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Abstract

One of the categories of machine learning is unsupervised learning. The assessment of
models of this category is particularly challenging since the user lacks evidence regarding
the original data set and the correct conclusions that must be made from the data set.
This thesis is a pursuit for finding proper measures that can aid us in gaining insight and
understanding the models. We introduce measures to evaluate the model’s performance
generally and with respect to specific subsets. Hence, we find out what parts of the data
were learned well by the model and what parts were overlooked. We also introduce a
procedure for producing synthetic data with controlled levels of randomness to examine
the models with varying amounts of noise in the data. Finally, we apply our methods to
various data sets and numerous models learned from them and conclude eminence of some
of these models. We also point out the reasons for the poor performance of the models on
some of the synthetic data sets.
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Chapter 1

Introduction

1.1 Introduction

There are various types of data mining and machine learning methods currently used.
One of the categories especially used on the data sets to extract the unknown for the
user is Unsupervised Learning. This type of learning strives to discover the unknown
patterns hidden in the data. As a result, there are no means of classification such as labels
available for the process of learning. The nature of this category of learning methods causes
ambiguity in assessing the quality of the unsupervised model. The user of such method
does not have any indications to anticipate the patterns that the learning process must
find. This impacts one’s ability to evaluate the performance of these models especially
in a quantitative manner. Another issue arises when multiple models are learned on the
same data source and we need to compare them scientifically and fairly in order to employ
the best model among them. Another issue can be that while carrying out unsupervised
learning, we are not aware of the coverage of the learned model, in other words, we do not
know which parts of the data is learned and which parts are missed by the model.

As the learning goal and the data type varies in each project, evaluation of the resulting
models from learning algorithms becomes increasingly challenging. This may be due to
lack of standardized method for assessment of such models and varying definition of success
which can be subjective to the project in which the algorithm is being applied.

In general we strive to answer these question: “Has the model overfitted/underfitted
to the data?” “What parts of the data has it overfitted/underfitted to?” Ideally to answer
these questions perfectly, one must have full knowledge of all existing patterns in the data
i.e. its structure and consequently have the perfect knowledge of the noise in the data
set. However, this knowledge is hardly available in real life scenarios and the motivation
to use unsupervised models is to find out about these data patterns. In this project we
have introduced some measures and approaches that can help assessing models when the
ground truth (the true structure) is unknown. Multiple experiments are performed to aid
us in deciding whether these measures indeed point to the best model or not.

For the purpose of this project we are targeting pattern set mining algorithms. This
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CHAPTER 1. INTRODUCTION

category of unsupervised learning algorithms returns a set of patterns found in the data
that best define the dataset. The number of patterns that capture the essence of the data
should be limited and the pattern set must summarize the data concisely. The aim of this
project is to be able to quantitatively (and possibly qualitatively) measure performance of
a model learned by such algorithm.Compression algorithms fall in the category of pattern
set mining algorithms as they seek the true distribution of the data which expresses the
true structure of the data. The algorithm that I will use for this purpose is Krimp, a
pattern set mining algorithm.

We aim to investigate the extent to which a Krimp model has captured the structure
among the noise of the data. We propose to carry out this investigation by evaluating
the model with respect to various subsets of the original data set including random and
non-random subsets. The non-random subsets are chosen in a way to capture coherent
data together and as a result represent a substructure of the data. We consider the size of
the encoded (sub)sets as an indication of the performance. Choosing various subsets non-
random manner allows for investigation of various substructures of the data. In contrast,
randomly sampled sets let us explore the effectiveness of the model on the data set as a
whole. The method is tailored to consider both of these aspects while evaluating a model.

While forming various (sub)sets of the data, we introduce controlled noise to the data.
In order to achieve this we attempted to generate our data from ground truth and then
added the noise at varying levels to the generated data. This provides us with the means
to test overfitting of the model. Overfitting occurs when the model fits to the noise present
in the data (i.e. the parts of the data that do not follow the general patterns). As
we exaggerate the noise in these data sets, we can examine if the model’s performance
deteriorates considerably or it will keep a steady performance along various noise levels.

2 Assessment of Unsupervised Models:
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Chapter 2

Preliminaries

In this chapter we introduce the methods and notions that we will make use of in our
procedure and experiments.

2.1 Krimp

As we have mentioned in the previous chapter, our research in heavily dependent on an
unsupervised learning algorithm, which is the Krimp algorithm [1] in our case. Krimp
is a compressor that aims to compress a given data as it partially learns the data set’s
distribution. It achieves this by finding the set of patterns that define the data set in
the most concise form. This algorithm is tailored to process discrete categorical data sets
where there are a number of attributes and each attribute has a domain of values to choose
from. The set of all possible values of all attributes are called the set of items noted as I .
Each data point is represented by a row which is an itemset (set of items) {i1, i2, . . . , ir}
such that every item in the set is unique and belongs to I . Particularly, each item in the
row is the instantiation of one of the attributes.

A pattern found by Krimp is in form of an itemset of an arbitrary size and it is associated
with a code. All the patterns found by Krimp and their associated codes compose a code
table (CT ) which is the final model that is learned by Krimp from the data set. The code
table returned by this learning algorithm has a specific order. The patterns returned are
sorted based on their length, i.e. the longer pattern comes before the shorter pattern in
the code table.

To compress a row of the data set using the code table, you start at the top of the code
table and as soon as you encounter a pattern that is a subset of the row i.e. it occurs in
the row, you remove all the items of the pattern from the row and add the code associated
with the pattern to the compression of that row. You continue until the row is empty. To
ensure compressability of every row, the code table also includes the individual items at
the end that are called the singletons.

Assessment of Unsupervised Models:
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2.2 Subset

One of the choices to be made is the method used for forming subsets from the original
dataset. The options considered for this choice are subset querying and bootstrap.

As we do not have access to a data source and only hold one collection of the data points,
it is not possible to illustrate our measures with absolute certainty. It is needless to say that
our estimations will carry a certain error and in order to decrease this deviation we make
use of the Bootstrap. Bootstrapping is a method to reduce the error of measurements of
the data. It is a technique of resampling in which we make B samples (with replacement) of
size N (given the size of the original data set is also N)[2]. Our measurements are obtained
by applying the calculations to these samples. As the number of samples B increases the
standard error of our estimated measurements decreases and gets closer to the true error.
In addition, it is a possibility to learn the models on each of these Bootstrap samples, and
compare their performances on the original set with the performance of the original model
on the samples. This way we can at the same time find models that improve performance
comparing to the original model while we are evaluating it.

2.3 Measures

2.3.1 Compression length

One of the useful measures to gain insight about the performance of a Krimp model is the
compression length of the data set. This refers to the size of the data set after it is com-
pressed by the code table. The reasoning behind using this as a measure for the purpose
of evaluating a model comes from the Krimp concept [1]. It reasons that the best model
compresses the data best. In other words the best model describes the data the shortest.
As mentioned, running the Krimp Algorithm on the data set yields a code table as the
model. The code table dictates substitution of subsets of rows with a code. Applying this
on every row in the dataset results in presumably the shortest encoding (compression).
One can therefore use the length of the encoded dataset as some indication of performance
of the model.

2.3.2 Compression ratio

However, the compression length heavily depends on the size of the starting data set. To
assess the model’s performance on the substructures we may only use it to compress various
subsets of the data. If size of one of these subsets is considerably smaller or larger than
the other subsets ,then its compression length is not comparable to the rest. In this case,
it is more reasonable to compare the compression ratios. This measure is defined as the
ratio between the size of uncompressed data to the size of compressed data.

4 Assessment of Unsupervised Models:
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2.3.3 Cross-compression

The two measures described above alone are not enough to provide knowledge about per-
formance of models relative to each other. Specifically, we are observing each model in
isolation. It is learned on a data set and it is used to compress the same data set. This
procedure provides us with no information regarding the general performance of the model.
It may be the case that the model has overfitted and it performs poorly on some other
data (collected from the same source). The exact opposite can also be the case, namely,
the model may have learned the data insufficiently, however, we cannot detect this by only
observing its compression length and compression ratio calculated in isolation. Hence, it
is viable to create one or multiple points of reference.

