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Abstract

As our societies are becoming ever more digital and reliant on automated systems, it becomes
increasingly important to monitor the technologies we depend on using automated systems to
guard against failures and downtime. While many fault detection solutions have already been
proposed, we found that methods for continuously monitoring the state of a system in an ex-
plainable way have not yet been widely researched, while this could provide helpful information
to the user. Therefore, we propose C-DBNs, a special case of Dynamic Bayesian networks
that have been tailored to classify dynamic processes using existing probabilistic models. We
also introduce S-RAD: a novel method for automatically discretizing datasets for usage with
C-DBNs to automate the process of learning explainable models even further. Our first results
seem promising and provide a reliable alternative to existing methods of discretization without
prior knowledge.
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Chapter 1

Introduction

As our societies are becoming more digital and reliant on automated systems, it becomes in-
creasingly important to monitor the technologies we depend on. With rising amounts of data,
it has become untenable for humans alone to take on this task. Therefore, much research has
been done towards finding machine learning solutions that help us analyze patterns and spot
potential problems [9,16,19,31]. One interesting domain is that of monitoring systems over time
and classifying their status. Examples of this could include predicting dangerous weather con-
ditions, spotting erroneous behavior in servers, and classifying road conditions. These problems
all involve a temporal component in which variables gradually change, and an entire situation
needs to be classified. In the context of monitoring systems, some human intervention or change
of behavior is often required upon reaching a certain classification. It can, therefore, be helpful
to have a system that can explain its predictions and provides a certain amount of reasoning
for the decision that it has taken. This explanation could allow the user not only to check the
reasoning process but also attain more context so they can react faster.

Before writing this thesis, we were unable to find existing research that combines the idea of
continuously classifying time-series in doing this an explainable fashion. It is, therefore, the
aim of this thesis to describe an approach of how such a system can be implemented. For
this, we use Bayesian networks as an underlying model. BNs can reason with uncertainty using
probabilities and produce a graphical model in which relationships between different variables
are shown. These networks can be queried for alternative situations as well as the certainty of
its decisions, which both provide a lot of opportunity for creating an explainable system.

The creation of a Bayesian network for monitoring continuous systems is not trivial, however.
First, there needs to be a way for these networks to handle temporal data. While this has
already been studied extensively in the form of Dynamic Bayesian networks [32], these are
not explicitly targeted towards classification. Since we want to create a solution that is fully
dedicated to classification, we will introduce the concept of Classification-Dynamic Bayesian
Networks (C-DBNs). In addition, while there are solid toolboxes for learning regular Bayesian
networks from data [4, 12], this is not the case for their dynamic variants. To solve this issue,
we propose a formal and practical description of how the problem of learning a DBN can be
transformed into an instance of BN structure learning and parameter estimation.

Learning a C-DBN can, however, sometimes still require manual work, even with the transfor-
mation in place. This work consists of the discretization of continuous real-world values. To
make the process of learning as automated as possible, we introduce a method of pushing the
task of discretization into the structure learning process. We first show how this can be done in
an optimal, but infeasible way, which we call Full Automatic Discretization, or FAD. We then
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reduce the complexity of this method using heuristics, in an approach we call Selection-based
Reduced Automatic Discretization, or S-RAD. Our proposed method of automatic discretization
is a stable and safe alternative to other methods of discretization in which no prior knowledge
is assumed. We also make some suggestions about how our current approach can be expanded
upon.

To cover these topics, we will, in the next chapter, provide a concise overview of the theory of
Bayesian networks and discretization. Then, we introduce our proposal for C-DBNs, formalize
it, and compare it against a similar and already existing method. In the following chapter, we
describe how (C-)DBNs can be learned from data using existing toolkits for Bayesian networks.
Having finished the first part of the thesis, we will describe the optimal but infeasible approach
to automatic discretization for C-DBNs, FAD, in Chapter 5. We then introduce S-RAD, the
heuristic-based variant of automatic discretization in chapter 6. Finally, we test our approach
to C-DBNs and S-RAD in Chapter 7, analyze the results in Chapters 8 and 9, and conclude
with suggestions for further research.
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Chapter 2

Theory and Related Work

2.1 Bayesian networks

A Bayesian Network (BN) G = (V,E,Θ) is a probabilistic graphical model consisting of a tuple
containing a Directed Acyclic Graph (DAG) specified by a set of vertices V , a set of directed
edges E, and a joint probability distribution Θ [33, p. 45]. The vertices represent variables,
while the edges indicate dependencies between the variables. Variables can take on discrete
values, although alternative versions which allow continuous values exist [26].

We use the graph of a Bayesian network to encode independencies between the variables. There
are two types of independencies that we can show: direct independencies of the form A⊥B,
where A is independent of B, and conditional independencies, A⊥B|C, where A and B are
independent given C. These conditional independencies help us create relationships between
the variables. A direct independency could, for example, be the performance of a network
switch and the number of goals scored by a local soccer club: the two are entirely unrelated. A
conditional independency is more subtle: it might provide us with information, but there is no
direct relationship. The performance of a network switch could, for example, be conditionally
independent of whether there is currently a thunderstorm raging. A thunderstrike might cause
a power surge, causing the switch to turn itself off. However, if we also monitored the power
grid and knew there was no power surge, knowing the current weather is of no importance to
us. Thus, thunderstorms and switches can be conditionally independent. We can represent this
information in a Bayesian network, as shown in Figure 2.1.

Using these independencies, we can create the joint probability distribution Θ in a succinct way.
We can decompose the joint distribution by chaining the conditionally independent probabilities
[28, p. 61]. In our example, we can decompose the distribution of our entire model into smaller

Power GridNetwork Switch Thunderstorms

Figure 2.1: Example of a BN with V = {Network Switch, Power Grid, Thunderstorms} and
E = {(Thunderstorms,Power Grid), (Power Grid,Network Switch)}
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parts: P (N,P, T ) = P (N |P )P (P |T )P (T ) (with N for network switch, P for power grid, and T
for thunderstorms).

The resulting model generally has a smaller complexity than alternatives without (conditional)
independencies and can be used for reasoning with probabilities. We can use a Bayesian network
for various tasks, including finding the probability of events given a set of evidence. If we want
to use a BN for classification, we can use a technique called Maximum A-Posteriori querying
(MAP-queries), which tries to find the values for the variables that maximize the posterior
probability given the available evidence. Due to its graphical nature and flow of evidence,
Bayesian networks are a form of artificial intelligence that is well suited to show both why
classifications have been made, and how certain it is about these predictions.

2.2 Learning from data

In the past, Bayesian networks could only be constructed by knowledge elicitation from domain
experts [29, p. 297]. In these methods, there was often a trade-off between time consumption
and precision [39]. With the introduction of data mining, techniques have been developed to
learn Bayesian networks from data, rather than by knowledge elicitation. This allows us to
learn models automatically when we have enough data at our disposal.

The task of learning BNs from data can be split into two distinct processes: parameter esti-
mation and structure learning. In parameter estimation, we want to learn the joint probability
distribution for the network. There are two ways to do so: by maximum likelihood estimation,
and by using Bayesian approaches [28, p. 717]. In maximum likelihood estimation, we want to
maximize the probability of seeing the dataset we have given our parameters. Since the like-
lihood score decomposes [28, p. 723], we can do so by choosing the probabilities for variables
by counting the frequency at which they occur in the dataset. This method only relies on the
exact data we have seen. Bayesian approaches add an extra component to this: a prior which
tends to decline in power as we see more data points. Using a prior allows us to either add
evidence or use an uninformative (i.e., uniform) prior. The uniform prior can also function as
regularization against overfitting.

Besides obtaining the probability distributions from data, we can also learn the structure, i.e.,
the graph, of the Bayesian network. In its simplest form, we can again use maximum likelihood
estimation for this: we can loop over all the possible edge combinations and find the one for
which we can achieve the best fit for the parameters. As with parameter estimation, we can
also use a version of structure learning that allows us to specify a prior on the range of possible
graphs. For this, we often use the BDeu score, which is an uninformative and uniform prior for
the structure learning process which assigns networks that represent equivalent joint probability
distributions the same score [21].

2.3 Dynamic Bayesian networks

Dynamic Bayesian Networks (DBNs) are an extension of Bayesian networks in which variables
can exist multiple times in the network [32]. This multiplicity of vertices is used to track the
progression of variables over time [29, p. 112]. A DBN consists of multiple time-slices or time-
steps, in which each time-step consists of its own full Bayesian network. The time-steps are
connected by edges that symbolize the causal relationship between variables over time. We can
limit the number of time-frames an edge can skip over to represent the Markov-assumption:
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GridSwitch Thunder Switch Grid Thunder

t = −1 t = 0

Figure 2.2: Example of Figure 2.1 represented as a DBN

the idea that the future is conditionally independent of the (distant) past, given the present.
DBNs allow us to reason about processes that change over time. Going back to our example
of the network switch, we could use DBNs to model a power grid. If we see the status of the
grid repeatedly changing over time, we might be able to make a more accurate guess about
the status of our switch than if we only knew the grid was operating correctly at one specific
moment. This is shown in Figure 2.2.

Besides this example, Dynamic Bayesian networks have been used in many real-world appli-
cations. They have primarily been used for reasoning under uncertainty. Chen et al. [10], for
example, used DBNs to support risk-informed decisions when dealing with flood-control opera-
tions. Wu et al. used DBNs for modeling risk in tunnel constructions [43], while Hofleitner et al.
used DBNs to create a statistical model of traffic times based on sparse (and incomplete) probe
data [23], and Khakzad recently used them to model wildfire spread [27]. Another, perhaps less
conventional reason to use DBNs, is to understand or explain an underlying model, due to the
same graphical nature and flow of evidence DBNs have in common with regular BNs. Tucker
et al. for example, used a type of DBN to analyze differences in biological mechanisms [42].

In this thesis, we want to use the foundations of DBNs to predict classification labels in time-
series because of their explainable nature. Since we do not want to construct models by knowl-
edge elicitation, part of this project will be to describe how C-DBNs can be learned from
data using existing and well-studied toolboxes for regular Bayesian networks. By following this
approach, we can utilize well-researched strategies and software.

2.4 Discretization

While Bayesian networks can, as noted before, use continuous data, this is not entirely common.
Especially the combination of continuous data with discrete data can be challenging. As Koller
notes, “even representing the correct marginal distribution in a hybrid network can require space
that is exponential in the size of the network” [28, p. 617]. However, in many of our real-world
use cases for Bayesian networks, continuous and discrete data are mixed. An alternative to using
hybrid models would be to transform continuous data into a discrete form: discretization. This is
not only useful in the area of Bayesian networks but finds applications in a wide range of machine
learning tasks [30]. Before continuing to the next part of this paper, we will review several
discretization techniques. For a more in-depth overview of existing discretization approaches,
see [14,44].
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2.4.1 Median/IQR

One of the simplest approaches of discretization is based on the median value. This discretizer
would partition a set of continuous values into two groups: those smaller than the median, and
those greater than or equal to the median. Both groups can then receive an arbitrary label.
Since this method always creates at most two partitions (also bins or buckets), it can be used
when we do not want a high model complexity. An alternative to the median could be based
on the interquartile range (IQR): we partition the set in three groups, the first being the first
quantile, the second being the second and third quantile, while the third contains the data of
the fourth quantile. IQR can be used for sets of values where we want to separate the low from
the high and have a large base of medium values.

2.4.2 Equal Width Discretization (EWD)

Equal Width Discretization, while still relatively simple, is a slightly more elegant method.
Its goal for discretization is to divide the set of continuous variables into partitions that all
span the same interval size. Datapoints get labeled according to the partition they belong to.
The number of groups EWD has to create is left as a hyperparameter. A disadvantage of this
approach is that outliers can significantly influence the way bins are created. If, for example, we
have 100 data points in a range of 0− 10, one data point at −1, 000 and one at 1, 000, and we
want EWD with three bins, 100 datapoints would be put into the same middle partition. The
two other bins would only contain a single data point. Would we have used ten bins, this would
not have changed, but we would have created seven additional empty bins. This inefficiency
causes much information to be lost in the discretization process.

2.4.3 Equal Frequency Discretization (EFD)

Equal Frequency Discretization is an alternative to EWD which tends to be more resilient to
outliers. Its approach to discretization is to create bins, not of the same interval size, but that
contain equal amounts of data points. In our previous example, rather than having many empty
bins, we would create two bins that had rather large intervals, but we would have retained a
lot of information in the other bins. In this thesis, EFD will be our preferred choice when we
need to choose a discretization strategy. We will do so because creating categories with equal
frequencies prevents the (D)BN learners from being biased due to class imbalance.
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Chapter 3

Classification DBNs

In this chapter, we look at solving the classification problem for temporal datasets while main-
taining explainability. We will do so by introducing the concept of Classification-Dynamic
Bayesian networks (or C-DBNs), which are a subset of DBNs. Some ideas for C-DBNs have
been inspired by another subset of models that can be represented as a DBN: Factorial Hidden
Markov Models (FHMMs) [17]. There are a number of key differences though, which we think
set C-DBNs apart as a useful group in its own right. In this chapter, we will first look at the
basic architecture of C-DBNs, spend some time on formalizing them, and finally conclude with
a brief overview of the differences between C-DBNs and FHMMs to illustrate the usefulness of
this newly created group of models.

3.1 Architecture of C-DBNs

In this project, we have two distinct objectives: we not only want to construct a model that
is capable of classifying situations over time, but we also want this model to be explainable.
Either task on its own would lead to a rather straightforward way of designing the model: for
the former, we optimize the predictive accuracy of the classifier, while for an explainable model
we require an accurate underlying generative system. While bringing these two goals together
will inevitably lead to some loss of performance at the individual level, we hope that their joint
real-world practicality will outweigh the loss in performance.

To create a balance between the two, we have opted to use DBNs as a basis for our research.
As shown in Section 2.3, this group of models is used for real-world situations in which both
accuracy and explainability are required. We have seen before however that DBNs are not
specifically made for classification, but for reasoning over an entire domain. To attain the
highest performance, we want to identify a set of constraints on DBNs, which form a subset that
is dedicated to classification, while retaining the core principles of accuracy and explainability.

To achieve this, we took inspiration from FHMMs which model time-series by representing all
information in a number of state variables that are connected over time [17]. All these states
are hidden and are the parent of a single observation. This model seems close to what we
want: a single target with multiple nodes connected to it. In our case, we want to have the
roles inverted however: we want multiple observations to lead to one hidden target (i.e., the
classification label) that we are predicting. We will, therefore, rotate the relationships between
observations and state.
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Variables
(V )

Observed
(O)

Hidden
(H)

Deterministic
(D)

Probabilistic
(P )

Figure 3.1: Visual overview of the types of variables that comprise a C-DBN.

Using these ideas, we specify for C-DBNs the following: we want a single hidden state (the
classification target) and the possibility to define multiple observations. The observations are
parent nodes of the target. In addition, while nodes can only be connected between directly
adjacent timeslices in FHMMs, we will allow C-DBNs to be more expressive by allowing rela-
tionships that “jump” over timeframes. Another change we make to create the group of C-DBNs
is that the classification target can be influenced both by the observations from the past (within
a given range) and the observations from the present. This will allow us to react to patterns
over time.

We also expand on the idea of distinguishing between the hidden state and the known observa-
tion. Not only do we set our classification target to be the hidden state, but we also split the
observations into two further groups: probabilistic and deterministic ones, as shown in Figure
3.1. The former are true observations in the sense that they have to be perceived or sensed,
while the deterministic ones can be computed instead. In practice, this means that the deter-
ministic variables include features such as ’time of day’ and ’month’, while uncertain ones can
include measurements such as ’length’ and ’temperature’.

Deterministic variables are often linear and follow a strict order (e.g., months cannot “jump
ahead”), which causes them to be in conflict with the frequency-based learners that Bayesian
networks tend to rely on. These learners generally do not take order into account, and because
of that, can make mistakes like always predicting the value that occurs most frequently in the
dataset. A network that has been learned on data from January and February could for example
always predict January as next month, even if the previous date is in February (as January has
more days).

To avoid these problems associated with deterministic variables, we could fuse our automatically
generated network with human input directly: we could represent the correct transitions in the
joint probability distribution of the model with ones and zeros. However, in this project, we
decided to preclude deterministic nodes from having parents and supplied the values to the
model as evidence. While both approaches are equivalent, the latter can be more convenient to
implement since distributions do not need to be altered.
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Danger

Temp

Month

Precip Temp

Month

Precip

Danger

t = −1 t = 0

Figure 3.2: Example of the proposed C-DBN architecture with four nodes: state Danger,
probabilistic observations Temp and Precip, and deterministic observation Month. Note that
the two hidden nodes, Dangert=−1 and Dangert=0 are not connected. The deterministic node
Month has no parents. The state in t = 0 is able to receive evidence from the previous layer.

