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1. Introduction
Rendering and visualizing virtual scenes is a task solved diversely across industries.

Movie and visualization industries typically demand high realism and pay less attention to
performance, whereas interactive web applications and games indispensably demand images
to be rendered in real-time. Recent hardware developments have allowed for the use of
physically based rendering algorithms such as path tracing in real-time for applications.
However, due to memory limitations in GPUs, large scenes that do not fit in device memory
need to be rendered using the CPU.

Software porting is the practice of producing a software unit in a new environment,
based on an existing version. The need to port software may emerge from a wide range of
situations, including but not limited to supporting a wider range of hardware architectures,
compilers or operating systems. Our research focuses on a particular subset of software
porting, between two distinct hardware architectures, namely the Central Processing Unit
(CPU) and the Graphical Processing Unit (GPU). The existing software that our case study
was conducted on is a production quality, photorealistic image renderer, LightHouse, that
initially runs on the GPUs.

Ultimately, the rendering software, LightHouse, should be designed in such a way that
the main GPU rendering core can be ported to different environments and maintained with
minimal effort. Our target environment to port the main rendering core is the CPU, which
will only be used for scenes that contain geometry that exceeds the memory of the GPU.
The porting project consists of four steps: scoping, analysis, porting and testing. Due to
different processor architectures, instruction sets and lack of support for specialized GPU
programming languages on the CPU side, it is not possible to port the software without
significant effort. In order to keep the logic of the existing and the ported cores synchronized,
careful analysis and re-implementation of the source code is essential.

1.1. Objectives

Given the existing and volatile GPU path tracer codebase, LightHouse, this project aims
to develop improved methodologies to continuously port and maintain an integrated CPU
fallback system. It is ultimately expected that the two software units produce the identical
output with common software features while targeting different hardwares. Another primary
objective is keeping the software maintenance low-cost. Additionally, it is expected that the
ported version exhibits a performance level consistent with state of the art CPU ray tracing
performance. Formal definitions and metrics of software portability and maintenance will
be considered to achieve and verify our objectives.

1.2. Research Questions

There are three main research questions this study aims to answer, respectively in the
fields of software design, maintenance and performance.

RQ1 - Can a ported CPU path tracer be a reliable fallback strategy to the source GPU
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path tracer for large scenes?
RQ2 - How does the performance of a ported CPU path tracer compare to the source

GPU path tracer?
RQ3 - Given a volatile GPU path tracer codebase, how can a ported CPU path tracing

codebase be maintained?

1.3. Content Overview

This document contains two sections on the theoretical background of the thesis project.
Chapter 2 contains the preliminaries, in which we describe the path tracing algorithm which
plays an important role in our case study. Chapter 3 establishes the state of the art on soft-
ware portability and CPU-based rendering. Chapter 4 explains design and reasoning behind
the experiments, whereas Chapter 6 presents the results of these experiments. Chapter 5
gives a detailed explanation of our ported software implementation. The thesis concludes
with Chapter 7 that provides an answer to the research questions and a discussion future
work.
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2. Preliminaries
In this chapter, we provide background information on the problem field by explaining

the specific algorithm that will be ported from GPU to CPU. Rendering is the process of
producing a digital image, given a 3D scene. In order to simulate how light behaves and
interacts with matter in nature, physically based rendering techniques have been developed.
However obviously superior these methods seem, they have only recently been adopted by
performance critical applications such as games because of their high computational cost.
The group of algorithms that capture these principles for realistic lighting are typically
called global illumination algorithms. The renderer in our use case uses path tracing, a global
illumination algorithm that uses random sampling to approximate the physically accurate
rendering equation.

2.1. Physically Based Rendering

Rendering refers to the process of creating a 2D image from the representation of a 3D
scene. There are many ways to achieve this with varying degrees of realism, performance
and detail. Performance critical applications such as games have typically used rasterization
based methods due to its relatively light computational cost. However, due to the increased
compute capability of recent hardware, ray tracing based rendering methods are increasingly
adopted by real-time applications.

Rasterization based rendering methods project the scene geometry towards the screen
plane, processing each triangle independently. In order to accurately model reflections,
refractions and global illumination, approximations and heuristic methods are used.

Physically based rendering methods are typically based on ray tracing algorithms, first
described by Arthur Appel in 1968 in a paper titled ”Some Techniques for Shading Ma-
chine Renderings of Solids” [App68]. The common goal of these methods is photorealism;
the synthesis of images that are indistinguishable from the photograph of the same scene
[PJH16]. Ray tracing aims to render the scene by following the path or a light ray through
the scene. As the ray interacts with and bounces in and out of objects in the environment,
it simulates photorealistic effects such as reflections, refractions and global illumination.

2.1.1. The Rendering Equation

In order to simulate the way light behaves in the nature, an integral equation has been
proposed by Kajiya, which was adopted for use by the graphics research community, and
production renderers [Kaj86]. The integral equation models light leaving a point on a
surface, by expressing it as the sum of the incoming light energy and the light emitted by
that surface.

Lo(x, ωo) = Le(x, ωo) +

∫
ω

fr(x, ωi, ωo)Li(x, ωi) cos θi dωi (1)

• Lo(x, ωo) the outgoing radiance towards the direction ωo.
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• Le(x, ωo) is the radiance emitted towards the ωo direction.

• fr(x, ωi, ωo) is the bidirectional reflectance distribution function (BRDF) which is a
function of the incoming (ωi) and outgoing (ωo) directions for a given position to
calculate how much of the incoming light is reflected towards the outgoing direction.

• Li(x, ωi) is the amount of incoming radiance from the ωi direction.

• cos θi term functions to convert radiance to irradiance, and affects all angles except 0.

It is important to note that this integral is evaluated over the hemisphere of the point x.
The intensity of the incoming light is attenuated by the bidirectional reflectance distribution
function (BRDF) corresponding to the material of the surface [Nic65].

The model so far does not account for materials that transmit light through. In order
to capture how a material affects the light passing through it, the concept of bidirectional
transmittance distribution function (BTDF) was introduced. BTDF, in principle reverses
the surface and reports how much light is transmitted to an angle in the hemisphere that
lies below the surface at the point x. BRDF and BTDF are combined in the BSDF, which
is the bidirectional scattering distribution function.

2.1.2. Path Tracing

The evaluation of the recursive rendering equation is the goal of photorealistic renderers.
Solving this high-dimensional integral would require the calculation of incoming light energy
on every point from an infinite number of directions. This is computationally exhaustive and
impossible to implement. Kajiya proposes an algorithm called path tracing to stochastically
evaluate the integral by using Monte Carlo integration [Kaj86].

Path tracing is a stochastic experiment that approximates the integral in Equation 1
by taking light energy samples along random paths. A ray starting from the origin of the
camera is traced through the center of each screen pixel, intersecting the geometry in the
scene. At every intersection, the light rays are extended along a random path. The paths
are terminated if they hit a light source or reach a maximum recursion depth.

Figure 1: The random walk of light rays generated by the path tracing algorithm
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Tracing a single path per pixel results in a noisy image. To produce a noise-free image,
continuous samples are taken from every pixel and they are averaged in time. This way, the
image converges to the actual representation of the scene.

Increasing the amount of samples taken per pixel introduces a heavy performance penalty,
because each sample is collected with a recursive computation. Many techniques have been
introduced to address this performance issue by either altering the path tracing algorithm
itself or by post-processing the image. Multiple importance sampling is a method introduced
by Veach [Vea98] based on the observation that uniformly distributed random samples of
shadow rays produce high variance (noise) in the image. The solution they propose is to use
two different probability density functions (pdf) to generate two random bounces—one for
directly sampling lights and one for indirect illumination—at each intersection.

Figure 2: A comparison of the two improvements on the path tracing algorithm [Vea98]. (a) Sampling the
bounces using the BSDF of the surface to simulate material properties. (b) Explicitly sampling the light
sources by shooting rays towards their direction

Figure 2 demonstrates the mentioned improvements to the path tracing algorithm. The
noise in sparsely sampled images is reduced significantly by multiple importance sampling
in Figure 2 (b).