Considering this, for each bootstrap set we apply Krimp to derive a model. We can use
each model to compress every data set (including the original data set) and use the original
model to compress the bootstraps. This procedure is called cross compression. It allows
us to observe the performance of the model on the marginally different data sets that are
still adequate representative of the original data set. While also giving us the chance to
observe the performance of marginally different models on such data sets. This way we
can create a performance matrix of all the models which provide us with many points of
reference to be able to compare the original model with.

Another advantage of this procedure beside providing us with insight for evaluation of
a single model is that it can possibly find a model that ignores the noise in the data better
and consequently captures the structure more effectively. Therefore, it makes a shorter
encoding of the original dataset.

Assessment of Unsupervised Models:
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Chapter 3

Approach

In this section we outline multiple strategies for the assessment process of code tables
learned by the Krimp algorithm and formalize the procedures and measures we will take.
Our approach can be split in two main branches based on the criteria used to form the
data sets. Namely, the branch that focuses on random samples and calculating the afore-
said measurements for each model derived from these samples. The second branch which,
focuses on directed subsets and evaluation of models with respect to these subsets. By
directed subset we imply that the subsets are not formed at random and a correlation
exists among the data points of the subset.

3.1 Approach1: Bootstrap (random samples)

A preliminary step for all strategies is to make bootstrap sets. Let N be the size of the
original dataset, then each bootstrap sample x∗i (i ∈ {1, ..., B}) is made by sampling from
the original dataset s times with replacement (resampling), therefore |x∗i| = s. The choice
for the number of bootstraps (B) is dependent on the size of original dataset as well as
the desired estimation error of the measurements. However, in practice it usually ranges
between 50 to 200 [3].

Here we discuss the calculations of compression length and compression ratio when
using bootstraps and how we plan to extract information regarding the performance of
models on the data set as a whole or in its subsets containing substructure.

3.1.1 Approach 1.1: Estimating compression length and ratio

This is the simplest approach which only requires calculation of the desired statistic on
each bootstrap sample x∗i. First, the code table is obtained from the data set using Krimp.
This code table is composed in a way to minimize the size of compressed data set. Let D
be the dataset such that |D| = N and let d be a data point within D (d ∈ D) . Moreover,

Assessment of Unsupervised Models:
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CHAPTER 3. APPROACH

let C(d,M) denote the encoding of d with respect to the model M which is a code table
produced by Krimp. Then the total compression length of D is denoted by tcl(D,M):

tcl(D,M) =
∑
d∈D

|C(d,M)| (3.1)

Now that we have the formula for calculation of the length of dataset encoding we can
use it to calculate the compression ratio of the model using the following formula:

CR(D,M) =
|D|

tcl(D,M)
(3.2)

We apply the measure introduced in Formula 3.1 and Formula 3.2 to every bootstrap
sample x∗i (i ∈ 1, . . . , B) derived from D. Hence, our estimate of the total compression
length for the data and the compression ratio are as follows:

t̂cl(D) =
1

B

B∑
i=1

tcl(x∗i,M) (3.3)

ĈR(D,M) =
1

B

B∑
i=1

CR(x∗i,M) (3.4)

Applying this process will provide us with apprehension with respect to the effectiveness
of the original model. The model is compressing various data sets that are formed at
random, it may encounter data sets with more exaggerated noise as well as other data sets
with more structure. Hence, the variations in its performance can bring insight about its
effectiveness.

3.1.2 Approach 1.2: The cross-compression matrix

The bootstrap samples are sets representing the original data set. As a result, running the
learning algorithm (Krimp in this case) may be informative about the capabilities of the
algorithm with respect to the original data set. Hence, in this approach, once we have the
bootstrap samples x∗1, ..., x∗B, we run the Krimp algorithm on each x∗i sample and obtain
model Mi corresponding to the sample x∗i. The slight variations in the bootstrap samples
results in slight variations in the models found.

Next step is to find out which of the models have captured the structure within the data
better. Supposedly, the models should have similar performances since they are learned
from sets all representing the same data set with slight alterations. However, these slight
alterations can result in a set that incorporates less of the noise or less of the structure
within the original data set. Our first attempt to investigate this is to apply each model
to every bootstrap sample and form a matrix. Let M0 denote the model learned on the

8 Assessment of Unsupervised Models:
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original data set D which we refer to as x∗0 for convenience. Let lij denote the total
compression length of x∗i once the model Mj compresses it:

lij = tcl(x∗i,Mj).

We can hence form a matrix of cross-compression as follows:

M0 M1 . . . MB−1 MB

x∗0 l00 l01 . . . l0(B−1) l0B

x∗1 l10 l11 . . . l1(B−1) l1B
...

...
...

...
...

...

x∗B−1 l(B−1)0 l(B−1)1 . . . l(B−1)(B−1) l(B−1)B

x∗B lB0 lB1 . . . lB(B−1) lBB

Table 3.1: lij denotes the total compression length resulting from encoding of x∗i by Mj.

For each model Mk where k ∈ {1, . . . , B} we will have a set of compression lengths
associated with it denoted by Lk = {l0k, l1k, l2k, . . . , lBk}. We can do the same calculations
for compression ratio using that rij = CR(x∗i,Mj) and make a similar matrix 3.2 replacing
lij with rij. This will leave us with a set of compression ratios for each model Mk denoted
by Rk = {r0k, r1k, r2k, . . . , rBk} similarly to the Lk.

M0 M1 . . . MB−1 MB

x∗0 r00 r01 . . . r0(B−1) r0B

x∗1 r10 r11 . . . r1(B−1) r1B
...

...
...

...
...

...

x∗B−1 r(B−1)0 r(B−1)1 . . . r(B−1)(B−1) r(B−1)B

x∗B rB0 rB1 . . . rB(B−1) rBB

Table 3.2: rij denotes the compression ratio resulting from encoding of x∗i by Mj.

3.2 Approach 2: Directed subsets

The idea behind this main branch is to calculate the previously introduced measures on
subsets of the data that are not randomly chosen. The data points present in the direc-
ted subsets will have a certain pattern in common which is a way to capture a portion
of the general structure within the subset. Models learned from the directed subsets are

Assessment of Unsupervised Models:
In pursuit of an evaluation measure

9



CHAPTER 3. APPROACH

then compared against the original model (learned from the original data set). It is ex-
pected that if a model has learned the structure of the data well, it performs as well or
perhaps even better on the directed subset. This expectation is due to the higher coher-
ence or in other words a rather more clear structure within the directed subset. An ideal
model has the same performance on any subset of the data as it has on the original dataset.

Directed subsets are derived from the original data set by querying the dataset for a
pattern. The result will be the data points which include the pattern in the query. To
explain this more formally, we first need to clarify what is meant by a pattern.

Let A = {A1, A2, . . . , As} be the set of attributes that defines a data point (row in the
data). Let I = {I1, I2, . . . , In} be the set of all possible values that the attributes in A
can hold. Please note that each attribute Ax ∈ A can hold exactly one value from all the
possibilities available for that value. To clarify this, we consider an example of a data set
that has attributes “Eye color, Height, Gender”. Each of the attributes can have multiple
values. Eye color ∈ {Blue, Black, Brown, Green }, Height ∈ {Tall, Average, Short} and
Gender ∈ {Male, Female}. The set of all values is then {Eye color = Blue, Eye color =
Black, Eye color = Brown, Eye color = Green, Height = Tall, Height = Average, Height
= Short, Gender = Male, Gender = Female}. As you can see, each of the attributes has
its own specific domain and even it can be the case that the value types of different at-
tributes varies. However, it is not possible for an attribute to have multiple values at the
same time. If it is, a new attribute which is the combination of the original attributes must
be introduced and each combination of the values should form a value for this new attribute.

Each data point is then defined as an instantiation of these attributes or in other words
set of values assigned to these attributes. Let d be a data point, it is then defined as
d = {i1, i2, . . . , is} where A1 = i1, A2 = i2, . . . , As = is. The dataset D is then defined as
a collection of such data points. A pattern P is then defined as a set of restrictions on at
least one of the attributes. This restriction is in form of definite values for a (nonempty)
subset of attributes. For the sake of simplicity, from now on we take attributes to have
binary distinct discrete values. Therefore, we can represent a data point as a subset of I
i.e d ⊂ I . Consequently a pattern P can be formed also as a subset of I . We say that
a row d has pattern P if and only if P ⊂ d. Now that we have introduced the notion of
attributes and patterns we proceed to define the process of subset querying more formally.

