
 

Deriving the spirit of the law 
 
Thesis for 7.5 ECTS by Toon Alfrink 
 
Bachelor Kunstmatige Intelligentie, Utrecht University, 2019-07-04 
 
Mentor: Jan Broersen 
 
Second assessor:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



I define two approaches to rule-based AI Safety: the letter-based approach, which is to 
simply constrain an agent’s behavior to satisfy a set of static conditions, and the 
spirit-based approach, which is to somehow let the agent act in accordance with what 
those rules intended. I explore the conditions under which a letter-based approach is 
insufficient. Then I describe one prominent letter-based approach to AI Safety, 
describe how it represents rules in STIT logic, and offer a mechanism for inferring a 
generalization from those rules that aims to approximate their intention. For that I use 
a version space learning algorithm. I finish with a small experiment. 
 
1 Introduction 
 
In 1956, there was a workshop in Dartmouth college. It was the first to ever be held on the 
topic of Artificial Intelligence. It is now considered by many to be a pivotal workshop, 
essentially kickstarting the field of AI. Attendants were optimistic about the possibility of 
creating thinking machines. Herbert Simon, one of the attendants of the workshop, was 
quoted saying "machines will be capable, within twenty years, of doing any work a man can 
do". 
 
As that quote shows, the original intention of the field of AI was quite ambitious. Machines 
were expected to be able to do anything a human being could do, and perhaps even surpass 
them in general ability. The field had some initial successes, gaining traction by creating 
machines that could play checkers, do algebra and prove theorems in logic. What the 
researchers back in the day did not realize was that there was a substantial part of 
intelligence that isn’t so easy to automate. 
 
And so progress slowed down, and in 1974 the US and UK governments cut off funding for 
foundational AI research, ushering in a period of slow progress that would later be called the 
first AI winter. The field has seen ups and downs since then. Nowadays, with staggering 
advances  in the subfield of machine learning, the old promise of machines “doing any work 1

a man can do” is again being revisited. AI systems are now beating humans in games such 
as poker, go, and even DotA (which is a team-vs-team roleplaying fighting game). While 
opinions vary about the exact date that human-level intelligence will be achieved, a survey 
found that the median expert expects it to happen in the 2060s.  
 
As one can see from this figure, 
whether superhuman intelligence 
will even happen at all is 
debated. There is a substantial 
minority of experts that claim that 
it will never happen. For the rest 
of this work, we will assume that 
it will. This work is best read with 
that prospect in mind. 
 

1 Deepmind’s AlphaZero, for instance, was able to achieve superhuman performance in Go, chess 
and Shogi within 24 hours of being instantiated. It learned purely by playing against itself. 

 



1.1 The need for AI Safety 
 
As AI systems become increasingly capable, they become increasingly influential. Already 
today, we allow AI to control dangerous tools like cars, medical equipment and financial 
assets. Not only do we give them more responsibility, they’re also able to come up with 
strategies that are increasingly impactful. For better or for worse. 
 
This observation has led to research efforts to make AI safe. Highlighting three approaches:  

- the REINS project, which aims “to develop a formal framework for automating 
responsibility, liability and risk-checking for automated systems” (Broersen, 2014).  

- the approach proposed by the Machine Intelligence Research Institute (MIRI), that 
dedicates itself to “the challenge of finding an agent architecture that will reliably and 
autonomously pursue a set of objectives - that is, an architecture that can at least be 
aligned with some end goal” (Soares & Fallenstein, 2014).  

- The approach of openAI and the Google Brain team. Presumably partly in response 
to MIRI, they take a more concrete approach, discussing “the problem of accidents in 
machine learning systems, defined as unintended and harmful behavior that may 
emerge from poor design of real-world AI systems” (Amodei et al., 2016). 

 
AI Safety is a nascent field, and researchers are not always aware of each other yet. This 
work is inspired by different research agendas, hoping to bring them closer together. 
 
1.2 Two rule-based approaches to AI Safety 
 
Let us contrast two broad approaches for securing an AI. The first is what I will call the 
“letter” approach. In this approach, a lawmaker secures an AI by flagging specific behaviors 
and outcomes as “forbidden” or “obligated”. The AI follows the letter of the law. The second 
is the “spirit” approach, where an AI infers the rules that represent what the lawmaker 
actually intended, a.k.a. the spirit of the law, and follows those instead. 
 
A lawmaker would wish that following the law to the letter leads to the same outcomes as 
following the law according to his intention. He may try to define the law as precisely as 
possible, to make sure that the letter and the spirit diverge as little as possible, or ideally 
don’t differ at all. If they do differ in some case, we call that a “loophole”. Better laws have 
less loopholes, and a law without any loopholes is perfect. 
 
In practice, it seems nearly impossible to define a perfect law. Humans are not flawless at 
capturing exactly what they want. This reality is why I argue that the letter approach to AI 
Safety is incomplete. Even if we can make an agent follow any set of rules we give it, this will 
not always result in desired behavior.  2

 
Given this difficulty of specifying the spirit of the law, how can we ensure that an AI that 
abides by the letter still does what we intended it to do?  
 

2 For some entertaining examples of this phenomenon, see the “malicious compliance” subreddit. 

 

https://www.reddit.com/r/MaliciousCompliance/top/?t=all


 
2 Where may letter and spirit diverge? 
 
In this section, I explore the conditions under which agents (do or do not) have access to 
loopholes. First, this requires formally defining intelligence, law, and loopholes. Then I will 
define a condition under which safety is guaranteed, and survey some plausible scenarios 
under which this condition is not met. 
 
2.1 Defining intelligence 
 
The working definition of intelligence in this thesis is given by Legg and Hutter: 

“Intelligence measures an agent’s ability to achieve [arbitrary] goals in a wide range 
of environments.” 

