optimization using high parallelization devices 
such as GPUs [13]. Ray tracing on the GPU has been a well-known practice and is capable of being executed 
on consumer-level hardware. Since we are targeting to port to non-NVIDIA GPUs, we have to port using 
a GPGPU capable programming language. 

2.2 Case Study: LightHouse 2 

LightHouse 2 is an interactive GPU path tracer that is built using C++, NVIDIA CUDA, and NVIDIA 
OptiX. The application is on active development at Utrecht University, and targets commercial use such as 
online product configurators. These configurators allow users to adjust products with different color and 
materials, which then render the product within several seconds [14]. 
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Figure 3. The software hierarchy of LightHouse 2. 

LightHouse 2 itself consists of an application layer, a rendering system, and a modular rendering core. 
These modules are connected in a hierarchical structure (Figure 3), such that their functions are distinct, 
easily maintained, and having a high degree of extensibility and portability. 

2.2.1 Application Layer 
The application layer’s primary function is to display the render output through a two-dimensional texture 
buffer. The layer also allows user interaction through a GUI (graphical user interface) for camera movement 
input and render parameters modification. Two-way communication between the application layer and the 
render system is established to pass the modified parameters and receive new render frames. 

The layer itself is constructed under the 64-bit Windows environment, in such that operating system cross-
environment compatibility requires porting. We limit our research scope by only supporting the source 
application’s operating system environment. 

2.2.2 Rendering System 
The rendering system is an intermediate layer that is responsible for camera control, initializing a rendering 
core (passing scene data to the core), and receiving rendered pixels from the core. Camera control is a small 
module that takes input from the application layer and alters the render view based on the given parameters. 
Initialization is primarily loading a scene (meshes, textures, materials, and lights) into memory for the 
rendering core. On runtime, the render system triggers the core to render on each time tick. 

By having interconnectivity between all the available rendering cores, the rendering system allows 
LightHouse 2 to swap the rendering cores without any modification on the application layer. In our research, 
none to small modification in the system may be required when adding our ported core. 

2.2.3 Rendering Core 
The rendering core is the module that contains all the necessary rendering functions. On initialization, the 
core prepares scene data from the rendering system by loading it into the core’s specific scene format. The 
core can only communicate with the render system for receiving scene data, camera input, and sending out 
rendered pixels. This communication approach makes the cores easily swappable with any rendering 
algorithm.  

LightHouse 2’s primary rendering core is written in CUDA and uses the ray tracing library OptiX, which 
only supports NVIDIA devices. Since our project focuses on porting the rendering core to a vendor-agnostic 

Rendering core

Rendering system

Application layer basicapp

rendersystem

rendercore
optixprime

rendercore
optixrtx

rendercore
wavefront
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environment, we must decide on an equivalent solution that substitutes CUDA and OptiX. By solving the 
platform compatibility problem, one can envision having a fully optimized rendering core for every device 
available. 

2.3 OptiX 

OptiX is a high-level, general-purpose ray tracing engine developed by NVIDIA. The engine is a 
proprietary API and is designed to run only on NVIDIA GPUs and CUDA-enabled devices. It uses the 
CUDA API for low-level communication with the device. Its functionality consists of: 

- Low-level built-in ray-geometry interaction functions. 
- A small set of lightweight programmable functions. 
- Single-ray programming model. 
- Compiler optimization based on the hardware used. 
- Node graph architecture for scene management. 

 

Figure 4. An OptiX path tracer rendering a Cornell Box scene. 

OptiX provides a robust ray tracing pipeline with easy-to-use programmable functions, where path tracing 
can be easily implemented (Figure 4). LightHouse 2, however, does not use OptiX’s programmable ray 
tracing pipeline; it uses OptiX’s core operation rtTrace directly for locating and responding to a ray-
geometry intersection (Figure 5). This practice allows for more user control of the ray generation and 
shading functions. 



11 
 

 

Figure 5. Call graph that shows rtTrace function for traversing and shading geometries using generated rays as input. 

LightHouse 2’s ray generation and shading functions are implemented using CUDA, which can be ported 
to other programming languages directly. In contrast, rtTrace and Traverse are black box functions and 
are not feasible for a direct port. These black box functions mostly cover acceleration structure maintenance 
and scene traversal. 

Traverse is a closed-source OptiX function for locating a ray-geometry intersection using OptiX’s built-in 
acceleration structure. A bounding box program first determines primitive bounds for object geometries 
which allows construction for a CUDA device optimized BVH. Because the BVH construction and traversal 
is specialized, we do not have to replicate the acceleration structure builder and Traverse with the exact 
behavior. Using other types of acceleration structure and traversal function technically delivers the same 
image result, although with performance differences. A suitable approach to replicate the functionality is 
by using open-source ray tracing libraries.  

rtTrace

ray generation

shadeTraverse
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3. Literature Review 
Software porting has long been an issue in software engineering. Typically, the software is made to run on 
a specific device and may not run on another. Even though there exists software that can run on different 
devices, there has not been any single universal environment that supports everything [7]. 

With the advancement of GPGPU, hardware development for GPUs is remarkably fast that it becomes 
impossible for GPGPU applications to support only one device type. Old devices can become obsolete 
within months. A solution for cross-platform compatibility between devices is required to extend software 
usability. 

3.1 Portability Concepts 

Portability is the degree of how much can software be ported. A well-formulated definition of portability, 
by Poole and Waite [15] is as follows: 

“Portability is a measure of the ease with which a program can be transferred from one 
environment to another; if the effort required to move the program is much less than that 
required to implement it initially to move the program is much less than that required to 
implement it initially, and the effort is small in absolute sense, then that program is highly 
portable.” 

This portability terminology is the basis of porting guidelines by Andrew S. Tanenbaum in Guideline for 
Software Portability [16]. Tanenbaum indicates that two forms of porting can be distinguished: high-level 
and low-level porting. High-level is porting the source code, so it compiles on the target environment, while 
low-level is porting hardware instructions (assembly language), so the program runs directly on the target 
environment. The machine architecture difference between the host and the target machine defines which 
porting method to use. 

A different problem that is also relevant to our thesis is performance. An optimal application may become 
suboptimal after porting based on the target system architecture. Tanenbaum states that “optimality is not 
portable” although portability does not imply inefficiency. 

Another portability definition is formulated by James D. Mooney [17]. 

“A software unit is portable (exhibits portability) across a class of environments to the 
degree that the cost to transport and adapt it to a new environment in the class is less than 
the cost of redevelopment.” 

Mooney further states that software porting is creating a new executable version of a software in a new 
environment, based on an existing version [17]. With these definitions, Mooney also established important 
technical terms that are relevant for software porting [18]. 

• Software unit or product is the application, program, or a part of the program that is to be ported. 
• Environment or platform is the designated range of systems that we are interested in porting to or 

from. The environment may include devices, processors, operating systems, libraries, and even 
networks. A class of environments is a collection of environments within a bounding criterion.  
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There are also additional quantifying terms that are important to measure portability [19]. 

• The degree of portability is the term that measures a software’s quantifiable degree of portability 
concerning a target environment or class of environments since measuring portability is not using 
a binary attribute. A software with zero porting cost would be entirely portable; however, it is 
impossible in practice. 

• Costs and benefits are parameters associated when porting or redeveloping. There is no absolute 
formulate to measure value and benefits. It varies for different porting cases. 

• Phases of porting consists of two steps to port software from its native environment to the target 
environment: transportation and adaptation. 

o Transportation is the physical movement of the software to the target environment. It 
includes the software’s instructions, data, and associated dependencies. 

o Adaptation is the modification needed for the software to operate on the target 
environment. The software modification can be done using automatic means or manual 
steps. 

In principle, there are three levels of portability; binary portability, source portability, and intermediate-
level portability. 

• Binary portability is directly porting the executable form without any or small adjustments. This 
level of porting is the ideal type of portability, but it is mostly only possible for very similar 
environments, emulated target environment, and minimal cases. 

• Source portability is porting the source language of the application from the host environment to 
the target environment. The ported source language it then recompiled to create a software version 
that is executable on the target environment. Source portability is the most common type of porting 
and is the common goal in portability research. 

• Intermediate-level portability is a software porting representation case where it is possible to port 
between the source and binary code. Examples are Microsoft’s Common Intermediate Language 
(CIL) and Java bytecode. 

Mooney also stated that porting is not always desired. Some software has critical parameters that prohibit 
porting; when porting extends the release date, porting makes performance or efficiency drop that is not 
tolerable, the software is made exclusive to a specific environment, or intellectual property rights protect 
the software. Re-development is desirable in these cases. 

 

Figure 6. Porting a program with source portability for limited target environment [18]. 
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In this thesis, our software unit is LightHouse 2. Our main target class of environments is different types of 
GPUs. Our desired method is porting and compiling on the host environment and be able to transport the 
executable across different environments (Figure 6). 

3.2 Porting Cost 

As a metric, porting cost is useful to rationalize design decision and trade-offs in limited porting duration. 
As stated before, the porting cost does not have a definitive formula. Researchers have attempted to narrow 
variables that affect porting cost. 

In 1993, James D. Mooney formalized degree of portability definition [7]. This definition is limited to the 
source application’s lines of code and work hours, omitting human experience and knowledge. 

𝐷𝑃(𝑠𝑢) = 1 −
𝐶Y"-Z(𝑠𝑢, 𝑒\)
𝐶-P)](𝑟𝑒𝑞, 𝑒\)

(5) 

The function compares porting cost 𝐶Y"-Z and redevelopment cost 𝐶-P)] for a target environment 𝑒\ with a 
required specification 𝑟𝑒𝑞. The host environment 𝑒L is only used for the software initial developing cost in 
which is trivial for our case. A perfect degree of portability (DP) of a software unit (𝑠𝑢) will have DP(𝑠𝑢) =
0, caused by the porting cost 𝐶Y"-Z having a value of one (Equation 5). Based on this function, portability 
is cost effective if and only if DP(𝑠𝑢) > 0. 

𝐶-P)](𝑟𝑒𝑞, 𝑒\) = 𝐶-P)e(𝑟𝑒𝑞) + 𝐶-f"P(𝑟𝑒𝑞, 𝑒\) + 𝐶-ZP(𝑟𝑒𝑞, 𝑒\) + 𝐶-P"f(𝑟𝑒𝑞, 𝑒\) (6) 

Redeveloping cost (Equation 6) is composed of redesigning cost (𝐶-P)e), recoding cost (𝐶-f"P), retest and 
debug cost (𝐶-ZP), and redocumenting cost (𝐶-P"f). Redesigning does not need a target environment because 
it uses the same design. 

𝐶Y"-Z(𝑠𝑢, 𝑒\) = 𝐶h"P(𝑠𝑢, 𝑒\) + 𝐶YZP(𝑟𝑒𝑞, 𝑒\) + 𝐶YP"f(𝑟𝑒𝑞, 𝑒\) (7) 

Porting cost (Equation 7) is composed of the manual modification cost (𝐶h"P), test and debug cost (𝐶YZP), 
and documentation cost (𝐶YP"f). To achieve the best result, we want to have an equation where the cost of 
modification is far less than the test, debug, and documentation costs combined (𝐶h"P << 𝐶YZP + 𝐶YP"f). 

In 1997, Mitsuari Hakuta and Masato Ohminami determined that porting cost is an accumulation of the 
portable impediment index, human factors, and environmental factors [20]. Human factors were not 
included in Mooney’s equation, such that the formula by Hakuta et. Al. to calculate porting cost is 
significantly different. 