A query Q(D,P) denotes results of querying pattern P from the dataset D where P
is a non-empty list of attributes. Each data point returned in the result of the query
must contain all the attributes in the pattern. This is captured formally in the following
equation:

Q(D,P) = {d ∈ D|P ⊂ d} (3.5)

It is important to note that the query Q separates the dataset in two (mutually exclus-
ive) subsets of the dataset, namely, Q(D,P) and D \Q(D,P).
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3.2.1 Querying the data

In this approach instead of making numerous random sets, we make numerous coherent
subsets of the data. This is to ensure existence of a (sub)structure within the set. By
doing this we aim to identify parts of the data that are not captured well by the model.
Or even the parts of the data that the model overfits to. Hence the procedure to chose
these subsets must be chosen such that it accommodates our needs.

In this approach we firstly need the list of most important patterns in the data or in
other words mine the pattern sets of the data. These patterns come in various supports
supp(P):

supp(P) =
|{d ∈ D|P ⊂ d}|

|D| .

Given the definition above, the support is then a number in the range [0, 1]. The support
of a pattern can be an area of focus when it comes to querying the dataset. The support
of a pattern relates to the significance of the pattern or rather the structure it represents
in the dataset. The higher supp(P), the more general the returning set of Q(P ,D) would
be. On the other hand, if the support of a pattern is low, querying such pattern returns
a subset of the data that is smaller and hence includes a clear substructure that can be
easily distinguished from the noise. To clarify this further, one may think of the pattern as
a magnifying glass. The lower its support, the stronger the magnifying glass which zooms
in on a smaller part of your data. This can have its advantages and disadvantages. The
advantage is that the subset will not contain many substructures but rather only a few,
thus the structure is more distinguishable. On the other hand, if the subset is too small it
may miss all the structure and only contain noise. If the pattern has a large support, it
selects a larger portion of the data set and hence results in a more random and chaotic set
to be returned by the query.

The patterns that we use must be mined using a certain method. There is a large
variety of options to choose a mining method from. We have multiple requirements from
the patterns. Besides significance, all together they should be able to cover the entire data
set or in other words all parts of the data set must be represented by these patterns. Also
it is essential that querying these patterns yields various substructures of the data. This is
to limit the intersections between these subsets and ensure examining mutually exclusive
sections of the data.
For this purpose we find the Miki ’s in our data set [4]. Miki stands for Maximally In-
formative k-itemset. The K-itemset is a set of size k including items. Each item can be
considered as a pattern of size one. They are chosen such that they maximize the informa-
tion conveyed about the data set. The method illustrated in [4] finds k patterns that best
explain the data set. This is decided based on the measure of joint entropy which indicates
the amount of information captured by the set of patterns (in this case).

The entropy of an itemset is then calculated from its joint entropy. Let miki =
{I1, . . . Ik} and let Ij ∈ miki such that where Ij = ij ∈ {0, 1} where 0 implies absence of
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item Ij in a row and Ij = 1 implies otherwise. The joint entropy is then defined as:

H(miki) = −
∑

i1∈{0,1}

· · ·
∑

ik∈{0,1}

P (i1, . . . , ik) log2 P (i1, . . . , ik)2 (3.6)

In each iteration every item that already does not exist in miki is added to the set and
the joint entropy is calculated using Formula 3.6. The item that increases the joint entropy
the most is then chosen as the next item in the miki. This approach makes a greedy choice
in each step of the iteration and does not calculate the most informative set. That is due
to fact that solving this problem perfectly is NP-hard.

The parameter k can be chosen by the user. One should consider that if the value k
is not sufficiently large, then the evaluation is partial and does not suffice as a complete
assessment since some parts of the data set will be missed out. On the other hand, un-
necessarily large k will result in an itemset including items that do not provide any extra
information i.e. do not increase the mutual entropy of the miki and hence originate in
the same sections of the data. Consequently querying these items (patterns) will yield
redundant subsets. This is ineffective and in the worst case the similar performance of a
model on the redundant subsets can be mistaken for stability of its performance. Therefore
it may result in an unjust assessment of the model by yielding ill-advised measurements in
the process of evaluation with respect to miki in the data.

The authors of [4] consider integer values of 2 to 7 for the choice of k as they claim this
to be sufficient for their selected data sets. The goal of this method is to maximize joint
entropy of the itemset to be returned. Clearly, the more items added to the set, the higher
the amount of information provided by the set and thus the higher the joint entropy of the
set. However, it is expected that the added information by new items diminishes, as the
size of the itemset grows. A possible approach to find the proper k is to start from the
lowest value 2 and calculate the joint entropy of the set. Each step we find and add the
next item such that its presence in the set increases the entropy the most. After several
iterations the joint entropy will increase only by a small percentage. In other words, the
joint entropy stabilizes. We define a minimum growth of entropy for each next item that
is added to the set and as soon as this criteria is not met, we stop increasing k. We chose
that an adequate increase in the joint entropy is 15% for increment of k by 1.

For each data set, we will take all its bootstraps x∗1 . . .x∗B and we will query each
bootstrap by every pattern in the miki. Note that the individual items in the miki are
considered as patterns. Since the miki contains k items, from each bootstrap x∗i we can
make k subsets by querying each of these items. Hence, for every item in the miki (denoted
by P) we have a set of subsets of the bootstraps:

Each column in the Table 3.3 represents the subsets of bootstraps of the data that are
queried by the same pattern Pi. The subsets in a column e.g. Pi, are representative of
the same substructure of the original data set. To gain insight about the performance of a
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P1 P2 . . . Pk

x∗0 Q(x∗0,P1) Q(x∗0,P2) . . . Q(x∗0,Pk)

x∗1 Q(x∗1,P1) Q(x∗1,P2) . . . Q(x∗1,Pk)
...

...
...

...
...

x∗B Q(x∗B,P1) Q(x∗B,P2) . . . Q(x∗B,Pk)

Table 3.3: Each bootstrap set can be queried by Pi ∈ miki

model in various section of the data (represented by patterns), we collect the compression
ratio of the model for every subset. Then density graph of the compression ratios for sub-
sets within each column of Table 3.3 form an empirical distribution.

The distribution of compression ratio of the model on one sections of data is not in-
sightful when considered in isolation. Since there is no possibility to measure how far off
the distribution is i.e how bad the model is performing on the subset. However, we know if
a model has learned the data evenly in all subsections, then its performance is uniformed
in all of the sections of the data. This fact is then used in the later sections to help us
formalize our evaluation measure.

3.3 A sanity check: Pattern Statistics

We generate numerous bootstrap sets with varying amounts of randomness. It will be ex-
plained in Chapter 4 how we restrain and alter the amount of randomness in the data such
that it does not hinder the main patterns in the synthetic data. In our data generation
method we start from the ground truth which is the main patterns and while generating
the synthetic data (bootstraps) we apply randomness of a desired level. As a result of ap-
plying this method, we will have access to a pool of bootstraps with a variety of noise levels.

It is then interesting to investigate which patterns are found most frequently in these
data sets. To do this, we should run our learning algorithm Krimp on each of the generated
sets to extract the patterns. We put together all the patterns that are found by Krimp
from all of the data sets. Then the statistic we want to track and study is the number of
occurrences of each pattern in each data set. Separating the data sets to groups of different
randomness levels, allows for collection of their associated statistic in groups of data sets
with the same amount of noise. For each group and each pattern to study, we obtain a
distribution for number of occurrences of the pattern.

This experiment help us investigate the performance of our data generation algorithm
and observe if the ground truth that we start with can be found in the generated data. The
most frequent patterns in that are found in the entire generated data sets can be ranked by
their number of occurrences in the entire data sets generated. The patterns of the highest
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ranks should match with the ground truth i.e. the patterns in the original code table.

3.4 Evaluation measures

To obtain a formal evaluation of a model, we aim to find a quantitative measure of its per-
formance. This measurement is then considered as an assessment of the the model from
various aspect. Each part of the main structure in the data set can be considered essential
and therefore, it is expected to be captured by the model. To conduct a fair evaluation,
one must examine the model with respect to all significant structures that it is expected
to learn.

Using the first approach — calculating the compression length/ratio for each bootstrap
set— we can obtain the histograms of each measurement for every model — (M0, M1, . . . ,
MB) learned from the bootstrap samples — yielding the empirical distributions denoted
as p0, p1, . . . , pB.