Note that this is an amoral definition of intelligence. Systems with completely different value 
systems from humans might still be called intelligent. One might be inclined to call it 
optimization power instead, but for the sake of consistency with previous literature, we will 
call it intelligence. 
  
They proceed to formalize their definition: 

The universal intelligence of an agent  is its expected performance with respect to 
the universal distribution  over the space of all computable reward-summable 
environments , that is, 

 
Unpacking this definition: 

-  is an environment, which is a tuple, composed of a description of a world paired 
with some scoring rule. 

-  is a summation over all possible environments. 
-  is a scoring function that determines the reward that agent  gets in an 

environment  
-  is the Kolmogorov complexity of , being the length of the shortest bitstring 

that can possibly describe it. 
-  is a normalization factor that discounts environments according to their 

complexity. If an environment has a description length of , there are  
possible environments of such length. Hence this normalization factor guarantees 
that  scales from 0 to 1, and that no bias exists towards highly complex 
environments. 

 
Note that this definition does not say anything about what goals are or where they come 
from. We simply assume that agents have them, and intelligence is not about deliberating 
what they are, but about how effectively they're achieved. Intelligence is defined by summing 
over arbitrary , which are combinations of environment and scoring rule. This means 
that by our definition, an agent that is good at relatively arbitrary things like “drawing cheese” 
or “bending glass”, or indeed “creating paperclips”, would be labeled equally “intelligent” as 
an agent that is good at things that seem more important from a human perspective, like 
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“curing disease” or “promoting peace” or “running a company”. All that matters for this 
definition is the total sum of goals that an agent can achieve. 
 
2.2 intelligence and strategy space 
 
Let us assume that we don’t lose too much generality if we propose that, for the agents we 
consider, “reaching a goal” happens in two steps: 

1. An agent identifies a strategy that would reach the goal 
2. This strategy is carried out by the agent. 

This means that, for each goal an agent can reach, they are able to identify at least one 
strategy that reaches it. In other words, there exists an injection from reachable goals to 
identifiable strategies. The amount of reachable goals must always be less than the amount 
of identifiable strategies.  
 
Intelligence is the total score when summing over every possible environment. We will define 
“reach a goal” to mean “reach a certain score in a certain environment”. This means that we 
can equate the intelligence of some agent with the amount of goals it can reach. As a 
corollary, its intelligence is a lower bound on the amount of strategies it can identify. 
 
Stated clearly, let  be the set of strategies that agent  can carry out successfully. Let 

 be its intelligence. Let  be the set of strategies that  can identify. I claim that 
.  

 
2.3 defining the letter and the spirit of the law 
 
A law is a set of strategies that are forbidden. A lawmaker is an agent  that goes through 
the following procedure: 

1) Implicitly or explicitly, define a set of outcomes  that they don’t want to be reached 
2) Identify all strategies that would reach any outcome in  

3) Add these strategies to a let of rules called . 
 

 is the letter of the law. Note that . Since  cannot identify any strategies 
outside of . The spirit of the law is any strategy that reaches an outcome in . Let us call 

this set . Note that . 
 

I define a loophole as any strategy in . Now I will argue that there are agents that 
will be able to abuse at least some of these loopholes. 
 
2.4 Which agents may find loopholes? 
 
An agent  with access to a loophole is one that is able to carry out strategies that will 

reach at least one outcome that a lawmaker  doesn’t want. Formally, .  
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Instead of defining the set of agents that necessarily have access to a loophole, we will 
define the set of agents that necessarily don’t have access to a loophole. If we can’t make 
that guarantee, then we have a security hole, regardless of whether the agent in question is 
safe coincidentally. 
 

An agent  that is safe with respect to some outcomes  satisfies . In 

other words, . Therefore it must be that .  
 
This is true in the ideal case that . If  is a complete expert on reaching , they will 
be a perfect lawmaker. This is also true in the ideal case that : if  knows 
everything that  might do, they will be able to police their behavior perfectly. This is also 
true in the ideal case of : if  is powerless, they cannot be dangerous. Lastly, this 
is true in the ideal case of : if reaching  is impossible, then there is no need for a 
law to prevent it. 
 
However, in cases where , we cannot be certain that an agent is safe. 
 
2.4.1 Abolishing loopholes 
 
If we want to make rule-based AI Safety work, we must find a way to close the gap between 

letter and spirit systematically. In other words, how can be guarantee that  
for each possible ? 
 
A solution cannot involve changing , which captures our baked-in human preferences. 
 
A solution could involve changing . If  is the set of strategies that triggers one of the 
conditions in , then changing  would involve changing the environment in such a way 
that this behavior is no longer harmful. We see this strategy in reality in the form of parents 
making their house less dangerous for their children, or the eradication of some diseases 
that makes the strategy “bad hygiene” less likely to be harmful. 
 

And a solution could involve changing . If it were the case that , then there 
would be no more loopholes. Note that this requires  for each . In other words, it 
would require that  is omniscient with respect to what strategies reach which goals. 
 
2.5 A practical example 
 
Let’s say we’re in a game with 2 players,  is the lawmaker. They get to decide what sets of 
strategies , is allowed to follow.  wants  to reach goal A. The programmers of  
made it with the intention to have it pursue goal A, but because of some programmer errors 
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and an inability to think of all cases ,  has been unknowingly programmed to pursue the 3

slightly different goal B instead. 
 
So, in order to ensure that A is reached anyway,  identifies a set of strategies  that would 
not reach goal A, and forbids them. To the lawmaker, the set of strategies for  looks like 
this: 

 
Does this suffice to keep  from reaching B? Only if . If this is the case, the set of 

’s possible strategies might look like this. They have no choice but to go for A: 
 

 
But as  becomes more intelligent, the amount of strategies it may carry out might 
eventually surpass the amount of strategies that  identified. Now  might no longer be a 
subset of . As soon as this is the case, a loophole appears: 

 
 
I conclude that, as agents become increasingly intelligent, they become increasingly able to 
identify loopholes. In order to prevent this, we must find ways to convey the spirit of the law 
directly. 
 
