
Algebraic effects,
specification and refinement

Master Thesis in Computing Science and Mathematical Sciences

Tim Baanen

Supervisors: Wouter Swierstra and Jaap van Oosten

July 2019



Abstract
In the process of software engineering, we want to be sure that our code will function according to our
requirements. The refinement calculus is a system that allows for mathematical correctness proofs, for
imperative programs using a specific set of side effects. In the thesis, we explain how to use algebraic effects
to add side effects to a purely functional program, and how to generalize concepts from the refinement calculus
to develop and verify programs with algebraic effects. We work in the dependently typed programming
language Agda, illustrating that this approach allows for formal verification of programs.
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Chapter 1

Introduction

When we are writing software, we want to demonstrate that our work is correct. The result of a successful
engineering effort is not only executable code, but also an assurance that the code meets its specifications.
Commonly, this is done by running the program (either manually or automatically) in a set of test circum-
stances and checking whether the behaviour meets our expectations. As Dijkstra said repeatedly, program
testing is hopelessly inadequate for showing the absence of bugs [Dij76]. The alternative, then, is to give
a mathematical proof of the desired properties of our program. If we capture the specifications in a for-
mal statement and give a proof of this statement (again, we can do this reasoning either on paper or in a
computer system), then we are assured that all possible cases are covered.

Many programming languages offer a type system that assures that operations are performed on values of
the correct type. If this type system is expressive enough, it will allow us to perform mathematical proofs in
the style of intuitionistic type theory. A computation can be represented as a term in type theory, the type
of a computation is its specification, and verifying this specification consists of verifying that the term is well-
typed. One language that offers such a type system is Agda, which can simultaneously serve as a functional
programming language and proof assistant [Nor07]. Since computations in intuitionistic type theory are always
mathematical functions, they are not able to directly represent the side effects that are essential in writing
useful programs. Moreover, many programming languages are imperative, which means their programs do
not map well onto terms of a specific type. The alternative to the intrinsic representation of correct programs
as well-typed terms, is to separate the syntax of a program and its semantics. We represent the program
syntactically as a mathematical object, which is well-typed independent of the program’s verification, and
try to find another term that expresses the proof of correctness.

In the realm of imperative programming, the refinement calculus allows us to mix specifications and
executable code [Mor98], and uses these to express the correctness of a program mathematically. An abstract
program may include parts that are only specified and not yet executable code. Whenever an (abstract)
program meets the specifications of another, the refinement relation holds. The refinement calculus gives the
rules for this relation, in terms of weakest precondition semantics. An idealized process of software engineering
using the refinement calculus starts with writing down the specification formally, as the starting program.
Then, we repeatedly apply the rules of the refinement calculus to replace parts of this specification with
executable code, until the whole program has been transformed from specification to code. Each intermediate
program in this process of derivation, although the program is not yet executable, still satisfies the original
specification.

In the case of purely functional programming, correctness proofs typically make use of equational rea-
soning [Wad87]. Instead of a specification, we write a program that solves the given problem. This initial
program might find its solution in a brute-force or otherwise inefficient manner. After finishing the final pro-
gram, the proof of correctness then shows for all inputs that both the initial program and the final program
have equal output. Equational reasoning assumes referential transparency: whenever a program occurs in
an expression, we can replace it by its definition. This is only the case if we have a pure language and we
do not worry about termination. The language Agda supports equational reasoning since the type system
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enforces that all functions are pure and total. The fundamental property of side effects is that they break
referential transparency, so equational reasoning cannot be carried out unmodified in the presence of effects.
Moreover, equational reasoning uses the same language for specification and implementation, so it does not
separate the concerns of specifying and writing code.

In this thesis, we will investigate correctness of functional programs with effects [BP15]. Effectful
functional programs using monads can be verified using equational reasoning [GH11]. We propose that
a generalisation of the refinement calculus is a better approach, since it allows from the separation of
specification from implementation. The language used in the refinement calculus is imperative and based on
the Guarded Command Language by Dijkstra [Dij75a], and only allows for one set of effects involving state
and nondeterminism. Thus, we generalise in the effects that we allow in the program.

Our main results in this thesis are the following:

• We demonstrate that predicate transformer semantics allow us to verify the partial correctness and
termination of generally recursive functions, in Chapter 3.

• We show how to apply predicate transformers to algebraic effects, allowing for a similar specification
and verification approach to the refinement calculus, in Chapter 4.

• If a computation contains multiple sets of effects, we will show how to combine predicate transformers
of the individual effects into semantics for the computation, in Chapter 5.

• We compare predicate transformer semantics with other semantics for effects, giving conditions on con-
sistency with handlers and demonstrating that the refinement relation subsumes equational reasoning,
in Chapter 6.

• We can treat a specification as an effect, allowing us to derive executable code from a specification by
incorporating specifications into code, in Chapter 7.

• To show verification using the refinement relation in a more practical setting, we verify the generation
of a parser from a regular expression and from context-free grammar rules, in Chapter 8.

Parts of this thesis have been adapted from published work. Chapters 3 and 4 are based on text from
an article that I was a co-author on, published as [SB19]. The results of Chapter 3 are mine where not
noted otherwise, and I wrote this chapter without copying the article to make clear this is my own work,
under the guidance of my supervisors. For Chapter 4, I supplied proofs of fold-bind , compositionality-left
and compositionality-right, and I showed that the compositionality property requires the monotonicity of
predicate transformers. The effect, predicate transformer and refinement framework of Chapter 4 was designed
by Wouter Swierstra, my contributions consist mostly of discussing the process of using and understanding
the framework. By separating out these two chapters, I hope it is clear which are my contributions to the
article. Chapter 7 discusses deriving programs from specifications, also discussed in the article, but this thesis
includes an alternative approach to including specifications in programs that does not re-use the content of
the article. Finally, the other chapters are my own work, distinct from the article.

6



Chapter 2

Background: Agda, monads and
predicate transformers

In the thesis, we will look at verifying computations that use effects. This chapter gives background on
programming with effects in functional languages, and more specifically in the functional language Agda.
After explaining the basics of Agda, we will explain how to model side effects in functional languages using
monads.

2.1 Agda
The dependent programming language Agda [Nor07] will play a crucial role in our work. As a programming
language, it serves as the metalanguage in which we will implement the effect and handler systems we will
discuss. As a predicate language, it will specify the properties in our program verification framework. As a
formal system of logic, it specifies our theorems about the framework and their proofs. In fact, type theories
such as Agda’s already contain a complete programming language and complete facilities for program
verification, as Martin-Löf already remarked [Mar84].

We will use inline Agda code to write our results formally. In Agda, we can express an effect system,
programs in this system, predicates on programs and proofs of these predicates in one language. Moreover,
our proofs will be automatically formally checked. For readability, we do not include all details of the code.

In many forms of intuitionistic mathematics, and Agda in particular, we do not assume that functions
are extensional. That is, ∀ x → f x == g x does not necessarily imply f = g [TD91]. At certain points,
especially when we deal with equational reasoning, we care about extensional equality and only extensional
equality. Specifically, Agda regards two functions with equal definitions but different names as distinct for
the _==_ relation, which means the equality relation is too small for full referential transparency. Thus we
assume extensional equality:

postulate extensional ∶ {a b ∶ Set } {f g ∶ a → b} → (∀ x → f x == g x) → f == g

For notational convenience, we will assume that the type of Set is Set itself, i.e. use the --type-in-type
option for Agda. This assumption will save a lot of bookkeeping of universe levels, but it is possible to derive
a contradiction from this [OCo15]. We expect that all code should work when an explicit universe hierarchy
is constructed in the examples, as we did so for the code in the published article [SB19].

2.2 Monads
Practical programs will involve side effects such as input and output, but the 𝜆-calculus only allows for pure
computations. The notion of monads provide a useful system to describe computations with effects in a
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categorical way. Similar to pure computations, we will associate the type of a computation with an object
in the category Set, but we will distinguish values of type a from the computation that produces such a
value, of type T a. Here, T is an endofunctor on Set, and for all a b ∶ Set, we have two operations called
bind ∶ T a → (a → T b) → T b and return ∶ a → T a that satisfy certain equations, the monad laws.
These equations specify exactly that the pair (T , return, λ mx → bind mx id) is a monad in the category
Set [Mog91]. Monads are the method by which the purely functional programming language Haskell allows
side effects. In Agda, we can write the monad structure on a map T ∶ Set → Set as a record type:

record Monad (T ∶ Set → Set) ∶ Set where
constructor monad
field
bind ∶ T a → (a → T b) → T b
return ∶ a → T a
left-identity ∶ (x ∶ a) (f ∶ a → T b) → bind (return x) f == f x
right-identity ∶ (mx ∶ T a) → bind mx return == mx
associativity ∶ (mx ∶ T a) (f ∶ a → T b) (g ∶ b → T c) →
bind (bind mx f ) g == bind mx (λ x → bind (f x) g)

We will often use the operator _>>=_ instead of bind M if the monad structure M is clear from context.
Similarly, for return M we will also write pure.

In category theory, monads arise from adjoint functors, for example the State monad that is given by
the adjunction between the exponential object and the Cartesian product functor [Mac71]. We will work
out the details of this monad in the context of functional programming, illustrating how we can formalise
mathematics in Agda.
Example 2.2.1. The State monad gives us the ability to read from and write to a single variable. A computation
using a variable of type s and producing a value of type a, can be given as a function that takes the initial
value i ∶ s, and returns a pair consisting of the computation’s outcome and the new value of the variable.
We express such computations as elements of the type State s a:

State ∶ Set → Set → Set
State s a = s → Pair a s

Reading from the variable and writing to it can be expressed as specific stateful computations, called get
and put.

get ∶ {s ∶ Set } → State s s
get t = t , t
put ∶ {s ∶ Set } → s → State s ⊤
put t = tt , t

The two operations bind and return on State are given as follows:

MonadState ∶ (s ∶ Set) → Monad (State s)
Monad.bind (MonadState s) mx f = λ t → uncurry f (mx t)
Monad.return (MonadState s) x = λ t → (x , t)

Here, uncurry converts a function that takes two arguments into one that takes a pair of arguments. The
proof of the monad laws can be given as an instance of reflexivity, since Agda is able to evaluate both sides
into the same result.

Monad.left-identity (MonadState s) x f = refl
Monad.right-identity (MonadState s) mx = refl
Monad.associativity (MonadState s) mx f g = refl

♦
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2.3 Program verification using equations
The previous sections explain a representation of effects in functional programming. Let us now move from
syntax to semantics, so we can talk about correctness of the programs. In a pure and total functional
programming language, programs have no side effects, so we can fully characterise the behaviour of a pure
computation by its output value for each given input value. This means we can perform equational reasoning
on pure computations: we define the semantics of a pure computation in terms of equations on (sub-)expres-
sions [Wad87]. In other words, we reason using the denotational semantics of the computations. An example
of such equations is that the map function satisfies map (f ∘ g) == map f ∘ map g for all f and g , or
stating that the State monad satisfies the leftid , rightid and assoc monad laws. Note that the requirement of
pure functions also means that the programs must always terminate, and cannot crash or go into an infinite
loop. This is a stricter notion than that of “pure” function in Haskell.

Equational reasoning can be extended to monadic computations by introducing equational axioms for
the monad under consideration. These consist not only of the monad laws leftid , rightid , assoc, but also laws
that specify the interaction of each monadic operation. The potential drawback to this approach is that it is
no longer clear which laws we want to specify for a given situation, as an implementation might have stricter
laws than the interface we are trying to construct. Additionally, the interaction between multiple operations
does not follow obviously from the laws of each operation individually [GH11].
Example 2.3.1. For example, in the State monad where we have operations get and put, we have equations
for all four possible compositions of two effects. For ease of notation, we introduce the _≫_ operator, which
takes stateful computations and discards the value produced by the first computation, retaining its effect on
the state [GH11].

_≫_ ∶ State s a → State s b → State s b
mx ≫ my = mx >>= const my

Using this notation, we can formulate and prove in Agda the laws of stateful computation according to
Power and Plotkin [PP02] and show that State satisfies them:

put-put ∶ {s ∶ Set } (t t’ ∶ s) → put t ≫ put t’ == put t’
put-put t t’ = refl
put-get ∶ {s ∶ Set } (t ∶ s) → put t ≫ get == put t ≫ pure t
put-get t = refl
get-put ∶ {s ∶ Set } → get >>= put == pure {s } tt
get-put = refl
get-get ∶ {s a ∶ Set } (t ∶ s) (k ∶ s → s → State s a) →
get >>= (λ t → get >>= k t) == get >>= (λ t → k t t)

get-get t k = refl

♦

We have again included all details of the code in this example. In the following text, we will decrease the
level of detail, for example omitting trivial proofs.

2.4 Program verification using predicate transformers
In the thesis, we will use an axiomatic semantics in the form of predicate transformers. The refinement
calculus is a specific instance of program verification using predicate transformer semantics. Predicate
transformer semantics have long been used for program verification, for instance in Dijkstra’s Guarded
Command Language [Dij75a]. This section gives an overview of predicate transformers as used in the
imperative language GCL. One of the results in this thesis is to demonstrate how to apply predicate
transformer semantics in functional programs with effects. A description of predicate transformer semantics
for effects can be found in Section 4.1.
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In these semantics, we view programs as producing output states for given input states. We will not specify
in depth when something is an input or output state, as this depends on many aspects of our verification
system and program, and is not very relevant to the remainder of our discussion.

First, we will discuss how predicate transformers arise from operational semantics. If we already have the
operational semantics, we can determine which output states may result from a given input state.

Definition 2.4.1. For a program S, input state i and output state o, we write o ∈ S i if running S on
input state i may give output state o. ▵

Remark 2.4.2. In this formulation, programs may be nondeterministic: the input state does not correspond
uniquely to an output state. Most often we have that the output state is absent: if the program enters an
infinite loop on input i , then there is no o ∈ S i . ♦

Validity of a program then comes down to giving the right output for all relevant input. We adapt this
view on validity and the following definition from Hoare [Hoa69].

Definition 2.4.3. For imperative programs, a specification consists of predicates P (the precondition) and
Q (the postcondition). The precondition P depends on the input state i , while Q depends on the input and
output states i and o.

An imperative program S satisfies the specification P , Q, if for all input states i and o ∈ S i, we have
that P i → Q i o. This condition is also written {P } S {Q }, and together the precondition, program and
postcondition are called a Hoare triple. ▵

The previous definitions use the operational semantics to define validity, but we can directly build an
axiomatic semantics. When we view programs as transformations of predicates, the behaviour of programs is
axiomatically specified in terms of the predicates they satisfy. Thus, the Hoare triples are the fundamental
relations, from which we derive the relation between in- and output states. In this view, a program does not
fundamentally operate on states but on predicates, so a semantics in this style is called predicate transformer
semantics. In fact, we can make preconditions derive from the postcondition as well, according to the
following definition:

Definition 2.4.4 ([Dij75a]). Let Q be a predicate over an input and an output state, and S be a program.
The weakest precondition wp S Q is a predicate over an input state, such that S satisfies the specification
with precondition wp S Q and postcondition Q. Moreover, for all preconditions P’ for S and Q, we have
that wp S Q is weaker: for all i we have P’ i → wp S Q i . ▵

The weakest precondition transforms one predicate, the postcondition, into another, the precondition;
this is why we call wp S a predicate transformer .

Instead of defining the weakest precondition operator in terms of Hoare triples, we can give axioms for
computing the weakest precondition for all program statements and postconditions, and recover Hoare triples
by defining that {P } S {Q } holds if for all i we have P i → wp S Q i [Dij75a].

2.5 Refinement calculus
In this subsection, we will discuss the refinement calculus as proposed by Morgan [Mor98] and Back and von
Wright [Bv12], which extends the program verification process from predicate transformer semantics. Instead
of the imprecise reasoning employed by Dijkstra to derive correct programs, the refinement calculus gives a
mathematical foundation for this process.

The refinement calculus allows us to unify the process of writing code to match a specification, and
verifying the correctness of the code we have written. In between a specification and an executable program
we often resort to pseudocode, a program where formal language constructs have been extended with natural
language descriptions of things yet to be implemented. At this stage, we have made choices that cut our
original specification into a few smaller subspecifications that we hope to implement more easily [Dij76]. If
we want to apply formal methods for program verification, we have to find a way to incorporate pseudocode
in the process.
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The contribution of refinement calculus to predicate transformer semantics is to allow specifications as
statements in a program, dropping the requirement that a program is wholly made up of executable code.
This gives us a single language both for programs satisfying a specification, and programs having equivalent
behaviour to another. Both are expressed using the refinement relation _⊑_.

Definition 2.5.1. We say a program S refines a program S’, and write S ⊑ S’, if for all predicates Q and
all states i , we have wp S Q i → wp S’ Q i . ▵

We introduce a new program construct [_, _], which takes two predicates P and Q. Informally, this
construct does nothing more than satisfy {P } [P ,Q ] {Q } and those specifications that are consequences of
this triple. Its formal semantics are given in terms of wp: wp [P ,Q ] Q’ i = P i ∧ (∀ o → Q i o → Q’ i o).
This gives us another way of expressing program correctness: a program S satisfies the specification P , Q
if and only if [P , Q] ⊑ S. The central innovation of the refinement calculus is allowing the use of the
[_, _] operator as a program construct. In Chapter 7, we will show how to use this operator in functional
programming with effects. Before we can reach that point, we must generalise the concepts such as weakest
precondition semantics to the functional setting, which we do in the following chapters.

11



12



Chapter 3

Reasoning about general recursion

It turns out that many of our concepts of interest will reveal themselves if we try to represent and reason
about non-terminating programs in a total language. Agda allows for recursion in definitions, for example in
the definition of the _+_ operator:

_+_ ∶ ℕ → ℕ → ℕ
Zero + b = b
Succ a + b = Succ (a + b)

However, such definitions are only allowed if they terminate. Agda uses a built-in termination checker that
uses a size-change principle: it checks that each infinite call chain gives rise to an infinite descending chain
of some data values in a sub-expression order [Agda2.6; LJB01]. Since Agda’s data types are well-founded,
this implies that there is no such infinite descending chain, so the computation terminates if it satisfies the
size-change principle. Still, there are terminating recursive computations that are not accepted by the size-
change principle, and it is still useful to represent non-terminating programs in Agda, perhaps as an object
to study, even if we never get to fully execute them.

To make the distinction clear, we will use well-founded recursion to refer to recursion principles that are
guaranteed to terminate by the size-change principle (or a comparable principle). If the recursion does not
necessarily terminate, we will say this is general recursion. In this chapter, we will show a representation of
general recursion in Agda, and demonstrate that this gives rise to effects and predicate transformer semantics.

3.1 The problem of f91
A classical problem for termination checking is McCarthy’s 91 function, which we can represent in Agda
syntax as the following definition of f91 [MP70].

f91 ∶ ℕ → ℕ
f91 i with 100 ?

< i
f91 i ∣ yes = i − 10
f91 i ∣ no = f91 (f91 (i + 11))

For values i ≤ 101, if we manually unfold the definition of f91 i enough times, we get a result of 91. Still, the
recursion is not based on calling on subexpressions (in this case, that would mean strictly smaller natural
numbers), so Agda’s termination checker will reject the definition.

Thus, the definition of f91 in Agda cannot be directly given in the form of a total function of type ℕ → ℕ.
We can still represent f91 by changing the body of the definition (and changing the type of the codomain to
match). We replace the recursive calls with values expressing where this call should occur. An elegant way
to do this is to use McBride’s representation in the General data type [McB15], which is an example of a free
monad. Thus, we use the name Free for the data type.
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Definition 3.1.1 ([KI15]). The Free monad on type a is given by the following data type:

data Free (C ∶ Set) (R ∶ C → Set) (a ∶ Set) ∶ Set where
Pure ∶ a → Free C R a
Step ∶ (c ∶ C) → (k ∶ R c → Free C R a) → Free C R a

▵

As we can see, the Free monad has three parameters: the type C represents the type of arguments to
recursive calls, the type R c represents the return type for a call with argument c, and the type a represents
the type returned by the whole computation. At each point, the computation either finishes and outputs a
Pure value of type a, or it needs an extra step, making a call with argument c ∶ C , and continuing according
to k when a value of type R c has been returned.

Definition 3.1.2 ([McB15]). The type of generally recursive functions consist of Kleisli arrows for the Free
monad:

_ ↬ _ ∶ (C ∶ Set) (R ∶ C → Set) → Set
C ↬ R = (c ∶ C) → Free C R (R c)

▵

Note that this allows for dependent functions, by having R depend on C . A single recursive call can be
represented as follows:

call ∶ C ↬ R
call c = Step c Pure

Using the _ ↬ _ type, the recursive definition of f91 would have type ℕ ↬ λ → ℕ. For conciseness, we
will not distinguish between a dependent type for R or a fixed type, i.e. we write f91 ∶ ℕ ↬ ℕ.

We claimed before that Free is a monad, and we will show that it, or more precisely that Free C R for
each choice of C and R , is indeed a monad with unit Pure and bind given as follows:

_>>=_ ∶ Free C R a → (a → Free C R b) → Free C R b
Pure x >>= f = f x
Step c k >>= f = Step c λ x → k x >>= f
MonadFree ∶ Monad (Free C R)
Monad.bind MonadFree = _>>=_
Monad.return MonadFree = Pure

To show the monad laws hold for Free, we need to use the extensionality postulate on the continuations. The
proofs are otherwise straightforward.

Using the Free monad, we make the recursive calls in the definition of f91 explicit, giving the following
representation:

f91 ∶ ℕ ↬ ℕ
f91 i with 100 ?

< i
f91 i ∣ yes = Pure (i − 10)
f91 i ∣ no = call (11 + i) >>= call

Note that this definition is not recursive, but explicitly represents the points at which recursive calls would
be made.

Another motivating example of general recursion is the quicksort function, which recursively sorts a list
by splitting it up into sub-lists and sorting those.
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quicksort ∶ List ℕ ↬ List ℕ
quicksort Nil = Pure Nil
quicksort (x ∶∶ xs)

= call (filter (λ y → y ?
< x) xs) >>= λ ys →

call (filter (λ z → z
?
≥ x) xs) >>= λ zs →

Pure (ys ++ (x ∶∶ zs))

The recursive calls of f91 are nested, so the argument of the second call depends on the return value of the
first. In contrast, the calls in quicksort do not depend on each other, only on the argument to the definition.
Although the recursion used in quicksort is not structural, there is a simple argument for its termination:
each call is made to a strict sublist of the original list, so the length of the argument xs is a natural number
that strictly decreases for each call. To get a recursive representation that is accepted by Agda, we can pass
in an upper bound on the length of xs, and show that this bound decreases by at least 1 for each call.

The next example of general recursion is the Ackermann function:

ackermann ∶ Pair ℕ ℕ ↬ ℕ
ackermann (Zero , b) = Pure (Succ b)
ackermann (Succ a , Zero) = call (a , 1)
ackermann (Succ a , Succ b) = call (Succ a , b) >>= λ c → call (a , c)

Each call either decreases the first argument, or keeps the first argument the same and decreases the second
argument. Viewing the argument of type Pair ℕ ℕ as an ordinal number up to 𝜔 × 𝜔, each recursive call
is made to a strictly smaller ordinal number, so the recursion is well-founded and the evaluation of the
Ackermann function will terminate.

However, we can also give recursive definitions that do not terminate, or ones of which we want to study
termination. The Collatz sequence starts with a given natural number n. Given a term 𝑎𝑖 in the sequence we
determine the next term as follows: if 𝑎𝑖 is even, the next term is 𝑎𝑖 divided by two, and if 𝑎𝑖 is odd, the next
term is 3𝑎𝑖 + 1. If 𝑎𝑖+1 = 1, the sequence stops, otherwise we compute the next term as before and continue.
It is not known whether the Collatz sequence stops for all initial terms n. The following generally recursive
program computes the Collatz sequence for a given number n:

collatz ∶ ℕ ↬ List ℕ
collatz 0 = Pure (0 ∶∶ Nil)
collatz 1 = Pure (1 ∶∶ Nil)
collatz n = if even n

then (call (⌊ n /2 ⌋) >>= λ ns → Pure (n ∶∶ ns))
else (call (3 * n + 1) >>= λ ns → Pure (n ∶∶ ns))

3.2 Functions as relations between in- and output
We claimed that f91 always results in the value 91 if we call it on values i ≤ 91, so we should be able to
prove this. We can define a relation R91 that expresses this claim formally, as a relation between the input
of f91 and its output.

