

Teun Kooijman

Utrecht University

Master Thesis

A MODEL FOR SOFTWARE
DEVELOPMENT TEAM
PERFORMANCE

1

Author:

T.S. Kooijman, B.Sc.

Student ID: 3970183

t.s.kooijman@students.uu.nl

First Supervisor:

 dr. ir. J.M.E.M. van der Werf

j.m.e.m.vanderwerf@uu.nl

Utrecht University

Second Supervisor:

dr. S.J. Overbeek

s.j.overbeek @uu.nl

Utrecht University

External Supervisor:

F. Verbruggen, M.Sc.

frank@diamondagile.net

Diamond Agile B.V.

2

Contents

Contents.. 2

1. Introduction .. 4

2. Research Methods ... 5

2.1 Research Questions.. 5

2.2 Methods .. 6

3. Systematic Literature Review ... 8

3.1 Methods .. 8

3.2 Execution ... 9

3.4 Discovered Metrics .. 17

3.5 Overview ... 58

4. Expert Inquiry .. 59

4.1 Experts ... 59

4.2 Suggested Metrics .. 60

5. Metric Quality Model... 68

5.1 Qualities .. 68

6. Systematic Mapping .. 70

6.1 Data Structures .. 70

6.2 Technology .. 70

6.3 Axial Encoding .. 71

7. Aggregation ... 79

7.1 Venues ... 79

7.2 Publishers .. 79

7.3 Papers .. 81

7.4 Keywords ... 81

7.5 Authors .. 82

7.6 Metric Quality Assessment ... 84

7.7 Metric Distributions ... 84

8. Team Performance Model ... 90

8.1 Candidate Metrics .. 90

8.2 Perspectives ... 91

3

8.3 Input Correlation.. 92

8.4 Tooling ... 94

9. Validation .. 98

10. Discussion .. 107

10.1 Metrics .. 107

10.2 Models ... 109

10.3 Threats to Validity .. 110

11. Conclusion ... 113

11.1 Research Questions .. 113

11.2 Limitations ... 114

11.3 Future Work ... 115

12. Acknowledgements ... 117

13. References... 118

Appendix A - Google Scholar Candidates ... 133

Appendix B - Scopus Candidates .. 136

Appendix C - Snowballing Results .. 141

Appendix D - Metric Introductions ... 143

Appendix E - Metrics per Paper ... 147

Appendix F - Papers per Metric .. 150

Appendix G - Full Aspect Encoding ... 156

Appendix H - Full Input Encoding ... 162

Appendix I - Keyword Occurrences .. 165

Appendix J - Author Occurrences ... 170

Appendix K - Metric Quality Assessment .. 173

Draft Paper .. 179

4

1. Introduction

According to the yearly State of Agile surveys, an increasing amount of software development

companies are embracing Agile in order to increase their performance. It’s methodologies boast many

positive effects, such as more flexible projects, reductions in project duration, increases in adaptation

and satisfaction, fewer deadline-transcending projects, and lower overall project costs. One of the

most prominent and oft-quoted advantage of the Agile approach is the claim that it makes your

development process more efficient (Sutherland, 2014), (Prechelt, 2019), (Leffingwell, 2018).

The methodology provides a number of ways to measure a team’s performance, such as Story Point

Velocity or Focus Factor (Padmini, Bandara & Perera, 2015), yet it remains to be seen if these are

strong measures of software development team performance. If not, this means that management

will not be able to accurately determine which teams are performing admirably, or even extremely

well, and which teams are not. At the same time, individual team members will not know whether

their team is excelling or failing.

The problem with these performance metrics is in their manner of size estimation. All size estimation

is done in terms of Story Points. Story Points are estimated from the expert opinions of the team that

is going to perform the work. First, an initial reference story is set to an arbitrary number of Story

Points. From there, the team members estimate the Story Points of the other stories in a relative

fashion, comparing the size of the work of the new story to that of the reference story and other,

already estimated stories. Their expert opinions are based on relative estimates of the effort required

for implementing the story, but are likely to be coloured by their experience, expertise, technical

aptitude, or even ulterior motives. This means that the size estimation of a story in terms of Story

Points, may differ quite substantially from team to team. Consequently, a comparison between their

performance in terms of their Story Point Velocity or Focus Factor, is inherently flawed, and easy to

game.

Until an accurate assessment of software development performance can be performed, the inability

for an organization to accurately determine the benefits that the adoption of Agile has brought them

in terms of efficiency, remains (Oszewska, 2016).

[Problem Statement] In this thesis, we will attempt to devise or consider a new model, which can be

used to accurately measure the performance of a software development team. The following chapters

of this thesis describe the execution of this attempt.

5

2. Research Methods

In this chapter, we will devise a primary research question and divide it into several sub-questions.

Finally, we will go over the research methods that we will use for our investigation.

2.1 Research Questions

This section introduces the main research question. By answering this question, we will have defined

or considered a new set of metrics for measuring team performance. The main research question is

outlined below, labelled R1.

R1: How can we measure the performance of a

software development team?

Subsequently, the main research question is supported by three additional sub-questions. These sub-

questions are outlined below, labelled S1 through S3.

Before we can determine how we can accurately measure the performance of a software

development team, we need to determine what constitutes an accurate and objective metric in the

first place. The following sub-question addresses this need.

S1: What constitutes a strong software development metric?

In order to determine what constitutes a valid and accurate efficiency metric, we need to determine

what metrics already exist today. Additionally, we will need to extrapolate what makes these metrics

valid or accurate. The following sub-question addresses this.

S2: Which software development metrics already exist today?

Finally, we need to determine what set of software development metrics is most suitable for

measuring team performance, based on their strength, their domain, and the potential correlations

caused by a shared set of input data-points. The following sub-question addresses this need.

S3: What set of software development metrics is most suitable

for measuring team performance?

6

2.2 Methods

In our attempt to answer the various research and sub-questions, we will employ a Grounded Theory

approach, consisting of a data-collection phase, and a data-structuring phase. Afterwards, two new

models are constructed, based on discussions and conversations about the collected data with

prevalent experts in the field. Finally, the constructed models are subjected to a preliminary

validation, gauging their perceived clarity, relevance and completeness.

2.2.1 Data Collection

2.2.1.1 Structured Literature Review

In order to determine the current state of the literature, we will perform a structured literature

review, consisting of two phases. In the first phase, an automated search on Google Scholar and

Scopus is performed, followed by the second phase, in which the results are snowballed, based on the

snowballing technique outlined in (Wohlin, 2014). The aim of this investigation is to determine what

software development metrics exist in literature today.

2.2.1.2 Expert Inquiry

Additionally, an expert inquiry will be held among some prevalent experts in the field, where the

collected set of metrics will be presented and discussed. The aim of this expert inquiry is to determine

additional software development metrics which could potentially be strong metrics for team

performance, that have not been discovered in literature.

2.2.2 Data Structuring

2.2.2.1 Axial Encoding

The software development metrics that are found, as well as the aspects of the software development

process that they target, and their individual input data-points, are then processed using the Grounded

Theory approach of axial encoding. Here, the concepts will be encoded into a final set of aspects and

input groups.

2.2.2.2 Systematic Mapping

The software development metrics that are found, will be systematically mapped in a graphing

database, along with the inputs required to calculate them, the papers that mention them, the authors

who wrote them, the keywords those papers use, the journals in which they were published, and the

publishers who published them. This systematic mapping is subsequently used for the theory building

phase that follows.

7

2.2.3 Grounded Theory Building

2.2.3.1 Model for Metric Strength

The software development metrics that are found, as well as their aspects and inputs, and the

systematic mapping, are presented to and discussed with the experts. In these discussions, we will

attempt to extrapolate the expert’s tacit knowledge about determining which metrics can be

considered strong, and which metrics can be considered weak. This tacit knowledge will then be

distilled in a newly devised model for metric strength. All of the encountered metrics can subsequently

be assessed on their strength, using the new model.

2.2.3.2 Model for Team Performance

Subsequently, we construct a model for team performance, based on additional discussions and

conversations with the experts. This model is to focus on a set of metrics targeting a broad set of

software development process aspects, while sharing a minimum amount of input data-points so that

cause-and-effect can be more easily isolated.

2.2.3.3 Validation

Finally, we probe the perceived clarity, relevance and completeness of the models using a preliminary

validation survey among professionals in the field. A thorough validation process is postponed to

future work.

2.2.4 Deliverables
The primary deliverable of this thesis will thus be the systematic mapping of the available software

development metrics in industry and literature, which is embodied in a graph database. Similarly, a

newly devised model for metric strength will be constructed, as well as a newly devised model for

team performance.

8

3. Systematic Literature Review

In this chapter, we will detail the execution and the results of our systematic literature review,

consisting of two phases. The first phase identifies a starting set through an automated search process,

whereas the second phase aims to identify missing work, based on Wohlin’s snowballing technique

(2014), until an iteration no longer results in additional discovered relevant metrics. The aim of this

review is to discover as many software development metrics as possible. The process denoted in the

remainder of this section was performed on Google Scholar, and duplicated on Scopus.

3.1 Methods

3.1.1 Inclusion Criteria

The inclusion criteria used for selecting or discarding literature was kept as broad as possible. The

selected papers should be written in English, and should be published in a peer-reviewed journal, or

presented at a venue which was facilitated by a peer-reviewed journal, such as a conference or

workshop. We will not employ inclusion criteria based on year of publication, specific authors or

specific journals. The latter two because we want to evade any such bias, and the former because we

deem year of publication to be irrelevant to our purpose. The final decision on whether or not to

include a piece of literature is done through manual examination of the candidate work. Here, the

abstract of the candidate is examined, and if needed, the paper is thoroughly studied. In this

examination, we will look for the presence of metrics in the work, that are deemed relevant to the

field of software development. In the context of this review, a relevant metric is defined as a metric

that can be used to measure any aspect of a software development process. This results in the

following collection of inclusion and exclusion criteria:

• [exclusion] is not written in English;

• [exclusion] is not published in a peer-reviewed journal, or not presented at a venue which

was facilitated by a peer-reviewed journal;

• [inclusion] must mention relevant software development metrics that have not yet been

mentioned in previous snowballing iterations.

9

3.1.2 Approach

A starting set of literature will be selected using an automated search on four different queries. These

queries will be executed on the academic search engines Scopus and Google Scholar. From this starting

set, backward and forward snowballing will be performed until an iteration no longer yields any

additional included work.

The following sections will detail the execution details of our systematic literature review, and we will

end this chapter by providing a brief summary and discussion of the collected work.

3.2 Execution

3.2.1 Start Set

The search for the starting set of literature was performed on Tuesday the 22nd of January, 2019. In

the following section, we will introduce each of the search queries used to generate a part of the

starting set. Note that these search queries were devised so as to get an extremely varied start set.

This was done by approaching the field from many different angles. The result sets for some of these

queries on Google Scholar were so large, that complete analysis was unfeasible for the size and scope

of this study. This has caused us to make compromises in terms of validity, for the sake of time. This

means that, instead of analysing over 3.500.000 results in order to generate a starting set, only the

first ten results were considered for inclusion when performing the automated search on Google

Scholar. On Scopus, however, the entire result set was considered, as it was significantly smaller. This

consolidation is a severe threat to the validity of our results.

The search queries performed on both Google Scholar and Scopus are listed below in table 1, together

with the total amount of results that were returned.

Search Engine Query Results

Google Scholar Software Development Metrics 3.590.000

Google Scholar Agile Efficiency Metrics 42.200

Google Scholar Scrum Productivity Metrics 7.170

10

Google Scholar Agile Productivity 115.000

Scopus Software Development Metrics 14

Scopus Agile Efficiency Metrics 42

Scopus Scrum Productivity Metrics 7

Scopus Agile Productivity 1

Table 1 - Automated Search Queries and Amount of Results

3.2.1.1 Google Scholar

The results of the automated search on Google Scholar are outlined in Appendix A. From this set of

candidate literature, we extract a start set of literary work according to the set of inclusion and

exclusion criteria introduced in section 3.1.1. The first criteria is whether or not the work is written in

English. All of the candidates pass this criteria. Subsequently, the next criteria is whether or not the

work is published in a peer-reviewed journal. This criteria eliminates candidates GS.2.03, GS.2.08 and

GS.2.09. Finally, the candidates that were left over were inspected in more detail, to determine

whether or not it mentions relevant software development performance metrics, as described in

section 3.1.1. The results of the application of the inclusion criteria can be found in table 2 below.

This lead to the inclusion of 12 candidate works.

Candidate English Peer Reviewed Relevant Metrics Included

GS.1.01 Yes Yes No No

GS.1.02 Yes Yes Yes Yes

GS.1.03 Yes Yes No No

GS.1.04 Yes Yes Yes Yes

GS.1.05 Yes Yes No No

GS.1.06 Yes Yes No No

GS.1.07 Yes Yes No No

GS.1.08 Yes Yes No No

GS.1.09 Yes Yes No No

GS.1.10 Yes Yes No No

GS.2.01 Yes Yes No No

GS.2.02 Yes Yes No No

GS.2.03 Yes No N.A. No

GS.2.04 Yes Yes No No

11

GS.2.05 Yes Yes No No

GS.2.06 Yes Yes Yes Yes

GS.2.07 Yes Yes No No

GS.2.08 Yes No N.A. No

GS.2.09 Yes No N.A. No

GS.2.10 Yes Yes No No

GS.3.01 Yes Yes Yes Yes

GS.3.02 Yes Yes Yes Yes

GS.3.03 Yes Yes No No

GS.3.04 Yes Yes Yes Yes

GS.3.05 Yes Yes Yes Yes

GS.3.06 Yes Yes Yes Yes

GS.3.07 Yes Yes Yes Yes

GS.3.08 Yes Yes No No

GS.3.09 Yes Yes No No

GS.3.10 Yes Yes Yes Yes

GS.4.01 Yes Yes No No

GS.4.02 Yes Yes No No

GS.4.03 Yes Yes No No

GS.4.04 Yes Yes Yes Yes

GS.4.05 Yes Yes No No

GS.4.06 Yes Yes Yes Yes

GS.4.07 Yes Yes No No

GS.4.08 Yes Yes No No

GS.4.09 Yes Yes No No

GS.4.10 Yes Yes No No

Table 2 - Applied Inclusion Criteria on Google Scholar (GS) Candidates

3.2.1.2 Scopus

The results of the automated search on Scopus are outlined in Appendix B. From this set of candidate

literature, we extract the second part of the starting set of literary work according to the set of

inclusion and exclusion criteria introduced in section 3.1.1. All of the candidates are written in English

and published in a peer-reviewed journal, or presented at a venue that is facilitated by a peer-

reviewed journal. Then, 18 candidates were found to mention relevant software development

metrics, which were subsequently included in the starting set. The results of applying these criteria

are shown below in table 3.

Candidate English Peer Reviewed Relevant Metrics Included

12

SC.1.01 Yes Yes Yes Yes

SC.1.02 Yes Yes No No

SC.1.03 Yes Yes Yes Yes

SC.1.04 Yes Yes No No

SC.1.05 Yes Yes Yes Yes

SC.1.06 Yes Yes No No

SC.1.07 Yes Yes No No

SC.1.08 Yes Yes No No

SC.1.09 Yes Yes No No

SC.1.10 Yes Yes No No

SC.1.11 Yes Yes No No

SC.1.12 Yes Yes No No

SC.1.13 Yes Yes Yes Yes

SC.2.01 Yes Yes No No

SC.2.02 Yes Yes No No

SC.2.03 Yes Yes No No

SC.2.04 Yes Yes No No

SC.2.05 Yes Yes No No

SC.2.06 Yes Yes Yes Yes

SC.2.07 Yes Yes No No

SC.2.08 Yes Yes Yes Yes

SC.2.09 Yes Yes Yes Yes

SC.2.10 Yes Yes No No

SC.2.11 Yes Yes No No

SC.2.12 Yes Yes No No

SC.2.13 Yes Yes No No

SC.2.14 Yes Yes No No

SC.2.15 Yes Yes No No

SC.2.16 Yes Yes No No

SC.2.17 Yes Yes No No

SC.2.18 Yes Yes No No

SC.2.19 Yes Yes Yes Yes

SC.2.20 Yes Yes No No

SC.2.21 Yes Yes Yes Yes

SC.2.22 Yes Yes No No

SC.2.23 Yes Yes No No

SC.2.24 Yes Yes No No

SC.2.25 Yes Yes No No

SC.2.26 Yes Yes No No

SC.2.27 Yes Yes No No

13

SC.2.28 Yes Yes No No

SC.2.29 Yes Yes No No

SC.2.30 Yes Yes No No

SC.2.31 Yes Yes No No

SC.2.32 Yes Yes No No

SC.2.33 Yes Yes Yes Yes

SC.2.34 Yes Yes No No

SC.2.35 Yes Yes Yes Yes

SC.2.36 Yes Yes No No

SC.2.37 Yes Yes Yes Yes

SC.2.38 Yes Yes No No

SC.2.39 Yes Yes No No

SC.2.40 Yes Yes No No

SC.2.41 Yes Yes No No

SC.2.42 Yes Yes Yes Yes

SC.3.01 Yes Yes No No

SC.3.02 Yes Yes No No

SC.3.03 Yes Yes No No

SC.3.04 Yes Yes Yes Yes

SC.3.05 Yes Yes Yes Yes

SC.3.06 Yes Yes Yes Yes

SC.3.07 Yes Yes Yes Yes

SC.4.01 Yes Yes Yes Yes

Table 3 - Applied Inclusion Criteria on Scopus (SC) Candidates

3.2.2 Snowballing

From here on out, no more distinctions will be made between work retrieved using Scopus, and work

retrieved using Google Scholar. For all included work, snowballing will be performed until an iteration

no longer yields new software development metrics. As snowballing has a huge potential for blowing

up, and this study is limited in terms of time and resources, references will initially be judged on their

title. Only if a title indicates that the work might mention new software development metrics, is the

reference inspected more closely. If it is then determined that the work mentions no new relevant

software development metrics, it is discarded after all, and the snowballing path for that branch ends

there.

14

3.2.2.1 Backwards Snowballing

The backwards snowballing process identified 18 additional literary works to be included in the review.

These additional works were identified in four iterations of backwards snowballing. The details of

these iterations can be found in Appendix C.

3.2.2.2 Forwards Snowballing

Forwards snowballing was performed by using the Google Scholar search tools to repeat the defined

queries on each of the starting set’s paper’s citations. It is interesting to note here, that this process

did not actually yield any additional work to be included. We presume that this is primarily because of

the fact that it was performed after having performed the backwards snowballing, causing all of the

work to be excluded due to the fact that it mentioned no new software development metrics. This

points at a decent probability of having included a significant portion of the available body of

knowledge. While we find that the probability is quite low, there might still exist clusters of literary

work that are completely separated from any of the works in the starting set.

3.2.2.3 Visual Representation

A visual representation of the relationships between works included in the start set, and those

identified through the snowballing process, is shown below in figure 1.

15

Figure 1 - Included Work and their Snowballing Relationships

3.2.3 Rebranding
Before we continue, we re-brand the selected work according to the mapping displayed in table 4.

Note that GS.4.06 is actually the same work as GS.3.07, and has therefore been left out of the table.

The same applies to SC.3.04, being a duplicate of SC.2.20, SC.3.05, being a duplicate of GS.3.01, and

SC.4.01, being a duplicate of GS.3.10. In total, the Scopus and Google Scholar candidate sets showed

little overlap, with only 6 overlapping candidate works.

16

Source Candidate ID Inclusion ID
Reference

Google Scholar

 GS.1.02 P1.01 Jefferey, Ruhe & Wieczorek, 2001

 GS.1.04 P1.02 Boehm, Abts & Chulani, 2000

 GS.2.06 P1.03 Padmini, Bandara & Pererea, 2015

 GS.3.01 P1.04 Downey & Sutherland, 2013

 GS.3.02 P1.05 Greening, 2010

 GS.3.04 P1.06 Agarwal & Majumdar, 2012

 GS.3.05 P1.07 Sutherland, Schoonheim & Rijk, 2009

 GS.3.06 P1.08 Sutherland, Harrison & Riddle, 2014

 GS.3.07 P1.09 Maurer & Martel, 2002

 GS.3.10 P1.10 Shah, Papatheocharous & Nyfjord, 2015

 GS.4.04 P1.11 Moser, Abrahamsson, pedrycz, Sillitti & Succi, 2008

Scopus

 SC.1.01 P1.12 Bhardwaj & Rana, 2016

 SC.1.03 P1.13 Fitzegrald, Musial & Stol, 2014

 SC.1.05 P1.14 Calikli, Bener, Aytac & Bozcan, 2013

 SC.1.13 P1.15 Moreau & Dominick, 1989

 SC.2.06 P1.16 Beer & Felderer, 2018

SC.2.08 P1.17

Alfraihi, Lano Kolahdouz-Rahimi, Sharbaf &
Haughton, 2018

SC.2.09 P1.18

Lano, Alfraihi, Kolahdouz-Rahimi, Sharbaf &
Haughton, 2018

 SC.2.19 P1.19 Rosero, Gómez & Rodríguez, 2016

 SC.2.21 P1.20 Grimaldo, Perrotta, Corvello & Verteramo, 2016

SC.2.33 P1.21

Cuatrecasas-Arbos, Fortuny-Santos & Vitro-Sanchez,
2011

 SC.2.35 P1.22 Koru & El Emam, 2009

 SC.2.37 P1.23 Khadem, Ali & Seifoddini, 2008

 SC.2.42 P1.24 Kupiainen, Mäntylä & Itkonen, 2015

 SC.3.06 P1.25 Huijgens & Van Solingen, 2013

 SC.3.07 P1.26 Sjøberg, Johnsen & Solberg, 2012

Snowballing Iteration 1

 SN.1.01 P2.01 Minkiewicz, 1998

 SN.1.02 P2.02 Oza & Korkala, 2012

 SN.1.03 P2.03 Kunz, Dumke & Zenker, 2008

 SN.1.04 P2.04 Kemerer & Paulk, 2009

 SN.1.05 P2.05 Rosenburg & Hyatt, 1997

 SN.1.06 P2.06 Demeyer, Ducasse & Nierstrasz

 SN.1.07 P2.07 Sahraoui, Godin & Miceli, 2000

 SN.1.08 P2.08 Petersen & Wohlin, 2011

 SN.1.09 P2.09 He, Avgeriou, Liang & li, 2016

17

 SN.1.10 P2.10 Leung & White, 1991

Snowballing Iteration 2

 SN.2.01 P2.11 Hartmann & Dymond, 2006

 SN.2.02 P2.12 Mahnic & Zabkar, 2008

 SN.2.03 P2.13 Tegarden, Sheetz & Monarchi, 1992

 SN.2.04 P2.14 Damm, Lundberg & Wohlin, 2006

 SN.2.05 P2.15 Fontana, Braione & Zanoni, 2012

 SN.2.06 P2.16 Li, Liang, Avgeriou & Guelfi, 2014

Snowballing Iteration 3

 SN.3.01 P2.17
Oliveira, Redin, Carro, Da Cuhna Lamb & Wagner,

2008

Snowballing Iteration 4

 SN.4.01 P2.18 Aggarwal, Singh, Kaur & Malhotra, 2006

Table 4 - All Included Work

3.4 Discovered Metrics

The following section details the results of the analysis of the included work.

3.4.1 Scrum Metrics

The first category of discovered metrics are those that are closely related to Scrum. Being the most

prevalent Agile framework in the world, Scrum advertises itself as a framework within which people

can address complex adaptive problems, while productively and creatively delivering products of the

highest possible value. In its attempt to deliver, it is lightweight, highly iterative, and extremely

empirical.

3.4.1.1 Story Points and Velocity

The most prevalent metric we encountered for size estimation is Story Points. This metric was

mentioned by P1.03, P1.04, P1.05, P1.06, P1.07, P1.12, P1.24, P2.02, P2.11, and P 2.12. Most of these

also mentioned the efficiency metric of Velocity. These metrics are widely known and used throughout

the agile community, as they are a standard part of Scrum. As explained in the introduction, story

point estimation employs a Delphi approach towards size estimation, and thus leads to a velocity that

is heavily coupled to the professionals who performed the estimation. This in turn results in a metric

that is difficult to compare across different teams.

18

3.4.1.2 Accuracy of Forecast and Accuracy of Estimation

Study P1.03, as well as P1.04, mention the Accuracy of Forecast and Accuracy of Estimation metrics.

While both of these metrics are closely related to Scrum, they are not an integrated part of the

standard Scrum methodology. They are also closely related to the metrics of Percentage of Found

Work and Percentage of Adopted Work. The Accuracy of Estimation refers to the team’s ability to

accurately estimate their story backlog items. Measuring the Accuracy of Estimation involves adjusting

the story point estimate of user stories post-sprint, to reflect the actual effort that was involved in

implementing the story. The Accuracy of Estimation is then defined by the sum of the changes in story

point estimates, divided by the total initial story point commitment of the sprint. This definition is

outlined below in equation 1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 −
∑(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝐷𝑒𝑙𝑡𝑎𝑠)

∑(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠)

Equation 1 – Accuracy of Estimation

The author of these metrics, Jeff Sutherland, implies that the ideal value for this metric is somewhere

between 72% and 88%. A value higher than that indicates that the team is spending an inordinate

amount of time researching and digesting information on what the story backlog item entails. Lower

than 72% indicates that the story backlog items are too poorly understood upon estimation, and

signals that an investigation on outside pressures on the team is necessary by the Scrum Master.

The Accuracy of Forecast instead measures the team’s ability to accurately estimate the work they can

accomplish in their sprints. The metric looks at the sum of the original estimates of a sprint’s story

backlog items, and compares it to the sum of the actual effort that was involved in implementing it.

The latter is defined by the sum of the original estimates of a sprint’s story backlog items, as well as

the sum of their additional found work, and the sum of the adopted work. The latter two metrics are

described in section 3.4.1.3. It’s official definition is outlined below in equation 2.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =
∑(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠)

∑(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠) + ∑(𝐹𝑜𝑢𝑛𝑑 𝑊𝑜𝑟𝑘) + ∑(𝐴𝑑𝑜𝑝𝑡𝑒𝑑 𝑊𝑜𝑟𝑘)

Equation 2 - Accuracy of Forecast

19

Here, Jeff Sutherland implies that the ideal value for this metric is somewhere between 75% and 90%.

Any higher than that, and the Scum Master will need to evaluate the environment of the team to make

sure that they feel safe making a good faith effort at more work. Lower than 75% usually indicates

that the team is not sufficiently protected by the Scrum Master from outside forces, leading to story

backlog items inside the sprint that aren’t sufficiently worked out, have no clear definition of done, or

are still waiting for dependencies to be resolved.

In the end, study P1.03 found that 54% of the teams they investigated used this metric, while 58% of

the teams used the Accuracy of Estimation metric. This lead them to be the 16th and shared

17th/18th/19th/20th most used metric they encountered.

3.4.1.3 Percentage of Adopted Work and Percentage of Found Work

Both P1.03 and P1.04 mention the metrics of Percentage of Adopted Work and Percentage of Found

Work. The first study found 81% of the teams they interviewed used the first of the two metrics,

making it the fourth most commonly used metric of the 22 that they encountered. Adopted work is

defined as new work pulled into the sprint, because the team has completed its forecast. The

percentage of adopted work is then defined as the sum of the original estimates of the adopted work,

divided by the sum of the original estimates of the items that were initially included in sprint.

Similarly, found work is defined as the unexpected extra work that is necessary to complete a backlog

item. The percentage of found work is then defined as the sum of the increase in estimates, divided

by the sum of the original estimates of the items that were initially included in the sprint. These metrics

can be useful post-sprint to determine how accurate the initial estimates were.

Closely related to these metrics are the Average Number of Stories Added to an Iteration and the

Average Number of Stories Removed from an Iteration. These metrics were mentioned by P2.02, and

essentially measure the same concepts, yet are not normalized on story point estimates.

3.4.1.4 Effort Burndown

Additionally, studies P1.03, P1.04, P1.06 and P1.24 also mention the Sprint Level Effort Burndown.

This metric is also widely adopted as a standard part of the Scrum process, but will most likely require

some form of automated tooling to measure. The metric determines the relationship between the

remaining work capacity and the remaining estimated effort of a sprint over the duration of that

20

sprint. Ideally, this relationship should have a negative linear direction from 100% to 0% work capacity

and remaining effort. This metric gives the team a post-sprint indication of how accurate their

estimation of the backlog items in that sprint was. Similarly, the Release Level Effort Burndown is also

mentioned by study P1.24, shifting the scope of the metric from an individual sprint to an entire

release.

3.4.1.5 Enterprise Velocity

Study P1.05 mentions scaling the Story Point Velocity metric to an entire enterprise, dubbing the

resulting metric the Enterprise Story Points and Enterprise Velocity. The paper states that an Enterprise

Story Point is roughly equivalent to “estimated team months times 100”. This seemingly arbitrary

measure is then used to determine the velocity of the entire organization, as opposed to a single team.

3.4.1.6 Focus Factor

P1.03 and P1.04 mention the Focus Factor metric. The metric is defined as the story point velocity of

a team, divided by the total amount of hours (or Work Capacity) that the team has spent on the project

during that sprint. It essentially measures the story point velocity per working-hour, instead of per

sprint, and can thus be used to normalize velocity over the amount of team members.

3.4.1.7 Stories per Iteration

While most studies mention using Story Point Velocity when trying to gauge efficiency, P2.02 also

mentions using a raw count of the amount of stories delivered per iteration as a means of measuring

efficiency, but it does not take in to account the apparent size differences between stories at all.

3.4.1.8 Stories per Day per Developer

Similarly, P2.02 mentions using a raw count of the amount of Stories Delivered per Day per Developer

as a means of measuring efficiency. Again, this metric does not take into account the apparent size

differences between stories at all, and can be expected to fluctuate more wildly than its per iteration

cousin.

21

3.4.1.9 Targeted Value Increase

Studies P1.03 and P1.04 both mention the Targeted Value Increase metric. It denotes by how much

the team has overshot (or undershot) their expected story point velocity for a particular sprint. In

essence, it is a ratio between the sprint’s actual velocity and the velocity that was forecast based on

historical data. The official definition it outlined below in equation 3.

𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 =
𝑆𝑝𝑟𝑖𝑛𝑡′𝑠 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

Equation 3 - Targeted Value Increase

In P1.03, the metric was the least encountered metric, with only 35% of the investigated teams

indicating that they used the metric.

3.4.1.10 Success at Scale

Studies P1.03 and P1.04 introduce the Success at Scale metric. This metric can actually be calculated

for each value along the Fibonacci sequence, which are used to estimate story backlog items in terms

of story points. The metric works by looking at all of the stories that have been estimated with a

specific Fibonacci value (e.g. all story backlog items that have been estimated as 8 story points worth

of effort). Then, the Success at Scale metric for Fibonacci value 8 is defined as the total amount of

story backlog items that were estimated as 8 story points worth of effort, that have ever been

successfully implemented in a single sprint, divided by total amount of attempts to do so. This official

definition is outlined below in equation 4.

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑎𝑡 𝑆𝑐𝑎𝑙𝑒(𝑖) =
𝑆𝑢𝑐𝑐𝑒𝑠𝑓𝑢𝑙 𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑝𝑟𝑖𝑛𝑡 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑖

𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 𝑡𝑜 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑖 𝑖𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑝𝑟𝑖𝑛𝑡

Equation 4 - Success at Scale

The metric can help a team to determine whether or not it is wise to include a story backlog item of a

particular effort estimation size into the sprint, even if it appears to fit within their projected velocity.

The author does, however, stress that a team should never be denied the opportunity to try, but

including a 13 point story backlog item when it has been unsuccessful 19 out of 20 times might be

unwise, and the team might be better off splitting up the functionality into multiple, smaller stories.

22

3.4.1.11 Win/Loss record

The authors of P1.03 and P1.04 also introduce the concept of keeping a win/loss record. In their

definition, a sprint can only be deemed a win if (a) a minimum of 80% of the work is accepted into

production, and (b) the sum of the found and adopted work during the sprint remains at 20% or less

of the original sprint forecast. The evolution of wins versus losses can then be tracked over time in

order to determine whether or not the team is improving. This is essentially a measure of how capable

the team is in estimating the required effort of a work-item.

3.4.1.12 Yesterday’s Weather

In P1.08, the author introduces the Yesterday’s Weather metric. It denotes the unabridged, absolute

amount of story points that was delivered into production in the last sprint. Here, Jeff Sutherland, Neil

Harrison and Joel Riddle argue that “Yesterday’s Weather is, in most cases, the most reliable predictor

of how many story points the team will complete in the next sprint”.