Moreover, we have the compression ratios of each subset bootstrap (queried by miki
patterns) when compressed by the models. As a result for each model we have a distribution
of the compression ratios per subset denoted by q1, q2, . . . , qk. Each distribution educate
us about the measurements of the model in one section of the data distinguished by a miki
item. This will help us obtain an understanding about evenness of the model’s learning
throughout various segments of the data. A better model strives to uniformly learn these
segments of the data. The variations in the distributions of the compression ratio of a model
in different data subset, can indicate overfitting in some areas and hence underfitting in
some of the other areas.

Ideally, if the algorithm learns a pattern perfectly, the resulting model will compress
the subsets of the data made by querying patterns equally well and even as well as it
compresses the whole data set. Thus the distributions of the compression lengths have
negligible differences (p1, . . . pB). Similarly, if a model has captured a pattern Pi poorly
and it has managed to capture some of it by chance, it should have apparent variations in
its compression ratio distributions of various data set groups.

3.4.1 Kullback-Leibler divergence

To quantify the inadequacy of the model in expressing patterns Pi, i ∈ {1, ..., k}, we
use Kullback-Leibler divergence method [5] to measure the average difference of qi from
p0, . . . , pB.

The distance between two distributions P and Q defined by Kullback-Leibler divergence
is as following:

DKL(P ||Q) = −
∑
x∈X

P (x) log
Q(x)

P (x)
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The KL divergence measure is a way to quantify the difference between two given
distribution based on the information notion or in other words, the entropy. The cross
entropy of distribution P and distribution Q (H(P,Q)) is the average length (in bits) of
a sample of P distribution that is encoded using the optimal compression code of Q. In
case P = Q you can expect the cross entropy to be equal to H(P ) or entropy which is
in average the minimum number of bits needed to encode samples from P distribution.
The DKL measure then captures H(P,Q) − H(P ) which is essentially the extra bits of
information needed to encode P sample using Q distribution instead of P . This in a way
formulates the distance between Q and P distributions. The motivation behind the concept
of this difference is also presented below as we expand and rewrite the formula.

DKL(P ||Q) = −
∑
x∈X

P (x) log
Q(x)

P (x)

= −
∑
x∈X

p(x) log q(x) +
∑
x∈X

p(x) log p(x)

= H(P,Q)−H(P )

3.4.2 Evaluation with respect to the data set as a whole

While DKL is a suitable measure for comparing between two distributions, we should find
an appropriate approach to incorporate it to reach our goal of quantifying the performance
of the model. So far our approaches have obtained distribution of compression rates and
compression lengths for each bootstrap. This gives us a distribution in pm (m ∈ {0, . . . , B})
representing the model and its performance on the entire dataset. These bootstraps are
created at different randomness levels l ∈ {2, . . . , 20}) (later discussed in details). We can
group the measurements per randomness level (for every model m) and form the distribu-
tions Pm = {pm2 , pm3 , . . . , pm20}.

We also have collected distributions of these measures when the model is compressing
the specific subsets of the data (separated by Pi). Let Q = {q1, ..., qk} denote the collection
of all such distributions.

Here we define our evaluation measures as following:
As the randomness level increases in different levels, a perfect model must be able to keep
a steady performance regardless of the noise in the data. Therefore, the first measure for
assessing the model with respect to the entire data is the sum of pair-wise KL-Divergence
of pml , l ∈ {2, ..., 20}. For each model m this is formulated as:

Divergence all(m) =
∑
p∈Pm

∑
p′∈Pm

DKL(p||p′) (3.7)
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3.4.3 Evaluation with respect to all partitions of the data

The other aspect of the model that we are concerned with is the stability of its performance
through different subsets of the data each representing a substructure. To capture this as a
measure, we again use the KL-Divergence as a measure of difference between distributions.
The better the model, the steadier the value of its compression ratio for the subsets, thus
the lower the KL-Divergence of its compression ratio distributions. We add up the pair-wise
differences of the model’s compression ratio distributions for each subset of the data and
consider it as our second evaluation measure. The compression rate distribution of model
m on the subset queried by Pi is denoted by qmi and the set of all of these distributions is
represented by Qm = {qm1 , . . . , qmk }, hence we formulate the above evaluation measure as
following:

Divergence subsets(m) =
∑
q∈Qm

∑
q′∈Qm

DKL(q||q′) (3.8)

Computing the score by the Formula 3.7 and Formula 3.8 provides us with an overall
quantification of the model on the data set. It brings insights about whether the model
has managed to capture the structures well or it learned the data partially.

3.4.4 Evaluation with respect to a single partition of the data

Recall that we have bootstraps from various levels of randomness. If we query each of these
levels by patterns in our miki, we will create bootstrap subsets per randomness level. Hence,
creating distributions of compression ratios per randomness level, per pattern. Taking the
average divergence between distributions of the different randomness levels but the same
pattern, provides insight to robustness of the model in finding a certain substructure and
compressing it in presence of varying amounts of noise. For each pattern Pi several subsets
S1
l , ..., S

B
l are formed where l is the randomness level and l ∈ {2, . . . , 20}. For model

m, the compression ratios of these subsets are calculated and result in CR(Sb
l ) where l

ranges in {2, . . . , 20} and b ranges in {1, . . . B}. For each choice of l and i (Pi) we have
a distribution of compression ratios denoted as qil . The difference between distributions
of the compression ratio of subsets made by the same pattern and different randomness
levels should be minimized as the model’s performance increases. In that case, it can
easily compress the same subsection of the data including a substructure when its noise
varies. Let L = {2, . . . , 20} , i be the pattern index and m be the model index, then the
formulation of this measure is as following:

Divergence(m, i) =
∑
l∈L

∑
l′∈L

DKL(qil ||qil′) (3.9)

The difference of Measure 3.9 from the previous two approaches is that this measure is
a way assess the model with respect to only one substructure of the data rather than the
whole data. The overall performance of the model on the entire data might be a blend of
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a poor and a good performance. While with this measure we can decide what parts have
been learned the least and the most.
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Chapter 4

Data Generation

4.1 Data Generation

For the purpose of experimenting the evaluation methods, it is essential to generate the data
synthetically such that we have full knowledge of the ground truth. Hence, we attempt to
generate the data according to the code table of some known data sets. The data generation
algorithm then gets the code table as the ground truth, the synthetic data generated using
the algorithm then is designed in a way to comply to a ground truth.

Furthermore, as mentioned previously, we need to add controlled amount of randomness
to the generated data for the purpose of testing the models in various noise levels. This is
controlled by some parameters that can be passed to the data generation algorithm and is
explained further in this section.

4.2 Data Tree

Besides the occurrence of patterns in the data set, their co-occurrence is also of importance.
There are certain patterns that occur more often together and on the other hand there are
patterns that rarely happen together. The associations of the patterns must be preserved
through the process of data generation otherwise the generated data will not include similar
associations as the original and hence the co-occurrences can be different. Consequently,
applying Krimp learning may in such generated data set result in newly introduced patterns
that originally did not (partially) exist in the ground truth.

As we reasoned, the knowledge of patterns co-occurrences must be applied to the process
of data generation in order to generate synthetic data that can accurately represent the
original data set and keep its integrity. For this purpose we introduce the notion of Data
Tree. The tree keeps track of the co-occurrences of the patterns. The production procedure
of the Data Tree is explained in the following subsection.
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4.2.1 Data Tree Generation

Running Krimp algorithm on D results in the code table CTD. Then the compression of
D by CTD is represented by Cover(D, CTD) hence we also call it cover of D. Each row
of the cover is the compression of the corresponding row of the data set, meaning that it
includes the collection of patterns that compresses the row.

The tree is made of nodes and each node holds the following information within:
counter, pattern, parent and children. Initially the tree only contains the root node and
such that includes root.counter = 0, root.parent = null and root.children = {}. In order
to generate the Data Tree, we start by reading each row of the cover, which yields a list
of patterns. We order this set according to the ordering of the code table CTD (this or-
dering can be done with respect to other criteria too). Let us denote this ordered list by
R = {P1, P2, . . . Pn} where each element of the list is a pattern from the code table that
exists in the corresponding row. Needless to say, all patterns are mutually exclusive and
together they have all the items that exists in the row. After sorting the path that is to
be added to the tree, we find the right position in the tree that it can be added. To clarify
this, consider an arbitrary row ABCD in the cover which is to be added to the tree. If
the path ABC already exists in the data tree there is no need to add a separate path to
the root, we can just add a child with pattern D to the last node of the path ABC. So
in Algorithm 1 in lines 5 to 20 we attempt to find the largest part of R (starting from
the beginning of R) that already exists in the data tree and only add the remaining to
the right node in the tree. In parallel we also update the number of times we traverse the
nodes in the tree for the purpose of probability calculations. Once all the rows in the cover
are added to the tree we return the root node representing the data tree (Algorithm 1).