R91 ∶ ℕ → ℕ → Set
R91 i o with 100 ?

< i
R91 i o ∣ yes = o == (i − 10)
R91 i o ∣ no = o == 91

For verifying a recursive function of type C ↬ R , we can give a specification in the form of a relation of
type (c ∶ C) → R c → Set. If we want to verify that a given definition satisfies such a relation, we should
check that the final Pure value is related to the input value, but at the recursive Step, we may assume that
the relation holds between argument and result. This gives rise to the following definition:
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invariant ∶ ((c ∶ C) → R c → Set) → (c ∶ C) → Free C R (R c) → Set
invariant rel c (Pure x) = rel c x
invariant rel c (Step c’ k) = ∀ x’ → rel c’ x’ → invariant rel c (k x’)

We call this function invariant since it checks that the relation is an invariant for the call graph.

Definition 3.2.1. Suppose we are verifying a program f with respect to some specification on input and
output. If all output produced by f satisfies the specification, we will say that f is sound, or if f is generally
recursive that it is partially correct. Conversely, to prove that f is complete, or if f is generally recursive
that it terminates, we check that all of the expected output of f is (eventually) produced. Soundness and
completeness together are called total correctness of f . ▵

Example 3.2.2. For example, we can show that f91 indeed satisfies the invariant, i.e. that f91 is sound with
respect to R91. The proof mirrors the definition of f91: we start by making a case distinction between the
cases 100 < i and 100 ≥ i . In the first case, we are immediately finished by the definition of R91, while in
the second case we use that the invariant holds on the call graph, to either have that one of the two calls
returns 91, or prove that i was exactly 100, giving 91 after two calls. The last case needs a lemma with a
long but uncomplicated proof, which we omit.

f91-sound ∶ (i ∶ ℕ) → invariant R91 i (f91 i)
f91-sound i with 100 ?

< i
f91-sound i ∣ yes p with 100 ?

< i
f91-sound i ∣ yes p ∣ yes p’ = refl
f91-sound i ∣ yes p ∣ no ¬p’ = magic (¬p’ p)
f91-sound i ∣ no ¬p with 100 ?

< i
f91-sound i ∣ no ¬p ∣ yes p’ = magic (¬p p’)
f91-sound i ∣ no ¬p ∣ no ¬p’ = lemma i ¬p

where
lemma ∶

∀ i → ¬ (100 < i) →
∀ i’ → R91 (11 + i) i’ →
∀ i” → R91 i’ i” →
i” == 91

♦

At this point, it is worth remarking that the argument to invariant is not a Kleisli arrow of type C ↬ R ,
but a monadic value of type Free C R (R c). The basic reason for this is that it is possible to do induction
on values of type Free C R a, and we need this induction to check that the continuations, of the form
R c → Free C R a, fit the definition. If we forget that this continuation is part of the recursive definition
it accesses in a call, what we are left with is a computation with access to an oracle. In other words, it can
perform an extra computation step where the program gets a response of type R c’ for any given command
c’ ∶ C . The relation passed to invariant specifies which responses may be received for each command. The
observation that the Free monad allows for access to an oracle will be important in our treatment of effects
in Chapter 4. In the coming sections, the main consequence will be that we define the semantics of values in
the Free monad, not of Kleisli arrows for the Free monad.

Although many functions can be specified as relations between in- and output, there are oracles that are
more naturally specified as a predicate transformer. In the next section, we will see how invariant generalizes
to allow specifications in the form of predicate transformers.

3.3 Functions as predicate transformers
Note that we have defined invariant as a specific fold on the Free type, so it makes sense to generalize
invariant by making it more resemble the general catamorphism. Each catamorphism on Free can be given
by instantiating the arguments to the following fold function [Mei+91].

16



fold ∶ ((c ∶ C) → (R c → b) → b) → (a → b) → Free C R a → b
fold step pure (Pure x) = pure x
fold step pure (Step c k) = step c λ x → fold step pure (k x)

Since we want to compute properties of a computation in the Free monad, and propositions in intuitionistic
type theory are represented by a type, we fix that the type b is equal to Set.

Definition 3.3.1. We define the specialisation of fold that returns values in Set to be wp.

wp ∶ ((c ∶ C) → (R c → Set) → Set) → (a → Set) → Free C R a → Set
wp = fold

Its name already hints that it corresponds to the weakest precondition operation in predicate transformer
semantics. ▵

In wp, the meaning of the argument pure ∶ a → Set is straightforward: it is the condition that each
output value must satisfy. The meaning of the argument step ∶ (c ∶ C) → (R c → Set) → Set is
somewhat less obvious: based on the types it takes an argument to a call and a predicate on the return type,
and returns a proposition. However, if we do not have R depending on C , we can reorder the arguments to
(R → Set) → (C → Set). In this light, step can be viewed as a predicate transformer for the recursive call:
given a postcondition that the output should satisfy, return a precondition on the input that ensures the
postcondition. Moreover, if the precondition returned by step is always the weakest precondition for the given
postcondition, then by induction wp step pure gives the weakest precondition for any given postcondition
pure. In Chapter 6, we give a formal proof that wp determines the weakest precondition, such that the
postcondition holds on the result of running the computation.
Remark 3.3.2. In Definition 2.4.3, we defined that a precondition depends on an input state i and the
postcondition depends on an input and output state i and o. Here, the wp function has a postcondition of
type a → Set, and the precondition is of type Set. The intended interpretation for these types is that the
computations we are considering are pure, so the input state i is trivial and is ignored, while the output
state consists solely of the returned value. Later on, we will define the wp𝑆 function, which allows for in- and
output state.

An alternative interpretation is that wp specifies an interpreter for the Free monad: the input to this
interpreter is a computation in Free C R a, while the output is a pure value of type a. A predicate transformer
for such an interpreter would have the type (a → Set) → (Free C R a → Set), which is equivalent to the
type of wp step for each choice of step. ♦

As claimed, wp is a generalisation of invariant, since we can define the latter equivalently as follows:

invariant’ ∶ ((c ∶ C) → R c → Set) → (c ∶ C) → Free C R (R c) → Set
invariant’ rel c = wp (λ c’ P → ∀ x’ → rel c’ x’ → P x’) (rel c)

Before we continue with verification, it is good to state the following lemma on the behaviour of fold and
the bind operator _>>=_.

Lemma 3.3.3. fold-bind ∶ (S ∶ Free C R a) (f ∶ a → Free C R b) → ∀ (pure ∶ b → c) step →
fold step pure (S >>= f) == fold step (λ x → fold step pure (f x)) S

Its proof goes by induction on the structure of S, where the case Pure is trivial and the case Step applies
function extensionality to the induction hypothesis on k x >>= f . The use of this lemma is to deal with
verifying computations defined with _>>=_. If we want to prove something of the form wp step pure (S >>= f ),
and we have a result about the weakest precondition of S, the previous lemma allows us to use this result.

Now we have seen how to verify a recursive definition, given a relation between in- and output. Can
we extend this verification to specifications in the form of a predicate transformer? We are looking for an
equivalent predicate to invariant that has the form:
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verify ∶ (pt ∶ (c ∶ C) → (R c → Set) → Set) → ((c ∶ C) → Free C R (R c)) → Set

If we can verify a program according to a predicate transformer, and program semantics are given as a
predicate transformer, then we can verify that one program satisfies the specification given by another’s
semantics. This means we can verify that an optimised program has the same behaviour as a slower, but
more obviously correct, implementation. For this, we need to figure out which postconditions and predicate
transformers to pass to wp. From a predicate transformer, it is not obvious how to determine a postcondition,
since the predicate transformer uses postconditions as input instead of giving them as output. The solution
can be found in the refinement calculus.

The fundamental idea of the refinement calculus is to relate two predicate transformers using the refinement
relation.

Definition 3.3.4 ([Mor98]). A predicate transformer pt1 is refined by pt2 if for each postcondition, the
precondition given by pt1 is stronger than the precondition given by pt2. Formally:

_⊑_ ∶ (pt1 pt2 ∶ (c ∶ C) → (R c → Set) → Set) → Set
pt1 ⊑ pt2 = ∀ c P → pt1 c P → pt2 c P

▵

Again, this definition assumes that the programs represented by the predicate transformers are pure, so
there is no state apart from argument and return value. In Section 4.4, we define a refinement relation for
stateful programs.

Thus, to verify a recursive definition is correct according to a predicate transformer, we calculate its own
predicate transformer using wp, then check that this is a refinement of the original predicate transformer:

verify pt f = pt ⊑ λ c P → wp pt P (f c)

As in the imperative refinement calculus, we use mutual refinement to express that the predicate transformers
denote the same computational effects.

Definition 3.3.5. Two predicate transformers pt1 and pt2 are equivalent if they refine each other.

_≡_ ∶ (pt1 pt2 ∶ (c ∶ C) → (R c → Set) → Set) → Set
pt1 ≡ pt2 = (pt1 ⊑ pt2) × (pt2 ⊑ pt1)

▵

For example, suppose we want to verify that quicksort ∶ List ℕ ↬ List ℕ is a correct sorting algorithm.
The insertion sort algorithm insertionsort ∶ List ℕ → List ℕ is structurally recursive on the input list, so we
can use it as a reference implementation. For a formal verification of quicksort, we can give a term of type
verify (λ xs P → P (insertionsort xs)) quicksort.

Now we can verify programs by comparing them to a reference implementation, but the same refinement
relation works for verifying with respect to specifications. We can copy the definition from the refinement
calculus.

Definition 3.3.6. A specification for a computation returning a value in a consists of a pair of pre- and
postcondition, represented by the Spec a data type.

record Spec (a ∶ Set) ∶ Set where
constructor [_, _]
field
pre ∶ Set
post ∶ a → Set

▵
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Since a pure computation (represented as a value of some type a) does not involve any input state, the
precondition is simply a proposition, while the postcondition only refers to the returned value.

However, we are usually concerned with specifying functions instead of values. While we can set a to be
equal to a function type, it is more natural to let the precondition depend on the input type of the function.
We will define an auxiliary type Spec𝐹 for specifications of such functions, expressed in terms of the Spec
type. Compare this to the construction of _ ↬ _ from Free.

Spec𝐹 ∶ (C ∶ Set) (R ∶ C → Set) → Set
Spec𝐹 C R = (c ∶ C) → Spec (R c)
[_, _]𝐹 ∶ (pre ∶ C → Set) (post ∶ (c ∶ C) → R c → Set) → Spec𝐹 C R
[ pre , post ]𝐹 c = [ pre c , post c ]

We want to define that a computation satisfies this specification if for all input values c such that pre c
holds, all potential output values x satisfy post c x . Thus, a predicate P ∶ R c → Set holds on the output
of each computation that satisfies the specification if pre c holds and post c x implies P x . This gives a
predicate transformer for specifications:

wpSpec ∶ Spec a → (a → Set) → Set
wpSpec [ pre , post ] P = Pair pre (∀ x → post x → P x)
wpSpec𝐹 ∶ Spec𝐹 C R → (c ∶ C) → (R c → Set) → Set
wpSpec𝐹 PQ c = wpSpec (PQ c)

Checking that a recursive definition satisfies this specification is just a matter of filling in this predicate
transformer in the verify function.

specSatisfied ∶ ((c ∶ C) → Spec (R c)) → ((c ∶ C) → Free C R (R c)) → Set
specSatisfied PQ = verify (wpSpec𝐹 PQ)

Coming back to our remark that Kleisli arrows for the Free monad represent generally recursive functions,
while monadic values represent any computation with access to an oracle, we explain verification of generally
recursive definitions in terms of the semantics of computations that can access an oracle. The semantics of
such computations cannot be given without the semantics of the oracle, in our case the argument step of
the wp function. In verification of generally recursive definitions, the semantics passed to wp are exactly
those we want to verify against. Compare this to the situation for the while loop in imperative programming:
an invariant is required to give the predicate transformer semantics of a while statement. Here too, the
semantics of a recursive definition cannot be given without already assuming some part of the semantics.

Sometimes, we will check that the postcondition P holds for a program S, i.e. give an element for
wp pt P S, to express that a computation is valid. We can view this as a special case of verifying the
program S with respect to a specification, namely the specification [⊤ , P] with trivially true precondition
and postcondition P . Showing that the program S is valid with respect to this specification is defined to be
giving an element ⊤ → wp pt P S, which is equivalent to finding an element of wp pt P S.

3.4 Termination and the petrol-driven semantics
Up to now, we have only looked at partial correctness of recursive definitions, where we check that all
output satisfies a postcondition, if there is output at all. Let us now talk about total correctness, where
we require that the computation finishes within a finite time. We make this explicit by adding a counter
to the semantics, which is decremented by each recursive call. If this counter reaches zero and a recursive
call is attempted, the computation fails. This approach to semantics of recursion is called the petrol-driven
semantics by McBride [McB15].

Suppose we are given a recursive definition, written as f ∶ C ↬ R for some C and R , and we want
to verify that some (sub-)computation S ∶ Free C R a produces a result that also satisfies a postcondition
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P ∶ a → Set. There are two ways to implement this in the petrol-driven semantics. The first way is
to compute a value in the Maybe monad and then lift P to the type Maybe a → Set. In other words,
we run the computation for the given number of steps and then check that there is output, and that this
output satisfies the postcondition. The second way uses predicate transformers instead of directly running
the computation.

Definition 3.4.1. Fix a predicate transformer pt that depends on the number of computation steps still
remaining. The petrol-driven semantics of a computation S are given by folding the predicate transformer
over this computation, making sure to decrease the number of remaining steps each time.

petrol ∶ (pt ∶ (c ∶ C) → (R c → ℕ → Set) → ℕ → Set)
(P ∶ a → ℕ → Set) (S ∶ Free C R a) → ℕ → Set

petrol pt = fold (λ {c P’ 0 → ⊥; c P’ (Succ n) → pt c P’ n})

▵

The definition of petrol still depends on a predicate transformer, but we can use petrol itself to transform
the predicate. This is the case because the number of steps remaining is strictly decreasing. In other words,
the following recursive definition is well-founded by induction on n.

terminates-with ∶ (f ∶ C ↬ R) (S ∶ Free C R a) (P ∶ a → ℕ → Set) → ℕ → Set
terminates-with f S P n = petrol (λ c P n’ → terminates-with f (f c) P n’) P S n

However, Agda’s termination checker does not accept this definition. If we make the recursion explicit (and
use the fold-bind lemma), the following modified definition is accepted by the termination checker:

Definition 3.4.2. Given a recursive definition f ∶ C ↬ R , the petrol-driven semantics of a computation
S that calls f are equivalently defined as:

terminates-with ∶ (f ∶ C ↬ R) (S ∶ Free C R a) (P ∶ a → Set) → ℕ → Set
terminates-with f (Pure x) P n = P x
terminates-with f (Step c k) P Zero = ⊥
terminates-with f (Step c k) P (Succ n) = terminates-with f (f c >>= k) P n

If for all c, terminates-with f (f c) P n holds for some n ∶ ℕ, we have that the recursive definition f is totally
correct for the postcondition P . ▵

In contrast to partial correctness, it is possible to give semantics for general recursion without specifying
some form of invariant. We can do this because terminates-with calculates the predicate transformer recursively,
with the base case being ⊥.

A disadvantage of defining total correctness in this way is that we are really mixing two concerns: the
first concern is partial correctness, which asserts that all output conforms to the specification, and the second
is termination, which asserts that the computation always results in output. We split up these concerns in
the following definition.

Definition 3.4.3. Let f be a recursive definition used in a computation S. We say S terminates in n steps
if terminates-with holds for a trivially true postcondition. A recursive definition f ∶ C ↬ R terminates in
the petrol-driven semantics if for all c ∶ C there is a n, such that f c terminates in n steps. Formally:

terminates-in ∶ (f ∶ C ↬ R) (S ∶ Free C R a) → ℕ → Set
terminates-in f S = terminates-with f S (λ → ⊤)
termination ∶ (f ∶ C ↬ R) → Set
termination f = ∀ c → ∃ (n ∶ ℕ) → terminates-in f (f c) n

▵
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As with the total correctness of terminates-with, termination allows us to give semantics without requiring
a predicate transformer for the recursive calls. The difference is that now, the semantics are a consequence
of the definition, instead of interwoven with them. Because the recursive calls terminate, it is possible to
evaluate the computation by unfolding the definition repeatedly.

evaluate ∶ (f ∶ C ↬ R) (S ∶ Free C R a) (n ∶ ℕ) → terminates-in f S n → a
evaluate f (Pure x) n term-S = x
evaluate f (Step c k) Zero ()
evaluate f (Step c k) (Succ n) term-S = evaluate f (f c >>= k) n term-S

Applying a postcondition to the output of evaluation gives rise to a predicate transformer for f . We introduce
two versions of the semantics, where pt-for-term’ gives the predicate transformer semantics of an arbitrary
computation using f , while pt-for-term gives the semantics of f itself.

pt-for-term’ ∶ (f ∶ C ↬ R) (S ∶ Free C R a) (n ∶ ℕ) → terminates-in f S n → (a → Set) → Set
pt-for-term’ f S n term-S P = P (evaluate f S n term-S)
pt-for-term ∶ (f ∶ C ↬ R) → termination f → (c ∶ C) → (R c → Set) → Set
pt-for-term f term c P = pt-for-term’ f (f c) (Sigma.fst (term c)) (Sigma.snd (term c)) P

We said that total correctness is a combination of termination and partial correctness, and we will make
this precise in the following two theorems. The first theorem relates refining a specification in the pt-for-term
semantics with partial correctness for that specification. The second theorem shows that satisfying a
postcondition in the terminates-with semantics follows from termination combined with partial correctness in
the pt-for-term semantics.

Theorem 3.4.4. Suppose f ∶ C ↬ R is a recursive computation that terminates. If it is partially correct
with respect to a predicate transformer, this predicate transformer is refined by the semantics given by the
termination of f.

refine-pt-for-term ∶ (f ∶ C ↬ R) (pt ∶ (c ∶ C) → (R c → Set) → Set) →
(term ∶ termination f) → verify pt f → pt ⊑ pt-for-term f term

Proof. Writing out the definition of refinement and pt-for-term, it suffices to show for all c ∶ C and
P ∶ R c → Set that wp pt P (f c) implies pt-for-term’ f (f c) n term-n P , where term-n is a proof that f c
terminates in n steps. We perform induction on n, combined with case distinction on the structure of f c.
The case Pure x follows directly, since wp and pt-for-term’ directly apply the postcondition to x .

For the case Step c’ k’, we perform one evaluation step, so we need to show pt-for-term’ f (f c’ >>=
k’) n term-n P . This is exactly the conclusion of the induction hypothesis, which has the assumption
wp pt P (f c’ >>= k’). Because of the fold-bind lemma, this assumption is equal to wp pt (λ x →
wp pt P (k’ x)) (f c’). The partial correctness of f makes it sufficient to show pt c’ (λ x → wp pt P (k’ x)),
which is equivalent to the assumption wp pt P (Step c’ k’) of the current case.

Theorem 3.4.5. If a recursive definition terminates and is partially correct for a given postcondition, it is
totally correct for the postcondition.

correct-from-sound-and-complete ∶ (f ∶ C ↬ R) (P ∶ (c ∶ C) → R c → Set) →
(term ∶ termination f) → (∀ c → wp (pt-for-term f term) (P c) (f c)) →
∀ c → ∃ (n ∶ ℕ) → terminates-with f (f c) (P c) n

Proof. The proof goes by simultaneous induction on the number of steps remaining n and the structure of f c.
The base cases are immediate, but for Step c k it is more difficult: we must show the weakest precondition
(under pt-for-term) of computation of the form Step c k is equivalent to the weakest precondition of f c >>= k,
but the two might have a different (but sufficient) number of computation steps remaining. Moreover, the
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semantics of Step c k requires an extra application of pt-from-term compared to f c >>= k, and we need to
prove that this difference does not matter.

Using structural induction, we can show the following lemmas, which may be applicable to other situations.

termination-bind ∶ ∀ (S ∶ Free C R a) (k ∶ a → Free C R b) n →
terminates-in f (S >>= k) n → terminates-in f S n

pt-for-term-independence ∶ ∀ P (S ∶ Free C R a) n n’ term-n term-n’ →
pt-for-term’ f S n term-n P == pt-for-term’ f S n’ term-n’ P

pt-for-term-equality ∶ ∀ P (S S’ ∶ Free C R a) n term-n (p ∶ S == S’) →
pt-for-term’ f S n term-n P ==
pt-for-term’ f S’ n (subst (λ S → terminates-in f S n) p term-n) P

This solves the problem of the varying number of computation steps, but we also need to harmonize the
different number of applications of pt-from-term. For that, we have the following two lemmas:

pt-for-term-wp ∶ ∀ P (S ∶ Free C R a) n term-n →
pt-for-term’ f S n term-n P == wp (pt-for-term f term) P S

pt-for-term-bind ∶ ∀ P (S ∶ Free C R a) (k ∶ a → Free C R b) n term-n →
pt-for-term’ f (S >>= k) n term-n P ==
pt-for-term’ f S n (termination-bind S k n term-n) (λ x → wp (pt-for-term f term) P (k x))

The proofs of these lemmas are given by mutual recursion on the structure of the computations, where
pt-for-term-wp uses pt-for-term-bind to collect all continuations into one call to wp, while pt-for-term-bind
uses pt-for-term-wp to add a call to wp if S is a Pure value.

With these lemmas, we conclude that the weakest precondition of Step c k is the same as the weakest
precondition of f c >>= k, allowing us to continue induction on f c when we encounter a Step.

Example 3.4.6. Let us return to our running example: verifying f91. To show f91 terminates, we can prove
the following lemma:

f91-correct ∶ ∀ i → Σ ℕ (terminates-with f91 (f91 i) (R91 i))

The proof applies correct-from-sound-and-complete to the partial correctness proof of f91 in Example 3.2.2
and a proof of termination. ♦

3.5 Termination and a descending chain condition
The petrol-driven semantics are based on a syntactic argument: we know a computation terminates because
expanding the call tree will eventually result in no more calls. Termination can also be defined based on
a well-foundedness argument, such as the size-change principle of Agda’s termination checker. Thus, we
want to say that a recursive definition is well-founded if all recursive calls are made to a smaller argument,
according to a well-founded relation.

Definition 3.5.1 ([Acz77]). In intuitionistic type theory, we say that a relation _≺_ on a type a is well-
founded if all elements x ∶ a are accessible, which is defined by (well-founded) recursion to be the case if all
elements in the downset of x are accessible.

data Acc (_≺_ ∶ a → a → Set) ∶ a → Set where
acc ∶ (∀ y → y ≺ x → Acc _≺_ y) → Acc _≺_ x

▵

To see that this is equivalent to the definition of well-foundedness in set theory, recall that a relation _≺_
on a set a is well-founded if and only if there is a monotone function from a to a well-founded order. Since
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all inductive data types are well-founded, and the termination checker ensures that the argument to acc is
a monotone function, there is a function from x ∶ a to Acc _≺_ x if and only if _≺_ is a well-founded
relation in the set-theoretic sense.

The condition that all calls are made to a smaller argument is related to the notion of a loop variant in
imperative languages. While an invariant is a predicate that is true at the start and end of each looping step,
the variant is a relation that holds between successive looping steps.