3.4.1.13 Summary

While some of the discovered Scrum metrics, such as Story Points and Velocity, were introduced

directly at the genesis of Scrum, many have been introduced more recently. Virtually all of these

metrics tell the user something about their capabilities in terms of estimating required effort and

projecting commitment. Yet, they tell very little about actual effort, productivity, performance or

speed.

3.4.2 Lean Metrics

The Lean Manufacturing philosophy, originating from the industrial manufacturing industry, has had

considerable impact on software development in the form of Lean Software Development. The

philosophy promotes eliminating waste from the development process, and limiting the concurrent

amount of work-in-progress, in order to minimize the lead-time of individual stories.

23

3.4.2.1 Lead Time

The metric of Lead Time was mentioned in studies P1.03, P1.21, P1.23, P1.24 and P1.26, and measures

the total time it takes for a particular component to go from conception to being delivered to its user.

In the world of industrial manufacturing, this is the time it takes to create one additional product from

start to finish (e.g. from when a new car is ordered to when it is delivered to the customer). In the

world of software development, this is often the time between getting a request for a particular

functionality from a customer, to having that functionality available to that customer in its production

environment. This metric is also sometimes referred to as Total Time.

3.4.2.2 Queue Time

Studies P1.03, P1.21, P1.24 and P1.26 also mention the metric of Queue Time, which is most often

defined in the world of software development as the time in which a particular story is defined, but is

not yet picked up by a developer (e.g. sitting idle on a backlog). In industrial manufacturing, it is

defined as the time in which a particular component “sits around waiting for someone to work on it”.

The shorter a team can keep its Queue Time, the shorter its Lead Time will be as a result.

3.4.2.3 Cycle Time

Studies P1.23, P1.24 and P2.02 also mention the metric of Cycle Time, which is defined as the total

amount of time that elapsed from the moment the work on that task is started, until its completion. In

software development, this means the time from when a particular story is first being worked on, until

its functionality is available in the production environment(s).

3.4.2.4 Interrupted Time

Study P1.20 mentions the Interrupted Time, indicating the amount of time that was spent on a

particular component, but did not produce any tangible outcome. An example of interrupted time

could be a co-worker who comes and asks you a question for ten minutes, while you were working on

a particular component. The Interrupted Time is closely related to the Value-Added Time introduced

in the next section, as they are each other’s inverse.

24

3.4.2.5 Value Added Time

Additionally, studies P1.23 and P2.08 also mention the Lean metric of Value-Added Time. This is

defined as the amount of time that was spent on a particular component, that did produce tangible

outcome. Study P1.24 mentions the Actual Development Time metric, which is not clearly defined in

the paper, but presumed to be the same as Value Added Time.

3.4.2.6 Work in Progress

Studies P1.03, P1.13, P1.21, P1.23, P1.24 and P1.26 all mentioned the Work in Progress metric. This

metric denotes the amount of components that is being worked on concurrently at a particular time.

Additionally, P1.21 and P1.23 also mention the Average Work in Progress, while P1.23 and P1.26

mention the Maximum Work in Progress. The idea behind this metric is that superfluous context

switching is harmful to productivity, and should be kept to a feasible minimum.

3.4.2.7 Common Tempo Time or Task Time

P1.24 and P2.08 mention the Common Tempo Time metric. This metric is fairly similar to the Cycle

Time metric, and is defined as the net working hours available divided by the number of work items

required. In traditional industrial manufacturing, it provides an estimated cycle time needed in order

to accomplish the required work items, given the available working hours. E.g. if a particular factory

needs to produce 50.000 paperclips, and they can produce 25.000 paperclips per 8 hour day, the

Common Tempo Time would be 50.000 / (16 * 60 * 60), and the factory would thus need a Cycle Time

of 0.87 seconds per paperclip. Applied to software development, this gives the team an indication of

how much time, on average, they have left per work item (or normalized on story points) that needs

to be delivered. P1.21 refers to this metric as Task Time.

3.4.2.8 First Time Yield

Study P1.23 mentions the First Time Yield metric. This metric is defined as the percentage of units

produced without a defect, and can be calculated by the formula denoted below in equation 5. In

classical industrial manufacturing the production of a defective unit can yield quite devastating effects

in the sense that an entire product might need to be discarded. In software development, however,

defective units can often be repaired with a patch or update. However, the financial consequences of

25

a defective unit might be far larger in a software development context. The First Time Yield metric can

thus be a relevant indicator in both contexts.

𝐹𝑖𝑟𝑠𝑡 𝑇𝑖𝑚𝑒 𝑌𝑖𝑒𝑙𝑑 =
𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 − 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

Equation 5 - First Time Yield

3.4.2.9 Flow Efficiency

Study P1.24 mentions the concept of Flow Efficiency. This Lean metric measures the percentage of

time spent adding value to a particular component, and can be calculated by the formula denoted

below in equation 6. In the domain of software development, this is more commonly known as a

Kanban metric, but its roots lie in Lean Manufacturing. This measure directly translates Lean’s focus

on eliminating waste into an easy to grasp and easy to optimize metric for efficiency.

𝐹𝑙𝑜𝑤 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑉𝑎𝑙𝑢𝑒 𝐴𝑑𝑑𝑒𝑑 𝑇𝑖𝑚𝑒

𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒

Equation 6 - Flow Efficiency

3.4.2.10 Throughput

Study P1.24 also mentions the Throughput metric, which is defined as the number of units processed

by a given phase or activity, per unit of time. While traditionally more of an industrial manufacturing

metric, Throughput can be thought of in terms of Story Point Velocity, or even a simple count of work-

items delivered in the context of software development.

3.4.2.11 Summary

The majority of Lean Manufacturing metrics are generic enough to be applicable to any phased

process, and are thus implemented almost exactly as-is in the Lean Software Development movement.

The optimum values, however, may lay at wildly different numbers for each of these practices. In

software development, for example, where faulty components can be easily fixed, the consequences

of producing a faulty component are much less severe than in industrial manufacturing, where the

entire component might need to be discarded. A metric such as First Time Yield will thus have to be

much closer to 100% in industrial manufacturing than in software development. Similarly, the adverse

26

effects of context switching might be less severe for industrial manufacturers than for software

developers, resulting in a different optimal value for Work in Progress.

3.4.3 Function Points

Another oft-recurring metric is the Function Point metric, which was introduced by Albrecht in 1979

as a unit of measurement to express the amount of business functionality an information system

provides to a user. In the process of function point size estimation, requirements are categorized into

inputs, outputs, inquiries, internal files and external interfaces. For each of these classified

requirements, an estimation of their complexity is made using function points. This approach leads to

requirements that are very user-oriented, and allows for an easy mapping of functions to end-user-

functionality. Function point analysis requires individuals with loads of expertise to assess the

requirements, which can cause problems in communication with other stakeholders. Additionally, the

measure is not truly objective, even after thorough assessment by experts. The biggest drawback of

function point analysis, however, is the fact that it tends to overlook internal functions, such as

algorithms, which also require resources to implement. Over the years, many different forms of

function point analysis have surfaced, each attempting to fix the perceived weaknesses of the original

proposal, which is also known as IFPUG, and is specified in the ISO 20926 standard. There are several

officially recognized standards and specifications for these other functional size measurement

methods. These are COSMIC (ISO 19761), FiSMA (ISO 29881), Mark-II (ISO 20968), and Nesma (ISO

24570). Other forms of function point analysis, not officially encapsulated in ISO standards, include

ESTIMACS, AFP and SPQR/20. Function point analysis, in any of these forms, were mentioned in P1.01,

P1.02, P1.07, P1.10, P1.17, P1.24, P2.01, P2.02, P2.03, P2.11, and P2.18.

3.4.4 Code Analysis Metrics

The following section introduces the code analysis metrics that were found. It introduces metrics that

range from targeting quality and complexity, to size and efficiency. The big benefit of code analysis

metrics is the fact that their calculation can be easily integrated in automated build, test or

deployment tools. Their biggest downside, however, is the fact that they are often not very simple to

understand or interpret. Additionally, they are often very prone to be used to infer about aspects of

the software development process for which they were not designed. Lines of Code, for example, can

27

be an excellent measure of complexity or quality in the context of the average size of a method.

However, it might seem very intuitive to start measuring efficiency in terms of Lines of Code per Unit

of Time. In the last few decades, however, the latter form has been widely critiqued by the industry

as invalid, inaccurate and misinformed.

3.4.4.1 Lines of Code

Unsurprisingly, a lot of work mentions lines of code as a form of post-process size estimation or a

measure of efficiency when related to other metrics such as time. The line of code metric looks at

either the absolute number of lines of code written, or at executable lines of code, in order to

determine the size of an application, or the efficiency per unit of time of team members. The metric

is part of a larger family of metrics, which we’ll call code analysis metrics, that attempt to provide size,

complexity, quality and efficiency estimates through similar code analysis techniques. Lines of code

are mentioned in P1.07, P1.09, P1.10, P1.11, P2.04, P2.05, P2.13, P2.15, and P2.17. An advantage of

this approach is that it can easily be automated, and will deliver the same, objective answer every

time. However, the metric has been widely critiqued by the industry as misinformed, inaccurate and

invalid, and have lost most of its popularity over the past one or two decades. It’s most prevalent

downside is the fact that its benchmarks are not stack-, framework- or even language-agnostic.

Additionally, the metric can only be used for size estimations after the work has already been done,

and refactoring can even cause a negative production or efficiency value. The following famous,

slightly paraphrased Antoine de Saint-Exupery quote is often used to expose the inherent flaw in

determining efficiency at the hands of lines of code or other code analysis metrics:

“Perfection is achieved, not when there is nothing more to add,

but when there is nothing left to take away.”

- Antoine de Saint-Exupery

3.4.4.2 Code Generation

 P2.09 mentions using the Percentage of Modified Generated Lines of Code in order to measure the

complexity of a project. This metric relates the Amount of Generated Lines of Code metric to the

Amount of Manually Modified Generated Lines of, and indicates a perceived project complexity.

Minimizing this metric limits the amount of manual maintenance required on generated code. They

thus also make an explicit distinction between Amount of Lines of Code and Amount of Manually

Created Lines of Code, which no other study has done.

28

Similarly, P2.09 introduces the Percentage of Modified Generated Files metric, which takes the metric

one level of granularity higher, relating the Amount of Generated Files to the Amount of Modified

Generated Files.

3.4.4.3 Component Counts

Many studies mention component counts in source code. The following counts are mentioned in the

following studies: Number of Classes (P2.17), Number of Generated Files (P2.09), Number of Manually

Created Files (P2.09), Number of Inherited Methods per Class (P2.06, P2.07), Number of Interfaces

(P2.17), Number of Methods Added per Class (P2.07), Number of Modified Generated Files (P2.09),

Number of Overridden Methods per Class (P2.06, P2.07, P2.17, P2.18), Number of Packages (P2.17),

Lines of Code per Method (P2.01, P2.06, P2.15, P2.16), Number of Static Methods per Class (P2.17),

Parameters per Method (P2.03, P2.05, P2.17) and Number of Static Variables per Class (P.2.17). These

component counts can easily be automated in build, test and deployment pipelines, and allow its user

to, for example, place limits on certain components that have been shown to limit complexity and

increase quality, such as the amount of lines of code per method.

3.4.4.4 Churn

Study P1.26 introduces the metric of Churn, which is defined as the number of lines of code added,

deleted or modified. This metric is closely related to Lines of Code, and exhibits the same drawbacks.

While it might thus be unsuitable for measuring efficiency, it can yield interesting results in terms of

how often particular components are touched, and how significant those changes are.

3.4.4.5 Access to Foreign Data

Study P2.15 mentions the code quality metric of Access to Foreign Data, which is defined as the

number of external classes from which a given class accesses attributes, directly or via accessor

methods. This can be used as a measure of coupling, and is indicative of code quality and complexity.

3.4.4.6 Foreign Data Providers

Study P2.15 also mentions the code quality metric of Foreign Data Providers. While the paper fails to

clearly define the metric, it presumably measures the inverse of the coupling relationship of Access to

29

Foreign Data. Here, presumably, the coupling relationship of the number of external class that access

the class’s attributes, directly or via accessor methods is measured.

3.4.4.7 Efferent and Afferent Coupling

Studies P2.13 and P2.17 define Efferent Coupling as a measure of the total number of external classes

coupled with classes of a package, as a result of outgoing coupling. It can be more simply stated that

Efferent Coupling measures the number of classes in other packages that the classes in the current

package depend upon. Similarly, these studies mention Afferent Coupling, defined as a measure of the

total number of external classes coupled to classes of a package, as a result of incoming coupling.

Again, simplified, this metric measures the number of classes in other packages that depend upon

classes within the current package.

3.4.4.8 Attribute Import Coupling

P2.07 then mentions the Attribute Import Coupling, but subsequently fails to properly introduce its

definition. Presumably, it measures the same kind of coupling as Afferent Coupling.

3.4.4.9 Coupling Between Objects

Studies P2.01, P2.05, P2.07, P2.12 and P2.18 all mention the first widely known Chidamber and

Kemerer code quality metric of Coupling Between Objects, which is defined as the number of other

classes whose methods, field or properties are used. This metric appears to measure the same kind of

coupling (outgoing coupling) as the Efferent Coupling metric from P2.13 and P2.17, and the Access to

Foreign Data metric from P2.15.

3.4.4.10 Response for a Class

Studies P1.11, P2.05, P2.13 and P2.17 mention a second widely known Chidamber and Kemerer code

quality metric called Response for a Class (RFC). It is defined as the count of (public) methods in a class

and method directly called by these, and is used as a measure of complexity and coupling.

30

3.4.4.11 Weighted Methods per Class

Studies P1.02, P1.11, P2.02, P2.05, P2.06, P2.13, P2.15, P2.17 and P2.18 all mention the third widely

known Chidamber and Kemerer code quality metric of Weighted Methods per Class. It is defined as

the sum of all cyclomatic complexities of all of the methods of a particular class, and can be used to

indicate how much effort is required to develop and maintain a particular class. The Cyclomatic

Complexity metric is introduced in section 3.4.4.32.

3.4.4.12 Depth of Inheritance Tree

The studies P1.22, P2.01, P2.05, P2.06, P2.13, P2.17 and P2.18 all mention the fourth Chidamber and

Kemerer metric of Depth of Inheritance Tree. This metric measures the longest inheritance chain in a

given program’s source code. Study P.2.07 also mentions averaging this metric for all inheritance

chains in a given program’s source code, but calls it Average Class-to-Leaf Depth instead.

3.4.4.13 Number of Children

The studies P2.01, P2.05, P2.06, P2.07, P2.13 and P2.18 all mention the fifth Chidamber and Kemerer

metric of Number of Children. This metric measures how many subclasses are going to inherit the

method of a parent class. The value of this metric approximately represents the level of reuse in an

application, and a higher value thus represents a higher level of reuse. It also states that, as the value

increases, the amount of tests are also likely to increase, because more children indicate more

responsibility.

3.4.4.14 Lack of Cohesion of Methods

Many studies mention the final Chidamber and Kemerer metric called Lack of Cohesion of Methods

(LOCM). The metric was mentioned in studies P1.11, P1.15, P1.17, P1.18, P1.22, P2.05, P2.13, P2.15,

P2.17 and P2.18, and is widely adopted in automated tooling such as linters and CI/CD pipeline

facilitators. It measures the number of connected components in a class, where a connected

component is a set of related methods and class-level variables. This measurement is done by looking

at how interconnected these components are in terms of how many of the other components each

particular component references directly. If more than one separate clusters of connected

31

components exist, this is often a strong indication that the object does not adhere to the Single

Responsibility principle of Robert (Bob) C. Martin’s SOLID principles.

3.4.4.15 Coupling Concentration Index

P1.22 mentions the Coupling Concentration Index. The paper states that the metric is a measure of

inequality, and is defined as twice the area between the concentration curve and the equality line,

resulting from relating Coupling Between Objects to module size.

3.4.4.16 Coupling Factor

Study P2.18 introduces the Coupling Factor metric. The study fails to clearly introduce the metric,

instead providing just a complicated formula for its calculation. It appears to measure Total Coupling

in terms of Dynamic Coupling and Static Coupling, and ignored coupling that is caused by inheritance

relationships. Furthermore, the study states that Coupling Factor is 0% if no classes are coupled, and

100% if all classes are coupled.

3.4.4.17 Message Passing Coupling

Study P2.18 introduces the concept of Message Passing Coupling, defined as the number of send

statements defined in a class. While it does not explicitly defined what is considered send statement,

the context of the introduction suggests that the access of a method or attribute of a different class,

indicates a single send statement. This would make it nearly identical to other incoming coupling

metrics discussed in this section.

3.4.4.18 Information Based Coupling

Study P2.07 introduces the concept of Information-Based Coupling, but subsequently fails to

introduce the metric, or what it is supposed to measure.

32

3.4.4.19 Data Abstraction Coupling

The Data Abstraction Coupling metric is mentioned by P2.07 and P2.18. It measures the coupling

complexity caused by Abstract Data Types (ADTs), and is thus a coupling metric that is limited to type

references, as opposed to object references.

3.4.4.20 (Descendant) Method-to-Method Export Coupling

Study P2.07 introduces the metrics of Method-to-Method Export Coupling and Descendant Method-

to-Method Export Coupling. It subsequently fails to properly introduce or explain them.

3.4.4.21 Specialization Index

Study P2.07 mentions the Specialization Index, which it defines as the amount of refined instance

methods in all classes, times the total amount of super classes, divided by all instance methods of all

classes. Here, a refined instance method is one that has been defined in a superclass, but adapted in

a sub-class. It essentially measures how much functionality is refined by subclasses.

3.4.4.22 Specialization Ratio

In turn, study P2.18 mentions the Specialization Ratio, which it defines as the number of subclasses

divided by the number of super classes. Where Specialization Index measures refinement at the level

of instance methods, Specialization Ratio does so at the level of classes.

3.4.4.23 (Normalized) Code Smell Occurrences

Study P2.09 mentions the metric of Amount of Code Smell Occurrences. In their work, they aim to

automatically detect these code smells based on other code analysis metrics. Similarly, they introduce

the Normalized Amount of Code Smell Occurrences metric, where the former is normalized over the

amount of files or the amount of lines of code.

33

3.4.4.24 Cycles in Dependency Graph

Study P2.03 mentions the Amount of Cycles in the Dependency Graph as a measure of complexity and

quality for a software project. They posit that more cycles in the dependency graph increase

complexity, and are thus a sign of lower code-base-quality.

3.4.4.25 Method and Attribute Hiding Factor

Study P2.18 mentions the metric Method Hiding Factor. This metric is defined as a percentage of the

methods in a particular program that cannot be called by other classes. This metric is 0% if, for

instance, all metrics are declared public, and 100% if all method are declared private. Similarly,

Attribute Hiding Factor measures the same concept for attributes. The study, however, is not clear on

whether this metric should include static methods or attributes, or exclude them from consideration.

Similarly, it is unclear if protected access modifiers are considered as hidden or not.

3.4.4.26 Method and Attribute Inheritance Factor

Similarly, study P2.18 defined the Attribute Inheritance Factor as the sum of the number of attributes

declared in all classes, divided by the sum of the number of attributes inherited in all classes. It denotes

a percentage of attributes that are declared by the class itself, as opposed to inherited from a base

class. Method Inheritance Factor measures the same concept for methods, as opposed to attributes.

3.4.4.27 (Code) Abstractness

Studies P2.13 and P2.17 introduce the concept of Abstractness. It defines the metric as a comparison

of the number of abstract classes and interfaces, to the total number of classes in the evaluated

package. The metric thus has a range of 0% to 100%, where the former signifies an absolute concrete

package, and the latter an absolute abstract package.

3.4.3.28 (Code) Instability

Similarly, studies P2.13 and P2.17 introduce the concept of Instability, which they define as the ratio

of Efferent Coupling to Total Coupling. Here, they define Total Coupling as the sum of Efferent Coupling

and Afferent Coupling. Again, this metric has a domain of 0% to 100%, where the former signifies an

34

absolutely stable package, and the latter signifies an absolutely instable package. Here, stability refers

to how much impact changing a particular component would have.

3.4.4.29 Normalized Distance from Main Sequence

Studies P2.13 and P2.17 also introduce the Normalized Distance from Main Sequence metric. The

metric is defined as the perpendicular distance of a package from the idealized line of Abstractness +

Instability = 1. The authors state that a package is ideally absolutely abstract and stable, or absolutely

concrete and unstable. If the package is somewhere in between, the sum of both should ideally equal

1. Thus the normalized distance from the main sequence should ideally be 0.

3.4.4.30 Comment Percentage

Studies P2.05 and P2.13 mention the metric of Comment Percentage, which is defined as the

percentage of Lines of Code that are comments. The former posits that they have found a perceived

optimum at 30%, while the latter does not make any such claim. It does, however, mention that a

code-base that is adequately named and built, should require less comments than one that does not

exhibit those qualities, indicating that a lower percentage of comment can, in some cases, be better

than a higher percentage.

3.4.4.31 Percentage of Dead Code

Study P2.02 mentions the Percentage of Dead Code as a metric for evaluating the quality of a code

base. Similar to most other metrics that this study introduces, the metric is not properly defined, and

no further reference to it has been made in the remainder of the text. Dead code, however, is

presumed to mean code that is no longer in use, in the sense that no execution path through the

application’s expression tree can ever reach the declared code. Technically, code reflection will

sometimes be able to reach such code at run-time, and is thus often not included in such definitions.

Examples could be code that is written after a return statement, or written inside an if statement that

will always evaluate to false, but it might also include code in classes or methods that are simply not

used anymore and thus not referenced anywhere else in the code-base.

35

3.4.4.32 Cyclomatic Complexity

The Cyclomatic Complexity metric is mentioned by P1.03, P1.14, P1.15, P1.16, P1.17, P1.18, P2.02,

P2.05, P2.15, and P2.17. The metric measures the number of linearly independent paths within a

section of source code, and can be easily computed using a program’s Control Flow Graph. A lower

value is regarded as less complex and thus easier to grasp.

3.4.4.33 Halstead Complexity Measures

Studies P1.03, P1.14 and P2.15 mention the Halstead Complexity Measures, which is a set of software

metrics introduced by Maurice Howard Halstead in 1977 (Halstead, 1977). The set includes measures

for program vocabulary, length, volume, difficulty, effort and estimations of required time and

expected defects.

3.4.4.34 Duplicate Expressions

Studies P1.17, P1.18 and P2.02 mention the Duplicate Expressions metric. This metric calculates the

percentage of a code base that contains duplicated code. None of them, however, explain how this is

measured, or at what granularity. When asked, one of the experts introduced in chapter 4 indicated

that code duplication is often measured at the ‘two lines-of-code’ granularity.

3.4.4.35 Index of Inter-Package Extending

Study P2.16 introduces the Index of Inter-Package Extending. This metric is defined as the ratio of the

number of ‘extend’ dependencies between classes within a local package, against the total number of

‘extend’ dependencies between all classes of the software system. It explicitly states that the ‘extend’

dependency can both be an inheritance relationship between two classes, or an implementation

relationship between a class and an interface.

3.4.4.36 Index of Inter-Package Extending Diversion

Study P2.16 also introduces the Index of Inter-Package Extending Diversion. It continues to define the

metric as the average extent of how diverse the classes extended by a specific package, distribute in

different packages.

36

3.4.4.37 Index of Inter-Package Usage

Study P2.16 introduces the Index of Inter-Package Usage. The metric is defined as the ratio of the

number of ‘use’ dependencies between classes within a local package, against the total number of

‘use’ dependencies between all classes of the software system.

3.4.4.38 Index of Inter-Package Usage Diversion

Similarly, study P2.16 introduces the Index of Inter-Package Usage Diversion, and continues to define

the metric as the average extent of how diverse the classes used by a specific package distribute in

different packages.

3.4.4.39 Index of Package Changing

Study P2.16 also introduces the Index of Package Changing. The study defines the metric as the

percentage of the number of the non-dependency package pairs against the total number of all

possible package pairs. It claims that this metric measures the strength of the independency of

packages.

3.4.4.40 Index of Package Goal Focus

Study P2.16 also introduces the Index of Package Goal Focus, which is defined as the average extent

of the overlap between the different service sets provided by the same component to other different

components in a software system. The study claims that the metric indicates the average extent to

which the services of a specific package serve the same goal.

3.4.4.41 Information Based Cohesion

Study P2.18 introduces the concept of Information-Based Cohesion. This metric is defined as the

number of invocations of other methods of the same class, weighted by the number of parameters of

the invoked method.

37

3.4.4.42 Locality of Attribute Access

Study P2.15 mentions Locality of Attribute Access as a tool for identifying classes or methods that use

too many attributes from classes other than their own. The study subsequently fails to introduce how

this metric is measured.

3.4.4.43 Maximum Nested Block Depth

Study P2.17 mentions the Maximum Nested Block Depth, defined as the maximum depth of nested

blocks of code. It posits that more nested blocks lead to worse readability and more complex solutions,

and thus advocate for a low maximum and average nested block depth.

3.4.4.44 Release Deltas

Study P1.09 introduces New Classes per Release, New Methods per Release and New Lines of Code per

Release as a means of gauging the size of a software project over time. Similarly, the study introduces

the New Features per Release as a means of gauging the development speed of a particular project

over time.

3.4.4.45 Polymorphism Factor

P2.18 mentions the Polymorphism Factor metric. The study states that the metric measures the

degree of method overriding in the class inheritance tree, and formally defines it as the sum of all newly

introduced methods in all classes, divided by the sum of all overridden methods in all classes, times

something they call the descendant count, which is presumably the depth of the inheritance tree or

class-to-leaf distance for that particular class.

3.4.4.46 Reuse Ratio

Study P2.18 also mentions the Reuse Ratio metric, defined as the number of super classes divided by

the total number of classes. The Reuse Ratio indicates how much reuse is apparent in the code-base

specifically due to inheritance relationships.

38

3.4.4.47 Summary

The class of Code Analysis Metrics has by far yielded the most software development metrics. Their

applications range from quality and complexity, to size and efficiency. It is interesting to note that,

while you would expect most of these metrics to from the latter part of the previous century, new

code analysis metrics are still being devised today. Additionally, it appears that concepts such as

technical debt and code smells are universally accepted as having a detrimental effect on the health

of a code base, but remain somewhat elusive for automated code analysis tools to detect, leading to

more and more complex and complicated concepts of cohesion and coupling.

3.4.5 Complex Mathematical Metrics

The code analysis metrics mentioned in the previous section, are often accompanied by studies that

employ complex mathematical models to analyse them even further. Some examples include

regression models, the COCOMO/COCOMO2 method, and SLIM. For the purpose of this study, we

have decided to omit them from the review.

3.4.6 Testing Metrics

The next section introduces metrics for testing a product or code-base. Just as with code analysis

metrics, most of the discovered metrics can be easily automated and incorporated in deployment

pipelines.

3.4.6.1 Unit Test Coverage

Studies P1.03, P1.07, P1.16, P1.24 and P2.02 mention the metric of Unit Test Coverage. This metric

was used by 88% of teams that were examined in P1.03. Nowadays, unit test coverage is a metric that

is embedded in many Continuous Integration/Delivery (CI/CD) pipelines, Command Line Interface (CLI)

tools and Integrated Development Environments (IDE). The metric is a measure that is used to describe

the degree to which the source code of a program is executed when the test suite runs. The underlying

idea is that a program that has more of its code executed by its test suite, should have a lower chance

of containing undetected bugs.

39

3.4.6.2 Amount of Tests

Additionally, studies P1.06, P1.16, P1.19, and P1.24 mention the Amount of Tests as a valid metric for

assessing code quality, while also stressing the importance of automation when it comes to executing

them.

3.4.6.3 Review Rates

Study P2.04 mentions using the Average Code Review Rate and Average Design Review Rate to denote

the average amount of time between code or design reviews, as a means of indicating how well these

review practices are embodied in their software development processes.

3.4.6.4 Test Suite Rates

Study P1.16 mentions the Regression Test Cycle Time and the Smoke Test Cycle Time as a means to

gauge how often regression and smoke test suites are ran, and how much overhead there is in doing

so.

3.4.6.5 Running Tested Features

Study P1.24 and P2.02 mention the Running Tested Features metric. While neither explicitly defines

the metric, it is presumed that it measures the amount of features that currently pass their automated

test suite.

3.4.6.6 Test Failure Rate

The Test Failure Rate metric is introduced in P1.24, but subsequently not explained or referenced.

Presumably, the metric measures what percentage of a test suite fails their criteria.

3.4.6.7 Test Pass Rate

The Test Pass Rate metric is introduced in P1.24, but subsequently not explained or referenced.

Presumably, the metric measures what percentage of a test suite passes their criteria.

40

3.4.6.8 Test Growth Ratio

Similarly, the Test Growth Ratio metric is introduced in P1.24. The metric relates the increase of lines

of code of the test suite(s) to the increase in lines of code of the code base under test. In some

investigations, it is found that the test growth is disproportionate from the source-code growth, which

may in turn require practices to remove unit tests that have not failed for an extended amount of

time, as proposed by James O. Coplien. This remains a highly debated view, however, to this day.

3.4.6.9 Test Runtime

Study P2.02 introduces the Test Runtime metric as a means of gauging its perceived overhead on the

code-build-test cycle. If the runtime of a test suite becomes too large, developers might be tempted

not to run them after every cycle, or be severely encumbered by the overhead.

3.4.6.10 Tests per Story

Study P2.02 also introduces the Tests per Story metric, but fails to define or reference it, simply

introducing it as a well-known agile metric. It can be presumed that it’s a simple division of the number

of test cases written by the number of user stories currently implemented.

3.4.6.11 System Analysis Cost

Study P2.10 introduces four cost aspects to testing. The first of these is the System Analysis Cost. It

states that, before a test can be selected, the test analyst must become familiar with the system

specification, design and possibly the program. Time must be spent studying the various requirements

and design documents. The costs associated with this process, are introduced as the System Analysis

Costs of a tester.

3.4.6.12 Test Selection Cost

P2.10 then introduces the Test Selection Cost metric, stating that, after gaining some knowledge about

the system, the test analyst can finally select the test cases for testing the actual behaviour of the

system. The costs uncured include working out the test input, and identifying the correct output or

system behaviour.

41

3.4.6.13 Test Execution Costs

Similarly, P2.10 states that additional testing costs are incurred by having the tester setting up the

environment for testing (such as loading and computing required modules, and entering the proper

data tables), and the actual time spent executing the tests. It continues to state that this cost can be

quite high for some applications, and brings forward the example of the telecommunication industry,

in which the costs of setting up a testing lab to simulate an actual communications network, can be as

high as several million dollars. It calls this metric the Test Execution Cost metric.

3.4.6.14 Test Result Analysis Costs

Finally, P2.10 introduces the Test Result Analysis Cost as the last cost associated with the testing

process. It identifies the tester’s time spent collecting the test outputs, comparing those outputs to

the system specifications, and computing resources required for recording the system behaviour

under test.

3.4.6.15 Summary

Most of the testing metrics that were discovered, focus on the frequency at which tests are

performed, how much of the product is being tested, or the costs of performing those tests. They also

make surprisingly little distinction between unit-, regression-, integration- or smoke-tests.

3.4.7 Team Composition Metrics

3.4.7.1 Amount of Team Members

Several studies mention team composition metrics, such as the Amount of Team Members in a given

team, or the Maximum or Average Amount of Team Members in a given team, in a particular time

period. These kinds of metrics are mentioned in P1.01, P1.02, P1.12, P1.20 and P1.25.

42

3.4.7.2 Average Projects per Employee

Additionally, P2.12 mentions the Average Projects per Employee metric, which measures how many

projects, on average, an individual employee is working on concurrently. The idea behind this metric

is that excessive context switching has a detrimental effect on productivity, and should thus be kept

to a feasible minimum.

3.4.7.3 Scrum Teams per Project

Study P1.20 mentions the Scrum Teams per Project metric, which it uses in its subsequent calculations

of Technical Efficiency.

3.4.7.4 Personnel Turnover

Finally, P2.12 mentions the Personnel Turnover metric, as a means of gauging the stability of a team

or the entire workforce of a company. It measures how many team members leave or join an

organization or team during a particular time-span.

3.4.8 Build Metrics

3.4.8.1 Build Runtime

Study P2.02 mentions the Build Runtime metric (introduced here as time taken per build). Sadly, the

study does not properly introduce the metric, nor quotes an appropriate reference, simply introducing

it as a well-known agile metric. Presumably, this metric can be used to give some sort of an indication

as to whether or not the iterative code-build-test cycle is sufficiently quick. Additionally, the study also

mentions the Builds per Day metric, but similarly fails to properly introduce, reference or describe the

metric.