The tree as generated by the algorithm we presented, captures the entire data set and
the co-occurrences of patterns. Taking a random walk in the tree to a leaf results in a path
and putting together items in the patterns of the nodes in the path, results in generating
a row of the cover. Then putting the items in these patterns together in a set forms the
corresponding row in the data set. Hence, taking a random walk in the tree results in a
random row of the data set. The motivation behind this procedure for generating the rows
instead of resampling the data set directly is to be able to add randomness to the relevant
segment of the data e.g. the noise.

It is however important to generate a row according to its probability. Some co-
occurrences of patterns are more probable and hence rows including such combinations
must happen relatively more often. In order to apply this consideration to the process of
generating random rows, we make use of the count measure that is being updated in the
node. While taking a random walk, in order to decide which child to choose as the next
node, we generate a random number and use the count parameter of the children as their
probability measure we can decide what node is the next in our path. Hence, our random
walk will comply to these probabilities so that the bootstrap that is made using the tree
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Algorithm 1 Generate Data Tree Input: (Cover, code table) Output: (root)

1: procedure GenerateTree(Cover, CT )
2: Let root be a node
3: Let root.parent = null, root.counter = 0, root.children = {}
4: for each line of Cover denoted by R do
5: Sort R according to CT
6: Let current = root
7: current.count + +
8: for i from 1 to R.length do
9: Let n be the a node in current.children such that it has pattern R[i]
10: if n == null then
11: for j from i to R.length do
12: Let n′ be a new node with n′.pattern = R[j]
13: n′.parent = current
14: n′.count = 1
15: current.children.add(n′)
16: current = n′

17: end for
18: else
19: current = n
20: current.count + +
21: end if
22: end for
23: end for
24: return root
25: end procedure

is an accurate representation of the data set.

4.2.2 Introducing randomness

It is desirable to add controlled amount of variations to the data such that it does not
change main structure and only influences the noise present in the data. It is expected
that the randomness added to the noise of the data i.e. randomizing the noise present in
the data, does not hinder the main structure of the data and hence has low effects on the
learning of the data. Therefore, once this synthetic data is compressed its compression
length should not differ significantly from the original data set. It is also valuable to note
that if the randomness is applied carelessly such that it ruins the structure of the data will
cause uneven and considerably poor performance of the original model.

Even if the variations are added properly to the data set, as we increase the randomness
it enters the parts of the data that is deemed as the structure, it is expected that the code
table extracted from the original data set is unable to compress such noisy data well. It is
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hence interesting and essential to investigate various levels of randomness in the data.

In the process of generating the data tree, we add rows of the cover to the root node.
The patterns in the rows are sorted based on a measure of importance i.e. the same order
as the code table. The adding process of the cover first tries to traverse the tree as long as
patterns of nodes visited is the same as pattern in the cover in the right order. As it does
so, it also increments the count parameter in each node by one. Therefore, the algorithm
keeps track of the number of times a certain sequence of patterns have occurred. The
longer the sequence, the less number of occurrences it has. Thus, as we get closed to the
leaves of the tree the count parameters decrease. The minimum for the count parameter
is one.

To control the level of randomness we use the notion of minimum support (minsup) as
a threshold to prune the data tree. After generating the data tree, we traverse the tree and
for every node n if n.count < minsup, then n and all its descendants get eliminated from
the data tree. Thus, minsup works as a threshold for pruning the least likely subsequences.
We can experiment with different values for this parameter to see the effect of it on the tree
post-pruning. Needless to say, as minsup increases, the size of the pruned tree decreases
(Algorithm 2).

We have chosen to work with rectangular data sets, meaning that all rows of the data
set have the same length r. After pruning the tree, the random walks in the tree can be
possibly result in an itemset smaller than r. This is then the room for adding randomness
to the synthetic data as we extend every insufficiently small row that we generate so that
it complies to the rectangular size of the data set before it is added to the synthetic data
set. Also note that the rows generated from the data tree never have more than r items,
where r is the size of the rows in the original data set that the data tree is generated from.

To fix the rows with less than r items, we add singletons according to their probability
in the cover. It can be the case that some items mostly co-occur with other items and
hardly occur as singletons, taking the probability associated with the code length of the
singletons in the code table allows us to comply to these situations.

Another way to accommodate for randomness is to prune the nodes of the tree that
hold a singleton as pattern (Algorithm 3). Such patterns are added to the code table to
make sure that all items are included in the code table and as a result every row can be
compressed. It is hence reasonable, to think of the singletons in a row more of noise than
the structure and use this reasoning as an other pruning strategy. After pruning singletons,
the tree that we are left with only includes patterns consisting two or more items.

Again this results in the possibility that some of the walks in the tree result in rows
with less than r items. Again to fix this we randomly add singletons for the row according
to their probability. This way we are randomizing the noise in each row of the data.

It is essential to note that some of the items cannot co-occur as it was explained in the
Chapter 2 each column represents an attribute and its value is chosen from its domain.
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Algorithm 2 Minsup Pruning Input: (root, minsup) Output: (root of the pruned
tree)

1: procedure MinsupPruning(root,minsup)
2: Let q be a queue with root node in it.
3: while q is not empty do
4: Pop the first node in q and call it n
5: for each child in n.children do
6: if child.count < minsup then
7: remove child from n.children
8: else
9: add child to the end of q
10: end if
11: end for
12: end while
13: return root
14: end procedure

Each attribute must have only one value assigned to it, thus the items that are in the same
domain cannot be both present in a row. To address this, prior to the data generation we
calculate the domain of each column (attribute) from the original data set and we take
them into consideration while adding singletons to the purpose of fixing the length of the
randomly generated row. Needless to say, the part of the row that is generated from the
data tree, does not require domain check since the data tree is generated from the cover
of the original data which includes valid patterns, as a result itemsets generated from the
tree are valid.
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Algorithm 3 Singleton Pruning Input: (root) Output: (root of the pruned tree)

1: procedure SingletonPruning(root)
2: Let q be a queue with root node in it.
3: while q is not empty do
4: Pop the first node in q and call it n
5: for each child in n.children do
6: if child.pattern is a singleton then
7: remove child from n.children
8: else
9: add child to the end of q
10: end if
11: end for
12: end while
13: return root
14: end procedure

4.3 Sorting criterion

As mentioned previously, the patterns in rows from the cover are first sorted before being
added to the tree. The first criterion that can be used for sorting these patterns is the
order of the code table. The code table is sorted based on the pattern length. It is also
interesting to experiment with sorting by some other criteria such as code-length of the
pattern, linear or non-linear combination of pattern length and code length of patterns.

For the linear combination of the code length and pattern length we have considered
the following as measures:

• code length

• pattern length

• code length− pattern length

Moreover, we also also apply the following non-linear criteria to the process of tree
generation and data generation.

• code length/pattern length

• code length× pattern length

• pattern length/code length

In the experiments (Chapter 5) we have illustrated and compared their effects on the
generated data and its compression.
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Chapter 5

Experiments

5.1 Data Generation

To generate synthetic data, we made use of some of the well-known data sets in UCI
database.

• iris

• breast

• heart

• mushroom

• led7

• ionosphere

• tic-tac-toe

• pima

• wine

After mining each data set using Krimp, we used their code tables and covers as the
ground truth for generation of our synthetic data. The data tree made for each pair of
code table and cover is created as explained in Algorithm 1 and then pruned according to
both strategies in Algorithm 2 and Algorithm 3.

In our experiment with the minsup pruning strategy we use the thresholds for minimum
supports of {2, 3, . . . 20} and for each minimum support we generate 25 synthetic data sets.
As a result in total we have 475 bootstraps for each data set and these bootstraps contain
varying levels of randomness. We also generate 50 bootstraps for the singleton pruning
strategy to hold a comparison with the other method.