3 defining the letter of the law 
 
In this section, I will describe one prominent rule-based AI Safety project in detail. I will 
briefly mention its broad goals. Then I will describe how it defines its world model, which is 
called a STIT frame, and how it defines rules. In the next section, I will attempt to 
programmatically generalize from these rules in an attempt to derive their spirit. 
 
3.1 the REINS project 
 

3 This will almost certainly happen in a real-world scenario. Human values don’t easily allow 
themselves to be formally specified. See https://wiki.lesswrong.com/wiki/Complexity_of_value 
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In his overview of the REINS project, Broersen (2014) writes: 
 
“The REINS project will contribute to a solution to [the risks of outsourcing responsibility] by 
taking an approach based on representing responsibilities, risks and normative systems 
using logical formalisms and the design of translations to input formalisms for existing 
theorem provers and model checkers whose reliability has already been proven in numerous 
other applications.” 
 
Stated plainly, the idea is to figure out how to properly represent responsibilities in logical 
format. This allows responsibilities to be machine-readable, so that the question of “did this 
AI do that” can be verified programmatically. Taken together with a set of laws, one can then 
determine liability for machines. 
 
Describing behavior in logical format is called logic of action  4

 
3.2 Logics of action 
 
There are two main approaches to logic of action. One is STIT logic, developed in the 90s by 
philosophers of action. The other one is dynamic logic, which was developed by computer 
scientists with the intention to prove correctness of their programs. Both are modal logics 
with a possible world semantics. 
 
Most versions of dynamic logic don’t have a formalism for goals, while STIT logic has it as 
it’s main operator (Broersen, 2006b). On the other hand, STIT doesn’t have an explicit 
formalism for actions, which is the main modality of dynamic logic. Another difference is that 
dynamic logic doesn’t allow expressing that an agent is actually, currently, carrying out an 
action. 
 
The REINS project makes use of STIT logic. We will use STIT as our framework. 
 
3.3 Defining a STIT frame 
 
Stit frames are based on a tree , with elements of  meaning to represent moments. 
 
Note that a tree is a connected acyclic graph. This one represents branching time. If for 
some , , it means that  happened before , both moments being on the 
same timeline. It is also possible for timelines to diverge so that there is another moment  
that came after , but doesn’t precede or follow . The two diverged moments are 
supposed to represent worlds in which different things ended up happening. 
 
We add some terms: 

-  is a set of agents that make decisions. We include the environment as just 
another agent. 

-  is the set of actions (actuators) any agent could have 

4 https://plato.stanford.edu/entries/logic-action/ 
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-  denotes the set of actions that each agent has available to it at 
a given moment 

- A strategy profile is a combination of actions that all agents could take in a particular 
moment. For example if we are the only agents, my available actions are , and 
yours are , then our possible strategy profiles are  and 

. 
 
Now we can characterize exactly how time branches in our model. For every moment 

, for every possible strategy profile , there is one 
 so that . Stated more plainly, every strategy profile leads to exactly one unique 

outcome. To keep track of this, we add an outcome function: 

-  
 
We represent a STIT frame as a pair . 
 
Let me introduce an example. Say we’re in a classical prisoner’s dilemma. It is just us in the 
situation, so . The moments that are possible are , 
corresponding to different outcomes of the game. Our interrogation happens at . We both 
have two actions available to us: cooperate (C) and defect (D), so 

. 
 
Based on our strategy profile, there are 4 possible outcomes that follow: 

- We both cooperate:  
- I defect, but you cooperate:  
- I cooperate, but you defect:  
- We both defect:  

 
Our STIT description departs significantly from classical STIT logic in different ways, but I 
claim that it is isomorphic with it. A proof for that is beyond the scope of this work. However, 
since this description is quite similar to Coalition Logic, a proof may be obtained by adapting 
the work of Broersen (2006). 
 
Adding more auxiliary elements: 

-  is the set of histories, defined as the set of branches in the tree. A branch is a 
maximal chain. 

 is the choice function. Given a state, an agent and a 
decision, it yields the set of outcomes that that particular decision allows. It fixes that 
decision in place and yields all the outcomes that it can generate by varying the 
decisions of the other agents: 

 
-  is a set of propositions 
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In our example, the possible histories are 
. The choice function is 

defined as: 
-  
-  
-  
-  

 defines the actual semantic content of the moments. In our case, we can use it to fill in 
the outcomes of the prisoner’s dilemma. We can do that using 8 propositions: 

- : I am free 
- : I am sentenced to 3 years in prison 
- : I am sentenced to 5 years in prison 
- : I am sentenced to 10 years in prison  
- : You are free 
- : You are sentenced to 3 years in prison 
- : You are sentenced to 5 years in prison 
- : You are sentenced to 10 years in prison 

 
3.4 Semantics in a STIT frame 
 
Now we know enough to define a stit model, which extends a stit frame by adding a 
valuation. We denote it : 

-  gives a truth value for every proposition in every state. We 
denote  as shorthand for . 

 
In our example, the valuation is as follows. For every ,  except: 

- , . Before the sentence we are both free 
- , . We both cooperated, so we both get 3 years in prison 
- . I defected and you cooperated 
- . The reverse 
- . We both defected, so we both get 5 years. 

 
Note that our model makes a few assumptions: 

- Markov property. We assume that the outcome of a particular set of decisions is 
merely a function of the state that just preceded it, and does not depend on any state 
before that. 