3.4.8.2 Percentage of Successful Builds

Study P2.02 also introduces the Percentage of Successful Builds. Just as with Build Runtime, the study

makes no further reference to the metric, simply introducing them all as well-known agile metrics. We

43

can thus not make any deductions about why the metric is important, and whether a high or low value

is preferable and why that might me the case.

3.4.9 Time Based Metrics

While Scrum explicitly attempts to stay away from time based metrics, there are still plenty such

metrics to be found in literature. Note that, while they were initially introduced in section 3.4.2, most

Lean Manufacturing metrics, such as Lead Time, Processing Time, Value Added Time and Queue Time,

may also be considered time based metrics. Where most Scrum metrics are meant to estimate future

capabilities, most time-based metrics can often be used to retroactively assess performance.

3.4.9.1 Hours

These range from simple estimations in terms of hours or days, to somewhat more complex estimation

techniques. Studies P1.02, P1.05, P1.07, P1.09, P1.11, P1.12, and P1.20 mention using Person Hours

as a means to estimate work effort, while P1.07, P1.12, and P1.16 mention Person Months instead.

Additionally, P1.11 mentions measuring the average time in seconds spent coding a specific method.

Furthermore, P1.24 mentions the Actual Development Time, defined as the time which was spent

actually developing a story or product. As an extension, studies P1.01 and P1.10 mention the metric

of Hours per Function Point, while study P1.07 mentions the metric of Hours per Story Point instead.

3.4.9.2 Ideal Days

Alternatively, P1.06 and P2.02 mention working with Ideal Days, which is defined as a unit for

estimating the size of product backlog items based on how long an item would take to complete if it

were the only work being performed, there were no interruptions, and all resources necessary to

complete the work were immediately available. Ideal days are often easier to grasp than function

points or story points, for team members as well as managers and outside stakeholders. This can lead

to a higher standard of communication amongst stakeholders, which may in turn translate into a

higher success rate. Additionally, the metric requires less training and expertise than function- and

story points, because of its intuitiveness. This may lead to more confident estimates than would be

achieved by means of other point-based estimation techniques. The metric, however, also has

significant downsides. For example, the estimation technique does not really allow for team members

to collaborate, which fosters a sense of individuality instead of teamwork. Additionally, a task that

44

might take five ideal days at the start of the project, might only take three later on down the line, once

the team members are more comfortable with the project. This results in the estimate becoming less

accurate over time. Outside stakeholders might also have a hard time grasping why a project that is

estimated as 50 ideal days will take the team closer to 100 real days to complete.

3.4.9.3 Load Factor

Study P1.24 refers to the Load Factor metric, which denotes the amount of real days in an engineering

day. This metric appears to be closely related and inverse to Ideal Days, where Ideal Days denotes

how many engineering days are in a real day.

3.4.9.4 Work Capacity

The metric of Work Capacity denotes the total amount of hours that an entire team can spend on a

given sprint or iteration. This metric was mentioned in studies P1.03 and P1.04 and is sometimes used

to estimate future capacity, and sometimes used to indicate factual historical capacity. Study P1.20

also mentions this metric, but calls it Ideal Capacity instead.

3.4.9.5 Overtime

Study P2.12 mentions the Average Overtime per Day and Average Overtime per Sprint metrics as an

indication of healthy company culture.

3.4.9.6 Time to Market (per Function Point)

Study P1.25 mentions the Time to Market in Days per Function Point as a means of measuring how

long it takes a particular team to deliver a single Function Point to the production environment(s).

3.4.10 Defect Metrics

3.4.10.1 Mean Time to Recovery

Studies P1.03, P1.08, P1.24, P2.02, P2.04 and P2.12 mention a Mean Time to Recovery metric. This

metric determines the average time it takes for a backlog item of the type bug or defect to be closed.

45

For most use-cases, the time starts ticking as soon as the item enters the backlog, but some variants

opt to start from the moment the bug is estimated, or even from the moment the bug enters a sprint.

The latter variants allow the team to more easily game the metric, and a good average time thus fails

to prove that additional value was provided to the end-user in a sufficiently quick fashion. Not all

occurrences use the same term for this metric, where terms like Bug Correction Time, Average Defect

Correction Time or Defect Removal Efficiency have also been used. Study P1.09 also mentions using

Defects Fixed per Release as a measure of gauging defect removal efficiency.

3.4.10.2 Fault Latency

Study P2.14 introduces the metric of Fault Latency, which is defined as the difference in time between

when a particular piece of code was written, and when a particular defect in that piece of code was

identified. While in traditional waterfall development, the former may be easy to identify, in iterative

development this may not be so easy.

3.4.10.3 (Open) Defect Severity Index

According to P1.03, the Defect Severity Index can be used to measure the quality of the delivered

work. The underlying metric of Defect Severity denotes a measure of impact a particular defect has,

expressed as an integral value. In this denotation, defects with a higher impact have a higher integral

value assigned to them. The Defect Severity Index, then, aggregates the Defect Severity of an entire

backlog. The most common approach to calculate the index appears to be to take the sum of all

defect’s severity, and divide it by the total amount of stories on the backlog. Finally, the Open Defect

Severity Index only takes into account the defects that are still unresolved, as well as the total amount

of stories on the backlog that are still unresolved. The metric can then be used to determine the quality

of the product after each iteration, and tracked over time to see whether the team is improving. A

downside of the Defect Severity Index is that it is extremely easy to game, as the defects can simply

be estimated at a lower severity in order to “increase the team’s performance”.

46

3.4.10.4 Average Fault Cost

Study P2.14 mentions measuring the Average Fault Cost. The cost of a fault or defect sums the cost of

the resources spent fixing the bug, the cost of the damages caused by the bug, and the revenue missed

by the effects of the bug.

3.4.10.5 Defects Carried Over

Study P2.02 introduces the metric of Average Amount of Defects Carried Over to Next Iteration. This

metric essentially measures the amount of defects that still exist at the end of each iteration.

Optimizing this metric may for instance lead to a lower Mean Time to Recovery or a lower Defect

Severity Index.

3.4.10.6 Defect Slippage Rate

Additionally, studies P1.03, P1.24 and P2.02 mention the Defect Slippage Rate. This metric indicates

the amount of defects that are not caught in the development, test or acceptance processes, and are

subsequently discovered in production environments. While again the study does not outline exactly

how the metric is calculated, Defect Slippage Rate is usually defined as the ratio between the amount

of bugs discovered in production and the total amount of bugs discovered in the product. This

definition is outlined below in equation 7 (Padmini et al. , 2018).

𝐷𝑒𝑓𝑒𝑐𝑡 𝑆𝑙𝑖𝑝𝑝𝑎𝑔𝑒 𝑅𝑎𝑡𝑒 =
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

Equation 7 - Defect Slippage Rate

This metric, as opposed to the Defect Severity Index, is less easy to game. At the same time, however,

the metric is less telling about the impact of its outcome. A single, million dollar defect in production

would still yield a low Defect Slippage Rate, but would be very undesirable none the less.

3.4.10.7 Fault Slip Through

Study P1.03 puts forward the concept of Fault Slip-Through. The studies define this metric as a

measure which determines the amount of faults that would have been more cost-effective to find and

fix in an earlier phase. The latter goes on to state that the metric simply calculates the amount of

47

defects or faults that were identified outside of the phase in which they should have been detected.

Study P2.14 actually refers to this metric as Improvement Potential.

3.4.10.8 Number of Bounce Backs

Study P1.24 introduces the Number of Bounce Backs as the amount of defects that should not have

occurred anymore if a root cause would have been fixed earlier. This makes it extremely similar to

metrics such as Defect Slippage Rate and Fault Slip Through.

3.4.10.9 Defect Density

Additionally, studies P1.03, P2.04 and P2.12 also mention the Defect Density metric. This metric

relates the amount of defects to specific constraints. For example, Defect Density in terms of a time-

based constraint could be Average Defects per Sprint or Average Defects per Day. Additionally, a

Defect Density constrained on throughput could be the Average Defects per User Story or Average

Defects per Story Point. The metric, in any shape or form, was used by 52% of the teams investigated

in P1.03. Those who did not use it marked that they did not care for the value, as long as all defects

were closed by the end of the sprint. The metric can be used as a rudimentary measure of competence,

as one would assume less defects would be introduced per constraint by a more competent software

developer, but this assumption is daring at best. Studies P1.03, P1.12, P1.22 and P1.124 also mention

using simple Defect Counts for assessment of quality.

3.4.11 Source Control Metrics

3.4.11.1 Modified Components

Study P2.16 mentions the Average Number of Modified Components per Commit. While the name

suggests what it measures, it is not clearly defined what is considered a component and what is not.

Additionally, it is not clearly stated what the benefits of such a measure could be.

48

3.4.11.2 Check-Ins per Day

Additionally, P1.24 mentions the Check-Ins per Day, which was defined as the number of source control

commits to the main trunk of the version control repository. They state that the metric can be used to

manage risk, provide timely progress monitoring, and to communicate progress to upper-

management.

3.4.12 Finance Metrics

3.4.12.1 Cost of Quality

At the same time, P1.03 mentions the Cost of Quality metric. This metric refers to the total cost of all

materials and efforts required to make sure the resulting product conforms to the standard of quality

that has been set by the organization. It is usually split up into several distinct parts. The first of these

is the Cost of Control, which refers to the cost of preventing defects before they occur (prevention

costs), as well as the cost associated with the inspection that occurred in order to find out whether

defects exist at all (appraisal costs). The second constituent is the Cost of Failure to Control, which

refers to the costs related to fixing defects after they have occurred, which is often split up once again

into whether they have occurred internally (internal failure costs) or externally (external failure costs).

The final formula for Cost of Quality is outlined below in equation 8 through 10.

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑜 𝐶𝑜𝑛𝑡𝑟𝑜𝑙

Equation 8 - Cost of Quality

where

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠 + 𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙 𝐶𝑜𝑠𝑡𝑠

Equation 9 - Cost of Control

and

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑜 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐶𝑜𝑠𝑡𝑠 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐶𝑜𝑠𝑡𝑠

Equation 10 - Cost of Failure to Control

You will notice, however, that these equations do not dictate a unit of measurement for its definition

of costs. While it may seem most obvious to take money as a primary unit of measurement for costs,

some situations might instead call for measurements in terms of time, defects, or any combination of

49

these. The metric originates from physical manufacturing processes, but, according to P1.03, has been

applied to software development processes as well. In total, they found that 69% of the teams they

interviewed used to metric in one form or the other.

3.4.12.2 Cost Efficiency

Study P2.08 mentions the Cost Efficiency metric. This metric is defined as the units delivered (in terms

of lines-of-code-added) divided by the amount of hours invested, and thus measures the cost of

adding a single line of code to the code base of a particular product.

3.4.12.3 Net Present Value

Studies P1.05, P2.02 and P2.11 mention the Net Present Value metric, which is defined as the

difference between the present value of cash inflows, and the present value of cash outflows, over a

period of time. The metric is used in capital budgeting and investment planning, in order to analyse

the profitability of a projected investment or project.

3.4.12.4 Return on Investment

Studies P2.02 and P2.11 mention the finance metric of Return on Investment. This metric is defined as

a ratio between the net profit and cost of a project. While it is a strong finance metric, it does not

necessarily say much about agility.

3.4.12.5 Internal Rate of Return

Study P2.11 mentions the finance metric of Internal Rate of Return. The metric is very similar to the

Net Present Value metric, and both are used in the evaluation process for capital expenditure. Where

Net Present Value denotes the cash surplus or loss for a project, Internal Rate of Return calculates the

percentage rate of return at which those same cash flows will result in a Net Present Value of zero.

While it is a strong finance metric, it does not inherently say anything about agility.

50

3.4.12.6 Business Value Delivered

Both P1.24 and P2.11 mention the Business Value Delivered metric. While the former fails to properly

introduce the metric, the latter defines it as a metric that measures the rate of return on investment.

It can be used to answer the questions of when a project or product will begin generating a return on

investment, when it will break even, and what the projected earnings are. It states that the metric is

expressed in Net Cashflow per Iteration.

3.4.12.7 Cost Performance Index

P1.24 mentions the Cost Performance Index. This metric is not defined in the source study, but

presumably measures the ratio of work performed for which there was a defined budget, to the cost

of work performed for which there was not a defined budget. The study claims that it can be used to

monitor for deviances in the progress of a project, and can provide early signs that something is going

wrong.

3.4.12.8 Cost per Size Unit

Study P1.08 directly relates the cost of a project or product to individual size units. It mentions the

metrics of Cost per Function Point and Cost per Story Point.

3.4.12.9 Cashflow per Iteration

Study P2.11 introduces the Cashflow per Iteration as a metric to gauge the profitability of a project

over time.

3.4.12.10 Revenue per Customer (per Feature)

Study P1.24 mentions the Revenue per Customer. This metric, unlike what the name suggests,

estimates the (projected) revenue per customer that a particular feature will generate, and can be

used to prioritize higher value features in a backlog.

3.4.13 Requirements Metrics

51

3.4.13.1 Requirements Clarity Index

While study P1.03 provides no references to any source literature, it does mention the Requirements

Clarity Index. At the same time, further investigation on academic search engines does not yield any

source material either. This is telling of a metric that was introduced not in the academic community,

but in the unofficial spheres of the industry. Even though the metric has no clear origin in literature,

the study found that 54% of the teams they investigated used the metric. Due to a lack of an official

academic definition, what follows is a makeshift definition, defined by combining various blog posts

and presentations.

The Requirements Clarity Index is an indication of how well specific requirements are understood by

the various team members. It can be used as a threshold to determine when work on a story backlog

item can actually begin. While some advocates insist on withholding any work until all team members

perfectly understand the requirements, this threshold can differ from team to team, depending on

what level of uncertainty the team is comfortable with. The metric can be calculated by defining a

scale depicting levels of acceptance for individual story backlog items. An arbitrary example of such a

scale can be as follows:

1. Denied
2. Need Further Elicitation
3. Accepted

Each individual team member then inspects the requirements and determines where they are at. An

average can then be taken to determine the final value for the Requirements Clarity Index metric,

which can in turn be compared to the threshold to determine if the story backlog item is ready to be

included in an upcoming sprint.

3.4.13.2 Requirements Inventory Size

Study P1.24 advocates tracking the Requirements Inventory Size over time. It states that the metric

can be used to identify large handovers of requirements that might cause overloading situations to

employees. Additionally, it had been used to identify problems in the development process.

52

3.4.13.3 Change Requests per Requirement

Study P1.24 introduces the concept of Change Requests per Requirement, which it states can be used

as an indicator of overall customer satisfaction, or an overall tool for understanding and improving

quality.

3.4.13.4 Critical Defects Sent by Customers

P1.24 introduces the Critical Defects Sent by Customers metric. The study simply states that these

defects were tracked and fixed in order to prevent losing customers, but fails to mention why the count

is important or what the metric can be used for.

3.4.13.5 Number of Requests from Customers

Study P1.24 mentions the Number of Requests from Customers. However, the study does not explicitly

define the metric, nor does it state how to use it or what its advantages could be.

3.4.13.6 Implemented Versus Wasted Requirements

Study P1.24 posits that not all requirements are always completely implemented, but sometimes

some effort may still have been put in to them, for instance in the form of technical specification or

prototyping. The study mentions the ratio metric of Implemented versus Wasted Requirements as a

means of gauging the amount of wasted requirements work.

3.4.13.7 Requirements per Feature/Work-Item

Study P1.24 also mentions the Requirements per Feature/Work-Item metric, referred to collectively

as the Requirements per Phase. The study posits that the metric can be used to reveal peaks in the

workload, but fails to state how or why.

3.4.14 Other Metrics

53

The following section introduces metrics that were not wholly assignable to a separate classification

of metrics. These metrics cover a wide variety of aspects of software development processes, from

quality and size, to efficiency and customer satisfaction.

3.4.14.1 Work Effectiveness

P2.12 introduces the concept of Work Effectiveness, defined as a ratio between the work spent and

the decrement of work remaining. This definition closely relates it to the concept of Effort Burndown

in Scrum, and can be used to determine whether or not a particular process is on track.

3.4.14.2 Due Date Performance

Study P1.24 introduces the Due Date Performance metric. While it fails to properly introduce the

concept, the metric presumably calculates the average percentage of work-items that are delivered

on time.

3.4.14.3 Predictive Object Points

Studies P1.02 and P2.01 mention Predictive Object Points as a new way of sizing object oriented

development projects. It was introduced in 1998 by Minkiewics, which was in turn based on previous

work by Chidamber et al. and Henderson-Sellers in 1994 and 1996 respectively. It was originally

brought forward as an alternative for line of code and function point estimation metrics, because they

were deemed unsatisfactory in Object Oriented (OO) contexts. In reality, it is an additional code

analysis metric that has been designed specifically for the Object Oriented paradigm. It employs the

code analysis metric of Weighted Methods per Class, which looks at each top level class and assigns a

weight to the behaviours of that class that are seen by the world. That weight is determined by

evaluating the effects that the behaviour has on the objects in the system (by counting the properties

that this behaviour impacts), and the amount of control the objects in the system have over this

behaviour (by counting the parameters of the method or the pieces of information that get passed to

it) (Minkiewics, 1998). Subsequently, the weighted methods per class metric is combined with

information about the grouping of objects into classes and the relationships between these classes of

objects. According to Minkiewics, this value appeared to correlate to the effort associated with

54

implementing a solution. While there is some literature that mentions predictive object points and its

application, there is little evidence that this is widely used in practice today.

3.4.14.4 Technical Efficiency

In P1.20, Technical Efficiency is introduced as a ratio between actual hours (AH) and ideal capacity (C),

where C is the ideal number of hours which a team can deliver, depending on team size, number of

teams, non-working days and days spent on principal ceremonies. The study states that the metric can

be used as an indication of how well a team is being utilized, compared to the maximum capacity.

3.4.14.5 Internal Efficiency

Similarly, P1.20 introduces the Internal Efficiency metric. It state that the Internal Efficiency is defined

as a ratio between actual hours (AH) and planned hours (PH), and that it measures how good the

planning process is. It continues to state that a value of 1 means there is complete alignment between

estimated effort and actual outcome.

3.4.14.6 Delivery on Time

In P1.03 and P2.08, several more specific metrics are introduced for determining the performance of

individual teams. The first of these is the percentage of backlog items that Delivered on Time. In P1.03,

it was identified as the most prevalent Agile Software Development (ASD) metric within the 26

companies they interviewed. Of these 26 companies, 23 of them used the metric for determining

whether or not the team was performing admirably. On time is defined here as within the sprint that

they were initially included in. The thought behind this metric states that a team who delivers a larger

percentage of its backlog items on time, performs better than a team with a lower percentage. While

intuitively this might seem true, the metric can easily be gamed by teams who understand how the

metric works, leading to an inaccurate and untrustworthy metric.

3.4.14.7 Impediments per Work-Item

Study P2.12 mentions the metric of Impediments per Work-Item (referred to as the average number

of impediments per task/sprint/team). The study states that the metric can help reach the goal of

55

efficiency impediment resolution. Here, an impediment is not defined as an interruption of the work,

but an issues that is preventing work from happening efficiently.

3.4.14.8 Value Delivered over Time

P2.08 introduces the Value Delivered over Time metric, stating that it is more appropriate for software

development teams than Cost Efficiency, because in software development, there is not necessarily a

linear relationship between input and output (i.e. more lines of code does not mean more value

delivered). The metric is defined as the difference of the value of output and the value of input within

a particular time window, where the input represents the investment to be made to obtain the unit of

input to be transformed in the development process and the output represents the value of the

transformed input (i.e. the final product).

3.4.14.9 Schedule Performance Index

Studies P1.24 and P2.12 mention the Schedule Performance Index. While the former does not explicitly

define the metric, the latter states that it is the ratio between the earned value (i.e. the value of all

tasks completed) and the planned value (i.e. the initial estimate of value of all tasks to be completed

until a certain point in the project). It states that the metric can be used to attain the goal of generating

timely information on project performance, but does not explicitly state how.

3.4.14.10 Fulfilment of Scope

Study P2.12 mentions the Fulfilment of Scope metric, which was defined as the ratio between the

number of tasks completed in a Sprint, and the total number of tasks in the sprint backlog. The study

also posits that the metric can be used at the scope of a release, instead of the scope of a Sprint.

3.4.14.11 Net Promoter Score

Studies P1.03 and P1.24 also mention the Net Promoter Score (NPS). This famous customer loyalty

metric was introduced by Frederick F. Reichheld in 2003 and is currently said to be used by two-thirds

of Fortune 1000 companies. In the original study, the NPS metric was found to correlate with profit

and growth in all of the 13 industries in which it was measured. It was introduced because the classical

56

customer satisfaction surveys were extremely costly, lengthy, easy to game by downstream

distributors, and showed little to no correlation with profit or growth. Additionally, these classical

surveys often employed complicated, black box scaling functions that made it difficult to apply

universally, or to encapsulate it in industry-wide standards. Instead of lengthy, complicated surveys,

the NPS metric employs just a single question:

“On a scale of 0 through 10, how likely are you to recommend this product

to a friend or family member?”

Subsequently, customers are grouped into one of three groups, depending on their answer. Promoters

are those who are extremely likely to recommend the product, with a score of 9 or 10. Passively

Satisfied are those who score a 7 or 8, and Detractors are those who score a 0 through 6. The Net

Promoter Score, then, equals the percentage of Promoters minus the percentage of Detractors. The

NPS metric thus represents the ratio of Promoters to Detractors, and has a domain of -100, where

everyone is a Detractor, to +100, where everyone is a Promoter. In software development processes,

the NPS of end-users can be a telling metric of the performance of a particular product in terms of

customer satisfaction.

3.4.14.12 Technical Debt

P1.03 also mentions the aspect of Technical Debt. This is a term used to imply additional rework that

is required by the development team at a later stage, due to having opted for an easier, sloppier

solution at an earlier stage. While the terms technical debt and code-rot are often used

interchangeably in the industry, the latter is more formally indicative of source code that is

inconsistent, misleading or faulty due to the act of refactoring, instead of making poor initial design

choices. The study has shown that 65% of the investigated teams used some form of technical debt

indicator. However, it sadly does not mention which specific technical debt metrics were encountered.

Most of the technical debt metrics in literature employ source code analysis techniques that yield

metrics such as application size, number of rule branches, number of helper methods, cyclomatic

complexity, and expression duplication (Alfraihi et al, 2018). Others exclusively use code quality

metrics such as coupling, cohesion, and complexity metrics such as depth of decomposition (Seaman

& Guo, 2011).

57

3.4.14.13 Percentage of Completed Stories

P1.24 mentions the Percentage of Completed Stories as a means of gauging the progress of a particular

software development process. While it does not explicitly define what complete means in this

context, it is presumed that the functionality should be available in the production environment(s).

3.4.14.14 Standard Violation

Studies P1.06 and P1.24 introduce the Standard Violation metric. This code quality metric is used to

track the number of coding standards that are violated per sprint or iteration. It can be used to direct

the team towards the behaviour which has been agreed upon and/or reasonably assumed to lead to

a higher quality codebase. This metric thus tells us something about the quality of the delivered code,

as well as the level of discipline exhibited by the team members.

3.4.14.15 Interruptions

While P1.08 does not technically introduce metrics for keeping track of introductions or their effects

on productivity or efficiency, it does mention the practice of allocating specific timeslots for

interruptions to occur in. Additionally, they advocate setting aside a specific portion of a sprint’s

capacity for interruptions in the form of unexpected tasks, which is estimated based on historical data.

The larger issue at hand, of course, is that the impact of interruptions on productivity has been shown

to be far greater than they might at first appear (Coraggio, 1990). Given this premise, one might

conclude that metrics for measuring the impact of interruptions might yield interesting insights, even

if as simple as interruptions per day or mode interruption duration. P1.20 does mention measuring

Impediments, which comes down to the amount of hours spent working, that did not produce tangible

outcome, and can be seen as an inverse of the Value Added Time metric.

3.4.14.16 Capacity Utilization

P2.08 introduces the Capacity Utilization metric, which is defined as the work-in-progress, divided by

the output capacity of the process. It states that a value smaller than 1 indicates a workload that is

too low, while a value greater than 1 indicates a workload that is too high, with a perceived optimum

at 1. It is not clearly defined what the output capacity of a software development process should be.

This metric thus appears to be primarily introduced for use in industrial manufacturing, as opposed to

software development processes. However, the output capacity of a software development team can

58

simply be equated to the amount of team members in the team under examination. Optimizing this

metric could then lead to a severe reduction in concurrent contexts, and thus in excessive concurrency

switching.

3.4.14.17 Employee Happiness

Study P.08 introduces the Employee Happiness metric. The authors claim that a self-assigned

happiness score is unconsciously projected out into the future and onto the organization and their

role in it. If the team member feels like the company is in trouble, they are doing the wrong thing, or

employing the wrong processes, they will feel less happy. Additionally, the employee will probably

feel less happy if they are experiencing a major roadblock, or have to implement a frustrating module

that does not have a proper definition of done. Thus, the authors propose asking the team member

about how happy they are with the company, and how happy they are with their role within it. The

team member can then use a 1 to 5 Likert scale to indicate how they feel. The metric is then tracked

over time, and the authors claim that significant differences from one measurement to another might

need additional investigation.

3.5 Overview

An overview of which papers mentioned which metrics can be found in Appendix E, as well as an

overview of which metrics were mentioned in which papers in Appendix F.

59

4. Expert Inquiry

In this chapter, we will detail the setup, execution and results of an informal inquiry of prevalent

experts in the field, in the form of an in-depth discussion and conversation about the encountered

metrics. The aim of this inquiry is to discover additional software development metrics, that have not

yet been discovered in the literature review of chapter 3. In this inquiry, we have not made any

distinction as to why they were not discovered in the literature review. This could be, for example,

because no prior research has been performed on this metric, no peer-reviewed work has been

published on the subject, or because the literature review missed it due to not encompassing the

entire body of knowledge available in literature today. In this inquiry, the experts will be asked about

their view on the current state of efficiency and productivity metrics. Additionally, they will be asked

to think about possible efficiency metrics that we have not encountered yet, for which they would be

very interested in seeing measurement results from the industry.

4.1 Experts

In this section, we will introduce the people whose expertise we have requested for the expert inquiry.

In total, four experts have been consulted during the execution, all of whom have exceptional track-

records in the world of agile, and most of which are considered as an authority in the field of software

development.

4.1.1 Jeffrey Saltz
The first expert is Professor Jeffrey Saltz, who describes himself as an accomplished technology

executive, working at the intersection of innovation, data science and business strategy. He is currently

seated as a professor at Syracuse University, as well as the Chief Executive Officer at Sage Hill

Consulting. Here, his primary focus is on transforming his client’s data into knowledge, knowledge into

insights, and insights into business decisions. He started his career as a programmer, rose to project

leader and consulting engineer, to end up as the Chief Technology Officer at Goldman Sachs, and later

the Technology Director of JP Morgan Chase. Currently, he is also the head of the Agile/LEAN track at

the Hawaiian International Conference on System Sciences.

60

4.1.2 Jeff Sutherland
The second expert is Jeff Sutherland Ph.D., well-known for being the co-inventor of Scum, alongside

Ken Schwaber. Currently, he is a senior advisor at OpenView Venture Partners, as well as the chairman

of Scrum, Inc. In 2006, Jeff Sutherland founded Scrum, Inc. in order to continue and extend thought

leadership on Scrum by coaching, training, and transforming companies. Here, his primary focus is on

moving Scrum beyond its initial IT focus to cover all business domains.

4.1.3 Frank Verbruggen
The third expert is Frank Verbruggen, who started his career as a programmer, but quickly rose to

software architect within Ordina. Since then, he has been an IT architect at the Dutch Chamber of

Commerce, and quickly rose to chapter lead at the Dutch ING bank. He is currently the founder and

owner of Hi Efficiency and Diamond Agile, where he aims to transform organizations beyond their

initial Agile scope. In the process of this thesis, Frank Verbruggen has also functioned as my external

supervisor.

4.1.4 Kyle Aretae
The fourth expert is Kyle Aretae, who is the founder of Tech Edge, and author of Ceremony. He has

spent his 35 year IT career shuffling between the roles of software developer, technical agile coach

and trainer. He has taught over 10.000 students on over 100 topics, for over 25.000 hours in the last

25 years. He is a huge evangelist for Extreme Programming and Agile practices, with a broad skill-set

and loads of experience.

4.2 Suggested Metrics

The following section details the metrics that have been suggested by the experts in the expert inquiry.

In order to make sure that these metrics are defined clearly and wholly transparent, we will attempt

to provide unambiguous definitions of their data points and calculations when applicable.

61

4.2.1 Priority Focus
The first additional metric, brought forward by Jeffrey Saltz, is the Priority Focus, which measures the

time that an individual team member has spent adding value to the highest priority story backlog item,

as a percentage of the total time spent working. The metric can be calculated for each individual team

member, by taking the time that the team member has spent working on the highest priority story

backlog item on the previous day, and dividing it by the total time that he or she could have spent on

it. This metric can be calculated on multiple granularities, e.g. per day or per sprint. At the same time,

the metric can easily be calculated for entire teams or companies by aggregating the individual

measurements into weighted arithmetic means.

This metric can be used to determine a team’s capability to do the most important things first.

Additionally, the metric can yield interesting insights into how well the team is swarming on the

highest priority story backlog items. The act of swarming has been shown to lead to a reduction of

waste in software development processes (Verbruggen, Sutherland, van der Werf, Brinkkemper &

Sutherland, 2019). The following sections detail the calculation of this metric for an individual team

member, and aggregated into an arithmetic mean for an entire team.

4.2.1.1 Member Priority Focus

The Member Priority Focus for sprint 𝑠 and member 𝑚, represented by 𝑝𝑓𝑠𝑚, is given by

𝑝𝑓𝑠𝑚 =

∑ {
𝑝𝑒𝑥

== 𝑡𝑟𝑢𝑒 |𝑑𝑒𝑚|

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0

|𝐸𝑠𝑚|
𝑥=1

𝑤𝑐𝑠𝑚

where 𝐸𝑠𝑚 is the set of the events that occurred in sprint 𝑠 for member 𝑚, 𝑤𝑐𝑠𝑚 is the Work Capacity

in sprint 𝑠 for member 𝑚, as outlined in section 4.2.7.1, 𝑝𝑒𝑥
 is a Boolean value denoting whether the

𝑥𝑡ℎ event 𝑒𝑥 was marked as targeting the highest current priority, and 𝑑𝑒𝑚 is the set of timestamps

included in the duration of event 𝑒 and the Work Schedule of member 𝑚, as out lined in section 4.2.7.2.

4.2.1.2 Mean Team Priority Focus

The Mean Team Priority Focus for sprint 𝑠 and team 𝑡, represented by 𝜇𝑝𝑓𝑠𝑡
, is given by

62

𝜇𝑝𝑓𝑠𝑡
=

∑ 𝑝𝑓𝑠𝑚
|𝑀𝑡𝑠|
𝑚=1

|𝑀𝑡𝑠|

where 𝑀𝑡𝑠 is the set of the members of team 𝑡 who have participated in sprint 𝑠, and 𝑝𝑓𝑠𝑚 is the

Member Priority Focus for sprint 𝑠 and member 𝑚, as outlined in section 4.2.1.1.

4.2.2 Context Concurrency
The second additional metric, brought forward by Frank Verbruggen, is the Context Concurrency

metric. This metric determines the maximum amount of story backlog items that the team has had to

work on concurrently throughout a day, sprint or project. Superfluous context switching can hurt

productivity, and keeping the amount of concurrent contexts to switch between to a feasible

minimum will help minimize its impact. The metric denotes the maximum number of stories that were

in progress at any given time, during a particular period of time.

4.2.2.1 Context Concurrency

The Context Concurrency of sprint 𝑠 at timestamp 𝑡, represented by 𝑐𝑐𝑠𝑡 , is given by

𝑐𝑐𝑠𝑡 = |𝑆𝑡| − |𝐹𝑡|

where 𝑆𝑡 is the set of all stories that were started at timestamp 𝑡, and 𝐹𝑡 is the set of all stories that

were finished at timestamp 𝑡.

4.2.2.2 Maximum Context Concurrency

The Maximum Context Concurrency of sprint 𝑠, represented by 𝑚𝑐𝑐𝑠, is given by

𝑚𝑐𝑐𝑠 = ⋁ 𝑐𝑐𝑠𝑡
𝑓𝑠
𝑡 = 𝑠𝑠

where 𝑓𝑠 is the timestamp at which sprint 𝑠 was finished, 𝑠𝑠 is the timestamp at which sprint 𝑠 was

started, and 𝑐𝑐𝑠𝑡 is the Context Concurrency of sprint 𝑠 at timestamp 𝑡, as outlined in section 4.2.2.1.