For each bootstrap we have generated the same number of rows as its original data set.
Each row is fixed according to the specifications of the data set which are the domain and
the row size. As a result the generated bootstraps are close representatives of the original
data set.

Assessment of Unsupervised Models:
In pursuit of an evaluation measure

25



CHAPTER 5. EXPERIMENTS

5.2 Compression & Code table

It is expected that as the minsup threshold grows we prune more parts of the data tree
and hence, partially remove the structure of the data. Therefore, it is normal to observe
an increase in the compression length as this threshold grows. All data sets behave similar
to Figure 5.1 showing an upward trajectory indicating increase of the compression length
as the minsup increases.
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Figure 5.1: The boxplot of compression lengths for 25 trials per minsup.

There are cases in which the growth of compression length is more subtle and a sharp
increase is not observed. For example, the iris data set is one of such cases (Figure 5.2).
The increase of minsup results in larger portions of the row being random. In the case of
iris data set, due to the short length of the rows (five items) and hence short patterns, the
permutations of items added to the end of rows as randomness is very limited and it can
easily coincide with a pattern. Although we prune more from the structure as we increase
minsup, however, because of short length of patterns and thus limited combination of the
items, while randomly fixing the rows by adding singletons we sometimes end up generating
the patterns that we have pruned in the row. As a result, increasing the minsup does not
have as severe of an effect as we observe in the other data sets (Figure 5.2).

Using the singleton pruning strategy, we have made bootstraps for each data set. The
compression length of the bootstraps has approximately unimodal distribution in various
data sets (Figure 5.3). These bootstraps are nice presenters of the data set. However, the
randomness that is added to such synthetic data, is less in control and is very dependent
on the structure of the original data set. If there are more singletons at the end of rows in
the cover, the randomness we add is more since larger part of each row with be eliminated.
Otherwise, the randomness is less and in both cases it is not quantified.
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Figure 5.2: The minimum support pruning strategy does not influence the compression
length of the iris data. The short pattern and short row lengths makes possibility of
accidentally making patterns by adding random singletons higher.
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Figure 5.3: The distribution of the compression length when data is generated using the
singleton pruning method is fairly unimodal.
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5.3 Cross-Compression

After generating the synthetic data sets, we used Krimp to find the code tables of each of
the synthetic data sets. In this step, we use these code tables to cross compress all the
synthetic data generated from the original data set.

Then we proceed to compressing all the synthetic data sets. This is only done for the
synthetic data with minsup threshold, as the variations in noise makes it interesting to
study. In the case of cross compressing the data generated with the singleton pruning
strategy we will not be able to extract any knowledge of how each model handles the noise
and which model does a better job at finding the structure regardless of higher noise.

The cross compression is performed by applying 475 code tables to 475 synthetic data
sets. This returns a sizeable of 475× 475 indicating the compression length given the data
set and the code table it has been compressed by.

Every synthetic data set is generated using minsup ∈ {2, 3, . . . , 20}. For each minimum
support we generate 25 trials or in other words 25 data sets. Each of these synthetic data
sets have a corresponding code table as well. Our goal is to see the effect of variations
in minimum support in ability of the extracted code table to compress the data sets in
different levels of randomness. Hence, for the code table at minimum support of s and
the data set at minimum support of s′ we want to gather information about the average
compression lengths or the distribution of the compression length. For each choice of s
and s′ there are 25× 25 compression lengths available.

Another parameter that we introduced was the sorting method that we will use for
construction of the data tree. Sorting of paths before adding them to the tree has a direct
effect on what pattern gets to be eliminated in the pruning procedure as the last patterns in
the path have higher chances in having lower count variables i.e. lower support and hence
they will be eliminated together with all their descendants. Since the descendants also have
equal or lower count. Changes in sorting method allows for experimenting with where we
want to add the randomness to the data. If the portions of the data that we randomize is
closer to the true noise, the changes in compression lengths in the cross-compression matrix
is more subtle. As opposed to this, if we add the randomness to the portions of the data
that was structure then we observe more significant increase in the compression lengths in
the cross-compression matrix as the randomness level increases. Using this reasoning we
attempt to study the sorting methods and find the most effective of them.

One of the examples for the cross-compression is illustrated in Figure 5.4. The syn-
thetic data generated for this cross compression is made by trees created with the pattern
length sorting criterion. The y−axis illustrates the code tables learned on data of various
minsup. The x−axis indicates the data of various minsup. It is important to note that
the size of the circle at (i, j) where i is ct-led7-syn-i and j is led7-syn-j, illustrates the
average compression size of the 25× 25 = 625 corresponding trials.

There are a number of aspects in this balloon graph that is aligned with our reasoning
regarding the data tree and embedding of randomness to the data. The main axis of the
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Figure 5.4: The cross compression of “led7” data set. All the synthetic data generated
for this cross compression is produced using the pattern length sorting criteria. The
y−axis shows code tables learned from data of various minsup and the x−axis represents
the data sets of various minsup. The size and color of each circle indicates the average
compression length of 625 trials, same as the color schema. The main diagonal indicates
the compression length of the models compressing their own data.

matrix contains the compression length of data sets when compressed by their own code
tables. Naturally, this results in the lowest compression lengths in their column (other
code tables compressing the same data) and row (other data sets being compressed by the
same code table). This is sensible since the code table of each data set is extracted in a
way that it best compresses its data set. Also the model learns the data and attempts to
fit it best, including the noises introduced by us. Therefore, as you observe in the graph,
the closer each circle is to the main diagonal, the closer it is to its intended data set or
code table and thus the smaller size (avg compression length) it has.

Another trend visible in Figure 5.4 is the effect of increased randomness on synthetic
data sets and on their code tables. As the minimum support increases and consequently
the randomness increases, more of the structure is lost in the code table. This results in the
data sets being harder to compress and impacts the learning of the code tables. Therefore,
circles in the bottom left corner and the top right corners have larger sizes.
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In the case of led-7 the bottom left corner is doing worse i.e. the average compression
length increases considerably. This is a result of insufficient learning of the structure in the
data with higher amount of noise. This is caused by overfitting to the significant noise.
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Figure 5.5: The cross compression of pima data set. The synthetic data is generated using
the pattern length criterion for sorting data tree paths. The y−axis shows code tables of
various minsup and the x−axis represents the data sets of various minsup. The size and
color of each circle indicates the average compression length of 400 trials.

Similar trends are visible in the cross compression results of other data sets in Figure 5.5
for the pima data sets. The difference is that the increased noise in the data worsened the
performance of models of lower minsup more noticeably compared to the performance of
models of higher minsup on low noise data. It implies less overfitting in the latter models.

5.3.1 Various sorting criteria

All the cross-compression results observed so far are made using the pattern length sorting
criterion. This criterion is the same criterion that sorts the code table returned by Krimp.
So we apply the same ordering as the code table to the patterns in one line of the cover.
As mentioned in Chapter 4 we also consider other methods to sort the paths. Here we
illustrate their effect on the compression length averages when cross-compressing data sets.
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(a) pattern length/code length
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(b) code length− pattern length
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(c) code length/pattern length
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(d) pattern length× code length

Figure 5.6: Various sorting methods used in generation of data.

As you can observe from Figure 5.6 the change in the sorting method results in minor
variations in the four methods mentioned in Table 5.1.

However, they all differ from the pattern length criterion presented in Figure 5.4 with
respect to the first column of the cross-compression matrix. The pattern length sorting
method makes relatively more uniform averages for compression lengths. This is the result
of more subtlety in adding randomness in the data set meaning that the randomness is
truly added to the noise, and as we increase the level of randomness it exaggerates the
noise to the point that it impacts the structure of the data. The consequence of using
the sorting methods in the Table 5.1 on the rest of the data sets is similar. Hence, we
have decided to use the pattern length as our main sorting method used for the rest of
the experiments as they can be computationally expensive and repeating them sixe times
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pattern length/code lengt code length− pattern length
code length/pattern length pattern length× code length

Table 5.1: This group of criteria for sorting result in highly similar effects on changes of
the average compression ratio (circles) through the cross-compression matrix.

is not desired.

5.3.2 KL-Divergence for compression length distribution

One of the interesting experiments that can be done for the purpose of comparisons of
models with regards to the data set as a whole is checking the stability of the model in
various stages of randomness.