3.2 Formalizing C-DBNs

We will now formalize these ideas by adding a number of properties and constraints to an
existing DBN G = (V,E,Θ), with vertices V , edges E, and joint probabilities Θ. We refer to
the timeframe t to which a vertex v belongs by vt. By convention, we denote the present as
t = 0, the past as t = n for n < 0 and the future by t = n for n > 0 where n ∈ Z. We say that
vertex x is a parent of y or x ∈ Pa(y) iff (x, y) ∈ E. For the sake of explainability and reducing
model complexity, we assume stationarity, i.e. edges and probabilities do not change over time.

Using this notation we can describe, as is common for DBNs, the Markov assumption. This
means we assume that variables in the past do not influence the present given the previous n
timeframes. We also enforce, as usual, that time flows forward in equal increments and that
the future cannot influence the past:

Constraint 3.1 (Progression of Time):
There are no edges (xi, yj) for any combination of vertices x, y ∈ V if the parent vertex
xi occurs in a later timeframe than the child vertex yj : (xi, yj) /∈ E if i > j.

Constraint 3.2 (nth-order Markov-assumption):
For the nth-order Markov assumption, there is no edge (xi, yj) ∈ E between variables xi

and yj ∈ V if j − i > n.

For C-DBNs, we also introduce the notion of vertex types: a vertex can either be hidden or
observed. We denote the set of hidden vertices in G by H, and the set of observed vertices by
O. No vertex can be both hidden and observed: H ∩ O = ∅, and all variables have to be at
least one: V = H ∪ O. Observed variables can either be Probabilistic or Deterministic. We
write P and D for their corresponding sets. Again, vertices cannot be both probabilistic and
deterministic: P ∩D = ∅, and all observed vertices must be either probabilistic or deterministic:
O = P ∪D. We can now introduce the constraints on behavior based on specific groups for a
C-DBN G = (V,E,Θ) with V = H ∪D ∪ P :
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Constraint 3.3 (Uniqueness of the hidden variable):
There is only a single hidden variable: |H| = 1.

Constraint 3.4 (Hidden variables have no children):
If a variable x is hidden, it cannot have any children: ∀x ∈ H, 6 ∃y ∈ V : x ∈ Pa(y).

Constraint 3.5 (Deterministic variables have no parents):
All deterministic variables have an empty parentset: ∀x ∈ D : Pa(x) = ∅.

Using these constraints, a C-DBN can now be defined as follows:

Definition 3.1 (Classification-Dynamic Bayesian network (C-DBN)):
A Classification-Dynamic Bayesian network is a DBN G = (V,E,Θ) with Vertices V ,
Edges E, and the joint probability distribution Θ, where V = H ∪D ∪ P , and:

1. The hidden variable is unique (Constraint 3.3)

2. Hidden variables have no children (Constraint 3.4)

3. Deterministic variables have no parents (Constraint 3.5)

An example of this architecture is shown in Figure 3.2.

3.3 Comparison with (F)HMMs

Since we have taken several insights from Hidden Markov Models (and FHMMs in particular),
as briefly mentioned before, we will now spend some time discussing in what meaningful way
we have made alterations and discuss the expected impact of these changes. First, we introduce
the concept of regular HMMs and expand that to a derivative called Factorial HMMs, which is
closest to our proposed C-DBNs and can also be expressed using DBNs [32]. Then we discuss
how C-DBNs have been inspired by FHMMs and look at the differences and similarities between
the two.

Regular Hidden Markov Models have been around since the 1960s as a probabilistic way to
study signal processing [37], but have expanded to other processes as well. To model a process,
an HMM is built from five parts: a number of states that are hidden n, M distinct observation
symbols per state, a state transition probability distribution A, a probability distribution over
the transitions in A and an initial state distribution π [37]. Using these components, HMMs
predict state transitions based on observations. If we want to predict the weather (which is
the state of the HMM) for tomorrow for example, we could observe the current state as being
rainy (an observation in M) and use the probabilistic model over the possible transitions in A
to calculate the probability for all possible options, such as snowy or sunny.

Such a model is rather limited since it does not make use of potentially interesting other infor-
mation. One could imagine that to predict the weather of the next day, knowing the season or
the current temperature would also be relevant. Maybe we want to focus on a specific part of
the weather. To do so, we can extend the regular HMM to a Factorial HMM, which still has
a global state but also splits this up into smaller components [32, p. 20]. We would still use
the weather as a hidden state, but also decompose it into smaller parts such as temperature,
precipitation, and season. These individual components also have their transition model: they
are influenced by their previous value as well as influencing the global hidden state. There is
no direct interaction between the smaller components, however.
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It is from this Factorial HMM that we have taken inspiration to create C-DBNs. They share the
idea that the global state can be split into smaller components, which influence the global state.
In our model, however, we wanted to go a step further and lift the constraint that the individual
variables cannot influence another. Lifting the constraint provides a more explainable view of
the process which is being modeled, as correlations are directly visible from the relationships
instead of going through a state first.

Like Factorial HMMs but unlike regular HMMs, C-DBNs also do not allow the previous global
state to influence the current state. We have chosen this approach for two reasons. First, we
want to force the model to re-evaluate the current state based on the current evidence alone,
because it makes it more apparent why a particular prediction has been made. We also worry
that relying too heavily on the current prediction decreases the transparency of the model. The
second argument is more pragmatic: since we allow individual components to be connected, we
are potentially creating conditional probabilities that involve many more variables. When we
want to machine-learn models, as we will discuss in a later chapter, this means more room for
overfitting. When we allow global states to be connected, we will often learn models in which
the next state is predicted by replicating the current state. The resulting network is neither
very explainable nor very accurate. To prevent this from happening, we leave global states
without a direct connection.

Another difference between the proposed new architecture and HMMs in general, is that they
work with other types of data. HMMs generally try to model processes (by using state transi-
tions for example), meaning changes in a state. The proposed C-DBNs, on the other hand, are
meant to work with temporal datasets. While temporal data usually also describes a process,
it is often measured using discrete and static time-intervals. C-DBNs are therefore less focused
on change and more on predicting a given situation or context correctly.

To conclude, while C-DBNs take some ideas from (F)HMMs, such as the decomposition of the
state into individual components with their transitional probability distributions over time and
the isolation of global states, we have also made several changes that set it apart. While our focus
is more on temporal datasets with an underlying process which we want to describe, HMMs look
at change points (i.e., points at which the distribution of a variable changes [35]) in the process
and describe it more directly. Both are valid approaches but have different applications. Where
HMMs can be used in processes that often change, like for speech recognition [37], C-DBNs are
more focused on datasets with fewer change points, such as classification over time.

Now we have seen how the group of C-DBN models fundamentally differ from the related FH-
MMs and how they can potentially perform better in temporal classification tasks, we will make
them convenient to use in practice. For this, we should be able to learn C-DBNs automatically
from data. The next chapter will continue on that topic.
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Chapter 4

Learning C-DBNs from Data

While in the past we were limited to creating Bayesian networks by hand by questioning domain
experts, we are now able to obtain them by machine learning if we have enough data. Learning
C-DBNs, the architecture we discussed in the previous chapter, requires several adaptations to
existing BN-learning methods. Since these adaptations generally overlap with learning DBNs,
we will first focus on learning DBNs in general to make this method as widely applicable as
possible. We will then describe the various constraints that are required for learning C-DBNs
in particular. We do not use existing libraries for learning DBNs since they are not widely
(and openly) available for modern data science frameworks and would not allow us to make
complexity optimizations that are specific to C-DBNs. There also does not seem to be a
standard for learning DBNs, so in this chapter, we aim to provide a recipe that future work can
build on.

We will first introduce the concept of shifting, which transforms a temporal dataset to a regular
one. Then, we will look at the constraints which are required for learning valid structures. This
will be followed up by an overview of how the output of a BN-learner can be transformed into a
DBN structure. We will conclude the overview by discussing how the transformed structure can
be unrolled over time. Throughout the chapter, we will, in addition to the theoretical notation,
describe how the methods can be implemented. This will mostly be done in a Python-style
pseudo-code notation. At the end of the chapter, we will describe the implementation differences
that are specific to C-DBNs.

4.1 Existing work

Machine learning the structure of a Bayesian network is a computationally intensive task. The
duplication of nodes that we need for creating a dynamic network magnifies this problem even
further. In order to still be able to learn in non-trivial contexts within a reasonable amount of
time, it is therefore imperative that we make use of an efficient implementation for structure
learning dynamic Bayesian networks.

For regular Bayesian networks, much research has been done for efficient learning [7, 13, 40].
Notable is James Cussen’s implementation of GOBNILP [12], a program that performs structure
learning on data using integer linear programming. As recreating such a system for dynamic
Bayesian networks would be a rather time-intensive task, we prefer to make use of existing work.

To be able to use existing BN toolkits for learning DBNs, we use Pavlović et al.’s [34] insight that
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the problem of learning a dynamic Bayesian network can be rewritten as a Bayesian network
learning task. We structure the process of rewriting as three steps: first we augment our data
set to allow regular learners to use temporal data, then we add several constraints to ensure we
obtain a DBN structure, and finally, we transform the resulting network back to a DBN. This
works in practice for all DBNs, not just C-DBNs. The additional assumptions which C-DBNs
make can be added as constraints to the structure learner.

4.2 Shifting data

For learning from a dataset D consisting of a feature set X with n elements in each vector,
the first step involves augmenting the dataset by adding a feature vector vtx for each existing
feature vector x ∈ X and for each time frame t ∈ [−l, 0], in which the constant l is the maximum
number of time steps we want to look back. The new vector vtx for x at t is constructed from
the original vector by shifting the values by t:

vtx = (xl+(1+t), xl+(2+t) · · · , xn−(l−t))> (4.1)

Note that for t < l, we are dropping the last t values of a vector. We do this because, for
shifting, we need to look back in time, and for the first l elements we miss this information
about the past. When we augment the dataset, this means that we use the last l elements for
shifting up, and need to compensate on earlier timeframes by removing the last elements. This
will become more clear in an example later on. Our augmented dataset can now be described
as follows:

Daugmented = {vtx | x ∈ X, t ∈ [−l, 0]} (4.2)

This process is shown programmatically in Listing 4.1. We now illustrate it by means of an
example. Table 4.1 shows our original dataset D with n = 3 elements for two variables, vα and
vβ. To augment our dataset so it can be used for learning a dynamic model, we will shift this
dataset with one timeframe (l = 1). To obtain augmented dataset D′, we use Equation 4.2:

D′ = {vtx | x ∈ X, t ∈ [−1, 0]}
= {vtx | x ∈ {vα, vβ}, t ∈ [−1, 0]}
= {vt=−1α , vt=0

α , vt=−1β , vt=0
β }

We can now create the augmented variables in D′ by using Equation 4.1. We start with vt=−1α :

vt=−1α = (x1+(1−1), x1+(2−1))
>

= (x1, x2)
>

= (9, 11)>
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For vt=0
α we can use the same equation:

vt=0
α = (x1+(1−0), x1+(2−0))

>

= (x2, x3)
>

= (11, 10)>

Here we see that were are reducing the size of the dataset by one row, since l = 1. The case for
vβ works analogously. By adding the four augmented vectors to a new set, we have created our
augmented dataset D′. The final result is shown in Table 4.2.

vα vβ
9 3
11 3
10 3

Table 4.1: Original dataset D

vtα vtβ vt−1α vt−1β

11 3 9 3
10 3 11 3

Table 4.2: Augmented Dataset D′ with t = 1

def create_lookback_dataset(df, look_back=1):
transformed_set = df.copy()

# Add shifted columns
for delta in range(1, look_back + 1):

for column in df.columns:
transformed_set[(column, delta)] = transformed_set[column].shift(delta)

# Remove top rows that contain empty cells due to shifting
transformed_set = transformed_set[look_back:]
return transformed_set

Listing 4.1: Pseudocode for shifting dataframes

This process of shifting allows regular BN learners to make connections between time frames.
Note that in this example, we only wanted to learn from the previous time frame, but the same
could be applied for any l < n.

4.3 Constraining parent sets

If we applied any structure learning algorithm directly to the augmented dataset created in the
previous subsection, it would most likely learn an invalid DBN: it would be able to create an
edge from the future to a vertex in the present. We therefore need to add the constraint that a
vertex cannot be the child to any vertex in a time frame later than itself. We also enforced this
for C-DBNs in Constraint 3.1.

While a naive approach in which this constraint is checked while the graph is being generated
would produce a correct result, it does not take advantage of the opportunity for reducing
computational complexity that this constraint creates. Since a vertex cannot access any vertex
in a later time frame, we can skip all calculations that would be required for using evidence
from the future in the past, thereby significantly lowering the computational burden created by
the increase in nodes that the dataset transformation entails.

For the purpose of this project, we limit our experiments to generating parent sets for first-
order Markov networks, i.e., networks with a current layer t = 0, and one look-back time frame
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t = −1. We adapted GOBNILP’s [12] regular parent set generation system and split it up
so it only generates the scores between a single vertex and the rest of the network, so we can
influence the process of structure learning to make it more efficient. Then we use this to create
a new function, which calculates the scores for all vertices in t = 0 and leaves all vertices within
t = −1 without parents. This significantly reduces the complexity of structure learning by
removing edges from being computed that will be dropped in the transformation. While we
only look at first-order Markov networks here, this strategy could be generalized to a system
in which multiple timeframes are investigated by only computing scores in the same frame and
before it.

The result of generating these parent sets to learn a network is that nodes within t = 0 have
connections among themselves as well as from the past. Vertices in t = −1 have no connections
at all. In the next subsection, we will transform the learned structure into a proper DBN.

4.4 Transforming the graph

While the result from the previous section has the right specifications of a DBN structure, it
lacks a number of edges. Particularly, because we assume stationarity as noted in Section 3.2,
all vertices that are connected in t = 0 with other vertices in t = 0 should be connected in all
other time frames as well. More formally, for an nth-order Markov assumption, we require that:

Etransformed = Elearned ∪ {(xt=i, yt=i) | (xt=0, yt=0) ∈ Elearned, i ∈ [−n, 0〉} (4.3)

We can now use the reconstructed structure defined by the transformed edges Etransformed and
the augmented dataset Daugmented to learn a transformed full joint probability distribution
Θtransformed using any parameter learning tool, as if it were a regular Bayesian network. In this
project, we use PGMPY’s Bayesian Estimator [4] to find the necessary conditional probabilities.

4.5 Building the unrolling framework

The resulting network allows us to either predict one step into the future or query the probability
of variables given an incomplete present or past. If we want to expand on this to an arbitrary
number of time steps, we need to unroll the network. This encompasses duplicating nodes for
each time frame and connecting them properly.

Duplicating nodes involves using a framework that splits DBNs conceptually into two distinct
parts: a base layer and a transition layer [32]. For an nth-order Markov network the base layer
consists of n replications of all nodes V : one for each time frame: Gbase = (Vbase, Ebase,Θbase)
with Vbase = {xt=i | x ∈ X, i ∈ [−n, 0]} and Ebase = Etransformed. This corresponds directly to
the structure that we have learned. We can now also use Daugmented to learn the joint coditional
probabilities Θbase using a parameter learning system.

For the second part, or the transition layer, we want to create a method of easily attaching
layers. To do so, we create a single timeframe that contains all the edges within the frame, and
set a specification for how to connect it to other frames. We can then specify the transition
model as Gt=itrans = (V t=i

trans, E
t=i
trans,Θ

t=i
trans) with V t=i

trans = {xt=i | x ∈ X}. If we have a first-order
model and therefore a base layer of two time frames (t ∈ [−1, 0]), we can describe the set of
edges for our transition layer as follows:
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Et=itrans = {(xt=i, yt=i) | (xt=0, yt=0) ∈ Ebase} ∪ (4.4)

{(xt=i, yt=i−1) | (xt=0, yt=−1) ∈ Elearned}

In the first of the two sets that we create for generating Et=itrans, we copy over the edges from
the base layer to this transition layer so it operates using the same underlying model. In the
second part we specify how to connect the unrolling layer to the exiting network by using
the edges that have been learned before. We can also generalize this function to an nth-order
Markov-assumption by iterating over all timeframes in the history of the assumption:

Et=itrans = {(xt=i, yt=i) | (xt=0, yt=0) ∈ Ebase} ∪ (4.5)

{(xt=i, yt=i−j) | (xt=0, yt=−j) ∈ Elearned, j ∈ [0, n]}

Creating the set of joint probability distributions is analogous if we assume that we unfold to
the right:

Θt=i
trans = {P (xt=i|Pa(xt=i)) | xt=i ∈ Vtrans} (4.6)

with

P (xt=i|Pa(xt=i)) = P (xt=0|Pa(xt=0)) ∈ Θtransformed (4.7)

in which Pa(x) refers to the parents of node x as before.