63

4.2.3 Degree of Swarming
The third additional metric, brought forward by Jeff Sutherland, is the Degree of Swarming. This metric

determines the degree of collaboration and teamwork within the team. It indicates whether team

members tend to work on story backlog items individually or in association with other members of

the team. It is defined here as the percentage of the team that has performed work on a specific story

during a particular day, whether this was two minutes or eight hours.

4.2.3.1 Story Degree of Swarming

The Story Degree of Swarming on story backlog item 𝑖 on day 𝑑, represented by 𝑑𝑜𝑠𝑖𝑑, is given by

𝑑𝑜𝑠𝑖𝑑 =
|𝑀𝑖𝑑|

|𝑀𝑑|

where 𝑀𝑖𝑑 is the set of all members who participated in work performed on story 𝑖 on day 𝑑, and

𝑀𝑑 is the set of all members who were working on day 𝑑.

4.2.3.2 Mean Day Degree of Swarming

The Mean Day Degree of Swarming on day 𝑑, represented by 𝜇𝑑𝑜𝑠 𝑑, is given by

𝜇𝑑𝑜𝑠 𝑑 =
∑ 𝑑𝑜𝑠𝑖𝑥𝑑

|𝐼𝑑|
𝑥=1

|𝐼𝑑|

where 𝐼𝑑 is the set of all story backlog items that were in progress at any time during day 𝑑, and

𝑑𝑜𝑠𝑖𝑥𝑑 is the Story Degree of Swarming on the 𝑥𝑡ℎ story backlog item 𝑖𝑥 on day 𝑑, as outlined in

section 4.2.3.1.

4.2.3.3 Mean Sprint Degree of Swarming

The Mean Sprint Degree of Swarming on sprint 𝑠, represented by 𝜇𝑑𝑜𝑠 𝑠, is given by

𝜇𝑑𝑜𝑠 𝑠 =
∑ 𝜇𝑑𝑜𝑠 𝑑𝑥

|𝐷𝑠|
𝑥 = 1

|𝐷𝑠|

where 𝐷𝑠 is the set of days in sprint 𝑠, and 𝜇𝑑𝑜𝑠 𝑑 is the Mean Day Degree of Swarming on the 𝑥𝑡ℎ

day 𝑑𝑥, as outlined in section 4.2.3.2.

64

4.2.4 Small Correct Change Into Production
The fourth additional metric, brought forward by Kyle Aretae, is the Small Correct Change Into

Production (SCCIP). This metric looks at the overhead of the act of deploying the product into

production. It is defined as the time it takes for a single, extremely simple change to the code base, to

be available in the production environment(s). If the target team works with deployment windows, it

is assumed that the last deployment window has just closed. Kyle has seen this metric range from

under 5 minutes in some of the truly high-performance teams, to over a year in some of the worst.

The Simple Correct Change Into Production for project 𝑝 , represented by 𝑠𝑐𝑐𝑖𝑝𝑝, is given by

𝑠𝑐𝑐𝑖𝑝𝑝 = 𝑡𝑑 − 𝑡𝑐

Where 𝑡𝑑 is the timestamp at which the change is available in production, and 𝑡𝑐 is the timestamp at

which the change was committed.

4.2.5 Process Efficiency
The fifth proposed metric, brought forward by Jeff Sutherland and Frank Verbruggen, is the Process

Efficiency metric. This metric determines the efficiency of a software development team from the

perspective of their work, instead of the individual team members. It is defined as the value-added-

time divided by the total time spent working. Here, excellency measures a low throughput time, but

could also lead to a low capacity utilization.

4.2.5.1 Story Process Efficiency

The Story Process Efficiency for story backlog item 𝑖, in sprint 𝑠, represented by 𝑝𝑒𝑖𝑠, is given by

𝑝𝑒𝑖𝑠 =
∑ 𝑓𝑒𝑥

 − 𝑠𝑒𝑥

|𝐸𝑠𝑚𝑖|
𝑥=1

𝑐𝑡𝑖

where 𝐸𝑠𝑚𝑖 is the set of the events that occurred in sprint 𝑠 for member 𝑚, targeting story backlog

item 𝑖, 𝑐𝑡𝑖 is the Story Cycle Time of story backlog item 𝑖, as outlined in section 4.2.7.4, 𝑓𝑒𝑥
 is the

timestamp at which the 𝑥𝑡ℎ event 𝑒𝑥 has finished, and 𝑠𝑒𝑥
 is the timestamp at which the 𝑥𝑡ℎ event 𝑒𝑥

has started.

65

4.2.5.2 Mean Team Process Efficiency

The Mean Team Process Efficiency for sprint 𝑠, represented by 𝜇𝑝𝑒𝑠
, is given by

𝜇𝑝𝑒𝑠
=

∑ 𝑝𝑒𝑖𝑥𝑠
|𝐼𝑠|
𝑥 = 1

|𝐼𝑠|

where 𝐼𝑠 is the set of all story backlog items in sprint 𝑠, and 𝑝𝑒𝑖𝑥𝑠 is the Story Process Efficiency of

the 𝑥𝑡ℎ story 𝑖𝑥 in sprint 𝑠, as outlined in section 4.2.7.2.

4.2.6 Innovation Income
The final proposed metric, brought forward by Frank Verbruggen and Kyle Aretae, is the Innovation

Income metric. This metric determines the percentage of an organization’s income that’s coming from

innovations. It posits that if a significant part of the value delivered by an organization comes from

recent innovation, the organization has the ability to innovate, and dares to move. Such an

organization has the ability to change the way they operate on their markets, and can quickly react to

changing circumstances.

The Innovation Income 𝑖𝑖 for organization 𝑜, denoted by 𝑖𝑖𝑜, is given by

𝑖𝑖𝑜 =
𝑟<2

𝑟

Where 𝑟<2 is the amount of yearly revenue obtained through projects that were released within the

last two years, while 𝑟 is the total amount of yearly revenue for the organization. While the initial

cut-off is set at two years, empirical validation might show more optimal values for this threshold.

4.2.7 Intermediate Metrics
While the following metrics are not part of the set of metrics suggested by the experts, their values

are needed for the calculation of some of the metrics that were. Their definitions are stated below in

order to provide an accurate and unambiguous account of how their calculations are done.

4.2.7.1 Member Work Capacity

The Work Capacity in sprint 𝑠 for member 𝑚, represented by 𝑤𝑐𝑠𝑚 is given by

66

𝑤𝑐𝑠𝑚 = ∑ 𝑓𝑚𝑑𝑥
− 𝑠𝑚𝑑𝑥

|𝐷𝑠𝑚|

𝑥 = 1

where 𝐷𝑠𝑚 is the set of days during sprint 𝑠 on which member 𝑚 worked on the project, 𝑓𝑚𝑑𝑥
 is the

time at which member 𝑚 stopped working on the 𝑥𝑡ℎ day 𝑑𝑥, and 𝑠𝑚𝑑𝑥
 is the time at which member

𝑚 started working on the 𝑥𝑡ℎ day 𝑑𝑥.

4.2.7.2 Work Schedule

The Work Schedule of member 𝑚 in sprint 𝑠, represented by 𝑈𝑚𝑠, is the union of the intervals of the

times that member 𝑚 worked during sprint 𝑠, and is given by

𝑈𝑚𝑠 = ⋃ [𝑠𝑚𝑑𝑥
, 𝑓𝑚𝑑𝑥

]

|𝐷𝑚𝑠|

𝑥 = 1

where 𝐷𝑚𝑠 is the set of days that member 𝑚 worked during sprint 𝑠, 𝑠𝑚𝑑𝑥
is the time at which

member 𝑚 started working on the 𝑥𝑡ℎ day 𝑑𝑥, and 𝑓𝑚𝑑X
 is the time at which member 𝑚 stopped

working on the 𝑥𝑡ℎ day 𝑑𝑥.

4.2.7.3 Event Duration

The Event Duration for event 𝑒 of member 𝑚, represented by 𝑑𝑒𝑚 is given by

𝑑𝑒𝑚 = {𝑥 | 𝑥 ∈ 𝑈𝑚𝑠 , 𝑥 ∈ [𝑠𝑒 , 𝑓𝑒] }

where 𝑈𝑚𝑠 is the Work Schedule of member 𝑚 in sprint 𝑠, as defined in section 4.2.7.2, 𝑠𝑒 is the time

at which event 𝑒 has started, and 𝑓𝑒 is the time at which event 𝑒 has finished.

4.2.7.4 Story Cycle Time

The Story Cycle Time of story backlog item 𝑖, represented by 𝑐𝑡𝑖, is given by

𝑐𝑡𝑖 = 𝑓𝑖 − 𝑠𝑖

where 𝑓𝑖 is the timestamp at which story backlog item 𝑖 is finished, and 𝑠𝑖 is the timestamp at which

story backlog item 𝑖 is started.

67

4.2.7.5 Story Cycle Interval

Similarly, the Story Cycle Interval of story backlog item 𝑖, represented by 𝑐𝑖𝑖, is given by

𝑐𝑖𝑖 = {[𝑠𝑖 , 𝑓𝑖]}

where 𝑓𝑖 is the timestamp at which story backlog item 𝑖 is finished, and 𝑠𝑖 is the timestamp at which

story backlog item 𝑖 is started.

4.2.7.6 Mean Team Interruption Count

The Mean Team Interruption Count for sprint 𝑠, represented by 𝜇𝑖𝑐𝑠
, is given by

𝜇𝑖𝑐𝑠
=

|𝐼𝑠|

|𝑀𝑠|

where 𝐼𝑠 is the set of the interruptions that occurred in sprint 𝑠, and 𝑀𝑠 is the set of the team

members who participated in sprint 𝑠.

4.2.7.7 Mean Team Interruption Duration

The Mean Team Interruption Duration for sprint 𝑠 and team 𝑡, represented by 𝜇𝑖𝑑𝑠𝑡
, is given by

𝜇𝑖𝑑𝑠𝑡
=

∑ 𝑓𝑖𝑥
− 𝑠𝑖𝑥

|𝐼𝑠|
𝑥 = 1

𝑐𝑖𝑠

where 𝐼𝑠 is the set of the interruptions that occurred in sprint 𝑠, 𝑓𝑖𝑥
 is the time at which the 𝑥𝑡ℎ

interruption 𝑖𝑥 was finished, and 𝑠𝑖𝑥
 is the time at which the 𝑥𝑡ℎ interruption 𝑖𝑥 started.

68

5. Metric Quality Model

In this chapter, we will introduce a model for metric strength, that can be used to determine whether

a specific metric can be deemed strong. This model consists of five qualities that a metric should have

in order to be considered a strong metric. This model for metric strength was developed through in-

depth discussion of metric strength with the experts introduced in section 4.1, in which tacit

knowledge about what makes a metric good or bad, was extrapolated and distilled into explicit

knowledge.

These qualities state that a strong metric should (a) be simple to explain and simple to measure, (b)

be difficult to optimize without increasing business value (c) correlate strongly with increased business

value when optimized, (d) be useable in multiple contexts, without confusing edge-cases, and (e) have

an unambiguous and transparent definition of its data points, as well as how those data points are

used in its calculations. In the remainder of this study, we will refer to these qualities as simple, hard-

to-game, outcome-oriented, universal, and transparent respectively. Together, these criteria spell

the acronym SHOUT.

The rest of this chapter discusses these qualities in more detail, and ends with an assessment of the

discovered metrics in terms of the SHOUT qualities.

5.1 Qualities

5.1.1 Simple
The first quality criteria is simplicity. This addresses the need for a metric to be simple to explain,

measure and interpret. It also takes into account how much effort, in terms of time and energy, is

required to take the required measurements. Finally, it takes into account the perceived impact on

the productivity of the team under investigation. If taking the required measurements takes only a

second, but has to be done many times a day, the overall effort required is low, but the impact on

overall team productivity might be too high, because of the numerous interruptions that it would

cause.

69

5.1.2 Hard to Game
Then, the metric is judged on whether or not its value is hard to game. In the context of this study,

hard to game is defined as being difficult to optimize without increasing business value. This means

that we do not truly care whether or not a metric is easy to game or not, as long as the act of gaming

still results in the intended increase in business value. An excellent of example of a metric that is hard

to game in this sense, is Work in Progress. The emergence of the hard-to-game quality is not all that

surprising, as E.M. Goldratt’s ‘tell me how you measure me, and I’ll tell you how I’ll behave’ comes to

mind.

5.1.3 Outcome Oriented
Strong metrics should also show a strong correlation with increased business value when optimized.

This means that the metric should give a clear indication of where that optimum might be, and can

reasonably be assumed to increase business value when a process gets closer to that optimum.

5.1.4 Universal
For a metric to be universal, it must be applicable to many different contexts, and not just software

development or industrial manufacturing. Similarly, it should not have any confusing edge-cases for

specific circumstances, resulting in invalid measurements or values.

5.1.5 Transparent
Finally, metrics should be transparent, meaning that they should have an explicit and unambiguous

definition of their data points. Additionally, all of the metrics should be transparent in the sense that

they should unambiguously define how those data points are used to calculate the final metric

value(s).

70

6. Systematic Mapping

6.1 Data Structures

The systematic mapping uses eight data structures in order to capture the information that was

ascertained in the structured literature review. In this section, we will introduce each data structure,

and demonstrate their underlying relationships. These are shown below in figure 2.

Figure 2 - Data Structures

6.2 Technology

We implemented the data structures introduced in the previous section in a NEO4J graphing database.

Subsequently, an ASP.NET Core 2.1 application was created in order to enter and manipulate the

entries and their relationships. Finally, the data set was coupled to a graph interpreter, allowing the

inspection and analysis of the data based on the Cypher querying language.

71

The data structures and their relationships were inserted into the graph database. This resulted in a

database schema as shown below in figure 3.

Figure 3 - Database Schema

The resulting systematic mapping became too large to coherently visualize with NEO4J’s visualization

capabilities. The visualization of the resulting systematic mapping, was thus done using a small,

custom-made vis.js app, resulting in a set of visual aggregates that highlight particular aspects of the

systematic mapping. These aggregations are shown in chapter 7.

6.3 Axial Encoding

In this section we will apply the Grounded Theory technique of axial encoding, in order to encode

every metric so that it targets at least one aspect of the software development process, as well as to

encode every input so that it belongs to at least one category of inputs.

72

6.3.1 Aspects
The following table shows the application of open encoding as well as axial encoding to the discovered

software development metrics. Note that this table only shows the encodings, as well as the amount

of metrics included in the encoding. Appendix G shows a complete overview of which metric was

assigned to which encodings.

Aspect Encoding
Metrics

Axial Encoding Open Encoding

Efficiency Time

54

15

 Rework 3

 Cycle Times 9

 Delivery 8

 Flow 2

 Impediments 2

 Burndown 3

 Presumed 4

 Effort 8

Complexity Cohesion

61

4

 Coupling 22

 Dependencies 1

 Code Generation 8

 Encapsulation 3

 Inheritance 16

 Cyclomatic Complexity 2

 Expression Tree 5

Risk Clarity 2 2

Size Effort

22

2

 Components 7

 Estimation 5

 Code Churn 6

 Fulfilment 2

Quality Anti-Patterns

33

8

 Defects 17

 Documentation 1

 Tests 7

Composition Team Composition
5

4

 Project Composition 1

Cost
Cost of Performed
Work

20

6

Cost of Performed
Rework

3

 Cost of Quality 5

73

 Financial 6

Design Requirements
6

4

 Reviews 2

Process Story

11

3

 Iteration 2

 Team Member 2

 Project 3

 Requirements 1

Satisfaction Satisfaction 2 2
Table 9 - Axial Encoding of Software Development Aspects

The encoding has resulted in a set of 10 software development process aspects, which have been

listed below in table 5.

Axial Encoding Open Encodings Metrics

Efficiency 9 54

Complexity 8 61

Risk 1 2

Size 5 22

Quality 4 33

Composition 2 5

Cost 4 20

Design 2 6

Process 5 11

Satisfaction 1 2
Table 5 - Resulting Aspects of Axial Encodin

In total, there are 217 encodings over 197 metrics, with the 20 aspects shown below in table 6 being

assigned to multiple encodings.

Metric Amount Encodings

Interrupted Time 2
Efficiency - Time

Efficiency - Impediments

Descendant Method to Method Export
Coupling

2
Complexity - Coupling

Complexity - Inheritance

Information-Flow Based Inheritance
Coupling

2
Complexity - Coupling

Complexity - Inheritance

Lines of Code (per Unit of Time) 2
Efficiency - Effort

Size - Components

Lines of Code per Method 2
Complexity - Expression Tree

Size - Components

Number of Interfaces 2
Complexity - Encapsulation

Size - Components

Percentage of Adopted Work 2 Size - Effort

74

Size - Estimation

Percentage of Found Work 2
Size - Effort

Size - Estimation

New Classes Per Release 2
Efficiency - Effort

Size - Code Churn

New Features Per Release 2
Efficiency - Effort

Size - Code Churn

New Lines of Code Per Release 2
Efficiency - Effort

Size - Code Churn

New Methods Per Release 2
Efficiency - Effort

Size - Code Churn

Percentage of Completed Stories 2
Efficiency - Effort

Size - Fulfilment

Halstead Complexity Metric 2
Efficiency - Effort

Size - Code Churn

Normalized Distance from Main
Sequence

2
Complexity - Coupling

Quality - Anti Patterns

Parameters per Method 2
Complexity - Cohesion

Quality - Anti Patterns

Number of Defects Found by Tests 2
Quality - Defects

Quality - Tests

Average Fault Cost 2
Quality - Defects

Cost - Cost of Performed Rework

Faults Slip Through 2
Quality - Defects

Cost - Cost of Performed Rework

Improvement Potential 2
Quality - Defects

Cost - Cost of Performed Rework
Table 6 – Metrics assigned to multiple aspects.

6.3.2 Inputs
The following table shows the application of open encoding as well as axial encoding to the discovered

software development metrics’ input parameters. Note that, again, the table only shows the

encodings, as well as the amount of inputs belonging to each encoding. For a full overview of what

input was assigned to which encoding, see Appendix H.

Input Encoding
Inputs

Axial Encoding Open Encoding

Backlog Backlog 6 6

Company Company 1 1

Defects Defect Counts 6 3

75

 Defect Cost 2

 Defect Discovery 1

Deployment Build
3

2

 Version Control 1

Estimate Size Estimate

7

5

 Clarity Estimate 1

 Commitment Estimate 1

Lifecycle Day Lifecycle

20

4

 Interruption Lifecycle 3

 Iteration Lifecycle 2

 Product Lifecycle 2

 Team Lifecycle 2

 Test Lifecycle 2

 Work Item Lifecyle 5

Financial Cost
14

12

 Revenue 2

Iteration Commitment

8

2

 Delivery 4

 Lifecycle 2

Schedule Planned Production

7

2

 Planning 3

 Unplanned 2

Source Code Code Churn

15

5

 Code Complexity 6

 Components 2

 Code Coupling 2

Survey Customer Inquiry
2

1

 Team Member Inquiry 1

Team Team Churn

5

2

 Team Composition 2

 Team Delivery 1

Test Test Result

4

1

 Test Lifecycle 2

 Test Count 1

Work Day Day Lifecycle
3

2

 Planning 1

Work Item Work Item Count

17

2

 Work Item Estimate 4

 Work Item Financials 2

 Work Item Lifecyle 5

 Work Item Meta Data 3

76

Work Item
Requirements

1

Table 11 – Axial Encoding of Software Development Input Groups

The encoding has resulted in a set of 15 groups of input parameters to software development

metrics, which have been listed below in table 12.

Axial Encoding Open Encodings Inputs

Backlog 1 6

Company 1 1

Defects 3 6

Deployment 2 3

Estimate 3 7

Lifecycle 7 20

Financial 2 14

Iteration 3 8

Schedule 3 7

Source Code 4 15

Survey 2 2

Team 3 5

Test 3 4

Work Day 2 3

Work Item 6 17

Table 7 - Resulting Input Groups of Axial Encoding

In total, there are 118 encodings over 84 inputs, with the 34 inputs shown below in table 8 being

assigned to multiple encodings.

Input Amount Encodings

Amount of Defects 2
Backlog - Backlog

Defects - Defect Counts

Amount of Open Defects 2
Backlog - Backlog

Defects - Defect Counts

Commit Timestamp 2
Deployment - Version Control

Lifecycle - Product Lifecycle

Defect Cost 2
Defects - Defect Cost

Financial - Cost

Adjusted Sprint Forecast 2
Estimate - Commitment Estimate

Iteration - Commitment

77

Sprint Story Point Original Forecast 2
Estimate - Size Estimate

Iteration - Commitment

Amount of Stories in Iteration 2
Backlog - Backlog

Iteration - Delivery

Sprint End Timestamp 2
Lifecycle - Iteration Lifecycle

Iteration - Lifecycle

Sprint Start Timestamp 2
Lifecycle - Iteration Lifecycle

Iteration - Lifecycle

Process Capacity 2
Iteration - Delivery

Schedule - Planned Production

Planned Workday Start Timestamp 2
Lifecycle - Day Lifecycle

Schedule - Planning

Planned Workday End Timestamp 2
Lifecycle - Day Lifecycle

Schedule - Planning

Interruption End Timestamp 2
Lifecycle - Interruption Lifecycle

Schedule - Unplanned

Interruption Start Timestamp 2
Lifecycle - Interruption Lifecycle

Schedule - Unplanned

Team Members Added 2
Lifecycle - Team Lifecycle

Team - Team Churn

Team Members Removed 2
Lifecycle - Team Lifecycle

Team - Team Churn

Units Produced 2
Iteration - Delivery

Team - Team Delivery

Test Deleted Timestamp 2
Lifecycle - Test Lifecycle

Test - Test Lifecycle

Test Created Timestamp 2
Lifecycle - Test Lifecycle

Test - Test Lifecycle

Workday Start Timestamp 2
Schedule - Planning

Work Day - Day Lifecyle

Workday End Timestamp 2
Schedule - Planning

Work Day - Day Lifecyle

Amount of Available Workdays 2
Schedule - Planning

Work Day - Planning

Amount of Open Work Items 2
Backlog - Backlog

Work Item - Work Item Count

Amount of Work Items 2
Backlog - Backlog

Work Item - Work Item Count

Work Item Function Point Estimate 2
Estimate - Size Estimate

Work Item - Work Item Estimate

Work Item Story Point Estimate 2
Estimate - Size Estimate

Work Item - Work Item Estimate

78

Work Item Use Case Point Estimate 2
Estimate - Size Estimate

Work Item - Work Item Estimate

Adjusted Work Item Story Point
Estimate

2
Estimate - Size Estimate

Work Item - Work Item Estimate

Work Item Cost 2
Financial - Cost

Work Item - Work Item Financials

Work Item Finished Timestamp 2
Lifecycle - Work Item Lifecycle

Work Item - Work Item Lifecycle

Planned Work Item Finished Time 2
Lifecycle - Work Item Lifecycle

Work Item - Work Item Lifecycle

Work Item Deployed Timestamp 2
Lifecycle - Work Item Lifecycle

Work Item - Work Item Lifecycle

Work Item Start Timestamp 2
Lifecycle - Work Item Lifecycle

Work Item - Work Item Lifecycle

Work Item Created Timestamp 2
Lifecycle - Work Item Lifecycle

Work Item - Work Item Lifecycle

Table 8 – Inputs assigned to multiple aspects.

79

7. Aggregation

In total, we identified 44 studies mentioning software development metrics. These papers were

published during the time period 1989 to 2018. Together, these studies were written by 113 individual

authors, using 166 distinct keywords. They were published in 37 different venues, facilitated by 12

different publishers. Collectively, these studies mention a total of 191 software development metrics,

targeting 10 different aspects of the software development process. This section shows a thorough

investigation of these results.

7.1 Venues

Figure 4, shown below, illustrates the distribution of venues over publishers.

Figure 4 - Distribution of Venues over Publishers

7.2 Publishers

Collectively, these 12 publishers facilitated 37 venues, shown below in table 9, alongside the amount

of literary works that were included from that venue.

Publisher Venue Works

ACM Proceedings of the International Conference on Software Engineering 1

ACM Journal of Software Engineering 1

0

2

4

6

8

10

12

14

16

Venues

80

ACM Transactions on Computers 1

ACM Journal of Electrical and Computer Engineering 1

ACM Journal of Model-Driven Engineering Lanuages and Systems 1

ACM
Journal of Object-Oriented Programming, Systems, Languages and
Applications

1

CSE
Proceedings of the International Workshop on Requirements Engineering
and Testing

1

CSE Journal of Object Technology 2

CrossTalk Journal of Defense Software Engineering 1

Elsevier Journal of Information and Software Technology 1

Elsevier Journal of Systems and Software 1

Elsevier Journal of Computers and Industrial Engineering 1

Elsevier International Conference on System Analysis and Modeling 2

Hindawi International Journal of Industrial Engineering 1

Hindawi Journal of Communication and Security 1

IEEE Proceedings of Seventh International Software Metrics Symposium 1

IEEE
Proceedings of the International Workshop on Global Software
Development

1

IEEE
International Symposium on Emperical Software Engineering and
Measurement

1

IEEE International Workshop on Software Measurement 1

IEEE International Conference on Software Process and Product Measurement 1

IEEE Conference on the Quality of Software Architectures 1

IEEE Journal of Software Maintenance 2

IEEE Transactions on Software Engineering 1

IEEE Moratuwa Engineering Research Conference 1

IEEE
Proceedings of the International Conference on Software and System
Process

1

IEEE
Conference on Model-Based Methodologies for Pervasive and Embedded
Software

1

IEEE Hawaii International Conference on System Sciences 4

IEEE IEEE Software 3

IEEE Agile Conference 1

IEEE Conference on Software Engineering Techniques 1

IJETAE International Journal of Emerging Technology and Advanced Engineering 1

Inderscience International Journal of Agile Systems and Management 1

Springer Annals of Software Engineering 1

UKAIS Journal of Information Systems 1

Wiley Journal of Software Improvement and Practice 1

Wiley Journal of Software Practice and Experience 1

World
Scientific International Journal of Software Engineering and Knowledge Engineering

1

Table 9 - Venues and their Publishers

81

7.3 Papers

Figure 5, shown below, illustrates the distribution of the included work over the years. This distribution

shows a significant skew towards the later end of the chart, with an arithmetic mean at June of 2008.

Figure 5 - Distribution of Included Work over Time

7.4 Keywords

The included work lists 166 distinct keywords, with an average of 4.8 keywords per paper. These

keywords, and their occurrences are listed below in table 10, which is limited to showing the 25 most

often used keywords. It is interesting to note the lack of overlap in the occurrences of these keywords,

dropping to 1 after only 25 keywords. The complete list with keywords and their occurrences is listed

in Appendix I.

Keyword Occurrences

Productivity 7

Software Metrics 6

Measurement 5

Software 5

Software Engineering 5

Software Measurement 5

Companies 4

Costs 4

0

1

2

3

4

5

6

19
89

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

19
97

1
9

9
8

1
9

9
9

20
00

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

20
05

2
0

0
6

2
0

0
7

20
08

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

20
16

2
0

1
7

2
0

1
8

Works

82

Programming 4

Testing 4

Agile 3

Metrics 3

Refactoring 3

Scrum 3

Agile Development 2

Agile Software Development Process 2

Case Study 2

Coupling 2

Efficiency 2

Large Scale Systems 2

Lean 2

Lean Manufacturing 2

Outsourcing 2

Quality Assurance 2

Software Quality 2

Table 10 - Occurrences of 25 most Prevalent Keywords

7.5 Authors

The included work is written by 113 distinct authors. In table 11, shown below, the authors of the

included work are listed, limited to showing the authors with the most included work. The list drops

to 1 included work after 14 authors, and is thus cut off at 14. The complete list with authors and their

works is listed in Appendix J.

First Name Last Name Works

Jeff Sutherland 3

Zengyang Li 2

Turgay Aytac 2

Shekoufeh Kolahdouz-Rahimi 2

Peng Liang 2

Paris Avgeriou 2

Ovunc Bozcan 2

Mohammadreza Sharbaf 2

Kevin Leno 2

Howard Haughton 2

Hessa Alfraihi 2

Gul Calikli 2

83

Claes Wohlin 2

Ayse Bener 2

Table 11 – Authors with the most included work

Figure 6, then, shows the distribution of authors over the included work, as well as their

interconnectedness.

Figure 6 - Authors per paper

84

7.6 Metric Quality Assessment

The metrics that were discovered in the literature are listed in appendix K, alongside their quality

assessments. These quality assessments were performed and discussed with a subset of the experts

identified in chapter 4.

7.7 Metric Distributions

7.7.1 Chronological Distribution
When looking at the origins of the discovered metrics, figure 7, shown below, shows the distribution

of the metric’s introductions over the years. A complete table of which authors introduced which

metrics in what year, is shown in Appendix D. This is a good-faith, best-effort attempt to trace each

metric back to its original academic introduction, and is bound to have some inaccuracies. Note that

this figure, and its accompanying appendix, does not include all original introductions for all metrics,

as not every metric could be traced back to its original academic introduction, or no reasonable

deductions could be made as to where it was first introduced. This graph shows the introduction of

121 out of 197 metrics, for which the academic introduction could be deduced.

Figure 7 - Distribution of metric Introductions over the years

0

2

4

6

8

10

12

14

16

19
5

7

19
7

6

19
77

19
8

0

19
8

1

19
88

19
9

1

19
9

2

19
93

19
9

4

19
9

5

19
96

19
9

7

19
9

9

20
00

20
0

1

20
0

3

20
06

20
0

7

20
0

8

20
09

20
1

0

20
1

1

20
12

20
1

3

20
1

4

20
15

20
1

6

Count

85

When we relate the year of origin to the aspects those metrics measure, we derive figure 8 below.

Note that, because every metric can potentially target more than one aspect, the numbers do not

necessarily match the ones in the previous figure.

Figure 8 - Distribution of metric Introductions over the years per aspect

When relating the year of origin to the input groups at which their metrics look, we derive figure 9

below. Note, again, that a metric can have multiple inputs, and each input can belong to a different

group. These numbers thus do not necessarily match with the previous figures.

0

2

4

6

8

10

12

14

16

1
9

5
7

1
9

7
6

1
9

7
7

1
9

8
0

1
9

8
1

1
9

8
8

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
9

20
00

2
0

0
1

2
0

0
3

2
0

0
6

20
07

2
0

0
8

2
0

0
9

2
0

1
0

20
11

2
0

1
2

2
0

1
3

2
0

1
4

20
15

2
0

1
6

Aspects per Year of Origin

Complexity Cost Design Efficiency Process Quality Satisfaction Size Risk Composition

86

Figure 9 - Input Groups per Year of Origin

7.7.2 Conceptual Distribution
Figure 10 below shows the distribution of the encountered metrics over the different aspects of the

software development process.

0

10

20

30

40

50

60

70
1

9
5

7

19
76

1
9

7
7

1
9

8
0

1
9

8
1

1
9

8
8

19
91

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

19
96

1
9

9
7

1
9

9
9

2
0

0
0

2
0

0
1

20
03

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

20
10

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

20
15

2
0

1
6

Input Groups per Year of Origin

Backlog Company Defects Deployment Estimate

Events Financial Iteration Schedule Source Code

Survey Team Test Work Day Work Item

0

10

20

30

40

50

60

Metrics per Aspect

87

Figure 10 - Metrics per aspect

Figure 11 below shows the distribution of the encountered inputs over the different axial encodings

of the input groups.

Figure 11 - Inputs per Input Group

7.7.3 Strength Distribution
Figure 12 below shows the amount of metrics that were found to have x out of 5 strength qualities.

From this figure, we can deduce that only 23 out of 197 metrics could be deemed strong.

Figure 12 - Qualities per Metric

0

5

10

15

20

25

Inputs per Input Group

23

38

31
37

45

23

Strength Distribution

5/5 Qualities 4/5 Qualities 3/5 Qualities

2/5 Qualities 1/5 Qualities 0/5 Qualities

88

Figure 13 below, shows the distribution of strong and weak metrics within each aspect

Figure 13 - Weak versus strong metrics

7.7.4 Quality Distribution
Figure 14 shows the distribution of metrics within the quality criteria.

Figure 14 - Distribution of metrics within quality criteria

7.7.5 Paper Distribution
Figure 15 then shows the amount of metrics that each paper mentions, regardless of whether they

are considered to be weak or strong.