The portable impediment index consists of four points; the difference in processor architecture, operating 
system disparity, the difference in language processor, and hardware-dependent functions. The index 
mostly addresses the factors between the source and target environments that determine if a software 
modification is necessary for porting.  

Human factors are mainly tied to knowledge and experience of the software structure, the environments, 
software porting, the tools, and the programming language. 
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Lastly, the environmental factors are about the availability of development tools, test units, and system 
environments. The following regression equation is the formula to calculate porting cost Y in the form of 
working hours. 

𝑌 = 𝐶 ⋅n10opqp ⋅ 𝑋or
s

.KL

(8) 

In Equation 8, X is the program source code size; C, β=, and βx are constants from the regression analysis. 
The number of factors used is three, which makes n = 3. Lastly, α= is the value of factor set i, where αL is 
the portability impediment index, α\ is the human factor, and α| is the environmental factors. 

Including human factors will give a more realistic approach for calculating porting cost, but there lies the 
problem of measuring human knowledge and experience without any ground truth. We will use Mooney’s 
porting cost formula because it is more general and more straightforward to adapt in this case study. 

3.3 GPGPU Development Technologies 

There are several programming languages to write applications that run on the GPU. These languages, 
however, are mostly case-specific, vendor-specific, and proprietary. Popular languages include CUDA, 
OpenCL, DirectCompute, and OpenGL. We need to determine which language is the right candidate for 
porting a GPGPU application. 

Early development of GPGPU APIs started with DirectX and OpenGL. These APIs use the traditional 
rendering pipeline of GPUs by doing computations in the pixel shader. To generate code, DirectX uses 
High-Level Shading Language (HLSL) while OpenGL uses OpenGL Shading Language (GLSL). These 
early GPGPU APIs are known as Compute Shade (CS). To support CS, Microsoft launched DirectCompute 
API for DirectX and NVIDIA released Cg. 

To overcome shading language limitations, NVIDIA released CUDA in 2006. CUDA made GPGPU more 
versatile as it introduces many features and development flexibility. It is however limited to NVIDIA 
hardware. To overcome GPGPU portability, OpenCL was introduced in 2009. Apple originally developed 
OpenCL and is later maintained by the Khronos Group. 

Later in 2015, AMD introduced GPUOpen, a GPGPU developing suite aiming for open-source and 
portability [21]. One of the GPUOpen tools that are relevant for cross-platform porting is Radeon Open 
Compute Platform (ROCm) [22]. ROCm is a collection of open-source APIs that are relevant for GPGPU 
development mainly targeting AMD GPUs. ROCm includes a tool called HIP that enables common C++ 
code to be compiled cross-platform to NVIDIA or AMD GPUs. Although still in early development, HIP 
provides the highest portability with the opportunity to develop once and compile to many. 
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Figure 7. Comparison between CUDA and OpenCL search interest over time using Google [23]. Numbers on the Y-axis 
represent search interest relative to the highest point on the chart for the given region and time. A value of 100 is the peak 

popularity for the term. A value of 50 means that the term is half as popular. A score of 0 means there was not enough data for 
this term. 

From these handfuls of programming languages, we are interested in CUDA and OpenCL based on 
popularity and features. Even with particular vendor limitation, CUDA is a very popular framework to 
develop GPGPU (Figure 7). Many attempts were made to port CUDA to other platforms automatically, but 
most are not perfect and still requires manual adaptation. 

3.4 NVIDIA CUDA 

NVIDIA CUDA is a C/C++ language extension that enables developers to create applications that run 
exclusively on CUDA-enabled GPUs. This language exceeded Compute Shade because it gives developers 
access to the GPU’s virtual instruction set and parallel computational elements, while also providing control 
on memory management. CUDA can easily be utilized on any Windows, Linux, or macOS system that uses 
NVIDIA GPUs. 

CUDA is a parallel programming language; the application executes the program simultaneously instead 
of only once. The language separates the code that runs on the host and the device. The host is the CPU that 
coordinates the GPUs (device). CUDA separates programs by their functions, called kernels. In this code 
sample (Figure 8), a kernel for vector addition is launched N times in parallel by different threads. Each 
thread is processed by one CUDA core (processing cores on an NVIDIA GPU). 

// CUDA kernel definition 
__global__ void VecAdd(float* A, float* B, float* C) 
{ 
    int i = threadIdx.x; 
    C[i] = A[i] + B[i]; 
} 
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int main() 
{ 
    ... 
    // Kernel invocation with N threads 
    VecAdd << <1, N >> > (A, B, C); 
   ... 
} 

Figure 8. A simple CUDA kernel that executes vector addition in parallel. 

CUDA uses NVCC (NVIDIA CUDA Compiler) to compile [24]. NVCC forwards host codes to a C 
compiler such as GCC, Intel C++ Compiler, or Microsoft Visual C++ Compiler. The remaining code, which 
is device code, is further compiled by NVCC. 

NVCC can then compile device code into two different methods: offline compilation and just-in-time 
compilation. The offline compilation is a straightforward process. It compiles device code into PTX code 
or binary code. 

The just-in-time compilation is a more advanced technique for low-level programming. The application 
uses the device driver on runtime to compile PTX code into a hardware instruction set [25]. The just-in-
time method may benefit from compiler improvements on newer drivers and may also lead to device-
specific optimizations or compiling for upcoming hardware. 

The ray tracing engine OptiX, which is a dependency in our case study, uses NVCC’s just-in-time 
compilation method. OptiX feeds PTX code into the application that will be compiled on runtime. The final 
compilation will be saved in a cache and only requires recompilation if there is a driver or hardware update. 
For example, applications do not need to be recompiled from source code to run on newer NVIDIA devices 
with the Turing architecture. The just-in-time compiled application may benefit from the device’s Tensor 
or RT Cores, a hardware feature that was not available before [26]. 

3.5 OpenCL 

OpenCL is language extension to C, developed to compete with CUDA [27, 4]. It aims to offer further 
support to a broad array of parallel hardware. OpenCL can also be used to run parallel implementations on 
non-GPU devices such as CPUs with SIMD (single instruction, multiple data) instructions, FPGAs (field-
programmable gate array), and DSPs (digital signal processor). 

Support on numerous devices makes OpenCL a programming language with high portability. OpenCL can 
be run on most systems as the typical consumer hardware at least utilizes a CPU that supports SIMD 
instruction. Because of OpenCL’s portability, there is some initial overhead during setup. It must list and 
choose platforms first to get the desired device. The device can be automatically chosen or manually by the 
user. 

// OpenCL kernel definition 
__kernel void VecAdd(__global float* A, __global float* B, __global float* C) 
{ 
    const int i = get_global_id(0); 
    C[i] = B[i] + A[i]; 
} 
Figure 9. A sample of OpenCL code of the same function as the CUDA code in figure 2. OpenCL uses the same structure with 

some different function types and data types. 
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OpenCL language structure and architecture are relatively similar to CUDA (Figure 9). It uses an equivalent 
representation of device, host, and kernel. 

OpenCL kernel code is compiled on runtime because it is platform-specific. Host code handling is the same 
as in CUDA; it is compiled using the corresponding compiler. In our case, the host code written in C++ 
uses GCC, Intel C++ Compiler, or Microsoft Visual C++ Compiler. 

Currently, OpenCL’s latest version is 2.2. New functions are introduced to enhance parallel programming. 
Unfortunately, not a wide selection of devices supports OpenCL 2.2. Most devices still use the OpenCL 1.2 
standard, which makes this version the lowest common denominator. 

3.6 HIP 

HIP (Heterogeneous-compute Interface for Portability) is a portable C++ programming environment for the 
GPU developed recently by AMD. This environment enables users to develop in a language that can be 
compiled seamlessly to both AMD and NVIDIA GPUs. HIP aims to reduce or even remove manual source 
porting. 

HIP was developed because most GPGPU applications are still bound to the CUDA language and structure. 
CUDA, as a proprietary language, is closed-source and is maintained only by NVIDIA. It limits the user’s 
freedom of using CUDA language on non-NVIDIA devices. HIP’s goal is to provide an open-source 
solution to convert CUDA code to common C++. The converted code can then be compiled with NVCC or 
HCC (AMD’s Heterogeneous Compute Compiler). 

cudaMalloc((void **)&m_cuda, Size * Size * sizeof(float)); 
cudaMemcpy(m_cuda, m, Size * Size * sizeof(float), cudaMemcpyHostToDevice); 
gpu_kernel<<<dimGridXY, dimBlockXY>>>(m_cuda, a_cuda, b_cuda, Size, Size - t, t); 
cudaThreadSynchronize(); 
cudaMemcpy(m, m_cuda, Size * Size * sizeof(float), cudaMemcpyDeviceToHost); 
cudaFree(m_cuda); 
 
__global__ void gpu_kernel(float *m_cuda, float *a_cuda, float *b_cuda, int Size, int j1, int t) 
{ 
    … 
} 
hipMalloc((void **)&m_cuda, Size * Size * sizeof(float)); 
hipMemcpy(m_cuda, m, Size * Size * sizeof(float), hipMemcpyHostToDevice); 
hipLaunchKernel(gpu_kernel, dim3(dimGridXY), dim3(dimBlockXY), 0, 0, 
     m_cuda, a_cuda, b_cuda, Size, Size - t, t); 
hipDeviceSynchronize(); 
hipMemcpy(m, m_cuda, Size * Size * sizeof(float), hipMemcpyDeviceToHost); 
hipFree(m_cuda); 
 
__global__ void HIP_FUNCTION(gpu_kernel, float *m_cuda, float *a_cuda, float *b_ cuda, int Size, int j1, int t) 
{ 
    … 
} 
HIP_FUNCTION_END 

Figure 10. A sample conversion from CUDA code (above) into HIP code (below). 

The HIP approach is more practical and less verbose than source porting CUDA code into OpenCL. The 
reason is that HIP and CUDA are C++ languages that share a similar language structure which can be seen 
in Figure 10. The language similarities as enable CUDA developers to program in HIP C++ with ease. On 
an NVIDIA environment, Nsight (NVIDIA’s GPU profiler) can even be used to profile and debug. 
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Although HIP can support many devices, currently operating system support is limited to the Linux 
environment. The reason why it has not been ported to other operating systems is that ROCm (the software 
suite that includes HIP) kernel driver is highly tied to Linux and the HSA (Heterogeneous System 
Architecture) runtime is highly tied to the driver. Currently, porting LightHouse 2 with HIP is not a feasible 
option because of this limitation. 

3.7 Automatic Porting 

Automation tools were created to port CUDA to OpenCL because manual porting is a very tedious and 
time-consuming task. A noteworthy source-to-source porting tool is CU2CL. Another approach is to port 
CUDA to an intermediate language automatically (e.g., HIP) that can be compiled on the OpenCL 
environment. 

3.7.1 CU2CL 
CU2CL is a framework that was made to fully automate source code porting from CUDA to OpenCL [28]. 
The framework translates most commonly CUDA API calls so that few lines need to be ported manually 
after the process. This tool, however, is limited only to the Linux environment and can only serve as an 
offline source translator. Our best option is to port CUDA codes to OpenCL manually. 