We now have all the necessary ingredients for unrolling the DBN. As quickly mentioned before,
there are two ways to do this. We can add a time frame on the left-hand side of the existing
network, thereby conceptually creating a node further back into the past, or we can attach it
to the right-hand side, which depicts the future. While the two are conceptually different, it
does not matter for the behavior of the network. Since adding to the left side would require
shifting probability distributions left (as they are the only nodes in the network that do not
receive information from a previous layer), we prefer adding time steps to the right instead.

To add a new time frame at t = i to the network G = (V,E,Θ), we simply have to modify the
existing set of vertices, edges, and probability distributions. This encompasses extending the set
of vertices with an extra copy for each feature at i: V ′ = V ∪ V t=i

trans, connecting the new nodes
to the existing network using the transition edges: E′ = E ∪Et=itrans, and updating the full joint
probability distribution accordingly: Θ′ = Θ ∪ Θt=i

trans. The resulting network G′ = (V ′, E′,Θ′)
is now a Dynamic Bayesian network for temporal dataset D.

Listing 4.2 shows how the steps from the previous section and this section can be combined
into an implementation. As in the theoretical description, we learn a structure from a shifted
dataset with some additional constraints using existing tools and then extract the base from
that. We then unroll the network by separating the transition layer from the base and applying
that t times to the base (where t is the number of steps we want to predict into the future).
After that, we also copy over the conditional probabilities that have been learned using existing
toolboxes on the base model to the new layers, thereby creating a full DBN.
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#Learns a DBN and unrolls it to a specified size
def create_unrolled_dbn(data, t_unroll, markov=1):

ds = create_lookback_dataset(data, markov)
lookback_model = get_structure(ds)

dbn_base = create_base_structure(lookback_model)
dbn_base.fit(ds)

if t_unroll < markov:
return lookback_model

unroll_model = unroll_network(lookback_model, t_unroll)
unroll_cpds(lookback_model, unroll_model, t_unroll, dbn_base)

return unroll_model

# Unrolls a Markov-1 DBN to an arbitrary number of timeframes
def unroll_network(G, timeframes):

unrolled_network = BayesianModel()
base_variables = [x for x in G.nodes.keys() if get_tf(x) == 0]

# Add nodes for all time frames
for base_variable in base_variables:

unrolled_network.add_node(base_variable)
for t in range(1, timeframes + 1):

unrolled_network.add_node((base_variable, t))

# Add edges
for x, y in G.edges:

if x in base_variables and y in base_variables:
unrolled_network.add_edge(x, y)
for t in range(1, timeframes + 1):

unrolled_network.add_edge(switch_tf(x, t), switch_tf(y, t))
if y in base_variables and x not in base_variables:

unrolled_network.add_edge(x, y)
for t in range(1, timeframes):

unrolled_network.add_edge(switch_tf(x, t + 1),
switch_tf(y, t))

return unrolled_network

#Unrolls the cpds of a Bayesian Model
def unroll_cpds(lookback_model, unroll_model, t_unroll, dbn_base):

lbm_cpds = dict(zip([x.variable for x in lookback_model.get_cpds()],
lookback_model.get_cpds()))

lbm_cpds_delta = {k: v for k, v in lbm_cpds.items() if get_tf(k) == 0}

for node in unroll_model.nodes.keys():
if get_tf(node) == 0: # first node

unroll_model.add_cpds(lbm_cpds_delta[node])
elif get_tf(node) == t_unroll: # final node

cpd = switch_cpd_timeframe(dbn_base.get_cpds(get_base(node)), t_unroll)
unroll_model.add_cpds(cpd)

else: # everything in between
unroll_model.add_cpds(

switch_cpd_timeframe(lbm_cpds_delta[switch_tf(node, 0)],
get_tf(node)))

# Gets the base structure of a DBN
def create_base_structure(lookback_model):
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dbn_base = BayesianModel([edge for edge in lookback_model.edges if
get_tf(edge[0]) == 0 and get_tf(edge[1]) == 0])

dbn_base.add_nodes_from([node for node in lookback_model.nodes
if get_tf(node) == 0])

return dbn_base

Listing 4.2: Pseudocode for unrolling the resulting BN into a DBN

4.6 C-DBN specific adaptations

In the previous sections, we have described how DBNs can be learned using regular BN learning
tools. This has made it possible to learn a wide range of probabilistic temporal models. However,
for this project, we want to look at C-DBNs in particular.

Adapting a DBN learning method to learn C-DBN mainly consists of adding the constraints de-
scribed in Section 3.2. The exact implementation of the constraints depends on the toolkit that
has been used, but here we assume that we have GOBNILP-like abilities to create constraints:
we can forbid or enforce edges in the DAG. We generate the constraints by first dividing the
variables up into the three groups we have mentioned before: hidden variables H, deterministic
variables D and probabilistic variables P such that V = H ∪D ∪ P . We denote the rule that
node x is the child of node y as x ← y, and the constraint that x cannot be the child of y as
¬x← y since this closely mirrors GOBNILP’s expected input format. We can now generate all
required constraints for a given H,D,P as follows:

CHiddenVariables = {¬x← y|(x, y) ∈ V ×H}
CDeterministicVariables = {¬x← y|(x, y) ∈ D × V }

CC-DBN = CHiddenVariables ∪ CDeterministicVariables

On a technical note, Gobnilp enforces constraints after having generated parent sets. To speed
up this process, creating CHiddenVariables is equivalent to not generating any parent sets for D.
This can be used to reduce complexity, especially in networks of a higher Markov-order.

Now we have specified how DBNs, and C-DBNS in particular, can be learned using existing
toolkits, we are ready to use this novel approach in practice. While we do have everything
required in theory, there is one more hurdle to completely automatic learning: the standard
machine learning task of discretization. If we want to create a fully automatic way of learning
temporal models from data, and we want to use BNs as underlying models which are typically
not very capable of learning from a mixture of continuous and discrete data, we should also
have a solid discretization process. While selecting a generic discretization method before the
learning process, we often do not know beforehand which one will be appropriate to the data
or perform well. To avoid this possible inefficiency, we want to integrate discretization into the
learning process. In the next section, we will describe a way of taking the first steps to a fully
automated and integrated approach, including both discretization and learning.
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Chapter 5

Full Automatic Discretization for
C-DBNs

5.1 The need for automatic discretization

Discretization is often done at the beginning of a machine learning job, in which the user tries
to turn continuous data into categorical data while reducing the amount of information lost in
the process as much as possible. In the case of DBNs, this is a vital step as these networks
only have limited capacity to handle datasets comprised of both discrete and continuous data.
It is not always apparent at first which kind of discretization fits well with the data, so the
user can either try to match the existing distribution as closely as possible (e.g., visually by
using histograms) or by checking the effect of various discretization strategies on the training
accuracy.

While manually finding a discretization approach might be a feasible approach for some small
data sets with similar distributions across variables, finding the optimal discretization method
for larger datasets with a multitude of variables with their distinct distributions will quickly
become too time-consuming. This holds especially if we are less interested in adhering to the
original distribution, but would rather use a strategy that aims to optimize the joint predictive
power of the various discretized variables and their synergistic effects. We would, therefore,
prefer to have this important task taken away from us and choose an optimal discretization
strategy automatically.

5.2 Towards full automatic discretization

To continue in the spirit of this project, i.e., solving problems by creating transformations to
existing problem solvers, we want to reduce the problem of choosing a discretization strategy
to one of structure learning. Doing so allows us to move more tasks away from the user onto
existing toolboxes, thereby enhancing real-world usability.

In this chapter, we will first consider a simple Dynamic Bayesian network with only the current
time frame (0th-order Markov assumption), which is equivalent to a regular Bayesian network.
We create a network with two correlated variables, one of which is continuous and the discrete
target. From there, we will build further towards using multiple correlated continuous variables.
Then we show how to expand this approach to first-order Dynamic Bayesian networks. Finally,

21



we will address how this method can be applied to any nth-order C-DBN. Every time, we will
first introduce the theory behind the transformation, then show the transformation in action
using an example. In the last part of this chapter, we will experiment with the proposed theory
and analyze the results.

5.3 Discretizing a single continuous variable

Theory

We start with a 0th-order DBN with one probabilistic variable and one target, which equates to
a regular Bayesian network. We want to create this network from a dataset D which consists
of two columns (represented as two vectors): a vector of real values v ∈ Rn and one of the
discrete target values y ∈ Nn. Since we want to learn from a fully discrete BN, we will have
to discretize column v. We will transform this into a structure learning problem using multiple
binary discretization nodes.

A binary discretization node d for v splits a set of numbers in two by using a single boundary:
r ∈ R. Using this discretization node we can represent information about v in a discrete (though
by itself limited) way. We transform a vector of values according to this boundary by creating a
value that is False (or zero) if the original value of the element is below the boundary and True
(or one) otherwise. The feature vector for discretization node drv can therefore be constructed
from v as follows:

drv(i) =

{
0 if vi < r

1 otherwise

Since we want to consider all possible information which we can extract from v using this
concept of discretization nodes, we will create a discretization node for each possible boundary
between the values in v. To do so, we first sort the vector and remove duplicate values to avoid
superfluous nodes. Placing boundaries can be done in multiple ways, but we have chosen for
the arithmetic mean. By doing this, we obtain a set of discretizers Dv for v:

Dv = {drv | r =
vi + vi+1

2
, i ∈ [0, n〉}

We can now create an augmented dataset D′ which contains the data for n − 1 discretization
nodes for v, and a single node for the already discrete y. By feeding this augmented dataset
to a structure learner, we will obtain relationships between the most important discretization
nodes and the target. Since we are building towards C-DBNs in which the target node has no
children, we can say that a discretization node drv is selected if there is an edge from it to the
target node y:

Definition 5.1 (Selected Node):
Discretization node drv is selected given a learned structure Ḡ = (V̄ , Ē) and target y if
(drv, y) ∈ Ē

We can then specify the set of selected nodes Sv for variable v as:
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Definition 5.2 (Selection Set):
The selection set Sv for v given a learned structure Ḡ = (V̄ , Ē) and target y consists of
all discretization nodes for v that are selected: Sv = {drv | drv ∈ Dv if drv is selected in Ḡ}

The boundaries r corresponding to the discretization nodes in Sv form the discretization strategy :

Definition 5.3 (Discretization Strategy):
The discretization strategy R for variable v consists of the set of boundaries specified
by its selection set Rv = {r | drv ∈ Dv}

Using the discretization strategy R, we can now partition variable v into |R| + 1 groups by
creating a cutting point at each boundary. By applying this discretization strategy to the
dataset, we can now continue using our regular BN-learning toolboxes for structure learning
and parameter learning.

We think that this approach could work because it lets the structure learner pick the nodes
which help it create the most likely graph given the data. If a variable is unlikely to influence
the rest of the variables, it does not get connected. If a variable is connected to something else
than the classification variable, it does not contribute to the final discretization. Next, we will
look at an example to illustrate how the proposed model of discretization works.

Example

To illustrate this process we take a dataset D consisting of a continuous variable v with values
between zero and one, and a binary target y. This example has five rows and is depicted in
Table 5.1. From this dataset, we create four discretization nodes by taking the boundaries
between the sorted values:

Dv = {d0.5·(v0+v1)v , . . . , d0.5·(v3+v4)v }
= {d0.5·(0.024+0.043)

v , . . . , d0.5·(0.881+0.973)
v }

= {d0.034v , d0.306v , d0.724v , d0.927v }

v y

0.024 0
0.043 0
0.568 0
0.881 1
0.973 1

Table 5.1: Dataset D

d0.034v d0.306v d0.724v d0.927v y

0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 1
1 1 1 1 1

Table 5.2: Dataset D′

v′ y

0 0
0 0
0 0
1 1
1 1

Table 5.3: Discretized D

We then create an augmented dataset D′ from the new nodes by using their boundaries for
classification. This is shown in Table 5.2. After that, we use a structure learner with the
BDeu score (in this case GOBNILP) to find the selection set. The resulting learned network is
shown in Figure 5.1. As shown in the figure, only discretization node d0.724v is selected (i.e., it
is the parent of the target y). We will, therefore, discretize vector v based on the discretization
strategy that has a single boundary at r = 0.724. This creates v′, which is shown in Table 5.3.
If we had multiple selected nodes, we would have discretized into multiple categories, as we will
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see later. Using the new, discretized dataset, we can now restart our structure learning process
and learn that there should be an edge between v′ and y. We can then continue learning the
parameters using a regular BN-toolbox. In this way, we have learned a discretization strategy
as well as a complete network by using existing methods.

d0.034v

d0.306v

d0.724v

d0.927v

y

Dv

Figure 5.1: Visual representation of the learned discretization network.

5.4 Discretizing multiple continuous variables

Theory

Now we have presented the case for creating a Bayesian network with automatic discretization
from a single continuous variable and a single target, we will move on to datasets with multiple
continuous variables. First, let us assume that we have a dataset D which consists of m columns
(represented again as vectors): m− 1 containing real values and one target vector y consisting
of discrete values. All pairs of vectors can be correlated. Our goal this time is to create an
optimal discretization strategy for all input features given y as the target. We assume as before
that the values in the vectors are unique and that they can be sorted.

Using this information, we can again construct discretization nodes for all boundaries for all
continuous variables in the dataset and learn a structure Ḡ = (V̄ , Ē) as before. As with C-
DBNs, we do not allow the classification variable to have any children to maintain consistency.
We also will not allow discretization nodes for the same variable to be connected to another. We
make this choice because we are interested in the effect of the discretization nodes on the target,
and not on each other. Adding the constraint therefore reduces complexity without impacting
our goal.

Now we have to choose which discretization nodes should determine our discretization strategy.
Finding which nodes influence our target is equal to the concept of finding the Markov Blanket
(MB) for y. The MB includes the parents of y, its descendants, and the parents of its descendants
[29, p. 32]. These nodes provide all the relevant information for y since all other nodes in the
network are conditionally independent of y given the MB [29, p. 284]. Since our target variable
does, by the constraints we have made, not have any children, our discretization strategy consists
of selecting all nodes that are the parent of y as before.
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While this solves the problem of knowing which nodes to select, we should also study how
adding more columns influences our problem space. Where before we required n− 1 nodes for
discretization with n being the number of distinct rows, we now need (m− 1)(n− 1) additional
variables: n−1 for all m−1 continuous variables. If we stick to binary nodes for discretization,
this means that we will have 2(m−1)(n−1) possible assignments for a data point. Since the
size of the dataset that we require for accurate learning grows with the number of possible
assignments, this means the dataset we need grows exponentially with the number of both the
original variables and the number of entries. While this is not a problem in the case of a single
continuous variable as adding a new data point will not lead to multiple new combinations, this
is, in fact, a problem for the approach with multiple continuous variables. Every new unique
datapoint we add increases our demand for data with combinations with the other variables,
or we risk losing accuracy. Adding more data points would by itself, however, also increase our
need for data, creating an endless loop.

We could potentially mitigate these problems by limiting the precision of our real values, which
can be seen as a limited form of unsupervised discretization. For this project, we will restrict
ourselves to networks with a small enough number of continuous variables for the direct approach
to be feasible.

Example

To illustrate how our theory works, we will now look at a rather simple example. We have
created a dataset D consisting of two continuous columns v, w and binary target column y.
Vector v is created by uniformly sampling twelve real values between zero and one, while w is
created from v by multiplying it by 1.1 and adding some normally distributed noise (µ = 0,
σ = 0.05). The target y has been constructed from both v and w as follows:

yi(v, w) =

{
1 if 0.5 < vi < 0.85 and 0.5 < wi < 0.85

0 otherwise

A generated example is shown in Table 5.4 and Figure 5.2. We create n− 1 = 11 discretization
nodes for both v and w in the same way as before. This results in a discretization dataset D′ of
2(n− 1) + 1 = 23 columns. The result is shown in Table 5.5. We now add the two constraints:
no discretization node can be connected to another discretization node for the same variable,
and y cannot have any children. From this, we can use existing toolboxes to learn the structure
of the network. The result is shown as a graph in Figure 5.3.