0

10

20

30

40

50

60

Weak vs. Strong Metrics

Weak Strong

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Simple Hard to Game Outcome Oriented Universal Transparent

Distribution of Metrics within Quality Criteria

TRUE FALSE

89

Figure 15 - Metrics per paper

0

5

10

15

20

25

30

35

40

45

50
P1

.2
4

P1
.0

3
P2

.0
2

P2
.1

7
P2

.1
8

P1
.0

4
P2

.0
7

P2
.1

3
P2

.0
9

P2
.1

2
P1

.2
0

P2
.1

5
P1

.0
7

P1
.0

9
P1

.2
1

P2
.0

5
P2

.0
6

P2
.1

6
P1

.1
1

P1
.2

6
P2

.0
1

P2
.0

8
P2

.1
1

P1
.0

6
P1

.0
8

P1
.1

2
P1

.2
2

P1
.2

3
P1

.0
5

P1
.1

6
P1

.1
7

P1
.1

8
P1

.2
5

P2
.0

4
P2

.1
0

P2
.1

4
P1

.0
2

P1
.1

4
P1

.1
5

P1
.0

1
P1

.1
0

P2
.0

3
P1

.1
3

P1
.1

9

Metrics per Paper

90

8. Team Performance Model

In this section, we will introduce a new model for assessing team performance, based on the concepts

discovered in the structured literature review, the discussions with experts, and the systematic

mapping of their results. This model assesses the performance of a team along four different axes,

being process, people, technical and product. These perspectives were derived from a final encoding

pass over the aspects of software development. This encoding has yielded an additional perspective,

called enterprise, which focusses on metrics aimed at measuring how well a whole organization is

performing. This perspective is left out, however, of the model for team performance.

Each of these perspectives has a single key metric that adheres to the SHOUT model of metric strength,

and is thus completely outcome-oriented. Consequently, the resulting measurements tell an

individual team whether or not they are performing well on an individual perspective, but do not tell

us anything about how to improve it. Additional metrics are required to provide a team with the

necessary pulls and levers to actively navigate towards becoming a truly high-performance team. This

is, however, part of our future research as indicated in section 11.2.

The rest of this chapter introduces the set of strong candidate metrics in section 8.1, and each of the

perspectives and its key metric in more detail in section 8.2, after which we will outline the predicted

input correlation between the four key metrics in section 8.3.

8.1 Candidate Metrics

First, figure 16 shows the set of metrics that were considered strong during the evaluation with

experts, adhering to all five SHOUT qualities for metric strength, alongside the aspects of the software

development process which they target. Note that aspects that do not have any metrics that can be

considered strong, are left out of this overview.

91

Figure 16 - SHOUT metrics per aspect

8.2 Perspectives

8.2.1 Process
According to Lean Manufacturing, the best manufacturing processes are optimized to reduce waste.

In our team performance model, we state that a team’s process is performant when it maximizes

added-value, while minimizing wasted resources. The strong metric of Process Efficiency, introduced

92

in section 4.2.5, measures the percentage of total time spent adding value, and is used as the key

metric for the process perspective on team performance.

8.2.2 People
In our model of team performance, we hold true the axiom that the members of a team need to feel

good about themselves and their company in order to become a high performance team. The

Employee Happiness metric, introduced in section 3.4.14.17, measures this sense of purpose,

belonging and satisfaction that the experts believe is a necessary ingredient to high performance, and

is used as the key metric for the people perspective team performance.

8.2.3 Technical
High technical performance allows a team to translate concepts into profitable products and services

in minimal time. This maximization of speed, alongside the minimization of required effort, is perfectly

encapsulated in the Small Correct Change Into Production metric introduced in section 4.2.4, and is

thus used as the key metric for the technical perspective on team performance.

8.2.4 Product
Doing the right thing is equally important as (if not more important than) doing the thing right. High

performance in the product perspective means maximizing the value in the eyes of the customers. The

Net Promoter Score metric, introduced in section 3.4.14.11, measures how many more people love

the product or service you’ve created, than the amount of people that hate it, and is used as the key

metric for the product perspective on team performance.

8.3 Input Correlation

The key metrics introduced in the previous sections were chosen, not solely because they encapsulate

their respective high-performance aspects closely, but also because their formulae share little to no

input data-points. This is advantageous because this helps to isolate the cause-and-effect relationship

between an organizations attempt to improve, and the difference in their measurement outcomes.

93

Figure 17 below shows the four key metrics alongside the identified input data-points, and shows little

interconnectivity. The only shared input data-point is the timestamp at which a particular work-item

is finished, which is used by both the Process Efficiency metric, and the Small Correct Change Into

Production metric. However, the input data-point represents a very dissimilar concept in each of these

metrics. In Process Efficiency, the finished timestamp marks the end of the process, and concludes the

period of examination for that particular work-item, while in Small Correct Change Into Production, it

marks the start of that process.

Figure 17 - Key metrics and their input data-points

94

8.4 Tooling

A web-based measuring tool has been created to facilitate the measurement of each of the four key

metrics. In this section, we will quickly go over the capabilities of this tooling set. The tooling has been

made available through https://www.diamondagile.net/la.

Image 1 - Survey Maintenance

Image 1 above shows how an organization can create an account and set up customer-facing surveys

for the Net Promoter Score and Employee Happiness Score. Here, the user can specify the question

that is presented to the customer, as well as whether the survey is currently enabled or not. The

resulting survey pages are shown below in image 2 and 3.

https://www.diamondagile.net/la

95

Image 2 - Happiness Metric survey for Rabobank

Image 3 – Net Promoter Score survey for Rabobank

96

At the same time, the platform allows for and details the submission of bulk uploaded data on stories,

meetings, happiness scores and promoter scores. Image 4 below shows the detailing of the stories

bulk upload, with its required JSON format and an example input file.

Image 4 - Bulk upload format details

Finally, these measurements can be used to generate a dashboard containing indications on how well

the organization or team is doing on each of the key metrics. Image 5 shows a generated performance

dashboard with fictitious, generated data. You will notice a fifth perspective here, called Enterprise.

This perspective was added for the context of an entire organization, as opposed to a single team, and

is thus not included in this thesis on team performance, while it is available in the online tooling

module. The dashboard shows, for each of the five perspectives, whether the organization or team is

performing good (white), bad (orange) or mediocre (yellow).

97

Image 15 - Generated dashboard

Note that the tooling module is a work-in-progress, and has focussed primarily on authentication,

authorization, API development and initial user experience for the duration of this thesis. In future

work, the generated dashboard will require a substantial UX overhaul to fit in with the design of the

web UI, and additional features will have to be added for generating dashboards for a particular

timespan or sprint. At the time of delivering this thesis, Rabobank is about to start onboarding some

+- 70 teams onto the platform for initial use.

98

9. Validation

In this chapter, we will detail the execution of an initial and superficial validation of the newly devised

model for team performance. The aim of this validation is to gauge the perceived clarity, relevance

and completeness of the model among software development experts in the field. This validation was

performed using a small Google Forms survey that was distributed via various online software

development communities on Reddit, resulting in 34 answers from various professionals in the field

of software development. These results are outlined below, and finally discussed at the end of this

chapter.

9.1 What kind of role(s) do you have within your organization?
Figure 18 below shows the distribution of their roles within their respective companies. Here,

respondents could select multiple options, and with a total of 65 selections over 34 responses, each

respondent selected an average of 1.91 roles.

Figure 18 - Respondent roles

9.2 Does your organization measure the performance of your software

development process in any way?
Figure 19 below shows that in nearly 80% of the cases, the target organization measures the

performance of the software development process in one way or the other. An additional 12 percent

did not know, while only 8.8% signalled a definitive no. Here, respondents could only select a single

answer.

99

 Figure 19 - Percentage of respondents measuring software development performance

9.3 Does your organization measure the performance of your software

development performance?
For the respondents that indicated that their software development process performance was

measured, 96% indicated that the performance was measured on the level of their team. Individual,

departmental and organizational measures were less common, with 38%, 76% and 34% respectively,

as shown below in figure 20. Here, again, respondents could select multiple options, and with 64

responses over 34 respondents, each respondent selected an average of 1.88 options.

Figure 20 - Measurement granularity

9.4 In terms of a gain in efficiency, how much of an increase has the

application of these measurements brought you?
In terms of the fruits of their labour, over half of all respondents signalled not knowing how much

more performant their software development process has become as a result of using the

100

measurements, as shown below in figure 21. For those who could give an indication, it seems like a

10% to 100% increase in performance was most prevalent. Here, respondents could only select a

single option, and the total amount of responses is 27. The discrepancy between 27 and 34 is due to

the fact that those who signalled not knowing whether or not their performance is measured, or

signalled a definitive no (7 people in total), were not asked this question.

 Figure 21 - Measurement application advantages

9.5 What software development method does your team use?
The overwhelming amount of respondents used Scrum or Kanban as their software development

method, with over 80% of the results combined, as shown below in figure 22. Here, again, the total

amount of responses equals 27, as respondents could only select a single software development

method.

101

Figure 22 - Software development methods

9.6 What software development metrics were used in their software

development process?
When asked “What software development metrics were used in their software development process”,

the answers denoted below in table 12 were provided by the respondents. This question was asked

to see if the structured literature review, as well as the expert inquiry, had failed to identify other

industry-used metrics. These responses, however, did not identify any new metrics or concepts.

The concepts that have been mentioned have been encoded to show story point estimates, velocity,

metrics related to cycle-times, work-in-progress, test metrics, and others. In total, story point

estimates were mentioned 22 out of 26 times. This is not surprising, as 22 out of 27 people signalled

using Scrum or Kanban. Similarly, 16 out of 26 responses mentioned story point velocity. Metrics that

relate to cycle-times, such as lead-, queue-, value-added-, and interrupted-times, were mentioned in

14 out of 26 responses. Work-in-progress metrics, or ones that limit them, were mentioned in 12 out

of 26 responses, while testing related metrics were mentioned in only three responses. Finally, metrics

such as the Net Promoter Score, Overtime per Iteration, On-Time Delivery, Burndown Rate, Discovered

Effort, Function Points, Targeted Value Increase, and Discarded Stories were only mentioned once.

Story points and velocity.

Velocity, story point and hours spent

Story points, story point velocity, burndown rate, work in progress and cycle time

102

Story points, and velocity per sprint and hours.

I am not sure about all of them but I suspect just the regular scrum stuff is used by our teams, like
story point estimates and velocity and time spent per story etc.

Story points and development time

Story points and velocity, work in progress, net promoter scores, on-time delivery.

Test coverage, test growth as opposed to source code growth, and standard Scrum/Kanban things
like story points and work-in-progress.

The usual Kanban things like flow, amount of stories in a swimlane, size estimates, etc.

Things like cycle time, value added time, work in progress, time spent in meetings, overtime per
iteration, story points and velocity.

We measure flow, the amount of stories that are in each swimlane simultaneously, the average
cycle time for stories, and we do effort estimations in story point.

Story points.

We measure story points and story point velocity, the amount of work in progress, how long each
story is in a particular state, how long it’s on the backlog before its included in a sprint, how many
sprints it takes on average to implement a story, and how often we change story point estimates
during a sprint (discovered effort).

We mainly use story points, but for some legacy projects we also still employ function points.

Story points.

We restrict the amount of work in progress, and estimate the effort required in terms of story points.

We measure code coverage, the growth of tests versus the code base, and the required time to run
the entire test base.

Work in progress, story points, velocity, average time spent in swimlane.

Story points, velocity.

We measure how long a story is in a particular state, how many stories were in a particular state at
the same time, how often a state was at "full-capacity", the average cycle-time for a story, how long
a story has had to wait before being picked up, and how many stories are thrown away.

Unit test coverage, how many of the builds during the day are successful, we measure our velocity
and the growth in our velocity. We also have stuff like PMD for quality assessments.

Story points and the sprint velocity.

The amount of work that is in progress at the same time, the story points and our velocity.

Story point velocity and hours spent developing a story

We measure velocity, story points, maximize swimlane capacity, cycle time and hours spent on the
level of teams.

Story point estimates, hours spent, remaining effort and velocity.

Table 12 - Used software development metrics

9.7 How would you assess the strength of a particular software development

metric?
Similarly, the question “How would you assess the strength of a particular software development

metric?” yielded the following responses, denoted below in table 13. This question was asked to

identify additional qualities of strong metrics that the experts might have overlooked. The quality of

effectiveness was mentioned an overwhelming amount of times, with 17 out of 27 responses

mentioning the quality in one form or another. 4 out of 27 respondents looked for adoption of the

103

metric in the industry, while only 2 mentioned the impact that measuring it would have on the

performance of the team under investigation. Similarly, only 2 respondents mentioned simplicity or

intuitiveness of the metric. Additionally, 3 respondents mentioned validity as a primary quality for

metric strength. Finally, 3 respondents mention the quality of usefulness or applicability.

We would expect a strong metric to be widely adopted and to have proven itself in the industry.

Proven effectiveness.

How well it works in practice, so if it yields results.

How ubiquitous it is in the field.

How well they work.

How well the measurements correspond with the reality.

Simplicity and effectiveness.

I feel like you should be able to notice growth fairly quickly once adopting a metric. If it does not
help soon, you should let it be.

How applicable the results are to the problems we face.

If big tech companies are using it.

How much impact it has on the performance of a team.

How intuitive it is and how accurate the results are.

The impact on the process.

A strong metric should have meaningful, measurable impact on your performance. If you cannot
measure that the adoption of the metric has brought you an increase of performance, the metric is
weak; or at least it's weak in your context.

Theoretical validity.

How much it has improved our process.

I would not know but I would usually just do whatever other successful teams are doing.

If it's academically validated or has been shown in industry to be beneficial.

We look at how well we can use the results to improve our process.

How good the results are from using it.

I think the strength of a metric comes from the benefits it provides for the process. If it does not
bring enough benefit, it's not a very strong metric.

How effective it is.

Research.

How well they work when applied to your process.

How useful it is for management and the teams.

Usefulness to upper management.

How much better the process is when they’re used.

Table 13 - Metric strength assessment qualities

9.8 Relevance
Figure 23 below shows the individual responses on the perceived relevance of each of the five

qualities.

104

Figure 23 - Relevance of SHOUT qualities

9.9 Clarity
In terms of clarity of definition, all of the qualities were received well. Figure 24, shown below, shows

the individual results.

Figure 24 - Clarity of SHOUT quality definitions

9.10 Completeness

Figure 25, shown below, shows how well the respondents think the five qualities encompass

everything that a strong metric should have.

105

Figure 25 - Perceived completeness

9.11 Summary
With a total of 34 respondents, the set is too small to draw any significant conclusions from our

preliminary validation. Additionally, the participants were drafted from online software development

communities on Reddit, and were subsequently not validated in terms of whether they actually were

software development professionals or not. While this leads to a validation that might not yield any

conclusive results on the model’s validity, it is an interesting first step towards gauging the relevance,

clarity and completeness of the model.

It is surprising to see that a significant proportion of respondents (21%) signalled not knowing whether

they measure performance, or definitively stating that they don’t measure performance at all.

Similarly, over half of the respondents (51%) who did measure performance, had no idea about what

they had factually gained in doing so.

The open questions did not yield any additional software development metrics, which yields us some

confidence in having a fairly exhaustive set - especially considering the largest systematic literature

review that we found on the subject had only discovered 43 software development metrics, as

opposed to our set of 197 metrics. The second open question did, however, mention the quality of

effectiveness an overwhelming amount of times. At this point in time, it is difficult to say with certainty

whether effectiveness, as meant by the respondents, corresponds with the outcome-oriented quality

in the SHOUT model for metric strength. While there are definite similarities between the two, we can

only be certain after a proper discussion with the advocates of effectiveness.

In terms of relevance, the model was received fairly well. The qualities of simple, hard-to-game and

outcome-oriented showed significant positive results, with median scores of 4.5, 5 and 5 respectively.

The universal and transparent qualities, however, were only received as fairly relevant, with median

106

scores of 3.5. In terms of Net Promoter Scores, the qualities received a score of 46%, 93%, 83%, 10%

and 23% respectively, which seems to support the same conclusion. Similarly, in terms of clarity, the

model was received extremely well. Here, all qualities have a median score of 5, and Net Promoter

Scores of 100%, 100%, 63%, 83% and 86% respectively. Finally, the model was perceived as fairly

complete as well, with a median score of 4, and a Net Promoter Score of 56%.

107

10. Discussion

In this chapter, we discuss the findings of our study. We start with a discussion of the structured

literature review results, the expert inquiry, and the systematic mapping, followed by a discussion of

the SHOUT model for metric strength and the model for team performance, and we finish the chapter

by listing the threats to the validity of these results.

10.1 Metrics

10.1.1 Structured Literature Review
The structured literature review yielded a large set of metrics, hinting at a large body of knowledge

for software development metrics. The collected work, spanning more than 40 individual papers on

the subject and over 1000 potential candidates, shows a healthy distribution over venues and

publishers, giving us no reason to suspect any form of venue or publisher bias.

The study found 197 individual metrics, which is more than 4.5 times as many as the largest literature

review on the subject that we found (P1.24), giving us adequate reason to believe that our current

work has added significant value to the field of measuring software development processes, by the

results of the structured literature review alone. This seems to have been a necessary endeavour,

seeing as the resulting set of keywords hint at an industry that lacks a clearly defined lexicon of

standardized terms, with lots of synonyms and very little overlap between papers. Similarly, when

looking at the set of authors working on the included work, we see that they rarely publish more than

one paper on the subject, with the most prevalent expert being Jeff Sutherland at three included

papers. This also hints at a field that lacks well-known and prominent experts on the subject. Given

the fact, however, that our inclusion criteria stated that a paper should mention a new, previously

unmentioned software development metric, we cannot be all too sure about the latter two

conclusions.

Surprisingly, no golden age of software development metric research can be identified, as the field

has seen continuous and consistent attention since its inception. The distribution of metric mentions

does, however, show a focus of research on complexity, quality and efficiency metrics, with 146

metrics targeting just these three aspects of the software development process. Similarly, a significant

amount of metrics seem to have input data-points coming from work-items and their lifecycle, as well

the source code, with 52 out of 118 inputs originating from just these three input categories.

108

In terms of metric strength, according to the newly introduced SHOUT model of metric strength, it is

surprising to see that five out of ten aspects failed to yield any strong metrics. Even more surprising is

the fact that complexity and quality are among them, while 98 such metrics were identified. While we

expected this to be because they were not classified as universal (and thus only adhering to a SHOT

model of metric strength), we found that most often, they were not classified as outcome-oriented

instead. This is not surprising, as code quality and complexity metrics can be excellent tools to

maintain a high level of maintainability and clarity, but optimizing them does not necessarily correlate

with increased business value. Similarly, such metrics can fairly easily be gamed, with various adverse

effects. The lines of code per method metric, for example, can be kept artificially low by limiting it to

one per method, but this might severely hurt readability and maintainability. The efficiency aspect,

however, has yielded 12 strong metrics, most of which come from LEAN software development or

manufacturing. Most of these metrics target various aspects of the life-cycle of a work-item (e.g. lead-

time, queue-time, cycle-time, interrupted-time, and value-added-time). Similarly, the Work-in-

Progress metrics that were encountered in the process aspect of software development, also have

their roots in LEAN manufacturing or software development.

According to the distribution of qualities over metrics, the hard-to-game quality appears to be the

hardest quality to inhibit for a metric, with just 26.3% of the encountered metrics adhering to it.

Similarly, only 31.4% of the encountered metrics have shown to be outcome-oriented, making it the

second hardest quality to adhere to. Finally, just 23 out of 197 metrics can be considered strong, being

only 11.6% of the entire set of encountered software development metrics. This hints at the necessity

of an accurate model for metric strength, as well as the need to keep quality in mind when devising

new software development metrics. While the review has yielded a large set of metrics, it has yielded

no model for determining metric strength or quality. The goal-question-metric model came closest,

but focusses on what makes a metric good for a particular organization’s context instead. A model for

metric strength is thus a welcome addition to the field of software development metrics.

10.1.2 Expert Inquiry
The expert inquiry was done with a small group of experts, yet the group consisted of very prominent

and prevalent experts in the field, with lots of experience and expertise between them. We found that

it was surprisingly easy for a small group of experts to unanimously and quickly determine whether or

not a metric could be considered strong or not, even without the SHOUT model for metric strength in

place.

109

The inquiry yielded six additional metrics that were not identified through the structured literature

review and its snowballing process. It is interesting to note that all six metrics could be considered

simple, hard-to-game, outcome-oriented and universal. Now that their definitions, as well as their

data-points have been clearly and unambiguously defined in this work, they can also be considered to

be transparent. This means that all of the metrics retrieved from the expert inquiry can now be

considered strong metrics, and can now be used by software development teams to determine some

aspects of their performance.

Context Concurrency, Priority Focus and Degree of Swarming show clear similarities with Kanban,

where the amount of work-in-progress is limited in order to prevent an abundance of context

switching and to stimulate a focus on the highest current priority. Additionally, Degree of Swarming

shows similarities with the rise of pair programming, and the move away from the stereotypical

independent and anti-social software developer. Small Correct Change Into Production and Innovation

Income can both be considered as very simple, fast indicators of general technical and organizational

performance, while in-depth analysis would require other, more complex and time-consuming

metrics. Finally, it is interesting to note that Process Efficiency is a strong metric, while all of its inputs

can also be considered strong, hinting at a very promising application that will need to be validated in

future empirical research.

10.1.3 Systematic Mapping
The systematic mapping has proven to be very helpful in analysing and interpreting the results of the

structured literature review and the expert inquiry. While the axial-encoding would most likely have

yielded different results if performed by other researchers, we feel like it has fulfilled its purpose

adequately. At the same time, however, we feel very strongly that potentially many more patterns

and insights can be extracted from the systematic mapping, or with a potentially different axial-

encodings. For this reason, we have decided to publish the data set in its entirety on

https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping.

10.2 Models

10.2.1 Model for Metric Strength
The SHOUT model for metric strength was received fairly well by the participants of the small

validation survey. In their responses, the participants signalled the definitions of the qualities to be

very clear, with high median values, just as the relevance of these qualities. In the end, the model was

https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping

110

thought to reasonably encompass every quality that a metric should have in order to be considered

strong, with a median score of 4 and a Net Promoter Score of 56%.

The model does, however, need a larger-scale validation in the industry, with a larger set of verified

participants, whereas the current validation was just a small probe into the general reception of the

model.

10.2.2 Model for Team Performance
The model for team performance shows very little correlation based on shared input data-points, with

only the timestamp at which a work-item has finished being used for both Small Simple Change Into

Production and Process Efficiency. As stated in chapter 8, however, the input data-point is used for

widely different things, and represents different concepts in both metrics. The resulting model has,

however, not been validated in this study, and so reception and performance of the model is difficult

to gauge.

10.3 Threats to Validity

In this section, we will analyse the apparent threats to the validity of our research. In their work, Zhou

et al. (2016) identified various common threats to the validity of systematic literature reviews in the

field of software engineering. The following section details the common threats to validity that are

applicable to our context, and mentions the considerations that we have adhered to in order to ensure

the validity of our work to the largest feasible extent.

10.3.1 Non-specification of settings

In order to circumvent the threat of non-specification of settings, we have ensured to properly

document and mention the venues, search strings, and query settings with which the searches were

performed. Due to the size and scope of the snowballing process, and the limited resources available

to us in this study, we have had to make some concessions regarding the reproducibility of the

snowballing process, which has in turn lowered the validity of our results slightly.

10.3.2 Inappropriate search methods

Subsequently, the threat of inappropriate search methods has been circumvented by performing the

searches automatically, yet following the automated search with a manual snowballing procedure, in

order to ensure that we did not miss some large part of the body of knowledge.

111

10.3.3 Incomprehensive venues or databases

The incomprehensive venues or databases threat, states that the review might miss relevant work due

to not including important resource databases. To circumvent this threat to some extent, the search,

and subsequent snowballing, has been duplicated on multiple academic search engines. However, due

to time and resource constraints, this effort duplication was limited to only two of the most prevalent

academic search engines available today, being Google Scholar and Scopus. Additionally, we have

made sure to accurately and appropriately document our inclusion and exclusion criteria, as to ensure

that the work being performed is valid and reproducible.

10.3.4 Culture bias

In order to circumvent the culture bias threat, we have ensured to include any work that meets our

inclusion criteria, regardless of apparent author nationality or cultural heritage. Because some of this

bias may be unconsciously exerted, we have attempted not to inspect or make deductions about the

cultural background of a paper’s author(s), until we had determined whether or not the paper meets

our inclusion criteria. Once inclusion criteria were met, the work could no longer be excluded from

the results based on nationality or cultural heritage.

10.3.5 Hidden work

While we have set out to include all of the relevant work, in some cases this was simply not possible

due to paywall protection. We have attempted to retrieve such papers using the University of

Utrecht’s proxies, and contacting the authors directly if those proxies could not successfully retrieve

the work either. However, due to the limited availability of time and resources, work of unresponsive

or unwilling authors has ultimately not been included, thus marginally reducing the validity of our

results.

10.3.6 Primary study duplication

In order to circumvent the threat of primary study duplication, papers that were included in more than

one result set, or published in more than one journal, have been manually identified and removed.

Additionally, a prevention module in the systematic mapping application has actively ensured that no

duplicate work could have been inserted into the systematic mapping.

10.3.7 Publication bias

The publication bias, which states that positive results are more likely to be published than negative

results, as well as the fact the reproduction papers are less likely to be published than new work, was

not circumvented in this study. This is largely due to the fact that academia has only recently

112

acknowledged this problem and brought forward solutions in order to combat it (for instance by

launching journals that actively aim to publish papers regardless of whether their results were

successful or not, or whether the paper is a reproduction or not). Because our systematic review ought

to be timespan-agnostic, we have concluded that eliminating this threat would do substantially more

harm than good to the validity of our results. Thus, we have still adhered to the inclusion criteria of

work being peer-reviewed and published, instead of including grey/white work, or limiting our search

to result- and type-agnostic journals.

10.3.8 Subjective quality assessment and lack of expert evaluation

The subjective quality assessment bias is a significant threat to the validity of our results. While you

would prefer quality assessment to occur based on prior research, no such prior work was found to

exist for every discovered metric. In order to ensure that the quality assessments exhibit the least

amount of subjectivity, we have validated the resulting model by attempting to reach consensus

within the focus-group of prevalent experts in the field. Using the same validation construct, the lack

of expert evaluation threat is circumvented.

113

11. Conclusion

The strength of Agile software development has largely been acknowledged by academia and industry,

but an accurate way of measuring the exact benefits of adopting Agile has yet to be uncovered. In this

chapter, we conclude our attempt to develop a new model for measuring software development team

performance, and describe its impact on the field. Here, we also attempt to answer our primary

research question and its sub-questions, and also outline some limitations in the current work. Finally,

we posit some potential future work, following the implications of the current work..

11.1 Research Questions

11.1.1 Which software development metrics already exist today?

In this study, we performed a structured literature review as to determine what software

development metrics exist today, resulting in 191 software development metrics. In order to ensure

that no metrics were overlooked, we performed an expert inquiry in which we asked prevalent experts

in the field of software development whether they thought the resulting list was complete, resulting

in an additional 6 metrics.

11.1.2 What constitutes a strong software development metric?

The results of this endeavour were structured in a systematic mapping, and discussed with the experts

in order to determine what makes them strong or weak. From this discussion, a new model for metric

strength was developed, identifying five qualities that a metric should possess in order to be

considered strong. These qualities state that a strong metric should (a) be simple to explain and simple

to measure, (b) be difficult to optimize without increasing business value (c) correlate strongly with

increased business value when optimized, (d) be useable in multiple contexts, without confusing edge-

cases, and (e) have an unambiguous and transparent definition of its data points, as well as how those

data points are used in its calculations. We have dubbed these qualities simple, hard-to-game,

outcome-oriented, universal, and transparent respectively, and together, these qualities spell the

acronym SHOUT.

11.1.3 What set of software development metrics is most suitable for measuring team

performance?

Finally, this model was used to identify strong metrics in the result set of the structured literature

review and the expert inquiry. From this set of strong metrics, we have created a new model for

114

measuring software development team performance. This model is based on the Process Efficiency,

Employee Happiness, Net Promoter Score and Small Simple Change Into Production metrics, targeting

the process, people, product and technical perspectives of the software development process

respectively. This model has not been validated in this study, but initial analysis have shown that little

correlation between these metrics is to be expected, based on their shared input data-points.

11.1.4 How can we measure the performance of a software development team?

Finally, by answering our three sub-questions, we are able to answer our primary research question

of how we can measure the performance of a software development team. The final answer to this

question is thus to use strong software development metrics, utilizing independent input-data-points

in order to isolate cause-and-effect relationships, while targeting multiple aspects of the software

development process. In this thesis, we have presented a model for assessing the strength of a

software development metric, as well as a model for measuring team performance, based on strong

metrics, sharing little input data-points and targeting four different aspects of the process. These

models can help organizations assess the performance of their software development teams. Finally,

we have introduced automated tooling in order to help organizations measure these four key metrics.

11.2 Limitations

11.2.1 Limited Google Scholar starting set

There are several limitations in our execution of this research. First and foremost, we have had to

make some concessions as to how thorough our manual search for candidate work could be. Here, we

have limited the initial collection of candidate work from Google Scholar to just the first 10 results,

instead of incorporating the whole result set. This may have, in the end, led to less valid results, due

to not having exhausted the entire existing body of knowledge. However, as we have found more than

4.5 times as many metrics as the largest literature review we have found on the subject, we feel very

confident that the extent to which these factors threaten the validity of our results is fairly minimal.

11.2.2 Limiting inclusion criteria

Similarly, our inclusion criteria of needing to mention a new software development metric, as opposed

to just any software development metric, has a significant influence on the validity of our results. The

possibility exists that we have missed a substantial portion of the existing body of knowledge, due to

potential separate clusters that our practice may have missed due to this inclusion criteria. A

reproduction study would be wise to broaden this inclusion criteria to mentioning any software

115

development metric, but we fear that this will substantially increase the effort required to properly

perform the study.

11.2.3 Initial focus on efficiency

Additionally, we set out to perform this literature review with an initial focus on efficiency metrics. For

this reason, the search queries that were executed on the Google Scholar and Scopus search engines,

were deliberately biased to target software development metrics targeting efficiency. Only after

having performed the searches, and having seen the amount and quality of the results, did we decide

to register all software development metrics. This bias in search queries might have caused us to mis

significant clusters of metrics in the body of knowledge on software development metrics.

11.2.4 Limited model validation

Finally, the validation of the SHOUT model for metric strength cannot be considered thorough and

complete. The participants of the validation survey were reached through social-media, and therefore

not verified to be software development professionals. Additionally, the model for team performance

has not seen any validation in this study at all, which calls for future work investigating the

effectiveness of the model in, for example, separate case-studies.

11.3 Future Work

11.3.1 Thorough model validation

With this study, we have set a first step towards enabling organizations to measure the performance

of a software development team. We have not, however, proven that this model for team

performance is accurate or valid. In future work, we plan to validate the model in an industry setting

using case-studies in which the model’s accuracy is validated. Only after this has happened, can

mainstream adoption potentially occur.

Similarly, the validation of the SHOUT model for metric strength has yet to see a thorough validation

of its capacities. While we have performed a small survey on these qualities, this was solely meant as

an initial probing into their perceived clarity, relevance and completeness, and additional, more

thorough validation is required in order to draw any significant conclusions.

116

11.3.2 Additional analysis of the systematic mapping

Additionally, we have acquired and systematically mapped a substantial part of the available body of

knowledge on software development metrics. While this mapping served its purpose in our research

more than adequately, we feel very strongly that there are additional patterns and insights to be

discovered within it. We have therefore opted to open-source the results, in order to enable other

researchers to draw their own conclusions from them.

11.3.3 Investigate the effectiveness quality

The preliminary validation of the model for metric strength brought forward an additional quality that

many seem to associate with strong software development metrics, namely effectiveness. Future work

could benefit from determining what exactly respondents mean with effectiveness, whether it is the

same as outcome-oriented, or whether it might be a potential sixth quality for strong software

development metrics.

11.3.4 Multidisciplinary approach

Additionally, it might prove beneficial to approach future work from a multi-disciplinary perspective,

as the fields of psychology, sociology and even anthropology might have valuable insights into what

qualities contribute to the strength of a metric. In this study, a focus on software development was

used, but a broader view might yield a more robust and universal model for metric strength or team

performance.