Definition 3.5.2. Given a recursive definition f ∶ C ↬ R , a relation _≺_ on C is a recursive variant if
for each argument c, and each recursive call made to c’ in the evaluation of f c, we have c’ ≺ c. Formally:

variant ∶ (f ∶ C ↬ R) (pt ∶ (c ∶ C) → (R c → Set) → Set) → (C → C → Set) → Set
variant f pt _≺_ = ∀ c → variant’ c (f c)

where
variant’ ∶ (c ∶ C) (S ∶ Free C R a) → Set
variant’ c (Pure x) = ⊤
variant’ c (Step c’ k) = Pair (c’ ≺ c) (pt c’ λ x → variant’ c (k x))

▵

Note that variant depends on the semantics pt we give to f . We cannot derive the semantics in variant
from the structure of f , since we do not yet know whether f terminates. Using variant, we can define another
termination condition:

Definition 3.5.3. A recursive definition f is well-founded if it has a variant that is well-founded.

record Termination (f ∶ C ↬ R) (pt ∶ (c ∶ C) → (R c → Set) → Set) ∶ Set where
field

_≺_ ∶ C → C → Set
w-f ∶ ∀ c → Acc _≺_ c
var ∶ variant f pt _≺_

▵

A generally recursive function that terminates in the petrol-driven semantics is also well-founded, since
a variant is given by the well-order _<_ on the amount of fuel consumed by each call. The converse also
holds: if we have a descending chain of calls cs after calling f with argument c, we can use induction on the
type Acc _≺_ c to bound the length of cs. This bound gives the amount of fuel consumed by evaluating a
call to f on c.
Example 3.5.4. Let us show the well-foundedness of the Ackermann function. Recall that this function is
well-founded because each call either decreases the first argument, or keeps the first argument the same and
decreases the second argument. This suggests that the variant we need is the lexicographic order on Pair ℕ ℕ.

data _<lex_ ∶ Pair ℕ ℕ → Pair ℕ ℕ → Set where
Fst ∶ a < c → (a , b) <lex (c , d)
Snd ∶ b < d → (a , b) <lex (a , d)

The predicate transformer we use in the proof is very strong: the precondition is that the postcondition
holds for all return values of the correct type. Still, showing that the lexicographic order is the variant is
straightforward.

ackermann-terminates ∶ Termination ackermann (λ c P → ∀ x → P x)

To show the lexicographic order is well-founded, we use helper lemmas to perform induction on the second
element of the pair. The base case is acc-zero (which performs induction on the first element of the pair),
while acc-succ is the inductive case.
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Termination.w-f ackermann-terminates (a , b) = acc-snd a (acc (acc-zero a)) b
where
acc-snd ∶ ∀ a → Acc _<lex_ (a , 0) → ∀ b → Acc _<lex_ (a , b)
acc-zero ∶ ∀ a → ∀ y → y <lex (a , 0) → Acc _<lex_ y
acc-succ ∶ ∀ a b → Acc _<lex_ (a , b) → ∀ y → y <lex (a , Succ b) → Acc _<lex_ y

♦

3.6 Going from recursion to other effects
In this section, we will explain why we view general recursion as a prototype for algebraic effects. Recall that
we defined the weakest precondition predicate transformer wp for an arbitrary computation S ∶ Free C R a,
without restricting S to be a sub-expression in some recursive definition. If we loosen this restriction, it is no
longer necessary that the semantics of the Step operation can be implemented in a pure function. In other
words, S can access any oracle that returns values of type R c when called on values c ∶ C . As long as the
semantics of the oracle are given as a predicate transformer (c ∶ C) → (R c → Set) → Set, wp gives us
the semantics of S.

To illustrate why the Free monad and predicate transformer semantics allow for more than giving semantics
of pure functions, let us consider the predicate transformer used by the petrol-driven semantics, which
can return a precondition of ⊥, independent of the given postcondition. Since any pure function of type
(c ∶ C) → R c must return some value, there is no pure function that is unable to satisfy the postcondition
λ → tt. In the next chapter, we will discuss how we can use predicate transformers to describe the
semantics of side effects.
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Chapter 4

Predicate transformer semantics for
effects

As suggested in Section 3.6, the style of predicate transformer semantics we constructed for general recursion
is also applicable to other side effects such as partiality and non-determinism. In this chapter, we will refactor
and recapitulate these definitions, giving predicate transformer semantics for algebraic effects.

Definition 4.0.1. An effect type consists of a type C ∶ Set and a dependent type R ∶ C → Set:

record Effect ∶ Set where
constructor eff
field
C ∶ Set
R ∶ C → Set

The intended semantics are that C is the type of commands or calls, so each different value of C corresponds
to a different sort of side effect. For example, in the context of mutable state, we will define a distinct element
of C for each different value that can be written to the variable. For a given c ∶ C , the type R c represents
the type of responses or potential “internally observable” results, such as the value read out from a variable.

We redefine the Free type to depend on an effect type instead of the individual C and R .

data Free (e ∶ Effect) (a ∶ Set) ∶ Set where
Pure ∶ a → Free e a
Step ∶ (c ∶ Effect.C e) → (Effect.R e c → Free e a) → Free e a

▵

We do not make this change for any proof-theoretic power but for convenience, especially when we combine
effects as in Chapter 5. Importantly, the syntax of terms in the Free monad is the same as in Chapter 3 so it
is trivial to port the results of the previous chapter.

4.1 Semantics for the Free monad
In Chapter 3, we discussed predicate transformer semantics for general recursion. Given a predicate trans-
former of the form (c ∶ Effect.C c) → (Effect.R e c → Set) → Set), we can use a fold over the type
Free Effect a to turn a postcondition of type a → Set into a precondition of type Set.

Definition 4.1.1. The predicate transformers for an effect e are given by elements of the following record
type PT e:

25



record PT (e ∶ Effect) ∶ Set where
field
pt ∶ (c ∶ Effect.C e) → (Effect.R e c → Set) → Set
mono ∶ ∀ c P Q → (∀ x → P x → Q x) → pt c P → pt c Q

▵

We include a requirement mono, short for monotonicity, since we will need it in later theorems. Intuitively,
the monotonicity requirement holds for all well-behaved semantics: if a very strong postcondition is satisfied
after a computation, surely weaker postconditions are satisfied too.

Definition 4.1.2. As before, the weakest precondition predicate transformer is defined by a fold over the
predicate transformer for an effect.

fold ∶ ((c ∶ Effect.C e) → (Effect.R e c → b) → b) → (a → b) → Free e a → b
fold step pure (Pure x) = pure x
fold step pure (Step c k) = step c λ x → fold step pure (k x)
wp ∶ PT e → Free e a → (a → Set) → Set
wp step S P = fold (PT.pt step) P S

▵

We have changed the order of the arguments to wp to give it the same form as the pt field in the PT
record type.

Lemma 4.1.3. The weakest precondition of a composition S >>= f is given by composing the weakest
precondition transformers.

compositionality ∶ (pt ∶ PT e) (S ∶ Free e a) (f ∶ a → Free e b) →
wp pt (S >>= f) P == wp pt S (λ x → wp pt (f x) P)

This compositionality property is no more than a specialisation of the fold-bind lemma of the previous
chapter, and the proof is completely analogous.

Definition 4.1.4 ([Mor98]). Predicate transformer semantics give rise to the notion of refinement, which
we define more generally than in Definition 3.3.4, as:

_⊑_ ∶ (pt1 pt2 ∶ (a → Set) → Set) → Set
pt1 ⊑ pt2 = ∀ P → pt1 P → pt2 P

▵

The refinement relation is defined between predicate transformers, most notably the predicate transformers
for an effect e, given by elements of PT e, and the weakest precondition of a computation, given by wp. We
will say “a computation refines another”, when we more precisely mean “the weakest precondition predicate
transformer for a computation refines that of another”. We can also assign predicate transformer semantics
to specifications, as in Chapter 3, allowing us to relate specifications and (purported) implementations. If
pt1 ⊑ pt2 holds, the predicate transformer pt2 is “better” in some way than pt1, where the notion of “better”
arises from our choice of semantics.

It is straightforward to show that the refinement relation is both transitive and reflexive, giving the
following lemma.

Lemma 4.1.5. The refinement relation is a pre-order.

⊑ -refl ∶ (pt ∶ (a → Set) → Set) → pt ⊑ pt
⊑ -refl pt P H = H
⊑ -trans ∶ (pt1 pt2 pt3 ∶ (a → Set) → Set) → pt1 ⊑ pt2 → pt2 ⊑ pt3 → pt1 ⊑ pt3
⊑ -trans pt1 pt2 pt3 r12 r23 P H = r23 P (r12 P H)
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Moreover, the refinement relation between computations works well with composition (since wp does),
allowing us to refine the left- or right hand side of a _>>=_.

Lemma 4.1.6. A composition S >>= f is refined if one of its parts is refined:

compositionality-left ∶ (pt ∶ PT e) (S S’ ∶ Free e a) (f ∶ a → Free e b) →
wp pt S ⊑ wp pt S’ → wp pt (S >>= f) ⊑ wp pt (S’ >>= f)

compositionality-right ∶ (pt ∶ PT e) (S ∶ Free e a) (f f’ ∶ a → Free e b) →
(∀ x → wp pt (f x) ⊑ wp pt (f’ x)) → wp pt (S >>= f) ⊑ wp pt (S >>= f’)

Proof. The proof of compositionality-left consists simply of applying the compositionality equality twice, once
to S >>= f and once to S’ >>= f . To prove compositionality-right, we need that pt is monotone. If wp pt S
were anti-monotone, for example if pt returns the negation of the postcondition, then S >>= f’ is refined by
S >>= f instead of vice versa. With monotonicity of pt, the proof follows from induction on the structure of
S, since the Pure case is immediate and the Step case follows from applying monotonicity to the induction
hypothesis.

4.2 Example: partial computation
The first example of a computational effect we will consider is that of a partial computation, one which calls
to an oracle which never returns.

Definition 4.2.1. A partial computation is represented by the effect EPartial , and has predicate transformer
semantics given by wpPartial , as follows:

data CPartial ∶ Set where
Abort ∶ CPartial

RPartial ∶ CPartial → Set
RPartial Abort = ⊥
EPartial ∶ Effect
EPartial = eff CPartial RPartial
ptPartial ∶ PT EPartial
PT.pt ptPartial Abort P = ⊥
PT.mono ptPartial Abort P Q imp ()
wpPartial ∶ Free EPartial a → (a → Set) → Set
wpPartial = wp ptPartial

▵

There is a single command, Abort; there is no continuation after issuing this command, hence the type of
valid responses is empty. It is sometimes convenient to define a smart constructor for failure:

abort ∶ Free EPartial a
abort = Step Abort λ ()

A computation of type Partial a will either return a value of type a or fail, issuing the abort command. Note
that the responses to the Abort command are empty; the smart constructor abort uses this to discharge the
continuation in the second argument of the Step constructor. With the syntax in place, we can turn our
attention to verifying programs using suitable predicate transformer semantics.
Example 4.2.2. We begin by defining a small stack-based language, where the stack only contains natural
numbers.

Stack = List ℕ
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There is an operator for pushing a natural number onto the stack and an operator for popping the top two
numbers and pushing their sum. These operators are represented by the terms of type Op. A full program,
of type Ops, consists of a list of elements of Op.

data Op ∶ Set where
Push ∶ ℕ → Op
Plus ∶ Op

Ops = List Op

After a program is run, we will require that there is at least one value left on the stack. The top of the stack
is the result of the program. There are various ways to define the semantics of a program of type Ops. We
can define operational semantics as an inductively defined relation between operations, the state of the stack,
and the displayed value.

data _,_⇒_ ∶ Ops → Stack → ℕ → Set where
Base ∶ Nil , (n ∶∶ sp) ⇒ n
Plus ∶ ops , ((a + b) ∶∶ sp) ⇒ c → (Plus ∶∶ ops) , (a ∶∶ b ∶∶ sp) ⇒ c
Push ∶ ops , (a ∶∶ sp) ⇒ b → (Push a ∶∶ ops) , sp ⇒ b

In this definition, we rule out the erroneous operation of popping from an empty stack by only including
non-empty stacks in the relation.

Alternatively, we can give semantics by defining a monadic interpreter that evaluates the programs, using
the Free EPartial monad to handle invalid operations. The pop function pops a value off the stack, or aborts
if the stack is empty.

pop ∶ Stack → Free EPartial (Pair ℕ Stack)
pop Nil = abort
pop (x ∶∶ xs) = Pure (x , xs)

Using pop, it is straightforward to write the interpreter for Ops.

run ∶ Ops → Stack → Free EPartial ℕ
run Nil Nil = abort
run Nil (s ∶∶ sp) = Pure s
run (Push a ∶∶ ops) sp = run ops (a ∶∶ sp)
run (Plus ∶∶ ops) sp = do

(a , sp’) ← pop sp
(b , sp”) ← pop sp’
run ops (a + b ∶∶ sp”)

Now we can ask ourselves whether the relation and interpreter describe the same semantics. If run was a
pure function, it would give rise to a relation between input and output values. In that case, we could check
whether the two relations coincide. Since run uses the EPartial effect, we can use the wpPartial predicate
transformer to compute a relation between in- and output.

run-semantics ∶ (ℕ → Set) → Ops → Stack → Set
run-semantics P ops sp = wpPartial (run ops sp) P

Now that we have two ways of expressing the semantics of Ops, we should verify that they come down to
the same thing.

run-soundness ∶ ∀ ops sp n → (ops , sp ⇒ n) → run-semantics (_== n) ops sp
run-completeness ∶ ∀ ops sp n → run-semantics (_== n) ops sp → (ops , sp ⇒ n)

The proof consists of induction on the list of operations.
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run-soundness Nil (n ∶∶ sp) n Base = refl
run-soundness (Plus ∶∶ ops) (a ∶∶ b ∶∶ sp) n (Plus H) = run-soundness ops ( ∶∶ sp) n H
run-soundness (Push a ∶∶ ops) sp n (Push H) = run-soundness ops (a ∶∶ sp) n H
run-completeness Nil Nil n ()
run-completeness Nil (a ∶∶ sp) .a refl = Base
run-completeness (Plus ∶∶ ops) Nil n ()
run-completeness (Plus ∶∶ ops) (a ∶∶ Nil) n ()
run-completeness (Plus ∶∶ ops) (a ∶∶ b ∶∶ sp) n H = Plus (run-completeness ops ( ∶∶ sp) n H)
run-completeness (Push a ∶∶ ops) sp n H = Push (run-completeness ops (a ∶∶ sp) n H)

This example also illustrates that wp generalises the predicate transformer semantics used for imperative
languages. The language Ops is a simple model of imperative programs, where the state consists of a Stack.
By combining wpPartial and run, we have constructed predicate transformer semantics for each program in
Ops. ♦

4.3 Example: non-determinism
A pure computation always has exactly one output value. An effectful computation might have a different
number of potential output values, zero or multiple. We have already seen how to represent partial computa-
tions, which result in no output if they fail. In this section, we represent multiple potential outputs with the
effect of binary choice, nondeterministically selecting between two options.

Definition 4.3.1. A nondeterministic computation is represented by the effect ENondet. The effect ENondet
allows for two calls: Fail is equivalent to Abort of EPartial , and Choice allows for a nondeterministic choice
between two alternatives.

data CNondet ∶ Set where
Fail ∶ CNondet
Choice ∶ CNondet

RNondet ∶ CNondet → Set
RNondet Fail = ⊥
RNondet Choice = Bool
ENondet ∶ Effect
ENondet = eff CNondet RNondet

Again, we define smart constructors to make the definitions more concrete:

fail ∶ Free ENondet a
fail = Step Fail λ ()
choice ∶ Free ENondet a → Free ENondet a → Free ENondet a
choice alt1 alt2 = Step Choice λ b → if b then alt1 else alt2

There are multiple choices for the semantics of nondeterministic computations, of which we will discuss
two: the semantics of wpAny correspond to the angelic oracle, where a computation is successful if any of
the choices leads to success. We omit the proofs of monotonicity since they are trivial.

ptAny ∶ PT ENondet
PT.pt ptAny Fail P = ⊥
PT.pt ptAny Choice P = Either (P True) (P False)

wpAny ∶ Free ENondet a → (a → Set) → Set
wpAny = wp ptAny
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The semantics of wpAll are demonic, where a computation is successful if all of the choices lead to success.

ptAll ∶ PT ENondet
PT.pt ptAll Fail P = ⊤
PT.pt ptAll Choice P = Pair (P True) (P False)

wpAll ∶ Free ENondet a → (a → Set) → Set
wpAll = wp ptAll

▵

Example 4.3.2. For a given set of strings, a generalized portmanteau contains each string as a substring with
overlap. For example, “refinelement” is a portmanteau of “element” and “refine”, while “elementrefine” is
not since the substrings do not overlap. A portmantout is a generalized portmanteau where each word in a
given word list appears at least once. Since repetitions are allowed, long portmantouts are easy to find, so a
question arises: what is the shortest portmantout for a wordlist [Mur15; RM16; Ren17]?

Here, we will consider a converse problem: what is the longest generalized portmanteau, not allowing for
repetitions? We give a nondeterministic program for generating a repetition-free generalized portmanteau,
which we will call portplusieurs. The implementation mirrors the portmantout algorithm by Murphy [Mur15].
We keep track of the unused words and an accumulator that holds a portmanteau under construction. As
long as there are unused words, we iterate by nondeterministically selecting an arbitrary unused word and
try to add it to the accumulator to produce a longer portmanteau. If we end up in a dead end where there
is no unused word that overlaps, we return the accumulated result.

To implement the algorithm, we start by introducing a function pruffix that nondeterministically gen-
erates a portmanteau of two strings xs and ys, such that xs is the prefix and ys is the suffix. Note that
pruffix may return multiple results. For example, “headed” and “deduction” result in “headeduction” and
“headededuction”.

hasPrefix ∶ String → String → Bool
hasPrefix xs Nil = True
hasPrefix Nil (y ∶∶ ys) = False
hasPrefix (x ∶∶ xs) (y ∶∶ ys) = x ?= y ∧ hasPrefix xs ys
pruffix ∶ String → String → Free ENondet String
pruffix Nil ys = fail
pruffix (x ∶∶ xs) ys = choice

(guard (hasPrefix ys (x ∶∶ xs)) (Pure ys))
(pruffix xs ys >>= λ xys → Pure (x ∶∶ xys))

To ensure there is this overlap, pruffix makes use of the guard function; guard p S performs the computation
S if the Boolean p is true, otherwise it aborts.

Generating a portplusieurs is then a case of repeatedly applying pruffix to an unused word. Since deleting
a word from the list of unused words does not always result in a sub-expression of the original list, we use
the type Vec String n of lists of a fixed length n to satisfy the termination checker, making the induction on
the length n explicit.

portplusieurs ∶ Vec String n → String → Free ENondet String
portplusieurs Nil acc = Pure acc
portplusieurs unused@ ( ∶∶ ) acc = choice

(sampleVec unused >>= λ {(word , unused’) → pruffix word acc >>= portplusieurs unused’ })
(Pure acc)

Here, sampleVec takes a vector and returns an arbitrary element, together with the vector with that element
deleted from it.
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In our example, we will use the words of the opening paragraph of Moby-Dick as our word list. Taking the
first successful branch of portplusieurs results in “coffinteresthishmaelongrimindamphilosophicall”, a string of
45 letters. With predicate transformer semantics, we can prove that we can do better:

longPortplusieurs ∶ wpAny (portplusieurs moby-dick "call") (λ xs → length xs > 50)

The proof of longPortplusieurs consists of a sequence of Inl and Inr specifying the choices made, followed by a
proof that the corresponding portmanteau is indeed longer than 50 characters. ♦

The angelic semantics of wpAll , as discussed in the previous example, are mostly seen in complexity
theory. The semantics used in predicate transformer semantics for imperative programs, such as in the work
of Dijkstra [Dij75a] and Morgan [Mor98], correspond to the semantics of wpAll . In the following example,
we will use the refinement relation to verify a computation in the wpAll semantics.
Example 4.3.3. To illustrate equational reasoning and nondeterminism, Gibbons and Hinze [GH11] give a
program that nondeterministically generates a permutation of a given list. We will develop a similar program
to illustrate our approach. First of all, we need to define when two given lists are permutations of another.
Our approach will be that of the Agda standard library, giving an inductive definition of keeping the first
element in place or swapping it with the second, and closing this under reflexivity and transitivity.

data Permutation ∶ List a → List a → Set where
Refl ∶ Permutation xs xs
Prep ∶ Permutation xs ys → Permutation (x ∶∶ xs) (x ∶∶ ys)
Swap ∶ Permutation xs ys → Permutation (x ∶∶ y ∶∶ xs) (y ∶∶ x ∶∶ ys)
Trans ∶ Permutation xs ys → Permutation ys zs → Permutation xs zs

This allows us to define the specification of the permutation generating function.

permsSpec ∶ Spec𝐹 (List a) (List a)
permsSpec xs = [ ⊤ , Permutation xs ]

While Gibbons and Hinze [GH11] generate a permutation by nondeterministically choosing an element
of the input list, and putting it on the head of a permutation of the remainder of the list, this definition is
not structurally recursive on the input list. To satisfy Agda’s termination checker, we will use an opposite
approach: we insert the head of the input list in a nondeterministic location in a permutation of the tail of
the input. The insertion is done by the function insert.

insert ∶ a → List a → Free ENondet (List a)
insert x Nil = Pure (x ∶∶ Nil)
insert x (x’ ∶∶ xs) = choice (Pure (x ∶∶ x’ ∶∶ xs)) (insert x xs >>= λ xs’ → Pure (x’ ∶∶ xs’))

This leads to the following definition of perms:

perms ∶ List a → Free ENondet (List a)
perms Nil = Pure Nil
perms (x ∶∶ xs) = perms xs >>= insert x

To verify that all possible outputs of perms are permutations, we prove that it refines the specification
permsSpec. Since the definition of perms includes a call to itself and to a recursive function insert, we
should have some way of writing the proof recursively. At first glance, we might be able to use one of
the compositionality lemmas, since those deal with wp applied to the composition of two computations.
However, those lemmas only relate computations to each other, not computations with specifications. When
we introduce specifications as effects in Chapter 7 we solve that issue, but for now we need to introduce a
new lemma. It states that a composition refines a specification, if we have a postcondition for the first part
that is a precondition for the second part.

31



compositionalitySpec ∶ ∀ pt pre mid post (S ∶ Free e a) (f ∶ a → Free e b) →
wpSpec [ pre , mid ] ⊑ wp pt S → (∀ x → wpSpec [ mid x , post ] ⊑ wp pt (f x)) →
wpSpec [ pre , post ] ⊑ wp pt (S >>= f )

compositionalitySpec pt pre mid post S f rS rF P (fst , snd) =
coerce (sym (compositionality pt S f ))
(rS (fst , λ o H → rF o (H , snd)))

Since perms calls insert, the first step is to verify the behaviour of insert. For our purposes, it is sufficient
to prove that inserting x into xs produces a permutation of x ∶∶ xs; we do not need to show that the
elements of xs are kept in their original order. The proof follows the definition of insert, and uses induction
on the input list to show that all alternatives satisfy the specification. As for perms, verification proceeds
similarly up to the point we have to deal with the call to insert. The precondition to insert does not match
the postcondition of the recursive call to perms. We use the transitivity of _ ⊑ _ to change the pre- and
postcondition to a fitting form.

permsSound ∶ (xs ∶ List a) → wpSpec (permsSpec xs) ⊑ wpAll (perms xs)
permsSound Nil P (fst , snd) = snd Nil Refl
permsSound (x ∶∶ xs) = compositionalitySpec ptAll (Permutation xs) (perms xs) (insert x)

(permsSound xs)
λ xs’ → ⊑ -trans

(λ {P (fst , snd) → tt , (λ xs” H → snd (Trans (Prep fst) H))})
(insertSound x xs’)

However, we have not finished the verification of perms at this point. Although we have shown that
all the output of perms is a permutation of the input, i.e. the soundness of perms, we also need to show
completeness: that each permutation occurs in the output. We can accomplish this by showing the converse
refinement, that perms is refined by permsSpec. In the refinement calculus, programs are equivalent if the
refinement relation holds in both directions. Again, we need a lemma for refinement between compositions
and specifications.

compositionalitySpec′ ∶ ∀ pt pre mid post (S ∶ Free e a) (f ∶ a → Free e b) →
wp pt S ⊑ wpSpec [ pre , mid ] →
(∀ (P ∶ b → Set) → (∀ x → mid x → wp pt (f x) P) → ∀ y → post y → P y) →
wp pt (S >>= f ) ⊑ wpSpec [ pre , post ]

compositionalitySpec′ pt pre mid post S f rS rF P H =
let postS = rS (coerce (compositionality pt S f ) H)
in Pair.fst postS , rF P (Pair.snd postS)

As with soundness, the completeness proof of perms goes by induction on the input list, using compositionality
and a separate completeness proof of insert to perform the inductive step. The completeness proof of insert
makes use of a lemma that states that x ∶∶ xs is a permutation of ys if and only if x ∈ ys and xs is a
permutation of ys with this occurrence of x deleted. Apart from the details of this lemma, the proof follows
quickly from case distinction.

permsComplete ∶ (xs ∶ List a) → wpAll (perms xs) ⊑ wpSpec (permsSpec xs)
permsComplete Nil P H = tt , permNil P H
permsComplete (x ∶∶ xs) = compositionalitySpec′ ptAll (Permutation xs) (perms xs) (insert x)

(permsComplete xs)
(insertComplete x xs)

♦
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4.4 Example: stateful computation
Up to now, we have only considered effects where the input state is trivial, and the output state consists
only of the return value. Predicate transformer semantics can also be applied to non-trivial state, which is
required for imperative programming. To incorporate a state of type s, we need to change the type of the
pre- and postcondition, replacing Set with s → Set. We already did a similar substitution in Section 3.4, to
accommodate the fuel level used by the petrol-driven semantics.