We can now see from the learned edges that discretization nodes d0.5v , d0.75v , d0.57w , d0.81w are se-
lected. We will therefore split v on 0.5 and 0.75, and w on 0.57 and 0.81 to obtain discretized
dataset D′, shown in Table 5.6. These boundaries are a good approximation of the decision
boundaries we have set up for the data before. We can now learn a BN from D′ using the
regular structure learning tools. A possible result of this is shown in Figure 5.4.
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v w y

0.080741 0.029177 0.0
0.187721 0.196250 0.0
0.206719 0.209450 0.0
0.221993 0.274366 0.0
0.296801 0.243241 0.0
0.488411 0.502243 0.0
0.518418 0.627829 1.0
0.611744 0.765785 1.0
0.738440 0.736725 1.0
0.765908 0.874741 0.0
0.870732 0.908775 0.0
0.918611 0.967629 0.0

Table 5.4: Example dataset with continu-
ous variables v, w and discrete target y

Figure 5.2: Scatter plot of how y depends
on v, w

v(0.13) v(0.2) v(0.21) v(0.26) v(0.39) v(0.5) v(0.57) v(0.68) v(0.75) v(0.82) v(0.89) w(0.11) w(0.2) w(0.24) w(0.26) w(0.37) w(0.57) w(0.7) w(0.75) w(0.81) w(0.89) w(0.94) y

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.0
0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0.0
0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0.0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0.0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0.0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0.0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1.0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1.0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1.0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0.0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0

Table 5.5: Example dataset with continuous variables v and w and discrete target y

v w y

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
1 1 1
1 2 1
1 1 1
2 2 0
2 2 0
2 2 0

Table 5.6: Resulting D′ of automatic dis-
cretization of D

Figure 5.4: Learned network based on dis-
cretized dataset D′
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Figure 5.3: Visual representation of the learned discretization network with continuous variables
v and w and discrete target y.
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5.5 1st-order C-DBN with multiple continuous variables

Theory

As we have seen in Chapter 3, we can transform the problem of learning C-DBN structures to be
an instance of the BN-structure learning problem. This means that, for 1st-order Classification
Dynamic Bayesian networks we have a copy for all variables in t = 0 and t = −1. Since we
have specified automatic discretization in terms of structure learning, we can combine these two
transformations and use them to learn a discretization strategy for DBNs automatically. To
accomplish this, we first shift the dataset, as in Section 4.2 and add the regular constraints for
DBNs and C-DBNs, mentioned in Section 3.2.

While this lays down the foundation for learning our discretization strategy, we have one more
challenge to deal with. We now have more than one observation: we have both a yt=0 and a
y−1. The case can be made that if a boundary helps predicting y node in time frame t = −1,
it should also be included in the discretization strategy for t since it adds information to the
classification process. We would argue however that since in our case, all variables in t = −1
are always given and it is our objective to predict yt=0 this would add superfluous information
that makes the model needlessly complex. Remember that, if the edge would be beneficial for
predicting yt=0 the structure learner has the power to connect them. Therefore, we do not lose
information by excluding nodes connected to t = −1 and use our way of selecting boundaries
as before.

Although we have now formulated a rather straightforward process of learning a discretization
strategy for DBNs, we should address the algorithmic complexity of this solution. In the previous
section, we have already seen that we create 2(m−1)(n−1) possible combinations, with m being
the number of continuous variables and n the number of rows. By duplicating each vector in
the shifting process for creating a DBN learner, we expand this even further to 22·(m−1)(n−1)

possibilities, quickly shrinking the set of problems in which this technique can be applied even
further. As before, we can mitigate this problem somewhat by exploiting the constraints on
DBNs to limit the search space of the parent set generation, but the speed at which the network
grows will quickly make that approach untenable as well. The user would then need to rely on
even lower precision or start sampling or approximation to be capable of using this approach
for anything but very small datasets.

Note that even though we only look at the classification node in t = 0 for discretization, this does
not mean that we can learn based on t = 0 alone. We can expect very different graph structures
when the additional nodes that represent time are included. The graph from which the structure
learner would determine a discretization strategy would otherwise be very different from the
one the final model is learned from, and interaction effects could be ignored. It is therefore not
possible to prune the model to t = 0.

Example

For this example we simulate a time series using the sine function as follows:

• v(i) = sin(i ∗ 360/T ) +N (0.2, 0.2)

• w(i) = v(i− 1) +N (0.4, 0.1)
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v w y

1.557726 0.654749 0.0
2.153327 1.895026 1.0
0.353274 2.548946 1.0
0.827301 0.705552 0.0
2.010548 1.095915 1.0
0.263023 2.499010 1.0

Table 5.7: Generated dataset D Figure 5.5: Graphical illustration of D

v(1.86) v(1.25) v(0.59) v(1.42) v(1.14) w(1.27) w(2.22) w(1.63) w(0.9) w(1.8) y v(1.86) 1 v(1.25) 1 v(0.59) 1 v(1.42) 1 v(1.14) 1 w(1.27) 1 w(2.22) 1 w(1.63) 1 w(0.9) 1 w(1.8) 1 y 1

0 0 0 0 0 0 1 0 0 0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0
1 1 1 1 1 0 0 0 0 0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
1 1 0 1 1 1 1 1 1 1 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0
0 0 0 0 0 1 1 1 0 1 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0
1 1 1 1 1 0 0 0 0 0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0

Table 5.8: Example dataset with continuous variables v and w, discrete target y and a first
order Markov assumption.

• y(i) =

{
1 if w(i) > 1

0 otherwise

with T = 3 the periodicity, and N (µ, σ) being noise sampled from a normal distribution with
mean µ and standard deviation σ. We take six samples, so i ∈ [0, 5]. An illustration of an
instance of this simulation is shown in Table 5.7 and Figure 5.5.

We first create all the boundaries between the variables as before and then shift them to encode
a DBN. Since we have six rows, two continuous variables, and one discrete target, we will create
(6 − 1) · 2 + 1 = 11 columns by creating the boundaries and add another 11 for shifting to
produce a total of 22 columns. This is shown in Table 5.8. As the computational complexity
has increased a lot, we will restrict the structure learner to using at most six parents for each
node, as the running time was becoming unfeasibly high for higher amounts of parents. This
could return a sub-optimal result, but otherwise, even this simple example would be infeasible.

The result of the structure learning process is depicted in Figure 5.6. It shows that our target
y takes three nodes as parents: w2.22

t=−1, w
0.91
t=0 , and v0.59t=−1. These points cut the data on three

boundaries into the four distinct parts. Note that since y has been generated from w and w
from v, the most logical graph would have edges from v to w and from w to y. Since the learner
only has six data points to learn from, it is to be expected that the learner makes some mistakes
in assessing relationships.

We can now use the three boundaries from the network that we have learned as a discretization
strategy for D to create D′, as shown in Table 5.9. From this dataset, as we have seen in
Chapter 3, we can learn a C-DBN (shown in Figure 5.7).
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Figure 5.6: Visual representation of the learned discretization network with continuous variables
v and w, discrete target y and a first order Markov assumption.
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v w y v 1 w 1 y 1

1 1 1 1 0 0.0
0 2 1 1 1 1.0
1 0 0 0 2 1.0
1 1 1 1 0 0.0
0 2 1 1 1 1.0

Table 5.9: Representation of the discretized
dataset D′.

Figure 5.7: Learned C-DBN based on dis-
cretized dataset D′.

5.6 nth-order Dynamic Bayesian networks with multiple contin-
uous variables

Since we did not use any of the variables connected to the target node in time frame t = −1
directly in the previous section, we can easily extend the approach from the previous section
to any nth-order C-DBN. We only need to unroll the network further and allow for a larger
lookback, but the constraints as mentioned in Section 3.2 remain the same.

A significant impact of generalizing the order of the Markov assumption is the increased com-
plexity. Where before we needed 22·(m−1)(n−1) data points for learning, this now generalizes
to 2t·(m−1)(n−1), where t is the number of time frames we use in our DBN. As we already had
to severely limit our amount of data points for the previous examples to make it run within a
reasonable amount of time, we will not even attempt to create an example for the case where
t > 2. While interesting in theory, the complexity of this algorithm has become too high to be
feasible in practice.

5.7 Example

To show the power of full automatic discretization, we end this chapter with an example using
Full Automatic Discretization for a classification task with a Bayesian network. Since the
computational complexity of the proposed method is too high for most real-world problems, we
opted to use a single dataset that shows the reader the potential of our approach rather than
doing extensive performance testing.
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The Exercise Dataset

To this end, we have chosen the exercise sample dataset from the Python-based Seaborn library
1. This dataset consists of 90 records, and four variables: diet, pulse, time, and kind. The first
rows of the dataset are shown as an illustration in Table 5.10. Time refers to exercise time and
is measured at either 1, 15, or 30 minutes and is therefore left as a discrete group. The diet
variable can either be “low fat”, “high fat”, or “no fat”, and kind specifies an activity, being
either “rest”, “walking”, or “running”. The pulse variable is the only continuous variable and
ranges between 80 and 150. Its distribution is illustrated in Figure 5.8.

Method

We will try to predict the kind of activity given all other variables using two discretization
approaches: Full Automatic Discretization (FAD) as described above, and the traditional un-
supervised Equal Width Discretization (EWD) [14]. For FAD we have chosen to learn the
structure using the BDeu score [22] with an equivalent sample size (i.e., “the strength of our
prior belief in the uniformity of the conditional distributions of the network” [41]) of 20, and
at most six parents. For EWD we have set the number of bins at seven, as that would be the
maximum FAD would be able to create.

To see which method is better, we will use leave-one-out cross-validation to obtain the most
information on how the methods perform on this relatively small dataset. We will use two-sided
t-tests for comparing both the in-sample and out-of-sample error.

diet pulse time kind

low fat 85 1 min rest
low fat 85 15 min rest
low fat 88 30 min rest
low fat 90 1 min rest
low fat 92 15 min rest
low fat 93 30 min rest
low fat 97 1 min rest
low fat 97 15 min rest
low fat 94 30 min rest

Table 5.10: First rows of the exercise
dataset

Figure 5.8: Illustration of the distribution
of the pulse variable

1See: https://github.com/mwaskom/seaborn-data/blob/ff48445cbd5915a4fb45bf2432015f90078c96f6/exercise.
csv
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Figure 5.9: Visual representation of the learned discretization network with continuous variable
pulse, discrete target kind.

Learning

For learning using FAD discretization, we first take all the unique pulse values and turn them
into boundaries as described in Section 5.3. We then add the constraint that boundaries cannot
be linked if they are created from the same continuous variable, and we say that they cannot
receive our target (kind) as a parent. Next, we used the GOBNILP program to learn the
structure of the network, given our augmented dataset and the set of constraints. The result is
shown in Figure 5.9. It shows that our target, kind, uses four boundaries, thereby splitting the
pulse set in five bins.

Now we have the FAD discretization strategy, we can make two new discretization datasets:
one made by FAD and one with EWD. These datasets can subsequently be fed to the structure
learner again to create two Bayesian networks, which are shown in Figures 5.10 and 5.11. The
only difference between the learned structures is that the one based on FAD has an extra edge
from time to pulse. This seems to correspond to a weaker relationship (as shown in Figure 5.12)
than the one between pulse and kind, but using FAD we were able to pick up on it.

Having the graphs, we only have one more step to go: learning the parameters for the variables
using the discretized datasets. Note that even if the structure learner would have returned
the same result in both cases, having a different discretization strategy could still affect the
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Figure 5.10: BN learned
from FAD

Figure 5.11: BN Learned
from EWD

Figure 5.12: Pearson corre-
lations in original dataset

parameter learning part of the process. For this, we used the PGMPY library [4] in Python.
With this information, we can use a MAP-query to find the most likely value for kind given the
value of all other variables.

Results

After running both algorithms on the dataset, we have obtained an in-sample accuracy of
µ = 0.601 with σ = 0.016 for FAD, and one of µ = 0.580 with σ = 0.0268 for the EWD-
based BN. This means that we have a significantly better performing model coming out of the
FAD-method (n = 89, p < 0.001). Based on the out-of-sample accuracy however, there is no
significant difference: while FAD achieved a lower accuracy (µ = 0.522) than EWD (0.576), the
standard deviation was too high (σ = 0.502 and σ = 0.495 resp., p = 0.371).

Analysis

These results show us two things: while there is certainly potential in FAD (as indicated by
the better in-sample accuracy), it suffers when presented with new data. While it was not
significantly worse than EWD, it was also no longer the better approach. First of all, it would
make sense that FAD is at least as good in-sample as EWD as it has the power to construct
the same model as EWD in the worst case, and improve on it if possible. Our result validates
our ideas there.

There is also a likely explanation for why FAD is no longer better out-of-sample: as the approach
is more powerful, it is also more prone to overfitting. This is a well-known phenomenon referred
to as the Bias-Variance trade-off. To mitigate this problem, adding data is often helpful. In
our circumstance, however, that will not necessarily be the case, as more data could push our
approach towards computational infeasibility. To work around that problem while also making
use of the potential in FAD, we will look at a heuristic approach in the next chapter.
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Chapter 6

Reduced Automatic Discretization
for C-DBNs

In the previous chapter, we looked at a novel approach for automatic discretization that pushes
the problem of finding the right cutting boundaries towards the structure learner. We accom-
plished this by creating a node for all cutting options and discretizing based on the resulting
selection set. While this approach seems promising, its exploding computational complexity
and need for data make it impractical for most real-world applications.

In this chapter, we will use the ideas from before to construct a new approach which also reduces
end-user complexity by embedding the discretization problem into the structure learning phase,
while reducing the number of boundaries to check to maintain computational feasibility. While
this probably means that we will not be able to achieve the same level of performance, the
trade-off might be worth it since the reduced complexity does make this method applicable to
real-world situations. We will first introduce the idea of Selection-based Reduced Automatic
Discretization (S-RAD), then compare it on theoretical bases to a closely related approach,
describe the required transformation for learning and finish with an example.

6.1 Selection-based Reduced Automatic Discretization (S-RAD)

To reduce the number of boundaries that we need to check, which causes FAD to be infeasible,
we can use a heuristic that provides us with a range of possibly interesting boundaries. We
would then limit our search for discretization strategies to the boundaries produced by the
heuristic. While we could construct such a heuristic on our own, we thought it wise to use
existing discretization methods. Therefore, our approach will be to generate a large but fixed
number of cutting points using methods such as Equal Width Discretization, Equal Frequency
Discretization, and others to create potentially good cutting points. Our proposed discretization
technique using the structure learner will then use these options to select the best possible
discretization strategy.

There are multiple ways of creating a discretization strategy from heuristics using a structure
learner. One intuitive variant involves generalizing the concept of discretization nodes as intro-
duced in the previous chapter. Since many discretization algorithms have hyper-parameters, we
can create a number of discretization nodes that describe the different instantiations of these
methods and use automatic discretization to select the best version. We will, therefore, call this
method Selection-based Reduced Automatic Discretization (or S-RAD).
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6.2 Selection vs. Estimation

S-RAD might at first appear to be very similar to an existing method of optimizing discretization
methods: the common machine learning practice of hyper-parameter estimation [11]. Hyper-
parameter estimation involves testing the various options for algorithms (either complete models
or parameters) using an additional dataset, and selects the option with the highest accuracy
on this dataset. There is a key difference: while hyper-parameter estimation maximizes the
accuracy of a classification task, S-RAD’s approach takes a step back and tries to balance this
with finding the best underlying model.

To find the best underlying model, we need to have a way of measuring the quality of such a
model. This is a problem we faced before when we tried to find the best structure for a (C-)DBN
given a dataset. We then solved this by using a structure score which represents the likelihood
of a model given the dataset. Here we can follow a similar approach: we will try to find the
discretization strategy which helps maximize the structure score, thereby creating a model with
the highest possible likelihood.

Note that this is the opposite approach of hyper-parameter estimation. In hyper-parameter
estimation, we expect that if we maximize accuracy on a validation set, we will have created
the best possible underlying model. Here we want to create the best underlying model and
expect that this will also produce a good accuracy. In theory, if we had no noise and infinite
amounts of data, both approaches would work well. However, since we do have noise and our
supply of data is not infinite, we have to choose what is more important: accuracy or fit. Since
the reason we have chosen Dynamic Bayesian networks in the first place is to make temporal
processes explainable and insightful, we will prefer to maximize our fit. The next section will
describe how we will achieve this by building on the techniques from FAD.

6.3 Transformation

To embed the problem of discretization into that of structure learning, we need to extend our
definition of a discretization node. Where before we said that a discretization node drv for
variable v was binary, so it partitions v into two parts based on boundary r, we now let dv take
on multiple values. Each of these values indicates a bin of an existing discretization approach.
Different discretization nodes then indicate the various combinations of algorithms with their
instantiations. We use a similar definition for selection as in Definition 5.2: if a discretization
node is the parent of the hidden node (i.e., the target), it is selected. We do need an additional
constraint to guarantee that we have a single strategy: the selection set must have a size of at
most one:

Constraint 6.1 (Singular Discretization Strategy1):
The selection set Sv for node v must contain one item: |Sv| = 1

The approach to S-RAD is shown as pseudocode in Listing 6.1. For the input, we assume to
have a dataframe or dataset consisting of the different variables on the columns and values in
the rows. In addition, we have a list of discretization variables, a list of the different algorithms
and instantiations referred to as discretization methods, the target variable of the network, and
the regular DBN parameters.