2.1.3. Acceleration Structures

Each ray in a path tracer is potentially tested against scene geometry for intersection. For
practically every scene but the most trivial ones, testing every ray against every primitive
in the scene geometry introduces a severe performance penalty. The algorithmic cost of
ray-scene intersection is O(n) in a scene with N primitives. In order to make path tracing
applications real-time, acceleration structures that compartmentalize the scene geometry
into hierarchical boxes are used. Acceleration structures improve the algorithmic complexity
of scene intersection to O(logN).
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These structures typically organise the geometry into a defined hierarchy. The prin-
ciple of acceleration structures is by traversing this hierarchy—which is usually a tree-like
structure—from top to bottom, reaching only relevant primitives. The scene subdivision may
either be spatial or object based. Grids and KD-trees are spatial subdivision techniques,
whereas bounding volume hierarchies (BVH) are object subdivisions.

One of the most straightforward implementations of acceleration structures is a grid.
A grid uniformly divides the 3D space of the scene into equal-sized cubes called voxels.
Although it is very fast to build grids, they do not adapt to local geometric complexities.
Therefore some voxels contain large amounts of primitives whereas some voxels are empty.
To address this issue, the KD-tree was introduced, that subdivides space based on a sur-
face area heuristic (SAH). The SAH is responsible for minimizing the cost to split a plane
and therefore finding out the best plane to split the current node. The cost of splitting
the current node into nodes A and B are represented by the following cost equation intro-
duced by MacDonald and Booth in their paper called ”Heuristics for ray tracing using space
subdivision” [MB90].

C(A,B) = ttraversal + pA

NA∑
i=1

tintersect(ai) + pB

NB∑
i=1

tintersect(bi) (2)

Where ttraversal is the cost of traversing a node, pA and pB denote the probabilities that
the ray passes through the proposed A and B nodes. This probability is proportional to the
surface area of the node. NA and NB are the primitives in A and B. The sums are summing
the costs of intersecting every triangle in the respective volumes. SAH can be used in many
acceleration structures including spatial and object-based acceleration structures.

Spatial subdivision algorithms fundamentally suffer from either not sufficiently adapting
to geometric complexity (in grids) or the possibility that a primitive may reside in multiple
voxels (KD-trees). BVHs were introduced by Turner Whitted to address the issues with
spatial partitioning [RW80]. The BVH typically consists of a tree that stores the bounding
box of the scene as its root node. The leaf nodes store the bounding box of a small amount
of primitives. The interior nodes are recursively divided by minimizing the cost described
in Equation 2. A BVH generally is a binary tree, although higher branching factors are also
possible, such as the MBVH that contains four nodes at every level. A dense BVH like this
is more efficient with vectorized traversal.

2.2. Case Study: LightHouse

The software product that we will operate on for our experiments is a production quality
renderer called LightHouse, built at Utrecht University. The renderer was built with the
primary aim to be used in commercial online configurators for products such as baby strollers,
furniture and clothing. In the primary use case, the renderer is responsible for producing
high-quality images of the configured product in a few seconds. Figure 3 demonstrates two
scenes consisting of various materials and complex geometry rendered with LightHouse.
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Figure 3: Two images rendered with the GPU core of LightHouse. The left image shows the Pica Pica scene,
and the right image displays the Sponza scene.

The host environment for LightHouse is Microsoft Windows, running on x64 CPUs.
This rules out Linux, ARM CPUs and mobile environments. The software architecture of
LightHouse consists of three layers: application layer, render system and render core. The
purpose of separating these tasks into distinct units is clarity, extensibility and increasing the
portability by isolating the path tracing algorithm into a single software unit: the render core.
This functional separation enables LightHouse to target multiple hardware architectures,
most significantly the CPU and the GPU. The range of targetable architectures is practically
infinite given that the reference render core is portable to the target architecture.

The data of the scene is divided into two parts as host side and device side data. These
two different representations of the same data are required to target different hardware by
preparing the device side data specific for that particular hardware. The device that is used
to render in the primary render core of LightHouse is a NVIDIA GPU that supports the
NVIDIA OptiX API.

2.2.1. Application Layer

The application layer is responsible for setting up the render target, usually a 2D texture
consisting of pixels that displays the output of the rendering, and handling user input.
The user input determines the location of the camera in the scene, and along with render
commands, these are passed to the render system to be processed. This layer is located
on top the render system and the render core respectively in the layer stack, and only
communicates with the render system. Therefore, the render core is abstracted away from
the application layer, making the application agnostic in nature about the architecture it is
running on.

2.2.2. Render System

The render system owns the host-side representation of the scene, including objects,
lights, camera(s) and animation. It is responsible for importing the scene data and converting
it to a format that the designated render core can read and process. The data representation
in this layer is the base reference for the scene and depending on the core it will be converted
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to the respective device-readable format. The application layer interface is responsible for
sending the current camera location and render commands to the render system.

2.2.3. Render Core

The render core is abstracted away from the application layer and only communicates
with the render system layer through the render core API. This layer owns the device-side
representation of the scene data. It implements the path tracing process using an appropriate
ray tracing API for the rendering device. The device may be a GPU or a CPU of varying
architectures and vendors. In order to support rendering in both, different implementations
of the render core will exist in the renderer, including the one implemented in our research.

class CoreAPI
{
public :
enum CoreID
{

MAIN CORE = 0 ,
PORTED CORE 1,
PORTED CORE 2,
RASTERIZER

} ;
stat ic CoreAPI∗ CreateCoreAPI ( const CoreID id ) ;
virtual CoreStats GetCoreStats ( ) = 0 ;
virtual void I n i t ( ) = 0 ;
virtual void SetTarget ( . . . ) = 0 ;
virtual void Se t t i ng ( . . . ) = 0 ;
virtual void SetTextures ( . . . ) = 0 ;
virtual void SetMate r i a l s ( . . . ) = 0 ;
virtual void SetL ight s ( . . . ) = 0 ;
virtual void SetSkyData ( . . . ) = 0 ;
virtual void SetGeometry ( . . . ) = 0 ;
virtual void Set Ins tance ( . . . ) = 0 ;
virtual void Render ( ViewPyramid v , Convergence c ) = 0 ;
virtual void Shutdown ( ) = 0 ;
} ;

Listing 1: The LightHouse render core API.

The CoreAPI that each render core is responsible for implementing is presented in the
Listing 1 as an abstract class. It is important to note that although the primary core
implements the path tracing algorithm, the API does not restrict the usage of other rendering
algorithms. The Render function takes as input the view pyramid as shown in Figure
4 that defines a camera view. The second argument, convergence, determines whether to
accumulate samples or render every frame from scratch. Thus, this argument is only relevant

11



for path tracing cores.

Figure 4: The view pyramid that defines a camera view. P0 marks the position of the eye. P1, P2 and P3
respectively mark the top left, top right and bottom left corners of the screen.

The Init function is called once during application launch, and it is intended for core
specificinitialization. Contrarily, the Shutdown function destroys the render core and frees
all resources. Thefunctions that are prefixed with Set encapsulate the data transfer between
the render system and the rendercore.
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3. Literature Review
In this chapter we introduce key concepts of software portability and efficient CPU path

tracing with a literature review that summarizes the theoretical background up until to the
state-of-the-art. We start, in Section 3.1, with an overview of software portability in general
and narrow down the implications and practices to the use case of this thesis project. We
evaluate the proposed metrics of portability and how portability of a software unit can be
measured, followed by a survey of efficient CPU path tracing principles in Section 3.2.

3.1. Software Portability

The concept of software portability varies in meaning for different industries and use
cases. The task of porting software may refer to anything between physically moving and
installing software to another computer, and completely rewriting the source code of a
program to make it work on a different platform. The different types of tasks required
to port software create the levels of porting. The degree of effort made in order to port
software is a measure of how portable the software is. Portability is a non-functional software
requirement in the broader field of systems engineering because portability concerns itself
with the software architecture rather than the logic. Ideally, the software logic is intact in
a ported program.