Definition 4.4.1. The effect of mutable state for a single variable of type s is represented by the effect
EState s. The variable can be read out with the command Get, and written to with the command Put.

data CState (s ∶ Set) ∶ Set where
Get ∶ CState s
Put ∶ s → CState s

RState ∶ CState s → Set
RState Get = s
RState (Put ) = ⊤
EState ∶ Set → Effect
EState s = eff (CState s) RState

The intended semantics of EState are that it behaves exactly as the state monad. In the more precise words
that we will introduce in Definition 6.1.1, the handlers of EState map the smart constructors get and put to
the respective operations of the state monad.

get ∶ Free (EState s) s
get = Step Get Pure
put ∶ s → Free (EState s) ⊤
put x = Step (Put x) Pure

We cannot directly define the semantics of stateful computations by giving an element of the PT EState
type, since the type of PT does not allow for non-trivial states in the pre- or postcondition. The solution we
take is to define a new analogous type PT𝑆, and define the fold over such a predicate transformer to be wp𝑆.

record PT𝑆 (s ∶ Set) (e ∶ Effect) ∶ Set where
field
pt ∶ (c ∶ Effect.C e) → (Effect.R e c → s → Set) → s → Set
mono ∶ ∀ c P Q → (∀ x t → P x t → Q x t) → ∀ t → pt c P t → pt c Q t

wp𝑆 ∶ PT𝑆 s e → Free e a → (a → s → Set) → (s → Set)
wp𝑆 step S P = fold (PTS.pt step) P S

The PT𝑆 type allows us to give the predicate transformer semantics of stateful computation by passing
through the state for a Get operation, and updating it for a Put operation.

ptState ∶ PT𝑆 s (EState s)
PTS.pt ptState Get P t = P t t
PTS.pt ptState (Put t’) P t = P tt t’
PTS.mono ptState Get P Q imp t asm = imp t t asm
PTS.mono ptState (Put t’) P Q imp t asm = imp tt t’ asm
wpState ∶ Free (EState s) a → (a → s → Set) → s → Set
wpState = wp𝑆 ptState

▵
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While Free EState allows for a single state variable of type s, we can support multiple variables by setting
s to be the product of all the variables’ types. Similarly, if we want to interpret an imperative language, we
can set the state to contain the whole stack and heap, and update this state for each operation.

If we want to verify stateful computations, we should apply a similar change to the specification type,
making the pre- and postcondition in that type non-trivial. The postcondition can refer to the input and
output state, so we can express predicates like “the variable has been incremented by 1”.

record Spec𝑆 (s a ∶ Set) ∶ Set where
constructor [_, _]𝑆

field
pre ∶ s → Set
post ∶ s → a → s → Set

wpSpec𝑆 ∶ Spec𝑆 s a → (a → s → Set) → s → Set
wpSpec𝑆 [ pre , post ]𝑆 P s = pre s × (∀ x s’ → post s x s’ → P x s’)

Finally, we need to change the refinement relation to also take into account the state.

_⊑𝑆 _ ∶ (pt1 pt2 ∶ (a → s → Set) → s → Set) → Set
pt1 ⊑𝑆 pt2 = ∀ P s → pt1 P s → pt2 P s

As we can see, a somewhat unfortunate consequence of including the current state in predicates is that
many definitions now come in two incompatible forms, one without access to the state and one that has access
to the state. Moreover, to neatly handle multiple stateful variables, for example to deal with combinations of
effects as in Chapter 5, we would have to re-introduce every definition using this new number of variables. In
the remainder of this thesis, if we only give one form of a definition, we will tend to choose predicates with
access to one mutable variable, allowing for more generality. The drawback to this choice is that sometimes
the unused variables clutter up the definition, and that multiple mutable variables have to be handled by
careful dealing with tuples. Since the programs in this thesis only require a single variable, we will mention
a potential solution without developing it in detail.

Instead of a single mutable variable, we can have a list (or map) of variables accessed through references
in the style of the language ML [Mil+97]. Moreover, we can compute the type of predicates based on the
elements of the list: when the list contains two natural numbers, a precondition will have type ℕ → ℕ → Set,
and the empty list corresponds to preconditions of type Set. Thus, the singleton list with one element of type
s corresponds to the single mutable variable, and the empty list to the absence of mutable state, subsuming
both forms at the expense of more complicated machinery.
Example 4.4.2. To show how to reason about stateful programs using weakest precondition semantics, we
revisit a classic verification problem proposed by Hutton and Fulger [HF08]: given a binary tree as input,
relabel this tree so that each leaf has a unique number associated with it. A typical solution uses the state
monad to keep track of the next unused label. The challenge that Hutton and Fulger pose is to reason about
the program, without expanding the definition of the monadic operations.

We begin by defining the type of binary trees:

data Tree (a ∶ Set) ∶ Set where
Leaf ∶ a → Tree a
Node ∶ Tree a → Tree a → Tree a

One obvious choice of specification might be the following:

relabelSpec ∶ Tree a → Spec𝑆 ℕ (Tree ℕ)
relabelSpec t = [ K ⊤ , relabelPost t ]𝑆

where
relabelPost ∶ Tree a → ℕ → Tree ℕ → ℕ → Set
relabelPost t s t’ s’ = (flatten t’ == [s … s + size t]) × (s + size t == s’)
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The precondition of this specification is trivially true regardless of the input tree and initial state; the
postcondition consists of a conjunction of two auxiliary statements: first, flattening the resulting tree t’
produces the sequence of numbers from s to s + size t, where t is the initial input tree; furthermore, the
output state s’ should be precisely size t larger than the input state s.

We can now define the obvious relabelling function as follows:

relabel ∶ Tree a → Free (EState ℕ) (Tree ℕ)
relabel (Leaf x) = fresh >>= (Pure ∘ Leaf )
relabel (Node l r ) =
relabel l >>= 𝜆 l’ →
relabel r >>= 𝜆 r’ →
Pure (Node l’ r’)

The auxiliary function fresh increments the current state and returns its value.
Next, we would like to show that this definition satisfies the intended specification. To do so, we can use

the wp𝑆 function to compute the weakest precondition semantics of the relabelling function and formulate
the desired correctness property:

correctness ∶ (t ∶ Tree a) → wpSpec𝑆 (relabelSpec t) ⊑𝑆 wpState (relabel t)

The proof mirrors the definition of relabel , as previous correctness proofs did: we do a case distinction on
the tree, then use the compositionality properties to deal with the _>>=_ operators. Finally, we prove the
equality of the postcondition as a lemma on natural numbers. ♦

In Example 4.2.2 we wrote an interpreter for a small imperative language, making use of the partiality
effect. Looking at the definition of run, we can see that we could also express it as a stateful computation,
where the state consists of the stack of values. Rewriting run to additionally use EState Stack as an effect
would allow for more readable code, but we cannot use Free (EState Stack) to implement run: we also need
the partiality of EPartial . Algebraic effects solve this conflict by allowing multiple effects to be combined in
the same syntax. In the next chapter, we will describe how to assign semantics to combinations of effects.
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Chapter 5

Combinations of effects using
coproducts

In the previous chapters, we have investigated the predicate transformer semantics arising from the catamor-
phism of the Free monad. The Free monad allows us to write effectful programs in the style of algebraic
effects.

5.1 Combining effects in programs
Combinations of effects in the Free monad are given by taking the free monad over the coproduct of the
respective functors [WSH14]. In our framework, given two effects e1 e2 ∶ Effect, the coproduct consists of
the coproduct of the type of calls, together with the unique map from the combined type of calls to Set,
given by the response type for each alternative.

_∶+∶_ ∶ (e1 e2 ∶ Effect) → Effect
Effect.C ((eff C1 R1) ∶+∶ (eff C2 R2)) = Either C1 C2
Effect.R ((eff C1 R1) ∶+∶ (eff C2 R2)) (Inl c1) = R1 c1
Effect.R ((eff C1 R1) ∶+∶ (eff C2 R2)) (Inr c2) = R2 c2

Combining effects in this way allows us to reuse the results of the previous chapter, but also has some
disadvantages. Most notably, using a coproduct to combine effects is semantically associative and commuta-
tive, but syntactically it is neither. A program in the monad Free (e1 ∶+∶ (e2 ∶+∶ e3)) cannot be directly
composed with one in the monad Free ((e2 ∶+∶ e1) ∶+∶ e3). We solve the disadvantages in two steps.

The first step is to redefine Free to take a list of effect types instead of a single one.

Definition 5.1.1. For a list of effect types es, the Free monad on a type a is given by the following data
type:

data Free (es ∶ List Effect) (a ∶ Set) ∶ Set where
Pure ∶ a → Free es a
Step ∶ (i ∶ eff C R ∈ es) (c ∶ C) (k ∶ R c → Free es a) → Free es a

▵

The Step takes an index into the list of effects, expressed as a proof that the specific effect is in the list.
When writing code, we pass this index as an instance argument, allowing for automatic inference of its value,
analogously to using a type class. Thus, a smart constructor for e.g. the fail of nondeterminism will have a
type of the form fail ∶ {{ iND ∶ ENondet ∈ es }} → Free es ⊥. This is, up to notational differences, the
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same as the type of the smart constructor fail defined by Wu, Schrijvers, and Hinze. By using a list of effects
instead of a tree of coproducts, there is no more syntactic problem of associativity.

The second step allowing for composing programs with different effects is a change in programming
style. Instead of the list of effects being fixed by the type of an effectful computation, we parametrise
the computation over the index of each effect in the list. Thus, we can add effects without needing to
change the syntax. This means that each effectful program is in the Free es monad for large enough es, so
we can always compose two of these programs, as long as we pass the correct indices. For example, the
fail operation of nondeterminism will have type fail ∶ {{ iND ∶ ENondet ∈ es }} → Free es ⊥ instead of
fail ∶ Free (ENondet ∶∶ Nil) ⊥, to allow for generality in the list of effects.
Example 5.1.2. Let us rewrite the run function for the simple stack-based language to make use of two effects;
partiality and statefulness. We can reuse most of the definitions in Example 4.2.2, and only rewrite the
values in the Free monad.

pop ∶ {{ iP ∶ EPartial ∈ es }} {{ iS ∶ EState Stack ∈ es }} → Free es ℕ
pop = do

(a ∶∶ sp) ← get
where Nil → abort

put sp
Pure a

push ∶ {{ iS ∶ EState Stack ∈ es }} → ℕ → Free es ⊤
push a = do
sp ← get
put (a ∶∶ sp)

run ∶ {{ iP ∶ EPartial ∈ es }} {{ iS ∶ EState Stack ∈ es }} → Ops → Free es ℕ
run Nil = pop
run (Push a ∶∶ ops) = do
push a
run ops

run (Plus ∶∶ ops) = do
a ← pop
b ← pop
push (a + b)
run ops

♦

5.2 Combining effect semantics
Recall from Definitions 3.3.1 and 4.1.2 that the weakest precondition predicate transformer is given as a fold
of the Free monad over the predicate transformer. With the new definition of Free, folds are also indexed by
the effects in the list.

fold ∶ ((eff C R ∈ es) → (c ∶ C) → (R c → b) → b) → (a → b) → Free es a → b
fold step pure (Pure x) = pure x
fold step pure (Step i c k) = step i c λ x → fold step pure (k x)

The argument step to fold describes the semantics of all effects simultaneously, but to fit with the combinatorial
nature of the effects, we want to specify the semantics as a combination of the individual semantics of each
effect. Since we put the effect types in a list, it makes sense to create a list of predicate transformers, and
have the step argument look up the corresponding predicate transformer.

Definition 5.2.1. For a list es of effect types, the type of predicate transformer semantics for es is defined
inductively:
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data PTs ∶ List Effect → Set where
Nil ∶ PTs Nil
_∶∶_ ∶ PT e → PTs es → PTs (e ∶∶ es)

The weakest precondition predicate transformer of a computation in the monad Free es is given by folding
over the corresponding predicate transformer at each step.

wp ∶ PTs es → Free es a → (a → Set) → Set
wp pts S P = fold (lookupPT pts) P S

Here, lookupPT takes an index into the list of effect types, and returns the corresponding predicate transformer.
▵

We can give different semantics to calls to the same effect type, by including two different copies of the
effect type in es, and two different predicate transformers in pts. This also implies that to apply wp to a
program, we need to fix the order in which the effect types occur in the list es. We will see this pattern in
the rest of our work: first introduce a program that takes any list of effect types es, as long as it allows for
the needed effects, then choose a value for es and verify the instantiation of the program for the given list.

The semantics are applied in the order they occur in the program, not in the order they occur in the
list of predicate transformers. For instance, the predicate transformers ptAll ∶∶ ptAny ∶∶ Nil for
ENondet ∶∶ ENondet ∶∶ Nil will not necessarily result in a precondition that is a conjunction of disjunctions.
Example 5.2.2. To make the way in which predicate transformers combine more explicit, we will look at the
combination of the ptAll and ptAny predicate transformers in more detail. For a more practical example,
verifying the run program of Example 5.1.2, we first need to also introduce combinations of stateful effect
semantics. We start the current, simpler example by introducing smart constructors for angelic and demonic
choice, both renamings of the semantics-independent nondeterministic choice. We fix the order of effects at
this point to make clear the operations have distinct semantics.

angelic = choice {{∈Tail ∈Head}}
demonic = choice {{∈Head}}

The semantics we assign to these effects are a combination of ptAll and ptAny :

pts = ptAll ∶∶ ptAny ∶∶ Nil

Let us apply the wp function to a few programs to show how the combinations interact. First of all, if we do
not use angelic and demonic in the same program, the weakest precondition is the same as for the situation
without combinations:

ex1 ∶ wp pts (angelic (Pure 1) (angelic (Pure 2) (Pure 3))) P == Either (P 1) (Either (P 2) (P 3))
ex2 ∶ wp pts (demonic (Pure 1) (demonic (Pure 2) (Pure 3))) P == Pair (P 1) (Pair (P 2) (P 3))

Combining the angelic choice and demonic choice will result in a weakest precondition of the same form as
the program.

ex3 ∶ wp pts (angelic (Pure 1) (demonic (Pure 2) (Pure 3))) P == Either (P 1) (Pair (P 2) (P 3))
ex4 ∶ wp pts (demonic (Pure 1) (angelic (Pure 2) (Pure 3))) P == Pair (P 1) (Either (P 2) (P 3))

This result is independent of reordering ptAll and ptAny in the list of effects, as long as we also reassign the
indices for the angelic and demonic operations. ♦

5.3 Re-incorporating mutable state
In Section 4.4, we discussed the predicate transformer semantics for programs using a single mutable variable.
The weakest precondition can still be written as a fold over a predicate transformer, but the predicates
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now take into account the value of the variable. When we have a combination of effects and want to give
semantics that include mutable state, the question arises whether we keep track of a list of variables, one for
each effect, or the mutable state is the same for each predicate transformer. The first case allows for easy
definition of multiple mutable variables, since to introduce a new variable can be done by adding a new state
effect (and predicate transformer). The second case allows us more expressivity: we can carry through the
state from one branch of nondeterministic computation to the next.

We choose to allow for a single mutable variable of an arbitrary type s, just as in the uncombined case.
If we need multiple variables, we can set s to be a product type. This choice is better for expressivity but
carries some notational burden. For a practical framework that allows for verifying arbitrary programs,
different choices might be better. For a single mutable variable, we can modify 5.2.1 to use stateful predicate
transformers in the PT𝑆 type instead of the stateless predicate transformers in the PT type.

Definition 5.3.1. The type of stateful predicate transformers for state of type s and a list of effect types
es are given by PT𝑆 s es, as follows:

data PTs𝑆 (s ∶ Set) ∶ List Effect → Set where
Nil ∶ PTs𝑆 s Nil
_∶∶_ ∶ PT𝑆 s e → PTs𝑆 s es → PTs𝑆 s (e ∶∶ es)

The weakest precondition of a stateful computation is given by folding over the corresponding predicate
transformer at each step.

wp𝑆 ∶ PTs𝑆 s es → Free es a → (a → s → Set) → s → Set
wp𝑆 pts S P = fold (lookupPTS pts) P S

Here, lookupPTS takes an index into the list of effect types, and returns the corresponding stateful predicate
transformer. ▵

In the previous sections, we have defined stateless semantics in the PT types. To combine these with
stateful semantics in the PT𝑆 type, we define a helper function that adds the state by threading it through
the computation unmodified.

addState ∶ PT e → PT𝑆 s e
PTS.pt (addState record {pt = pt;mono = mono }) c P t = pt c (λ x → P x t)

Example 5.3.2. In Example 5.1.2, the run function is an interpreter for a simple stack-based language. This
function combines the effects of state and partiality, and adapts the function of Example 4.2.2, where we
also verified the interpreter with respect to an inductively defined relation. Now that we have defined wp𝑆,
we are ready for verification of the version that uses a combination of effects.

The weakest precondition semantics of run are given by applying wp𝑆 with suitable predicate transformers.
Although the postcondition P has access to the stack in the wp𝑆 semantics, we will ignore this, to mirror the
semantics given in Example 4.2.2. As discussed, it is at the point of verification that we fix the exact list of
effects used in run, by specifying the predicate transformers.

run-semantics ∶ (ℕ → Set) → Ops → Stack → Set
run-semantics P ops = wp𝑆

(addState ptPartial ∶∶ ptState ∶∶ Nil)
(run {{∈Head}} {{∈Tail ∈Head}} ops)
(λ n → P n)

We defined the intended semantics of the stack-based language as an inductive relation _,_⇒_ between
operations, the stack and the output value. As before, the correctness of run is specified by requiring that
run outputs a given value if and only if this value is the result according to the relation.
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run-soundness ∶ ∀ ops sp n → (ops , sp ⇒ n) → run-semantics (_== n) ops sp
run-completeness ∶ ∀ ops sp n → run-semantics (_== n) ops sp → (ops , sp ⇒ n)

The proof these two statements is again a induction on the list of operations, and in fact results in proofs
syntactically identical to that of the corresponding proofs in Example 4.2.2. ♦

5.4 Termination and combinations of effects
In the previous section, we have looked at combinations for multiple effects, but we have not re-introduced
the general recursion of Chapter 3. This section will look at combining general recursion with other effects,
and more specifically at termination in the presence of multiple effects.

First of all, we re-introduce notation for generally recursive functions as Kleisli arrows for Free. In Chapter
3, the notation C ↬ R abbreviates (c ∶ C) → Free C R (R c). We cannot reuse this notation, since there
are multiple effects in addition to general recursion. We incorporate the list of effect types as follows:

_
_
↬ _ ∶ (C ∶ Set) (es ∶ List Effect) (R ∶ C → Set) → Set

C
es
↬ R = (c ∶ C) → Free (eff C R ∶∶ es) (R c)

In the previous sections, we let the order of the effects free, while now we explicitly choose that general
recursion is the first effect. This was done for the practical consideration of simplifying the notation in this
section, so that we do not have to repeatedly write the index of general recursion in the list of effects.

In Section 3.4, we were careful to state that a computation terminates in the petrol-driven semantics
if unfolding the definition enough satisfies a trivially true postcondition. This is a semantic property, and
should be distinguished from the syntactic property of containing no more recursive calls. When we deal
with effects in combination with general recursion, these two properties are distinct. For instance, consider a
recursive function that decrements a counter kept in the state, and calls itself if the counter is not yet equal
to 0. At each unfolding step, we have code of the form if counter ≢ 0 then (decrement ≫ call) else done.
The code will always syntactically incorporate a recursive call, even if this call is no longer made at a certain
point of execution. The practical implication is that the equivalent to terminates-in takes a list of predicate
transformers as arguments, to determine whether a call is actually made.

Definition 5.4.1. Let es be a list of effect types with (stateful) semantics given by pts ∶ PT𝑆 s es. Let S
be a computation that calls a generally recursive function f , in addition to the effects of es. We say that S
terminates in the petrol-driven semantics with effects es if unfolding f enough times satisfies a trivially true
postcondition:

terminates-in ∶ (pts ∶ PTs𝑆 s es) (f ∶ C
es
↬ R) (S ∶ Free (eff C R ∶∶ es) a) → ℕ → s → Set

terminates-in pts f (Pure x) n t = ⊤
terminates-in pts f (Step ∈Head c k) Zero t = ⊥
terminates-in pts f (Step ∈Head c k) (Succ n) t = terminates-in pts f (f c >>= k) n t
terminates-in pts f (Step (∈Tail i) c k) n t = lookupPTS pts i c (λ x → terminates-in pts f (k x) n) t

Note that this definition takes multiple state variables: one for the state shared by all effects, and one for
the amount of computation steps left. Similarly to the situation in Chapter 3, we could write this as an
application of the fold function, but this would not be accepted by Agda’s termination checker. ▵

In contrast, if we do not use the predicate transformers, the case for Step (∈Tail i) c k has no natural
way to produce a x ∶ R c, so it must be the result of some quantifier. But this quantifier is not uniquely
determined. Consider the ENondet effect, which has different semantics ptAll and ptAny . The Choice effect
returns a value x ∶ Bool nondeterministically. The semantics of ptAll require that all potential output leads
to success (i.e. termination), and the semantics of ptAny only require that one of them leads to termination.
We cannot make the choice between the universal and existential quantifier without knowing the semantics
of the operation. Hence we need the semantics to reason about termination.
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Termination with respect to ptAny matches the definition of non-deterministic Turing machines in com-
plexity theory, just as partial correctness also corresponds to the semantics of ptAny . Indeed, the original
definition of a Turing machine does not even allow for the machine to reject input (corresponding to the Fail
effect of ENondet). Instead, a failing branch avoids an accepting state (corresponding to returning a Pure
value) by never terminating [Tur37].

We give an example that uses terminates-in to verify a generally recursive function with access to other
effects in Subsection 8.1.4.

5.4.1 Well-founded recursion for combinations of effects
Instead of petrol-driven semantics, we can also use define termination based on a well-foundedness argument.
The construction is analogous to Section 3.5. We find a relation that is a variant for the recursion, then
prove this relation is well-founded. Based on this well-foundedness, all call trees have finite depth, so the
computation must eventually terminate. The relation has access to the state, so the computation can also
make progress by modifying the current state.