1In our experiments, we have used the constraint that |Sv| ≤ 1. While this means we can sometimes find no
discretization strategy, this did not often occur in practice. In the cases where it did happen, we discretized the
dataset to a constant value. This is also what is shown in the pseudocode.
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def S-RAD(dataframe, discr_variables, discr_methods, objective, look_back, parent_lim, ESS):
for var in discr_variables:

for method in discr_methods:
dataframe[var_method] = method(dataframe[var])

dataframe.drop(var) # remove the continuous variable

dbn_dataset = create_lookback_dataset(dataframe, look_back)
G = structure_learn(dbn_dataset, parent_lim, ESS)

strategy = {}
for var in discr_variables:

for method in discr_methods:
for timeframe in range(look_back):

if (var_method_timeframe, objective) in G.edges:
# select method of most recent timeframe
if not strategy[var_method]:

strategy[var_method] = method

return strategy

Listing 6.1: Pseudocode for using Selection-based Reduced Automatic Discretization

The algorithm will first create a new column for every variable and every discretization method
with the result of discretizing the variable according to this method. After that, we remove the
original variable so the learner can not use it for additional information. Next, we can transform
the dataset into a DBN problem as before, and learn its structure.

The discretization strategy that we choose is the one belonging to the variable with the highest
time frame (being closest to the present). Note that this choice is based on simplicity but can
be changed to a more sophisticated variant based on e.g., a weighted average if the events in the
far-past tend to have more influence than the near-present, or if a large number of timeframes
is used.

6.4 Example

To illustrate how S-RAD works, we will now look at an example using a subset of the Ottawa
Bike Counters dataset [2]. This dataset records the number of bikers on a given road for every
day, measured per day for eight years. Aside from the day of the week, it also includes the
mean temperature and the amount of snow on the road. We discretize the number of bikers
by hand using Equal Frequency Discretization (to avoid skewing our model towards one group)
into three parts 2.

For this example, and in fact, for the experimentation later on, we will limit ourselves to
discretizing only a single variable, even though our approach would extend to a combination of
nodes. Since we have two continuous variables in the dataset, we will discretize one of these
variables, the amount of snow on the ground, ourselves (using EFD with 10 bins). A part of
the resulting dataset is shown in Table 6.1.

We will now apply S-RAD to the mean temperature in this dataset so that we can predict the
number of bikers. We want to select from five different discretization methods: discretizing
based on the median value, EWD with either two or three bins, and EFD with either two

2Note that we do not use automatic discretization for this variable because it is our classification target. It
should only depend on the purpose of the model.
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Temp Snow Month Bikers

-13.1 2 2 0
-6.9 2 2 0
-3.4 2 2 1
2.9 1 2 1
-4.8 1 2 1
-7.4 1 2 1
-4.1 1 2 1

Table 6.1: Sample taken from the Ottawa
Bike Counters dataset

Temp Snow Month Bikers

0 2 2 0
0 2 2 0
0 2 2 1
0 1 2 1
0 1 2 1
0 1 2 1
0 1 2 1

Table 6.2: Ottawa Bike Counters dataset
discretized using the selected EFD-3

Snow Month Bikers T-Median-0 T-EFD-2 T-EFD-3

2 2 0 0 0 0
2 2 0 0 0 0
2 2 1 0 0 0
1 2 1 0 0 1
1 2 1 0 0 0
1 2 1 0 0 0
1 2 1 0 0 0

Table 6.3: Discretization dataframe produced from Table 6.1 by discretizing Temperature ac-
cording to five different methods.

or three bins. We do this by creating additional columns as in Listing 6.1 for each possible
method by applying each method on the temperature variable. Finally, we remove the original
continuous variable to get Table 6.3.

Now we have a dataset containing all discretization variables, we can learn a DBN as before. In
addition to the three standard constraints which specify that nodes cannot have parents in the
future, that the hidden variable cannot be connected to its past, and that the objective cannot
have any children, we also add the constraint that only one of the discretization variables can
be the parent of the objective. If we would not enforce this, the structure learner could suggest
a combination of discretization tactics that would increase complexity. This last constraint is,
however, not entirely trivial to implement for the Gobnilp solver. The implementation of the
constraint is described in more detail in Appendix B.

After having implemented all the constraints, we can run our structure learning procedure. A
graphical overview of the resulting structure is shown in Figure 6.1. From the structure, we
can see that the discretization strategy that relies on EFD with two bins has been selected,
and is, therefore, our choice for discretization. Note that the structure learner has found that
its representation is best when it uses the temperature from the previous timeframe, rather
than from t = 0. We will not create any constraints to prevent this from happening since this
selection indicates that most information can be obtained from the previous timeframe, which
the final DBN can replicate.

Since we have found a discretization strategy, we can go back to the original dataset and
discretize the temperature variable using this method alone. A sample from the dataset is
shown in Table 6.2. From this dataset, we can learn our final DBN for predicting the number
of bikes as we have shown in Chapter 3. The final graph is shown in Figure 6.2.
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Figure 6.1: Visual representation of the
learned discretization DBN for the bike coun-
ters dataset. The number of bikers, show as
hexagons, are the target nodes.

Figure 6.2: Learned DBN based on discretized
bikecounters dataset
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Chapter 7

Experimental Verification

In this chapter, we will test our proposed method of classifying time-series by C-DBNs with
S-RAD. To that extent, we use two real-world datasets: Ottawa Bike Counters [2] and Room
Occupancy [1], as well as a synthetic one. The real-world datasets were selected from a broader
range of potential options. See Appendix A for an outline of the reason why some datasets
were not included. Here we will first discuss what we want to discover, then we provide an
overview of the datasets that are used, and conclude with a description of the set up for the
experimentation process.

7.1 Hypothesis

Throughout this paper, our goal has been threefold: we want to learn a model automatically,
which is accurate, and explainable. Now we have constructed our proposed approach, we want
to test if our method fulfills these requirements. To that extent, we will compare our method
based on two scores in two types of situations.

First, we want to verify that automatically learning a discretization strategy using S-RAD is
consistently either better than or on par with using discretization without prior knowledge. As
the alternative discretizer, we have selected the median discretizer. This comparison with the
median is informative to us because the median is often used when nothing about the data is
known in advance. To test consistency, we will look at discretizing different variables in the
same dataset. Second, we want to compare S-RAD against the discretization strategies that it
uses as heuristic: EWD, EFD, IQR, and Median. Since S-RAD can choose directly from these
heuristics, we think that none of these methods will consistently outperform S-RAD.

To measure the performance of our model, we will use three scoring functions. To start, we
note that accuracy encompasses two different concepts in our C-DBN system. First, we want
our prediction of the target value to be correct. This is measured using the accuracy score: the
number of correct predictions divided by the total number of predictions:

Accuracy(Y, Ȳ ) =
1

N

N∑
i=0

{
1 if Yi = Ȳi

0 otherwise

in which Ȳ is the set of predicted values, Y is the set of true values, and N is the size of both
sets.
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Then we also want the probability which we assign to each outcome to be accurate. We will use
the multi-variate Brier score [6] to represent this wish to measure predictive accuracy [20]. The
Brier score indicates how close our probability estimates are: the higher our probability is for
the true classification value and the lower the probabilities we assign to incorrect values, the
lower the Brier score. A low Brier score therefore indicates a good result:

Brier(P,E) =
1

N

R∑
j=1

N∑
i=1

(Pi,j − Ei,j)2

where N is the number of classified feature vectors, R is the number of assignments the target
variable can take on, Pi,j is the probability the model computer for seeing assignment i for
features j, and Ei,j = 1 if the true assignment for j is i or 0 otherwise [6].

Now we can state our hypotheses as follows:

1. S-RAD consistently performs either the same or better than using the Median discretizer,
based on the accuracy and the Brier-score.

2. There is no discretizer in our test set that can consistently outperform S-RAD based on
accuracy and the Brier-score

7.2 Datasets

To test our hypotheses, we will use three different data sets. In this section, we provide some
background information and descriptive statistics to get familiar with their properties.

7.2.1 Ottawa Bike Counters

The original Ottawa Bike Counters dataset, created for [8] and made available by [15], contains
13 columns and 28,786 rows. Its purpose is to measure the number of bikers on a certain road.
To help with prediction, it also includes weather conditions. Most columns (7) are derivatives of
the temperature, amount of snow, or amount of rain. Other variables include location, amount
of bikers, and date. For our tests, we only look at one location (id = 2). Since we want to
predict a discrete variable, we create three groups of the number of bikers using EFD (which
ensures that our model is balanced). We also scale down the number of columns to reduce
complexity. To measure time, we convert day, day of year, and day of week to a single variable:
month. For summarizing the weather conditions, we will only use mean temperature and snow
since these two have a strong relationship with the number of bikers (ρ = 0.73 and ρ = −0.5
resp.). The correlations between all variables are shown in Figure 7.2.

For this dataset we create two types of experiments: one in which we only try to predict the
hidden variable from one of the two probabilistic variables (either snow or mean temperature),
and one in which the network combines the two. For the variable that is not automatically
discretized, we used EFD with five bins. We chose EFD for this purpose because it produces
bins of equal size, which avoids creating unbalanced classes that might clash with our frequency
learner. Five bins do reduce some complexity, but also allow quite some flexibility for our model
to preserve information. The original distributions are shown in Figure 7.1.
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Figure 7.1: Histogram and Kernel Density Estimation (KDE) of the target and variables to be
discretized for the Ottawa Bike Counters dataset

Figure 7.2: Heatmap showing the Pearson cor-
relations between the variables in the original
Ottawa Bike Counters

Figure 7.3: Heatmap showing the Pearson cor-
relations between the variables in the original
room occupancy dataset

7.2.2 Room Occupancy

The room occupancy dataset contains 7 columns and 8143 rows. The variables include the
date, temperature, humidity, light, CO2, humidity ratio and occupancy of a room. The goal
is to predict whether someone was present in a room given the six other observations. All
measurements were conducted once a minute. For testing, we turn the date into the current
hour to avoid having individually identifiable datapoints. To reduce complexity, we remove the
humidity ratio variable (which contains the same information as the humidity variable), as well
as the temperature. That leaves us with three variables for predicting room occupancy.

Of the three remaining variables, light has the strongest correlation with occupancy: ρ = 0.91.
Second is CO2 : ρ = 0.71. The weakest (linear) relationship is between humidity and room
occupancy : the Pearson coefficient is in that case only 0.13. The correlations between all
variables are shown in Figure 7.3. The distribution of the variables that we are either going to
predict or discretize are estimated and graphically shown in Figure 7.4.
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Figure 7.4: Histogram and KDE of the target and variables to be discretized for the room
occupancy dataset

7.2.3 Synthetic Sine-based

The last dataset we use is a synthetic one, based on the example in Section 5.5 with some slight
modifications. As before, we have two features: v and w. We define v as:

v(i) = sin(iT ) + ε+ 1

with T the periodicity and ε noise generated from a normal distribution with µ = 0.2 and
σ = 0.2. We define w based on v:

w(i) = v(i− 1) + σ

where σ is noise generated from a normal distribution with µ = 0.4 and σ = 0.1.

Finally, we create the target node y from a static threshold:

y(i) =

{
1 if w(i) > 1.5

0 otherwise

This means that both y and w are tracking v. If we want to simulate a dynamic human decision
process for y, this is a sensible approach since that also involves reaction time. This relationship
becomes visible in the correlation diagram in Figure 7.7. Both w and y have a relatively strong
positive correlation as y reacts in the same time frame as w. There is a much weaker correlation
between y and v since the decision for y goes through w and has to incur two different noise
factors. Since the two operate with a lag of a single timeframe (and a periodicity of three), the
relationship becomes slightly negative. The connection between w and v is for the same reason
negative, but a bit stronger as the two are directly related.

Figure 7.5: Histograms and KDE for v, w, y in a sample of 20,000 rows

The sine function itself is visible in the histograms in Figure 7.5. Since we have many data
points, we can see the original distributions through the noise. Finally, the amount of data
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points for y = 0 is slightly lower than that for y = 1 (they occur in a ratio of about 9 : 11),
which is caused by the mean of 0.1 for the noise factor of w.

In the test cases, we will use a periodicity of T = 3 to make sure we have a highly dynamic
dataset with many unique data points. Also, to make sure we have enough data points, we
sample 20, 000 rows. The first five periods are shown in Figure 7.6.

Figure 7.6: Plot of first 5 periods that have
been sampled for v, w, y

Figure 7.7: Visual overview of Pearson corre-
lations between v, w, y in a sample of 20,000
rows

7.3 Testing Set-up

We have conducted our experiments using Gobnilp 1.6.3, PGMPY c34ccd-dev and Python
3.7.3 on Ubuntu 18.04.2 on both a desktop computer and an AWS EC2 server. Our full testing
environment is described in Appendix D.

For each dataset, we learn a C-DBN with an effective sample size of 20 and a parent limit of 5
(or the maximum number of variables in the graph if that amount is lower). We use a first-order
Markov assumption: we have one timeframe at t = −1 and one at t = 0. In each test case,
we provide the network the value for all variables as evidence, except for the target variable
in t = 0. S-RAD was composed of eight heuristics: IQR, Median, EWD-2, EWD-3, EWD-10,
EFD-2, EFD-3, and EFD-10.

For all three datasets, we test the effect of discretizing one variable, while dropping all other
continuous variables from the dataset. For the bike counters dataset, we also test the effect of
leaving in the other continuous variable but discretizing it manually using EFD-5.

7.4 Cross-validation with temporal data

Since we want to provide the best overview of our dataset, we use k-fold cross-validation. This
method runs k tests: it divides the dataset into k blocks and for each run selects one fold as
the test set, and uses the other folds for training. In this way, we can test our entire dataset for
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training as well as testing. Since we use k = 10, we will have ten test sets for each experiment.
We can then report on the different scores by taking the average of these ten results.

However, as we are dealing with temporal data, we cannot use k-fold cross-validation directly.
Cross-validation assumes that all measurements are independent of each other, and for us,
that is not the case. If we would do so, we would possibly pollute the train set with data
that is strongly related to our test set, thereby making our results inaccurate. To break these
dependencies, we use ideas from a method developed by Racine for the field of Econometrics
called h, v-fold cross-validation [38]. This method involves “padding” the h (which is denoted
by k in our context) blocks of test data with v items that we will not use for either training or
testing. If we choose a large enough value or v, we can assume the trainset and testset to be
independent.

While Racine does offer some guidelines for choosing a good value for v, the author notes that
this is application-specific. The guideline says that v should be about 1/4th the size of k. This
rule makes the padding depend on the size of our dataset, not on the characteristics of the data.
While it might work well for model selection, as the author indented initially, it can be either
overly strict or lenient for our purposes of breaking dependencies for a representative score.
Therefore, instead of using the suggested v, we take an alternative approach.

We base our approach on the properties of the data itself, using the partial autocorrelation
function (PACF). The PACF specifies after how many time frames (or lags) a variable is no
longer correlated with itself anymore [5, p. 64] [18]. This function corresponds exactly to what
we want: the number of time frames after which a timeframe is no longer dependent on previous
data.

There are two ways to find a cut-off point after which we deem an auto-correlation irrelevant.
First, if the correlation is significantly less than 0.1, it is only a very soft correlation that will,
in many instances, be surpassed by different variables in the network. Second, we compare it
against the correlation between the variable and the smallest time-based variable. Since the
time-based variables are always given for each timeframe (as they are deterministic, see Section
3.2), the effect of auto-correlation becomes irrelevant when the correlation between the time-
based variable is higher than the auto-correlation. When the auto-correlation after i timeframes
has become smaller than both of these values, we assume that we need at most i timeframes to
break independence between any set of timeframes. Hence, we can use the value of i for v in
k, v-fold cross-validation.

For calculating the PACF, we have used Python’s statsmodels library. To split the data into
padded blocks using k, v-fold cross-validation, we have created an open-source Python library,
available on GitHub: https://github.com/daanknoope/kv_block_cross_validation.

7.5 Statistic tests

After we run our experiments, we will use the paired t-test to compare discretization methods,
since we are using the same datasets for all the algorithms. We say that a difference is significant
if p < α, and α = 0.05 as usual.

Since it is our goal in here to provide an understanding of when S-RAD can be useful, we will
use many t-tests to compare performance. As it is not our goal to provide the definitive proof
for its superior performance in all situations, we do not compensate for the extensive amount
of significance testing using a correction that would otherwise be required, as that would be
overly harsh and provide us with little insight.
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Chapter 8

Experimental Results

In this chapter, we show the results of the experiments we discussed in the previous chapter.
We split this into four parts: the results based on the room occupancy dataset, the results for
the bike counters dataset in which there were either one or multiple variables to learn from, and
finally those from a synthetic dataset. Additional results are shown in Appendix E.

8.1 Room Occupancy

In the room occupancy dataset, there were three variables to be discretized: humidity, CO2,
and light. The barplot in Figure 8.1 shows the accuracy and Brier-score, based on S-RAD and
the eight other discretization methods it is composed of. All variables were tested in isolation:
if humidity was tested for example, CO2 and light were removed from the dataset.

It is important to note that for the light variable, no results are shown for the various versions
of EWD. This lack of results is caused by the fact that EWD can, and in the case of light will,
create empty bins. The structure learner has trouble with using empty bins since it means
that the arity of variables need not be the same as the number of unique variables. This
incompatibility could be fixed in later versions, but here EWD has been excluded, and we used
S-RAD without EWD as a heuristic.