11.3.5 Broader inclusion criteria

Finally, the inclusion criteria of having to mention new software development metrics, as opposed to

just any software development metric, is a significant blow to the validity of our results. While we

have found more than 4.5 times as many software development metrics than any other literature

review we have found on the subject, we feel that we will still have potentially missed numerous other

metrics due to this inclusion criteria. A thorough reproduction of this literature review will have to

broaden this inclusion criteria to state that a work will be included if it mentions any software

development metric, but this will increase the required effort, time and resources substantially.

117

12. Acknowledgements

I would like to thank Jan Martijn van der Werf from the University of Utrecht for his assistance on the

inception, design and execution of this study. His guidance has elevated the academic validity and

rigor of this study tremendously. Additionally, I would like to thank Sietse Overbeek for providing me

with valuable feedback and pointers along the way. Similarly, I would like to thank all of the experts

that participated in the expert inquiry and focus groups for their time and effort, and for helping us

synthesize and extract their tacit knowledge into the newly created models for metric strength and

team performance. I would like to specifically thank Kyle Aretae for his extraordinary contributions to

the development of these models. Finally, I would like to thank Frank Verbruggen for an

extraordinarily fruitful and informative collaboration, that I won’t soon forget.

118

13. References

Achara, A., Garg, D., Singh, N. & Gahlaut, U. (2019). Plant effectiveness improvement of overall

equipment effectiveness using autonomous maintenance training: - A case study. Om 2019

International Journal of Mechanical and Production Engineering Research and Development (pp.

103-112). IEEE.

Leffingwell, D. (2018). SAFe 4.5 Reference Guide: Scaled Agile Framework for Lean Enterprises.

Addison-Wesley Professional.

Agarwal, M., & Majumdar, R. (2012). Tracking scrum projects tools, metrics and myths about

agile. Int J Emerg Technol Adv Eng, 2, 97-104.

Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2006). Empirical Study of Object-Oriented

Metrics. Journal of Object Technology, 5(8), 149-173.

Ahbrahamsson, P., Conboy, K., & Wang, X. (2009). ‘Lots done, more to do’. The current state of agile

systems development research.

Ahmed, A., Ahmad, S., Ehsan, N., Mirza, E., & Sarwar, S. Z. (2010, June). Agile software development:

Impact on productivity and quality. In Management of innovation and technology (ICMIT), 2010 IEEE

international conference on (pp. 287-291). IEEE.

Albrecht A.J. (1979). Measuring Application Development Productivity. In Proceedings of the Joint

SHARE, GUIDE, and IBM Application Development Symposium, Monterey, California, pp. 83–92.

Alfraihi, H., Lano, K., Kolahdouz-Rahimi, S., Sharbaf, M., & Haughton, H. (2018, October). The Impact

of Integrating Agile Software Development and Model-Driven Development: A Comparative Case

Study. In International Conference on System Analysis and Modeling (pp. 229-245). Springer, Cham.

Banker, R. D., & Kemerer, C. F. (1992). Performance evaluation metrics for information systems

development: A principal-agent model. Information Systems Research, 3(4), 379-400.

119

Bates, E. (2003). A Capability Maturity Model-Based Approach to the Measurement of Shared

Situational Awareness. InterSymp–2003, 101.

Olszewska, M., Heidenberg, J., Weijola, M., Mikkonen, K., & Porres, I. (2016). Quantitatively

measuring a large-scale agile transformation. Journal of Systems and Software, 117, 258-273.

Beer, A., & Felderer, M. (2018, June). Measuring and improving testability of system requirements in

an industrial context by applying the goal question metric approach. In Proceedings of the 5th

International Workshop on Requirements Engineering and Testing (pp. 25-32). ACM.

Bhardwaj, M., & Rana, A. (2016). Key Software Metrics and its Impact on each other for Software

Development Projects. ACM SIGSOFT Software Engineering Notes, 41(1), 1-4.

Boehm, B., Abts, C., & Chulani, S. (2000). Software development cost estimation approaches—A

survey. Annals of software engineering, 10(1-4), 177-205.

Burgin, M., & Debnath, N. (2005). Quality of software that does not exist. Paper presented at

the 20th International Conference on Computers and their Applications 2005, CATA 2005, 441-446.

Retrieved from www.scopus.com

Burgin, M., & Debnath, N. (2008). Testing: Organization and evaluation. Paper presented at the 23rd

International Conference on Computers and their Applications, CATA 2008, 203-208. Retrieved

from www.scopus.com

Caballero, E., Calvo-Manzano, J. A., & San Feliu, T. (2011, June). Introducing scrum in a very small

enterprise: A productivity and quality analysis. In European Conference on Software Process

Improvement (pp. 215-224). Springer, Berlin, Heidelberg.

Sutherland, J. (2014). Scrum: the art of doing twice the work in half the time. Currency.

Calefato, F., & Lanubile, F. (2011). A Planning Poker Tool for Supporting Collaborative Estimation in

Distributed Agile Development. In 6th International Conference on Software Engineering Advances

(ICSEA 2011) (pp. 14-19).

120

Calikli, G., Bener, A., Aytac, T., & Bozcan, O. (2013, October). Towards a metric suite proposal to

quantify confirmation biases of developers. In 2013 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (pp. 363-372). IEEE.

Canedo, E. D., & Costa, R. P. D. Methods and metrics for estimating and planning agile software

projects.

Cardozo, E. S., Neto, J. B. F. A., Barza, A., França, A. C. C., & da Silva, F. Q. (2010, April). SCRUM and

Productivity in Software Projects: A Systematic Literature Review. In EASE.

Castro, J. A. O., & Jaimes, W. A. (2017). Dynamic impact of the structure of the supply chain of

perishable foods on logistics performance and food security. Journal of Industrial Engineering and

Management, 10(4), 687-710.

Chesworth, A. A., Rannow, R. K., Ruiz, O., DeRemer, M., Leite, J., Martinez, A., & Guenther, D. (2016,

February). Novel fiber fused lens for advanced optical communication systems. In Terahertz, RF,

Millimeter, and Submillimeter-Wave Technology and Applications IX (Vol. 9747, p. 97471P).

International Society for Optics and Photonics.

Choobineh, J., Anderson, E., & Barry, E. (2009). Some Throughput Metrics for (SOA) Application

Development.

CN, B. (2008). A farmers market at the local sugar mill: Lean versus agile. In Proc S Afr Sug Technol

Ass (Vol. 81, pp. 68-71).

Coelho, E., & Basu, A. (2012). Effort estimation in agile software development using story points.

International Journal of Applied Information Systems (IJAIS), 3(7).

Cohn, M., & Ford, D. (2003). Introducing an agile process to an organization [software

development]. Computer, 36(6), 74-78.

Coley, C. (2019, March). Building a Rig State Classifier Using Supervised Machine Learning to Support

Invisible Lost Time Analysis. In SPE/IADC International Drilling Conference and Exhibition. Society of

Petroleum Engineers.

121

Coraggio, L. (1990). Deleterious effects of intermittent interruptions on the task performance of

knowledge workers: A laboratory investigation (Doctoral dissertation, University of Arizona).

Cuatrecasas-Arbos, L., Fortuny-Santos, J., & Vintro-Sanchez, C. (2011). The Operations-Time Chart: A

graphical tool to evaluate the performance of production systems–From batch-and-queue to lean

manufacturing. Computers & Industrial Engineering, 61(3), 663-675.

Cui, J., Ren, L., Zhang, L., & Wu, Q. (2015, June). An optimal allocation method for virtual resource

considering variable metrics of cloud manufacturing service. In ASME 2015 International

Manufacturing Science and Engineering Conference (pp. V002T04A013-V002T04A013). American

Society of Mechanical Engineers.

Damm LO, Lundberg L, Wohlin C. Faults-slip-through—A concept for measuring the efficiency of the

test process. Software Process: Improvement and Practice 2006; 11(1):47–59.

Dascalu, S. M., Brown, N., Eiler, D. A., Leong, H. W., Penrod, N. A., Westphal, B. T., & Varol, Y. L.

(2005). Software Modeling of S-Metrics Visualizer: Synergetic Interactive Metrics Visualization Tool.

In Software Engineering Research and Practice (pp. 870-876).

de Wardt, J., Chapman, C. D., & Behounek, M. (2012). Well Construction Automation-Preparing for

the Big Jump.

Dehghanian, P., Aslan, S., & Dehghanian, P. (2018). Maintaining electric system safety through an

enhanced network resilience. IEEE Transactions on Industry Applications, 54(5), 4927-4937.

Dick, M., Drangmeister, J., Kern, E., & Naumann, S. (2013, May). Green software engineering with

agile methods. In Green and Sustainable Software (GREENS), 2013 2nd International Workshop

on (pp. 78-85). IEEE.

Diebold, P., Lampasona, C., & Taibi, D. (2013, October). Moonlighting Scrum: An agile method for

distributed teams with part-time developers working during non-overlapping hours. In Eighth

International Conference on Software Engineering and Advances, IARIA (pp. 318-323).

122

Domínguez-Mayo, F. J., Escalona, M. J., Mejías, M., Ross, M., & Staples, G. (2012). Quality evaluation

for model-driven web engineering methodologies. Information and Software Technology, 54(11),

1265-1282.

Downey, S., & Sutherland, J. (2013, January). Scrum metrics for hyperproductive teams: how they fly

like fighter aircraft. In 2013 46th Hawaii International Conference on System Sciences (pp. 4870-

4878). IEEE.

Dutoit, A. H., & Bruegge, B. (1998). Communication metrics for software development. IEEE

transactions on Software Engineering, (8), 615-628.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic

review. Information and software technology, 50(9-10), 833-859.

Dyba, T., & Dingsoyr, T. (2009). What do we know about agile software development?. IEEE

software, 26(5), 6-9.

F. A. Fontana, P. Braione, and M. Zanoni. Automatic detection of bad smells in code: An

experimental assessment. Journal of Object Technology, 11(2):5:1–38, 2012.

Fenton, N. E., & Neil, M. (2000, May). Software metrics: roadmap. In Proceedings of the Conference

on the Future of Software Engineering (pp. 357-370). ACM.

Fitzgerald, B., Musiał, M., & Stol, K. J. (2014, May). Evidence-based decision making in lean software

project management. In Companion proceedings of the 36th international conference on software

engineering (pp. 93-102). ACM.

Frakes, W., & Terry, C. (1996). Software reuse: metrics and models. ACM Computing Surveys

(CSUR), 28(2), 415-435.

Gebre, B. A., & Pochiraju, K. (2017, November). Ball Drive Configurations and Kinematics for

Holonomic Ground Mobility. In ASME 2017 International Mechanical Engineering Congress and

Exposition (pp. V014T07A018-V014T07A018). American Society of Mechanical Engineers.

123

Germani, M., Mengoni, M., & Peruzzini, M. (2012). An approach to assessing virtual environments

for synchronous and remote collaborative design. Advanced Engineering Informatics, 26(4), 793-813.

Gilb, T. (2004, June). 1.6. 1 Software Project Management: Adding Stakeholder Metrics to Agile

Projects. In INCOSE International Symposium (Vol. 14, No. 1, pp. 183-190).

Greening, D. R. (2010, January). Enterprise scrum: Scaling scrum to the executive level. In System

Sciences (HICSS), 2010 43rd Hawaii International Conference on (pp. 1-10). IEEE.

Prechelt, L. (2019). The Mythical 10x Programmer. In Rethinking Productivity in Software

Engineering (pp. 3-11). Apress, Berkeley, CA.

Grimaldi, P., Perrotta, L., Corvello, V., & Verteramo, S. (2016). An agile, measurable and scalable

approach to deliver software applications in a large enterprise. International Journal of Agile Systems

and Management, 9(4), 326-339.

Grimaldi, P., Perrotta, L., Corvello, V., & Verteramo, S. (2016). An agile, measurable and scalable

approach to deliver software applications in a large enterprise. International Journal of Agile Systems

and Management, 9(4), 326-339.

H. K. N. Leung and L. White, A cost model to compare regression test strategies, in Proc. Conference

on Software Maintenance, 1991, pp. 201–208.

H.A. Sahraoui, R. Godin, and T. Miceli, “Can metrics help to bridge the gap between the

improvement of oo design quality and its automation?”, In Proc. International Conference on

Software Maintenance, pages 154–162, October, 2000.

Halstead, Maurice H. (1977). Elements of Software Science. Amsterdam: Elsevier North-Holland, Inc.

ISBN 0-444-00205-7.

Hannay, J. E., & Benestad, H. C. (2010, September). Perceived productivity threats in large agile

development projects. In Proceedings of the 2010 ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement (p. 15). ACM.

124

Hartmann, D. and Dymond, R. (July 2006) Appropriate Agile Measurement: Using Metrics and

Diagnostics to Deliver Business Value. In Proceedings of the Conference on AGILE 2006.

He, X., Avgeriou, P., Liang, P., Li, Z.: Technical debt in MDE: a case study on GMF/EMF-based

projects. In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven

Engineering Languages and Systems, pp. 162–172. ACM (2016)

Henderson-Sellers, B. (1996), “Object Oriented Metrics -Measures of Complexity”, Henderson-Sellers,

B., Prentice Hall, Upper Saddle River, NJ, 1996.

Henry, S., & Kafura, D. (1981). Software structure metrics based on information flow. IEEE

transactions on Software Engineering, (5), 510-518.

Hevner, A. R., Collins, R. W., & Garfield, M. J. (2002). Product and project challenges in electronic

commerce software development. ACM SIGMIS Database: the DATABASE for Advances in

Information Systems, 33(4), 10-22.

Hughes, M. (2012). A lean, green, school bus making machine-The evolution of Thomas Built Buses

shows how greenfield development can become an environmental and business superstar. Industrial

Engineer, 44(5), 28.

Huijgens, H., & van Solingen, R. (2013, October). Measuring Best-in-Class Software Releases. In 2013

Joint Conference of the 23rd International Workshop on Software Measurement and the 8th

International Conference on Software Process and Product Measurement (pp. 137-146). IEEE.

Jackson, T. W. (2015). Moving forward with digital reliability assessments. Paper presented at

the 9th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-

Machine Interface Technologies, NPIC and HMIT 2015, , 3 2381-2386. Retrieved

from www.scopus.com

Jeffery, R., Ruhe, M., & Wieczorek, I. (2001). Using public domain metrics to estimate software

development effort. In Software Metrics Symposium, 2001. METRICS 2001. Proceedings. Seventh

International (pp. 16-27). IEEE.

125

Kafura, D., & Henry, S. (1981). Software quality metrics based on interconnectivity. Journal of

systems and software, 2(2), 121-131.

Keeling, T., Clements-Croome, D., & Roesch, E. (2015). The effect of agile workspace and remote

working on experiences of privacy, crowding and satisfaction. Buildings, 5(3), 880-898.

Kemerer, C. F., & Paulk, M. C. (2009). The impact of design and code reviews on software quality: An

empirical study based on psp data. IEEE transactions on software engineering, 35(4), 534-550.

Khadem, M., Ali, S. A., & Seifoddini, H. (2008). Efficacy of lean metrics in evaluating the performance

of manufacturing systems. International Journal of Industrial Engineering, 15(2), 176-184.

Khoshgoftaar, T. M., & Munson, J. C. (1990). Predicting software development errors using software

complexity metrics. IEEE Journal on Selected Areas in Communications, 8(2), 253-261.

Koru, A. G., & El Emam, K. (2009). Theory of Relative Dependency: Higher Coupling Concentration in

Smaller Modules and its Implications for Software Refactoring and Quality. IEEE software.

Kunz, M., Dumke, R. R., & Zenker, N. (2008, March). Software metrics for agile software

development. In 19th Australian Conference on Software Engineering (aswec 2008) (pp. 673-678).

IEEE.

Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2015). Using metrics in Agile and Lean Software

Development–A systematic literature review of industrial studies. Information and Software

Technology, 62, 143-163.

Lano, K. C., Alfraihi, H. A. A., Kolahdouz Rahimi, S., Sharbaf, M., & Haughton, H. (2018). Comparative

case studies in agile model-driven development. In International Conference on Model Driven

Engineering Languages and Systems (MODELS): the 4th International Workshop on Flexible Model

Driven Engineering (pp. 203-212). Copenhagen, Denmark.

Lee, Y. T. T., Lee, J. Y., Riddick, F., Libes, D., & Kibira, D. (2013). Interoperability for virtual

manufacturing systems. International Journal of Internet Manufacturing and Services, 3(2), 99-120.

126

Li, Z., & Li, X. (2019). A Multi-objective Binary-encoding Differential Evolution Algorithm for Proactive

Scheduling of Agile Earth Observation Satellites. Advances in Space Research.

Lind, R. K., & Vairavan, K. (1989). An experimental investigation of software metrics and their

relationship to software development effort. IEEE Transactions on Software Engineering, 15(5), 649-

653.

Liu, X., & Wang, W. (2005, November). On the characteristics of spectrum-agile communication

networks. In New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First

IEEE International Symposium on (pp. 214-223). IEEE.

Mahnic, V. and Zabkar, N. (October 2008). Using COBIT indicators for measuring Scrum-based

software development. Wseas transactions on computers. 10(7). pp. 1605 - 1617

Maurer, F., & Martel, S. (2002, March). On the productivity of agile software practices: An industrial

case study. In Proceedings of the International Workshop on Global Software Development(Vol.

Melo, C. D. O., Cruzes, D. S., Kon, F., & Conradi, R. (2013). Interpretative case studies on agile team

productivity and management. Information and Software Technology, 55(2), 412-427.

Melo, C., Cruzes, D. S., Kon, F., & Conradi, R. (2011). Agile team perceptions of productivity factors.

In 2011 Agile Conference (pp. 57-66). IEEE.

Meso, P., & Jain, R. (2006). Agile software development: adaptive systems principles and best

practices. Information systems management, 23(3), 19-30.

Minkiewicz, A. (1998), “Measuring Object Oriented Software with Predictive Object Points,”, PRICE

Systems, 1998.

Moreau, D. R., & Dominick, W. D. (1989). Object-oriented graphical information systems: Research

plan and evaluation metrics. Journal of Systems and Software, 10(1), 23-28.

127

Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., & Succi, G. (2008). A case study on the impact of

refactoring on quality and productivity in an agile team. In Balancing Agility and Formalism in

Software Engineering (pp. 252-266). Springer, Berlin, Heidelberg.

Moser, R., Pedrycz, W., & Succi, G. (2008). A comparative analysis of the efficiency of change metrics

and static code attributes for defect prediction. In Proceedings of the 30th international conference

on Software engineering (pp. 181-190). ACM.

Nujoom, R., Wang, Q., & Mohammed, A. (2018). Optimisation of a sustainable manufacturing system

design using the multi-objective approach. The International Journal of Advanced Manufacturing

Technology, 1-20.

Oddone, R., & Chen, L. (2014). Challenges and Novel Solutions for SoC Verification. ECS

Transactions, 60(1), 1191-1195.

Olague, H. M., Etzkorn, L. H., Gholston, S., & Quattlebaum, S. (2007). Empirical validation of three

software metrics suites to predict fault-proneness of object-oriented classes developed using highly

iterative or agile software development processes. IEEE Transactions on software Engineering, 33(6),

402-419.

Oliveira, M. F., Redin, R. M., Carro, L., da Cunha Lamb, L., & Wagner, F. R. (2008, April). Software

quality metrics and their impact on embedded software. In 2008 5th International Workshop on

Model-based Methodologies for Pervasive and Embedded Software (pp. 68-77). IEEE.

Onyemechi, C. (2013). Port efficiency modelling in the post concessioning era: The role of logistics

drivers, agile ports and other perspectives. Pomorstvo, 27(2), 279-283.

Oza, N., & Korkala, M. (2012, March). Lessons Learned In Implementing Agile Software Development

Metrics. In UKAIS (p. 38).

Padmini, K. J., Bandara, H. D., & Perera, I. (2015, April). Use of software metrics in agile software

development process. In Moratuwa Engineering Research Conference (MERCon), 2015(pp. 312-317).

IEEE.

128

Padmini, K. J., Kankanamge, P. S., Bandara, H. D., & Perera, G. I. U. S. (2018, May). Challenges Faced

by Agile Testers: A Case Study. In 2018 Moratuwa Engineering Research Conference (MERCon) (pp.

431-436). IEEE.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research

methodology for information systems research. Journal of management information systems, 24(3),

45-77.

Petersen, K. and Wohlin, C. 2011. Measuring the flow in lean software development, Softw. Pract.

Exper., 41, 975- 996.

Pham, T. M. (2018, July). Optimization Model and Algorithm for Dynamic Service-Aware Traffic

Steering in Network Functions Virtualization. In 2018 IEEE Seventh International Conference on

Communications and Electronics (ICCE) (pp. 107-112). IEEE.

Razzak, M. A., Noll, J., Richardson, I., Canna, C. N., & Beecham, S. (2017, November). Transition from

plan driven to SAFe®: periodic team self-assessment. In International Conference on Product-

Focused Software Process Improvement(pp. 573-585). Springer, Cham.

Rosenberg, L. H., & Hyatt, L. E. (1997). Software quality metrics for object-oriented

environments. Crosstalk journal, 10(4), 1-6.

Rosero, R. H., Gómez, O. S., & Rodríguez, G. (2016). 15 years of software regression testing

techniques—A survey. International Journal of Software Engineering and Knowledge

Engineering, 26(05), 675-689.

S. Demeyer, S. Ducasse, O. Nierstrasz, “Finding Refactorings via Change Metrics”, In Proceedings of

the 15th Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA’00, Minneapolis, USA, 2000

Sahu, A. K., Sahu, N. K., & Sahu, A. K. (2017). Performance estimation of firms by GLA supply chain

under imperfect data. In Theoretical and Practical Advancements for Fuzzy System Integration (pp.

245-277). IGI Global.

129

Savola, R. M., Frühwirth, C., & Pietikäinen, A. (2012). Risk-Driven Security Metrics in Agile Software

Development-An Industrial Pilot Study. J. UCS, 18(12), 1679-1702.

Scott, E., & Pfahl, D. (2017). Exploring the individual project progress of scrum software

developers doi:10.1007/978-3-319-69926-4_24 Retrieved from www.scopus.com

Seaman, C., & Guo, Y. (2011). Measuring and monitoring technical debt. In Advances in Computers

(Vol. 82, pp. 25-46). Elsevier.

Serrador, P., & Pinto, J. K. (2015). Does Agile work?—A quantitative analysis of agile project

success. International Journal of Project Management, 33(5), 1040-1051.

Shah, S. M. A., Papatheocharous, E., & Nyfjord, J. (2015). Measuring productivity in agile software

development process: a scoping study. In Proceedings of the 2015 International Conference on

Software and System Process (pp. 102-106). ACM.

Sirkiä, R., & Laanti, M. (2013). Lean and agile financial planning. White Paper, 24, 2013.

Sjøberg, D. I., Johnsen, A., & Solberg, J. (2012). Quantifying the effect of using kanban versus scrum:

A case study. IEEE software, 29(5), 47-53.

Song, R., Tang, H., Mason, P. C., & Wei, Z. (2013, November). Cross-layer security management

framework for mobile tactical networks. In MILCOM 2013-2013 IEEE Military Communications

Conference (pp. 220-225). IEEE.

Subramanya, S., Mustafa, Z., Irwin, D., & Shenoy, P. (2016, March). Beyond energy-efficiency:

evaluating green datacenter applications for energy-agility. In Proceedings of the 7th ACM/SPEC on

International Conference on Performance Engineering (pp. 185-196). ACM.

Sunil, P. U., Barve, J., & Nataraj, P. S. V. (2017). Mathematical modeling, simulation and validation of

a boiler drum: Some investigations. Energy, 126, 312-325.

Suri, N., Bradshaw, J. M., Carvalho, M. M., Cowin, T. B., Breedy, M. R., Groth, P. T., & Saavedra, R.

(2003, May). Agile computing: Bridging the gap between grid computing and ad-hoc peer-to-peer

130

resource sharing. In CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and

the Grid, 2003. Proceedings. (pp. 618-625). IEEE.

Sutherland, J., Harrison, N., & Riddle, J. (2014, January). Teams that finish early accelerate faster: a

pattern language for high performing scrum teams. In System Sciences (HICSS), 2014 47th Hawaii

International Conference on (pp. 4722-4728). IEEE.

Sutherland, J., Schoonheim, G., & Rijk, M. (2009, January). Fully distributed scrum: Replicating local

productivity and quality with offshore teams. In 2009 42nd Hawaii International Conference on

System Sciences (pp. 1-8). IEEE.

Sutherland, J., Schoonheim, G., Rustenburg, E., & Rijk, M. (2008, August). Fully distributed scrum:

The secret sauce for hyperproductive offshored development teams. In Agile 2008 Conference (pp.

339-344). IEEE.

Tegarden, D., Sheetz, S., Monarchi, D., “Effectiveness of Traditional Software Metrics for Object-

Oriented Systems”, Proceedings: 25th Hawaii International Conference on System Sciences, January,

1992, pp. 359-368.

Triki, I., El-Azouzi, R., & Haddad, M. (2016, June). NEWCAST: Anticipating resource management and

QoE provisioning for mobile video streaming. In 2016 IEEE 17th International Symposium on A World

of Wireless, Mobile and Multimedia Networks (WoWMoM) (pp. 1-9). IEEE.

Tsatsoulas, A., Barkate, J., Baylis, C., & Marks, R. J. (2016, May). A simplex optimization technique for

real-time, reconfigurable transmitter power amplifiers. In 2016 IEEE MTT-S International Microwave

Symposium (IMS) (pp. 1-4). IEEE.

Verbruggen, F., Sutherland, J., van der Werf, J. M., Brinkkemper, S., & Sutherland, A. (2019,

January). Process Efficiency-Adapting Flow to the Agile Improvement Effort. In Proceedings of the

52nd Hawaii International Conference on System Sciences.

von Alan, R. H., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems

research. MIS quarterly, 28 (1), 75{105.

131

Wang, A., Jin, Z., & Xu, W. (2016, August). A programmable analog-to-information converter for agile

biosensing. In Proceedings of the 2016 International Symposium on Low Power Electronics and

Design (pp. 206-211). ACM.

Wang, X., & Garcia-Luna-Aceves, J. J. (2011). Collaborative routing, scheduling and frequency

assignment for wireless Ad Hoc networks using spectrum-agile radios. Wireless Networks, 17(1),

167-181.

West, D., Gilpin, M., Grant, T., & Anderson, A. (2011). Water-scrum-fall is the reality of agile for most

organizations today. Forrester Research, 26.

White, K. (2017). “Effing” the military: a political misunderstanding of management. Defence

Studies, 17(4), 346-358.

Wiart, B., Peyronnet, P., Moity, N., & Pradeilles, F. (2002). SimEC3: Innovative Simulation Based

Acquisition Tool for the France’s Cooperative Fighting System (Vol. 16). RTO-MP-MSG-035.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in

software engineering. In Proceedings of the 18th international conference on evaluation and

assessment in software engineering (p. 38).

Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou. An empirical investigation of modularity

metrics for indicating architectural technical debt. In Proceedings of the 10th international ACM

SIGSOFT conference on Quality of Software Architectures, pages 119–128. ACM, 2014.

Zammori, F., Braglia, M., & Frosolini, M. (2011). Stochastic overall equipment

effectiveness. International Journal of Production Research, 49(21), 6469-6490.

Zhang, Y., & Tanniru, M. (2005). Business Flexibility and Operational Efficiency-Making Trade-Offs in

Service Oriented Architecture. AMCIS 2005 Proceedings, 237.

Zhou, X., Jin, Y., Zhang, H., Li, S., & Huang, X. (2016, December). A map of threats to validity of

systematic literature reviews in software engineering. In 2016 23rd Asia-Pacific Software Engineering

Conference (APSEC) (pp. 153-160). IEEE.

132

133

Appendix A - Google Scholar Candidates

Query Candidate Title Reference Citations

Software Development Metrics

GS.1.01
Predicting software development errors
using software complexity metrics.

Khoshgoftaar &
Munson, 1990

309

GS.1.02
Using public domain metrics to estimate
software development effort.

Jefferey, Ruhe &
Wieczorek, 2001

209

GS.1.03

Empirical Validation of Three Software
Metrics Suites to Predict Fault-Proneness
of Object-Oriented Classes Developed
Using Highly Iterative or Agile Software
Development Processes

Olague, Etzkorn,
Gholston &

Quattlebaum,
2007

328

GS.1.04
Software development cost estimation
approaches - A survey

Boehm, Abts &
Chulani, 2000

725

GS.1.05
An experimental investigation of software
metrics and their relationship to software
development effort

Lind & Vairavan,
1989

138

GS.1.06
Software quality metrics based on
interconnectivity.

Kafura & Henry,
1981

146

GS.1.07
Software structure metrics based on
information flow.

Henry & Kafura,
1981

1046

GS.1.08
Communication metrics for software
development

Dutoit & Bruegge,
1998

85

GS.1.09 Software metrics: roadmap
Fenton & Neil,

2000
440

GS.1.10 Software reuse: metrics and models
Frakes & Terry,

1996
447

Agile Efficiency Metrics

GS.2.01
Does agile work? A quantitative analysis of
agile project success

Serrador & Pinto,
2015

246

GS.2.02
Risk-driven security metrics in agile
software development - An industrial pilot
study.

Savola, Frühwirth
& Pietikäinen,

2012
15

GS.2.03
A farmers market at the local sugar mill:
lean versus agile

Bezuidenhout,
2008

14

GS.2.04
Green software engineering with agile
methods

Dick,
Drangmesiter,

Kern & Naumann,
2013

49

134

GS.2.05
A comparative analysis of the efficiency of
change metrics and static code attributes
for defect prediction

Moser, Pedrycz &
Succi, 2008

483

GS.2.06
Use of software metrics in agile software
devlopment processes

Padmini, Bandara
& Pererea, 2015

14

GS.2.07
On the characteristics of spectrum-agile
communication networks

Lui & Wang, 2005 65

GS.2.08 Lean and agile financial planning
Sirkiä & Laanti,

2013
3

GS.2.09
Software project management: Adding
stakeholder metrics to agile projects

Gilb, 2004 7

GS.2.10
Agile software development: adaptive
systems principles and best practices

Meso & Jain, 2006 187

Scrum Productivity Metrics

GS.3.01
Scrum metrics for hyperproductive teams:
how they fly like fighter aircraft

Downey &
Sutherland, 2013

44

GS.3.02
Enterprise scrum: Scaling scrum to the
executive level

Greening, 2010 22

GS.3.03
Introducing scrum in a very small
enterprise: A productivity and quality
analysis

Caballero &Calvo-
Manzano & Feliu,

2011
12

GS.3.04
Tracking scrum projects tools, metrics and
myths about agile

Agarwal &
Majumdar, 2012

12

GS.3.05
Fully distributed scrum: Replicating
local productivity and quality with offshore
teams

Sutherland,
Schoonheim &

Rijk, 2009
69

GS.3.06
Teams that finish early accelerate faster: a
pattern language for high
performing scrum teams

Sutherland,
Harrison & Riddle,

2014
16

GS.3.07
On the productivity of agile software
practices: An industrial case study

Maurer & Martel,
2002

32

GS.3.08

Moonlighting Scrum: An agile method for
distributed teams with part-time
developers working during non-
overlapping hours

Diebold,
Lampasona &

Taibi, 2013
15

GS.3.09
Fully distributed scrum: The secret sauce
for hyperproductive offshored
development teams

Sutherland,
Schoonheim,

Rustenburg & Rijk,
2008

89

135

GS.3.10
Measuring productivity in agile software
development process: a scoping study

Shah,
Papatheocharous
& Nyfjord, 2015

6

Agile Productivity

GS.4.01
Interpretative case studies
on agile team productivity and
management

Melo, Cruzes, Kon
& Conradi, 2013

79

GS.4.02
Agile software development: Impact
on productivity and quality

Agmed, Ahmad,
Ehsan, Mirza &
Sarwar, 2010

63

GS.4.03
Empirical studies of agile software
development: A systematic review

Dybå & Dingsøyr,
2008

2116

GS.4.04
A case study on the impact of refactoring
on quality and productivity in an agile team

Moser,
Abrahamsson,

Oedrycz, Sillitti &
Succi, 2008

101

GS.4.05
Agile team perceptions
of productivity factors

Melo, Cruzes, Kon,
Conradi & 2011

52

GS.4.06
On the productivity of agile software
practices: An industrial case study

Maurer & Martel,
2002

32

GS.4.07
Perceived productivity threats in
large agile development projects

Hannay &
Benestad, 2010

31

GS.4.08
Introducing an agile process to an
organization

Cohn & Ford, 2003 282

GS.4.09
SCRUM and Productivity in Software
Projects: A Systematic Literature Review.