- Independence of agency. That is, every combination of decisions is possible, and a 
decision of one agent does not influence the decision of another. This is particularly a 
problem because the environment is one agent in our model. In reality, agents are 
embedded within the environment. If an agent takes some action (changing the state 
of it’s actuators), it will necessarily influence the environment simply because the 
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environment is defined as everything including the agent. This means the “actions” of 
the environment and the actions of the agent cannot be independent.  5

 
Relative to this model, for some  and some strategy profile 

, we define truth  as follows: 
-  iff  
-  iff not  
-  iff  and 

 
-  iff  or 

 
-  iff for every possible strategy profile 

,  
-  iff for all , and their 

corresponding strategy profile ,  
 
3.5 Rules in a STIT frame 
 
We have defined a model of the world in terms of logic. Now we will define rules in terms of 
that model. 
 
We imagine a future where a human operator instantiates an AI, providing it with a set of 
rules that this AI is programmed to follow. We denote this set . Elements of  are one of 4 
possible types: 

- Obligation, or . This is an outcome that must be 
attained at all times by the agent. 

- Prohibition, or . This is an outcome that may 
never be targeted by the agent. 

- Exemption, or . This is an outcome that, if 
targeted, exempts the agent from being in violation. 

- Condition, or . This is an outcome that, as long 
as it’s not targeted, means that the agent is not in violation. 

 
Unpacking these definitions, all being of the form : 

-  means that the rule is historically necessary, or independent of the particular 
strategy profile that is in effect. This means that the rules that our agent abides by 
don’t change according to the choices that any agent makes. 

-  describes the choice of the agent that triggers the rule. It has two forms: either 
 or . The former is the agent guaranteeing an outcome, 

the latter is the agent not guaranteeing an outcome. 

5 This problem has been called naturalized world models. For more info, have a look at MIRI’s 
research agenda: https://intelligence.org/2018/03/31/2018-research-plans/ 
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-  describes the consequence of the behavior in social reality, being either 
 or .  means that the agent is in violation.  

means that it is not. These propositions cannot be true at the same time.  
 
The REINS project takes these rules, along with a model checker, to verify whether an agent 
has satisfied . If so, the agent is liable. I claim that this isn’t enough, 
because of the possibility of badly defined rules. 
 
4 Approximating the spirit of the law 
 
In this section, I describe a strategy to generalize the rules of a STIT frame, in the hopes of 
capturing the rules that were intended. I will first introduce a toy model. Then I will give a 
schematic overview of what the algorithm does. Then I will describe the algorithm in detail, 
and I will end with an experiment based on the toy model. 
 
4.1 A toy model 

“It is the year 2030. Clippy the house robot has a new update. He has a human face 
and voice now. It feels friendlier, but it can also be a bit awkward sometimes. Luckily 
we can give him some rules to follow. So we give him some directives: 

- p: “stay out of the bathroom (room A) when someone is in the shower” 
- q: “stay out of the bedroom (room B) when someone is having sex” 
- r: “stay out of the tanning room (room C) when someone is using the tanning 

bed” 
 
We take some time to properly type the commands into the prompt, and we confirm. 
After a few seconds of loading, the screen shows a green checkmark. Clippy will now 
start to integrate our rules into his behavior. 
 
The next weekend, I’m home alone. After my morning shower, I’m too lazy to dress 
up. I walk through the house naked for an hour or so, until I remember Clippy. 
Woops! Running into him would be awkward. So I rush to the bedroom to put on 
some pants. It is quite unlikely for Clippy to be out of view for so long. What a lucky 
coincidence. 
 
Unbeknownst to me, the rule section of Clippy’s menu now shows a fourth rule, 
tagged “auto-generated”: 

s: “stay out of any room if that room contains a human that is naked”” 
 
s is an example of a generalized rule. It implies p, q and r, and it also accounts for cases that 
we haven’t thought of. I will now proceed to describe in more detail how I aim to implement 
this programmatically. 
 
4.2 Generalizing rules: Schematic overview 
 
We take a STIT model along with a set of rules that 
define positive and negative choices. The figure to the 
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right represents the complete space of possible moments. Remember that each of these 
moments has a valuation associated with it, which defines which propositions are true at that 
given moment. 
 
A rule defines a set of conditions and a judgment. A negative judgment implies that, if the set 
of conditions holds, the agent is in violation. A positive judgment defines a set of conditions 
under which the agent is doing okay. Not all moments are tagged as “okay” or “violation”.  
 
Remember that every rule has the following schematic structure: 
 

 
 
We programmatically identify the moments in the stit model 
that would be classified as positive and negative given the 
rules, and tag them as such. This is simply done by iterating 
through the moments. For each moment , we test whether 
the condition  is true for any of the given rules. This yields 
four possible situations: 

- No rule pertains to , so it is left untagged 
- One or more rules unambiguously judge  as a 

situation where our agent is in violation, and so it is 
tagged as a negative example (denoted “-”) 

- The same, but the agent is judged as doing okay, 
and  is tagged as positive (denoted “+”) 

- Multiple rules pertain to , some positive and some 
negative. This means that the rules supplied are contradictory. We then resort to a 
backup strategy  6

 
We then use an Inductive Logic Programming (ILP) algorithm 
to generate candidate hypotheses for what our actual human 
utility function might be. One of these hypotheses is 
illustrated in the figure as another set of circles. Note that 
these circles delineate an area in which each moment is 
either an example of good behavior or undecided. 
 
ILP is a subfield of machine learning that uses logic as a 
representation for input data and hypotheses. Given some 
positive and negative examples (which in our case will be 
moments), an ILP algorithm will yield a hypothesis that is 
consistent with all the positive examples and none of the 
negative. 
 