3.1.1. Early influential work

In his article ”Guidelines for Software Portability” (1978), Andrew S. Tanenbaum pro-
poses an initial formal definition of portability with respect to programming languages,
device characteristics, machine architecture and documentation [TKB78]. Tanenbaum pro-
poses the guidelines for creating portable programs based on the following definition of
portability, written a year earlier by Poole et al [PW75]:

”Portability is a measure of the ease with which a program can be transferred
from one environment to another; if the effort required to move the program is
much less than that required to implement initially, and the effort is small in
absolute sense, then that program is highly portable.”

It is important to note that the case of rewriting the program from scratch is not excluded
from this definition. A common pitfall indicated by Tanenbaum, that is relevant for this
project is the difference in machine architecture between the host and the target machine
architecture. In his context, the system that the initial development was made for is referred
to as the host machine, and the system that the program is desired to be ported to is
called the target machine. He states that the architecture of the host machine influences
the program to be ported and this influence may either be explicit (choice of application
programming interface) or be implicit (the algorithms that are chosen) [TKB78]. In another
relevant insight, the article states that ”optimality is not portable”, but portability does not
necessarily imply inefficiency. In other words, a program may be hand-tuned to the distinct
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attributes of a given system, thus making it slow to the point of being useless on different
systems that it could be run on.

3.1.2. Relevant Methods and Techniques

Although there exists no commonly agreed upon definition of software portability, a
working definition proposed by James D. Mooney will be used due to its focus on source
portability [Moo90]:

”A software unit is portable (exhibits portability) across a class of environments
to the degree that the cost to transport and adapt it to a new environment in
the class is less than the cost of redevelopment.”

A software unit is a term that could refer to an entire application, a component of a
program, or just a single file or class in the program. For the purposes of this study, a soft-
ware unit is seen as an abstraction layer, such as the render core presented in Section 2.2. A
smaller, specialized software unit that resides in the render core is the shading code described
in Section 5.4. Environment refers to everything the software is interacting with through
auxiliary interfaces. Examples of environment components are operating systems, process-
ing units, networks and software libraries. The concept of environment is interchangeable
with the notion of platform. The highly relevant environmental variable in this project is
the processing unit, where the GPU is the native environment and the CPU is the target
environment for the porting exercise. The term class of environments is used to denote the
entire range of possible components that the target environment has, rather than listing a
the entire variants of that particular class that fits a certain criteria (e.g. a list of all CPUs
that support SSE instruction sets).

Mooney notes that portability is not a binary attribute and that each software unit has
a quantifiable degree of portability to a particular class of environments. This degree of
portability is based on the cost of porting, and it is not absolute; it only has a meaning
with respect to a specific class of environments. There is a defined set of costs and benefits
associated with portable software development and these costs and benefits take a variety
of forms that will be discussed later.

In addition to the degrees of portability, there are various levels of portability. Based
on the assumption that software goes through multiple representations through its lifecycle.
Generally, the representations move from high-level to low level, between a human-readable
format and an executable in machine language. The three most common levels of portability
have been listed by Mooney in his article, Developing Portable Software [Moo04]:

• Source portability. It is the most common level of portability. The software is ported
from a human-readable high level representation by the manual adaptation of a soft-
ware developer. The ported version is then compiled for the target environment. This
level of portability is the one practiced in the scope of this research.

• Binary portability. Used when the high level representation is inaccessible, or should
remain intact. The executable is ported directly to a new environment. Although it
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requires less effort than source portability, it usually applies to a small amount of cases
and environments.

• Intermediate-Level Portability. In some cases, a software representation between source
and executable binary could be ported. Java bytecode and assembly language are
examples of such an intermediate representation layer.

The process of porting can be divided into two tasks; transportation and adaptation
according to Mooney [Moo04]. Adaptation refers to the phase in which the source of the
program is being modified, either manually or by a form of automated translation. Trans-
portation is more about the physical movement of the software and its artifacts, and is more
relevant on software developed for embedded systems. Finally, the terminology Mooney
presents defines redevelopment as the alternative to porting. It refers to developing a pro-
gram from scratch based on the original software specification. The comparison between
redevelopment and porting is the most essential part of the limited body of work on soft-
ware portability.

In the design phase of a program, several issues need to be addressed to reach a high
level of portability. The main effort in this stage is coming up with a design such that the
effort put in this stage makes the program easily portable to different platforms. Mooney
proposes four questions that aims to divide the portability discussion into smaller issues
[Moo01]. Answering these software specific questions establishes a close analysis of the
project:

1. For what class (or classes) of environments should future portability be considered?

2. What degree of portability is desired for various environments in these classes?

3. What extra development costs, if any, are acceptable in order to achieve these porta-
bility goals?

4. What reduction in the quality of implementations, if any, is acceptable to achieve the
desired portability?

The first question defines a certain set of environments that could be targeted, therefore
imposes constraints on portability. The second question reveals the potential benefits in the
form of improved attributes due to the final design of the system. The remaining questions
are useful in displaying the potential costs of portability. The costs expected here can be
in two different forms, either due to increased effort in the initial development or reduced
quality in the end product.

It is important to note that the questions raised above are relevant to the initial devel-
opment stage of software. If portability analysis was not done and the software was not
designed with portability considerations, the cost porting may be greater than the cost of
redesign or redevelopment [Moo00]. In order to design for portability, following some design
strategies are necessary. These guidelines—presented in the paper Issues in the Specification
and Measurement of Software Portability—are also applicable to existing software such as
the case study of this project, so that they can be used to enhance a software towards being
more portable.
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1. Identify specific environment interfaces required (procedure calls, parameters, data
structures, etc.). For each interface, either:

2. Encapsulate the interface completely in a suitable module, package, object, etc. An-
ticipate the need to adapt this interface to each target system; or:

3. Identify a suitable standard for the interface, which is expected to be available in most
target environments. Follow this standard throughout the design. Anticipate the need
to provide a software layer to bridge the gap for environments which do not implement
the standard satisfactorily.

These guidelines are highly relevant for increasing the source portability of particular
software units such as the render core described in Section 2.2.3.

An example for the third element in the list above could be the selection of a suitable
programming language. For instance, choosing a language that has fewer facilities to isolate
functional units would hinder these design goals.

Examples to the portability design goals stated above have been presented by Ian Som-
merville in his textbook, Software Engineering, as two different architectural design patterns:
Model-View-Controller (MVC) and layered architecture [Som11]. The MVC design pattern
isolates presentation and interaction from the data. It is typically used in web-based envi-
ronments because it’s purpose is to support multiple ways to interact with the same data.

Layered architecture refers to separating the system into layers with specific function-
ality associated with each layer. Typically, each layer communicates with the layer above
it through interfaces. The lowest-level, therefore, typically encapsulate core functionality,
hence the term render core in Section 2.2.3. Garlan et al. state that reuse, such as the eas-
ily re-implementing an abstracted layer is a very significant benefit of layered architecture
[GS93]. Just as in abstract data types, different implementations of the same layer can be
used interchangeably, given that they agree on the interfaces to adjacent layers. This idea
is paramount to our research, and interchanging layers—possibly even at runtime—is one of
the important goals of this project.

In a study of portability as a non-functional quality attribute, Kazman et al. report that
separation, abstraction and resource sharing affect portability favourably, while compression
and replication are hindering factors [KB94]. The unfavourable attributes typically promote
performance. Resource sharing refers to allowing multiple components of the system to use
the same data representation. An example of this could be seen in the scene data in the
render system, which can be used by multiple render cores (Section 2.2.2). This may seem to
introduce a trade-off between performance and portability, however as Mooney states, it is
possible avoid the trade-off as long as initial design was made with the discussed portability
principles [Moo90].

An underestimated benefit of porting has been demonstrated by Ray et al., in a case
study of cross-system porting of forked projects [RK12]. By applying an automated software
analysis tool to 18 years of BSD family software, they compared the quality of ported edits
to initial development commits. Their findings indicate that ported code is usually less
error-prone than non-ported changes. This finding suggests that either programmers are
more likely to selectively port well-established features from other projects, or that porting
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results in bug fixing.