3.7.2 Hipify 
Hipify is a tool that can automatically detect and port CUDA code into HIP code. On a case study made by 
AMD [29], the tool was able to port 99.6% code automatically. The software unit was CAFFE, a CUDA 
machine learning framework with more than 55,000 line of C++ code, more than 70 CUDA kernels, and 
uses NVIDIA’s proprietary neural network library CUDNN. The resulting HIP code was able to be offline 
compiled on both AMD and NVIDIA GPUs. 

3.8 Ray Tracing API 

As demand increases for ray tracing development, commercial GPU vendors designed ray tracing APIs that 
can be used on personal computers. NVIDIA released OptiX in 2009. Later in 2013, Intel released Embree, 
a ray tracing engine optimized for Intel CPUs [30]. AMD finally released FireRays in 2015. A year later, 
FireRays became one of AMD’s GPUOpen tools and was renamed into Radeon Rays [31]. These APIs are 
interactive and are not based on the shading language. In the search for a robust open-source GPGPU ray 
tracing engine to solve the closed-source part in our case study, Radeon Rays is currently the viable option.  

3.8.1 Radeon Rays 
Radeon Rays is AMD’s ray tracing API that is developed with portability in mind. The API is implemented 
using C++ based on OpenCL version 1.2. Radeon Rays is optimized and guaranteed to perform on AMD 
devices, but it can also be used on other environments as long it complies the OpenCL 1.2 standard. Using 
OpenCL 1.2 means that NVIDIA and Intel devices can benefit from this API. 
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Figure 11. Baikal using Radeon Rays to render a Cornell Box using an NVIDIA GeForce GTX 1050 Ti GPU. 

Radeon Rays demonstrates its ray tracing capability using Baikal, a global illumination renderer. The 
renderer runs out of the box on an NVIDIA device (Figure 11) and does not require changing or installing 
additional components. 

Radeon Rays features an accelerated GPU intersection library. The library uses massive batches of rays as 
input to hide latency and increase GPU occupancy. It has two types of intersection queries; closest hit and 
any hit. Closest hit triggers when there is an intersection. Any hit returns an array of integers (1 for 
intersection and -1 for no intersection) that is useful for terminating shadow rays and occlusions. 

Radeon Rays also supports acceleration structures, with Bounding Volume Hierarchy (BVH) as the default 
structure. The default BVH uses spatial median splits as it has fast built times while performing decent 
intersection performance. To improve intersection performance, an option to enable Surface Area Heuristic 
(SAH) is available. SAH will increase BVH build time in trade for a fast intersection on runtime. To support 
scenes with moving geometries, two-level BVH is also available to use. 

The Radeon Rays SDK has requirements that almost resembles OpenCL. 

• A Linux, Windows, or macOS working environment. 
• A device that is capable of running OpenCL version 1.2. 

Radeon Rays satisfies the target environment that we are aiming for, and it is also a strong candidate to 
replace OptiX functions that are specific for NVIDIA devices. The downside of using Radeon Rays is that 
the API documentation is scarce and not well established compared to OptiX. There may be bugs and 
glitches on devices that were never tested before. These problems may cause overhead and increase the 
porting cost if not treated carefully. 
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4. Research Methodology 
4.1 Porting Implementation 

In this section, we explain the port core implementation method. We use OpenCL to port CUDA kernels 
and RadeonRays version 2.0 as a replacement for OptiX functions. Radeon Rays version 2.0 is the latest 
version that can work directly with OpenCL. By using Radeon Rays means that we do not have to manage 
the acceleration structure ourselves and can focus on shading the scene. We also chose to use OpenCL 
version 1.2 as this is the highest version that is supported on most devices. The source core from LightHouse 
2 that we use is the CUDA core that uses OptiX Prime, a variant of OptiX that does not require NVIDIA 
RTX hardware. 

By using these porting methods, the degree of our porting implementation is considered as source level. 
The implementation is used to carry several experiments that can answer our proposed research questions. 
We conduct three different kinds of experiments: portability, features, and performance. 

4.2 Portability Experiment 

The experiment in this section aims to answer the first research question. Since porting does not have an 
exact metric measurement, data must be gathered from the porting implementation. Once the OpenCL core 
base is implemented, we measure porting of LightHouse 2 exclusive features. 

Since OpenCL has a similar structure to CUDA, we measure source portability by making code comparison 
between version. Difference between the modified line of codes with the source line of codes indicates the 
porting effort. 

In the test, we run the ported application on OpenCL 1.2 enabled devices. These devices include NVIDIA 
GPUs, AMD GPUs, Intel CPUs, and Intel integrated graphics. A perfect port would give the same rendering 
output and does not need any adjustments to run on these devices. 

We also conduct a source code statement experiment by enabling automatic function switching based on 
the available device (CUDA or OpenCL). This approach is for testing maintainability for source code 
changes. 

4.3 Features Experiment 

To answer the second research question, we must verify if the OpenCL core has similar functionality as the 
source render core. We use three configurations for this test. First, we run the OpenCL core and the source 
core on the same machine so we can get an accurate core comparison. Second, we run the OpenCL core on 
different GPUs to check if different devices produce different results. Lastly, we run the source Core on an 
NVIDIA device and compare it to the render from the OpenCL core on a non-NVIDIA device. 

We set up scenes that are identical across cores. These scenes include SEED’s PICA PICA Warehouse and 
Crytek’s Sponza. Scene camera viewports are set with the same point and pointing direction across cores. 
We then render images between fixed frame count intervals; 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 
frame samples. Real-time measurements for features do not yield the desired results because there are 
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converging variances between cores. The cores may not be in the same rendering state after running for a 
specified period. 

MSE =
1
𝑚𝑛

H H[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]\
s�L
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Images rendered between cores are compared using the Mean Squared Error (Equation 9). This 
measurement method objectively quantifies the strength of the error signal. The resulting value indicates 
how different are the pixel at position (𝑖, 𝑗) of image 𝐼 compared image 𝐾 (the images must have the same 
dimension 𝑚 × 	𝑛 pixels). Two identical images will have an MSE value of 0 and will increase as the 
difference between the pixel intensities increase. 

Because Mean Squared Error (MSE) only measures absolute error, we also have to use the Structure 
Similarity (SSIM) method to measure the perceived differences observed by the human eye [32].  

SSIM(𝑥, 𝑦) =
�2𝜇�𝜇� + 𝐶L��2𝜎�� + 𝐶\�

�𝜇�\ + 𝜇�\ + 𝐶L��𝜎�\ + 𝜎�\ + 𝐶\�
(10) 

The SSIM method attempts to measure the structural information from two images. The method (Equation 
10) is based on a weighted combination from the results of comparing the luminance, contrast, and structure. 
The term 𝜇 is the average of an image, 𝜎 is the variance an image, and 𝐶 as a variable to stabilize the 
equation. An SSIM index of 1 means that the images have perceived identical structures. The score will 
decrease the more structural information degrades. 

The same feature tests are also be conducted on devices from different manufacturers. Testing on various 
devices gives us insight into how the port behaves on non-NVIDIA devices. With this experiment, we can 
deduce whether the OpenCL port is a head to head representation of the source core. We can also understand 
what features are supported in the OpenCL version.  

4.4 Performance Experiment 

This experiment tries to answer the third research question. Our OpenCL core is performance tested against 
the source render core. We run the main experiment on the same system environment such that we eliminate 
hardware configuration differences. We also run an additional experiment on a variety of devices, which 
let us know the core performance proportional to the device’s computing capability. 

Render performance is measuring the time it takes for a core to render a frame. In this render time, we 
separate it into trace and shade time. Trace time is the amount of time for the core’s ray tracing engine to 
traverse a scene and return the intersections. Shade time is the time for the core to process the intersection 
data until it returns the pixel’s color. During tracing and shading, we also measure the number of processed 
rays during both steps. 
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5. Implementation 
In this chapter, we explain the procedures for implementing the OpenCL core. The following section also 
explains solutions to problems that we found during porting. Section 5.1 defines the core device selection 
process. Section 5.2 describes data types and data structures that are different between the source language 
and the target language. Section 5.3 contains information of the interoperability between the ray tracing 
engine and OpenCL. In Section 5.4, we explain scene data preparation for the target core. Section 5.5 
discusses the shading process, covering ray generation and intersection handling. Section 5.6 provides 
persistent thread implementation in the OpenCL kernels. 

5.1 Device Selection 

Before a core can start its rendering routine, a device must be selected for the program to run on. Selecting 
a device on the CUDA core is rather straightforward because it is only limited to NVIDIA devices. The 
core selects the device with the highest floating-point operations per second (FLOPS). Calculating FLOPS 
requires access to three important information regarding the candidate devices; the number of Shading 
Multiprocessor, number of threads per Shading Multiprocessor (SM), and the clock frequency. The number 
of SM and the clock frequency can be easily retrieved by doing a device information lookup through CUDA. 
The CUDA core also implicitly store information about the number of threads per SM. 

FLOPS = SMs ×
threads
SM × clock	frequency (11) 

The fastest CUDA device can then be determined using Equation 11. This equation does not give the true 
FLOPS count but is sufficient enough for device selection. 

Our target core, on the other hand, can run on a wide variety of hardware that is not limited by the hardware 
manufacturer. The device type is also not restricted to GPUs only as OpenCL can also utilize CPUs and 
FPGAs. The ability to use a wide range of hardware introduces the problem of selecting the optimal device 
for the core to run on as a system may contain several capable devices. OpenCL can retrieve a device’s 
clock frequency and the number of Compute Units (equivalent to Shading Multiprocessors on NVIDIA 
devices). Unfortunately, it cannot look up information about the number of threads per Compute Unit. 
FLOPS thus cannot be calculated using Equation 11. In an example, a GPU and a CPU with the same 
number of Compute Units may not have the same thread count. Even in some cases, a CPU might have a 
higher clock frequency than a GPU. 

To overcome the device selection limitation, we opt to prioritize device by type and manufacturer. A GPU 
will have more priority than a CPU and device manufacturers are prioritized based on the most common 
device available in the market; NVIDIA, AMD, to Intel. Priority sorting ensures that the core selects the 
fastest device on systems that have more than one GPUs such as discrete and integrated GPUs. Although 
this device selection solution should work in general cases, it is not robust as there can be cases where the 
lower priority manufacturer may have better performance if a system has both (i.e., a combination of 
NVIDIA and AMD discrete GPUs in one system). 

When a device is successfully selected, an OpenCL context object will be created using the device’s 
properties. The device-specific context object handles memory, program, and kernel objects and acts as the 
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entry point to run kernels on the device. An OpenCL command queue is also created based on the device 
to ensure that the kernels are correctly running in order. 

5.1.1 OpenCL-OpenGL Interoperability 
Because LightHouse 2 uses an OpenGL texture to display the rendered frames, it is significant for the 
selected device to have interoperability between OpenCL and OpenGL. Having interoperability means that 
the device can directly access and modify the OpenGL texture through OpenCL to avoid device-to-host 
copy latency. 

If OpenCL-OpenGL interoperability is available, OpenCL can directly control the OpenGL texture 
provided by the render system using the clCreateFromGLTexture function. The texture’s ownership is then 
able to be passed between the APIs with zero-copy latency as the actual data stays at the same memory 
location. 

In the case where the OpenCL-OpenGL interoperability is unavailable, the rendered image on the device 
are copied over to host memory first and then to the OpenGL texture every frame, which causes significant 
performance degradation. An example where interoperability is not available is when the OpenGL texture 
resides in a physically different device than the OpenCL device selected. 