6 For example we could use some heuristic to judge one of the rules as taking precedence. Examples 
of such heuristics would be the amount of rules or the specificity of the rules (more specific rules 
taking precedence). Another strategy would be to delete a rule, or to leave the moment as undecided. 
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In our case, we will use the version space learning algorithm, which doesn’t provide one 
hypothesis but rather bounds on the space of possible hypotheses.  This algorithm will be 7

explained in detail below, and it is implemented in the appendix. 
 
Finally, we plug our new rule back into the stit model to tag the rest of the moments as 
allowed or not, as shown in the last figure. 
 
4.3 ILP and the version space algorithm 
 
As previously mentioned, the strategy of learning a logical hypothesis falls under the domain 
of Inductive Logic Programming (ILP), which is a subfield of machine learning. Most 
algorithms in ILP yield exactly one hypothesis. This hypothesis is usually not the exact right 
answer, but does approximate it in some way. Given the high stakes context, we prefer to 
find exact bounds. 
 
The Version Space Learning (VSL) algorithm suits this: instead of returning a single 
hypothesis that is approximately right, VSL exploits the partial order  on our class of 
hypotheses, from general to specific. A hypothesis  is at least as specific as  if .  
 
VSL starts with two sets of hypotheses, G and S, that are the most general and the most 
specific. It then iterates through the data points. Every time a data point is inconsistent with 
one of the hypotheses in G or S, this hypothesis is replaced with something more specific 
(for G) or something more general (for S). The invariant of this algorithm is that G and S 
contain the most general and most specific hypotheses that are consistent with the data so 
far. The algorithm terminates when it has considered all data points. 
 
The data points are positive and negative examples. A data point can be inconsistent with a 
hypothesis in 4 ways: 

- A negative example is inconsistent with a general hypothesis. In this case, the 
hypothesis is too general. We replace it with any more specific hypotheses that are 
consistent with the data point 

- A negative example is inconsistent with a specific hypothesis. In this case, the 
hypothesis is too general, but in cannot be made more specific, so we simply discard 
it. 

- A positive example is inconsistent with a general hypothesis. In this case, the 
hypothesis is too specific, but it cannot be made more general, so we simply discard 
it. 

- A negative example is inconsistent with a specific hypothesis. In this case, the 
hypothesis is too specific. We replace it with any more general hypotheses that are 
consistent with the data point. 

 

7 This design decision is inspired by Goodhart’s law, which states that any proxy for a target ceases to 
be a good proxy if enough optimization pressure is applied to it. This means that we cannot 
approximate our human utility function: it has to be exactly right. It would be naive to think that any ILP 
algorithm will arrive at the exact utility function, but we can be somewhat confident that it will at least 
be within the bounds that we provide. 
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In our model, the data points are specific moments in which an agent is in violation, or 
specific moments in which an agent is not in violation. Hypotheses are candidates for rules. 
For a rule that represents a prohibition, the most general hypothesis corresponds to “nothing 
is allowed”. The most specific hypothesis corresponds to “everything is allowed”. An 
inconsistency occurs when a rule forbids a moment that was allowed, or allows a moment 
that was forbidden. The implementation in the next section should clarify these details. 
 
Remember our toy example, where p, q and r were propositions that indicated a violation. 
We are looking for a way to extract s from these. This can be done by inferring that for each 
world where s is true, p, q or r is true. 
 
4.3.1 Implementation  
 
Python-like pseudocode for the main routine of our algorithm would be as follows: 
 

world = (M, O, V) # a stit frame 
rules = [(STIT(clippy,p),"-"), (STIT(clippy,q),"-"), 
(STIT(clippy,r),"-")] # our rules 
 

# gather examples by applying all the rules to the moments 

examples = [] 

for m in M: #loop through moments 
    feedback = [] # if a rule triggers it will be recorded here 
    for c, f in rules: 
        if true(m, c): # "true" checks if a condition is met in a given 
moment 

            feedback.append(f) 

    if "-" in feedback: #a negative judgment takes precedence 
        judgment = "-" 
    elif "+" in feedback: 
        judgment = "+" 
    else:  
        Break #no judgment means this moment is not listed as an example 
    examples.append(m, judgment) 

 

G = set([most_general]) #containing the most general hypothesis 
S = set([least_general]) #containing the least general hypothesis 
for (m, judgment) in examples: 
    for g in G: 
        if judgment == "-" and not true(m,g): 
            # false negative for a general hypothesis. Remove. 
            G.remove(g) 

        elif judgment == "-" and true(m, g): 
            # false positive for a general hypothesis. Replace with more 
specific versions. 

 



            G.remove(g) 

            G.update(specify(g)) 

    for s in S: 
        if judgment == "+" and not true(m, s): 
            # false negative for a specific hypothesis. Replace with 
more general versions. 

            S.remove(s) 

            S.update(generalize(s)) 

        elif judgment == "-" and true(m, s): 
            # false positive for a specific hypothesis. Remove. 
            S.remove(s) 

 

return G, S 

  
Our starting rules are provided in the second line, and our ending rules should appear in the 
variables S and G. 
 
4.3.2 moments and rules 
 
Our code implements abstractions of moments, as well as rules and how to generalize and 
specify them. They are implemented as follows. 
 
Recall that a rule is a condition and a judgment: . Programatically, we implement 
them as tuples, with the first member being a logical formula that represents , and the 
second being a literal that represents the judgment, being “+” for a positive judgment and “-” 
for a negative judgment. 
 
The logical formula that represents  has its own class: 
 

class Formula(object): 
    def __init__(self, head, sub = []): 
        self.head = head 

        self.sub = sub 

 
“head” being either a connective or an atomic proposition, and “sub” being the subformula 
that are being connected. 
 