3.1.3. Portability Metrics

In order to assess the portability of a software unit, several methods have been proposed.
Metrics are useful in justifying design decisions to project managers, and demonstrating the
outcomes of the trade-offs. In his initial work, Mooney proposes the following conceptual
entry point for the portability metrics [Moo00]. The main assumption is that the degree of
portability of a certain software unit should be greater than zero (DP > 0).

DP = 1− (cost of porting)/(cost of redevelopment) (3)

In his later work, this definition is expanded using more detailed terminology. Process
metrics are used to measure development and maintenance processes, and these quantify
the costs of these activities. According to Mooney, process metrics may denote expenses in
dollars, person-days, work hours, or lines of code [Moo01]. For the purposes of this study,
development cost activities will be measured both in lines of code and work-hours. A more
formalized version of Equation 3 becomes:

DP (su) = 1− Cport(su, e2)

Crdev(req, e2)
(4)

The reasoning starts with the assumption to develop a software unit, su, for an ini-
tial environment, e1, based on its initial requirements, req. This cost is represented by
Cdev(req, e1) and is based on four components for design, coding, testing and debugging and
documentation:

Cdev(req, e1) = Cdes(req) + Ccod(req, e1) + Ctd(req, e1) + Cdoc(req, e1) (5)

It is important for portability to note that all the components, except the design phase
that is ideally independent of the environment, depend on the target environment. Given
the development cost above, the cost to redevelop a software unit, based on the original
requirements, req for an environment e2 becomes:

Crdev(req, e2) = Crdes(req) + Crcod(req, e2) + Crtd(req, e2) + Crdoc(req, e2) (6)

The cost to port the same software unit for the target environment e2 does not have
a design component, because the design is intact. It consists of the manual modification,
testing and debugging, and documentation:

Cport(su, e2) = Cmod(su, e2) + Crtd(req, e2) + Crdoc(req, e2) (7)

It is expected that the porting costs in the testing and documentation components are
less than redevelopment costs. If portability is achieved in the design phase, it is also
expected that Cmod << Crdes + Crcod, and this is the greatest benefit achieved by portable
design.
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In their paper A Study of Software Portability Evaluation, Hakuta et al. propose a
method for evaluating porting cost based on what they call porting impediment factors
[HO97]. These impediment factors determine whether program modification is necessary for
porting. They include system-environment disparity, which is the difference between source
and destination environments, and program factors, such as to which extent portability was
taken into account during the initial development. These factors are weighted and summed
together to form the portability impediment index, αp.

On the other hand, porting cost factors are external factors such as human factors and
environmental factors. Human factors refer to the knowledge and experience of the developer
doing the porting, whereas the environmental factors denote software development tools,
test cases and workstation environment. Together with portability impediment index, the
porting cost in total man-hours, Y is found by the following formulation [HO97]:

Y = C ·
n∏
i=1

10βiαi ·Xβs (8)

where X denotes the program source code size in kilobytes, and C, βi, βs are constants
obtained by regression analysis, and can be taken from a look-up table. The number of
factors that effect portability, n is 3 and the factor set is defined as follows:

• α1 = αp (Portability impediment index)

• α2 = αH (Human factors)

• α3 = αE (Environmental factors)

Considering the generality of Mooney’s approach, it is easier to adapt it to the case study
we have with this thesis project and it will be used in the porting experiment.

3.2. High Level CPU Path Tracing APIs

Recent increases in the compute capacity in consumer grade CPUs due to Moore’s law
and simpler functional unit replication allowed for graphics engineers to exploit this capa-
bility for real-time ray tracing purposes. However, utilizing the full compute capacity of
a CPU with an algorithm that exhibits data-dependent branching, and irregular memory
access patterns is nontrivial [WSB+14]. Moreover, different architectures require different
low-level optimizations, adding another level of complexity to the task of producing a ren-
derer that can target multiple architectures and workloads.

To alleviate these challenges, companies such has Intel, NVIDIA and Microsoft have
made the following observations and acted upon them to produce high-level ray tracing
frameworks:

• Rendering software in general can be built from a small group of specialized software
units [WSB+14]. These units are common building blocks of the ray tracing pipeline
and encapsulate routines such as acceleration structure building, traversal and ray
casting.
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• CPU architectures were built for data-dependent branching [WSB+14]. Ray tracing al-
gorithms typically exhibit this kind of behaviour in the acceleration structure traversal
step. The challenge with the CPUs however is achieving high throughput.

• There is a lot of headroom in the performance of state-of-the-art ray tracing applica-
tions that exhibit only interactive frame rates (1-10ms). The ideal target performance
of such applications would need to reach the real-time realm (30-60ms) to become
eligible for the use of the gaming industry.

• The recent research (e.g. single ray vectorization and packet tracing) on the field has
not yet made its way into industry’s existing renderers. This is mostly due the new
methods being highly specialized, thus requiring deep domain knowledge to implement.

3.2.1. Embree

Embree was introduced in 2012 and open-sourced in 2014 as a ray tracing framework for
x86 and x64 CPUs. The observations made above make Embree a suitable candidate for use
in our renderer. Specifically, Embree is a suitable candidate API for this project because it
is a product specifically targeted at ”professional rendering workloads”[WSB+14]. What is
meant by professional workloads is that they include large models and have a combination
of primary rays with high spatial coherence and secondary rays with low spatial coherence.
Large models in this context refer to scenes with millions of triangles, including the type of
scenes that do not fit into GPU memory.

The spatial coherence of rays mentioned above refers to ray coherence concept explained
by Ohta et al. [OM87] as rays having nearly the same origin and nearly the same direction.
Rays that are spatially coherent have higher probability to intersect with nearly the same
object. On the contrary, rays with low spatial coherence tend to diverge into different
directions due to bounces from rough surfaces or complex geometry, causing highly irregular
data access and low data locality. It is typically the shadow rays and secondary rays that
exhibit low spatial coherence because they are dependent on geometry, whereas the primary
rays are generated from the camera, through the pixels, therefore inherently having high
spatial coherence.

Other examples of high-level ray tracing APIs include OpenRT [DWBS03], OptiX by
NVIDIA and Radeon-Rays by AMD. OpenRT aimed to provide an interface for both the
application and core services of a typical renderer. However, it was discontinued and there-
fore ineligible for use. DX12 is developed by Microsoft to run on GPU, however is not
well-documented and still experimental. It could be seen as a weaker alternative to OptiX
maintained by NVIDIA [PBD+10]. It is also known that OptiX runs on the CPU and a study
conducted by Andr Bico compares Embree with OptiX on a global illumination algorithm
[? ]. Although their performance is comparable, Embree provides advantages over OptiX
such as using the same code base as any C/C++ application and the ability to apply its
features to an already existing CPU renderer and obtain performant code. Finally, Embree
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is deemed ”the best solution if the goal is to achieve the fastest performance without many
development considerations” [? ].
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4. Research Methodology

4.1. Porting and Implementation

In order to conduct experiments on performance, reliability and portability, our primary
goal is to port the reference render core—currently working on the GPU—to a version that
renders using the CPU. The ported render core will be used as a framework for conducting
the experiments explained in Section 4.2. A detailed explanation of the porting process is
given in Section 5.

4.2. Experimental Setup

To answer the research questions proposed in this thesis, several experiments will be
conducted using the ported core described in Section 4.1. There are two broad categories of
experiments. We will start with an assessment of performance and quality. After this, we
will investigate portability of the CPU fallback. The following sections will expand on the
experimental setup designed to test these attributes.

Performance evaluation for rendering systems with a tightly matching set of features
has to be conducted with similar scenes from similar viewpoints. The performance of the
renderer is highly dependent on the type and the size of the geometry. Therefore, commonly
acknowledged computer graphics scenes such as the Pica Pica, Sponza and Amazon Bistro
will be used. These workloads are chosen because they are representative for professional
rendering environments.