Cardozo, Neto,
Barza, Franca &
Da Silva, 2010

47

GS.4.10
What do we know about agile software
development?

Dybå & Dingsøyr,
2009

249

136

Appendix B - Scopus Candidates

Query Candidate Title Reference Citations

Software Development Metrics

SC.1.01
Key software metrics and its impact on
each other for software development
projects

Bhardwaj &
Rana, 2016

2

SC.1.02
Moving forward with digital reliability
assessments

Jackson, 2015 0

SC.1.03
Evidence-based decision making in lean
software project management

Fitzegrald, Musial
& Stol, 2014

13

SC.1.04
Challenges and novel solutions for SoC
verification

Oddone & Chen,
2014

0

SC.1.05
Towards a metric suite proposal to quantify
confirmation biases of developers

Calikli, Bener,
Aytac & Bozcan,

2013
5

SC.1.06
Some throughput metrics for (SOA)
application development

Choobineh,
Anderson &
Barry, 2009

3

SC.1.07
Software reliability assessment based on
agile software development metrics

Dascula et al.,
2005

4

SC.1.08 Testing: Organization and evaluation
Burgin &

Debnath, 2008
6

SC.1.09 Quality of software that does not exist
Burgin &

Debnath, 2005
3

SC.1.10
Software modelling of S-Metrics Visualizer:
Synergetic interactive metrics visualization
tool

Dascula et al.,
2005

1

SC.1.11
Product and Project Challenges in
Electronic Commerce Software
Development

Hevner, Collins &
Garfield, 2002

14

SC.1.12
Performance evaluation metrics for
information systems development: A
principal-agent model

Banker &
Kemerer, 1992

99

SC.1.13
Object-oriented graphical information
systems: Research plan and evaluation
metrics

Moreau &
Dominick, 1989

55

Agile Efficiency Metrics

 SC.2.01

A multi-objective binary-encoding
differential evolution algorithm for
proactive scheduling of agile earth
observation satellites

Li & Li, 2019 0

137

SC.2.02
Building a rig state classifier using
supervised machine learning to support
invisible lost time analysis

Coley, 2019 0

SC.2.03
Plant effectiveness improvement of overall
equipment effectiveness using autonomous
maintenance training: - A case study

Achara, Garg,
Singh & Gahlaut,

2019
0

SC.2.04
Optimization model and algorithm for
dynamic service-aware traffic steering in
network functions virtualization

Pham, 2018 0

SC.2.05
Maintaining Electric System Safety Through
An Enhanced Network Resilience

Dehghanian &
Aslan, 2018

16

SC.2.06

Measuring and improving testability of
system requirements in an industrial
context by applying the goal question
metric approach

Beer & Felderer,
2018

1

SC.2.07
Optimisation of a sustainable
manufacturing system design using the
multi-objective approach

Nujoom, Wang &
Mohammed,

2018
5

SC.2.08
The impact of integrating agile software
development and model-driven
development: A comparative case study

Alfraihi, Lano
Kolahdouz-

Rahimi, Sharbaf
& Haughton,

2018

0

SC.2.09
Comparative case studies in agile model-
driven development

Lano, Alfraihi,
Kolahdouz-

Rahimi, Sharbaf
& Haughton,

2018

 0

SC.2.10
Real-time detection of under-reamer
failure: An example of agile data analytics
development and deployment

De Wardt,
Chapman &

Behounek, 2012
4

SC.2.11
“Effing” the military: a political
misunderstanding of management

White, 2017 1

SC.2.12
Performance estimation of firms by G-L-A
supply chain under imperfect data (Book
Chapter)

Sahu & Sahu,
2017

7

SC.2.13
Ball drive configurations and kinematics for
holonomic ground mobility

Gebre &
pochiraju, 2017

2

SC.2.14
Mathematical modelling, simulation and
validation of a boiler drum: Some
investigations

Sunil, Barve &
Nataraj, 2017

12

SC.2.15
Dynamic impact of the structure of the
supply chain of perishable foods on logistics
performance and food security

Castro & Jaimes,
2017

7

SC.2.16
A simplex optimization technique for real-
time, reconfigurable transmitter power
amplifiers

Tsatsoulas,
Barkate, Baylis &

Marks, 2016
2

138

SC.2.17
A Programmable Analog-to-Information
Converter for Agile Biosensing

Wang, Jin & Xu,
2016

1

SC.2.18
Anticipating resource management and
QoE provisioning for mobile video
streaming

Triki, El-Azouzi &
Haddad, 2016

9

SC.2.19
15 Years of Software Regression Testing
Techniques - A Survey

Rosero, Gómez &
Rodríguez, 2016

14

SC.2.20
Beyond energy-efficiency: Evaluating green
datacenter applications for energy-agility

Subramanya,
Mustafa, Irwin &

Shenoy, 2016
5

SC.2.21
An agile, measurable and scalable approach
to deliver software applications in a large
enterprise

Grimaldo,
Perrotta,

Corvello &
Verteramo, 2016

2

SC.2.22
Novel fiber fused lens for advanced optical
communication systems

Chesworth et al.,
2015

0

SC.2.23
The effect of agile workspace and remote
working on experiences of privacy,
crowding and satisfaction

Keeling,
Clements-
Croome &

Roesch, 2015

5

SC.2.24
An optimal allocation method for virtual
resource considering variable metrics of
cloud manufacturing service

Cui, Ren, Zhang &
Wu, 2015

5

SC.2.25
Cross-layer security management
framework for mobile tactical networks

Song, Tang,
Mason & Wei,

2013
3

SC.2.26
Interoperability for virtual manufacturing
systems

Lee, Lee, Riddick,
Libes & Kibira,

2013
5

SC.2.27
Port efficiency modelling in the post
concessioning era: The role of logistics
drivers, agile ports and other perspectives

Onyemechi, 2013 0

SC.2.28
Quality evaluation for Model-Driven Web
Engineering methodologies

Domínguez-
Mayo, Escalona,
Mejías, Ross &
Staples, 2012

26

SC.2.29
An approach to assessing virtual
environments for synchronous and remote
collaborative design

Germani,
Mengoni &

Peruzzini, 2012
17

SC.2.30
Risk-driven security metrics in agile
software development - An industrial pilot
study

Savola, Frühwith
& Pietikäinen,

2012
17

SC.2.31 A lean, green, school bus making machine Hughes, 2012 2

SC.2.32 Stochastic overall equipment effectiveness
Zammori, Braglia
& Frosolini, 2011

57

139

SC.2.33

The Operations-Time Chart: A graphical
tool to evaluate the performance of
production systems - From batch-and-
queue to lean manufacturing

Cuatrecasas-
Arbos, Fortuny-
Santos & Vitro-
Sanchez, 2011

35

SC.2.34
Collaborative routing, scheduling and
frequency assignment for wireless Ad Hoc
networks using spectrum-agile radios

Wang & Garcia,
2011

13

SC.2.35
The theory of relative dependency: Higher
coupling concentration in smaller modules

Koru & El Emam,
2009

7

SC.2.36
Collaborative Routing, scheduling and
frequency assignment for Wireless ad hoc
Networks using spectrum-agile radios

Wang & Garcia-
Luna-Aceves,

2011
13

SC.2.37
Efficacy of lean metrics in evaluating the
performance of manufacturing systems

Khadem, Ali &
Seifoddini, 2008

44

SC.2.38
Business flexibility and operational
efficiency -making trade-offs in service
oriented architecture

Zhang & Tanniru,
2005

6

SC.2.39
SimEC3: An innovative simulation based
acquisition tool for the France's
cooperative fighting system

Wiart,
Peyronney,

Moity &
Pradeilles, 2002

1

SC.2.40
Agile computing: Bridging the gap between
grid computing and ad-hoc peer-to-peer
resource sharing

Suri er al., 2003 35

SC.2.41
A capability maturity model-based
approach to the measurement of shared
situational awareness

Bates, 2003 0

SC.2.42
Using metrics in agile and lean software
development a systematic literature review
of industrial studies

Kupiainen,
Mäntylä &

Itkonen, 2015
90

Scrum Productivity Metrics

SC.3.01
Methods and metrics for estimating and
planning agile software projects

Canedo & Costa,
2007

0

SC.3.02
Exploring the individual project progress of
scrum software developers

Scoot & Pfahl,
2017

0

SC.3.03
Transition from plan driven to SAFe®:
Periodic team self-assessment

Razak, Noll,
Richardson,

Canna &
Beecham, 2017

1

SC.3.04
An agile, measurable and scalable approach
to deliver software applications in a large
enterprise

Grimaldo,
Perrotta,
Corvello,

Verteramo, 2016

2

SC.3.05
Scrum metrics for Hyperproductive Teams:
How they fly like fighter aircraft

Downey &
Sutherland, 2013

47

140

SC.3.06 Measuring best-in-class software releases
Huijgens & Van
Solingen, 2013

4

SC.3.07
Quantifying the effect of using Kanban
versus scrum: A case study

Sjøberg, Johnsen
& Solberg, 2012

84

Agile Productivity

SC.4.01 Measuring productivity in agile software

development process: A scoping study

Shah,
Papatheocharous
& Nyfjord, 2015

5

141

Appendix C - Snowballing Results

Iteration Inclusion Title Reference

Iteration 1

 SN.1.01 Empirical Study of Object-Oriented Metrics
Minkiewicz,

1998

 SN.1.02
Lessons Learned In Implementing Agile Software
Development Metrics

Oza & Korkala,
2012

 SN.1.03 Software Metrics for Agile Software Development
Kunz, Dumke &

Zenker, 2008

 SN.1.04
The Impact of Design and Code Reviews on Software
Quality: An Empirical Study Based on PSP Data

Kemerer &
Paulk, 2009

 SN.1.05
Software Quality Metrics for Object-Oriented
Environments

Rosenburg &
Hyatt, 1997

 SN.1.06 Finding Refactorings via Change Metrics
Demeyer,
Ducasse &
Nierstrasz

 SN.1.07
Can metrics help to bridge the gap between the
improvement of OO design quality and its
automation?

Sahraoui, Godin
& Miceli, 2000

 SN.1.08 Measuring the flow in Lean software development
Petersen &

Wohlin, 2011

 SN.1.09
Technical Debt in MDE: A Case Study on GMF / EMF -
Based Projects

He, Avgeriou,
Liang & li, 2016

 SN.1.10 A Cost Model to Compare Regression Test Strategies
Leung & White,

1991

Iteration 2

 SN.2.01
Appropriate Agile Measurement: Using Metrics and
Diagnostics to Deliver Business Value

Hartmann &
Dymond, 2006

 SN.2.02
Using COBIT Indicators for Measuring Scrum - based
Software Development

Mahnic &
Zabkar, 2008

 SN.2.03
Effectiveness of software metrics for object-oriented
system

Tegarden,
Sheetz &

Monarchi, 1992

 SN.2.04
Faults-slip-through - A Concept for Measuring the
Efficiency of the Test Process

Damm,
Lundberg &

Wohlin, 2006

 SN.2.05
Automatic detection of bad smells in code: An
experimental assessment

Fontana, Braione
& Zanoni, 2012

 SN.2.06
An Empirical Investigation of Modularity Metrics for
Indicating Architectural Technical Debt

Li, Liang,
Avgeriou &
Guelfi, 2014

Iteration 3

142

 SN.3.01
Software Quality Metrics and their Impact on
Embedded Software

Oliveira, Redin,
Carro, Da Cuhna
Lamb & Wagner,

2008

Iteration 4

SN.4.01 Empirical Study of Object-Oriented Metrics
Aggarwal, Singh,

Kaur &
Malhotra, 2006

143

Appendix D - Metric Introductions

Metric Origin

Access to Foreign Data (Marinescu, 2001)

Accuracy of Estimation (Downey & Sutherland, 2013)

Accuracy of Forecast (Downey & Sutherland, 2013)

Afferent Coupling (Martin, 1995)

Amount of Code Smell Occurrences (Fowler & Beck, 1999)

Amount of Cycles in Dependency Graph (Kunz, Dumke & Zenker, 2008)

Amount of Lines of Generated Code (He, Avgeriou, Liang & Li, 2016)

Amount of Manually Created Lines of Code (He, Avgeriou, Liang & Li, 2016)

Amount of Modified Lines of Generated Code (He, Avgeriou, Liang & Li, 2016)

Attribute Hiding Factor (Abreu & Carapuça, 1994)

Attribute Inheritance Factor (Abreu & Carapuça, 1994)

Average Amount of Defects Carried to Next
Iteration

(Hartmann & Dymond, 2006)

Average Class-to-Leaf Depth (Chidamber & Kemerer, 1994)

Average Code Review Rate (Kemerer & Paulk, 2009)

Average Design Review Rate (Kemerer & Paulk, 2009)

Average Fault Cost (Damm, Lundberg & Wohlin, 2006)

Average Number of Modified Components per
Commit

(Li, Liang, Avgeriou, Guelfi & Ampatzoglou,
2014)

Average Number of Stories Added to Iteration (Oza & Korkala, 2012)

Average Number of Stories Removed to
Iteration

(Oza & Korkala, 2012)

Average Overtime per Day (Mahnic & Vrana, 2007)

Average Overtime per Sprint (Mahnic & Vrana, 2007)

Average Projects per Employee (Mahnic & Vrana, 2007)

Average Work in Progress (Hall, 1981)

Business Value Delivered (Hartmann & Dymond, 2006)

Capacity Utilization (Petersen & Wohlin, 2011)

Cashflow per Iteration (Hartmann & Dymond, 2006)

Change Requests per Requirement (Petersen & Wohlin, 2010)

Check-Ins per Day (Humble, Read & North, 2006)

Class Attribute Import Coupling (Li & Henry, 1993)

Code Abstractness
(Oliveira, Redin, Carro, Da Cunha & Wagner,
2008)

Code Instability
(Oliveira, Redin, Carro, Da Cunha & Wagner,
2008)

Comment Percentage (Rosenverg & Stapko, 1999)

Common Tempo Time (Tanner & Roncarti, 1994)

Cost Efficiency (Petersen & Wohlin, 2011)

144

Cost of Quality (Gupta & Campbell, 1995)

Cost Performance Index (Mahnic & Vrana, 2007)

Coupling Between Objects (Chidamber & Kemerer, 1994)

Coupling Concentration Index (Koru & El Emam, 2009)

Coupling Factor (Abrey & Carapuça, 1994)

Critical Defects Sent by Customers (Cheng, Jansen & Remmers, 2009)

Cycle Time (De Jong, 1957)

Cyclomatic Complexity Metric (McCabe, 1976)

Data Abstraction Coupling (Li & Henry, 1993)

Delivery on Time (Petersen & Wohlin, 2011)

Depth of Inheritance Tree (Chidamber & Kemerer, 1994)

Descendant Method-to-Method Export Coupling (Sahraoui, Goding & Miceli, 2000)

Due Date Performance (Seidmann & Smith, 1981)

Efferent Coupling (Martin, 1994)

Enterprise Velocity (Greening, 2010)

Fault Latency (Damm, Lundberg & Wohlin, 2006)

Faults Slip Through (Damm, Lundberg & Wohlin, 2006)

Focus Factor (Downey & Sutherland, 2013)

Fulfilment of Scope (Mahnic & Vrana, 2007)

Halstead Complexity Metric (Maurice, 1977)

Ideal Days (Angioni et al., 2006)

Impediments per Work-Item (Mahnic & Vrana, 2007)

Implemented Versus Wasted Requirements (Petersen & Wohlin, 2010)

Improvement Potential
(Tanaka, Sakamoto, Kusumoto, Matsumoto &
Kikuno, 1995)

Index of Inter-Package Extending (Abdeen, Ducasse & Sahraoui, 2011)

Index of Inter-Package Extending Diversion (Abdeen, Ducasse & Sahraoui, 2011)

Index of Inter-Package Usage (Abdeen, Ducasse & Sahraoui, 2011)

Index of Inter-Package Usage Diversion (Abdeen, Ducasse & Sahraoui, 2011)

Index of Package Changing Impact (Abdeen, Ducasse & Sahraoui, 2011)

Index of Package Goal Focus (Abdeen, Ducasse & Sahraoui, 2011)

Information-Based Cohesion (Lee, Liang, Wu & Wang, 1995)

Internal Efficiency
(Grimaldo, Perrotta, Corvello & Verteramo,
2016)

Kick-Off Days
(Grimaldo, Perrotta, Corvello & Verteramo,
2016)

Lack of Cohesion of Methods (Chidamber & Kemerer, 1994)

Lead Time (Krafcik, 1988)

Locality of Attribute Accesses (Lanzá & Marinescu, 2006)

Maximum Nested Block Depth (Wichmann & Cox, 1992)

Message Passing Coupling (Henderson-Sellers, 1996)

Method Hiding Factor (Abreu & Carapuça, 1994)

Method Inheritance Factor (Abreu & Carapuça, 1994)

145

Method-to-Method Export Coupling (Sahraoui, Goding & Miceli, 2000)

Net Promoter Score (Reichheld & Frederick, 2003)

Non Compliance Index (Padmini, Bandara & Perera, 2015)

Normalized Amount of Code Smell Occurrences (Fowler & Beck, 1999)

Normalized Distance from Main Sequence
(Oliveira, Redin, Carro, Da Cunha & Wagner,
2008)

Number of Bounce Backs (Middleton, Taylor, Flaxel & Cookson, 2007)

Number of Generated Files (He, Avgeriou, Liang & Li, 2016)

Number of Inherited Methods per Class (Henderson-Sellers, 1996)

Number of Manually Created Files (He, Avgeriou, Liang & Li, 2016)

Number of Modified Generated Files (He, Avgeriou, Liang & Li, 2016)

Number of Overridden Methods per Class (Henderson-Sellers, 1996)

Number of Static Methods per Class
(Oliveira, Redin, Carro, Da Cunha & Wagner,
2008)

Number of Static Variables per Class
(Oliveira, Redin, Carro, Da Cunha & Wagner,
2008)

Percentage of Adopted Work (Downey & Sutherland, 2013)

Percentage of Found Work (Downey & Sutherland, 2013)

Percentage of Modified Generated Files (He, Avgeriou, Liang & Li, 2016)

Percentage of Modified Generated Lines of
Code

(He, Avgeriou, Liang & Li, 2016)

Polymorphism Factor (Abreu & Carapuça, 1994)

Predictive Object Points (Minkiewicz, 1997)

Process Efficiency (Sutherland, Harrison & Riddle, 2014)

Processing Time (Krafcik, 1988)

Queue Time (Krafcik, 1988)

Regression Test Cycle Time (Manila, 2013)

Response for a Class (Chidamber & Kemerer, 1994)

Reuse Ratio (Henderson-Sellers, 1996)

Running Tested Features (Abbas, Gravell & Wills, 2010)

Schedule Performance Index (Mahnic & Vrana, 2007)

Self-Assigned Happiness (Sutherland, Harrison & Riddle, 2014)

Smoke Test Cycle Time (Manila, 2013)

Specialization Index (Henderson-Sellers, 1996)

Story Point Velocity (Downey & Sutherland, 2013)

Success at Scale (Downey & Sutherland, 2013)

System Analysis Cost (Leung & White, 1991)

Targeted Value Increase (Downey & Sutherland, 2013)

Task Time (Krafcik, 1988)

Technical Efficiency
(Grimaldo, Perrotta, Corvello & Verteramo,
2016)

Test Execution Cost (Leung & White, 1991)

Test Result Analysis Cost (Leung & White, 1991)

146

Test Selection Cost (Leung & White, 1991)

Throughput (Krafcik, 1988)

Thumbs Up Rule
(Grimaldo, Perrotta, Corvello & Verteramo,
2016)

Time to Market in Days (Stata, 1980)

Value Added Time (Krafcik, 1988)

Value Delivered Over Time (Petersen & Wohlin, 2011)

Weighted Method per Class (Chidamber & Kemerer, 1994)

Win Loss Record (Downey & Sutherland, 2013)

Work Capacity (Downey & Sutherland, 2013)

Work Effectiveness (Mahnic & Vrana, 2007)

Yesterday’s Weather (Downey & Sutherland, 2013)

147

Appendix E - Metrics per Paper

Paper Encountered Metrics

P1.01 Maximum Amount of Team Members, Hours per Function Point, Function Points

P1.02
Function Points, Predictive Object Points, Weighted Methods per Class, Person Hours,
Amount of Team Members

P1.03

Delivery on Time, Work Capacity, Unit Test Coverage, Percentage of Adopted Work,
Mean Time to Recovery, Lines of Code per Unit of Time, Halstead Complexity Metrics,
Cyclomatic Complexity, Defect Density, Story Point Velocity, Focus Factor, Percentage of
Found Work, Accuracy of Forecast, Targeted Value Increase, Success at Scale, Win/Loss
Record, Smoke Test Cycle Time, Regression Test Cycle Time, Defect count, Faults Slip-
Through, Lead Time, Work in Progress, Queue Time, Cost of Quality, Defect Severity
Index, Open Defect Severity Index, Defect Slippage Rate, Requirement Clarity Index,
Sprint Level Effort Burndown, Non Compliance Index, Accuracy of Estimation, Net
Promoter Score

P1.04

Sprint Level Effort Burndown, Story Point Velocity, Work Capacity, Focus Factor,
Percentage of Adopted Work, Percentage of Found Work, Accuracy of Estimation,
Accuracy of Forecast, Targeted Value Increase, Success at Scale, Win/Loss Record,
Function Points

P1.05 Net Present Value, Story Point Velocity, Enterprise Velocity, Person Hours

P1.06 Ideal Days, Sprint Level Effort Burndown, Story Point Velocity, Defects per Iteration,
Amount of Tests, Standard Violations

P1.07 Story Point Velocity, Lines of Code per Unit of Time, Function Points, Person Months,
Person Hours, Open Defect Count, Unit Test Coverage, Hours per Story Point

P1.08
Story Point Velocity, Yesterday's Weather, Mean Time to Recovery, Self-Assigned
Happiness, Process Efficiency

P1.09
Person Hours, Lines of Code per Unit of Time, New Classes per Release, New Methods per
Release, New Features per Release, New Lines of Code per Release, Defects Fixed per
Release

P1.10 Function Points, Lines of Code per Unit of Time, Hours per Function Point

P1.11 Lines of Code per Unit of Time, Person Hours, Lack of Cohesion of Methods, Weighted
Methods per Class, Statements per Method, Response for Class

P1.12 Maximum Amount of Team Members, Function Points, Person Hours, Person Months,
Story Point Velocity, Defect Count

P1.13 Work in Progress

P1.14
Lines of Code per Unit of Time, Halstead Complexity Metrics, Cyclomatic Complexity,
Function Points

P1.15 Lines of Code per Unit of Time, Lack of Cohesion of Methods, Cyclomatic Complexity

P1.16
Cyclomatic Complexity, Person Months, Defects per Iteration, Amount of Tests, Unit Test
Coverage

P1.17
Lines of Code per Unit of Time, Cyclomatic Complexity, Duplicate Expressions, Lack of
Cohesion of Methods

P1.18
Lines of Code per Unit of Time, Cyclomatic Complexity, Duplicate Expressions, Lack of
Cohesion of Methods

P1.19 Lines of Code per Unit of Time, Amount of Tests

148

P1.20
Maximum Amount of Team Members, Amount of Team Members, Work Capacity, Ideal
Capacity, Person Hours, Kick-Off Days, Technical Efficiency, Internal Efficiency, Number of
Scrum Teams per Project, Interrupted Time

P1.21 Work in Progress, Average Work in Progress, Maximum Work in Progress, Task Time,
Lead Time, Queue Time, Defects per Iteration

P1.22 Lack of Cohesion of Methods, Defect Count, Lines of Code per Unit of Time, Depth of
Inheritance Tree, Coupling Concentration Index

P1.23 Cycle Time, Value Added Time, Lead Time, First Time Yield, Average Work in Progress

P1.24

Story Point Velocity, Sprint Level Effort Burndown, Test Pass Rate, Defect Count, Amount
of Tests, Running Tested Features, Work in Progress, Critical Defects Sent by Customers,
Open Defect Count, Test Failure Rate, Test Pass Rate, Remaining Task Effort, Team
Effectiveness, Check-Ins per Day , Defects per Iteration, Number of Defects Found by
Tests, Net Promoter Score, Revenue per Customer, Cycle Time, Business Value Delivered,
Mean Time to Recovery, Unit Test Coverage, Test Growth Ratio, Standard Violations,
Release Level Effort Burndown, Cost Performance Index, Common Tempo Time, Number
of Bounce Backs, Customer Satisfaction, Lead Time, Processing Time, Queue Time,
Change Requests per Requirement, Defect Slippage Rate, Implemented Versus Wasted
Requirements, Number of Requests from Customers, Requirements Inventory Size,
Number of Requirements per Feature, Throughput, Percentage of Completed Stories,
Load Factor, Actual Development Time, Due Date Performance, Flow Efficiency

P1.25 Lines of Code per Unit of Time, Function Points, Time to Market in Days, Cost per
Function Point, Cost per Story Point, Amount of Team Members

P1.26
Lead Time, Lines of Code per Unit of Time, Work in Progress, Maximum Work in Progress,
Queue Time, Churn

P2.01
Lines of Code per Unit of Time, Weighted Methods per Class, Methods per Class, Number
of Children, Depth of Inheritance Tree, Lines of Code per Method, Coupling Between
Objects, Number of Instance Variables per Class, Predictive Object Points

P2.02

Stories per Day per Developer, Cost per Iteration, Tests per Story, Defects per Story, Test
Runtime, Manual Tests per Story, Mean Time to Recovery, Average Amount of Defects
Carried to Next Iteration, Unit Test Coverage, Builds per Day, Build Runtime, Percentage
of Successful Builds, Cycle Time, Net Present Value, Return on Investment, Story Point
Velocity, Ideal Days, Number of Stories per Iteration, Amount of Open Work Items,
Average Number of Stories Added to Iteration, Average Number of Stories Removed from
Iteration, Cyclomatic Complexity, Lines of Code per Unit of Time, Running Tested
Features, Defect Slippage Rate, Duplicate Expressions, Percentage of Dead Code

P2.03 Parameters per Method, Amount of Cycles in Dependency Graph

P2.04 Mean Time to Recovery, Amount of Lines of Code, Defect Density, Average Design Review
Rate, Average Code Review Rate

P2.05
Cyclomatic Complexity, Amount of Lines of Code, Comment Percentage, Weighted
Methods per Class, Response for Class, Lack of Cohesion of Methods, Coupling Between
Objects, Depth of Inheritance Tree, Number of Children

P2.06

Messages per Method, Statements per Method, Lines of Code per Method, Weighted
Methods per Class, Number of Instance Variables per Class, Depth of Inheritance Tree,
Number of Children, Number of Inherited Methods per Class, Number of Overridden
Methods per Class

P2.07
Average Class-to-Leaf Depth, Number of Children, Number of Overridden Methods per
Class, Number of Inherited Methods per Class, Number of Methods Added per Class,

149

Specialization Index, Coupling Between Objects, Data Abstraction Coupling, Information-
Flow Based Inheritance Coupling, Class Attribute Import Coupling, Descendant Method-
to-Method Export Coupling, Method-to-Method Export Coupling

P2.08 Common Tempo Time, Capacity Utilization, Delivery on Time, Cost Efficiency, Value
Delivered over Time, Value Added Time

P2.09

Number of Generated Files, Number of Modified Generated Files, Number of Manually
Created Files, Percentage of Modified Generated Files, Amount of Lines of Generated
Code, Amount of Modified Lines of Generated Code, Amount of Manually Created Lines
of Code, Percentage of Modified Generated Lines of Code, Amount of Code Smell
Occurrences, Normalized Amount of Code Smell Occurrences

P2.10 System Analysis Cost, Test Selection Cost, Test Execution Cost, Test Result Analysis Cost

P2.11 Business Value Delivered, Story Point Velocity, Return on Investment, Internal Rate of
Return, Cashflow per Iteration, Net Present Value

P2.12

Story Point Velocity, Work Effectiveness, Schedule Performance Index, Defect Density,
Cost of Failure to Control, Fulfilment of Scope, Average Overtime per Sprint, Average
Projects per Employee, Impediments per Work-Item, Mean Time to Recovery, Personnel
Turnover

P2.13

Comment Percentage, Amount of Lines of Code, Weighted Methods per Class, Depth of
Inheritance Tree, Number of Children, Coupling Between Objects, Response for Class,
Lack of Cohesion of Methods, Efferent Coupling, Afferent Coupling, Code Instability, Code
Abstractness, Normalized Distance from Main Sequence

P2.14 Faults Slip-Through, Fault Latency, Improvement Potential, Average Fault Cost

P2.15

Access to Foreign Data, Locality of Attribute Accesses, Foreign Data Providers, Weighted
Methods per Class, Lack of Cohesion of Methods, Amount of Lines of Code, Lines of Code
per Method, Cyclomatic Complexity, Halstead Complexity Metrics, Parameters per
Method

P2.16

Index of Inter-Package Usage, Index of Inter-Package Extending, Index of Package
Changing Impact, Index of Inter-Package Usage Diversion, Index of Inter-Package
Extending Diversion, Index of Package Goal Focus, Average Number of Modified
Components per Commit

P2.17

Afferent Coupling, Efferent Coupling, Code Instability, Lack of Cohesion of Methods, Code
Abstractness, Normalized Distances from Main Sequence, Depth of Inheritance Tree,
Number of Overridden Methods per Class, Number of Instance Variables per Class,
Number of Classes, Number of Interfaces, Methods per Class, Number of Packages,
Parameters per Method, Number of Static Variables per Class, Number of Static Methods
per Class, Amount of Lines of Code, Cyclomatic Complexity, Lines of Code per Method,
Maximum Nested Block Depth, Weighted Methods per Class

P2.18

Response for Class, Number of Instance Variables per Class, Methods per Class, Weighted
Methods per Class, Coupling Between Objects, Data Abstraction Coupling, Message
Passing Coupling, Coupling Factor, Lack of Cohesion of Methods, Information Based
Cohesion, Method Hiding Factor, Attribute Hiding Factor, Number of Children, Depth of
Inheritance Tree, Method Inheritance Factor, Attribute Inheritance Factor, Number of
Overridden Methods per Class, Polymorphism Factor, Reuse Ratio, Specialization Ratio

150

Appendix F - Papers per Metric

Metric Papers

Access to Foreign Data P2.15

Accuracy of Estimation P1.03, P1.04

Accuracy of Forecast P1.03, P1.04

Actual Development Time P1.24

Afferent Coupling P2.13, P2.17

Amount of Code Smell
Occurrences

P2.09

Amount of Cycles in Dependency
Graph

P2.03

Amount of Lines of Generated
Code

P2.09

Amount of Manually Created Lines
of Code

P2.09

Amount of Modified Lines of
Generated Code

P2.09

Attribute Hiding Factor P2.18

Attribute Inheritance Factor P2.18

Average Amount of Defects
Carried to Next Iteration

P2.02

Average Class-to-Leaf Depth P2.07

Average Code Review Rate P2.04

Average Design Review Rate P2.04

Average Fault Cost P2.14

Average Number of Modified
Components per Commit

P2.16

Average Number of Stories Added
to Iteration

P2.02

Average Number of Stories
Removed to Iteration

P2.02

Average Overtime per Day

Average Overtime per Sprint P2.12

Average Projects per Employee P2.12

Average Work in Progress P1.21, P1.23

Build Runtime P2.02

Builds per Day P2.02

Business Value Delivered P1.24, P2.11

Capacity Utilization P2.08

Cashflow per Iteration P2.11

Change Requests per
Requirement

P1.24

Check-Ins per Day P1.24

151

Churn P1.26

Class Attribute Import Coupling P2.07

Code Abstractness P2.13, P2.17

Code Instability P2.13, P2.17

Comment Percentage P2.05, P2.13

Common Tempo Time P1.24, P2.08

Cost Efficiency P2.08

Cost of Quality P1.03

Cost Performance Index P1.24

Cost per Function Point P1.25

Cost per Iteration P2.02

Cost per Story Point P1.25

Coupling Between Objects P2.01, P2.05, P2.07, P2.13, P2.18

Coupling Concentration Index P1.22

Coupling Factor P2.18

Critical Defects Sent by Customers P1.24

Cycle Time P1.23, P1.24, P2.02

Cyclomatic Complexity Metric
P1.03, P1.14, P1.15, P1.16, P1.17, P1.18, P2.02, P2.05, P2.15,
P2.17