Definition 5.4.2. Let es be a list of effect types with stateful semantics given by pts ∶ PT𝑆 s es. Let f be
a generally recursive function that has access to the effects of es. A relation _≺_ on C × s is a recursive
variant if for each argument c and state t, and each recursive call made to c’ with state t’ in the evaluation
of f c, we have (c’ , t’) ≺ (c , t).

variant’ ∶ (pts ∶ PTs𝑆 s (eff C R ∶∶ es)) (f ∶ C
es
↬ R) (_≺_ ∶ (C × s) → (C × s) → Set)

(c ∶ C) (t ∶ s) (S ∶ Free (eff C R ∶∶ es) a) → s → Set
variant’ pts f _≺_ c t (Pure x) t’ = ⊤
variant’ pts f _≺_ c t (Step ∈Head c’ k) t’

= ((c’ , t’) ≺ (c , t)) × lookupPTS pts ∈Head c’ (λ x → variant’ pts f _≺_ c t (k x)) t’
variant’ pts f _≺_ c t (Step (∈Tail i) c’ k) t’

= lookupPTS pts (∈Tail i) c’ (λ x → variant’ pts f _≺_ c t (k x)) t’

variant ∶ (pts ∶ PTs𝑆 s (eff C R ∶∶ es)) (f ∶ C
es
↬ R) → ((C × s) → (C × s) → Set) → Set

variantpts f _≺_ = ∀ c t → variant’ pts f _≺_ c t (f c) t

The recursive function f is well-founded if it has a variant that is well-founded. We package these
requirements in the Termination data type.

record Termination (pts ∶ PTs𝑆 s (eff C R ∶∶ es)) (f ∶ C
es
↬ R) ∶ Set where

field
_≺_ ∶ (C × s) → (C × s) → Set
w-f ∶ ∀ c t → Acc _≺_ (c , t)
var ∶ variant pts f _≺_

▵

We give an example that uses the Termination record to verify a generally recursive function with access
to other effects in Subsection 8.2.5.

5.5 Handlers for combinations of effects
Apart from allowing combinations of effects, algebraic effects also feature the use of effect handlers as a
program construct [WSH14; BP15]. These handlers catch the calls that are made to a set of effects and
handle them by running some effect-specific code, with access to the command and continuation at that
point. In the Free monad, effect handlers can be defined as a fold over the Free data type, applied to the
scope in which they handle the effect. For example, we can define try_catch_ as an effect handler for the
EPartial effect, similar to the construct of the same name that is available in many programming languages.
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try_catch_ ∶ (S1 S2 ∶ Free (EPartial ∶∶ es) a) → Free (EPartial ∶∶ es) a
try (Pure x) catch S2 = Pure x
try (Step ∈Head Abort k) catch S2 = S2
try (Step (∈Tail i) c k) catch S2 = Step (∈Tail i) c λ x → try (k x) catch S2

Incorporating effect handlers in predicate transformer semantics is simple in one way: we simply apply
the effect handlers to their scope, then compute the weakest precondition for the result of handling the effects.
In effect, we use the denotational semantics of the effect handlers to compute the predicate transformer
semantics of a program that uses them.

We have not yet found a way to assign predicate transformer semantics to handlers, which could be used
to verify handlers using refinement from a specification. Additionally, by handling effects in different orders,
we should be able to give different semantics to the same syntax. For example, first handling nondeterminism
and then mutable state will result in semantics that feed the output state of the first alternative into the
input state of the second alternative, while handling state first and then nondeterminism results in semantics
where each alternative sees the same input state. With the current description of combined effects, we have
to explicitly specify (in)dependence between the state of alternatives in the semantics of ENondet.
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Chapter 6

Consistency of predicate transformer
semantics

In the previous chapters, we have shown that predicate transformer semantics are useful in reasoning about
functional programming with effects. We have done this by showing that the weakest precondition predicate
transformer arises naturally as a fold, or catamorphism, over the Free monad. Moreover, the weakest
precondition allows for the refinement relation between two programs, or between program and specification,
allowing for verification of programs in the style of the refinement calculus.

We should not only show that we can productively perform verification work with predicate transformer
semantics, but also that its results are consistent. To use effects in a computation, we give a handler that
returns a value in a suitable monad. Thus, for consistency of semantics we want to show that computing
the weakest precondition is equivalent to applying a running the computation in a monad and applying a
postcondition to it. First we show how a handler can be used to run algebraic effects in a specific monad,
then we give conditions on the handler and on the predicate transformer for an effect, that ensure that
the semantics given by the predicate transformer are consistent with the semantics given by the handler.
Additionally, we compare verification using predicate transformer semantics to equational reasoning, a style
of verification used in the context of functional programming.

6.1 Effect handlers
We will begin our discussion of handlers by considering a specific case of consistency. We have introduced
the EState effect by stating it should have the semantics of the State monad. Let us state precisely what we
mean by that, and then give the proof that this property holds.

To compare the EState effect and the State monad, we need to determine a common description of stateful
computation. The State monad is “executable” in the sense that elements of State s a are functions. Thus,
we can compute the outcome of running a stateful computation by applying a value in State s a to an initial
state t ∶ s. If we can translate a computation described by the EState effect to the State monad, we can
determine the result of running the computation. This gives another semantics for EState, in terms of the
State monad, which we want to show is consistent with predicate transformer semantics of the wp𝑆 function.

runState ∶ Free (EState s ∶∶ Nil) a → State s a
runState (Pure x) = Monad.return _ x
runState (Step ∈Head Get k) = Monad.bind _ get λ x → runState (k x)
runState (Step ∈Head (Put t) k) = Monad.bind _ (put t) λ x → runState (k x)

The format of runState is a fold over the Free monad, with the Pure case mapped to return and the Step ∈Head
cases mapped to a function get or put composed with running the continuation. We say that get and put
are handlers for the effect EState into the State monad, a notion we will formalise in Definition 6.1.1.
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We want to show the predicate transformer semantics are consistent with the semantics of running a
stateful computation. Since predicate transformer semantics are based on applying postcondition to the
output, for the comparison we need to be able to lift a predicate, so we can apply it to the output of a
computation in the State monad.

liftState ∶ (a → s → Set) → (State s a → s → Set)
liftState P S t = uncurry P (S t)

With these definitions, consistency of the semantics of State comes down to a postcondition holding according
to wp𝑆 if and only if it holds according to liftState on the output of running the computation with runState.
The notion is formally represented by a term of the following type:

consistencyState ∶ (P ∶ a → s → Set) (S ∶ Free (EState s ∶∶ Nil) a) (t ∶ s) →
wp𝑆 (ptState ∶∶ Nil) S P t ⟺ liftState P (runState S) t

The proof of consistency is a simple induction on the program structure.

consistencyState P (Pure x) t = ⟺ −ref l
consistencyState P (Step ∈Head Get k) t = consistencyState P (k t) t
consistencyState P (Step ∈Head (Put t’) k) t = consistencyState P (k tt) t’

6.1.1 Running effects with handlers
Let us now move from a single effect EState to a list of effects es. To run a program in the Free monad, i.e.
turn the syntax into a form that we can execute on the computer, we must show how each effect e in es can
be executed. We will assume that there is a monad m that represents the full range of effects available in the
system, for instance Haskell’s IO monad. Turning each operation of the form Step i c k into an executable
form is performed by a handler for e in the surrounding scope, which gives an operation in the monad m
for the command c and continuation k. In essence, a handler gives an interpreter the effects in the part of
the program it handles. The semantics of a computation S ∶ Free es a are algebraic if for all continuations
k ∶ a → Free es b, we have run (bind S k) == bind (run S) (λ x → run (k x)). If all operations are
algebraic, we can run the computation in a single monad [PP03]. Note that there are many useful effects
that are not algebraic. For instance, an exception handler (as used in a try T catch C block) is not algebraic,
since exceptions thrown in the continuation k are not caught in the program (try T catch C) >>= k and they
are caught in the program try (T >>= k) catch C .

Assuming that all operations are algebraic allows us to only specify the semantics of each individual effect,
and let the interaction between effects arise from the algebraicity. Since bind (return x) k is equal to k x ,
we have that running a Pure value is done by returning this value. Similarly, since bind (Step i c Pure) k is
equal to Step i c k, we have that it suffices to give the semantics of Step i c Pure to give the semantics of all
computation steps.

Definition 6.1.1. For a list of algebraic effects es, a list of handlers into a monad m is given by the following
data type:

data Handlers (m ∶ Set → Set) ∶ List Effect → Set where
Nil ∶ Handlers m Nil
_∶∶_ ∶ ((c ∶ C) → m (R c)) → Handlers m es → Handlers m (eff C R ∶∶ es)

To run a program using these handlers, we apply the handler at the given index for each Step i c k, then
run the continuation, and when we arrive at a pure value, we return it.

run ∶ Monad m → Handlers m es → Free es a → m a
run M hs (Pure x) = Monad.return M x
run M hs (Step i c k) = Monad.bind M (lookupHandler hs i c) λ x → run M hs (k x)
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Here, lookupHandler takes a list of handlers and an index and returns the corresponding handler, similar to
the function lookupPTS used for wp𝑆. ▵

While we assume that there is one monad m that provides all effects we want to run, it is also possible
to have each handler come with its own monad. The issue with introducing multiple monads is that in
general the composition of monads is not itself a monad. Thus, if we combine a handler h1 into a monad
m1 (say State s) with another handler h2 into a monad m2 (say List), we need to ensure m1 ∘ m2 is a
monad (and State s ∘ List is not). A remedy for the issue is to associate a monad transformer to each
handler. For simplicity, we assume that the combined monad has already been determined, for example
through composing monad transformers, and focus only on the semantics for this combined monad.

6.1.2 Consistency with respect to handlers
Now that we have defined the semantics for running algebraic effects, we are ready for the main theorem of
this chapter, giving sufficient conditions for consistency of predicate transformer and handlers.

Theorem 6.1.2. Fix a list of effects es, a monad m (with structure given by M ∶ Monad m) and a predicate
lifter lift ∶ (a → Set) → (m a → Set). Let pts ∶ PTs es and hs ∶ Handlers m es be predicate
transformers and handlers for these effects. For all programs S and postconditions P, wp pts S P is equivalent
to lift P (run M hs S) if the following conditions hold:

pure: For all pure values x ∶ a and postconditions Q, Q x is equivalent to lift Q (return x).

step: For all i, c and Q, lookupPT pts i c Q is equivalent to lift Q (lookupHandler hs i c).

bind: For all S, k and Q, lift (λ x → lift Q (k x)) S is equivalent to lift Q (bind S k).

In other words, predicate transformer semantics are consistent, if they are equivalent with the handler for
each step of the computation, and lifting of the postcondition agrees with the return and bind operator.

In the proof, we need to make use of the monotonicity of each predicate transformer. This is already
included in the definition of the type PT , so we do not list it above. The condition bind is analogous to the
compositionality property of wp.

Proof. The body of the proof consists of induction on the structure of the program S. The case where
S is a Pure value is exactly the equivalence of pure. For the case Step i c k, we want to show that
lookupPT pts i c λ x → wp pts (k x) P is equivalent to lift P (run hs (Step i c k)), under the induction
hypothesis that for all x , wp pts (k x) P is equivalent to lift P (run hs (k x)). By monotonicity of predicate
transformers, if Q is equivalent to Q’, then lookupPT pts i c Q is equivalent to lookupPT pts i c Q’.
Applying this to the equivalence of the induction hypothesis, it remains to show that lookupPT pts i c λ x →
lift P (run hs (k x)) is equivalent to lift P (run hs (Step i c k)). We can use the assumption step to get that
the left hand side is equivalent to lift (λ x → lift P (run hs (k x))) (lookupHandler hs i c). The assumption
bind gives that this is itself equivalent to lift P (lookupHandler hs i c >>= λ x → run hs (k x)). Finally,
lookupHandler hs i c >>= λ x → run hs (k x) is exactly the definition of run hs (Step i c k), so we have the
desired conclusion.

By inspecting the proof, we also find a small strengthening of the result. Since we only apply the pure
and bind assumptions to one postcondition P , it suffices that they hold for a certain class of postconditions,
to show that the equivalence holds for the same class.

6.1.3 Mapping handlers to predicate transformers
In the previous section, we have defined conditions between handlers and predicate transformers, that ensure
that the operational and predicate transformer semantics of a program are equivalent. An interesting aspect
of these conditions is that the combination of handler and lifting function determine the predicate transformer
up to equivalence of propositions, by the definition of step. Thus, for each handler and suitably monotone
lift, we find a canonical predicate transformer.
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Definition 6.1.3. For an effect type eff C R , a handler h ∶ (c ∶ C) → m (R c) into a monad m, together
with a predicate lifter lift ∶ (a → Set) → (m a → Set) determine the evaluation predicate transformer ,
given by the following equation:

evaluationPT ∶ (h ∶ (c ∶ C) → m (R c)) (lift ∶ (a → Set) → (m a → Set)) →
(∀ c P Q → (∀ x → P x → Q x) → lift P (h c) → lift Q (h c)) → PT (eff C R)

PT.pt (evaluationPT h lift mono) c P = lift P (h c)
PT.mono (evaluationPT h lift mono) = mono

▵

Example 6.1.4. As an example, we will determine the predicate transformer associated with handling ENondet
into the List monad. This handler runs a nondeterministic program by giving the list of its potential outcomes,
and can be defined as follows:

handleNondet Fail = Nil
handleNondet Choice = True ∶∶ False ∶∶ Nil

One way to lift predicates to the List monad is by requiring the predicate holds on all elements of the list:

liftNondet P Nil = ⊤
liftNondet P (x ∶∶ xs) = P x × liftNondet P xs

Applying evaluationPT to handleNondet and liftNondet gives a predicate transformer, which gives equivalent,
but not identical, preconditions to those given by ptAll .

ptAllEval = evaluationPT handleNondet liftNondet
equivalenceFail ∶ ∀ P → PT.pt ptAllEval Fail P == ⊤
equivalenceChoice ∶ ∀ P → PT.pt ptAllEval Choice P == Pair (P True) (Pair (P False) ⊤)

♦

As we can see, many effects such as nondeterminism and statefulness allow for the predicate transformer
semantics to be defined in terms of running the program in the corresponding monad, then applying the
predicate to the output. This may result in somewhat more complicated predicates, such as ptAllEval including
an extra ⊤ in the semantics of the Choice operation, so directly defining predicate transformers is still
useful. Moreover, not all effects can be run in a monad that is notably simpler than the original Free monad.
Specifically, generally recursive functions have predicate transformer semantics for partial correctness, even
if they do not terminate. By virtue of non-termination, we cannot run such computations and inspect their
output. Therefore, predicate transformer semantics in general are not all evaluation-based.

6.2 Equational reasoning
The preceding sections of this chapter dealt with the relation between predicate transformer semantics and
effect handlers, comparing the axiomatic semantics of predicate transformers with the operational semantics
of handlers. As mentioned in Section 2.3, we can use equations to reason about and verify pure functional
programs.

Many systems of effects can be fully described by giving equations for the behaviour of their opera-
tions [PP02], such as the laws of the State monad that we showed in Example 2.3.1. Thus, the system of
program verification using equational reasoning can be extended to effectful programs, by adding the monad
laws and extra equations for the effects [GH11]. An immediate drawback to monadic equational reasoning is
that it is not immediately obvious which equations to postulate. In this section, we will argue that predicate
transformer semantics can express (and prove) the equations postulated by equational reasoning, and that it
can verify programs that equational reasoning cannot, both for theoretical and for practical reasons.
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First of all, for pure computations we have that the refinement relation implies equality: if S is refined
by S’, and neither make use of effects, then the two programs are syntactically equal.

pureEquiv ∶ (S S’ ∶ Free Nil a) → wp Nil S ⊑ wp Nil S’ → S == S’
pureEquiv (Pure x) (Pure x’) H = H (λ x’ → Pure x == Pure x’) refl

Conversely, the refinement relation is reflexive, so for pure programs there is no distinction between refinement
and syntactic equality.

For effectful programs, syntactic equalities used as semantics for effects do not hold for the Free monad.
Rather, we express equations using the equivalence of Definition 3.3.5 in the style of the refinement calculus,
where two programs are equivalent if their associated predicate transformers refine each other. Since the
equivalence relation is a preorder, and by the compositionality lemma substituting equivalent components
preserves equivalence, the equivalence relation has the properties we require to perform equational reasoning.
Moreover, equivalence is strong enough for verification since different pure values are not equivalent, so we
can distinguish programs with distinct output.

To give a concrete demonstration that we can do equational reasoning based on the refinement relation,
we will show that equations proposed by Gibbons and Hinze [GH11] can be proved in the appropriate setting
of predicate transformer semantics. They propose that effectful programs can be verified by writing them in
an appropriate type class, on which we postulate several equations as axioms, and combine these with the
monad laws and reduction rules of 𝜆-calculus, using transitivity to prove the desired equation. Since Agda
already includes the reduction rules of 𝜆-calculus and we have proved the monad laws for Free in 3.1, we will
show that the equations for the effects, as proposed by Gibbons and Hinze, hold in predicate transformer
semantics for the Free monad. As mentioned, we will use the equivalence relation _ ≡ _ to express the
equations.

The first set of equations proposed by Gibbons and Hinze are for nondeterministic computations, and
correspond to the ENondet effect. Proving these equations in the predicate transformer semantics is straight-
forward, coming down to evaluating the preconditions sufficiently that they are immediately equivalent.

fail-left-zero ∶ (m ∶ Free (ENondet ∶∶ es) a) → fail ≫ m ≡ fail
fail-left-zero S = (λ P H → H) , (λ P H → H)
choice-assoc ∶ (S1 S2 S3 ∶ Free (ENondet ∶∶ es) a) →
choice S1 (choice S2 S3) ≡ choice (choice S1 S2) S3

choice-assoc S1 S2 S3 =
(λ {P (H1 , (H2 , H3)) → (H1 , H2) , H3 }) ,
(λ {P ((H1 , H2) , H3) → H1 , (H2 , H3)})

choice-dist ∶ (S1 S2 ∶ Free (ENondet ∶∶ es) a) (f ∶ a → Free (ENondet ∶∶ es) b) →
(choice S1 S2) >>= f ≡ choice (S1 >>= f ) (S2 >>= f )

choice-dist S1 S2 f = (λ P H → H) , (λ P H → H)

The second set of equations are about exceptions and handlers, using the abort and catch operations. We
represent catch as an effect handler for EPartial :

catch ∶ (S1 S2 ∶ Free (EPartial ∶∶ es) a) → Free (EPartial ∶∶ es) a
catch (Pure x) S2 = Pure x
catch (Step ∈Head Abort k) S2 = S2
catch (Step (∈Tail i) c k) S2 = Step (∈Tail i) c λ x → catch (k x) S2

The proofs of these equations are mostly straightforward. The only complication is that we need induction
on the structure of the programs, to mirror the definition of catch. In the recursive step, we make use
of the compositionality lemma ≡ -step, which states that performing the same step followed by equivalent
continuations is equivalent. This lemma is a direct consequence of monotonicity.

catch-unit-left ∶ (S ∶ Free (EPartial ∶∶ es) a) → catch abort S ≡ S
catch-unit-left S = (λ P H → H) , (λ P H → H)
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catch-unit-right ∶ (S ∶ Free (EPartial ∶∶ es) a) → catch S abort ≡ S
catch-unit-right (Pure x) = (λ P H → H) , (λ P H → H)
catch-unit-right (Step ∈Head Abort k) = (λ P ()) , (λ P ())
catch-unit-right (Step (∈Tail i) c k) = ≡ -step (λ x → catch-unit-right (k x))
catch-assoc ∶ (S1 S2 S3 ∶ Free (EPartial ∶∶ es) a) →
catch S1 (catch S2 S3) ≡ catch (catch S1 S2) S3

catch-assoc (Pure x) S2 S3 = (λ P H → H) , (λ P H → H)
catch-assoc (Step ∈Head Abort k) S2 S3 = (λ P H → H) , (λ P H → H)
catch-assoc (Step (∈Tail i) c k) S2 S3 = ≡ -step (λ x → catch-assoc (k x) S2 S3)

The final set of equations concerns EState. Here, all proofs follow from sufficient evaluation of the
precondition.

get-get ∶ get >>= λ s → get >>= k s ≡ get >>= λ s → k s s
get-get = (λ P t H → H) , (λ P t H → H)
get-put ∶ get >>= put ≡ Pure tt
get-put = (λ P t H → H) , (λ P t H → H)
put-get ∶ ∀ t → put t ≫ get ≡ put t ≫ Pure t
put-get t = (λ P t’ H → H) , (λ P t’ H → H)
put-put ∶ ∀ t t’ → put t ≫ put t’ ≡ put t’
put-put t t’ = (λ P t” H → H) , (λ P t” H → H)

6.2.1 Comparing expressive power
We claimed before that predicate transformers have more power than equations in verifying programs.
The more precise version of this claim is that we can express properties through predicate transformers
that cannot be expressed through equations on the program. Informally, an equation can only compare
between implementations of the specifications, not between specification and implementation. Thus, when
verifying programs equationally, we cannot formalize the initial step of going from a specification to an initial
(potentially very inefficient) implementation. There is an objection to this informal argument: to verify a
postcondition P holds on the output of a program, we can check that the program is equivalent to the same
program that applies P to the output and aborts if it does not hold.

A more formal argument shows the objection is not always applicable. Let X ⊆ ℕ be a set that is not
recursively enumerable, and suppose we want to verify the postcondition P on a natural number, which states
“the output is an element of X”. With predicate transformer semantics, this is done by finding a proof for
wp S P . Since the set X is not recursively enumerable, there is no program that outputs exactly the elements
of X , so there is no reference implementation that equational reasoning can compare against. Thus, we can
verify P using predicate transformer semantics, but expressing the specification with equational reasoning
is impossible. Therefore, predicate transformer semantics is more powerful than equational reasoning for
verifying postconditions.

Moreover, there exist semantics that are impractical to describe using equations. Consider assigning the
EState effect the semantics of self-destructing memory, where applying the get operation twice results in
failure. Not only do we have to change the get-get equation to get ≫ get ≡ abort, but the equation
get >>= put ≡ Pure tt does not hold any more. It is possible (with some difficulty) to find a new set of
equations for self-destructing memory. How do we change these equations to deal with the get operation
failing only when it has occurred 64 times? To give equations for dealing with self-destructing memory is a
difficult task; for predicate transformer semantics it is simple to describe: add an extra number to the state,
counting the number of get operations left before self-destruction, and in the semantics for the get operation,
either decrement this counter or abort if it has reached zero.

Not only does predicate transformer semantics allow us to use any predicate (of the correct type) as a
postcondition, following the refinement calculus we can use specifications as a program element. This means
we can use the _ ⊑ _ (and _ ≡ _) relations to relate specification with programs, in the way that plain
equational reasoning does not allow. The following chapter will focus on the idea of using specifications as
effects.
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Chapter 7

Deriving programs from specification

An idealized process of software engineering using the refinement calculus starts with writing down the
specification formally, as the starting program. Then, we repeatedly apply the rules of the refinement
calculus to replace parts of this specification with executable code, until the whole program has been
transformed from specification to code. Each intermediate program in this process of derivation, although
the program is not yet executable, still satisfies the original specification. The crucial ingredient in this
process is the ability to treat specification and executable code as interchangeable parts of a program. This
is achieved by giving the semantics for both as predicate transformers.

In this chapter, we show how the Free monad allows for combining specifications and code. We use
this to demonstrate a derivation process that is formally computer-verified and has the assistance of Agda’s
interactive features. The end result of derivation consists of executable code together with a certificate that
the code satisfies the specification. We also highlight the application of lemmas such as transitivity of _⊑_
and compositionality of wp to define combinators that allow us for custom notation of this derivation process.