From the bar plots, it becomes clear that the overall score on the training set is much higher
than that on the test set. Also, results based on the train set have a much lower variance than
those based on the test set. While it is not uncommon for models to perform better in-sample
than out-of-sample, the difference here is rather striking.

We suspect that there are three potential causes at play here. First: the train sets are much
larger than the test set, and often largely overlap between tests (due to cross-validation), driving
down the variance between experiments. Second, since the data is dynamic, it could be that the
training set does not represent the test set very well. While we sample from the same dataset,
since time series are not Independent and Identically Distributed (IID), we might create a train
set that is generated by a different underlying distribution than the test set. Using synthetic
tests in which we control for the underlying distribution can help here, as we will see later
on. Third, the number of measurements in a time-series can be misleading. While the overall
dataset consists of around 81,000 rows, there may be many duplicate measurements in which
only the time changes, but not the other variables. In other words, part of the time series can be
very stable and contain a rather low number of change points. If our model by chance happens
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Figure 8.1: Barplot with 95% confidence intervals of the results of the three discretized variables
together with the accuracy and the Brier-score for the room occupancy dataset.

to perform poorly in one situation that remains stable for many measurements, score functions
like the accuracy and Brier-score could give us a skewed impression of performance. This low
number of unique datapoints would also explain the rather large variance between results in the
test sets.

The full results are shown in Table E.5. From this table, we can see that in-sample, S-RAD
achieves a significantly better accuracy and Brier-score than the Median discretizer for all the
different variables. In the test set, the exact opposite happens: the median outperforms S-RAD
in all cases, though never significantly so (due to a high standard deviation, as discussed before).

Dataset Score Variable Alternative Score SRAD Std. SRAD Score Alternative Std. Alternative p

Test Accuracy CO2 EFD 10.0 0.716 0.31 0.884 0.14 0.027

Table 8.1: Table showing the score types, variables and alternative strategies when the alterna-
tive was significantly better than S-RAD for the room occupancy dataset

There is no discretization strategy that consistently and significantly outperformed S-RAD in
the test sets for all the variables. Only EFD-10 is significantly better than S-RAD based on the
accuracy for the CO2 score, but for the other variables there is no significant difference. These
results are shown in Table 8.1.
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8.2 Bike Counters

The next results we look at come from the bike counters dataset. For the previous dataset, we
tested the effect of discretization based on a network with a single probabilistic variable: the
one we discretized automatically. For this dataset, we will at first take the same approach and
only use a single probabilistic variable (in addition to the other types of variables). After that,
we use both probabilistic variables, one of which is discretized beforehand (both combinations
are tested).

8.2.1 Single probabilistic variable

The first results we look are based on experimenting with C-DBNs that only contain one prob-
abilistic variable (altering between snow and temperature). The bar plot in Figure 8.2 visually
shows an overview of the results. For this dataset, the difference between the test set and the
train set seems smaller than in the previous dataset. The variance remains relatively high for
the test sets, however.

Figure 8.2: Barplot with 95% confidence intervals of the results of the three discretized variables
together with the accuracy and the Brier-score for the bike counters dataset with a single
variable.

Most striking is that the accuracy scores of the different discretization methods in both the
test set and the train are very similar to another. This idea is reinforced by the full results
shown in Table E.2. There is only a significant difference in accuracy between S-RAD and the
Median discretizer for the snow variable in favor of S-RAD, but even so, the difference is minor
(with 0.002 percentage points). The same applies to the Brier-score: all differences are either
statistically insignificant or rather minor in size. This is shown in Table 8.2.

When we check for steady outperformers, we see that none of the methods consistently out-
performs S-RAD in the testing data. EWD-2 and EFD-3 are both significantly better based
on accuracy for the temperature variable in the training data, but not for the snow variable.
S-RAD is thus not consistently outperformed in this dataset.
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Dataset Score Variable Alternative Score SRAD Std. SRAD Score Alternative Std. Alternative p

Train Accuracy Temp EWD 2.0 0.765 0.020 0.770 0.019 0.003
Train Accuracy Temp EFD 3.0 0.765 0.020 0.769 0.019 0.005
Train Brier-Score Temp EFD 3.0 0.113 0.009 0.112 0.008 0.029

Table 8.2: Table showing the score types, variables and alternative strategies when the alterna-
tive was significantly better than S-RAD for the single bike counters dataset

8.2.2 Multiple probabilistic variables

The second way we look at the bike counters dataset is by using both snow and temperature
in the learning process. We only discretized one of the two automatically and used EFD with
five bins to discretize the other. The results of this are shown again in a bar plot, in Figure
8.3. What stands out most here is that the scores are remarkably close to those based on the
networks with only one of the two variables. While such similarities can be an indication that
our model did not learn anything, that is certainly not the case. Since the target consists of
three equally sized groups, a majority class predictor would get about 33.3% correct on average,
while our average accuracy hovers around 78%. Adding the extra node compared to the previous
dataset has just not resulted in a better predictor, meaning that one of the two probabilistic
variables would be informative enough.

Figure 8.3: Barplot with 95% confidence intervals of the results of the three discretized variables
together with the accuracy Brier-score for the bike counters dataset with multiple variables.

Our consistency results mostly overlap with those of the previous section, except for EWD-3, as
shown in Table 8.3. Interestingly enough, this method was able to outperform S-RAD based on
accuracy in training data. EWD-3 was only capable of significantly outperforming S-RAD based
on the Temperature variable, and only in the training data. Hence, S-RAD is not consistently
outperformed by any of the alternative discretization methods in this dataset.

Dataset Score Variable Alternative Score SRAD Std. SRAD Score Alternative Std. Alternative p

Train Accuracy Temp EWD 3.0 0.778 0.018 0.780 0.018 0.005
Train Brier-Score Snow EWD 2.0 0.108 0.008 0.106 0.008 0.023

Table 8.3: Table showing the score types, variables and alternative strategies when the alterna-
tive was significantly better than S-RAD for the combined bike counters dataset
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8.3 Synthetic

Until now, we have seen a limited performance increase of S-RAD on C-DBNs over the other
methods. In the first dataset, we were able to achieve a higher in-sample accuracy but suffered
on the test sets, and in the bike counters dataset we did not see any significant difference.
Although other methods did not consistently outperform S-RAD, the rather large variance
between scores in the test set has made it hard to find clear differences. Therefore we have
also created this last, synthetic, dataset. It contains many data points sampled from a dynamic
distribution with only a limited amount of noise and many changepoints. These properties help
us avoid a large out-of-sample test set. Indeed, we see in the results, as shown in the barplot in
Figure 8.4 much smaller confidence intervals.

These reduced out-of-sample variances mean we can now study the effect of S-RAD more accu-
rately. As shown in Table E.8, S-RAD (µv = 0.948, σv = 0.009 and µw = 0.961, σw = 0.005) is
able to achieve a significantly better accuracy than when we used the Median discretizer, both
for v and w (µv = 0.929, σv = 0.009, pv < 0.001 and µw = 0.939, σw = 0.007, pw < 0.001). The
same is true for the Brier-score: S-RAD’s average of both variables (µv = 0.035, σv = 0.000 and
µw = 0.024, σw = 0.002) is significantly lower than that of the Median discretizer (µv = 0.058,
σv = 0.006, pv < 0.001 and µw = 0.039, σw = 0.003, pw < 0.001).

In fact, S-RAD is the top performer in this dataset together with EFD-10 (for the full results,
see Appendix E, Tables E.7). The two achieve the same scores, leading us to believe that S-RAD
has always chosen EFD-10 from its range of heuristics for the synthetic dataset.

Dataset Score Variable Alternative Score SRAD Std. SRAD Score Alternative Std. Alternative p

Train Accuracy w EWD 2.0 0.962 0.003 0.963 0.002 0.0
Train Accuracy w EWD 10.0 0.962 0.003 0.963 0.002 0.0

Table 8.4: Table showing the score types, variables and alternative strategies when the alterna-
tive was significantly better than S-RAD for the synthetic dataset

EWD-2 and EWD-10 were only able to beat S-RAD on accuracy in the training set using w,
but not out-of-sample and not consistently. We can, therefore, conclude that S-RAD is not a
consistently worse performer based on Accuracy and Brier-score.
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Figure 8.4: Barplot with 95% confidence intervals of the results of the three discretized variables
for the synthetic dataset together with the accuracy and the Brier-score.
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Chapter 9

Analysis of Experimental Results

In the previous chapter, we saw the results of running our experiments. We did these experi-
ments to test the two hypotheses postulated in Section 7.1: 1) that S-RAD is consistently better
than or on par with the median discretizer, and 2) that S-RAD is not consistently outperformed
by another discretization method it is composed of. In this chapter, we analyze the results of
each dataset and describe the qualities and weaknesses of S-RAD.

9.1 Room Occupancy

Our first hypothesis was that S-RAD would consistently either outperform or perform on par
with the discretizer based on the median. To measure this, we used accuracy and the Brier-score.
In the room occupancy dataset, we saw that S-RAD would in-sample consistently outperform
the discretizer based on the median, using both the accuracy and the Brier-score. In the test sets,
however, the median performed better than S-RAD, but this difference was never significant.

It should be noted, that the difference between S-RAD and the Median was much smaller in
the training set than in the test set. The fact that the latter would not result in any significant
difference can largely be explained by the sizable variance, as discussed in the previous chapter.
While these results suffice in theory to verify our theory for this dataset, we should also quickly
add that the out-of-sample results for S-RAD were far from ideal.

We suspect that this unexpected overperformance of the median discretizer is caused by the
same underlying reason for why the variance in results tends to be high: the train sets might
not fully represent the test sets, and the test sets can contain only a small number of actual
unique datapoints. In those situations, using the median discretizer can be beneficial, since it
assumes the least about the dataset and is least informative. This lack of information helps it
in out-of-sample tests because it is not pushed towards false conclusions. S-RAD, on the other
hand, uses a more complex model, which helps it achieve rather good in-sample scores, but due
to the additional information, suffers out-of-sample.

To verify this assumption, we checked the test data and saw that, indeed, if we drop humidity
and light, in the worse case only about half the values in the test set are unique. Discretizing
using any approach would reduce this number even further. What also stood out during further
investigation, was that in the room occupancy dataset, some test sets would contain only a
single class. This could be a result of having to sample in blocks. Given that the median
discretizer adds the least amount of information, it tends to most resemble the majority class
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predictor, which in such test cases would be very beneficial. Such scores do provide a skewed
view of overall performance, however. S-RAD might perform less well in these cases, but might
be better at distinguishing between class labels, thereby being more explainable.

Switching to our second hypothesis provides us with some more information. S-RAD is never
consistently outperformed by any alternative discretizer. Only one rather powerful model is
capable of achieving significantly better accuracy in a single case, but nothing else. This ob-
servation, together with the previous hypothesis, helps us to conclude that S-RAD is at least a
stable choice. When it has a lot of data with varying class labels, it will perform significantly
better than the median discretizer. When the test sets are rather uniform, this advantage dis-
appears but does not result in a significant disadvantage. S-RAD can therefore in the best case
outperform the simplest discretizer, while also never being beaten by any alternative method.
At least for the room occupancy dataset, this means that S-RAD would be a solid choice for au-
tomating discretization, though further improvements can be made, as we describe in Chapter
10.

9.2 Bike Counters

In the single bike counters datasets, we saw little differences between the different discretization
methods. While S-RAD was able to outperform the median for the snow variable, based on
accuracy, the differences were relatively minor or insignificant. The median discretizer was also
never significantly better than S-RAD, thereby validating our first hypothesis for both accuracy
and the Brier-score.

Our second hypothesis also holds for this dataset: there is no discretization method capable
of consistently outperforming S-RAD. In Section 7.2.1 we saw that the relationship between
temperature and amount of bikers is stronger than that between snow and amount of bikers.
We see that this stronger relationship helps relatively simple discretization models to gain a
better performance than S-RAD. For the snow variable with its weaker relationship, the roles
are reversed. Here the additional power of S-RAD starts to help, and there is no longer any
method that is capable of significantly outperforming it. This follows fairly closely what we
have seen before: when there is a small amount of information to learn from, or there are strong
relationships, the less complex discretizers outperforms S-RAD in some measures. When the
situation grows more complex, S-RAD is better able to adapt.

For the combined bike counters dataset, the same conclusions hold. The S-RAD discretizer is
consistently on par with the median for both the accuracy and the Brier-score. It also does not
get consistently outperformed by any other model. As for this dataset, both our hypotheses
stand.

9.3 Synthetic

The synthetic dataset is perhaps one of the more interesting ones, as it allows us to avoid the
problems in testing methods we have seen so far. We are guaranteed that all test-sets contain
many change points (due to our definition using the sine with a relatively short periodicity), as
well as many data points. Class labels are fairly equally distributed, with a ratio of about 11:9.
Under these conditions, we see S-RAD flourish: it is both significantly better than the median in
both the test sets and train sets, for the accuracy as well as the Brier-score. This validates our
hypothesis for the synthetic dataset. Also, not only is there no other discretization method that
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significantly outperforms it, S-RAD is consistently the top-performer together with EFD-10,
meaning that it has fully adapted itself to the dataset.

9.4 Summary

To summarize, our hypotheses hold for the datasets. S-RAD is a reliable option for automatic
discretization: it consistently either outperforms or achieves the same scores as the discretization
option that is regularly used when we have no prior knowledge about the distribution of the
data. Sometimes choosing an appropriate discretization option by hand can be advantageous,
but the specific model depends on the data so that prior knowledge would be required. S-RAD
does not require this. Looking at both the accuracy and the Brier-score, S-RAD can learn
models that classify well and assign accurate probabilities to our classifications.
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Chapter 10

Further Research

Thus far we have seen that S-RAD is a solid choice for automatic discretization because it im-
proves on the current strategy of discretizing based on the median while never being consistently
outperformed by any other method that we have tested. While this is an important first step,
we think that there are further improvements to be made. First, S-RAD is still rather rudi-
mentary: it can only select entire discretization methods. Here we discuss a more sophisticated
alternative that can fuse existing methods to potentially provide an even better discretization
approach, which can also consistently outperform other methods. We also describe a method
based on latent variables that would be more theoretically elegant and perhaps better at creat-
ing a good explainable model. Finally, we suggest a direction for how the work presented here
can be made more generally applicable.

10.1 Fusion-based Reduced Automatic Discretization (F-RAD)

One area of further research that would be worth exploring would be to create an alternative
to the rather naive S-RAD discretization approach. While S-RAD selects from a group of
entire discretization methods, we think it would be interesting to extract the boundaries that
existing methods produce and select the best from those, using the binary discretization nodes
as described in Chapter 5. In that way, it would be able to fuse the best of all the discretization
algorithms together. It would be especially interesting to see how the number of allowed parents
in the graph would influence the accuracy in such a situation. Having many parents could again
lead to overfitting and a high computational complexity (as in FAD), while a too low amount
might not produce a good accuracy. In any case, the method as a whole would have more power
to fit the underlying distribution and have more flexibility and therefore can improve on the
work we have done on S-RAD.

10.2 Using latent variables

Much of our time in the chapters on automatic discretization has been spent on creating the
right constraints on graph structures to learn a good discretization strategy. We find that
discretization nodes will often find relationships to completely different parts of the graph
(either by chance or by real correlation) or amongst another. We have also had to introduce
the notion of a selection set, which aims to find the discretization method that helps most with
classification while finding a graph that fits well with the data. While there is certainly value to
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Figure 10.1: Example of a C-DBN with Temp as latent variable needing to be discretized. The
discretization sets of Temp are isolated from the rest of the nodes. The structure learner can
select one from the set to add information.

this approach, it would be interesting to model the variable that needs to be discretized directly.
This could be done with the use of latent variables: nodes in the graph that have no data to
learn from.

In this alternative approach, each node that needs to be discretized becomes a latent variable.
The latent variable behaves like every other probabilistic variable in the C-DBN, but with
the exception that it can select additional parents from a “discretization group”. This group
contains the various discretization methods (in S-RAD) or discretization borders (in F-RAD)
that we want to investigate. This is shown in Figure 10.1.

By creating the latent variable, we have isolated the discretization nodes from the rest of the
network, thereby limiting their influence to only modeling the variable that we want. This isola-
tion does not only provide a cleaner theoretical approach but also makes it easier to implement.
For our S-RAD implementation, we would no longer need to create constraints that make the
hidden node choose for zero or one node of each discretization method (which is not trivial in
GOBNILP’s constraint language). Instead, we could add an ordinary constraint on the number
of parents a latent variable can have from its discretization set.

Since we would be modeling the variables to be discretized directly, instead of via the hidden
variable, we can expect our results to lose accuracy in the discretization tasks. On the other
hand, we expect the approach with latent variables to produce a more faithful representation
at the discretization level, thereby possibly increasing out-of-sample performance. We would be
very interested to see whether these intuitions are correct, or if there are other factors at play.