5.1.2 Use of Persistent Threads 
Another essential aspect that is determined by the device selected is the use of persistent threads (see Section 
5.6). Persistent threads can only be enabled when the device’s Compute Unit has more than one thread 
physically. Because the OpenCL cannot determine the actual number of threads per Compute Units, our 
solution is to enable persistent threads only on GPUs that are manufactured by NVIDIA and AMD because 
their Compute Units contains multiple of 32 threads. Integrated GPUs manufactured by Intel does not share 
the same thread count multiplication and does not benefit from persistent threads because the total number 
of threads is low. 

5.2 Data Structure 

Buffers are classes that stores data elements in various data types and structures on the host or the device. 
When these buffers are stored on the device, they can pass be passed between kernels without having to be 
copied over first to host memory. 

By referring to the source core, buffers for CUDA are encapsulated in the CUDABuffer class which contains 
a pointer to host data and another to device data. Because CUDA uses pointers to represent both host and 
device data, the logic of the pointers is shared between the host functions and CUDA kernels. 

We port the buffer class to the target core using a similar buffer structure called CLBuffer as we still separate 
data between host and device. Instead of using pointers for device data, OpenCL uses buffer objects. Buffer 
objects are one-dimensional arrays that are allocated on the device. 
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// location is ON_DEVICE; allocate room on device 
CUDACHECK("cudaMalloc", cudaMalloc(&devPtr, sizeInBytes)); 
owner |= ON_DEVICE; 
// location is ON_DEVICE; allocate room on device 
cl_int err = CL_SUCCESS; 
delete devPtr; 
devPtr = new cl::Buffer(RenderCore::context, CL_MEM_READ_WRITE, sizeInBytes, NULL, &err); 
CLCHECK("Buffer", err); 
owner |= ON_DEVICE; 

Figure 12. Allocating a buffer in the CUDA core (above) and in the OpenCL core (below). 

Initialization of OpenCL buffer objects are similar to CUDA device pointers, requiring a device (implicit 
in CUDA, explicit in OpenCL using OpenCL context) and an array size based on the number of elements 
times the size of the data type (Figure 12). Additional flags are also required to give buffers access 
permissions. In our implementation, we allow buffer modification by the device using the 
CL_MEM_READ_WRITE flag. 

A slight disadvantage of using objects instead of pointers for buffers is the inability to offset kernel input 
directly. We have to pass additional function parameters for offsetting buffer objects when calling an 
OpenCL kernel. 

generateEyeRays(SMcount, extensionRayBuffer[inBuffer]->DevPtr(), extensionRayExBuffer[inBuffer]->DevPtr(), 
    blueNoise->DevPtr() + blueSlot * 65536, RandomUInt(camRNGseed), (vars.filterEnabled ? 0 : -5), 0, samplesTaken, 
    jitteredView.aperture, jitteredView.pos, right, up, jitteredView.p1, GetScreenParams()); 

Figure 13. Call to a CUDA kernel that passes buffers using device pointers. In this function, the blueSlot variable is different on 
every call which modifies the blueNoise pointer sent. 

An example in the source core that uses offset when passing buffers can be found when calling the kernel 
that generates primary rays (Figure 13). In this kernel call, we pass a blue noise buffer that uses a different 
offset on each call. 

5.2.1 Data Alignment 
Another problem that we encounter when implementing data structures in the target core buffer is data 
alignment. The problem arises when we initialize a buffer with a data type that has a different structure 
between the host and the device. 

In the source core and target core, float3 data type in the host code is a structure with three float members 
that are tightly packed (three times 4 bytes). CUDA share the same packed float3 structure in the device 
code, but OpenCL does not and will cause misalignment.  

data[0].x data[0].y data[0].z data[1].x data[1].y data[1].z data[2].x data[2].y float[2].z 
read[0].x read[0].y read[0].z read[0].w read[1].x read[1].y read[1].z read[1].w read[2].x 

Figure 14. The top row is how the host initializes a float3 array. The bottom row is how OpenCL accesses the array. Some data 
are skipped on access and reading the third float3 members returns an error as it exceeds the array bounds. 

A float3 buffer initialized in our target core will yield the correct packed array. However, on the device, 
some data will be skipped and unavailable because it accesses the buffer as a float4 array. By default, 
OpenCL assumes every float3 structure as a float4 for data access performance. This assumption is made 
to satisfy the size of the device’s memory cache that is float4 aligned and reduces the chance of cache 
misses on access [33]. A float3 array is not preferable, as most of the time, one or two members of the 
data type may not be loaded on the cache. The problem is illustrated in Figure 14. 
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skyPixelBuffer = new CUDABuffer<float3>(width * height, ON_DEVICE, pixels); 
skyPixelBuffer = new CLBuffer<float>(3 * width * height, ON_DEVICE, (float*)pixels); 

Figure 15. Initializing a float3 array on the CUDA core with the size of the screen’s resolution (above) and initializing a float 
array on the OpenCL core with the size of three times the screen’s resolution (below). 

A workaround for this problem is to initialize float3 buffers using float4 for the data type. Using a float4 
array gives faster data access on the device but increases the size of the array by 33%. If the buffer has to 
be tightly packed (for example the size of the array is large), we can change the buffer from a float3 data 
type into a float with three times the original array size. With this solution, OpenCL can safely access the 
float array without misalignment on the device side. 

5.2.2 Half Data Type 
Half-precision floating-point (half) is a 16-bit float data type. The primary usage of half-precision data 
type in LightHouse 2 is to store decimal values that do not require high precision compactly. On the source 
core, CUDA can support loading, storing, and arithmetic calculations with half-precision floating points by 
including the cuda_fp16.h header [34]. 

By default, OpenCL only allows half data type for storage and does not allow for half data type variables 
to be processed in arithmetic operations on the device. Half-precision data can only be initialized on the 
host when creating a buffer. Processing half data can be supported if the OpenCL device has the 
cl_khr_fp16 extension enabled from its driver [33]. 

const float blue = __ushort_as_half(part1 & 0xffff); 

Figure 16. Loading a half type using masking and reinterpretation in the CUDA core. 

A case where a function requires half variables is available in the source core’s material processing kernel 
(Figure 16). Diffuse material color is stored as a half-precision floating-point on the host to reduce the 
material structure size. The source core kernel loads the diffuse color data as a 32-bit unsigned integer to 
avoid a cache miss. The loaded data is then masked to get the 16-bit unsigned integer and reinterpreted 
back as half by using the __ushort_as_half function. 

The same function to reinterpret data as half is also available in OpenCL under the function as_half. 
Procedure to load half type data can theoretically be applied using the exact steps as the source core if the 
device has the cl_khr_fp16 extension enabled. However, this extension is mostly not available on 
consumer-grade NVIDIA or Intel hardware running on Windows operating system, even if the hardware is 
actually capable (available in recent AMD devices). The unavailability of reduced hardware extension on 
NVIDIA devices is under the suspicion that the corporation is pushing developers to use CUDA instead of 
OpenCL [35]. 

const float blue = vload_half(0, &materials[TRI_MATERIAL].diffuse_b); 
Figure 17. Loading a half type using an intrinsic function in the OpenCL core. 

Instead of replicating the same procedure as the source core, we directly load the half type data without 
reinterpreting it into a different format (Figure 17). We use vload_half to load and losslessly convert the 
half type data into a float. To store the data into half type, we use the function vstore_half, which 
converts float into half type data with denormalization to reduce 32-bit precision into 16-bit precision. 
Handling half data type may incur some performance loss in the OpenCL core because of type conversions, 
whereas in the source core, data is only bit shifted, masked, and reinterpreted. 
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5.2.3 Buffer with Device Pointers 
For easy scene management, the source core initializes an instance descriptor buffer that contains the 
collection of all the geometry instances. The core initializes the CUDA buffer on render time such that it 
reflects scene changes on the next render frame. Each member of the CUDA buffer contains the pointer to 
the instance’s triangle CUDA buffer and the instance’s three-dimensional transformation. Two dummy 
variables are provided to avoid having a cache miss on access. Having a CUDA buffer that contains another 
CUDA buffer is possible because, by definition, a CUDA buffer is a pointer to a memory part on the device 
[36]. Based on the pointer characteristic of a CUDA buffer, the kernel on the device can access a buffer 
inside a buffer. 

OpenCL buffers, on the contrary, are memory objects on the host [33]. These objects point to device 
memory but cannot be used directly as pointers. Thus, an OpenCL buffer inside an OpenCL buffer will not 
be recognized when accessed by the kernel on the device. The proper way to pass an OpenCL buffer to a 
kernel is by using the clSetKernelArg function (encapsulated as Kernel::setArg by the OpenCL C++ 
wrapper) when initializing the kernel from the host. 

Workaround for this data structure problem is by avoiding buffer pointers inside buffers by directly 
appending the pointed buffer or by using other methods such as creating an additional buffer with a 
continuous array and offsets. Both of these solutions will slightly reduce performance because there are 
actual data moved between buffers on initialization.  

struct GPUInstanceDesc 
{ 
    GPUTri4* triangles;           // device pointer to model triangle array 
    int dummy1, dummy2;           // padding; 80 byte object 
    float4x4 invTransform;        // inverse transform for the instance 
}; 
struct GPUInstanceDescCL 
{ 
    // OpenCL buffers cannot use device pointers. Instead we use 
    a continuous array of triangles with mesh offsets. 
    int mesh;        // mesh id of the instance 
    int triangleOffset;           // global triangle array offset index 
    int dummy;                    // padding; 80 byte object 
    struct float4x4 invTransform; // inverse transform for the instance 
}; 

Figure 18. GPU Instance descriptor structure of the CUDA code (above) and the OpenCL code (below). 

One visible example of the problem lies within the instance descriptor buffer. This buffer includes pointers 
to mesh triangle buffers, a structure that we cannot use in OpenCL. To overcome this problem, we create a 
triangle descriptor buffer. The triangle descriptor buffer will contain a continuous array of triangles from 
all the meshes. For the instance descriptor buffer, we will pass the mesh identification number, the three-
dimensional transformation, and the triangle offset. The triangle offset points to the start of the mesh triangle 
in the continuous triangle array. 

5.2.4 Pass-by-Reference 
Pass-by-reference is a way to pass a variable reference onto a function call parameter. The function can 
thus access and modify the variable’s value as if it is the function’s local variable. Referencing is handy to 
avoid unnecessary data copies between functions as the actual location of the variable is kept at the same 
memory address (only the values are changed). The practice of pass-by-reference is substantial throughout 
the source core kernels as CUDA can utilize this method. 
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OpenCL C is based on the ISO/IEC 9899:1999 C language specification where one of its specifications is 
that a function cannot change the actual parameters value [37]. The limitation drives us to simulate function 
pass-by-reference because we want to keep the ported function as close as possible to the source core. By 
using pass-by-reference, we avoid unnecessary data movement between functions that could lessen 
performance. 