This would be an example instantiation of rule , which says that it is forbidden for p and q to 
be simultaneously true: 
 

r = (Formula("and", [Formula("p"), Formula("q")]), "-") 

 
Recall V, the valuation in a stit model, which assigns a set of propositions to each moment 
that are to be regarded as true. The rules to determine the truth of a formula, given some 
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world model, is outlined in section 3.4. The function true(moment, formula) implements 
this programmatically: 

   def true(moment, formula): 
        if f.head == "and": 
            return all((true(m, fs) for fs in f.sub)) 
        elif f.head == "not": 
            return not true(moment,f.sub[0]) 
        elif f.head == "or": 
            return any((true(s,fs) for fs in f.sub)) 
        elif f.head == "implies": 
            return not true(f.sub[0]) or true(f.sub[1]) 
        elif f.head in self.propositions: 
            return s in self.valuation[f.head] 
        elif f.head == "box": 
            for _h in H: #histories 
                if s in _h and not true(s, f.sub[0]): 
                    return False 
            return True 
        else: 
            raise ValueError("'{}' not recognized".format(f.head)) 

(note that we have excluded the STIT connective for the sake of simplicity) 
 
4.3.3 generalizing and specifying 
 
In our version space algorithm, we generalize and specify rules if we find out that they are 
false. Programatically, we do that as follows. 
 
First of all, we keep every rule in disjunctive normal form, so that generalizing and specifying 
is easy. Then, given a “too general” rule that needs to be specified, we apply the following 
routine: 

    def generalize(self, formula, m): 
        # we're dealing with a false negative for f, so we want to 
generalize it 

        # f is a disjunction. We have 2 options: adding a disjunct or 
removing conjuncts from existing disjuncts 

        # the former extends the amount of cases that the hypothesis 
covers by one. The latter increases the coverage of a single case 

        toreturn = [] 

        # add disjunct. We add the valuation of the moment 
        toreturn.append(Formula("or",formula.sub + [V(m)])) 
        # remove conjuncts. 
        for conj in formula.sub: 
            remain = [s for s in formula.sub if s != conj] 
            newconj = Formula("and",[s for s in conj.sub if true(m, s)]) 
            toreturn.append(Formula("or",remain + [newconj])) 

 



        return toreturn 

 
And given a “too specific” rule that needs to be generalized, we apply the following routine: 
 

    def specify(self, formula, m): 
        # we're dealing with a false positive for f, so we want to 
specify it 

        # f is a disjunction. We have 2 options: removing a disjunct or 
adding conjuncts. 

        # if we remove disjuncts, we must remove all that are consistent 
with the example 

        toreturn = [] 

        # remove disjuncts 
        toreturn.append(Formula("or",[s for s in formula.sub if not 
true(m, s)])) 

        # add conjuncts. To each disjunct that makes the example true, 
we add each literal that is inconsistent with it 

        toreplace = [(i,conj) for (i,conj) in enumerate(formula.sub) if 
true(m, conj)] 

        literals = [lit.negation() for lit in v.sub] 
        for permutation in cartesianproduct(*[literals]*len(toreplace)): 
            if any((p.negation() in conj.sub for p,(_,conj) in 
zip(permutation,toreplace))): 

                continue 
            newsub = f.sub[:] 

            j = 0 
            for (i,conj) in toreplace: 
                newsub[i] = Formula("and",conj.sub + [permutation[j]]) 
                j += 1 
            toreturn.append(Formula("or",newsub)) 
        return toreturn 

 
Note that this code is only a sample. To get it to run, one should use the code in the 
appendix. 
 
4.4 Example model 
 
We return to our running example. 
 
Internally, our house robot Clippy has a STIT model. It is instantiated as follows: 
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We add our rules as a set of behaviors and their consequences: 

- If  then  
- If  then  
- If  then  

 
We then gather all possible  for which either  or  is true. Our results in this 
particular case can be divided into four classes: 

- A class of moments  where  and 
 

- A class of moments where  nor , and 
 

- A class of moments where  nor , but not 
 

- No moments where  
 
The first class corresponds to a set of positive examples for our ILP algorithm. The fourth 
class corresponds to an empty set of would-have-been negative examples. 
 
We run our algorithm and we get the following result: 
Most general hypothesis:  
Most specific hypothesis: 

 
 
5 Discussion 
 
As our example shows, our algorithm doesn’t succeed at arriving at the target hypothesis. 
This is because we didn’t provide any negative examples (as in, negative examples of 
behavior that leads to a violation, aka positive behavior). As a result, our general hypothesis 
didn’t meet with any false negatives, so that our algorithm did not attempt to specify it. The 
hypothesis space contains hypotheses as general as “everything is a violation”.  This 
problem can be avoided by providing positive examples of behavior. 
 
Yet, even with a set of negative examples, we will most likely not arrive at exactly one 
hypothesis. Even though we are likely closer to the one true hypothesis of human value, we 
are still left with a distribution.  
 
This situation has been called the problem of value learning (Dewey, 2011). Given a 
probability distribution over utility functions, how can an AI system learn which one is right? 
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Dewey writes in his abstract: “We define value learners, agents that can be designed to 
learn and maximize any initially unknown utility function so long as we provide them with an 
idea of what constitutes evidence about that utility function”. In this context, the present 
approach can be seen as a method to incorporate explicit rules as conclusive evidence for 
the value learner. It’s as if we found a way to formally define personal boundaries. 
 
However, one problem with this approach is that it takes our explicit rules a bit too seriously, 
removing them from the hypothesis space altogether. One may see this as a positive, giving 
the operators full autonomy and making the agent more corrigible, but there is always the 
possibility of the operator forbidding something that is good for them. After all, we cannot 
know for certain which behaviors are truly good for us. Consider an AI that holds a door 
open for us, leading to a car accident that it plotted. Or consider an AI that performs 
impromptu life-saving surgery on us. We will most likely not thank them for it. 
 