4.2.1. Rendering Very Large Scenes

We aim to answer RQ1 by investigating the viability of the ported CPU render core
in large scenes. In order to test the reliability of the CPU fallback, a scene that is larger
than the device memory of the GPU will be rendered using the Embree Core we have
implemented. A survey of modern consumer grade GPUs from the two top-grossing GPU
vendors NVIDIA and AMD indicates a memory range of 4-6GB’s on devices manufactured
in 2018 (AMD Radeon RX 550X and NVIDIA GeForce GTX 1060 respectively) [nvi][amd].
The GPU platform used in our tests is a GeForce GTX 1060 with 6GB of memory, which will
not be able to render a scene that exceeds 6GB using the GPU render core of LightHouse.

A scene that exceeds 6GB can not be rendered by the primary render core of LightHouse.
We will use a version of the Powerplant scene with an amplified number of triangles that does
not fit into the GPU device memory but fits into the 16GB RAM of the system. The system
is expected to produce images of the scene at a very low framerate, however if the resulting
frames are being drawn on screen, the fallback core will be deemed successful, because these
images are not otherwise producible using the GPU render core of LightHouse.

In order to verify that the Embree core has similar functionality to the reference primary
render core, we will setup an additional experiment. Three scenes that fit both into CPU
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and GPU memory will be rendered from identical viewpoints using both render cores. The
resulting images will be compared. It is expected that similar output is produced. Im-
ages produced after 1, 10, 100 and 1000 samples from each render core will be compared.
The comparison will be done using the Root Mean square Error (RMSE) and Structural
Similarity Index metrics [WBSS04].

4.2.2. Performance Evaluation

To answer RQ2, the Embree core will be tested against the primary render core for
performance. The two cores will be tested against different workloads and measurements
will be made on the performance of the key functional blocks of the rendering pipeline.

The performance critical stages of rendering that will be measured are BVH construction
and render performance in rays per second. The BVH construction is typically done once
for static scenes, therefore it is only performance critical in dynamic scenes where the BVH
needs to be updated every frame. The measurements will be made in milliseconds for three
different scenes with increasing complexity.

The render performance will be evaluated in rays per second including the time it takes
for ray traversal, shading and sampling. The same three scenes used for BVH construction
will be used. Four sets of measurements will be made including one set of measurements
with diffuse-only shading using both render cores. Through this experiment, the computa-
tional cost of shading in both cores will be isolated and conclusions will be drawn from the
performance characteristics of the Embree render core. This way, possible improvements as
well as possible use-cases for the renderer will be investigated.

4.2.3. Portability Measurement

We will conduct a practical programming experiment to measure how portable the result-
ing software architecture of LightHouse renderer is. The experiment setup will be as follows.
After completing the implementation of the Embree render core, a new functionality will
be introduced to the primary render core. This new functionality is tentatively selected as
a new bidirectional scattering distribution function (BSDF). Adding a new BSDF to the
system is typically done to support more advanced or different materials, and it is one of
the most common functional additions to professional renderers.

The new BSDF introduced to the primary render core needs to be ported to the Embree
render core. The porting process will be measured in various aspects, including the porting
effort in total number of lines of code, as well as the percentage of unique code produced.
Mooney’s portability analysis presented in the Portability metrics will be used to quantita-
tively analyse this process, as well as reporting qualitative observations and findings.
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5. Implementation
In this chapter, the implementation of the CPU based render core is presented. The

primary goal in the implementation phase is to create a CPU based render core, that pro-
duces identical results to its GPU counterpart. Qualitative findings and observations from
the development stage will be reported throughout this chapter in detail. The results and
the validation of this intention are presented and discussed in Chapter 6.

The implementation will be explained in the following sections. Section 5.1 gives an
overview of the architecture and system design of LightHouse and the design decisions
made with a focus on portability. Section 5.2 presents our approach in handling the scene
data received from the LightHouse render system. Next, in Section 5.3, the ray generation
routines, together with the wavefront path tracing algorithm and its implementation in
our render core will be demonstrated. Finally, our ported implementation of the reference
shading code will be introduced in Section 5.4.

5.1. Architecture and System Design

The approach to implementing the CPU-based render core is based upon the source
portability principles stated in section 3.1.2. In order to distinguish the two render cores
participating in the porting effort, we will establish a source and target relationship between
them. The GPU-based render core will be referred as the source core (the original render
core that is to be ported), whereas our ported CPU-based implementation of it will be called
the target core.

We start the software design by examining the initial portability considerations made
during the engineering of the source core. The answers to the four questions raised by
Mooney in Section 3.1.2 that enable a close analysis of the source core are as follows:

1. With its initial design, the source core is implemented with C++/CUDA and targets
NVIDIA GPUs. Future portability was anticipated for the CPUs, GPUs by other
vendors such as AMD, and web browsers throuth the utilization of WebGL.

2. The degree of portability planned for these environments was source-level. Due to
CUDA being a hardware specific API, it is not possible to cross-compile the source
codebase to target architectures, nor is it possible to run the executables of the source
core in different architectures.

3. It was anticipated that each new aforementioned target core, could cost at least two-full
months of development work of a single porting engineer.

4. The reduction in the quality of implementations for the sake of portability was not
applicable to the source core, as it was highly optimized for high performance real-time
rendering.

In the light of these findings based on the existing software, we have conducted a porta-
bility analysis based on the three guidelines proposed by Mooney and explained in Section
3.1.2.
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1. The interface that enables the portability of the render core is the CoreAPI between
the render system and the render core.

2. The interface is encapsulated in an abstract class. Each unique render core is respon-
sible for implementing it.

3. The standard for the interface is set with the function signatures. The interface func-
tions represent only the core rendering tasks found in Section 2.2.3.

Figure 5: An overview of the main software components of LightHouse. Dashed blocks contain the type of
data passed through these interfaces. Render system and core(s) contain their own copies of scene data.

The entry point to implementing the target render core is readily provided by the CoreAPI
interface between the render system and the render core. The render system is core agnostic,
meaning it does not impose any implementation restrictions or assumptions. Synchronizing
the scene data and answering the Render commands issued by the application is the key
responsibility of the render core. Thus, we have taken the OptiX Prime core as our source
core and focused our porting effort on replicating its functionality by implementing the
requerements of the CoreAPI.

5.2. Geometry Loading

In order to serve a render command issued from the application layer, our target render
core needs to hold its own representation of the scene. The application layer is responsible
for loading the specified scene into main memory. In its current state, the application layer
supports an open-source file formats; gltf, and two proprietary formats; obj and fbx. The
render core, on the other hand, is file format agnostic.

The representation of the scene that lays in the render system is referred to as the host
scene, and its counterpart in the render core is called core scene. Other helper objects
that contribute to the scene representation and also have dual representations are materials,
textures, lights, sky dome and meshes. The host scene holds separate lists of these objects.
The scene data (each scene element separately) is sent to the core through the CoreAPI as
shown in Figure 5. Changes are tracked with flags in these objects, and scene elements that
are changed (by some form of animation or removal) during runtime are sent to the render
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core with a synchronize command. For static scenes, this transfer occurs only once. The
render cores are responsible for implementing the receiving end of the scene data transfer,
such that a core specific representation of the scene can be built.

The host mesh holds a double representation of a triangle mesh. It contains a list of
vertices and indices storing the connectivity data. Although this much is enough to construct
a mesh, the host mesh holds an additional list of triangle objects. Efficient intersection on
both the source and target render cores require only vertices and indices. However, the
shading code requires the triangle objects. These triangle objects store additional data
required for shading such as vertex normals and material indices. Thus, in line with our
research goals, we have opted to store both representations on our implementation of the
geometry initialization. The vertex and index data are fed to Embree, whereas the triangle
objects are stored in core for the shading explained in Section 5.4.