H2_DEVFUNC void GetShadingData( 
    … 
    ShadingData& retVal,               // OUT: material properties of the intersection point 
    float3& N, float3& iN, float3& fN, //      geometric normal, interpolated normal, final normal (normal mapped) 
    float3& T,                         //      tangent vector 
    const float waveLength = -1.0f     // IN: wavelength (optional) 
) 
{ 
    … 
    ShadingData4& retVal4 = (ShadingData4&)retVal; 
    retVal4.data0 = make_float4(redgreen.x, redgreen.y, blue, (float)(etarough0 >> 8) * (1.0f / 255.0f)); 
    … 
    N = iN = fN = TRI_N; 
    T = TRI_T; 
    … 
} 
LH2_DEVFUNC void GetShadingData( 
    … 
    struct ShadingData* retVal,        // OUT: material properties of the intersection point 
    float3* N, float3* iN, float3* fN, //      geometric normal, interpolated normal, final normal (normal mapped) 
    float3* T,                         //      tangent vector 
    const float waveLength,            // IN:  wavelength (optional) 
    … 
) 
{ 
    … 
    struct ShadingData4* retVal4 = (struct ShadingData4*)retVal; 
    retVal4->data0 = make_float4(red, green, blue, (float)(etarough0 >> 8) * (1.0f / 255.0f)); 
    … 
    *N = *iN = *fN = TRI_N; 
    *T = TRI_T; 
    … 
} 

Figure 19. Comparison between the same function that uses pass-by-references in CUDA C (above) and OpenCL C (below). 

When tried using the same code structure as the source core on target core, the kernel will not compile as 
the OpenCL compiler does not recognize the syntax. Passing a reference, however, can be simulated using 
pointers. Pointers (address of the variables) are passed on the function parameters and dereferenced within 
the function which allows the function to read and write the actual variable, similar to passing by reference. 

5.2.5 Constant Variables and Buffers 
Constant data is a variable or a buffer that is shared between kernels running on the same device. There is 
a big difference in how CUDA and OpenCL handle constant data. Constant data on CUDA can be changed 
on runtime, whereas in OpenCL, constant data is hardcoded on the device and cannot be modified from 
both the host and device. Inability to change constant data on runtime possesses slight trouble when passing 
a lot of the same variables and buffers to different kernels in OpenCL.  

We solve this problem by adding constant data parameters to every kernel. Because a kernel must have its 
function parameter to pass constant data, a kernel call can quickly become cluttered with the number of 
parameters needed. For now, this is the most straightforward approach that does not require kernel structure 
changes. 
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5.2.6 Fixed-point Arithmetic 
Functions that contain fixed-point arithmetic are problematic when tested on AMD and Intel hardware. On 
AMD, OpenCL fails on program compilation without any warnings, and on Intel, the core produces 
shadows with strange patterns. This problem is caused when operation between a 4-byte variable with an 
8-byte variable has a different numerical structure.  

The case that we have found in our port is the multiplication of a float with an unsigned long. This 
problematic operation can be found in the function that returns the random barycentric coordinates in 
lights.cl. The function uses triangle sampling that only needs one random float number as the input 
[38]. The random number is then converted using fixed-point arithmetic to get an integer sample. Because 
this uses the aforementioned different byte variable multiplication, the OpenCL program becomes 
uncompilable on AMD devices and problematic on Intel devices. 

As trying to change fixed-point calculation gives us unintended render output, we opted to change using a 
recent triangle sampling method [39]. This method is fast and does not require any fixed-point calculation; 
however, it does not produce results as accurate as of the source core. The difference is mostly visible on 
the softness of the shadows (Figure 20). 

 

Figure 20. Result of shadows using different random barycentric coordinate methods. From left to right: Render using the source 
method, render using the alternative method, and pixel differences (intensified five times) between the methods. 

We enable switching to the alternative random barycentric coordinate method when the port is run on AMD, 
Intel, or other non-NVIDIA devices. Method switching ensures high compatibility between devices while 
having the same behavior when the port is run on NVIDIA devices. 

5.3 Ray Tracing Engine 

The ray tracing engine is the API that allows geometry intersection calculation by using ray tracing 
methods. In the port, we use Radeon Rays as our intersection API to substitute the closed-source ray tracing 
engine OptiX. The engine must first choose a device that is capable of performing intersection queries on 
initialization. The available device listing can be processed directly through the intersection API or can be 
manually assigned using the already initialized OpenCL context. Using the automatic approach will create 
a new OpenCL context for the API to run. We do not want to have another OpenCL context as we have 
already initialized the context through our device selection method on core initialization. 
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// setup Radeon Rays 
EXPECT_NO_THROW(api = RadeonRays::CreateFromOpenClContext(context(), device(), queue())); 

Figure 21. Initializing Radeon Rays using the initialized OpenCL context, device, and command queue. 

Our approach is using the manual device selection for the intersection API. The intersection API requires 
the initialized OpenCL context, the chosen device, and the command queue. Using the correct device 
ensures that the intersection API has interoperability with OpenCL. The interoperability is vital because 
Radeon Rays must access rays and intersection data that are stored in OpenCL buffers. 

ASSERT_NO_THROW(extensionHitsDesc = RadeonRays::CreateFromOpenClBuffer(api, extensionHitBuffer->DevPtr()())); 
ASSERT_NO_THROW(shadowRaysDesc = RadeonRays::CreateFromOpenClBuffer(api, shadowRayBuffer->DevPtr()())); 
ASSERT_NO_THROW(shadowHitsDesc = RadeonRays::CreateFromOpenClBuffer(api, shadowHitBuffer->DevPtr()())); 

Figure 22. Initializing Radeon Rays buffers using existing OpenCL buffers to enable interoperability. 

Radeon Rays uses a different type of buffer; however, the buffers can handle interop if initialized from an 
existing OpenCL buffer. This allows Radeon Rays to assume control of the OpenCL buffer and make 
changes without any actual data movement. 

5.3.1 Ray Structure 
The ray tracing engine's primary purpose is to process rays. These rays primarily contain the vector origin 
and direction data. The main difference between the source and the target core is the ray structure as the 
structure is bound to the engine. Additional data may also be stored on the ray depending on the intersection 
requirement. 

Figure 23. Ray structure of OptiX (above) compared to Radeon Rays (below). OptiX only takes 32 bytes for a ray while Radeon 
Rays needs 48 bytes because of the extra data. 

The source core uses a ray that contains the origin, the direction, and the distance to the hit geometry. This 
structure is one of the predefined ray structures from OptiX with the size of two float4 members. 

Radeon Rays currently only has one ray structure, containing extra data for its intersection calculation. 
Because of the extra data, one ray uses three float4 members. By these definitions alone, the target core 
needs more storage for a single ray thus can be deducted that ray read and write performance might be 
lower than of the source core. 

5.3.2 Intersection Structure 
Once the ray tracing engine has processed a ray, it returns an intersection. Data in an intersection contains 
the hit distance, hit geometry, the triangle in the hit geometry, and the barycentric coordinates of the said 
triangle. All of these data determine the shading path taken. 

Figure 24. The intersection data structure in the CUDA core (above) and the OpenCL core (below). 

As with the case of the ray structure, the intersection structure is also different between ray tracing engines. 
Intersection data on the source core, based on OptiX, contains the distance, hit triangle, hit instance, and 
the barycentric coordinates. By having five data members, OptiX intersection data takes 20 bytes of storage.  

Radeon Rays intersection data has the same members but with padding for data alignment purposes. 
Padding for alignment makes the intersection data in the size of two float4 members (32 bytes). Because 

struct Ray { float3 O; float tmin; float3 D; float tmax; }; 
struct Ray { float4 o; float4 d; int2 extra; int doBackfaceCulling; int padding; }; 

struct Intersection { float t; int triid, instid; float u, v; }; 
struct Intersection { int shapeid; int primid; int padding0; int padding1; float4 uvwt; }; 
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of the more significant storage needed for the intersection data, the target may have lower performance than 
the source core. 

5.4 Scene Geometry Loading 

Once the core initializes all the required APIs, the next step is to prepare scene data to a format that is usable 
by the core. LightHouse 2’s rendering system loads all the necessary files to create a scene to the host. In 
the current state, LightHouse 2 support loading wavefront object (.obj), GL Transmission Format (.gltf), 
and partial loading for FBX format. The rendering system then passes the loaded scene onto the render core 
in a universal format regardless of the original file format or the core. 

Data classes that are loaded into the rendering system includes the skydome, textures, materials, meshes, 
instances, and lights. All of these data classes are stored in the host scene with each having their separate 
list. On a core initialization, the rendering system sends all the host scene data to the core that allows the 
core to hold its representation of the scene data. The rendering system is also capable of detecting changes 
in the host scene that automatically sends a synchronization flag to the render core. The flag enables the 
rendering system to resend modified scene data, such as mesh deformation and instance changes, are up to 
date on render time. 

By using the same principle of preparing scene data as the source core, each of the data class is handled by 
its function in the target render core. These functions convert host scene representation to core-specific 
data. Functions to convert the skydome, textures, materials, and lights are straightforward ports from the 
source core with minimal changes. Most of the changes are made to satisfy the OpenCL data structure that 
is explained in Section 5.2. Meshes and instances are treated a bit different because it uses the Radeon Rays 
geometry API calls. 

Radeon Rays uses shape objects to represent geometry in the scene. For each geometry object, the rendering 
system provides an array of vertices, the number of vertices, the number of triangles, and an array that 
contains each triangle data such as materials, textures, and normals. 

shape = RenderCore::api->CreateMesh(buffers.vertices, vertexCount, 3 * sizeof(float), buffers.indices, 3 * sizeof(int), 
nullptr, triCount); 

Figure 25. Generating a shape using Radeon Rays API call. 

The host vertices array that is sent from the rendering system is a float4 array, which means that each 
member of the array contains four float data. Only the first three members contain actual data while the 
fourth member contains a dummy. We compact the vertices array to reduce the size by discarding the 
dummy. The compacted array will be the input to the Radeon Rays shape call (Figure 25). We avoid using 
a float3 array because Radeon Rays uses OpenCL as its basis; the data type alignment problem explained 
in section 5.2.1 can occur as well. We chose to use a float array that has three times the members of the 
host vertices. 

Radeon Rays shape uses an index system to point vertices of a triangle. The rendering system expands all 
the vertices into a continuous vertex array sorted correspondingly to the triangle array order. The required 
indices list is initialized as an integer array containing dummy data; containing elements from zero to three 
times the number of triangles. 
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Additional data that must be provided to the shape API is the array strides and the number of vertices per 
face. Array strides allow the shape API to know the required array elements for one triangle. In our case, 
strides of both arrays are three times the element. The shape API needs the number of vertices per face 
because it can accept a geometry in a mix of quad and triangle meshes. As the mesh sent from the rendering 
system contain only triangles, we set the number of vertices per face as three. 

Once a shape has been initialized, the shape can be directly committed to the scene or use instancing to 
allow multiple entities of the same mesh without creating a new shape object. We follow the same logic as 
the source core when applying geometry into the scene, sending only instances from the original geometry. 
A transformation is also applied when geometry instances are committed to the scene, enabling copies of 
the mesh with different position, orientation, and scale. 

5.5 Rendering 

After a core has successfully processed all the host scene data, the rendering routine will start. The routine 
consists of preparing on-render buffers, call to a kernel that generates the primary rays, geometry 
intersection using the ray tracing engine, shading, and connecting traced shadow rays. All of these steps are 
considered as one render cycle that produces a frame with one sample per pixel. Between the source core 
and the target core, only a few structural designs were changed. 

5.5.1 On-render Buffer Initialization 
The source core’s rendering function starts by initializing an instance descriptor buffer that collects all the 
committed geometry instances. The purpose of this buffer is to give instance shading information on the 
intersected triangle. The buffer must be initialized on-render time to be able to handle on render mesh 
changes such as rigid movements. The core will detect for scene changes, and if there are changes, the core 
reinitializes the buffers for the next render cycle. 