As mentioned previously, ideally, if a model learns the data well, it will be able to com-
press it just as well when the noise is increased. However, inevitably as the noise increases
in the data it will eventually have significant impact on the model’s ability to compress
the data since the models we learn are imperfect. Hence, we strive to learn models that
get closer to the ideal case and as a result minimize the deviations of model performance
as the noise in the data increases.

As planned in the Chapter 3 for each code table, we apply the KL-Divergence measure
on the distributions of compression lengths of the data with varying levels of randomness.
We then plot the results of pairwise KL-Divergence for models learned on each randomness
level i.e learned on data sets of each minsup ∈ {2, ..., 20} .

In the iris data sets you can notice that the models with minsup = 17 clearly have the
lowest variation in their averages of compression lengths per randomness level of data sets.
In this case, the pairwise KL-Divergence of the compression length of these models also
happen to be the lowest. While the averages in the models of minsups 6, 7 and 8 seem to
vary more than models of minsup 12, 13 and 17, but their distributions seem to diverge
almost similarly.

In the led7 data set there are numerous models that have low variance distributions.
Some of the models are acquired from the data sets of low randomness. While some other
are obtained from the data sets with higher noise.
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(a) iris cross-compression matrix (b) Pairwise iris KL-divergence

(c) led7 cross-compression matrix (d) Pairwise led7 KL-divergence

Figure 5.7: In Figure 5.7a and Figure 5.7c we have illustrated the models with the lowest
variations in their distributions by the red boxes. Similar to Figure 5.4 the circles in these
figures also shows the average of compression lengths of 625 instances. The groups of data
sets (of the same minsup) with the lowest pairwise KL-Divergence are indicated by the red
boxes in Figure 5.7b and Figure 5.7d. The x−axis in Figure 5.7b illustrates the minsup
variable for the models.
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5.4 Most frequent patterns statistic

As we suggested in Chapter 3 we collect the statistics on the patterns that occur in any of
the synthetic data sets generated. Namely, we collect the number of occurrences of each
pattern in each data set, in each group of synthetic data with the same minsup parameter
and also in total (summation in all data sets). For each pattern the distribution of its oc-
currence is extracted from data sets of the same minsup level. This allows us to compare
the distributions across the randomness levels using KL-Divergence.

If a pattern has been occurring considerably often in a large portion of the data sets,
it is a significant and important pattern. As a confirmation we have collected these pat-
terns and compared them with the patterns of the original code table from which all this
data has been generated. Indeed, the most frequent patterns in the synthetic data is the
ones with the lowest code length i.e. the highest occurrence in the original cover. This is
completely sensible since the code table is used as the ground truth and the synthetic data
generated using the ground truth must follow it.

As you can clearly observe in Figure 5.8, the distributions start to vary more noticeably
as the rank of their corresponding patterns increases already in higher ranks ,namely, #
1, # 2, # 3, # 4. It is however the question if the same trend is observed when the rank
goes lower. If that is the case the KL-divergence measure that we use as an indicator for
the difference of distributions must increase.

Given two distributions, KL-divergence returns a measurement of their difference. Each
pattern has 25 distributions associated with it. We sum up their pairwise KL-divergence
measurements and use it as a measure indicating the deviations of distributions. Doing
this for the 60 most frequent patterns found in all 475 data sets (of iris in this case), we
can find out if a general trend holds for the patterns.

As illustrated in Figure 5.9 as the total frequency of the patterns decreases the more
random their occurrences becomes in the generated data sets and hence their pairwise
KL-divergence increases more sharply. In fact, the number of patterns in the original code
table of iris data set i.e. the ground truth that the iris synthetic data set is generated
from is 31. Therefore, the rest of the patterns in our ranking are found randomly from
the noise and as you can see as the ranking goes above 30 the pairwise KL-divergence
exhibits clearly more deviations from the general trend as a sign that those patterns only
are captured from the noise.

The same tendency is observed in the rest of the synthetic data generated. In some of
the data sets it is the case that the pairwise KL-Divergence stays similar throughout the
higher ranks and it starts increasing sharply from a certain rank.
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Figure 5.9: The trend of increased variations holds for all the significant patterns in the
iris data set.
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5.5 Directed subsets

In this section we attempt to separate the data sets into meaningful subsets that include
correlated data points and use the code tables on these data sets to retrieve information
regarding the performance with respect to each subset of the data. The reasoning for this
approach is fully explained in Chapter 3.

To do this we find the miki for each data set then for each item in the miki retrieved, we
make the corresponding subset of the data by including all rows of the data that contains
the item. We also keep subset of the data that excludes the item to be able to study the
effect of it.

As we apply the miki algorithm on the original data sets, we also keep inspecting the
entropy as the k parameter i.e. the number of items in the miki, increases. If the growth of
entropy goes below the threshold of 15% we stop increasing k. It turns out that the proper
value for k is the row length of the data sets. This is reasonable as each of position in the
row is an attribute with a certain domain. When we know value of an attribute, knowing
about the values that it has not acquired does not provide us with any new information.
As a result it is sensible that as the number k grows beyond the row length the additional
information is insignificant and below the threshold we have in mind.

Having the right set of miki for each original subset, we can use it to create subsets
from every synthetic set generated. For every item i ∈ miki we query every synthetic set.
Hence item i results in generation of 475 subsets out of the synthetic data. Doing this for
every item in the miki leaves us with k × 475 × 2 for each data set (×2 because we both
have subsets including and excluding an item).

When the separation of the data is over, the next step is to use all the models found
from the cross compression part of our experiments on every subset that we have formed.
We have 25 models per minsup level. We apply each of the 475 models to these subsets
and extract the compression ratio for each subset.

As an indication of excellent performance we considered the pairwise KL-divergence of
the compression ratio distribution for the various subsets of data. To be more specific, the
distribution of compression ratios are made using the compression ratio collected from the
subsets of the various randomness levels.

It is expected from a perfect model to exhibit similar performance across all subsets of
the data set. We evaluate this by comparing the compression ratio among all the subsets
of the data.

Firstly, we observe the performance of the models of various minsup, in each individual
subset. Each item in miki is represented by a number in the range [0, k), this number
represents the rank of the item as you can see in the legend of Figure 5.10 and Figure 5.11
and the rank is based on the increase of entropy e.g. the item represented by 0 increased
the entropy of miki the most once added to the set.

screening the variations in distributions made on each subset is done with the motiv-
ation to understand which subsets have been learned better and by which of the models.
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Figure 5.10: Each point represents the summation of pairwise KL-Divergence for models
of a certain minsup for a specific subset (represented by a color).

Knowing the pairwise KL-divergence of distributions associated with every subsets of the
data provides us with knowledge regarding how easily the subset is learned by the models
in general. For example, if the subset is more easily learn-able then it is expected to results
in low kl-divergence in various models. This is made more visible in Figure 5.11 as you can
trace each item by the line. In this case subset of item #1 seems to have low divergences
for its compression ratio distributions of all models.

We also noticed that it can be informative to observe the boxplots of the points presen-
ted in Figure 5.10 when grouped by models’ minsup. This compares the quality of learning
among various subsets. The boxplots are illustrated in Figure 5.1 and it is observable that
the average quality of learning is similar and only the variations can tell us something
about the evenness of learning within these subsets.

If we shift our focus from the quality of learning in subsets to the general quality of
learning in the models. One of the ideas to check the capability of the model to learn the
subsets uniformly was to calculate the divergence of the compression ratio distributions of
all these subsets. In other words for each model we have accumulated all of its compression
ratios per subset. As a result we capture a distribution for each subset. The KL-divergence
is then calculated on these distributions. This way we will be able to tell how similar the
distribution of compression ratios are in various subsets of the data i.e. how evenly the
model has learned the data.
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Figure 5.11: Each line represent a subset of the iris data set.
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model made using a certain minsup.



(a) iris (b) breast

(c) led7 (d) heart

Figure 5.13: The changes in uniformity of learning subsets of data for the models as their
minsup increases.





Chapter 6

Summary and Conclusions

We have shown many possibilities to study the data and also the performance of models
learned on the data. Each data set that we have used comes with certain characteristics
and density; hence it is expected that our experiments yield varying result per data set and
so our conclusions for the best model for each data set can point to a different model i.e.
models from different randomness levels. We made an attempt to find a universal measure
that can be used on the unsupervised models to extract their proficiency in expressing
the data. This allows for comparison among models extracted from the same data and the
possibility to rank them regardless of the algorithm that is used to learn them and whether
it was unsupervised, semi-supervised or of any other category. Consequently, the measure
yields a number for any two given models that facilitates the comparison between them.