The logic of creating a scene from triangle meshes is consistent between OptiX and
Embree, and thus, between the souce core and the target core. A scene is an internal
container for multiple geometries of potentially different types in both APIs. Both require
vertex and index data to create internal geometry buffers, and both provide a command for
triggering the use of geometry buffers to construct acceleration structures, hence, preparing
the scene for intersection. Figure 6 presents a side-by-side comparison of the two APIs in
order to demonstrate the logical similarity of loading geometry to both cores.

Figure 6: A side-by-side comparison of the geometry loading phase of Embree and OptiX. The left side
shows Embree and the target core, whereas the right side shows the source core on the GPU side. The code
was deliberately changed to pseudo-code to emphasize the functional similarities.
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5.3. Path Tracer

The source core implements the path tracing algorithm explained in Section 2.1.2 with
robust techniques such as next event estimation and multiple importance sampling (MIS).
The path tracing integrator is unidirectional, meaning the rays are issued from the eye only
and not from the light sources. The integrator uses Monte Carlo sampling. In order to
achieve real-time frame rates on its target architecture (NVIDIA GPUs), the source core
implements the Wavefront formulation of the path tracing algorithm explained in Section
5.3.1. This means that the path tracing algorithm is decomposed into multiple tasks. These
tasks are encapsulated in separate CUDA kernels, and data such as rays and intersections
are passed between these kernels multiple times in a single iteration.

In order to keep the codebase as similar as possible, in accordance with the portability
guidelines presented in Section 4.2.3, we have chosen to port this algorithm, making as few
changes as possible, to our target core on the CPU side. Thus, kernels that are responsible
for actions such as ray generation, shading, occlusion and intersecting were ported from
separate CUDA files (kernels) to C++ functions. Figure 5.3 lists the kernels found in the
source core.

Figure 7: Path tracing kernels. Green kernels are implemented with CUDA in the GPU core(s), and ported
to C++ in the CPU core. Orange kernels are implemented with Embree ray tracing kernels. The dashed
boxes on the right sides of the kernels show where they write to.

The kernels that are shaded with orange in Figure 5.3 were implemented with OptiX
Prime, a fast low-level API for tracing rays on GPUs. These kernels are essentially ray/prim-
itive intersection tasks. The Extend kernel takes a ray or a batch of rays as input, and
outputs the closest intersection point data that the ray has with the scene. The intersection
data contains the distance to the eye, the ID of the triangle that was hit, and the u, v
coordinates that denote a point inside that triangle. We have chosen Embree Ray Tracing
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Kernels to use as the counterpart to Optix Prime in our target core, as it is capable of
completing the same task on CPUs [WSB+14].

The OptiX Prime API call for this task is rtpQueryExecute, that executes a query of
type RTP_QUERY_TYPE_CLOSEST. The participants of this query are the primary rays gener-
ated from the eye, or the extensions of these rays that bounce from the scene during the
random walk, depending on the path depth. This kernel writes its output to a buffer of inter-
sections. Our ported implementation of this kernel uses the Embree API call rtcIntersect.
Similarly, the participants of this intersection are scene, intersection context, and the ray.
The rtcIntersect function finds finds the closest hit for a single ray. If an intersection is
found, hit distance is written into the tfar member of the ray and all hit data is set. When
no intersection is found, the ray/hit data is not updated.

The Connect kernel is the second orange kernel in the source core that uses OptiX Prime.
The kernel operates on a buffer of shadow rays, also known as occlusion rays. This shadow
ray buffer contains rays that are spawned from the shade kernel during the random walk.
They originate from hit points that the Extend kernel generates and are directed towards
random points on lights. The shadow rays need to be tested for intersections against the
scene before for occlusions writing the radiance throughput associated with them. If no
intersection is found, the associated throughput is written to the accumulator. The source
core implements this with another rtpQueryExecute, with a RTP_QUERY_TYPE_ANY flag.
The target core implements this query with a rtcOccluded call of the Embree API.

5.3.1. Wavefront Formulation

In order to maximize thread utilization of the source core, the path tracing algorithm was
implemented with the wavefront approached proposed separately by Laine et. al [LKA13]
and van Antwerpen et al. [Ant11]. This means that the entire path tracing workload is
seperated into highly specialized kernels, and the data buffers that are passed amongst
these kernels (rays, intersections and throughputs) are compacted by keeping atomic counts
on active rays. The kernels can be seen in Figure 5.3, and the buffers that they write to can
be seen in the dashed boxes to their right.

CPUs and GPUs have different characteristics, and the wavefront scheme is specific to
GPUs. It involves data passing at the start and end of each kernel, which is unnecessary
for the CPUs. The data buffers used to pass data between kernels in the source core are
CUDABuffer objects. These buffers have either a host or a device pointer for the data they
point to, and implement aligned resource allocation. Since CUDA is not a dependency in
our target core, we opted to implement our CoreBuffer objects to store ray, intersection and
throughput data. Our buffers only encapsulate a single pointer to the aligned data that they
point to, since there is no separate device memeory for the CPU. We have chosen to mimic
the spots where data is passed from the GPU to the CPU or vice versa by merely passing
pointers to functions. Thus, we have kept code similarity high, and avoided unnecessary
data transfers.

Interestingly, programming with a SIMD (Single Instruction, Multiple Data) execution
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model has gained traction in the recent years, especially in performance critical rendering
tasks, where data parallelism can be exploited. A recent example of this in a proprietary
software is MoonRay, developed by DreamWorks Animation in 2017, that is the first pro-
duction path tracer that fully leverages SIMD vector units [LGXT17]. The increase in
SIMD adoption is partially due to the release of Intels ISPC (Intel Single Program multiple
data Compiler) compiler [PM12]. This compiler draws heavily from GPU programming lan-
guages, and enables automatic parallelization of scalar code, by distributing it over multiple
SIMD lanes.

CPU based renderers written with ISPC, therefore, also suffer from control flow diver-
gence as per their GPU counterparts. Although the penalty may be lower for CPUs due
to narrower SIMD, the wavefront approach should be useful if our implementation is vec-
torized in the future. In its current state, the the acceleration structure construction and
ray intersections are vectorized internally by Embree. However, ray generation, integration
and shading phases are scalar. Vectorizing these processes as ispc kernels is a large prospect
into render time speedups. Lee et al. report 2x with SSE4.2 (4 wide) and 2.5x with AVX2
(8 wide) instruction sets for total render time speed-ups in the vectorization of MoonRay
[LGXT17].

5.3.2. Buffers

Due to the wavefront programming model explained in Section 5.3.1, intersections, rays,
and shading data associated with rays, need to constantly be passed between kernels. We
refer to the containers for these data as path tracing buffers. The source core leverages
generic programming to implement these buffers. The class template is called CUDABuffer.
This container has dual pointers for the data it stores; a pointer for the device and another
one for the host. Because it uses CUDA calls to acquire device resources and to copy data
back and forth between host and device, it is not possible to use the same container for the
target core.

We have opted for porting the buffers to the CPU side by writing a similar template
class called CoreBuffer. Our CoreBuffer implementation only acquires resources on the
host side, and owns a single data pointer. It is favourable to use our own implementation,
for instance, rather than a STL container, because it allows to make minimal changes in
the kernel function signatures. More importantly, using these buffers allows for much more
similarity between the source and target core implementations of the CoreAPI functions
explained in Section 2.2.3. The buffers that contain scene data (such as material and texture
buffers) are initialized and populated in the with CoreAPI calls from the render system. On
the other hand, path tracing buffers are initialized once per render target, with compile time
sizes that reflect the maximum amount of active rays.
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5.4. Shading

The Shade kernel is responsible for processing the intersection data produced by the
Extend kernel. The source core uses a programming model called persistent threads [AL09].
This means that the kernel uses a work queue to keep every Streaming Multiprocessor (SM)
busy. The size of the this work queue is the amount of active paths in that particular
iteration of the random walk. A function ”hosts” the shade kernel, and runs until there is
no more active paths available. This programming model does not translate to the CPU
environment where there are no Streaming Multiprocessors at hand.