The source core only passes the pointers to the triangle buffers when initializing the instance descriptor 
buffer. These triangle buffers are initialized on the device directly on core initialization. Changes in the 
scene will only change the affected triangle buffer and transformation.  

In the target core, we must add a triangle descriptor buffer because the unavailability of direct device 
pointers in OpenCL explained in section 5.2.3. Instead of directly initializing triangle buffers on the device 
as the source core, we create the triangle buffers on the host. These triangle buffers will be copied over to 
the device on triangle descriptor initialization. Changes in the scene mean reinitialization of the whole 
continuous triangle descriptor array. This approach will take more time, especially if there are changes in 
every frame. 

5.5.2 Primary Rays 
Prior tracing the scene, the camera kernel generates rays that are going to be the input of the ray tracing 
engine. These rays are the primary rays, originating from the viewport and heading towards the scene. Rays 
are stored in a buffer, which the case of the target core is an OpenCL buffer. For each ray, there is also extra 
ray data that is stored in the path state buffer. The kernel generates primary rays and extra ray data once 
every render cycle by utilizing persistent threads (see Section 5.6). 
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Only the ray structure is different between the source kernel and the target kernel. The target kernel is 
adjusted to work with Radeon Rays ray structure (see Section 5.3.1). Other than the ray structure, the camera 
kernel is a straightforward port. 

5.5.3 Shading 
LightHouse 2 separates each ray path iteration using a wavefront loop. The loop allows the kernel to 
separate work in smaller chunks to ensure that each group of threads in a GPU are fully utilized (see Section 
5.6). In a wavefront loop, the core extends the ray intersection and processes the intersection data with the 
shade kernel. By default, the maximum of ray bounces is three; thus, each render cycle will have at most 
three wavefront loops. 

The first stage within a wavefront loop is extending the rays with the ray tracing engine to generate 
intersection data. The first loop will trace all the primary rays, and subsequent loops will trace the number 
of active rays that have been processed by the shade kernel. 

// extend 
CHK_PRIME(rtpBufferDescSetRange(extensionRaysDesc[inBuffer], 0, pathCount)); 
CHK_PRIME(rtpBufferDescSetRange(extensionHitsDesc, 0, pathCount)); 
CHK_PRIME(rtpQuerySetRays(query, extensionRaysDesc[inBuffer])); 
CHK_PRIME(rtpQuerySetHits(query, extensionHitsDesc)); 
CHK_PRIME(rtpQueryExecute(query, RTP_QUERY_HINT_NONE /* or RTP_QUERY_HINT_ASYNC */)); 
// extend 
if (pathCount != 0) 
{ 
    EXPECT_NO_THROW(api->QueryIntersection(extensionRaysDesc[inBuffer], pathCount, extensionHitsDesc, 
        nullptr, &query)); 
    ASSERT_NO_THROW(query->Complete()); 
    ASSERT_NO_THROW(query->Wait()); 
} 

Figure 26. Extending the rays using OptiX in the CUDA core (above) and Radeon Rays in the OpenCL core (below). 

Both the core and target ray tracing engine use the same numbers of buffers as the input and the output. 
The ray tracing engine takes the ray buffer as an input, intersect the rays with the scene, and returns the 
intersection results to the ray hit buffer. The main difference between tracing in the source core and the 
target core is on handling the number of rays to be traced. OptiX in the source core allows the ray count to 
be zero as the input (no active rays to trace) and returns no errors when given such case. Radeon Rays in 
the target core, on the other hand, cannot handle the case when active rays are zero. It returns an exception 
and breaks the program with no active rays. We have to add a conditional operator to prevent Radeon Rays 
from crashing. Handling active rays in a wavefront loop is essential because there will be cases when there 
are no ray bounces after the first trace. 

After extending the rays, the shade kernel uses the active rays, extra ray data, and the intersection data to 
process the scene. The shade kernel calls for other kernels to process different conditional paths which 
results in a random ray bounce and writes new data into the ray buffer, extra ray data buffer, shadow ray 
buffer, and shadow potential buffer. The other kernels are grouped and separated by function; this includes 
material handling, texture sampling, BxDF processing, light calculation, and a kernel that contains various 
helper functions. 

Because the shade kernel contains a lot of conditional operations, some rays may take paths that terminate 
them and marks them as not active. The core uses compaction to avoid processing unnecessary rays by only 
writing active rays to the buffer. The ray buffer does not have an active ray counter, such that we must use 
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an additional static ray counter buffer. Due to the nature of how GPU threads process data at the same time 
(highly parallel), it is crucial to keep track of active rays by using atomic counters. Tracking the rays using 
atomic counters prevents threads from writing to the ray counter buffer at the same time, and by doing so, 
keeps the active ray number correct. 

Porting the shade kernel and all the kernel dependencies from CUDA into OpenCL is rather straightforward 
once the structural problems explained in Section 5.2 are addressed. All applied CUDA intrinsic functions 
are available in OpenCL as well so that we do not have to create our functions to replace them. Frequently 
used OpenCL API intrinsic function calls with the same function as the CUDA counterpart are redefined 
using CUDA API function names. Function name redefinition enables less redevelopment by allowing us 
to copy more lines of codes without modifying them, meaning high portability. 

5.5.4 Shadow Rays 
At every shade kernel call in a wavefront loop, rays that have a geometry hit are intersected against a 
random light source to generate shadow rays and shadow ray potentials. Once the shading wavefront loop 
has reached its maximum ray bounce, the connections kernel traces shadow rays against the scene for 
intersections. If there are no occlusions, the kernel writes the ray throughput from the shadow ray potentials 
buffer to the accumulator. 

// trace the shadow rays using OptiX Prime 
RTPquery query; 
CHK_PRIME(rtpQueryCreate(*topLevel, RTP_QUERY_TYPE_ANY, &query)); 
CHK_PRIME(rtpBufferDescSetRange(shadowRaysDesc, 0, counters.shadowRays)); 
CHK_PRIME(rtpBufferDescSetRange(shadowHitsDesc, 0, counters.shadowRays)); 
CHK_PRIME(rtpQuerySetRays(query, shadowRaysDesc)); 
CHK_PRIME(rtpQuerySetHits(query, shadowHitsDesc)); 
CHK_PRIME(rtpQueryExecute(query, RTP_QUERY_HINT_NONE /* or RTP_QUERY_HINT_ASYNC */)); 
CHK_PRIME(rtpQueryDestroy(query)); 
// trace the shadow rays using Radeon Rays 
RadeonRays::Event* query = 0; 
EXPECT_NO_THROW(api->QueryOcclusion(shadowRaysDesc, counters.shadowRays, shadowHitsDesc, nullptr, &query)); 
ASSERT_NO_THROW(query->Complete()); 
ASSERT_NO_THROW(query->Wait()); 
ASSERT_NO_THROW(api->DeleteEvent(query)); 

Figure 27. Any hit API function call for OptiX (above) and Radeon Rays (below). These functions only return a Boolean for each 
ray and are useful for checking occlusions. 

Tracing shadow rays does not use the full intersection API call; instead, it uses a lightweight function that 
only returns a Boolean whether the ray intersects or not. OptiX in the source core uses the predefined 
RTP_BUFFER_FORMAT_HIT_BITMASK intersection structure, with one bit per ray for misses and hits. The 
structure allows OptiX to have a densely packed shadow hit buffer (32 intersection data in a 4-byte data). 
By having a compact data, the shadow hit buffer uses less storage size and is less prone to cache misses 
when accessed. 

Tracing shadow rays on the target core using Radeon Rays uses the same principle of only having the hit 
or miss in the intersection data. The significant difference compared to OptiX is that in Radeon Rays, it 
uses a signed integer for each intersection data, where each data is -1 for misses or 1 for hits. Using a signed 
integer causes the target core shadow hit buffer to use more storage than the source core (1 intersection data 
in a 4-byte data). By using more storage per data, it is possible that accessing the shadow hit buffer is slower 
in the target core. 
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5.6 Persistent Threads 

In order to maximize thread utilization in path tracing, the rendering core is implemented using persistent 
threads [40]. Threads on a GPU are typically grouped in warps (NVIDIA) or wavefronts (AMD) that always 
process the same instruction in lockstep. If a thread branches out from the instruction, that thread will be 
masked out until the warp or wavefront starts processing a new instruction. Masked out threads will not do 
useful work and is considered as performance loss. Persistent threads optimize grouped threads workload 
by separating it into small specialized kernels. 

To maximize persistent threads utilization, rendering in LightHouse 2 is separated into multiple specialized 
kernels which consist of the camera, shade, connection kernel. The shade kernel is even further specialized 
into smaller kernels considering the number of conditional paths. Having one large kernel that contains a 
lot of execution divergence in control flow could cause substantial performance penalties. 

__shared__ volatile int baseIdx[32]; 
int lane = threadIdx.x & 31, warp = threadIdx.x >> 5; 
__syncthreads(); 
while (1) 
{ 
    if (lane == 0) baseIdx[warp] = atomicAdd(&counters->generated, 32); 
    int jobIndex = baseIdx[warp] + lane; 
    if (__all_sync(THREADMASK, jobIndex >= pathCount)) break; 
    if (jobIndex < pathCount) generateEyeRaysKernel(jobIndex, 
        rayBuffer, pathStateData, 
        blueNoise, R0, j0, j1, pass, 
        pos, right, up, aperture, p1, 
        screenParams); 
} 
__local volatile int baseIdx[32]; 
int lane = get_global_id(0) & 31, warp = get_global_id(0) >> 5; 
barrier(CLK_LOCAL_MEM_FENCE); 
while (1) 
{ 
    if (lane == 0) baseIdx[warp] = atomicAdd(&counters->generated, 32); 
    int jobIndex = baseIdx[warp] + lane; 
    if (jobIndex >= pathCount) break; 
    if (jobIndex < pathCount) generateEyeRaysKernel(jobIndex, 
        rayBuffer, pathStateData, 
        blueNoise, blueSlot, R0, j0, j1, pass, 
        pos, right, up, aperture, p1, 
        screenParams, geometryEpsilon); 
} 
Figure 28. Host kernel for the camera kernel divides the total ray generation into jobs of 32 threads. The host kernel runs the 
actual camera kernel until there are no jobs left to process. The target host kernel is written in OpenCL (below) has a similar 

structure as the source CUDA host kernel, with the only visible difference in intrinsic calls that does the same function.  

To implement persistent threads, the core uses a host kernel that calls the actual kernel. An example of a 
host kernel for the camera kernel can be seen in Figure 28. The host kernel divides the total work of the 
actual kernel into jobs of 32 threads, based on the number of threads grouped in one NVIDIA GPU warp.  

The target core keeps the same structure for the host kernel because it only enables persistent threads on 
NVIDIA and AMD devices (threads are grouped in 64 threads on AMD devices and is divisible by 32). If 
initialized on an unsupported device, the core skips the host kernel and directly uses the actual kernel. 
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6. Results 
This section contains all the results of experiments (explained in Section 4) that has been conducted on the 
source and the target core. To answer the first research question, which involves around code porting, can 
be deducted from measuring software similarity in Section 6.1. The second research question that concerns 
about the partial closed-source part of the program can be answered from the results of image comparison 
in Section 6.2. Lastly, answer to the last research question depends on the performance measurements in 
Section 6.2.4. 