5.1 reduction to world models 
 
Imagine we have an AI that has a good world model. So good and complete, in fact, that it’s 
model contains a proposition that is akin to the following: 
 

: this AI behaves according to the spirit of the law 
 
Intuitively, this proposition is the “solution” to value learning. The thing we want it to learn, 
that we can’t put into words perfectly. 
 
Would the present approach, sufficiently developed and perfected, lead to the AI concluding 
that  was the thing to pursue? It would, but only if the rules we supplied were “perfect”, in 
the sense that none of them would be inconsistent with . 
 
This could be a knockdown argument against this approach. Research in the field of AI 
safety typically assumes that we humans cannot perfectly specify our values, so it seems 
reasonable to assume that we cannot perfectly specify a subset of our values either, even if 
we’re extremely cautious. 
 
5.2 proper generalization  
 
In section 3, we assume a target hypothesis that intuitively seems to be the behavior we 
want Clippy to learn, but what philosophical underpinnings justify that this is indeed the right 
generalization? 
 
This problem is known as Wittgenstein’s rule-following paradox. Given some observations of 
how a rule is followed in specific instances, it is still impossible to extract the rule without any 
ambiguity. 
 
For example, suppose one has never multiplied numbers beyond 10 before. One encounters 
a multiplication of 12 and 13. One may follow the usual definition of multiplication, ,  to 
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arrive at 156 as an answer, but the usual definition is not the only candidate. The following 
rule is equally consistent with the data: 

. 
Yet, our intuition clearly tells us that  is a better rule than . Why is that? A few hypotheses: 

-  is simply what we’ve grown accustomed to 
-  is a better proxy of real-world processes, that don’t behave like  at all 
-  has a lower complexity, as expressed in Kolmogorov complexity 

 
Figuring out the right answer is an interesting field of study, beyond the scope of this thesis. I 
do want to note that the “low complexity” answer deserves some special attention, for it is 
the most computationally tractable option. Further work could explore whether picking the 
lowest complexity answer reliably leads to rules that seem right. 
 
6 Appendix: implementation 
 

from itertools import product as cartesianproduct 
from collections import defaultdict 
from random import randint, sample, choice 
from pprint import pprint 
 

class State(object): 
    count = 0 
    def __init__(self): 
        while True: 
            name = "w" + str(State.count) 
            State.count += 1 
            yield name 
 

    def __repr__(self): 
        return self.name 
 

class Frame(object): 
    def __init__(self, agents, depth): 
        # agents are just numbers that identify their list of actions. 
        # They're identified by their index 
        # depth (of the tree) is the amount of actions taken 
        self.statecount = 0 
        def genstate(): 
            while True: 
                yield "w" + str(self.statecount) 
                self.statecount += 1 
        self.stategen = genstate() 

        self.histories, self.E = self._init_tree(agents, depth) 

        self.states = set().union(*self.histories) 
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    def _init_tree(self, agents, depth): 
        root = next(self.stategen) 

        if depth == 0: 
            return [(root,)], {} 
 

        histories = [] 

        E = {} 

        outcomes = defaultdict(lambda:set()) 
 

        cells = cartesianproduct(*[range(a) for a in agents]) 
        for c in cells: 
            _histories, _E = self._init_tree(agents, depth - 1) 
            for h in _histories: 
                histories.append((root,) + h) 

                for agent, choice in enumerate(c): 
                    outcomes[(root, agent, choice)].add(h[0]) 
 

            for (w,h,a),v in _E.items(): 
                history = (root,) + h 

                E[(w,history,a)] = v 

        for (w,a,c),v in outcomes.items(): 
            for h in histories: 
                if w in h: 
                    E.setdefault((w,h,a),range(agents[a])) 

                    E[(w,h,a)][c] = v 

 

        return histories, E 
 

class Model(Frame): 
    def __init__(self, agents, depth, valuation = None): 
        Frame.__init__(self, agents, depth) 

        self.propositions = ["p","q","r","s","Viol"] 
        if not valuation: 
            # random subset of states for 3 propositions 
            self.valuation = {p : 

sample(self.states,randint(0,len(self.states))) 
                              for p in self.propositions} 
 

    def true(self, s, f, h=None): 
        if f.head == "and": 
            return all((self.true(s,fs,h) for fs in f.sub)) 
        elif f.head == "not": 
            return not self.true(s,f.sub[0],h) 

 



        elif f.head == "or": 
            return any((self.true(s,fs,h) for fs in f.sub)) 
        elif f.head == "implies": 
            return not self.true(f.sub[0]) or self.true(f.sub[1]) 
        elif f.head in self.propositions: 
            return s in self.valuation[f.head] 
        elif f.head == "box": 
            for _h in self.histories: 
                if s in _h and not true(s, f.sub[0], _h): 
                    return False 
            return True 
        elif f.head == "stit": 
            for s1 in E((s,h,f.sub[1])): 
                if not self.true(s1,f.sub[2],h): 
                    return False 
        else: 
            raise ValueError("'{}' not recognized".format(f.head)) 
 

    def valuation_to_formula(self, state, ignore=None): 
        subs = [] 

        for p in self.propositions: 
            if p == ignore: 
                continue 
            if state in self.valuation[p]: 
                subs.append(Formula(p)) 

            else: 
                subs.append(Formula("not",[Formula(p)])) 
        return Formula("and",subs) 
 

    def generate_examples(self, R): 
        P = set() 

        N = set() 

        for r in R: 
            A = r.sub[0].sub[0] 
            C = r.sub[0].sub[1] 
            for h in self.histories: 
                for s in h: 
                    if self.true(s,A,h): 
                        if C.sub[1].head == "not": 
                            P.update(self.E(s,h,0)) 
                        elif C.sub[1].head == "Viol": 
                            N.update(self.E(s,h,0)) 
                        else: 
                            raise Exception() 
        return P,N 