In our experiments we introduced some possibilities that have the potential to serve
as a universal measure, however, they each focus on one essential aspect of the learning
process which must be evaluated. As a result the assessment process merely depends on
the aspect that is deemed important to evaluate. One may regard the general performance
of the model on the entire data important, while another values the evenness of a learning
algorithm and consequently the model. To clarify this with an example, data set D may
contain a significant subset DA and a rather smaller subset DB that are mutually exclusive.
Consider a model M1 that learned the subset DA very well, it may even overfit to this subset
while it captures DB poorly. Also consider a model M2 that has learned the two subsets
almost equally well but not as well as M1 has captured DA. In this scenario it can be the
case that the total performance of M1, e.g. its total compression length, is much better
than that of M2.

This does not necessarily imply eminence of M1 over M2. If the user of the model values
the uniformity of the model’s performance over various subsets of the data, then the high
total performance of the model is not informative and does not lead to any conclusions
for the user. In other words, the user wants to avoid overfitting and underfitting in the
subset of the data and naturally the more uniformly these subsets are learned the less is
the overfitting and underfitting of the data. The opposite can also be the case where the
total performance is valued over the uniformity of the performance in the subsets of the
data, and hence models such as M1 are preferred to M2. As a result there is no standard
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procedure or measure to answer our question about superiority of a model over another.
For each problem to be solved by a model, we have a certain goal to achieve. The goal may
differ from problem to problem hence different methods must be used to measure how far
the resulting model has landed from the initial goal for solving the problem.

In this project we have investigated multiple methods for assessment of each of the
valuable aspects of a model for its user. In the first approach we extracted information
about the performance of the models with respect to the data as a whole by constructing
the compression matrix. The compression matrix illustrated the influence of increasing
the randomness of the data on the models learned from it. The variations in ability of the
model in compressing the data of different minsup parameters is closely studied in this
approach. As we reasoned before, the variation of performance is a strong indicator for
the quality of the model since it implies stability. So in addition to the balloon plots (e.g.
Figure 5.4) we also considered the KL-divergence of the distributions of performance of
the models (e.g. Figure 5.7d). Let us take led7 as an example data set that we want to
study closely. In Figure 5.4 we observe that the code tables of minsup 2 to 12 have high
performance as their average code length is low. When we only look at the steadiness of
this performance we obtain Figure 5.7d that tells us the models 2, 3, 4, 5, 8 and 10 beside
having a high performance they also have stability in their performance as the randomness
of the data set increases.

In our second approach we study the model with respect to meaningful subsets of the
data (almost mutually exclusive). This is done with the motivation to investigate how
well subsets of the data are learned by the model. To this end we extracted the most
informative k-itemset to be able to separate the data set into correlated subsets consisting
of substructures of the data. We have used all code tables to compress these subsets of the
data and then we extracted information regarding the stability of the model’s performance
in each subset e.g. in Figure 5.11 or Figure 6.2a for the led7 data set. The subsets
with item 5 of the miki in, the led7 data set is considerably harder to learn in the data
sets with minsup ∈ {2, 3}. Consequently, the models learned on these data sets are not
the top performers in the cross-compression matrix and counter intuitively the models of
higher noise e.g. minsup ≥ 4 managed to reach lower averages for compression of the
data (Figure 6.1a). Moreover, as the stability of the compression ratio deteriorates for
subsets of item 1 for minsup ≥ 17, item 1 yields significantly larger subset of the data
as it also ranks higher in increase of entropy once added to the miki. This heavily affects
the learnability of the data set as you notice in the bottom left corner of the compression
matrix in Figure 6.1a i.e the models retrieved from data sets of minsup ≥ 17 hardly learn
the major part of the data (subset including item 1) and that results in poor compression
length of the models.

The subsets of the data are similarly learnable in randomnesses of 4, 5, 6, 7 and 8
as the KL-divergence of the subsets’ compression ratios are close i.e. the lines are more
concentrated in Figure 6.2a. Considering the performance of the models with respect to
these subsets, you can observe that the models learned on the data sets of minsups 5, 6,
7, 8 result in a more even capturing of the subsets (Figure 6.2b). These models also show
a significant total performance in the cross compression matrix as their total compression
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Figure 6.2: Second approach. The subsets of the data are similarly learnable for random-
nesses of 4, 5, 6, 7 and 8 as the KL-divergence of the subsets’ compression ratios are close
i.e. the lines are more concentrated in Figure 6.2a. Then considering the performance of
the models with respect to these subsets, you can observe that the models learned on the
data sets of minsups 5, 6, 7, 8 result in a more even capturing of the subsets (Figure 6.2b).
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lengths are low throughout varying amounts of randomness. Among these models, the
models of minsup = 5 have a stable overall performance as well, as you can see in the red
box indicating the models with the lowest KL-Divergence of compression length distribu-
tions in Figure 6.1b.

Having rankings of the models with respect to various criteria, e.g. evenness of learning
or total performance, aids the user to pick the model that best fits the goal of the project.
Although, in this case some of the models come very close in all criteria and can be used
interchangeably as they have almost the same performance in all aspects.

This approach is also usable in practice when one data set is available and we would
like to evaluate available models to be able to rank them with respect to various criteria
and choose the best. The bootstraps can be made without extra randomness and proceed
to the approaches that we introduced to assess the models. The added randomness in a
sense aids us in assessing the robustness of the models to noise. As long as we do not
want to use the code table of the data to add the noise, we can use the original data set
to generate our bootstraps. Furthermore, the miki itemset can also be found on the data
given and then the resulting miki can be used to query all the generated bootstraps to
form subsets. This provides us with means to apply our second approach.
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Figure B.1: Led7 data set: Pattern Length sorting method used for data generation.
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Figure B.2: Iris data set: Pattern Length sorting method used for data generation.
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Figure B.3: Pima data set: Pattern Length sorting method used for data generation.
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Figure B.4: Wine data set: Pattern Length sorting method used for data generation.
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Figure B.5: Led7 data set: Code Length sorting method used for data generation.
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Figure B.6: Iris: Code Length sorting method used for data generation.
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Figure B.7: Pima data set: Code Length sorting method used for data generation.
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Figure B.8: Heart data set: Code Length sorting method used for data generation.
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Figure B.9: Wine data set: Code Length sorting method used for data generation.

Figure B.10: Iris data set: Divergence of distributions per miki subset, representing learn-
ability of the subset.
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Figure B.11: Breast data set: Divergence of distributions per miki subset, representing
learnability of the subset.
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Figure B.12: Heart data set: Divergence of distributions per miki subset, representing
learnability of the subset.
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Figure B.13: Led7 data set: Divergence of distributions per miki subset, representing
learnability of the subset.
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Figure B.14: Pima data set: Divergence of distributions per miki subset, representing
learnability of the subset.
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Figure B.15: Tictactoe data set: Divergence of distributions per miki subset, representing
learnability of the subset.
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Figure B.16: Wine data set: Divergence of distributions per miki subset, representing
learnability of the subset.
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Figure B.17: Iris data set: Measure of evenness of learning among all subsets. The higher
the divergence measure in the graph, the higher the chaos and uneven learning of the
subsets.

Figure B.18: Breast data set: Measure of evenness of learning among all subsets. The
higher the divergence measure in the graph, the higher the chaos and uneven learning of
the subsets.
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Figure B.19: Heart data set: Measure of evenness of learning among all subsets. The
higher the divergence measure in the graph, the higher the chaos and uneven learning of
the subsets.

Figure B.20: Led7 data set: Measure of evenness of learning among all subsets. The
higher the divergence measure in the graph, the higher the chaos and uneven learning of
the subsets.
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Figure B.21: Pima data set: Measure of evenness of learning among all subsets. The
higher the divergence measure in the graph, the higher the chaos and uneven learning of
the subsets.

Figure B.22: Tictactoe data set: Measure of evenness of learning among all subsets. The
higher the divergence measure in the graph, the higher the chaos and uneven learning of
the subsets.
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Figure B.23: Wine data set: Measure of evenness of learning among all subsets. The
higher the divergence measure in the graph, the higher the chaos and uneven learning of
the subsets.
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