6.1 Measure of Software Similarity 

To measure code similarity between the cores, we compare the core files using MOSS (Measure of Software 
Similarity), an automatic system for determining the similarity of programs [41]. This program was 
designed to detect code plagiarism in mind but proves to be useful to measure the similarity between 
software ports. The algorithm to detect similarity is based on winnowing, an efficient local document 
fingerprinting algorithm that detects matches of a certain length [42]. 

Comparing files using MOSS results in a percentage score and number of lines matched. The percentage 
score measures the amount of code of the current file that matches code to the opposite file. The comparison 
also gives us the approximate of the number of code lines that matched. The higher the percentage and lines 
match; the more similarity is between the codes. 

 Total Lines / Match to the Other File Lines 
Matched  CUDA Core OpenCL Core 

Root folder   1248 / 44% 1878 / 30% 690 
Kernels 2133 / 25% 1418 / 43% 636 
BSDFs 1427 / 6% 203 / 44% 59 

Table 1. Results of core comparison using MOSS. 

The results of comparing the files using MOSS gives us high scores across the different core modules (Table 
1). We separate the files based on their physical location and function. The root folder contains mostly files 
that contain host function, the kernels folder contains device kernels, and the BSDFs contains functions to 
handle materials. 

Although having high similarity and line matches, there is a substantial difference between the total number 
of code lines in each category. In the root folder, we can see that OpenCL has more code than the source 
core. OpenCL has more code than CUDA due to helper files inside the port core folder, while the respective 
CUDA helpers reside in the rendering system. As for kernels and BSDFs, the OpenCL core has much fewer 
lines of code because we do not port the advanced filtering and different BSDF handling functions as it is 
trivial for the research. 
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Figure 29. Comparison of individual kernel files from the source core and the target core using MOSS. 

Comparing the kernel further by files, we can see that MOSS gives us a high number as well, with some 
exceeding 50% code similarity. Porting the kernels still needs a fair amount of redeveloping, but this is 
assisted by the guidelines explained in Section 5. Some of the necessary changes can also be automatically 
processed using text find and replace command.  

Answering the first research question, minimizing the porting cost can be done by establishing clear 
procedures for repeating code patterns that needs redevelopment and code that can be directly used without 
modification. Having prior knowledge of these rules accelerates workflow as it also minimizes errors when 
porting new lines of code. Most line of codes, when conforming to the rules, can be easily ported without 
having to understand the exact function fully. 

6.2 Image Comparison 

We render each scene in 1280 x 720 pixels, a maximum of three ray bounces, and with 1024 SPP (samples 
per pixel). All of the scenes are rendered on an Intel Core i7 7700HQ CPU with 16 GB of RAM and an 
NVIDIA GeForce GTX 1050 Ti GPU with 4 GB of video RAM. The cores run on the same GPU, both 
utilizing persistent threads. All scenes are also rendered without any advanced filtering, meaning that the 
core uses pure path tracing to generate the images. 

   

Figure 30. PICA PICA Warehouse Wide rendered with 1024 SPP using CUDA (left) and rendered using OpenCL (right). 
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Figure 31. PICA PICA Warehouse Close rendered with 1024 SPP using CUDA (left) and rendered using OpenCL (right). 

   

Figure 32. Sponza Wide rendered with 1024 SPP using CUDA (left) and rendered using OpenCL (right). 

  

Figure 33. Sponza Close rendered with 1024 SPP using CUDA (left) and rendered using OpenCL (right). Note that some parts of 
the alpha textures are rendered different.  

At a glance, the results of both cores look precisely alike, but on further inspection, there are some 
differences in alpha textures (transparent textures). The problem is most visible in Figure 33, where most 
of the mesh with alpha textures are apparent on screen. The problem does not seem to be perceptible in 
Figure 30, Figure 31, and Figure 32 as the view of these scenes do not have or show any mesh with alpha 
textures up close. To have a better understanding of the difference between the rendered images, we 
measure Mean Squared Error and Structure Similarity measurements in the next section. 

6.2.1 Mean Squared Error 
To obtain metrics, we compare rendered images using the same settings as the image comparison, but with 
different samples per pixel, as stated in Section 4.3. 
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 MSE 

SPP 
PICA PICA 
Warehouse 

Wide 

PICA PICA 
Warehouse 

Close 
Sponza Wide Sponza Close 

1 5.40 0.83 53.61 174.46 
2 2.07 0.33 40.62 144.36 
4 0.99 0.22 28.46 113.41 
8 0.59 0.11 19.72 86.81 
16 0.44 0.05 14.27 70.18 
32 0.34 0.04 11.09 60.14 
64 0.32 0.03 9.35 54.14 
128 0.30 0.02 8.35 50.61 
256 0.28 0.02 7.82 48.76 
512 0.28 0.01 7.52 47.74 
1024 0.27 0.01 7.37 47.16 
Table 2. Mean Squared Error by comparing rendered images with different samples per pixel. 

By using MSE, we have a clear score of the absolute differences of the images (Table 2). The rendered 
image that is the closest to the source core render is the close-up shot of the PICA PICA Warehouse scene. 
The scene contains visible diffuse surfaces, fully-reflective surfaces, and non-alpha textures; which means 
functions that process these materials are working exactly as the source core. Error is mostly visible on the 
Sponza scene, which contains differences visible to the human eye. The problem is once again caused by 
the alpha textures not being rendered exactly as the source core. 

 

Figure 34. Mean Squared Error over the samples per pixel. 
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By having more sample per pixel, as the image converges, the Mean Squared Error is also decreased (Figure 
34). By taking more samples, we can see that scenes will reach the error towards zero. The Sponza scene, 
however, converges to a higher error than zero, meaning it will never be rendered exactly as the source 
core. 

To check the visual differences of the Sponza scene, we use per pixel subtraction from images rendered 
using CUDA and OpenCL to generate an image that only contains the different pixels and gives us visual 
of the absolute errors. A pure black pixel means that the pixels between the image rendered by CUDA and 
OpenCL are identical. An identical image will result in a black image with no visible pixels at all. 

 

Figure 35. Difference between the alpha textures in the Sponza Wide scene rendered in CUDA and OpenCL. 
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Figure 36. Difference between the alpha textures in the Sponza Close scene rendered in CUDA and OpenCL. 

Subtracting the wide shot of the Sponza gives us an image with slight differences, mostly on meshes that 
contain alpha textures (Figure 35). On the close shot, the differences are more perceived as there are more 
pixels shown in the final image (Figure 36). These differences are the absolute errors, the cause of the high 
MSE obtained in both of the Sponza scenes. 

We have precisely ported alpha material handling as the source core and can assure that the algorithm is 
the same in the target core. One possibility is that the difference in processing intersection using Radeon 
Rays causes the alpha texture problems. 

In a quality perspective, Radeon Rays is a reliable replacement for the closed-source ray tracing engine. 
However, it has a different behavior than the source core’s ray tracing engine that influences the render 
output. The engine is highly suitable for conditional cases, in systems where NVIDIA devices are not 
available or where the result of the image does not have to be highly accurate. It is possible to get the 
identical result as the source core when tracing with Radeon Rays, but a deeper understanding of the engine 
and redevelopment of the kernels are required. Because Radeon Rays is also open-source, modification of 
the engine is also possible when necessary. 

6.2.2 Structural Similarity 
As explained in Section 4.3, Mean Squared Error only measures the absolute errors. We have to use 
Structural Similarity to measure the perceived quality of the rendered images. 
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 SSIM 

SPP 
PICA PICA 
Warehouse 

Wide 

PICA PICA 
Warehouse 

Close 
Sponza Wide Sponza Close 

1 1.00 1.00 0.99 0.96 
2 1.00 1.00 0.99 0.95 
4 1.00 1.00 0.99 0.96 
8 1.00 1.00 0.99 0.96 
16 1.00 1.00 0.99 0.96 
32 1.00 1.00 0.99 0.97 
64 1.00 1.00 0.99 0.97 
128 1.00 1.00 0.99 0.97 
256 1.00 1.00 0.99 0.97 
512 1.00 1.00 0.99 0.97 
1024 1.00 1.00 0.99 0.98 

Table 3. Structural Similarity index by comparing rendered images with different samples per pixel. 

When visually comparing the images, we perceive that Figure 30, Figure 31, and Figure 32 do not have 
visible differences. The perceived quality is backed with the SSIM index being or almost 1 for these scenes 
(Table 3), even on images with low samples per pixel. Only the fourth scene, although having the index 
close to 1, has visible differences.   

 

Figure 37. Structural Similarity index over the samples per pixel. 
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SSIM index also increases with the number of samples taken (Figure 37), although not as extreme as 
changes in MSE reduction. It is also seen that the quality of scenes with alpha textures will never reach an 
SSIM index of 1. When running on the same device, both of the cores render images that are perceived the 
same. How close the images are perceived depends on the scene as well. A scene with high visibility of 
alpha texture will deviate more than scenes that do not. 

6.2.3 Cross-platform Image Comparison 
We also run a render comparison on an image rendered on an NVIDIA Geforce GTX 1050 Ti and an AMD 
Radeon RX 560, both on the OpenCL core. These GPUs are roughly in the same performance class, with 
the GTX 1050 Ti having a slightly higher performance than the RX 560. Persistent threads are disabled 
when testing. We render two scenes with extreme material differences. 

  

Figure 38. PICA PICA Warehouse Close rendered with 1024 SPP using the OpenCL core on an NVIDIA GeForce GTX 1050 Ti 
(left) and an AMD Radeon RX 560 (right). 

  

Figure 39. Sponza Close rendered with 1024 SPP using the OpenCL core on an NVIDIA GeForce GTX 1050 Ti (left) and an 
AMD Radeon RX 560 (right). 

When perceived, the images in Figure 38 shows a slight difference, which is caused by the alternative 
function used on AMD devices (see Section 5.2.6). In Figure 39, the difference is too subtle to notice and 
requires metrics to confirm. Even though there are visible differences, the perceived composition of the 
image remains the same. We run the images through the Mean Squared Error and Structural Similarity 
methods to obtain metrics. 
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PICA PICA Warehouse Close  Sponza Close 
SPP MSE SSIM  SPP MSE SSIM 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

361.88 
179.93 
89.07 
47.12 
27.13 
16.86 
11.81 
9.17 
7.82 
7.14 
6.82 

0.85 
0.87 
0.90 
0.92 
0.94 
0.96 
0.97 
0.98 
0.99 
0.99 
0.99 

 1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

2047.10 
1058.51 
558.48 
295.36 
165.76 
101.97 
69.41 
52.58 
43.81 
39.37 
37.07 

0.63 
0.70 
0.74 
0.78 
0.83 
0.87 
0.90 
0.93 
0.95 
0.97 
0.98 

Table 4. MSE and SSIM values from comparing the rendered images of the scenes. 

 

Figure 40. Mean Squared Error over the samples per pixel. 
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Figure 41. Structural Similarity index over the samples per pixel. 

As expected from the results from Table 4, the absolute error from the MSE calculation is not near zero 
because of the visible differences across the images. Although of the visible differences, the SSIM index is 
nearing one, meaning that both the images provide almost the same structural information. The scenes 
converge to a smaller error (Figure 40) and higher structural similarity index (Figure 41) with more samples 
taken, even though the values starts highly biased. These results are correct because as we saw earlier, we 
have some difference, but still perceive the same information from the image. 