Porting a parallel algorithm directly to a parallel implementation, especially when the
target architecture is vastly different, would have been error prone. Thus, we have opted for
calling the Shade kernel sequentially for every active path. It would also significantly increase
the porting cost by introducing an additional engineering challenge, which we strive to
minimize. This way, the emphasis on correctness and similarity is conserved. The persistent
threads syntax is replaced by a job index that keeps track of the extension ray index currently
being shaded. This means that the host function that implements the persistent threads is
effectively replaced by a loop that increments the job index.

The Shade kernel reads from and writes to several buffers. It reads from the extension
ray, path state data and intersection buffers. After executing the shading code, the Shade
kernel writes to the extension rays output, path state data output, shadow rays and shadow
ray potentials buffers. The shading code contains a high amount of control divergence,
hence, execution of the shading code may also not result in any writes to any of these
buffers. Therefore, counters are essential to keep track of the amount of active extension
and shadow rays. Essentially, we have ported the persistent threads implementation on the
GPU, to sequential loops that use these counters to perform the correct amount of shading
tasks.

This kernel writes to the extension ray out buffer with a randomly bounced ray, until
the max path length is reached. Additionally, a shadow ray towards a random point on a
random light is initialized and written to the shadow ray buffer. Due to stream compaction
discussed in Section 5.3.1, the kernel contains atomic counters. Atomicity is not a concern
in sequential CPU code where no race conditions exist. It is important to note that the
buffers do not provide a size query, hence, we implemented a static counter object to keep
track of the ray counts.

Additionally, the shade kernel calls other device functions that reside in different CUDA
source files. The CUDA source files are grouped into functional groups, into files that
contain functions regarding, materials, texture sampling and lights. It is not possible to
compile these files with a C++ compiler, and it is not trivial to port these functions by
simply adapting the function signatures to C++. These functions constitute the most non-
portable component of the source core, such that, they contain intrinsic math functions, that
have hardware support, and available only through the CUDA API. The intrinsic functions
are documented, but the source code is inaccessible. We have opted for re-implementing
these intrinsic functions from scratch. Listing 2 shows our implementation of an intrinsic
function following a specification taken from the CUDA API. The code that was produced
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with a reverse engineering effort as such, are considered entirely novel code blocks in the
portability analysis.

d e v i c e int f l o a t a s i n t ( f loat x )
// R e i n t e r p r e t b i t s in a f l o a t as a s i gned i n t e g e r .

inl ine int RenderCore : : FloatAsInt ( const f loat fVal )
{

union Float In t {
f loat f ;
int i ;

} ;

F loa t In t f i ;
f i . f = fVal ;
return f i . i ;

}
Listing 2: An example of porting an intrinsic function. The first two lines present the documentation, and
the implementation of the function is listed below.

Contrary to functions that involve intrinsics, some functions exhibit high portability.
For instance, the source core function that implements picking a random point on a light
requires no intrinsic function calls. Porting this function solely involves changing the function
signature to the C++ syntax, and connecting the light count variables to the CPU-side
counters. It is a significant maintenance cost bonus that there is no need to unit test these
functions, as they haven’t gone through semantic changes.
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6. Results and Evaluation
This section reports on the results experiments we have conducted on our target core

implementation, with the experimental setup devised linked to our research questions in
Section 4.2. The chapter is split into three sections. In each section, we start by summarizing
the experiment, then we report the results obtained, and finally evaluate the results through
a discussion on how they answer to our research questions.

The answer to RQ1, which questions the possibility of a reliable CPU fallback, is partially
answered by our successful ported render core implementation presented in Chapter 5. We
present a close analysis of the quality of output produced by both render cores in Section 6.1.
The performance of our ported render core is compared with the source core in Section 6.2,
thus, answering RQ2. Finally, we present detailed code metrics that evaluate the portability
and maintenance costs investigated by RQ3.

Figure 8 presents the scenes used in the experiments. The first column presents an
image of the scene, the second column lists its name and the third column lists the amount
of triangles and the size of the scene including the texture data.

Figure 8: An overview of the scenes used in experiments.
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6.1. Rendering Very Large Scenes

In order to answer RQ1, we need to validate that our target core implementation pro-
duces similar images to the source core. Our experiment setup is as explained in Section
4.2.1. In order to validate that our ported render core can render scenes that exceed the GPU
memory, we have rendered the Amazon Lumberyard Bistro scene that consists of 3858088
triangles using our ported render core on the CPU [McG17].

Figure 9: The Amazon Lumberyard Bistro scene was rendered with our ported render core implementation.
It is not possible to render this scene with the source render core as it exceeds the GPU memory.

In order to verify that our ported render core produces images that are quantifiably
similar to the source core, we have produced rendered images of an identical scene, from an
identical camera view pyramid. This means that the camera for both cores is at the same
location, and the cores are rendering the same scene under identical lighting. It is important
to note that the path tracing algorithm, relies on random sampling to estimate a higher
order integral. Moreover, we use jittering and blue noise, that are also random processes, in
primary ray generation, which causes every image to be rendered slightly differently. The
usage of such random processes suggest that it is not possible to expect identical rendered
images. Figure 10 presents two images produced by the two render cores after collecting
1024 samples. The images are visibly similar in quality.
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Figure 10: A side-by-side comparison of an image produced after 1024 samples of the Sponza scene by our
target render core on the left, and the source render core on the right.

Table 1 reports the data on the comparison of two images produced after collecting var-
ious amounts of samples from each render core. The Structural Similarity Index (SSIM)
shows how similar two images in a range of 0.0 to 1.0. Higher SSIM values indicate higher
image similarity. Root Mean Square Error (RMSE) is a metric that measures how different
two images are due to factors such as noise. It is shown that in both Pica Pica and Sponza
scenes, the images produced are increasingly similar to each other as the sample size in-
creases. Although the SSIM values do not converge to 1, it is deduced that the two cores
produce images that are %80 to %85 similar after collecting 1024 samples.
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Samples SSIM
Index

RMSE

Sponza Scene
1 0.697 56.3
2 0.711 46.6
4 0.719 40.3
8 0.729 35.5
16 0.737 32.5
32 0.749 30.6
64 0.761 29.5
128 0.773 28.8
256 0.785 28.4
512 0.793 28.3
1024 0.801 28.1

Pica Pica Scene
1 0.736 50.4
2 0.751 43.2
4 0.770 38.2
8 0.792 35.3
16 0.813 33.8
32 0.835 32.9
64 0.851 32.4
128 0.864 32.1
256 0.871 32.0
512 0.876 31.9
1024 0.878 31.9

Table 1: The Structural Similarity Index, Root Mean Squared Error and RGB distance
measures between two images rendered with the source and target cores after collecting a
given amount of samples.

The results display significant difference in images even after 1024 samples per pixel. We
have subtracted the images rendered with two different cores and examined the result to
identify where the difference lies. The difference image is shown in Figure 11. The highest
intensity in the image is on the edges of objects. Thus, the difference in images can be
attributed to the different results obtained from the intersection engine, which is OptiX for
the source core and Embree for the target core.
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Figure 11: The image difference of the two rendering cores on the Pica Pica scene after collecting 1024
samples per pixel.

6.2. Rendering Performance

As established in Section 4.2.2, we have investigated how the performance of our ported
CPU render core compares to the source GPU render core. We setup an experiment that
measures the amount rays traced per second in each core. This data provides an overall com-
parison of the rendering performance. Using a timer in the code, we have also calculated the
time spent in various functional blocks of the render core. The experiments were conducted
on a computer setup with a consumer grade Intel i7 CPU (2.2Ghz) and a NVIDIA GeForce
GTX 1060 GPU.

Figure 12 shows an example output from the application during performance testing.
The Pica Pica Scene, published by EA Games, consisting of 76250 triangles, was used in all
performance measurements. This scene was chosen because is moderately sized, and with
its wide range of materials and layout, it is representative of a production quality scene.
The white overlays in Figure 12 denote the frames per second being rendered at the time of
the capture. The left image was captured from the source (GPU) render core, and the right
image was captured from the target (CPU) render core. In a first glance, it is evident that
the source core exhibits real-time frame rates (40-45fps), whereas the target core exhibits
offline frame rates (0.3-1fps). Thus, it is undesirable to use the target core in interactive
scenarios. The overall rendering performance indicate that the target core is suitable for
offline use.
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Figure 12: Side-by-side comparison of rendering performance. The white overlay shows the frames rendered
per second. The left image is rendered with the source (OptiX) core, and the right image with the target
core (Embree).