What should be noted about this approach though is that using latent variables does add
an extra layer of complexity. For every latent variable, we require an additional loop overall
structure learning possibilities and parameter learning options [28, p. 917]. This might make
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finding an exact solution impossible, forcing us to optimization methods such as Expectation
Maximization [28, p. 921]. We would be interested to see the real-world implications on model
performance of such a switch.

10.3 DBN-transformation with multiple measurements

A limiting factor of this project was that there was a relatively small number of datasets openly
available, that were both temporal and required classification, even though this problem might
occur quite frequently in the real-world. What made it even harder to find good data sets was
that not all temporal classification datasets were supported, due to our implementation. This
was the case when there are multiple measurement values for each point in time. An example of
this occurred in an airline database, in which the status of many planes was recorded. Because
we used shifting for transforming dynamic datasets into regular ones, this caused problems
in our learning approach. A naive solution to this problem would be to shift groups of rows
rather than individual rows. That approach has some limiting assumptions: both the order and
number of measurements at each point in time have to be static. Creating a robust solution to
this problem would help make our method more widely applicable.
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Chapter 11

Conclusion

In this project, we have aimed to create a method of automatically learning an explainable
method for classification tasks in time series. This is an area of research which, in our opinion,
was underserved. Since the classification of time series has many practical applications and
public opinion trends towards preferring explainable models, we believe that this was a problem
worth exploring. Since classifying time-series in an explainable way is a rather new area, it was
our goal to provide the first step towards a fitting solution. To this extent, we have laid some
important groundwork in this project.

First, we have formulated a transformation from DBNs to regular BNs and back, so existing
tools can be used to learn both the structure and the parameters of these networks to create
explainable and dynamic models. We have created both a theoretical framework, as well as
implementing it in code. Second, we wanted to improve usability by shifting the standard
machine learning task of discretization towards the automatic structure learning framework. We
first showed an approach that, while powerful, is also computationally infeasible. We attempted
to solve this using existing discretization methods as heuristics, in an approach we called S-
RAD. While we have seen some good first results using this method, we also proposed ways of
continuing research towards good automatic discretization that can potentially be even more
flexible.

In the process of doing this research, we have also worked on adjacent issues. We introduced
a new way of validating discretization and classification algorithms in time-series, based on
earlier work in Econometrics using k, v-fold cross-validation and the partial autocorrelation
function. We also explored which datasets can currently be used for classification of time-series.
We open-sourced most of our implementations (see Appendix B, C, and D) to help speed-up
further research and adoption, as well as helping to fix problems in existing projects.

To conclude, we have shown classifying time-series in an explainable way to be a solvable
problem. We have created methods, show significant potential. We are excited to see further
research in this area.
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Appendix A

Dataset Exploration

Throughout this project, we have considered many datasets for usage as an example or for
testing. In this part of the appendix, we will describe the various datasets we have explored
and give reasons for why they have or have not been used.

A.1 KNMI-Weather Alarms

The very first dataset which we have used for many months in the course of this project has
been a weather alarms dataset based on data from the Royal Dutch Institute for Meteorology
(See: http://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi). This dataset con-
tains a large number of variables including wind speed, wind direction, temperature, amount
of precipitation, fog, and more measured once every hour for more than 20 years. With such a
large amount of data, we hoped to avoid a common problem in machine learning: a severe lack
of data to learn from.

To make the study interesting, we wanted to couple this data with information about when
weather alarms had been announced. These weather alarms indicate several levels of potentially
dangerous weather to the general public. We thought this would be an excellent showcase for
C-DBNs as it could help predict dangerous situations as well as explaining why it would do so.
In addition to that, we would be able to check this explanation as various levels of alarms are
generated based on static thresholds, while others are only created based on expert opinion [24].

To achieve the dataset we required for learning such a model, we combined the previously
mentioned KNMI dataset with publically available information on “Red” and “Orange” weather
alarms. After much testing, we found that we were unable to outperform even a majority class
prediction model on the dataset we constructed, even though the graphs we constructed seemed
to indicate that the C-DBN had indeed learned quite some valuable relationships, as shown in
Figure A.1.

The big problem of this dataset and the reason why we opted not to use it is that it lacks some
essential classifications. While there was openly available data for the “Red” and “Orange”
weather alerts, “Yellow” weather alerts were not included, while the difference between “Yellow”
and “Orange” can in many real-world instances be somewhat arbitrary. For this reason, we
would often classify situations as “Orange” when they would not have any alert in the dataset,
while in reality a “Yellow” alert had been sent out. In one instance when we “wrongly” classified
a day as “orange” , there had been so much snow that traffic had almost come to a complete
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Figure A.1: Visual representation of the learned C-DBN for the KNMI Weather Alarm Dataset.

stop in the Netherlands. While this certainly shows the potential of our method, we could not
accurately quantify its performance without having more data about “yellow” alerts. We tried
to obtain these separately, but sadly to no avail. Therefore we had to leave this dataset out of
the main body of this paper.

A.2 Fraud Detection

Another dataset that we explored is called Fraud Detection (see: https://www.kaggle.com/
ntnu-testimon/paysim1), which contains many transactions. The classification task here is to
find which transactions are fraudulent. This dataset is good at illustrating the limitations of our
approach. While at first, it might seem to fit our models fairly well, since it is a classification
problem for dynamic data, it cannot work with the C-DBN method we have proposed. That is
because its values are neither temporal nor measured at set intervals. Therefore, we cannot use
the unrolling strategy and the conventional way of predicting values. For that reason, we have
not included the database in our project.

A.3 Absenteeism at Work

An interesting dataset which we explored is called Absenteeism at Work and is part of the UCI
Machine Learning Repository (see: https://archive.ics.uci.edu/ml/datasets/Absenteeism+
at+work). It is a set of 740 rows and 21 variables. The variables provide a wide array of
information about cases in which employees had been absent. The classification task would
involve predicting one of several reasons for why an employee had not come to work. While
the UCI classified this as a time-series, it contained neither a time component nor a sequence
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of measurements. We therefore quickly discovered that this dataset too could not be used for
C-DBNs. Regular BNs would in this case probably suffice.

A.4 PM2.5

PM2.5, refers to fine particulate matter that causes increased levels of respiratory problems
in humans [36]. The UCI Machine Learning Repository contains a data set in which levels of
these particulates are recorded in Beijing over a period of time (see: https://archive.ics.uci.
edu/ml/datasets/Beijing+PM2.5+Data). We wanted to create a C-DBN learner which would be
capable of predicting elevated levels of PM2.5 that would be hazardous for specific groups of
people in Beijing. This could have real-world potential: if we can not only warn people of risk
ahead of time but also show the most likely contributing factors, residents of the city can make
more informed decisions for their health.

The database itself was not labeled yet: it did not contain any information on whether a level of
fine particulate matter would be dangerous. To label the data, we used the US-EPA Air Quality
Index [3] and chose either the Very Unhealthy or Hazardous values. After experimenting for
a while, we found out that the accuracy of our C-DBN on the dataset was, again, very poor
compared to majority class prediction. After investigation, we found out that creating the
classification values from the AQI caused the problem. There would be many cases around
the edges, which would fall just the wrong way because there was an arbitrary strict threshold
involved. Since this was a problem with the dataset itself, we chose not to use it further.

For more research, there would probably be an alternative approach here: by not looking at
accuracy directly, but at the Brier-score, which also describes its predictive performance (not
only was it good enough but how close was our guess), we could more clearly see how much we
would have learned. Since for any real-world situation such a static threshold is not likely to
exist, this would probably be a logical approach.
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Appendix B

Constraining Parent Set Generation
beyond regular GOBNILP

There is only one type of constraints on the DAG that GOBNILP can currently use for structure
learning: those of the form A← B, for A ∈ Pa(B), and its negation ¬A← B. In GOBNILPs
manual and examples references are made to its capability of using conditional independencies.
However, at the moment of writing, this had not yet been implemented. Therefore it is not
directly possible to make statements of the kind A ← B if ¬C ← B. Since this is required for
S-RAD (as described in Section 6.4), we had to find a workaround.

Another problem we faced is that GOBNILP only enforces constraints after it has already
generated the parent-sets and scores for the combinations. Since we use many constraints that
bring down the number of combinations to be checked dramatically, the regular GOBNILP
approach causes many unnecessary computations.

Both of these problems can be solved by splitting the structure learning problem in two parts:
parent-set generation, and finding a structure that maximizes the parent-set scores without cre-
ating an invalid graph. We accomplished this by extracting and slightly altering the GOBNILP
parent-set generator. Our altered version specifically checks constraints beforehand, thereby
solving the second problem. To solve our first problem, we filtered out parent-sets that con-
tained illegal combinations given the constraints in Section 6.3. We then let GOBNILP continue
with the parent-set combinations which we created.

For GOBNILP to read our generated parent set combinations, we had to follow a strict format
called JKL. This was first introduced by Jaakkola [25]. To be able to read the generated parent
sets that were created by our scoring algorithm, filter them, and write them back to the format
GOBNILP required, we created a JKL-Serialization package for Python. This has been made
openly available on GitHub (see: https://github.com/daanknoope/jkl-serialization) and is
part of the Python package repository PyPi (https://pypi.org/project/jkl-serialization/).
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Appendix C

PGMPY - Bugfixes and
Workarounds

In working with the PGMPY library for parameter learning of Bayesian networks in Python, we
have experienced several issues. For some of these we have been able to create fixes, for others
we used a workaround. For the sake of reproducibility, we will describe these adaptations in
this appendix.

C.1 Mapping of values to list indices in CPDs

One of the major problems in PGMPY was that it assumed (without explicitly stating this) that
all values supplied as evidence in variable elimination could be used as list indices for the CPDs.
If we have a variable v for example, that takes values 0 and 1, then we could query the CPD
by looking at place 0 or 1 in the list of probabilities for v. This, however, does not work when
values are not zero-indexed, when some values are larger than the number of possible values, or
when not every list index corresponds to a value. In those cases, we require a mapping between
values and list indices. An example of this is shown in Listing C.1.

from pgmpy.inference import VariableElimination
from pgmpy.models import BayesianModel
import numpy as np
import pandas as pd

# Create a sample dataset with values in [2,3]
values = pd.DataFrame(np.random.randint(low=2, high=4, size=(1000, 5)),

columns=[’A’, ’B’, ’C’, ’D’, ’E’])
model = BayesianModel([(’A’, ’B’), (’C’, ’B’), (’C’, ’D’), (’B’, ’E’)])
model.fit(values)

inference = VariableElimination(model)
phi_query = inference.map_query([’A’], evidence={’B’:3})
print(phi_query)

## Expected: MAP value of A given B=3
## Result: Error (index 3 is out of bounds)

Listing C.1: Code sample for showing wrong index for evidence in inference
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In the best case, this bug produces an index is out of bounds error, but in the worst case,
it leads to erroneous results. If we do have zero-indexed variables that have the exact correct
length but are sorted differently, we will get results that correspond to different values.

Since PGMPY is an open-source project, we reported an issue (see: https://github.com/pgmpy/
pgmpy/issues/1071) that the author fixed during this project. In some earlier parts of the
project, when the issue had not been solved, we manually changed all variables so the indexes
would correspond to these values. Some parts of the code might still refer to this, as it is not
affected by the fix and will continue running correctly.

C.2 Progress-bar running out of RAM

Another problem that we found during the project was that a progress bar had been introduced
for Variable Elimination. While this can be a nice addition when a small number of queries are
being done, the implementation has made its addition problematic for our research. When we
wanted to query many different variable configurations over various graphs for our testing, we
found that either the continuous generation of these objects, or their continuous writing to the
computer’s output, would gradually cause the computer to use up all its RAM. This approached
a point where every experiment would crash because the computer would run both out of RAM
(40GB) and out of SWAP (16GB). We notified the author of this behavior, but at the time of
writing, no official fix has been published. As a workaround, we have removed the progress bar
from PGMPY.

The changes for this are available both on https://github.com/daanknoope/pgmpy and are shown
in Listing C.2 as a git patch.

From c91ef471fe44cc8a05299accae5c7b8e85a0b677 Mon Sep 17 00:00:00 2001
From: Daan Knoope <daan@knoope.dev>
Date: Wed, 3 Jul 2019 00:43:17 +0200
Subject: [PATCH] Remove progress bar

The progress bar has been removed from the variable elimination process since it causes Jupyter to crash
when looping through networks.

---
pgmpy/inference/EliminationOrder.py | 20 ++++++++------------
pgmpy/inference/ExactInference.py | 13 ++-----------
2 files changed, 10 insertions(+), 23 deletions(-)

diff --git a/pgmpy/inference/EliminationOrder.py b/pgmpy/inference/EliminationOrder.py
index 3d2fbef..46be619 100644
--- a/pgmpy/inference/EliminationOrder.py
+++ b/pgmpy/inference/EliminationOrder.py
@@ -1,6 +1,5 @@
from abc import abstractmethod
from itertools import combinations
-from tqdm import tqdm

import numpy as np

@@ -88,17 +87,14 @@ class BaseEliminationOrder:

ordering = []

- with tqdm(total=len(nodes)) as pbar:
- pbar.set_description("Finding Elimination Order: ")
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- while nodes:
- scores = {node: self.cost(node) for node in nodes}
- min_score_node = min(scores, key=scores.get)
- ordering.append(min_score_node)
- nodes.remove(min_score_node)
- self.bayesian_model.remove_node(min_score_node)
- self.moralized_model.remove_node(min_score_node)
-
- pbar.update(1)
+ while nodes:
+ scores = {node: self.cost(node) for node in nodes}
+ min_score_node = min(scores, key=scores.get)
+ ordering.append(min_score_node)
+ nodes.remove(min_score_node)
+ self.bayesian_model.remove_node(min_score_node)
+ self.moralized_model.remove_node(min_score_node)
+

return ordering

def fill_in_edges(self, node):
diff --git a/pgmpy/inference/ExactInference.py b/pgmpy/inference/ExactInference.py
index 34e8a7e..3936c8e 100644
--- a/pgmpy/inference/ExactInference.py
+++ b/pgmpy/inference/ExactInference.py
@@ -4,7 +4,6 @@ import itertools

import networkx as nx
import numpy as np
-from tqdm import tqdm
from pgmpy.extern.six.moves import filter, range

from pgmpy.extern.six import string_types
@@ -159,16 +158,8 @@ class VariableElimination(Inference):

)

# Step 3: Run variable elimination
- pbar = tqdm(elimination_order)
- for var in pbar:
- pbar.set_description("Eliminating: {var}".format(var=var))
- # Removing all the factors containing the variables which are
- # eliminated (as all the factors should be considered only once)
- factors = [
- factor
- for factor in working_factors[var]
- if not set(factor.variables).intersection(eliminated_variables)
- ]
+ for var in elimination_order:
+ factors = [factor for factor in working_factors[var] if not set(factor.variables).

intersection(eliminated_variables)]
phi = factor_product(*factors)
phi = getattr(phi, operation)([var], inplace=False)
del working_factors[var]

--
2.17.1

Listing C.2: Git patch for removing progress bar to work around memory leak problem
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C.3 Torch vs PyTorch

A minor problem that is worth noting while installing PGMPY is that the requirement files are
broken at the time of writing when using Python’s pip package installer, which is required for
installing all of the packages created for this project. The requirement files (requirements.txt
and requirements-dev.txt) are written for Anaconda’s package manager, in which PyTorch is
referred to as PyTorch, while in pip it is called torch. Changing these names causes pip to
read the requirement files correctly, otherwise not all the libraries for building PGMPY will be
installed.

Note that this is only relevant when installing PGMPY from source, not when downloading
it from a package repository. For this project, however, we have been working on the latest
development version with the patch mentioned in Section C.2.

C.4 State names not being passed

In previous versions of PGMPY, fitting parameters on a graph would cause variable names in
the CPDs to change. Where the probability for Variable V with value 0 would be referred to as
A(0) before learning, this would change to A 0 afterward. Since we used the underscore already
in our program for denoting time frames, this inconsistency caused a range of problems. To
solve this, we have fixed the underlying problem, and the fix has been integrated into PGMPY.
See https://github.com/pgmpy/pgmpy/issues/1062 for more details.
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Appendix D

Experimentation environment

Our results were gathered on an Ubuntu 18.04.2 (4.15.0-54-generic) installation, using Python
3.7.3 on Anaconda 4.6.11. For GOBNILP version 1.6.3 was used, as compiled with SCIP
version 3.2.0. Since the compilation process for GOBNILP is not entirely trivial, we created
a Docker container to make the process reproducible. The container also includes a recipe for
how GOBNILP can be installed on any Ubuntu 18.04 installation. We have made it openly
available on GitHub: https://github.com/daanknoope/gobnilp-container.