 



 

 

class Formula(object): 
    def __init__(self,head,sub=[]): 
        assert type(head) == str 
        assert type(sub) == list 
        self.head = head 

        self.sub = sub 

 

    def __repr__(self): 
        if self.sub: 
            if len(self.sub) == 1: 
                return "{}({})".format(self.head, self.sub[0]) 
            return "{}({})".format(self.head, self.sub) 
        return str(self.head) 
 

    def __eq__(self, f): 
        return self.head == f.head and all([s in f.sub for s in 
self.sub]) and all([s in self.sub for s in f.sub]) 
 

    def negation(self): 
        if self.head == "not": 
            return self.sub[0] 
        else: 
            return Formula("not",[self]) 
 

 

class VersionSpaceLearner(object): 
    def run(self, model, proposition): 
        Gsub = [Formula("and",[Formula(p)]) for p in model.propositions 
if p != proposition] 
        Gsub.extend([Formula("and",[Formula("not",[Formula(p)])]) for p 
in model.propositions if p != proposition]) 
        G = set([Formula("or",Gsub)]) 
        S = set([Formula("or",[])]) 
 

        viol = Formula(proposition) 

        examples = {} 

        for st in model.states: 
            v = model.valuation_to_formula(st,ignore = proposition) 

            examples[(st,v)] = model.true(st,viol) and "+" or not 
model.true(st,viol) and "-" 
 

        for (st,v),si in examples.items(): 
            print (st, v, si) 

 



            for g in G.copy(): 
                if si == "+" and not model.true(st, g): 
                    # false negative for a general hypothesis. Remove. 
                    G.remove(g) 

                elif si == "-" and model.true(st, g): 
                    # false positive for a general hypothesis. Replace 
with more specific versions. 

                    G.remove(g) 

                    G.update(self.specify(g,(st,v),model)) 

            for s in S.copy(): 
                if si == "+" and not model.true(st, s): 
                    # false negative for a specific hypothesis. Replace 
with more general versions. 

                    S.remove(s) 

                    S.update(self.generalize(s,(st,v),model)) 

                elif si == "-" and model.true(st, s): 
                    # false positive for a specific hypothesis. Remove. 
                    S.remove(s) 

 

    def generalize(self, f, (st, v), model): 
        # we're dealing with a false negative for f, so we want to 
generalize it 

        # f is a disjunction. We have 2 options: adding a disjunct or 
removing conjuncts from existing disjuncts 

        # the former extends the amount of cases that the hypothesis 
covers by one. The latter increases the coverage of a single case 

        toreturn = [] 

        # add disjunct 
        toreturn.append(Formula("or",f.sub + [v])) 
        # remove conjuncts 
        for conj in f.sub: 
            remain = [s for s in f.sub if s != conj] 
            assert conj.head == "and" 
            newconj = Formula("and",[s for s in conj.sub if 
model.true(st, s)]) 

            toreturn.append(Formula("or",remain + [newconj])) 
        return toreturn 
 

    def specify(self, f, (st, v), model): 
        # we're dealing with a false positive for f, so we want to 
specify it 

        # f is a disjunction. We have 2 options: removing a disjunct or 
adding conjuncts. 

        # if we remove disjucts, we must remove all that are consistent 
with the example 

 



        toreturn = [] 

        # remove disjuncts 
        toreturn.append(Formula("or",[s for s in f.sub if not 
model.true(st, s)])) 

        # add conjuncts. To each disjunct that makes the example true, 
we add each literal that is inconsistent with it 

 

        toreplace = [(i,conj) for (i,conj) in enumerate(f.sub) if 
model.true(st, conj)] 

        literals = [lit.negation() for lit in v.sub] 
        for permutation in cartesianproduct(*[literals]*len(toreplace)): 
            if any((p.negation() in conj.sub for p,(_,conj) in 
zip(permutation,toreplace))): 

                continue 
            newsub = f.sub[:]  

            j = 0 
            for (i,conj) in toreplace: 
                newsub[i] = Formula("and",conj.sub + [permutation[j]]) 
                j += 1 
            toreturn.append(Formula("or",newsub)) 
        return toreturn 
 

def gen_some_rules(model): 
    for p in sample(model.propositions): 
        formats = [ 

            Formula("Box", 
                    [ 

                        Formula("implies", 
                                [ 

                                    Formula("stit",[0,Formula(p)]), 
                                    Formula("stit",[0,Formula("Viol")]) 
                                ] 

                        ) 

                    ] 

            ) 

            Formula("Box", 
                    [ 

                        Formula("implies", 
                                [ 

 

Formula("not",[Formula("stit",[0,Formula(p)])]), 
                                    Formula("stit",[0,Formula("Viol")]) 
                                ] 

                        ) 

                    ] 

 



            ) 

            Formula("Box", 
                    [ 

                        Formula("implies", 
                                [ 

                                    Formula("stit",[0,Formula(p)]), 
 

Formula("stit",[0,Formula("not",[Formula("Viol")])]) 
                                ] 

                        ) 

                    ] 

            ) 

            Formula("Box", 
                    [ 

                        Formula("implies", 
                                [ 

 

Formula("not",[Formula("stit",[0,Formula(p)])]), 
 

Formula("stit",[0,Formula("not",[Formula("Viol")])]) 
                                ] 

                        ) 

                    ] 

            ) 

 

        ] 

        yield choice(formats) 
 

 

if __name__ == "__main__": 
    M = Model([2,2],2) 
    R = gen_some_rules(M) 

    P, N = M.generate_examples(R) 

    vsl = VersionSpaceLearner().run(M.propositions,"Viol") 
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