7.1 Mixing specifications and code
In Section 3.3, we give a basic description of program verification from a specification. A specification, as
represented by the Spec data type, consists of a pre- and postcondition. The intended semantics are that the
postcondition will be satisfied after running the computation, as long as the precondition is satisfied before
running the computation. In this chapter, we will work with specifications of type Spec𝑆 that allow access to
the state, for more generality. The formal definition of the semantics is given by the predicate transformer
wpSpec𝑆. Since our semantics for effects only need a predicate transformer, and we can give an effect type
for specifications, we will treat a specification as an effect. Where the type Spec is parametrised over the
return type, for CSpec this parametrisation occurs in the values, allowing specifications with different return
types to inhabit the same type.

Definition 7.1.1. The effect of calling a specification is given by the following effect type:

record CSpec ∶ Set where
constructor [_, _]
field

{R } ∶ Set
pre ∶ s → Set
post ∶ s → R → s → Set

ESpec ∶ Effect
ESpec = eff CSpec CSpec.R

Again, we introduce a smart constructor for performing the effect, which we will write the same as the
constructors for the Spec and CSpec types.
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[_, _] ∶ (s → Set) → (s → a → s → Set) → Free (ESpec ∶∶ es) a
[ pre , post] = Step ∈Head [ pre , post ] Pure

The semantics of this effect are given by the predicate transformer wpSpec𝑆. Writing out these semantics:

ptSpec ∶ PT𝑆 s ESpec
PTS.pt ptSpec [ pre , post ] P t = pre t × ∀ x t’ → post t x t’ → P x t’

▵

One use of specification as effect is to model calling to an interface. If we have an interface for a procedure,
expressed as a specification, then a program that calls this interface should have the semantics of “executing”
this specification. Notably, we can call the specification before having written any implementation for the
interface, allowing us to write the rest of the program before returning to implement the specification.

7.2 Derivation through incremental refinement
Now we are ready to say what it means to implement a program. Given a program S, usually in the form
of a specification, we implement it by giving another program that is executable, in the sense that it does
not contain ESpec as an effect. Then we show this code refines S (with semantics given by the weakest
precondition under some given predicate transformers pts). This is expressed by the data type Impl S:

record Impl (S ∶ Free (ESpec ∶∶ es) a) ∶ Set where
constructor impl
field
prog ∶ Free es a
refines ∶ wp𝑆 (ptSpec ∶∶ pts) S ⊑𝑆 wp𝑆 pts prog

We will leave the effects es and the predicate transformers pts out from Impl when they are clear from the
context, to avoid repeating these each time they are needed. However, they are important in determining
whether a given value is indeed a well-typed element of Impl .

The Impl type has a similar form to the Dijkstra monad [Swa+11; Swa+13]. Both Impl and the Dijkstra
monad contain executable code and its specification. Additionally, the constructions of Impl and the Dijkstra
monad ensure correctness of the program with respect to the specification. To be precise, in this chapter
we typically instantiate the argument S to be a specification, giving types of the form Impl [ P , Q ],
more directly comparable to the less general Hoare monad. By introducing a new specification construct
that contains a predicate transformer instead of pre- and postcondition, we could also make a form of Impl
equivalent to the full Dijkstra monad. The main distinction we observe is that our Impl type represents the
proof as a separate field in the record type, while programs in the Dijkstra monad are correct by consistency
of its type constructors. Operations such as bind and return are primitive in the Dijkstra and Hoare monads;
the Impl type can represent them as combinators. We will give examples of combinators for Impl after we
manually construct a few example Impl terms.
Example 7.2.1. We can give a specification for the ± operator on integers, which may perform addition or
subtraction, but it is unspecified which. The specification can be given independent of the effect system:

±-spec ∶ (a b ∶ Int) → Free (ESpec ∶∶ es) Int
±-spec a b = [⊤ , λ c → Either (c == a + b) (c == a − b) ]

The operator + always adds its arguments, so it always satisfies the first alternative of the specification.
Since addition is a pure function defined in the Agda standard library, we can use it as executable code that
implements ±. This means we can formally write it out as a term in the Impl type:

+-impl-± ∶ (a b ∶ Int) → Impl (±-spec a b)
+-impl-± a b = impl (Pure (a + b)) (λ {P (fst , snd) → snd (a + b) (Inl refl)})
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The ± operator is specified to return either of two values, so it has a clear correspondence with the
effect of nondeterminism. Although we specify that ± may return either value, the correct semantics of
nondeterministic choice to use in this context is given by ptAll : the interface is specified to return any value,
so the caller using the interface must accept all values. Directly constructing a term in Impl is straightforward:

nondet-impl-± ∶ (a b ∶ Int) → Impl (±-spec a b)
nondet-impl-± a b = impl

(choice (Pure (a + b)) (Pure (a − b)))
λ {P (fst , snd) → (snd (a + b) (Inl refl)) , (snd (a − b) (Inr refl))}

♦

7.3 Combinators for programming
While we can directly produce values of type Impl , this does not give us much more than a more convoluted
way to express correctness, something that Agda itself can already do for us. We improve this situation by
introducing combinators. These construct values of Impl without needing the programmer to supply (as many)
proof terms. The first combinator corresponds to the Pure constructor, and constructs implementations
where pre- and postcondition coincide:

doReturn ∶ (x ∶ a) → Impl [ λ t → P t x t , P ]
doReturn x = impl

(Pure x)
λ {P (fst , snd) → snd x fst }

Note that this is exactly the form of the return operation of the Hoare monad.
In designing our combinators, we want to make them compute the remaining goal based on the current

goal, so we want the return type of a combinator to have the form Impl [ P , Q ] with P and Q free variables.
Currently, if our specification does not have the form [ λ t → P t x t , P ], the previous combinator does
not apply. Instead, we can try to sharpen the pre- and postcondition, refining the specification to one we
can work with. In general, if we want to implement S, and S is refined by S’, then it suffices to implement
S’ instead.

doRefine ∶ (wp𝑆 (ptSpec ∶∶ pts) S ⊑𝑆 wp𝑆 (ptSpec ∶∶ pts) S’) → Impl S’ → Impl S
doRefine r1 (impl prog r2) = impl prog (⊑ -trans r1 r2)

Using doRefine, we can replace an original specification [ P , Q ] with a sharper specification [ P’ , Q’ ] that
refines the original specification.

doSharpen ∶ (wp𝑆 (ptSpec ∶∶ pts) [ P , Q] ⊑𝑆 wp𝑆 (ptSpec ∶∶ pts) [ P’ , Q’]) →
Impl [ P’ , Q’] → Impl [ P , Q ]

doSharpen = doRefine

We can use doSharpen to give a more general form of doReturn, which takes a proof that the postcondition
holds on the returned value.

doReturn’ ∶ (x ∶ a) → (∀ t → P t → Q t x t) → Impl [ P , Q ]
doReturn’ x pf = doSharpen (λ {P t (fst , snd) → pf t fst , λ x’ t’ H → snd x’ t’ H }) (doReturn x)

The combinators doReturn and doSharpen correspond to returning a Pure value and calling a specification,
so we will also define a combinator corresponding to other Steps. Since the Step constructor depends on the call
c we make, the combinator depends on the semantics of this call. Our approach is to use the compositionality
properties of wp to give combinators for the composition of two programs, then specialize these to doing
a Step. Apart from allowing the use of a Step, the combinators we develop can be applied generally, for
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example to give a recursive definition of a program. We will demonstrate the general applicability in Example
7.4.1.

The first of these is doCompose, which takes two implementations and uses the _ >>= _ operator to
compose them. The correctness proof is given by combining compositionality-left for implementing S with
compositionality-right for implementing f .

doCompose ∶ Impl S → ((x ∶ a) → Impl (f x)) → Impl (S >>= f )

To use doCompose, we also need a way to introduce the _>>=_ operator in the program to be implemented. We
introduce the combinator doBindSpec that splits apart a specification into a composition of two specifications.
The second specification is computed by preBind and postBind based on the original specification and the
first specification. Making the postcondition of the first specification a free variable allows us to do an easy
composition with existing implementations.

doBindSpec ∶ Impl ([pre , mid ] >>= λ x → [preBind pre mid x , postBind pre mid post x]) →
Impl [ pre , post ]

With the correct definitions of preBind and postBind , the combinator is simply an application of the doSharpen
combinator to a simple refinement proof. Unfortunately, it is not immediately obvious how to define
preBind and postBind . Our semantics are based on the weakest precondition and we need to calculate the
postcondition of the first program. The correct definitions are given by quantifying over the potential initial
states for the composed program: the new precondition requires that there exists some valid initial state t
which leads to the current state t’, as specified by mid , while the new postcondition requires that the original
postcondition holds for all such initial states t.

preBind pre mid x = λ t’ → ∃ (t ∶ s) → pre t × mid t x t’
postBind pre mid post x = λ t’ x’ t” → ∀ (t ∶ s) → pre t × mid t x t’ → post t x’ t”

The combinator for implementing a specification by composing two programs is then simply the composition
of doBindSpec and doCompose.

doBind ∶ Impl [ pre , mid] → ((x ∶ a) → Impl [ preBind pre mid x , postBind pre mid post x]) →
Impl [ pre , post ]

doBind mx f = doBindSpec (doCompose mx f )

Again, note the similarity with the bind operator for the Hoare monad.
Using the doBind combinator, we can write the doStep combinator as a composition of Step i c Pure

with the continuation. We need an extra argument, containing a proof that the intermediate predicate mid
is indeed a valid postcondition for the given precondition. This argument is required since we are working
with weakest precondition semantics, and we cannot directly calculate the strongest postcondition for the
program Step i c Pure.

doStep ∶ (i ∶ eff C R ∈ es) (c ∶ C) →
(∀ t → pre t → lookupPTS pts i c (mid t) t) →
((x ∶ R c) → Impl [ preBind pre mid x , postBind pre mid post x]) →
Impl [ pre , post ]

doStep i c pf = doBind
(impl (Step i c Pure) (λ {P t (fst , snd) → lookupMono pts i c P snd t (pf t fst)}))

In practice, such as in the following example, we will instantiate a combinator for each constructor of the
type C , and this instantiation will fill in all parameters except for the continuation. Thus, the combinator
will be used as a function that takes one implementation and produces another.
Example 7.3.1. We will define a combinator corresponding to the effect Choice of nondeterministic computa-
tion, and use the combinator to implement the ± operator nondeterministically. The combinator is imple-
mented by instantiating doStep with the correct proof, together with doSharpen to simplify the computed
pre- and postcondition.
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doChoice ∶ (p p’ ∶ Impl [ P , Q]) → Impl [ P , Q ]
doChoice p p’ = doStep ∈Head Choice (λ t H → refl , refl)

λ x → doSharpen _ (if x then p else p’)

Now can give a derivation of the nondeterministic ± operator, expressed only in terms of the combinators.

derive-± ∶ (a b ∶ Int) → Impl (±-spec a b)
derive-± a b = doChoice

(doReturn’ (a + b) λ t x → Inl refl)
(doReturn’ (a − b) λ t x → Inr refl)

♦

The three combinators doReturn, doSharpen and doStep correspond neatly to the operations given by
Free (ESpec ∶∶ es), but they alone are not sufficient for our purposes. For instance, the three combinators
only support tail recursion. If we want to write non-tail recursive code, we need to perform a monadic bind
on two implementations. Each of the three combinators only has a single implementation as a parameter, so
they are not sufficient to express all code. This is why we need the doBind operator, and we can see such a
situation in the next section.

7.4 Example: deriving the index function
Example 7.4.1. As a more involved example, we derive a partial function index that searches for the position
of a given element in a list. If the element exists in the list, the index function returns its index as a natural
number; otherwise the computation aborts. The type of index as a program, without a bundled correctness
proof, would be:

index ∶ (x ∶ ℕ) (xs ∶ List ℕ) → Free (EPartial ∶∶ Nil) ℕ

We will illustrate how the interactive features of Agda aid in the derivation process by showing the interactive
goal as we apply the combinators.

Since we are going to write a partial function, we will first introduce a combinator for the command
Abort. The continuation for an aborting computation is irrelevant, so we do not take it as an argument. The
combinator doAbort allows any precondition as long as we can prove that it is never satisfied.

doAbort ∶ (∀ t → ¬ pre t) → Impl [ pre , post ]
doAbort ¬pre = doStep ∈Head Abort ¬pre λ ()

The combinators doAbort, doBind and doReturn are sufficient to write the index function. Its precondition
is that the element exists in the list, while the postcondition expresses that the index is valid for the list,
and that the list indeed contains the element at the given position. The returned index does not necessarily
match the one given in the proof of the precondition x ∈ xs.

indexPre x xs = x ∈ xs
indexPost x xs = λ i → ∃ (lt ∶ i < length xs) → elemAt xs i lt == x

The first step in the derivation is to declare the type of index . The argument types are written explicitly;
from the type of indexPost we can deduce that the return type is ℕ.

index ∶ (x ∶ ℕ) (xs ∶ List ℕ) → Impl [ indexPre x xs , indexPost x xs ]
index = ?

The ? represents a hole, a place where a definition is missing. Agda’s interactive mode allows us to manipulate
definitions based on these holes, for example refining them by filling in (part of) the definition. This
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interactivity can be used to incrementally derive the index function while maintaining correctness at each
step.

Introducing the arguments x and xs leads to a new goal, which we will write in the style of the Agda
interactive mode: above a horizontal line is the goal, the inferred type of the hole, while below the line are
the assumptions, or variables, that are in scope. Often, we omit the assumptions for readability, if they are
not different than the previous assumptions.

Impl [ indexPre x xs , indexPost ]

xs ∶ List ℕ
x ∶ ℕ

We proceed by case distinction on the list xs.

7.4.1 index x Nil
In the Nil case, the goal is:

Impl [ indexPre x Nil , indexPost x Nil ]

Here, the precondition is not satisfied (the list Nil does not contain any element), so any postcondition is
trivially true for a given program. This does not mean that we are immediately finished: although the
postcondition is false, the goal cannot be discharged with a case distinction on the empty type indexPre x Nil .
We must still specify the behaviour of the program, which does not have access to the precondition. Thus,
we use the combinator doAbort to refine the goal, leaving the following goal:

(t ∶ s) → ¬ indexPre x Nil t

This goal is easily solved, since ¬ indexPre x Nil t normalises to x ∈ Nil → ⊥ and we can give an element
of the last type as an empty case distinction λ (). At this point in the derivation, index looks like:

index ∶ (x ∶ ℕ) (xs ∶ List ℕ) → Impl [ indexPre x xs , indexPost x xs ]
index x Nil = doAbort λ t ()
index x (x’ ∶∶ xs) = ?

7.4.2 index x (x ∶∶ xs)
For the case where the list is of the form (x’ ∶∶ xs), our goal is similar to the Nil case:

Impl [ indexPre x (x’ ∶∶ xs) , indexPost x (x’ ∶∶ xs) ]

At this point it is possible that x and x’ are the same, in which case we are done: we return that x is in the
head of the list. Since equality of natural numbers is decidable, let us do a case distinction on the equality
of x and x’.

If x is indeed the head of the list, our goal is:

Impl [ indexPre x (x ∶∶ xs) , indexPost x (x ∶∶ xs) ]

Since we have found the value we are looking for in the head of the list, we use the doReturn’ applied to the
return value 0. This leaves the following goal, arising from evaluating indexPost x (x ∶∶ xs) applied to the
return value 0:

(0 < Succ (length xs)) × (x == x)
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The goal can be solved automatically by the Agda synthesiser. At this point, our derivation looks like:

index ∶ (x ∶ ℕ) (xs ∶ List ℕ) → Impl [ indexPre x xs , indexPost x xs ]
index x Nil = doAbort λ t ()
index x (x’ ∶∶ xs) with x ?= x’
index x (.x ∶∶ xs) ∣ yes refl = doReturn’ 0 (𝑠≤𝑠 𝑧≤𝑛 , refl)
index x (x’ ∶∶ xs) ∣ no ¬p = ?

7.4.3 index x (x’ ∶∶ xs)
The final case is where the list has the form x’ ∶∶ xs, and the element x to be found is not equal to the
head of the list x’. The goal is:

Impl [ indexPre x (x’ ∶∶ xs) , indexPost x (x’ ∶∶ xs) ]

¬p ∶ ¬ (x == x’)
xs ∶ List ℕ
x’ ∶ ℕ
x ∶ ℕ

In this case, the precondition tells us that we can find x in the tail of the list, xs. We can do this by recursively
calling index , making use of the doBind combinator. However, the precondition for index does not match
with the precondition we have currently, so we refine the goal with doSharpen ? (doBind (index x xs) ?). This
leads to two new goals, both depending on a new postcondition Q’. The first is the correctness proof of the
doSharpen step:

wp𝑆 (ptSpec ∶∶ ) [ indexPre x (x’ ∶∶ xs) , indexPost x (x’ ∶∶ xs)] ⊑𝑆

wp𝑆 (ptSpec ∶∶ ) [ indexPre x xs , Q’ ]

¬p ∶ ¬ (x == x’)
xs ∶ List ℕ
x’ ∶ ℕ
x ∶ ℕ

The second is the implementation for the right hand side of the bind operator:

Impl [ preBind (indexPre x xs) (indexPost x xs) i , postBind (indexPre x xs) (indexPost x xs) Q’ i ]

i ∶ ℕ
¬p ∶ ¬ (x == x’)
xs ∶ List ℕ
x’ ∶ ℕ
x ∶ ℕ

The easiest choice for the new postcondition Q’ is to copy the postcondition indexPost, which simplifies the
correctness proof.

We will first give the implementation for the right hand side, since its code is not too difficult. After all,
given the index i ∶ ℕ for the tail, we can simply return Succ i as index for the full list. Thus, we refine the
goal with λ i → doReturn’ (∈Tail i) ? , leaving the following goal:
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preBind (indexPre x xs) (indexPost x xs) i →
postBind (indexPre x xs) (indexPost x xs) (indexPost x (x’ ∶∶ xs)) i (Succ i)

If we inspect the postBind of the return type, it normalises to:

(x ∈ xs) × ∃ (lt ∶ i < length xs) → elemAt xs i lt == x →
∃ (lt ∶ Succ i < Succ (length xs)) → elemAt (x’ ∶∶ xs) (Succ i) lt == x

The inequality Succ i < Succ (length xs) follows from applying 𝑠 ≤ 𝑠 ∶ a < b → Succ a < Succ b to the
assumption; the equality elemAt (x’ ∶∶ xs) (Succ i) lt == x normalises to the same as elemAt xs i lt == x
so we can re-use the relevant part of the assumption.

The remaining goal is the correctness of the doSharpen step, which normalises to the following goal:

(P ∶ x ∈ (x’ ∶∶ xs) → Set) →
x ∈ (x’ ∶∶ xs) × ((o ∶ x ∈ (x’ ∶∶ xs)) → ⊤ → P o) →
x ∈ xs × ((o ∶ x ∈ (x’ ∶∶ xs)) → ⊤ → P o)

¬p ∶ ¬ x == x’
xs ∶ List ℕ
x’ ∶ ℕ
x ∶ ℕ

Since we chose the new postcondition Q’ to be equal to the specified postcondition indexPost x xs, the parts
(o ∶ x ∈ (x’ ∶∶ xs)) → ⊤ → P o of the assumption and (o ∶ x ∈ (x’ ∶∶ xs)) → ⊤ → P o of the
conclusion are identical, and the only interesting part concerns the preconditions:

x ∈ xs

pre ∶ x ∈ (x’ ∶∶ xs)
¬p ∶ ¬ x == x’
xs ∶ List ℕ
x’ ∶ ℕ
x ∶ ℕ

We prove this in a separate lemma by case distinction on the proof of the precondition pre, since the case
∈Head leads to a contradiction and ∈Tail i gives the required result.

The result is the following derivation of the index function.

index x Nil = doAbort λ t ()
index x (x’ ∶∶ xs) with x ?= x’
index x (.x ∶∶ xs) ∣ yes refl = doReturn’ 0 (𝑠≤𝑠 𝑧≤𝑛 , refl)
index x (x’ ∶∶ xs) ∣ no ¬p = doSharpen {Q’ = indexPost x (x’ ∶∶ xs)}

(λ {P (fst , snd) → lemma ¬p fst , snd })
(doBind (index x xs) λ i → doReturn’ (Succ i) λ {( , (lt , p)) → 𝑠≤𝑠 lt , p})
where
lemma ∶ ¬ (x == x’) → x ∈ (x’ ∶∶ xs) → x ∈ xs
lemma ¬p ∈Head = magic (¬p refl)
lemma ¬p (∈Tail i) = i

♦
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Chapter 8

Application: verifying parsers

Up to this point, we have illustrated the various aspects of predicate transformer semantics only with small
example programs. In this chapter, we demonstrate how to apply predicate transformer semantics to the
verification of programs that are not as trivial. We will verify programs that parse formal languages, matching
a string with a given grammar. In Section 8.1, we write and verify regular expression parsers. In Section 8.2,
we write and verify a parser for context-free grammars, and compare predicate transformer semantics for the
Free monad with other representation of languages in intuitionistic type theory.

8.1 Regular expression parsing
The first class of languages we will write parsers for are the regular languages. Our approach is first to
define the specification of a parser, then inspect this specification to write the first implementation and prove
(partial) correctness of this implementation. We will later improve this implementation by refining it.

Definition 8.1.1 ([AU77]). The class of regular languages is the smallest class such that:

• the empty language is regular,

• the language containing only the empty string is regular,

• for each character x, the language containing only the string "x" is regular,

• the union and concatenation of regular languages are regular, and

• the repetition of a regular language is regular.

▵

The type Regex of regular expressions is defined inductively in the same way as regular languages. An
element of this type represents the syntax of a regular language, and we will generally identify a regular
expression with the language it denotes.

data Regex ∶ Set where
Empty ∶ Regex
Epsilon ∶ Regex
Singleton ∶ Char → Regex
_∣_ ∶ Regex → Regex → Regex
_·_ ∶ Regex → Regex → Regex
_⋆ ∶ Regex → Regex

Here, Empty is an expression for empty language (which matches no strings at all), while Epsilon is an
expression for the language of the empty string (which matches exactly one string: "").
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What should a parser for regular expressions output? Perhaps it could return a Bool indicating whether a
given string matches the regular expression, or we could annotate the regular expression with capture groups,
and say that the output of the parser maps each capture group to the substring that the capture group
matches. In this case, we define the return type to be a parse tree mirroring the structure of the expression.

Tree ∶ Regex → Set
Tree Empty = ⊥
Tree Epsilon = ⊤
Tree (Singleton ) = Char
Tree (l ∣ r ) = Either (Tree l) (Tree r )
Tree (l · r ) = Pair (Tree l) (Tree r )
Tree (r ⋆) = List (Tree r )

In Agda, we can represent the semantics of the Regex type by giving a relation between a Regex and
a String on the one hand (the input of the parser), and a parse tree on the other hand (the output of the
parser). Note that the Tree type itself is not sufficient to represent the semantics, since it does not say which
strings result in any given parse tree. If the Regex and String do not match, there should be no output,
otherwise the output consists of all relevant parse trees. We give the relation using the following inductive
definition:

data Match ∶ (r ∶ Regex) → String → Tree r → Set where
Epsilon ∶ Match Epsilon Nil tt
Singleton ∶ Match (Singleton x) (x ∶∶ Nil) x
OrLeft ∶ Match l xs x → Match (l ∣ r ) xs (Inl x)
OrRight ∶ Match r xs x → Match (l ∣ r ) xs (Inr x)
Concat ∶ Match l ys y → Match r zs z → Match (l · r ) (ys ++ zs) (y , z)
StarNil ∶ Match (r ⋆) Nil Nil
StarConcat ∶ Match (r · (r ⋆)) xs (y , ys) → Match (r ⋆) xs (y ∶∶ ys)

Note that there is no constructor for Match Empty xs x for any xs or x , which we interpret as that there is
no way to match the Empty language with a string xs. Similarly, the only constructor for Match Epsilon xs x
is where xs is the empty string Nil .