The Pica Pica scene, from the given viewpoint in Figure 12, is rendered with processing a
total of 2.67 million rays per sample in both cores. The identicalness of the ray counts among
cores is an additional verification to the software similarity between render cores. Before
we take a closer look at the time spent in each functional block of the renderer, Figure 13
shows the decomposition of rays into two types; extension and shadow rays. Evidently, 61%
of the rays are extension rays, which are tested for the nearest intersection in the scene. The
remaining 38% are shadow rays that are tested for any intersection. The shadow rays are
typically traced faster due to terminating on any hit.

Figure 13: The distribution of the type of rays processed in each frame. Shadow rays are faster to process
than extension rays. The ray amounts and distributions are identical in both cores.

A closer look into the performance characteristics of each core is presented through
measuring the time spent in each functional block. There are two main functional blocks,
Shade and Trace. Measuring the time spent in each block is important because it gives an
insight into how performant the ported code is. The Trace block involves the time spent in
API calls in each core, and the Shade block involves the time spent in the shading code that
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we have ported. Figure 14 demonstrates the times spent in these blocks with the orange
bars for the target core (Embree) and blue bars for the source core (OptiX). The Render
block is the sum of the other two blocks.

Figure 14: The time spent in functional blocks of rendering for the source (OptiX) and target (Embree)
cores.

As seen in Figure 14, on average, it takes 1100ms for the target core to render, as opposed
to the 26ms of the source render core. As hinted by the frame rates previously shown, it
takes the target render core roughly 40 times more time to render each frame. Interestingly,
while the source core spends 53% of its time in the Trace block, the target core spends 36%
of its time in this block. This indicates that our ported shading code introduces a larger
performance penalty than the Embree API calls in the Trace block. In other words, the
ported shading code exhibits a larger room for optimization.
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Figure 15: The amount of rays processed (in million rays per second) for each functional block source
(OptiX) and target (Embree) render cores. The bars on the left measure million rays traced per second,
and the bars on the right measure million rays rendered per second.

Figure 15 presents a comparison of the amount of rays processed in different time frames.
The source core renders 103 million rays per second in total, shading and tracing combined.
Compared to the 2.1 million rays per second of the target core, this indicates a 40-45x slow
down on average rendering times. This is expected due to the serial implementation of the
ported code. However, it is important that the performance loss in the Trace block is less
than the performance loss in the Shade block. This shows that our ray tracing API Embree
can potentially perform as well as OptiX in future parallel implementations.

Thus, our research question RQ2 that investigates if the target core can exhibit similar
performance to the source core is answered. The performance of the two cores are in different
realms, meaning that while the source core renders in real-time, the target core renders in
semi-interactive to offline frame rates.

6.3. Portability and Maintenance Cost

This section presents the results of the experiments explained in Section 4.2.3. In order
to evaluate the portability of the source core, two cores have been compared to each other
using Moss, an open source system for detecting software similarity by Stanford University
[mos]. The service uses robust winnowing, a local fingerprinting algorithm for detecting local
code similarity [SWA03]. The system is being provided as a web service. The Moss server is
queried with submission scripts containing source files of the two render cores. Each query
produces a HTML page that lists code similarity.

The number of shared lines is not the only metric that comprises the percent moss score
between two blocks of code. The algorithm also takes into account the similar calculations
done with different variable names. The moss score is an indicator to what percentage of a
given code block is attributable to the reference code block. Thus, a high moss score indicates
a high amount of code similarity. As we have established in Section 3.1.3, a functional block
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CPU Core GPU Core
Total Shared % Moss Score Total Shared % Moss Score

Render
Core

2007 181 8 800 181 25

BSDF 100 73 86 141 73 62

Shading 216 101 51 246 101 37

Extend 43 0 0 109 0 0

Table 2: Lines of code in the source and the target cores.

is highly portable when the cost of porting is lower than the cost of redevelopment. The
Moss percentage gives an accurate measurement on the degree of portability, because it is
obtained by comparing the target core to the source core. This way, the cost of porting is
measured against the cost of redevelopment through the code produced.

We present the results in Table 2. As expected the highest similarity score of %86 is
reached with the target core BSDF implementation. This means that the smallest functional
block, the BSDF calculation, is as closely coupled between cores as possible. This indicates
that the costs for maintaining the source and target cores are minimized. On the other
hand, the ported Extend kernel results in a %0 Moss score, which means that significant
engineering effort was made to implement it, porting future changes to the source Extend
kernel will require similar effort. Luckily, the components that have low Moss score are more
central components and are subject to less change in the future. The porting effort for the
low Moss score components can be seen as a one time effort. On the other hand, the BSDF
and the Shading kernels are volatile, and changes to these can be ported with minimal effort
to the target core.

Figure 16 shows a side by side comparison of the decompositions of the source code of
both cores into functional groups. The number under the name of the functional group
indicates the lines of code it contains, and the percentage shows how much of the codebase
it constitutes. Due to the persistent threads implementation, the Extend takes up a larger
portion of the source core codebase compared to the serial implementation the target core
codebase.
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Figure 16: The decomposition of the render cores in numbers of lines of code. The left figure shows the
source core and the right figure shows the target core.
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7. Conclusion
In this master’s thesis, we initially introduced the problem of the inability to render

very large scenes on the GPU due to device memory limits. We formulated three research
questions in Section 1.2 that investigate the feasibility and the quality of a CPU fallback
in such cases. We have conducted a literature study in Section 3 to establish the state-of-
the-art on software portability and ray tracing on the CPU. In order to answer our research
questions, we ported the GPU render core of a production quality photorealistic renderer,
LightHouse, to the CPU.

We have investigated the feasibility of a CPU fallback, by rendering scenes that overflow
the GPU memory, in our ported CPU implementation. We have successfully rendered a
scene that does not fit into the GPU memory with our ported render core implementation.
Thus, we conclude that a ported CPU path tracer can be a reliable fallback to the source
GPU path tracer for large scenes. We have also found that images rendered with our ported
target core differ from the images rendered with the source GPU by 10-15%. This difference
was attributed to the difference in the intersection data provided by the intersection engines
used in the source and target cores.

As for performance, our findings indicate 40-45x lower overall rendering performance in
our ported render core. This puts our CPU render core into the offline renderers category,
limiting its use in interactive scenarios. It is important to note that there is no significant
advantage to using our ported core in system configurations that have a GPU that has
sufficient memory, and our ported render core is intended as a fallback strategy.

We have successfully ported the source render core in such a way that the maintenance
costs are minimized. The portability measurements suggest that the most volatile compo-
nents of the render core have the highest software similarity. Thus, it is expected that future
changes in the source codebase can be continuously ported to the target core with minimal
effort. Through porting a new BSDF functional block to our target core, we have verified
that the source and the target cores can be maintained with minimal effort.

7.1. Future Work

We have completed the porting case study with an implementation presented in Section
5. However, as the results in Section 6.2 demonstrate, the CPU render core is a long way
from rendering in real-time frame rates. Increasing the performance of the CPU render core
is a promising lead for future research. Achieving this goal while keeping the maintenance
costs low is non-trivial, as the target architectures of the source and target cores vastly differ.
However, implementing parallelized ray intersection routines could be seen as the next step
of this research.

The source core contains advanced features such as filtering and temporal anti-aliasing.
Porting these features to our CPU render core is another subject for future work. It is
expected that these features can be ported with minimal effort due to the promising results
we have obtained in our portability experiments.

41



Finally, automating the porting process between cores can be seen as the ultimate goal
this research introduces. In functional blocks with high software similarity, a change in
the source core could be automatically applied to the target core through the use of a
pre-processor block or cross-compilation setup.
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