We used a development branch of PGMPY, version c34ccd7be1d, as released on Friday the 21st

of June, 2019 together with a patch which we describe in more detail in Appendix C.2. The
exact version of all the packages we used is shown in the list below.

• asn1crypto==0.24.0

• atomicwrites==1.3.0

• attrs==18.2.0

• backcall==0.1.0

• bleach==3.1.0

• certifi==2019.6.16

• cffi==1.12.2

• chardet==3.0.4

• coverage==4.5.2

• cryptography==2.6.1

• cycler==0.10.0

• DBN-learner==0.1

• decorator==4.3.2

• Discretizer==0.1

• entrypoints==0.3

• gobnilp==0.1

• idna==2.8

• ipykernel==5.1.0

• ipython==7.2.0

• ipython-genutils==0.2.0

• jedi==0.13.2

• Jinja2==2.10

• jkl-serialization==0.0.1

• joblib==0.13.2

• jsonschema==3.0.1

• jupyter-client==5.2.4

• jupyter-core==4.4.0

• kiwisolver==1.0.1

• kv-block-cross-
validation==0.1

• MarkupSafe==1.1.0

• matplotlib==3.0.2

• mdlp-discretization==0.3.2

• mistune==0.8.4

• mkl-fft==1.0.10

• mkl-random==1.0.2

• mock==2.0.0

• more-itertools==5.0.0

• nbconvert==5.3.1

• nbformat==4.4.0

• network2tikz==0.1.8

• networkx==2.3

• nose==1.3.7

• numpy==1.16.1

• palettable==3.1.1

• pandas==0.24.1

• pandocfilters==1.4.2

• parso==0.3.1

• patsy==0.5.1

• pbr==5.1.3

• pexpect==4.6.0
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• pgmpy==0.1.8.dev31

• pickleshare==0.7.5

• pluggy==0.8.1

• prompt-toolkit==2.0.9

• ptyprocess==0.6.0

• py==1.7.0

• pycparser==2.19

• Pygments==2.3.1

• pygraphviz==1.5

• pyOpenSSL==19.0.0

• pyparsing==2.3.1

• pyrsistent==0.14.11

• PySocks==1.6.8

• pytest==4.2.1

• pytest-cov==2.6.1

• python-dateutil==2.7.5

• pytz==2018.9

• pyzmq==17.1.2

• requests==2.21.0

• scikit-learn==0.20.3

• scipy==1.2.0

• seaborn==0.9.0

• Send2Trash==1.5.0

• six==1.12.0

• sklearn==0.0

• statsmodels==0.9.0

• terminado==0.8.1

• testpath==0.4.2

• torch==1.1.0

• tornado==5.1.1

• tqdm==4.31.1

• traitlets==4.3.2

• urllib3==1.24.1

• wcwidth==0.1.7

• webencodings==0.5.1

• wrapt==1.11.1
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Appendix E

Additional Results

E.1 Bike Single

Accuracy Brier-Score
mean std mean std

Dataset Variable Method Bins

Test Snow EFD 2.0 0.754662 0.154809 0.131940 0.075656
3.0 0.754662 0.154809 0.131940 0.075656
10.0 0.766881 0.133390 0.129740 0.081518

EWD 2.0 0.740193 0.155126 0.133700 0.074466
3.0 0.742122 0.151999 0.130583 0.078160
10.0 0.755949 0.132458 0.135877 0.083468

IQR 0.0 0.766559 0.133596 0.125035 0.075744
Median 0.0 0.768167 0.137597 0.122636 0.068519
SRAD 0.0 0.767846 0.134484 0.123121 0.071688

Temp EFD 2.0 0.757878 0.147840 0.130835 0.076112
3.0 0.750804 0.153589 0.127920 0.074619
10.0 0.754662 0.154809 0.131940 0.075656

EWD 2.0 0.770096 0.138029 0.126852 0.073639
3.0 0.759164 0.150363 0.128773 0.076724
10.0 0.755949 0.150874 0.131164 0.073258

IQR 0.0 0.748553 0.152369 0.129512 0.075299
Median 0.0 0.757878 0.147840 0.130835 0.076112
SRAD 0.0 0.760450 0.150293 0.129124 0.076676

Train Snow EFD 2.0 0.756771 0.020526 0.118321 0.008697
3.0 0.756771 0.020526 0.118321 0.008697
10.0 0.775041 0.015883 0.108798 0.007277

EWD 2.0 0.758080 0.019854 0.113270 0.007359
3.0 0.760476 0.019990 0.111329 0.008392
10.0 0.777142 0.018458 0.109285 0.008379

IQR 0.0 0.783419 0.018876 0.107302 0.008377
Median 0.0 0.779933 0.019377 0.108518 0.008378
SRAD 0.0 0.782331 0.019066 0.107769 0.008465

Temp EFD 2.0 0.764505 0.019020 0.114983 0.008667
3.0 0.769447 0.018987 0.111939 0.008461
10.0 0.756771 0.020526 0.118321 0.008697

EWD 2.0 0.770098 0.018571 0.113776 0.008472
3.0 0.765231 0.019612 0.112536 0.008839
10.0 0.757958 0.024017 0.117307 0.011749

IQR 0.0 0.765049 0.019811 0.113706 0.008898
Median 0.0 0.764505 0.019020 0.114983 0.008667
SRAD 0.0 0.765049 0.019645 0.112748 0.008926

Table E.1: Full scores of the bike counters single dataset (n = 10)
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Dataset Variable Score Score SRAD Std. SRAD Score Median Std. Median p

Train Snow Accuracy 0.782 0.019 0.780 0.019 0.006
Train Snow Brier-Score 0.108 0.008 0.109 0.008 0.150
Train Temp Accuracy 0.765 0.020 0.765 0.019 0.439
Train Temp Brier-Score 0.113 0.009 0.115 0.009 0.000
Test Snow Accuracy 0.768 0.134 0.768 0.138 0.899
Test Snow Brier-Score 0.123 0.072 0.123 0.069 0.696
Test Temp Accuracy 0.760 0.150 0.758 0.148 0.479
Test Temp Brier-Score 0.129 0.077 0.131 0.076 0.154

Table E.2: Comparison of results between S-RAD and Median for the bike counters dataset
with a single variable, based on different scores and measured variables.
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E.2 Bike Combined

Accuracy Brier-Score
mean std mean std

Dataset Variable Method Bins

Test Snow EFD 2.0 0.753376 0.141276 0.126098 0.076870
3.0 0.753376 0.141276 0.126098 0.076870
10.0 0.764309 0.144389 0.128159 0.076202

EWD 2.0 0.742122 0.142875 0.129313 0.076538
3.0 0.748232 0.142144 0.129261 0.080348
10.0 0.752412 0.143014 0.138344 0.089884

IQR 0.0 0.767846 0.134082 0.123342 0.073580
Median 0.0 0.769453 0.135880 0.124162 0.073665
SRAD 0.0 0.769453 0.134101 0.123996 0.073443

Temp EFD 2.0 0.770096 0.131307 0.125164 0.068251
3.0 0.766238 0.133043 0.129507 0.074956
10.0 0.767203 0.134829 0.126773 0.067348

EWD 2.0 0.772347 0.137842 0.133573 0.085481
3.0 0.758521 0.130043 0.125916 0.072959
10.0 0.767203 0.134829 0.127995 0.071115

IQR 0.0 0.754019 0.132985 0.127222 0.071064
Median 0.0 0.770096 0.131307 0.125164 0.068251
SRAD 0.0 0.764952 0.130413 0.126428 0.073078

Train Snow EFD 2.0 0.771253 0.020071 0.109382 0.008975
3.0 0.771253 0.020071 0.109382 0.008975
10.0 0.774599 0.017811 0.110466 0.009263

EWD 2.0 0.769581 0.020765 0.106238 0.008339
3.0 0.768854 0.022016 0.106793 0.010420
10.0 0.777070 0.018254 0.108982 0.009278

IQR 0.0 0.780672 0.015763 0.107820 0.007954
Median 0.0 0.779329 0.015557 0.108995 0.008036
SRAD 0.0 0.780454 0.015862 0.108121 0.008054

Temp EFD 2.0 0.777576 0.017518 0.108310 0.008495
3.0 0.777542 0.019111 0.108432 0.009512
10.0 0.772527 0.018656 0.111686 0.008551

EWD 2.0 0.780187 0.018343 0.108693 0.008238
3.0 0.780154 0.017503 0.107134 0.008632
10.0 0.772383 0.018237 0.111750 0.008363

IQR 0.0 0.772273 0.017954 0.111594 0.008375
Median 0.0 0.777576 0.017518 0.108310 0.008495
SRAD 0.0 0.778337 0.018226 0.107729 0.008983

Table E.3: Full scores of the bike counters combined dataset (n = 10)
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Dataset Variable Score Score SRAD Std. SRAD Score Median Std. Median p

Train Snow Accuracy 0.780 0.016 0.779 0.016 0.042
Train Snow Brier-Score 0.108 0.008 0.109 0.008 0.002
Train Temp Accuracy 0.778 0.018 0.778 0.018 0.113
Train Temp Brier-Score 0.108 0.009 0.108 0.008 0.084
Test Snow Accuracy 0.769 0.134 0.769 0.136 1.000
Test Snow Brier-Score 0.124 0.073 0.124 0.074 0.739
Test Temp Accuracy 0.765 0.130 0.770 0.131 0.435
Test Temp Brier-Score 0.126 0.073 0.125 0.068 0.445

Table E.4: Comparison of results between S-RAD and Median for the bike counters dataset
with multiple variables.
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E.3 Room Occupancy

Dataset Variable Score Score SRAD Std. SRAD Score Median Std. Median p

Train CO2 Accuracy 0.991 0.003 0.987 0.003 0.006
Train CO2 Brier-Score 0.007 0.002 0.010 0.002 0.008
Train Light Accuracy 0.991 0.003 0.985 0.003 0.000
Train Light Brier-Score 0.007 0.002 0.011 0.002 0.000
Train Humidity Accuracy 0.991 0.002 0.984 0.004 0.000
Train Humidity Brier-Score 0.008 0.002 0.012 0.003 0.000
Test CO2 Accuracy 0.716 0.310 0.719 0.281 0.962
Test Light Accuracy 0.852 0.215 0.970 0.032 0.117
Test Humidity Accuracy 0.865 0.158 0.912 0.095 0.421

Table E.5: Comparison of results between S-RAD and Median, based on different scores and
measured variables for the room occupancy dataset.
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Accuracy Brier-Score
mean std mean std

Dataset Variable Method Bins

Test CO2 EFD 2.0 0.718573 0.281472 0.181723 0.046394
3.0 0.772448 0.243944 0.174352 0.062412
10.0 0.883887 0.139681 0.060301 0.029581

EWD 2.0 0.879582 0.130344 0.145140 0.043147
3.0 0.837515 0.213320 0.157821 0.056265
10.0 0.826691 0.177482 0.132695 0.074018

IQR 0.0 0.782042 0.202008 0.160270 0.062950
Median 0.0 0.718573 0.281472 0.181723 0.046394
SRAD 0.0 0.715990 0.310291 0.172752 0.018475

Humidity EFD 2.0 0.911685 0.094883 0.078922 0.051293
3.0 0.901722 0.126651 0.136539 0.053467
10.0 0.858180 0.164647 0.147472 0.062944

EWD 2.0 0.929889 0.078449 0.108045 0.063823
3.0 0.864207 0.157560 0.147891 0.042968
10.0 0.843665 0.175850 0.156766 0.080912

IQR 0.0 0.797786 0.229769 0.118565 0.054565
Median 0.0 0.911685 0.094883 0.078922 0.051293
SRAD 0.0 0.864699 0.157975 0.152738 0.039589

Light EFD 2.0 0.592866 0.311953 0.204216 0.020631
3.0 0.946125 0.080709 0.046193 0.040531
10.0 0.918573 0.118389 0.012795 NaN

IQR 0.0 0.816851 0.261622 0.061263 0.073429
Median 0.0 0.970111 0.031642 0.048991 0.043155
SRAD 0.0 0.852030 0.215106 0.060286 0.093309

Train CO2 EFD 2.0 0.986948 0.003063 0.009587 0.002153
3.0 0.987741 0.005134 0.009130 0.003397
10.0 0.989778 0.002269 0.008573 0.001718

EWD 2.0 0.980873 0.002426 0.014440 0.001744
3.0 0.981004 0.002468 0.014400 0.001761
10.0 0.983665 0.004615 0.013214 0.003023

IQR 0.0 0.985111 0.003816 0.011485 0.002218
Median 0.0 0.986948 0.003063 0.009587 0.002153
SRAD 0.0 0.990574 0.002766 0.007499 0.002001

Humidity EFD 2.0 0.984339 0.004027 0.011745 0.002634
3.0 0.988943 0.004098 0.008855 0.002733
10.0 0.989633 0.001976 0.008137 0.001391

EWD 2.0 0.985212 0.004234 0.011147 0.002674
3.0 0.990516 0.001869 0.007969 0.001532
10.0 0.989883 0.001772 0.008105 0.001406

IQR 0.0 0.987393 0.003538 0.010017 0.002461
Median 0.0 0.984339 0.004027 0.011745 0.002634
SRAD 0.0 0.990516 0.001869 0.007966 0.001532

Light EFD 2.0 0.984325 0.002994 0.011917 0.002295
3.0 0.985000 0.002973 0.010448 0.001880
10.0 0.990634 0.002807 0.007148 0.002018

IQR 0.0 0.990396 0.002649 0.007441 0.002104
Median 0.0 0.984958 0.003274 0.010935 0.002341
SRAD 0.0 0.990644 0.002789 0.007200 0.002315

Table E.6: Full scores of the room occupancy dataset (n = 10)

78



E.4 Synthetic Dataset

Accuracy Brier-Score
mean std mean std

Dataset Variable Method Bins

Test v EFD 2.0 0.928829 0.008929 0.057969 0.005556
3.0 0.898348 0.007592 0.069993 0.002570
10.0 0.947798 0.005369 0.034903 0.002886

EWD 2.0 0.905455 0.008950 0.068953 0.004129
3.0 0.895045 0.007857 0.072270 0.002871
10.0 0.919019 0.008183 0.044861 0.002817

IQR 0.0 0.879479 0.009426 0.090399 0.002909
Median 0.0 0.928829 0.008929 0.057969 0.005556
SRAD 0.0 0.947798 0.005369 0.034903 0.002886

w EFD 2.0 0.939089 0.006514 0.038726 0.002898
3.0 0.901952 0.007409 0.068241 0.002705
10.0 0.960911 0.005068 0.023827 0.002099

EWD 2.0 0.962763 0.005431 0.027593 0.003016
3.0 0.892392 0.008651 0.074470 0.003516
10.0 0.962663 0.005551 0.026810 0.003073

IQR 0.0 0.873373 0.009864 0.089678 0.004568
Median 0.0 0.939089 0.006514 0.038726 0.002898
SRAD 0.0 0.961011 0.005150 0.023901 0.002101

Train v EFD 2.0 0.928838 0.000398 0.057965 0.000244
3.0 0.898236 0.000434 0.069958 0.000151
10.0 0.948006 0.000375 0.034662 0.000141

EWD 2.0 0.905717 0.003366 0.068798 0.001520
3.0 0.894953 0.000409 0.072251 0.000150
10.0 0.918663 0.000523 0.044804 0.000445

IQR 0.0 0.879398 0.000487 0.090342 0.000228
Median 0.0 0.928838 0.000398 0.057965 0.000244
SRAD 0.0 0.948006 0.000375 0.034662 0.000141

w EFD 2.0 0.939092 0.000447 0.038719 0.000135
3.0 0.901854 0.000430 0.068256 0.000165
10.0 0.960896 0.000446 0.023813 0.000096

EWD 2.0 0.962686 0.002360 0.027588 0.001376
3.0 0.892245 0.000455 0.074509 0.000212
10.0 0.962689 0.002360 0.026485 0.001205

IQR 0.0 0.873415 0.000483 0.089620 0.000198
Median 0.0 0.939092 0.000447 0.038719 0.000135
SRAD 0.0 0.961504 0.002650 0.023688 0.000542

Table E.7: Full results of the synthetic dataset (n = 10)
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Dataset Variable Score Score SRAD Std. SRAD Score Median Std. Median p

Train v Accuracy 0.948 0.000 0.929 0.000 0.0
Train v Brier-Score 0.035 0.000 0.058 0.000 0.0
Train w Accuracy 0.962 0.003 0.939 0.000 0.0
Train w Brier-Score 0.024 0.001 0.039 0.000 0.0
Test v Accuracy 0.948 0.005 0.929 0.009 0.0
Test v Brier-Score 0.035 0.003 0.058 0.006 0.0
Test w Accuracy 0.961 0.005 0.939 0.007 0.0
Test w Brier-Score 0.024 0.002 0.039 0.003 0.0

Table E.8: Comparison of results between S-RAD and Median, based on different scores and
measured variables for the synthetic dataset.
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