8.1.1 Parsing regular languages recursively
Since the definition of Match allows for multiple ways that a given Regex and String may match, such as
in the trivial case where the Regex is of the form r ∣ r , and it also has cases where there is no way to
match a Regex and a String , such as where the Regex is Empty , we can predict that the implementation of
the parser should be nondeterministic. Whenever we encounter an expression of the form l ∣ r , we make
a nondeterministic choice between either l or s. Similarly, whenever we encounter the Empty expression,
we immediately fail . In this analysis, we have already assumed that we implement the parser by structural
recursion on the Regex , so let us consider other cases.

The implementation for concatenation is not as immediately obvious. One way that we can deal with it
is to change the type of the parser. Instead write a parser that returns the unmatched portion of the string,
and when we have to match a regular expression of the form l · r with a string xs, we match l with xs
giving a left over string ys, then match r with ys. We can also do without changing the return values of the
parser, by nondeterministically splitting the string xs into ys ++ zs. That is what we do in a helper function
allSplits, which nondeterministically chooses such ys and zs and returns them as a pair.

allSplits ∶ {{ iND ∶ ENondet ∈ es }} (xs ∶ List a) → Free es (List a × List a)
allSplits Nil = Pure (Nil , Nil)
allSplits (x ∶∶ xs) = choice

(Pure (Nil , (x ∶∶ xs)))
(allSplits xs >>= λ {(ys , zs) → Pure ((x ∶∶ ys) , zs)})
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Finally, we can handle the Kleene star _⋆ by treating an expression of the form r ⋆ as a nondeterministic
choice between Epsilon and the concatenation r · r ⋆. Simply performing this substitution on the input
expression is not acceptable, since it would lead to an infinitely long expression, and thus non-termination
of the parser. The solution is to combine the nondeterminism effect with general recursion. Instead of
substituting r ⋆ with Epsilon ∣ (r · r ⋆), we perform a generally recursive call to the parser with the
expanded expression as an argument.

Now that we have an idea of its structure, let us define the parser in code. As explained, the main
structure of the parser consists of performing a case distinction on the expression and then checking that the
string has the correct format.

match ∶ {{ iND ∶ ENondet ∈ es }} → Regex × String
es
↬ λ {(r , xs) → Tree r }

match (Empty , xs) = fail
match (Epsilon , Nil) = Pure tt
match (Epsilon , xs@ ( ∶∶ )) = fail
match ((Singleton c) , Nil) = fail
match ((Singleton c) , (x ∶∶ Nil)) with c ?= x
match ((Singleton c) , (.c ∶∶ Nil)) ∣ yes refl = Pure c
match ((Singleton c) , (x ∶∶ Nil)) ∣ no ¬p = fail
match ((Singleton c) , ( ∶∶ ∶∶ )) = fail
match ((l · r ) , xs) = do

(ys , zs) ← allSplits xs
y ← call (l , ys)
z ← call (r , zs)
Pure (y , z)

match ((l ∣ r ) , xs) = choice
(call (l , xs) >>= (Pure ∘ Inl))
(call (r , xs) >>= (Pure ∘ Inr ))

match ((r ⋆) , Nil) = Pure Nil
match ((r ⋆) , xs@ ( ∶∶ )) = do

(y , ys) ← call ((r · (r ⋆)) , xs)
Pure (y ∶∶ ys)

8.1.2 Partial correctness of match
Although the implementation of match was derived from the specification Match, we have not yet reached
the goal of a verified regular expression parser. To show partial correctness, we still need to give a formal
proof that match implements its specification, i.e. that the specification is refined by match. The effects we
need to use for running match include general recursion. Thus, as discussed in Section 3.3, we first need to
give the specification for match before we can verify a program that makes a recursive call to match. Since
the Match data type already represents the semantics of a regular expression, the specification for the parser
can use Match as the relation between in- and output.

matchSpec ∶ (r,xs ∶ Pair Regex String) → Tree (Pair.fst r,xs) → Set
matchSpec (r , xs) ms = Match r xs ms

For the effect of nondeterminism, we want that all matches reported by the parser are correct. Thus, we
use the demonic choice as in the ptAll predicate transformer. We get the following predicate transformer
semantics that we run match in:

wpMatch ∶ Free (eff (Pair Regex String) (λ {(r , xs) → Tree r }) ∶∶ ENondet ∶∶ Nil) a →
(a → Set) → Set

wpMatch = wp (ptRec matchSpec ∶∶ ptAll ∶∶ Nil)
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Here, ptRec gives the semantics of a recursive call to a function of type C
es
↬ R , based on a relation of type

(c ∶ C) → R c → Set.
The correctness proof for match in the wpMatch semantics closely matches the structure of its definition

(and by extension the structure of allSplits). It uses the same recursion on the structure of Regex as in the
definition of match. Since we make use of allSplits in the definition, we first verify this function, i.e. that
concatenating its output gives its input:

allSplitsSound ∶ ∀ (xs ∶ String) →
wpSpec [ ⊤ , (λ {(ys , zs) → xs == ys ++ zs }) ] ⊑ wpMatch (allSplits xs)

The proof is given by induction on the input string xs.
Then, using the compositionality of the weakest precondition, we incorporate this correctness proof in

the correctness proof of match. Apart from the extra work we need to do to use allSplitsSound , the proof
essentially follows automatically from the definitions.

matchSound ∶ ∀ r,xs → wpSpec [ ⊤ , matchSpec r,xs ] ⊑ wpMatch (match r,xs)
matchSound (Empty , xs) P (preH , postH) = tt
matchSound (Epsilon , Nil) P (preH , postH) = postH Epsilon
matchSound (Epsilon , ( ∶∶ )) P (preH , postH) = tt
matchSound (Singleton c , Nil) P (preH , postH) = tt
matchSound (Singleton c , (x ∶∶ Nil)) P (preH , postH) with c ?= x
matchSound (Singleton c , (.c ∶∶ Nil)) P (preH , postH) ∣ yes refl = postH Singleton
matchSound (Singleton c , (x ∶∶ Nil)) P (preH , postH) ∣ no ¬p = tt
matchSound (Singleton c , ( ∶∶ ∶∶ )) P (preH , postH) = tt
matchSound ((l · r ) , xs) P (preH , postH) = coerce (sym (fold-bind (allSplits xs) P ))

(allSplitsSound xs ( , (λ {(ys , zs) splitH y lH z rH → postH (y , z)
(coerce (cong (λ xs → Match xs ) (sym splitH)) (Concat lH rH))})))

matchSound ((l ∣ r ) , xs) P (preH , postH) =
(λ o H → postH (OrLeft H)) ,
(λ o H → postH (OrRight H))

matchSound ((r ⋆) , Nil) P (preH , postH) = postH StarNil
matchSound ((r ⋆) , (x ∶∶ xs)) P (preH , postH) = λ o H → postH (StarConcat H)

At this point, we have defined a parser for regular languages and formally proved that its output is always
correct. However, match does not necessarily terminate: if r is a regular expression that accepts the empty
string, then calling match on r ⋆ and a string xs results in the first nondeterministic alternative being an
infinitely deep recursion.

The next step is then to write a parser that always terminates and show that match is refined by it. Our
approach is to do recursion on the input string instead of on the regular expression.

8.1.3 Parsing regular languages with derivatives
Since recursion on the structure of a regular expression does not guarantee termination of the parser, we can
instead perform recursion on the string to be parsed. To do this, we make use of the Brzozowski derivative.

Definition 8.1.2 ([Brz64]). The Brzozowski derivative of a formal language L with respect to a character x
consists of all strings xs such that x ∶∶ xs ∈ L. ▵

Importantly, if L is regular, so are all its derivatives. Thus, let r be a regular expression, and d r /d x
an expression for the derivative with respect to x , then r matches a string x ∶∶ xs if and only if d r /d x
matches xs. This suggests the following implementation of matching an expression r with a string xs: if xs
is empty, check whether r matches the empty string; otherwise let x be the head of the string and xs’ the
tail and go in recursion on matching d r /d x with xs’.
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The first step in implementing a parser using the Brzozowski derivative is to compute the derivative for
a given regular expression. Following Brzozowski [Brz64], we use a helper function 𝜀? that decides whether
an expression matches the empty string.

𝜀? ∶ (r ∶ Regex) → Dec (Σ (Tree r ) (Match r Nil))

The definitions of 𝜀? is given by structural recursion on the regular expression, just as the derivative operator
is:

d_/d_ ∶ Regex → Char → Regex
d Empty /d c = Empty
d Epsilon /d c = Empty
d Singleton x /d c with c ?= x
... ∣ yes p = Epsilon
... ∣ no ¬p = Empty
d l · r /d c with 𝜀? l
... ∣ yes p = ((d l /d c) · r ) ∣ (d r /d c)
... ∣ no ¬p = (d l /d c) · r
d l ∣ r /d c = (d l /d c) ∣ (d r /d c)
d r ⋆ /d c = (d r /d c) · (r ⋆)

In order to use the derivative of r to compute a parse tree for r , we need to be able to convert a tree for
d r /d x to a tree for r . We do this with the function integralTree:

integralTree ∶ (r ∶ Regex) → Tree (d r /d x) → Tree r

We can also define it with exactly the same case distinction as we used to define d_/d_.
The code for the parser, dmatch, itself is very short. As we sketched, for an empty string we check that

the expression matches the empty string, while for a non-empty string we use the derivative to perform a
recursive call.

dmatch ∶ {{ iND ∶ ENondet ∈ es }} → Regex × String
es
↬ λ {(r , xs) → Tree r }

dmatch (r , Nil) with 𝜀? r
... ∣ yes (ms , ) = Pure ms
... ∣ no ¬p = fail
dmatch (r , (x ∶∶ xs)) = call ((d r /d x) , xs) >>= (Pure ∘ integralTree r )

8.1.4 Total correctness of dmatch
Now that we have written dmatch, we can verify that it is a correct implementation of parsing a regular
language. Not only will we show that it is partially correct, as we did for match, we can also easily prove
that it terminates. Since dmatch always consumes a character before going in recursion, we can bound the
number of recursive calls with the length of the input string. The proof goes by induction on this string.
Unfolding the recursive call gives (dmatch (d r /d x , xs) >>= (Pure ∘ integralTree), which we can rewrite in
the lemma terminates-fmap using the associativity monad law.

dmatchTerminates ∶ (r ∶ Regex) (xs ∶ String) →
terminates-in (addState ptAll ∶∶ Nil) (dmatch) (dmatch (r , xs)) (length xs) t

dmatchTerminates r Nil with 𝜀? r
dmatchTerminates r Nil ∣ yes p = tt
dmatchTerminates r Nil ∣ no ¬p = tt
dmatchTerminates r (x ∶∶ xs) = terminates-fmap (length xs)

(dmatch ((d r /d x) , xs))
(dmatchTerminates (d r /d x) xs)
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To show partial correctness of dmatch, we can use the transitivity of the refinement relation. If we apply
transitivity, it suffices to show that dmatch is a refinement of match. Our first step is to show that the
derivative operator is correct, i.e. d r /d x matches those strings xs such that r matches x ∶∶ xs.

derivativeCorrect ∶ ∀ r → Match (d r /d x) xs y → Match r (x ∶∶ xs) (integralTree r y)

Since the definition of d_/d_ uses the integralTree function, we also prove the correctness of integralTree.

integralTreeCorrect ∶ ∀ r x xs y → Match (d r /d x) xs y → Match r (x ∶∶ xs) (integralTree r y)

All three proofs mirror the definitions of these functions, being structured as a case distinction on the regular
expression.

Before we can prove the correctness of dmatch in terms of match, it turns out that we also need to describe
match itself better. To show match is refined by dmatch, we need to prove that the output of dmatch is a
subset of that of match. Since match makes use of allSplits, we first prove that allSplits returns all possible
splittings of a string.

allSplitsComplete ∶ (xs ys zs ∶ String) (P ∶ String × String → Set) →
wpMatch (allSplits xs) P → (xs == ys ++ zs) → P (ys , zs)

The proof mirrors allSplits, performing induction on xs. Note that allSplitsSound and allSplitsComplete
together show that allSplits xs is equivalent to its specification [ ⊤ , λ {(ys , zs) → xs == ys + zs } ], in
the sense of the _≡_ relation.

Using the preceding lemmas, we can prove the partial correctness of dmatch by showing it refines match:

dmatchSound ∶ ∀ r xs → wpMatch (match (r , xs)) ⊑ wpMatch (dmatch (r , xs))

Since we need to perform the case distinctions of match and of dmatch, the proof is longer than that of
matchSoundness. Despite the length, most of it consists of performing the case distinction, then giving a
simple argument for each case. Therefore, we omit the proof.

With the proof of dmatchSound finished, we can conclude that dmatch always returns a correct parse tree,
i.e. that dmatch is sound. However, dmatch is not complete with respect to the Match relation: since dmatch
never makes a nondeterministic choice, it will not return all possible parse trees as specified by Match, only
the first tree that it encounters. Still, we can express the property that dmatch finds a parse tree if it exists.
In other words, we will show that if there is a valid parse tree, dmatch returns any parse tree (and this is a
valid tree by dmatchSound). To express that dmatch returns something, we use a trivially true postcondition,
and replace the ptAll semantics for nondeterminism with ptAny :

dmatchComplete ∶ ∀ r xs y →
Match r xs y → wp (ptRec matchSpec ∶∶ ptAny ∶∶ Nil) (dmatch (r , xs)) (λ → ⊤)

The proof is short, since dmatch can only fail when it encounters an empty string and a regex that does not
match the empty string, contradicting the assumption immediately:

dmatchComplete r Nil y H with 𝜀? r
... ∣ yes p = tt
... ∣ no ¬p = ¬p ( , H)
dmatchComplete r (x ∶∶ xs) y H y’ H’ = tt

Here we have demonstrated the power of predicate transformer semantics for effects: by separating syntax
and semantics, we can easily describe different aspects (soundness and completeness) of the one definition of
dmatch. Since the soundness and completeness result we have proved imply partial correctness, and partial
correctness and termination imply total correctness, we can conclude that dmatch is a totally correct parser
for regular languages.
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Note the correspondences of this section with a Functional Pearl by Harper [Har99], which also uses the
parsing of regular languages as an example of principles of functional software development. Starting out with
defining regular expressions as a data type and the language associated with each expression as an inductive
relation, both use the relation to implement essentially the same match function, which does not terminate.
In both, the partial correctness proof of match uses a specification expressed as a postcondition, based on the
inductive relation representing the language of a given regular expression. Where we use nondeterminism
to handle the concatenation operator, Harper uses a continuation-passing parser for control flow. Since the
continuations take the unparsed remainder of the string, they correspond almost directly to the EParser
effect of the following section. Another main difference between our implementation and Harper’s is in the
way the non-termination of match is resolved. Harper uses the derivative operator to rewrite the expression
in a standard form which ensures that the match function terminates. We use the derivative operator to
implement a different matcher dmatch which is easily proved to be terminating, then show that match, which
we have already proven partially correct, is refined by dmatch. The final major difference is that Harper uses
manual verification of the program and our work is formally computer-verified. Although our development
takes more work, the correctness proofs give more certainty than the informal arguments made by Harper.
In general, choosing between informal reasoning and formal verification will always be a trade-off between
speed and accuracy.

8.2 Effects as unifying theory of parsers
In the previous section, we have developed a formally verified parser for regular languages. The class of
regular languages is small, and does not include most programming languages. If we want to write a parser
for a larger class of languages, we fist need a practical representation. In classical logic, the most general
concept of a formal language is no more than a set of strings, or a predicate over strings, represented by
the type String → Set. Constructively, such predicates (even when decidable) are not very useful: the
language {xs ∣ xs is a valid proof of the Riemann Hypothesis} has no defined cardinality. To make them
more amenable to reasoning, we impose structure on languages, for example by giving their definition as a
regular expression. When we have a more structured grammar, we can write a parser for these grammars,
and prove its partial correctness and termination, just as we did for regular expressions and dmatch.

One structure we can impose on languages is that we can always perform local operations, in the style
of the Brzozowski derivative. This means we can decide whether a language l matches the empty string
(as 𝜀? does for regular languages), and for each character x , we can compute the derivative d l /d x , which
contains exactly those xs such that x ∶∶ xs is in l . Packaging up these two operations into a record type
gives the coinductive trie representation of a formal language, as described by Abel [Abe16]. We augment
the definition by including a list of the parser’s output values for the empty string, instead of a Boolean
stating whether the language contains the empty string. An empty list corresponds to the original False,
while a non-empty list corresponds to True.

record Trie (i ∶ Size) (a ∶ Set) ∶ Set where
coinductive
field

𝜀? ∶ List a
d_/d_ ∶ Char → Trie j a

The definition of the Trie type is complicated by making it coinductive and using sized types. We need Trie
to be coinductive since it appears in a negative position in the d_/d_ operator, or viewed in another way,
since the Trie type needs to be nested arbitrarily deeply to describe arbitrarily long strings. The sized types
help Agda to check that certain definitions terminate. Despite being needed to ensure the Trie type is useful,
the two complications do not play an important role in the remainder of the development.

Example 8.2.1. Let us look at two simple examples of definitions using the Trie type. The first definition,
emptyTrie, represents the empty language. It does not contain the empty string, so 𝜀? emptyTrie is the empty
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list. It also does not contain any string of the form x ∶∶ xs, so the derivatives of the empty trie are all the
empty trie again.

emptyTrie ∶ Trie i a
𝜀? emptyTrie = Nil
d emptyTrie /d x = emptyTrie

This is also an example of why we need the coinductive structure of the Trie type, since the definition
d emptyTrie /d x = emptyTrie is not productive for an inductive type.

The second example of a construction in the Trie type is the union operator, which is straightforward to
write out.

_∪_ ∶ Trie i a → Trie i a → Trie i a
𝜀? (t ∪ t’) = 𝜀? t ++ 𝜀? t’
d (t ∪ t’) /d x = (d t /d x) ∪ (d t’ /d x)

♦

We can also take a very computational approach to languages, representing them by a parser. This parser
takes a string and returns a list of successful matches, similar to the 𝜀? operator of the coinductive Trie.

Parser ∶ Set → Set
Parser a = String → List a

8.2.1 Context-free grammars with Productions
Using a Trie or a Parser to define a language requires a lot of low-level work, since we first need to implement
operations such as the union of a language or concatenation. The Regex representation of regular languages
has such operations built-in, allowing us to have intuition on the level of grammar rather than operations. A
class of languages that is more expressive than the regular languages, while remaining tractable in parsing
is that of the context-free language. The expressiveness of context-free languages is enough to cover most
programming languages used in practice [AU77]. We will represent context-free languages in Agda by giving
a grammar in the style of Brink, Holdermans, and Löh [BHL10], in a similar way as we represent a regular
language using an element of the Regex type. Following their development, we parametrize our definitions
over a collection of nonterminal symbols.

record GrammarSymbols ∶ Set where
field
Nonterminal ∶ Set
J_K ∶ Nonterminal → Set
_ ?=_ ∶ Decidable {A = Nonterminal } _==_

The elements of the type Char are the terminal symbols, for example characters or tokens. The elements of
the type Nonterminal are the nonterminal symbols, representing the language constructs. As for Char , we
also need to be able to decide the equality of nonterminals. The (disjoint) union of Char and Nonterminal
gives all the symbols that we can use in defining the grammar.

Symbol = Either Char Nonterminal
Symbols = List Symbol

For each nonterminal A, our goal is to parse a string into a value of type J A K, based on a set of production
rules. A production rule 𝐴 → 𝑥𝑠 gives a way to expand the nonterminal A into a list of symbols xs, such
that successfully matching each symbol of xs with parts of a string gives a match of the string with A. Since
matching a nonterminal symbol B with a (part of a) string results in a value of type J B K, a production
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rule for A is associated with a semantic function that takes all values arising from submatches and returns a
value of type J A K, as expressed by the following type:

J_‖_K ∶ Symbols → Nonterminal → Set
J Nil ‖ A K = J A K
J Inl x ∶∶ xs ‖ A K = J xs ‖ A K
J Inr B ∶∶ xs ‖ A K = J B K → J xs ‖ A K

Now we can define the type of production rules. A rule of the form 𝐴 → 𝐵𝑐𝐷 is represented as prod A (Inr B ∶∶
Inl c ∶∶ Inr D ∶∶ Nil) f for some f .

record Production ∶ Set where
constructor prod
field
lhs ∶ Nonterminal
rhs ∶ Symbols
sem ∶ J rhs ‖ lhs K

We use the abbreviation Productions to represent a list of productions, and a grammar will consist of the list
of all relevant productions.

Our goal in this section will be to use algebraic effects to act as a unifying theory of parsing. By
introducing an effect corresponding to the basic operation of parsing a string, we can implement a parser for
any given context-free grammar represented by the Productions type. We also show how to handle this effect
to give a coinductive Trie or a runnable Parser from an algebraic parser. Using predicate transformers, we
verify that the parser for a context-free grammar is correct, and that it terminates as long as the grammar
is left-factored, demonstrating how we can write a fully formally verified parser using algebraic effects. In
the process we also demonstrate verification of a non-trivial program in predicate transformer semantics.

8.2.2 Parsing as effect
For an description of parsing based on algebraic effects, we introduce a new effect EParser , and use a state
consisting of a String . The EParser effect has one command Parse, which either returns the current character
in the state (advancing it to the next character) or fails if all characters have been consumed. In our current
development, we do not need more commands such as an EOF command which succeeds only if all characters
have been consumed, so we do not incorporate them. However, in the semantics we will define that parsing
was successful if the input string has been completely consumed.

data CParser ∶ Set where
Parse ∶ CParser

RParser ∶ CParser → Set
RParser Parse = Char
EParser = eff CParser RParser
parse ∶ {{ iP ∶ EParser ∈ es }} → Free es Char
parse {{ iP }} = Step iP Parse Pure

Note that EParse is not sufficient alone to implement even simple parsers such as dmatch: we need to be
able to choose between parsing the next character or returning a value for the empty string. This is why we
usually combine EParser with the nondeterminism effect ENondet. However, nondeterminism and parsing is
not always enough: we also need general recursion to deal with productions of the form E → E .

The denotational semantics of a parser in the Free monad are given by handling the effects. We give two
functions, one returning a Parser and one returning a Trie.

toParser ∶ Free (ENondet ∶∶ EParser ∶∶ Nil) a → Parser a
toTrie ∶ Free (ENondet ∶∶ EParser ∶∶ Nil) a → Trie ∞ a
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toParser (Pure x) Nil = x ∶∶ Nil
toParser (Pure x) ( ∶∶ ) = Nil
toParser (Step ∈Head Fail k) xs = Nil
toParser (Step ∈Head Choice k) xs = toParser (k True) xs ++ toParser (k False) xs
toParser (Step (∈Tail ∈Head) Parse k) Nil = Nil
toParser (Step (∈Tail ∈Head) Parse k) (x ∶∶ xs) = toParser (k x) xs
toTrie (Pure x) = record {𝜀? = x ∶∶ Nil ; d_/d_ = λ → emptyTrie}
toTrie (Step ∈Head Fail k) = emptyTrie
toTrie (Step ∈Head Choice k) = toTrie (k True) ∪ toTrie (k False)
toTrie (Step (∈Tail ∈Head) Parse k) = record {𝜀? = Nil ; d_/d_ = λ x → toTrie (k x)}

To give the predicate transformer semantics of the EParser effect, we need to choose the meaning of failure,
for the case where the next character is needed and all characters have already been consumed. Since we want
all results returned by the parser to be correct, we use demonic choice and the ptAll predicate transformer
as the semantics for ENondet. Using ptAll ’s semantics for the Fail command gives the following semantics
for the EParser effect.

ptParse ∶ PT𝑆 String EParser
PTS.pt ptParse Parse P Nil = ⊤
PTS.pt ptParse Parse P (x ∶∶ xs) = P x xs

Example 8.2.2. With the predicate transformer semantics of EParse, we can define the language accepted
by a parser in the Free monad as a predicate over strings: a string xs is in the language of a parser S if the
postcondition “all characters have been consumed” is satisfied.

empty? ∶ List a → Set
empty? Nil = ⊤
empty? ( ∶∶ ) = ⊥
_∈[_] ∶ String → Free (ENondet ∶∶ EParser ∶∶ Nil) a → Set
xs ∈ [ S ] = wp𝑆 (addState ptAll ∶∶ ptParse ∶∶ Nil) S (λ → empty?) xs

♦8.2.3 A parser for context-free grammars
We want to show that the effects EParser and ENondet are sufficient to parse any context-free grammar,
using a generally recursive function. To show this claim, we implement a function fromProductions that
constructs a parser for any context-free grammar given as a list of Productions, then formally verify the
correctness of fromProductions. Our implementation mirrors the definition of the generateParser function by
Brink, Holdermans, and Löh, differing in the naming and in the system that the parser is written in: our
implementation uses the Free monad and algebraic effects, while Brink, Holdermans, and Löh use a monad
Parser that is based on parser combinators.