Images rendered using the OpenCL core on NVIDIA and AMD devices are perceivably comparable, but 
not correct. While retaining the same structural information, there may be noticeable differences depending 
on the scene. Scenes with more shadows and alpha textures will have a higher MSE and may reduce the 
SSIM index when compared to the NVIDIA render. 

6.2.4 Cross-core Image Comparison 
The final quality experiment is measuring the differences between different cores on different devices. In 
this test, we run our CUDA core on an NVIDIA GeForce GTX 1050 Ti and the OpenCL core on an AMD 
Radeon RX 560. Persistent threads are disabled for the OpenCL core. We use the same scene in Section 
6.2.3 as it gives the extreme case differences. 
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Figure 42. PICA PICA Warehouse Close rendered with 1024 SPP using the CUDA core on an NVIDIA GeForce GTX 1050 Ti 

(left) and the OpenCL core on an AMD Radeon RX 560 (right). 

  
Figure 43. Sponza Close rendered with 1024 SPP using the CUDA core on an NVIDIA GeForce GTX 1050 Ti (left) and the 

OpenCL core on an AMD Radeon RX 560 (right). 

As the perceived images are comparable to the test from Section 6.2.3, we must also measure Mean Squared 
Error and Structure Similarity. 

PICA PICA Warehouse Close  Sponza Close 
SPP MSE SSIM  SPP MSE SSIM 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

362.11 
179.96 
89.07 
47.14 
27.13 
16.86 
11.82 
9.17 
7.83 
7.15 
6.83 

0.85 
0.87 
0.90 
0.92 
0.94 
0.96 
0.97 
0.98 
0.99 
0.99 
0.99 

 1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

2094.39 
1101.00 
598.49 
335.13 
205.57 
142.20 
109.12 
92.00 
82.89 
78.26 
75.86 

0.63 
0.68 
0.73 
0.77 
0.81 
0.85 
0.89 
0.91 
0.94 
0.95 
0.96 

Table 5. MSE and SSIM values from comparing the rendered images of the scenes. 
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Figure 44. Mean Squared Error over the samples per pixel. 

 

 

Figure 45. Structural Similarity index over the samples per pixel. 

Our cross core test delivers similar results (Table 5) as in Section 6.2.3. The parts that cause differences in 
the results are the alpha material handling and the different method used on AMD devices (see Section 
5.2.6). The Mean Squared Error depends much on scene complexity, but in general, are high between 
images and never reaches zero (Figure 44). With the high error, the images start to lose structure similarity 
(Figure 45) with apparent differences. 
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6.3 Performance 

To answer the last research question, we measure the average render time for one render cycle and the 
number of rays processed per seconds. We use the same system settings, as explained in Section 6.2 to 
measure the performance of both cores. 

 

 

 

Figure 46. Render time and rays per second from all the predefined scenes. The lighter color in the graphs is the range of the 
average and the fastest processing that the core can do in one render cycle. Inclusive rays (inc) are the number of rays that are 

processed per render time. Exclusive rays (ex) are the number of rays that are processed per trace time. 
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From the performance measurements in Figure 46, we can deduce that there are two points of interest 
between the cores. 

First, there is only a slight difference in the shading performance of the OpenCL core compared to the 
CUDA core. In our test, shading performance at most is 25% slower than the source core and means that 
pure OpenCL code is comparable to CUDA for path tracing purposes.  

The second case is that the ray tracing engine in the OpenCL core is twice slower. The time to trace a scene 
in the target core always exceeds twice the amount needed by the source core, also with less processed rays 
per second. A slower tracing time means that Radeon Rays is not as efficient as OptiX for intersection 
geometry, which is also backed with the fact that the data structure for Radeon Rays needs significantly 
more storage, slowing the read-write process. 

Performance-wise, the OpenCL core is not par with the CUDA core when tested using the same NVIDIA 
device. However, as our port is a cross-platform compatible application, we also compare performance 
against several GPUs from NVIDIA and AMD. 

6.3.1 Cross-platform Performance 
To compare cross-platform performance, we run the OpenCL core on different GPUs. Unfortunately, we 
cannot use the same CPU and RAM configuration across the tests as the GPUs are spread around different 
systems. Different configurations should not affect rendering performance too much as the CPU mostly 
handles data loading onto RAM. We use the PICA PICA Warehouse Close scene in this test and disabled 
persistent threads to ensure device compatibility. 

 

 

Figure 47. Frame rate, render time, and rays per second from different devices. Inclusive rays (inc) are the number of rays 
processed per render time. Exclusive rays (ex) are the number of rays processed per trace time. 
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Results from the cross-platform test provide the same trends as the core to core performance. Trace time 
for all the devices takes roughly 80% of the render time, whether the core is run on AMD or NVIDIA. The 
render engine works across these devices, but it does not provide performance boosts when running on 
AMD devices. Pure shading performance, however, may be faster on AMD hardware as the drivers are 
better optimized for OpenCL than NVIDIA. 

We also test the OpenCL core on Intel devices, which provides poor performance results. Running on a 
consumer-grade processor (Intel Core i7 7700HQ) and its integrated graphics processing unit (Intel HD 
Graphics 630) gives frame rates under 5 FPS, unsuitable for interactive path tracing. On a workstation 
processor (Intel Xeon E5 2620), the core provides decent performance (13 FPS on average) and is 
comparable to our lowest-performing GPU device (AMD Radeon RX 560). 

Devices from different manufacturers in the same class do not necessarily give a noticeable performance 
boost. Performance is affected mostly by device compute capability, proportional to the number of threads. 
As a path-tracing application, the core is preferably run on highly parallel devices, such as a GPU, to get 
the most performance. 

6.3.2 Persistent Threads 
This section contains the results of measuring render times using different persistent threads configurations. 

 

Figure 48. Performance test using different persistent threads configurations. 

Measuring render times using different persistent threads configuration gives us unexpected results. 
According to the test results shown in Figure 48, increasing the number of threads which allows multiple 
jobs to run at the same time yields the desired results as the theory. However, rendering without using 
persistent threads gives us the fastest performance. 
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The maximum number of threads that can be allocated is dependent on the device, which in our case is 256 
(should in multiple of grouped threads). When the number of threads exceeds the limit, OpenCL returns an 
exception and has to be reinitialized from the start. There is no definite number that works on most OpenCL 
devices and dynamically allocating the numbers does not work as the core crashes every time it exceeds 
the limit. Having a fixed number of threads may cause problems when running the core on untested devices. 

To increase cross-platform compatibility, we disabled persistent threads and measured the core’s 
performance. Disabling persistent threads makes the OpenCL core of performing faster, contradicting the 
persistent threads theory. The persistent thread algorithm that we have ported from the CUDA core might 
not work well with OpenCL or that the OpenCL scheduler might be efficient enough to run the kernels 
directly. 
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7. Conclusion 
We introduce the problem of cross-platform compatibility as the original application can only run on 
specific devices. We divide the process into two phases: theoretical study and implementation. 

For the first phase, we explain path tracing to give a better understanding of the source application primary 
function in Section 2. Understanding path tracing gives us knowledge of essential sections in the application 
that is critical to preserve when porting. A literature review in Section 3 provides us information about the 
different approaches and limitations on porting. This section introduces several methods for measuring 
porting cost and presents numerous techniques for implementation. The research methodology explained 
in Section 4, gives the research steps that we use in the thesis; porting implementation and experiments. 

The second phase starts in Section 5, Implementation, which contains all the problems and solutions that 
we have tackled during porting. This section serves us as an essential guideline when implementing the 
port. Lastly, Section 6 gives us the results for all the experiments that we conducted using the source and 
the port. Experiments include running the port on different devices to measure cross-platform compatibility. 

An efficient way to minimize porting cost is by having clear guidelines for redevelopment. Creating 
guidelines can be achieved by having a full understanding of the algorithm and underlying language of the 
source and the target port. As for the port, choosing a language that is widely used is also beneficial as there 
are established guidelines from other cases. These guidelines can help accelerate understanding the 
languages, which reduces the time for porting. 

In our case, using OpenCL to port CUDA code is the most cost-effective approach. OpenCL has been the 
most used language for porting CUDA made applications, as it has roughly the same language structure 
and is targeted to run on a wide range of devices. Several cases of porting CUDA to OpenCL are also 
available, which mostly have positive results. Learning these cases provides useful information for common 
problems that are likely to be faced on porting. 

We can approach closed-source parts of software by replacing it with open-source modules that have similar 
functions. However, not every closed-source library can be replaced. Replacement is case-specific, and 
there is no guarantee that an open-source counterpart exists. Device-specific libraries are mostly better 
optimized than the cross-device equivalent device, such it can fully utilize all the hardware features. Device-
specific libraries are also better documented, with a guaranteed list of supported hardware. 

In our case, we succeeded replacing NVIDIA OptiX, a closed-source ray tracing engine, with Radeon Rays, 
an open-source ray tracing engine by NVIDIA’s competitor, AMD. Radeon Rays, however, do not behave 
precisely as OptiX and produces a slightly different result, which can be problematic in specific cases. 
Despite the render results, AMD’s ray tracing engine can be run on a wide variety of hardware, which 
makes the port highly cross-platform compatible. 

Port performance is lower than the original application when running on the same device. Even though the 
lower performance, it is not restricted to a specific device type. The port can run on high-performance GPUs 
manufactured by other vendors than NVIDIA and even on computer processors. The port was not meant to 
compete for performance on the same device, but rather to run on devices that the original application 
cannot. 
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The port has been engineered in such a way that it keeps the original application’s structure intact. We use 
the same function algorithm as we possibly could, except for extreme cases that malfunctions the port. 
Some intrinsic function names have also been masked to ease porting. Having the same structure ensures 
that code changes in the source application can be easily implemented. A guideline has been provided in 
this thesis that should work in most cases. 

We have successfully ported a CUDA path tracer that uses OptiX to run on non-NVIDIA devices by 
utilizing OpenCL and Radeon Rays. During porting, we also found limitations to the programming 
language and ray tracing engine that we use with the solutions to them. Purposefully, the port can serve as 
a backup core, where an NVIDIA device is not available, as well as a learning tool to port CUDA into 
OpenCL. 

7.1 Future Work 

Although we have achieved the primary goal of our thesis, the implemented port is far from perfect. First 
of is the quality degradation in the port caused by OpenCL problems in Section 5.2.6 and Radeon Rays in 
Section 6.2. By understanding how memory addresses work on a hardware-level, we should be able to fix 
the problems.  

Achieving performance comparable to the source core is also visible. We directly port all the functions in 
our code but do not explicitly optimize code. We try not to change any algorithm that we port to ease code 
maintenance. If required, we can apply hardware-level optimizations to improve performance without 
sacrificing render quality. 

An advanced feature from the original application that we have not yet ported is filtering. Filtering is an 
experimental feature that enables the core to use less path-tracing while resulting in a comparable output. 
Porting filtering in our research is trivial because it is not necessary for rendering and should be easily 
ported, if not for a large amount of source code it needed. 

Implementing proper persistent threads is also a goal that we did not achieve in our research. 
Implementation requires further investigation on how persistent threads work in OpenCL and achieve a 
boost in performance as with the CUDA core. 

Finally, without using intermediate code, it should be possible for CUDA and OpenCL code to coexist in 
one file by using a lot of redefinitions and code-switching. This coexistence will include overhead but will 
result in almost zero maintenance code. Changing or adding a function will automatically change for both 
languages; thus, no more porting is required. 
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