We start by defining two auxiliary types, used as abbreviations in our code.

FreeParser = Free (eff Nonterminal J_K ∶∶ ENondet ∶∶ EParser ∶∶ Nil)
record ProductionRHS (A ∶ Nonterminal) ∶ Set where

constructor prodrhs
field
rhs ∶ Symbols
sem ∶ J rhs ‖ A K

The core algorithm for parsing a context-free grammar consists of the following functions, calling each
other in mutual recursion:

fromProductions ∶ (A ∶ Nonterminal) → FreeParser J A K
filterLHS ∶ (A ∶ Nonterminal) → Productions → List (ProductionRHS A)
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fromProduction ∶ ProductionRHS A → FreeParser J A K
buildParser ∶ (xs ∶ Symbols) → FreeParser (J xs ‖ A K → J A K)
exact ∶ a → Char → FreeParser a

The main function is fromProductions: given a nonterminal, it selects the productions with this nonterminal
on the left hand side using filterLHS, and makes a nondeterministic choice between the productions.

filterLHS A Nil = Nil
filterLHS A (prod lhs rhs sem ∶∶ ps) with A ?= lhs
... ∣ yes refl = prodrhs rhs sem ∶∶ filterLHS A ps
... ∣ no = filterLHS A ps
fromProductions A = foldr (choice) (fail) (map fromProduction (filterLHS A prods))

The function fromProduction takes a single production and tries to parse the input string using this production.
It then uses the semantic function of the production to give the resulting value.

fromProduction (prodrhs rhs sem) = buildParser rhs >>= λ f → Pure (f sem)

The function buildParser iterates over the Symbols, calling exact for each literal character symbol, and making
a recursive call to fromProductions for each nonterminal symbol.

buildParser Nil = Pure id
buildParser (Inl x ∶∶ xs) = exact tt x >>= λ → buildParser xs
buildParser (Inr B ∶∶ xs) = call B >>= (λ x → buildParser xs >>= λ o → Pure λ f → o (f x))

Finally, exact uses the parse command to check that the next character in the string is as expected, and fails
if this is not the case.

exact x t =
parse >>= λ t’ →
if t ?= t’ then Pure x else fail

8.2.4 Partial correctness of the parser
Partial correctness of the parser is relatively simple to show, as soon as we have a specification. Since we
want to prove that fromProductions correctly parses any given context free grammar given as an element of
Productions, the specification consists of a relation between many sets: the production rules, an input string,
a nonterminal, the output of the parser, and the remaining unparsed string. Due to the many arguments,
the notation is unfortunately somewhat unwieldy. To make it a bit easier to read, we define two relations in
mutual recursion, one for all productions of a nonterminal, and for matching a string with a single production
rule.

data _⊢_∈ J_K ⇒_,_ prods where
Produce ∶ prod lhs rhs sem ∈ prods →

prods ⊢ xs ∼ rhs ⇒ f , ys →
prods ⊢ xs ∈ J lhs K ⇒ f sem , ys

data _⊢_∼_⇒_,_ prods where
Done ∶ prods ⊢ xs ∼ Nil ⇒ id , xs
Next ∶ prods ⊢ xs ∼ ps ⇒ o , ys →

prods ⊢ (x ∶∶ xs) ∼ (Inl x ∶∶ ps) ⇒ o , ys
Call ∶ prods ⊢ xs ∈ J A K ⇒ o , ys →

prods ⊢ ys ∼ ps ⇒ f , zs →
prods ⊢ xs ∼ (Inr A ∶∶ ps) ⇒ (λ g → f (g o)) , zs
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With these relations, we can define the specification parserSpec to be equal to _ ⊢ _ ∈ J_K ⇒ _,_ (up to
reordering some arguments), and show that fromProductions refines this specification. For the semantics of
general recursion, we also make use of the specification, while for the semantics of nondeterminism, we use
the ptAll semantics to ensure all output is correct. This gives the partial correctness term as defined below

pts prods = ptRec𝑆 (parserSpec prods) ∶∶ addState ptAll ∶∶ ptParse ∶∶ Nil
wpFromProd prods = wp𝑆 (pts prods)
partialCorrectness ∶ (prods ∶ Productions) (A ∶ Nonterminal) →
wp𝑆 (ptSpec ∶∶ Nil) [ ⊤ , parserSpec prods A] ⊑𝑆 wpFromProd prods (fromProductions prods A)

Let us fix the production rules prods. How do we prove the partial correctness? Since the structure of
fromProductions is of a nondeterministic choice between productions to be parsed, and we want to show
that all alternatives for a choice result in success, we will first give a lemma expressing the correctness of
each alternative. Correctness in this case is expressed by the semantics of a single production rule, i.e. the
_⊢_∼_⇒_,_ relation. Thus, we want to prove a lemma with a type as follows:

parseStep ∶ ∀ A xs P str →
((o ∶ J xs ‖ A K → J A K) (str’ ∶ String) → prods ⊢ str ∼ xs ⇒ o , str’ → P o str’) →
wpFromProd prods (buildParser prods xs) P str

The lemma can be proved by reproducing the case distinctions used to define buildParser ; there is no
complication apart from having to use the fold-bind lemma to deal with the _>>=_ operator in a few places.

parseStep A Nil P t H = H id t Done
parseStep A (Inl x ∶∶ xs) P Nil H = tt
parseStep A (Inl x ∶∶ xs) P (x’ ∶∶ t) H with x ?= x’
... ∣ yes refl = parseStep A xs P t λ o t’ H’ → H o t’ (Next H’)
... ∣ no ¬p = tt
parseStep A (Inr B ∶∶ xs) P t H o t’ Ho = subst _ (sym (fold-bind (buildParser prods xs) P ))

(parseStep A xs t’ λ o’ t” Ho’ → H (Call Ho Ho’))

To combine the parseStep for each of the productions in the nondeterministic choice, it is tempting to
define another lemma filterStep by induction on the list of productions. But we must be careful that the
productions that are used in the parseStep are the full list prods, not the sublist prods’ used in the induction
step. Additionally, we must also make sure that prods’ is indeed a sublist, since using an incorrect production
rule in the parseStep will result in an invalid result. Thus, we parametrise filterStep by a list prods’ and a
proof that it is a sublist of prods. Again, the proof uses the same distinction as fromProductions does, and
uses the fold-bind lemma to deal with the _>>=_ operator.

filterStep ∶ ∀ prods’ → (p ∈ prods’ → p ∈ prods) →
∀ A → wp𝑆 (ptSpec ∶∶ Nil) [ ⊤ , parserSpec prods A] ⊑𝑆 wpFromProd prods

(foldr (choice) (fail) (map (fromProduction prods) (filterLHS prods A prods’)))
filterStep Nil subset A P xs H = tt
filterStep (prod lhs rhs sem ∶∶ prods’) subset A P xs H with A ?= lhs
filterStep (prod .A rhs sem ∶∶ prods’) subset A P xs ( , H) ∣ yes refl

= subst (λ f → f xs) (sym (fold-bind (buildParser prods rhs) P ))
(parseStep A rhs xs λ o t’ H’ → H (Produce (subset ∈Head) H’))
, filterStep prods’ (subset ∘ ∈Tail) A P xs ( , H)

... ∣ no ¬p = filterStep prods’ (subset ∘ ∈Tail) A P xs H

With these lemmas, partialCorrectness just consists of applying filterStep to the subset of prods consisting
of prods itself. As for dmatch, we are not done at this point. To complete the verification, not only do we
need to show the partial correctness of the parser, we also need to show it terminates on all input.
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8.2.5 Termination of the parser
To show termination we need a somewhat more subtle argument: since we are able to call the same nonterminal
repeatedly, termination cannot be shown simply by inspecting the definitions. Consider the grammar given
by 𝐸 → 𝑎𝐸; 𝐸 → 𝑏, where we see that the string that matches 𝐸 in the recursive case is shorter than the
original string, but the definition itself is of unbounded length. Fortunately for us, predicate transformer
semantics allow us to give this more subtle definition of termination, in the form of the Termination type in
Definition 5.4.2. By taking into account the current state, i.e. the string to be parsed, in the variant, we can
show that a decreasing string length leads to termination.

But not all grammars feature this decreasing string length in the recursive case, with the most pathological
case being those of the form 𝐸 → 𝐸. The issues do not only occur in edge cases: the grammar 𝐸 → 𝐸+𝐸; 𝐸 →
1 representing very simple expressions will already result in non-termination for fromProductions as it will
go in recursion on the first non-terminal without advancing the input string. Since the position in the string
and current nonterminal together fully determine the state of fromParsers, it will not terminate. We need to
ensure that the grammars passed to the parser do not allow for such loops.

Intuitively, the condition on the grammars should be that they are not left-recursive, since in that case,
the parser should always advance its position in the string before it encounters the same nonterminal. This
means that the number of recursive calls to fromProductions is bounded by the length of the string times
the number of different nonterminals occurring in the production rules. The type we will use to describe the
predicate “there is no left recursion” is constructively somewhat stronger: we define a left-recursion chain
from 𝐴 to 𝐵 to be a sequence of nonterminals 𝐴, … , 𝐴𝑖, 𝐴𝑖+1, … , 𝐵, such that for each adjacent pair 𝐴𝑖, 𝐴𝑖+1
in the chain, there is a production of the form 𝐴𝑖+1 → 𝐵1𝐵2 … 𝐵𝑛𝐴𝑖 … , where 𝐵1 … 𝐵𝑛 are all nonterminals.
In other words, we can advance the parser to 𝐴 starting in 𝐵 without consuming a character. Disallowing
(unbounded) left recursion is not a limitation for our parsers: Brink, Holdermans, and Löh [BHL10] have
shown that the left-corner transform can transform left-recursive grammars into an equivalent grammar
without left recursion. Moreover, they have implemented this transform, including formal verification, in
Agda. In this work, we assume that the left-corner transform has already been applied if needed, so that
there is an upper bound on the length of left-recursive chains in the grammar.

We formalize one link of this left-recursive chain in the type LeftRec, while a list of such links forms the
LeftRecChain data type.

record LeftRec (prods ∶ Productions) (A B ∶ Nonterminal) ∶ Set where
field
rec ∶ prod A (map Inr xs ++ (Inr B ∶∶ ys)) sem ∈ prods

(We leave xs, ys and sem as implicit fields of LeftRec, since they are fixed by the type of rec.)

data LeftRecChain (prods ∶ Productions) ∶ Nonterminal → Nonterminal → Set where
Nil ∶ LeftRecChain prods A A
_∶∶_ ∶ LeftRec prods B A → LeftRecChain prods A C → LeftRecChain prods B C

Now we say that a set of productions has no left recursion if all such chains have an upper bound on their
length.

chainLength ∶ LeftRecChain prods A B → ℕ
chainLength Nil = 0
chainLength (c ∶∶ cs) = Succ (chainLength cs)
leftRecBound ∶ Productions → ℕ → Set
leftRecBound prods n = (cs ∶ LeftRecChain prods A B) → chainLength cs < n

If we have this bound on left recursion, we are able to prove termination, since each call to fromProductions
will be made either after we have consumed an extra character, or it is a left-recursive step, of which there is an
upper bound on the sequence. Thus, the relation RecOrder will work as a recursive variant for fromProductions:

71



data RecOrder (prods ∶ Productions) ∶ (x y ∶ Nonterminal × String) → Set where
Adv ∶ length str < length str’ → RecOrder prods (A , str ) (B , str’)
Rec ∶ length str ≤ length str’ → LeftRec prods A B → RecOrder prods (A , str ) (B , str’)

With the definition of RecOrder , we can complete the correctness proof of fromProductions, by giving
an element of the corresponding Termination type. We assume that the length of recursion is bounded by
bound ∶ ℕ.

fromProductionsTerminates ∶ (prods ∶ Productions) (bound ∶ ℕ) → leftRecBound prods bound →
Termination (pts prods) (fromProductions prods)

Termination._≺_ (fromProductionsTerminates prods bound H) = RecOrder prods

To show that the relation RecOrder is well-founded, we need to show that there is no infinite descending chain
starting from some nonterminal A and string str . The proof is based on iteration on two natural numbers n
and k, which form an upper bound on the number of allowed left-recursive calls in sequence and unconsumed
characters in the string respectively. Note that the number bound is an upper bound for n and the length of
the input string is an upper bound for k. Since each nonterminal in the production will decrease n and each
terminal will decrease k, we eventually reach the base case 0 for either. If n is zero, we have made more than
bound left-recursive calls, contradicting the assumption that we have bounded left recursion. If k is zero, we
have consumed more than length str characters of str , also a contradiction.

Termination.w-f (fromProductionsTerminates prods bound H) A str
= acc (go A str (length str ) ≤-refl bound Nil ≤-refl)
where
go ∶ ∀ A str →

(k ∶ ℕ) → length str ≤ k →
(n ∶ ℕ) (cs ∶ LeftRecChain prods A B) → bound ≤ chainLength cs + n →
∀ y → RecOrder prods y (A , str ) → Acc (RecOrder prods) y

go A Nil Zero ltK n cs H’ (A’ , str’) (Adv ())
go A ( ∶∶ ) Zero () n cs H’ (A’ , str’) (Adv lt)
go A ( ∶∶ ) (Succ k) (𝑠≤𝑠 ltK ) n cs H’ (A’ , str’) (Adv (𝑠≤𝑠 lt))

= acc (go A’ str’ k (≤-trans lt ltK ) bound Nil ≤-refl)
go A str k ltK Zero cs H’ (A’ , str’) (Rec lt cs’)

= magic (<→≱ (H cs) (≤-trans H’ (≤-reflexive (+-zero ))))
go A str k ltK (Succ n) cs H’ (A’ , str’) (Rec lt c)

= acc (go A’ str’ k (≤-trans lt ltK ) n (c ∶∶ cs) (≤-trans H’ (≤-reflexive (+-suc ))))

To show that RecOrder is a variant for fromProductions, we cannot follow the definitions of fromProductions
as closely as we did for the partial correctness proof. We need a complicated case distinction to keep track
of the left-recursive chain we have followed in the proof. For this reason, we split the parseStep apart into
two lemmas parseStepAdv and parseStepRec, both showing that buildParser maintains the variant. We also
use a filterStep that calls the correct parseStep for each production in the nondeterministic choice.

parseStepAdv ∶ ∀ A xs str str’ → length str’ < length str →
variant’ (pts prods) (fromProductions prods) (RecOrder prods) A str (buildParser xs) str’

parseStepRec ∶ ∀ A xs str str’ → length str’ ≤ length str →
∀ ys → prod A (map Inr ys ++ xs) sem ∈ prods →
variant’ (pts prods) (fromProductions prods) (RecOrder prods) A str (buildParser xs) str’

filterStep ∶ ∀ prods’ → (x ∈ prods’ → x ∈ prods) →
∀ A str str’ → length str’ ≤ length str →
variant’ (pts prods) (fromProductions prods) (RecOrder prods) A str

(foldr (choice) (fail) (map fromProduction (filterLHS A prods’)))
str’
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In the parseStepAdv , we deal with the situation that the parser has already consumed at least one character
since it was called. This means we can repeatedly use the Adv constructor of RecOrder to show the variant
holds.

parseStepAdv A Nil str str’ lt = tt
parseStepAdv A (Inl x ∶∶ xs) str Nil lt = tt
parseStepAdv A (Inl x ∶∶ xs) str (c ∶∶ str’) lt with x ?= c
parseStepAdv A (Inl x ∶∶ xs) ( ∶∶ ∶∶ str ) (.x ∶∶ str’) (𝑠≤𝑠 (𝑠≤𝑠 lt)) ∣ yes refl

= parseStepAdv A xs (𝑠≤𝑠 (≤-step lt))
... ∣ no ¬p = tt
parseStepAdv A (Inr B ∶∶ xs) str str’ lt

= Adv lt
, λ o str” H → variant-fmap (pts prods) (fromProductions prods) (buildParser xs)

(parseStepAdv A xs str str” (≤-trans (𝑠≤𝑠 (consumeString str’ str” B o H)) lt))

Here, the lemma variant-fmap states that the variant holds for a program of the form S >>= (Pure ∘ f ) if it
does for S, since the Pure part does not make any recursive calls; the lemma consumeString str’ str” B states
that the string str” is shorter than str’ if str” is the left-over string after matching str” with nonterminal B.

In the parseStepRec, we deal with the situation that the parser has only encountered nonterminals in the
current production. This means that we can use the Rec constructor of RecOrder to show the variant holds
until we consume a character, after which we call parseStepAdv to finish the proof.

parseStepRec A Nil str str’ lt ys i = tt
parseStepRec A (Inl x ∶∶ xs) str Nil lt ys i = tt
parseStepRec A (Inl x ∶∶ xs) str (c ∶∶ str’) lt ys i with x ?= c
parseStepRec A (Inl x ∶∶ xs) ( ∶∶ str ) (.x ∶∶ str’) (𝑠≤𝑠 lt) ys i ∣ yes refl

= parseStepAdv A xs (𝑠≤𝑠 lt)
... ∣ no ¬p = tt
parseStepRec A (Inr B ∶∶ xs) str str’ lt ys i

= Rec lt (record {rec = i })
, λ o str” H → variant-fmap (pts prods) (fromProductions prods) (buildParser xs)

(parseStepRec A xs str str” (≤-trans (consumeString str’ str” B o H) lt)
(ys ++ (B ∶∶ Nil)) (nextNonterminal i))

Apart from the previous lemmas, we make use of nextNonterminal i , which states that the current production
starts with the nonterminals ys ++ (B ∶∶ Nil).

The lemma filterStep shows that the variant holds on all subsets of the production rules, analogously to
the filterStep of the partial correctness proof. It calls parseStepRec since the parser only starts consuming
characters after it selects a production rule.

filterStep Nil A str str’ lt subset = tt
filterStep (prod lhs rhs sem ∶∶ prods’) subset A str str’ lt with A ?= lhs
... ∣ yes refl

= variant-fmap (pts prods) (fromProductions prods) (buildParser rhs)
(parseStepRec A rhs str str’ lt Nil (subset ∈Head))
, filterStep prods’ (subset ∘ ∈Tail) A str str’ lt

... ∣ no ¬p = filterStep prods’ (subset ∘ ∈Tail) A str str’ lt

As for partial correctness, the main proposition consists of applying filterStep to the subset of prods consisting
of prods itself.

Having divided the proof into the three lemmas, the remainder is straightforward. The proofs of the
lemmas use induction on the production rule for parseStepAdv and parseStepRec, and induction on the list
of rules for filterStep, and call each other as indicated.
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Now that we have finished a partial correctness and termination proof of fromProductions, we can conclude
that we have a completely formally verified parser for context-free grammars. At this point, we should
note the similarities between the development of dmatch and of fromProductions: in both cases, we start
out from a data type representing the grammar of a certain class of languages, with an inductively defined
relation between strings and the grammar. We use the Free monad to write a parser. With the refinement
relation, we verified partial correctness of the parser, and finally we showed that the parser terminates (for
fromProductions, assuming the grammar is not left recursive). We can view this as a simple development
methodology for formally verified programs, and this chapter as an illustration that predicate transformer
semantics for algebraic effects allows this methodology.
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Chapter 9

Conclusions and further work

In the thesis, we have described verification of effectful functional programs using predicate transformer
semantics. We argue that effects and predicate transformers are together useful in formally verified program-
ming, since they allow separation of the concerns of syntax, semantics and specification. The effect system,
in the form of the Free monad, allows us to write a program, without committing to specific semantics for
evaluating or verification. By expressing the semantics of a program as a predicate transformer, we can verify
programs with respect to a specification which is not in the form of executable code. This contrasts with
equational reasoning as applied by Gibbons and Hinze [GH11], in which specifications must be in the form
of a reference implementation. If we apply Agda’s interactivity to the concepts of the refinement calculus,
we gain the ability to interactively derive a formally correct program from its specifications, giving a way to
make the manual development method described by Morgan [Mor98] and Dijkstra [Dij76] into a computer-
formalized process. In the final chapter, we demonstrate that refinement-based verification can be used in
practice, by writing non-trivial parsers of formal languages and formally verifying them.

Not only do predicate transformer semantics and the refinement calculus have useful applications, we
have also illustrated that they arise naturally by taking the correct generalisations of existing concepts.
Starting out from verifying partial correctness of recursive functions by applying the invariant function, we
generalize by writing invariant as a fold over the Free data type. Specialising the catamorphism of the Free
monad to produce propositions gives us the wp function, which takes a predicate transformer for a single
effect and computes the weakest precondition semantics for an effectful program. The natural way in which
the weakest precondition arises also suggests why it is used instead of the strongest postcondition predicate
transformer. A priori, the definitions of weakest precondition and strongest postcondition are symmetrical,
but the weakest precondition is used throughout the refinement calculus while the strongest postcondition is
not. Notably, the main concepts of weakest precondition, algebraic effects and folds are widely known among
computer scientists. The new results of the thesis are not in re-introducing them individually, but showing
that together they arise naturally and work well as a verification methodology.

We have still left a number of open issues. In Chapter 5, we describe combinations of effects, including
how to compute the weakest precondition for a program using multiple effects. The semantics assume that
all effects are handled simultaneously. One advantage of algebraic effects is the ability to use effect handlers,
which deal with some effects but leave others to higher-level handlers. We can include effect handlers, such
as the catch handler of Section 6.2, as a function from the Free monad to the Free monad. In other words, we
can describe the handling of effects one by one in denotational semantics, and apply predicate transformer
semantics to the denoted program, but currently we have no description of handlers that is completely
founded within predicate transformer semantics.

Related to the open work on semantics of handlers is to introduce more effects and their handlers to
the predicate transformer framework. Apart from general recursion, partial computation, non-determinism,
mutable state and parsing, we have already written example code for a stack with push and pop operations
(in the style of Example 5.1.2) and cooperative multitasking (operations are fork and yield ; yield nondetermin-
istically chooses the next thread to execute); interesting additional effects include self-destructing memory
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(consider mutable state where the put operation can only be executed up to 64 times) and probabilistic
nondeterminism as described by McIver and Morgan [MM04]. If we introduce all these extra effects, is the
single global state variable of wp𝑆 sufficient or do we need more sophisticated types?

Another avenue for further work is that Chapter 7 describes deriving a program from its specification,
but we have not gone through a larger derivation process than the ones included in the chapter. It could
be interesting to attempt a more complicated derivation than we have, perhaps porting some of the longer
informal derivations described by Morgan [Mor98] and Dijkstra [Dij76] to our formal setting.

One could also investigate the relation to other descriptions of effects in functional programming. Notably,
the Dijkstra monad of the language F⋆ includes the predicate transformer semantics of a functional program
in its type [Swa+11; Swa+13], in a manner similar to the Impl type we have defined in Section 7.2. Since
the Dijkstra monad does not separate syntax and semantics as we do, it is interesting to see whether any
expressiveness is lost compared to our approach.

Finally, the true test of verification frameworks is to apply them to practical software development. Now
we have evidence that refinement works in the artificial environment of the thesis, so we should look for its
results when applied in practice before we can be confident of the applicability in general. Still, the smaller
scale examples of Chapter 8 look promising, so we have good hope that formal verification using predicate
transformer semantics for algebraic effects will can be used to improve the quality of software.
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