Data Abstraction Coupling P2.07, P2.18

Defect Count P1.03, P1.12, P1.22, P1.24

Defect Density P1.03, P2.04, P2.12

Defect Severity Index P1.03

Defects Fixed Per Release P1.09

Defect Slippage Rate P1.03, P1.24, P2.02

Defects Per Iteration P1.06, P1.16, P1.21, P1.24

Defects per Story P2.02

Delivery on Time P1.03, P2.08

Depth of Inheritance Tree P1.22, P2.01, P2.05, P2.06, P2.13, P2.17, P2.18

Descendant Method-to-Method
Export Coupling

P2.07

Due Date Performance P1.24

Duplicate Expressions P1.17, P1.18, P2.02

Efferent Coupling P2.13, P2.17

Enterprise Velocity P1.05

Fault Latency P2.14

Faults Slip Through P1.03, P2.14

First Time Yield P1.23

Flow Efficiency P1.24

Focus Factor P1.03, P1.04

Foreign Data Providers P2.15

Fulfilment of Scope P2.12

Halstead Complexity Metric P1.03, P1.14, P2.15

152

Hours per Function Point P1.01, P1.10

Hours per Story Point P1.07

Ideal Capacity P1.20

Ideal Days P1.06, P2.02

Impediments per Work-Item P2.12

Implemented Versus Wasted
Requirements

P1.24

Improvement Potential P2.14

Index of Inter-Package Extending P2.16

Index of Inter-Package Extending
Diversion

P2.16

Index of Inter-Package Usage P2.16

Index of Inter-Package Usage
Diversion

P2.16

Index of Package Changing Impact P2.16

Index of Package Goal Focus P2.16

Information-Based Cohesion P2.18

Information-Flow Based
Inheritance Coupling

P2.07

Internal Efficiency P1.20

Internal Rate of Return P2.11

Impediments P1.20

Kick-Off Days P1.20

Lack of Cohesion of Methods
P1.11, P1.15, P1.17, P1.18, P1.22, P2.05, P2.13, P2.15, P2.17,
P2.18

Lead Time P1.03, P1.21, P1.23, P1.24, P1.26

Lines of Code per Method P2.01, P2.06, P2.15, P2.17

Lines of Code (per Unit of Time)
P1.03, P1.07, P1.09, P1.10, P1.11, P1.14, P1.15, P1.17, P1.18,
P1.19, P1.22, P1.25, P1.26, P2.01, P2.02

Load Factor P1.24

Locality of Attribute Accesses P2.15

Manual Tests per Story P2.02

Maximum Amount of Team
Members

P1.01, P1.12, P1.20

Maximum Nested Block Depth P2.17

Maximum Work in Progress P1.21, P1.26

Mean Time to Recovery P1.03, P1.08, P1.24, P2.02, P2.04, P2.12

Message Passing Coupling P2.18

Messages per Method P2.06

Method Hiding Factor P2.18

Method Inheritance Factor P2.18

Method-to-Method Export
Coupling

P2.07

Net Present Value P1.05, P2.02, P2.11

153

Net Promoter Score P1.03, P1.24

New Classes Per Release P1.09

New Features Per Release P1.09

New Lines of Code Per Release P1.09

New Methods Per Release P1.09

Non Compliance Index P1.03

Normalized Amount of Code Smell
Occurrences

P2.09

Normalized Distance from Main
Sequence

P2.13, P2.17

Number of Bounce Backs P1.24

Number of Classes P2.17

Number of Defects Found by Tests P1.24

Number of Generated Files P2.09

Number of Inherited Methods per
Class

P2.06, P2.07

Number of Interfaces P2.17

Number of Manually Created Files P2.09

Number of Methods Added per
Class

P2.07

Number of Modified Generated
Files

P2.09

Number of Overridden Methods
per Class

P2.06, P2.07, P2.17, P2.18

Number of Packages P2.17

Number of Requests From
Customers

P1.24

Number of Requirements per
Feature

P1.24

Number of Scrum Teams on
Project

P1.20

Number of Static Methods per
Class

P2.17

Number of Static Variables per
Class

P2.17

Number of Stories per Iteration P2.02

Open Defect Count P1.07, P1.24

Open Defect Severity Index P1.03

Parameters per Method P2.03, P2.15, P2.17

Percentage of Adopted Work P1.03, P1.04

Percentage of Completed Stories P1.24

Percentage of Dead Code P2.02

Percentage of Found Work P1.03, P1.04

Percentage of Modified
Generated Files

P2.09

154

Percentage of Modified
Generated Lines of Code

P2.09

Percentage of Successful Builds P2.02

Person Hours P1.02, P1.05, P1.07, P1.09, P1.11, P1.12, P1.20

Person Months P1.07, P1.12, P1.16

Personnel Turnover P2.12

Polymorphism Factor P2.18

Predictive Object Points P1.02, P2.01

Process Efficiency P1.08

Processing Time P1.24

Queue Time P1.03, P1.21, P1.24, P1.26

Regression Test Cycle Time P1.03

Release Level Effort Burndown P1.24

Remaining Task Effort P1.24

Requirement Clarity Index P1.03

Requirements Inventory Size P1.24

Response for a Class P1.11, P2.05, P2.13, P2.18

Return on Investment P2.02, P2.11

Reuse Ratio P2.18

Revenue per Customer P1.24

Running Tested Features P1.24, P2.02

Schedule Performance Index P1.24, P2.12

Self-Assigned Happiness P1.08

Smoke Test Cycle Time P1.03

Specialization Index P2.07

Reuse Ratio P2.18

Sprint Level Effort Burndown P1.03, P1.04, P1.06, P1.24

Standard Violations P1.06, P1.24

Statements per Method P1.11, P2.06

Stories per Day per Developer P2.02

Story Point Velocity
P1.03, P1.04, P1.05, P1.06, P1.07, P1.08, P1.12, P1.24, P2.02,
P2.11, P2.12

Success at Scale P1.03, P1.04

System Analysis Cost P2.10

Targeted Value Increase P1.03, P1.04

Task Time P1.21

Team Effectiveness P1.24

Technical Efficiency P1.20

Test Execution Cost P2.10

Test Failure Rate P1.24

Test Growth Ratio P1.24

Test Pass Rate P1.24, P1.24

Test Result Analysis Cost P2.10

155

Test Runtime P2.02

Test Selection Cost P2.10

Tests per Story P2.02

Throughput P1.24

Thumbs Up Rule P1.03

Time to Market in Days P1.25

Unit Test Coverage P1.03, P1.07, P1.16, P1.24, P2.02

Value Added Time P1.23, P2.08

Value Delivered Over Time P2.08

Weighted Method per Class P1.02, P1.11, P2.01, P2.05, P2.06, P2.13, P2.15, P2.17, P2.18

Win Loss Record P1.03, P1.04

Work Capacity P1.03, P1.04, P1.20

Work Effectiveness P2.12

Work In Progress P1.03, P1.13, P1.21, P1.24, P1.26

Yesterday’s Weather P1.08

156

Appendix G - Full Aspect Encoding

Aspect Encoding
Metric Axial

Encoding
Open Encoding

Efficiency

Time

Actual Development Time

Hours per Function Point

Hours per Story Point

Ideal Capacity

Ideal Days

Interrupted Time

Lead Time

Load Factor

Person Hours

Person Months

Processing Time

Queue Time

Task Time

Technical Efficiency

Value Added Time

Rework

Average Amount of Defects Carried to Next Iteration

Defects Fixed Per Release

Mean Time to Recovery

Cycle Times

Build Runtime

Builds per Day

Check-Ins per Day

Common Tempo Time

Cycle Time

Regression Test Cycle Time

Smoke Test Cycle Time

Test Runtime

Time to Market in Days

Delivery

Delivery on Time

Due Date Performance

Enterprise Velocity

Stories per Day per Developer

Story Point Velocity

Targeted Value Increase

Throughput

Yesterday's Weather

Flow Flow Efficiency

157

Process Efficiency

Impediments
Impediments per Work-Item

Interrupted Time

Burndown

Release Level Effort Burndown

Remaining Task Effort

Sprint Level Effort Burndown

Presumed

Internal Efficiency

Kick-Off Days

Team Effectiveness

Work Effectiveness

Effort

Focus Factor

Lines of Code (per Unit of Time)

New Classes Per Release

New Features Per Release

New Lines of Code Per Release

New Methods Per Release

Number of Stories per Iteration

Percentage of Completed Stories

Cohesion

Index of Package Goal Focus

Information-Based Cohesion

Lack of Cohesion of Methods

Parameters per Method

Coupling

Access to Foreign Data

Afferent Coupling

Average Number of Modified Components per
Commit

Class Attribute Import Coupling

Code Instability

Coupling Between Objects

Coupling Concentration Index

Coupling Factor

Data Abstraction Coupling

Descendant Method to Method Export Coupling

Efferent Coupling

Foreign Data Providers

Index of Inter-Package Usage

Index of Inter-Package Usage Diversion

Index of Package Changing Impact

Information-Flow Based Inheritance Coupling

Locality of Attribute Accesses

Message Passing Coupling

Method to Method Export Coupling

158

Complexity

Normalized Distance from Main Sequence

Response for a Class

Weighted Method per Class

Dependencies Amount of Cycles in Dependency Graph

Code Generation

Amount of Lines of Generated Code

Amount of Manually Created Lines of Code

Amount of Modified Lines of Generated Code

Number of Generated Files

Number of Manually Created Files

Number of Modified Generated Files

Percentage of Modified Generated Files

Percentage of Modified Generated Lines of Code

Encapsulation

Attribute Hiding Factor

Method Hiding Factor

Number of Interfaces

Inheritance

Attribute Inheritance Factor

Average Class-to-Leaf Depth

Code Abstractness

Depth of Inheritance Tree

Descendant Method to Method Export Coupling

Index of Inter-Package Extending

Index of Inter-Package Extending Diversion

Information-Flow Based Inheritance Coupling

Method Inheritance Factor

Number of Inherited Methods per Class

Number of Methods Added per Class

Number of Overridden Methods per Class

Polymorphism Factor

Reuse Ratio

Specialization Index

Specialization Ratio

Cyclomatic Complexity
Cyclomatic Complexity Metric

Halstead Complexity Metric

Expression Tree

Duplicate Expressions

Lines of Code per Method

Maximum Nested Block Depth

Messages per Method

Statements per Method

Risk Clarity
Requirements Clarity Index

Success at Scale

Size Effort
Percentage of Adopted Work

Percentage of Found Work

159

Components

Lines of Code (per Unit of Time)

Lines of Code per Method

Number of Classes

Number of Interfaces

Number of Packages

Number of Static Methods per Class

Number of Static Variables per Class

Estimation

Accuracy of Estimation

Accuracy of Forecast

Percentage of Adopted Work

Percentage of Found Work

Predictive Object Points

Code Churn

Churn

New Classes Per Release

New Features Per Release

New Lines of Code Per Release

New Methods Per Release

Test Growth Ratio

Fulfilment
Fulfilment of Scope

Percentage of Completed Stories

Quality

Anti-Patterns

Amount of Code Smell Occurrences

Halstead Complexity Metric

Non Compliance Index

Normalized Amount of Code Smell Occurrences

Normalized Distance from Main Sequence

Parameters per Method

Percentage of Dead Code

Standard Violations

Defects

Average Fault Cost

Critical Defects Sent by Customers

Defect Count

Defect Density

Defect Severity Index

Defect Slippage Rate

Defects Per Iteration

Defects per Story

Fault Latency

Faults Slip Through

Improvement Potential

Number of Bounce Backs

Number of Defects Found by Tests

Open Defect Count

160

Open Defect Severity Index

Percentage of Successful Builds

First Time Yield

Documentation Comment Percentage

Tests

Manual Tests per Story

Number of Defects Found by Tests

Running Tested Features

Test Failure Rate

Test Pass Rate

Tests per Story

Unit Test Coverage

Composition
Team Composition

Maximum Amount of Team Members

Personnel Turnover

Self-Assigned Happiness

Work Capacity

Project Composition Number of Scrum Teams on Project

Cost

Cost of Performed Work

Cost Efficiency

Cost per Function Point

Cost per Iteration

Cost per Story Point

Cost Performance Index

Value Delivered Over Time

Cost of Performed
Rework

Average Fault Cost

Faults Slip Through

Improvement Potential

Cost of Quality

Cost of Quality

System Analysis Cost

Test Execution Cost

Test Result Analysis Cost

Test Selection Cost

Financial

Cashflow per Iteration

Internal Rate of Return

Net Present Value

Return on Investment

Revenue per Customer

Schedule Performance Index

Design

Requirements

Change Requests per Requirement

Implemented Versus Wasted Requirements

Number of Requirements per Feature

Requirements Inventory Size

Reviews
Average Code Review Rate

Average Design Review Rate

161

Process

Story

Average Work in Progress

Maximum Work in Progress

Work in Progress

Iteration
Average Number of Stories Added to Iteration

Average Number of Stories Removed to Iteration

Team Member
Average Overtime per Day

Average Overtime per Sprint

Project

Average Projects per Employee

Business Value Delivered

Capacity Utilization

Requirements Number of Requests From Customers

Satisfaction Satisfaction
Net Promoter Score

Thumbs Up Rule

162

Appendix H - Full Input Encoding

Input Encoding
Input Axial

Encoding
Open Encoding

Backlog Backlog

Amount of Open Defects

Change Request Time Created

Amount of Work Items

Amount of Stories in Iteration

Amount of Defects

Amount of Open Work Items

Company Company Amount of Customers

Defects

Defect Counts

Amount of Defects

Defective Units Produced

Amount of Open Defects

Defect Cost
Defect Severity

Defect Cost

Defect Discovery Defect Discovery Environment

Deployment
Build

Build Cycle Time

Build Status

Version Control Commit Timestamp

Estimate

Size Estimate

Work Item Story Point Estimate

Sprint Story Point Original Forecast

Work Item Use Case Point Estimate

Adjusted Work Item Story Point Estimate

Work Item Function Point Estimate

Clarity Estimate Requirement Clarity

Commitment Estimate Adjusted Sprint Forecast

Lifecycle

Day Lifecycle

Planned Workday Start Timestamp

Planned Workday End Timestamp

Workday Start Timestamp

Workday End Timestamp

Interruption Lifecycle

Interruption Type

Interruption End Timestamp

Interruption Start Timestamp

Iteration Lifecycle
Sprint Start Timestamp

Sprint End Timestamp

Product Lifecycle
Commit Timestamp

Release Date

Team Lifecycle
Team Members Added

Team Members Removed

163

Test Lifecycle
Test Created Timestamp

Test Deleted Timestamp

Work Item Lifecyle

Planned Work Item Finished Time

Work Item Start Timestamp

Work Item Created Timestamp

Work Item Finished Timestamp

Work Item Deployed Timestamp

Financial

Cost

Cash Outflow

Cost of Actual Work Performed

Cost of Appraisal

Cost of Budgeted Work Performed

Cost of Control

Cost of External Failure

Cost of Failure Control

Cost of Internal Failure

Cost of Prevention

Defect Cost

Project Cost

Work Item Cost

Revenue
Cash Inflow

Project Revenue

Iteration

Commitment
Adjusted Sprint Forecast

Sprint Story Point Original Forecast

Delivery

Amount of Stories in Iteration

Features Added

Process Capacity

Units Produced

Lifecycle
Sprint End Timestamp

Sprint Start Timestamp

Schedule

Planned Production
Scheduled Production

Process Capacity

Planning

Planned Workday Start Timestamp

Amount of Available Workdays

Planned Workday End Timestamp

Unplanned
Interruption End Timestamp

Interruption Start Timestamp

Source Code
Code Churn

Lines of Code Deleted

Lines of Code Added

Classes Added

Methods Added

Lines of Code Edited

Code Complexity Number of Distinct Operators

164

Number of Distinct Operands

Number of Children

Total Number of Operators

Number of Instance Variables per Class

Total Number of Operands

Components
Number of Top Level Classes

Methods per Class

Code Coupling
Control Flow Graph

Inheritance Tree

Survey
Customer Inquiry Customer Promoter Score

Team Member Inquiry Happiness Score

Team

Team Churn
Team Members Added

Team Members Removed

Team Composition
Amount of Team Members

Assigned Project

Team Delivery Units Produced

Test

Test Result Test Result

Test Lifecycle
Test Deleted Timestamp

Test Created Timestamp

Test Count Amount of Tests

Work Day
Day Lifecycle

Workday Start Timestamp

Workday End Timestamp

Planning Amount of Available Workdays

Work Item

Work Item Count
Amount of Open Work Items

Amount of Work Items

Work Item Estimate

Work Item Function Point Estimate

Work Item Story Point Estimate

Work Item Use Case Point Estimate

Adjusted Work Item Story Point Estimate

Work Item Financials
Work Item Revenue

Work Item Cost

Work Item Lifecyle

Work Item Finished Timestamp

Planned Work Item Finished Time

Work Item Deployed Timestamp

Work Item Start Timestamp

Work Item Created Timestamp

Work Item Meta Data

Work Item Reporter

Work Item State

Work Item Resolve

Work Item
Requirements

Work Item Requirements

165

Appendix I - Keyword Occurrences

Keyword Occurrences

Productivity 7

Software Metrics 6

Software 5

Measurement 5

Software Engineering 5

Software Measurement 5

Programming 4

Costs 4

Companies 4

Testing 4

Agile 3

Refactoring 3

Scrum 3

Metrics 3

Large Scale Systems 2

Agile Software Development Process 2

Outsourcing 2

Lean 2

Case Study 2

Agile Development 2

Efficiency 2

Lean Manufacturing 2

Quality Assurance 2

Software Quality 2

Coupling 2

Computer Science 1

Computer Industry 1

Robustness 1

Data Engineering 1

Software Standards 1

Interviews 1

Traditional Software Development Process 1

Scrum Development Process 1

Indexes 1

Estimation 1

Accuracy 1

MySpace 1

Planning 1

166

Agile Metrics 1

CMMI 1

Myths About Agile 1

Tracking Tools 1

Progress Chart 1

Burndown Chart 1

Scrum Metrics 1

Project Management Tools 1

Global Communication 1

Geography 1

Project Management 1

Cultural Differences 1

Continents 1

Acceleration 1

Meteorology 1

Communities 1

Strong Productivity Gain 1

Agile Practice 1

Small Software Company 1

Industrial 1

Agile Software Practice 1

Productvitiy Metric 1

Software Process 1

Methodology 1

Software Development Metrics 1

Project Duration 1

Software Size 1

Effort 1

Kanban 1

Empirical Study 1

Evidence-Based Decision Making 1

Psychology 1

Tools 1

Complexity Theory 1

Insurance 1

Model Driven Development 1

Financial Applications 1

Agile Model-Driven Development Integration 1

Prioritization 1

Minimization 1

Optimization 1

Selection 1

167

Software Regression Testing 1

Offshoring 1

Software Development 1

Capacity-Based Model 1

Agile Methodologies 1

Delivery Process 1

Scalability 1

SAFe3.0 1

Modeling 1

Operations Time Chart 1

Work in Progress 1

Efficacy 1

Lean Simulation 1

Lean Metrics 1

Systematic Literature Review 1

Internet Technology Metrics 1

Performance Measurement 1

Quality 1

Time to Market 1

Software Management 1

Product Lifecycle Management 1

Agile Manufacturing 1

Computer Bugs 1

Quality Management 1

Product Design 1

Lab-on-a-Chip 1

Computer Society 1

Job Shop Scheduling 1

Inspection 1

Software Performance 1

Business Continuity 1

Software Design 1

Software Evolution 1

Reverse Engineering 1

Object-Oriented Frameworks 1

Error Correction 1

Computer Aided Software Engineering 1

Error Detection 1

Object Oriented Methods 1

Development Flow 1

Goal-Question-Metric 1

Lean Software Development 1

168

Test Cost 1

Regression Testing 1

Aggregates 1

Shape Measurement 1

Software Development Management 1

Monitoring 1

Teamwork 1

IT Performance Measurement 1

AGIT 1

Agile Software Development 1

COBIT 1

IT Balanced Scoreboard 1

IT Indicators 1

Basis Path 1

Chidamber and Kemerer Metrics 1

Cyclomatic Complexity 1

Object-Oriented 1

Fault Latency 1

Software Process Improvement 1

Fault-Slip-Through 1

Early Fault Detection 1

Fault Metrics 1

Software Quality Evaluation 1

Code Smell Detection Tools 1

Code Smells 1

Architectural Technical Debt 1

Modularity Metric 1

Commit 1

Software Architecture 1

Unified Modeling Language 1

Embedded Software 1

Computer Languages 1

Embedded System 1

Software Systems 1

Computer Architecture 1

Informatics 1

Model Driven Engineering 1

Standards Development 1

Inheritance 1

Polymorphism 1

Object-Oriented Software 1

Information Hiding 1

169

Cohesion 1

170

Appendix J - Author Occurrences

First Name Last Name Works

Jeff Sutherland 3

Turgay Aytac 2

Ayse Bener 2

Ovunc Bozcan 2

Gul Calikli 2

Hessa Alfraihi 2

Kevin Leno 2

Shekoufeh Kolahdouz-Rahimi 2

Howard Haughton 2

Mohammadreza Sharbaf 2

Claes Wohlin 2

Paris Avgeriou 2

Peng Liang 2

Zengyang Li 2

M Ruhe 1

I Wieczorek 1

R Jefferey 1

Barry Boehm 1

Chris Abts 1

Sunita Chulani 1

Indika Perera 1

K Padmini 1

H Bandara 1

Scott Downey 1

Daniel Greening 1

Rana Majumdar 1

Monika Agarwal 1

Maurits Rijk 1

Guido Schoonheim 1

Neil Harrison 1

Joel Riddle 1

Frank Maurer 1

Sebastien Martel 1

Papatheocharous Efi 1

Muhammad Syed 1

Jaana Nyfjord 1

Raimund Moser 1

Witold Pedrycs 1

171

Giancarlo Succi 1

Pekka Abrahamsson 1

Alberto Sillitti 1

Ajay Rana 1

Mridul Bhardwaj 1

Mariusz Musial 1

Klaas-Jan Stol 1

Brian Fitzgerald 1

Michael Felderer 1

Armin Beer 1

Omar Gómez 1

Glen Rodríguez 1

Raúl Rosero 1

Saverino Verteramo 1

Vincenzo Corvello 1

Carla Vintro-Sanchez 1

Jordi Fortuny-Santos 1

Lluis Cuatrecasas-Arbos 1

Günes Koru 1

Khaled El Emam 1

Hamid Seifoddini 1

Mohammed Khadem 1

Sk Ahad Ali 1

Juha Itkonen 1

Mika Mäntylä 1

Eetu Kupiainen 1

Rini van Sollingen 1

Hennie Huijgens 1

Anders Johnsen 1

Dag Sjøberg 1

Jørgen Solberg 1

Arlene Minkiewicz 1

Nilay Oza 1

Mikko Korkala 1

Martin Kunz 1

Reiner Dumke 1

Niko Zenker 1

Mark Paulk 1

Chris Kemerer 1

Lawrence Hyatt 1

Linda Rosenburg 1

Serge Demeyer 1

172

Oscar Nierstrasz 1

Stéphane Ducasse 1

Thierry Miceli 1

Houari Sahraoui 1

Robert Godin 1

Kay Peterson 1

Xiao He 1

Hareton Leung 1

Lee White 1

Deborah Hartmann 1

Robin Dymond 1

Viljan Mahnic 1

Natasa Zabkar 1

Santanu Kumar Rath 1

Jayadeep Pati 1

Yeresime Suresh 1

Lars Ola Damm 1

Lars Lundberg 1

Marco Zanoni 1

Pietro Braione 1

Francesca Arcelli Fontana 1

Nicolas Guelfi 1

Luis Lamb 1

Flavio Rech Wagner 1

Luigi Carro 1

Marcio Oliveira 1

Ricardo Miotto Redin 1

Yogesh Singh 1

K Aggarwal 1

Ruchika Malhotra 1

Arvinder Kaur 1

173

Appendix K - Metric Quality Assessment

Name Simple
Hard to
Game

Outcome
Oriented

Universal Transparent

Access to Foreign Data FALSE FALSE FALSE FALSE TRUE

Accuracy of Estimation TRUE TRUE FALSE TRUE TRUE

Accuracy of Forecast TRUE FALSE FALSE TRUE TRUE

Actual Development Time TRUE TRUE TRUE TRUE TRUE

Afferent Coupling FALSE FALSE FALSE FALSE TRUE

Amount of Code Smell Occurrences FALSE FALSE FALSE FALSE FALSE

Amount of Cycles in Dependency
Graph

FALSE FALSE FALSE FALSE TRUE

Amount of Lines of Generated Code TRUE FALSE FALSE FALSE FALSE

Amount of Manually Created Lines
of Code

TRUE FALSE FALSE FALSE FALSE

Amount of Modified Lines of
Generated Code

TRUE FALSE FALSE FALSE FALSE

Attribute Hiding Factor FALSE FALSE FALSE FALSE TRUE

Attribute Inheritance Factor FALSE FALSE FALSE FALSE TRUE

Average Amount of Defects Carried
to Next Iteration

TRUE TRUE FALSE FALSE TRUE

Average Class-to-Leaf Depth TRUE FALSE FALSE FALSE TRUE

Average Code Review Rate TRUE TRUE FALSE FALSE TRUE

Average Design Review Rate TRUE TRUE FALSE FALSE TRUE

Average Fault Cost FALSE FALSE FALSE FALSE FALSE

Average Number of Modified
Components per Commit

FALSE FALSE FALSE FALSE FALSE

Average Number of Stories Added
to Iteration

TRUE TRUE FALSE TRUE TRUE

Average Number of Stories
Removed to Iteration

TRUE TRUE FALSE TRUE TRUE

Average Overtime per Day TRUE FALSE FALSE TRUE TRUE

Average Overtime per Sprint TRUE FALSE FALSE TRUE TRUE

Average Projects per Employee TRUE TRUE FALSE FALSE TRUE

Average Work in Progress TRUE TRUE TRUE TRUE TRUE

Build Runtime TRUE TRUE FALSE FALSE TRUE

Builds per Day TRUE FALSE FALSE FALSE TRUE

Business Value Delivered TRUE TRUE TRUE TRUE FALSE

Capacity Utilization TRUE TRUE TRUE TRUE FALSE

Cashflow per Iteration TRUE TRUE TRUE TRUE FALSE

Change Requests per Requirement FALSE FALSE FALSE TRUE FALSE

Check-Ins per Day TRUE FALSE FALSE FALSE FALSE

Churn TRUE FALSE FALSE FALSE TRUE

174

Class Attribute Import Coupling FALSE FALSE FALSE FALSE FALSE

Code Abstractness FALSE FALSE FALSE FALSE TRUE

Code Instability FALSE FALSE FALSE FALSE TRUE

Comment Percentage TRUE FALSE FALSE FALSE TRUE

Common Tempo Time FALSE FALSE FALSE TRUE TRUE

Cost Efficiency TRUE FALSE FALSE FALSE TRUE

Cost of Quality FALSE TRUE TRUE TRUE FALSE

Cost Performance Index FALSE FALSE FALSE TRUE FALSE

Cost per Function Point TRUE FALSE TRUE TRUE TRUE

Cost per Iteration TRUE FALSE FALSE TRUE TRUE

Cost per Story Point TRUE FALSE TRUE TRUE TRUE

Coupling Between Objects FALSE FALSE FALSE FALSE TRUE

Coupling Concentration Index FALSE TRUE FALSE FALSE TRUE

Coupling Factor FALSE FALSE FALSE FALSE FALSE

Critical Defects Sent by Customers FALSE FALSE FALSE TRUE FALSE

Cycle Time TRUE TRUE TRUE TRUE TRUE

Cyclomatic Complexity Metric TRUE FALSE FALSE FALSE TRUE

Data Abstraction Coupling FALSE FALSE FALSE FALSE TRUE

Defect Count TRUE FALSE FALSE TRUE TRUE

Defect Density TRUE FALSE FALSE TRUE TRUE

Defect Severity Index TRUE FALSE TRUE FALSE TRUE

Defects Fixed Per Release TRUE FALSE FALSE TRUE TRUE

Defect Slippage Rate FALSE FALSE FALSE TRUE TRUE

Defects Per Iteration FALSE FALSE FALSE FALSE TRUE

Defects per Story TRUE FALSE TRUE TRUE TRUE

Delivery on Time TRUE FALSE TRUE TRUE TRUE

Depth of Inheritance Tree TRUE FALSE FALSE FALSE TRUE

Descendant Method-to-Method
Export Coupling

FALSE FALSE FALSE FALSE FALSE

Due Date Performance TRUE FALSE TRUE TRUE FALSE

Duplicate Expressions TRUE FALSE FALSE FALSE FALSE

Efferent Coupling FALSE FALSE FALSE FALSE TRUE

Enterprise Velocity TRUE FALSE TRUE TRUE FALSE

Fault Latency FALSE FALSE FALSE FALSE FALSE

Faults Slip Through FALSE FALSE FALSE TRUE FALSE

First Time Yield TRUE TRUE FALSE TRUE TRUE

Flow Efficiency TRUE TRUE TRUE TRUE TRUE

Focus Factor TRUE FALSE TRUE TRUE TRUE

Foreign Data Providers FALSE FALSE FALSE FALSE FALSE

Fulfilment of Scope FALSE FALSE FALSE FALSE FALSE

Halstead Complexity Metric FALSE TRUE FALSE FALSE TRUE

Hours per Function Point TRUE FALSE TRUE TRUE TRUE

175

Hours per Story Point TRUE FALSE TRUE TRUE TRUE

Ideal Capacity FALSE FALSE FALSE TRUE TRUE

Ideal Days TRUE FALSE FALSE TRUE TRUE

Impediments per Work-Item TRUE TRUE FALSE TRUE TRUE

Implemented Versus Wasted
Requirements

TRUE FALSE TRUE TRUE TRUE

Improvement Potential FALSE FALSE FALSE FALSE FALSE

Index of Inter-Package Extending FALSE FALSE FALSE FALSE TRUE

Index of Inter-Package Extending
Diversion

FALSE FALSE FALSE FALSE TRUE

Index of Inter-Package Usage FALSE FALSE FALSE FALSE TRUE

Index of Inter-Package Usage
Diversion

FALSE FALSE FALSE FALSE TRUE

Index of Package Changing Impact FALSE FALSE FALSE FALSE TRUE

Index of Package Goal Focus FALSE FALSE FALSE FALSE TRUE

Information-Based Cohesion FALSE FALSE FALSE FALSE TRUE

Information-Flow Based Inheritance
Coupling

FALSE FALSE FALSE FALSE FALSE

Internal Efficiency FALSE FALSE FALSE FALSE TRUE

Internal Rate of Return TRUE TRUE TRUE TRUE TRUE

Impediments TRUE TRUE TRUE TRUE TRUE

Kick-Off Days TRUE TRUE TRUE TRUE TRUE

Lack of Cohesion of Methods FALSE FALSE FALSE FALSE TRUE

Lead Time TRUE TRUE TRUE TRUE TRUE

Lines of Code per Method TRUE FALSE FALSE FALSE TRUE

Lines of Code (per Unit of Time) TRUE FALSE FALSE FALSE TRUE

Load Factor TRUE TRUE TRUE TRUE TRUE

Locality of Attribute Accesses FALSE FALSE FALSE FALSE FALSE

Manual Tests per Story FALSE FALSE FALSE FALSE FALSE

Maximum Amount of Team
Members

TRUE TRUE FALSE TRUE TRUE

Maximum Nested Block Depth TRUE FALSE FALSE FALSE TRUE

Maximum Work in Progress TRUE TRUE TRUE TRUE TRUE

Mean Time to Recovery TRUE TRUE TRUE TRUE TRUE

Message Passing Coupling FALSE FALSE FALSE FALSE TRUE

Messages per Method TRUE FALSE FALSE FALSE FALSE

Method Hiding Factor FALSE FALSE FALSE FALSE TRUE

Method Inheritance Factor FALSE FALSE FALSE FALSE TRUE

Method-to-Method Export Coupling FALSE FALSE FALSE FALSE FALSE

Net Present Value TRUE TRUE TRUE TRUE TRUE

Net Promoter Score TRUE TRUE TRUE TRUE TRUE

New Classes Per Release TRUE FALSE FALSE FALSE FALSE

New Features Per Release TRUE FALSE TRUE TRUE FALSE

176

New Lines of Code Per Release TRUE FALSE FALSE FALSE TRUE

New Methods Per Release TRUE FALSE FALSE FALSE TRUE

Non Compliance Index FALSE FALSE TRUE TRUE FALSE

Normalized Amount of Code Smell
Occurrences

FALSE FALSE FALSE FALSE FALSE

Normalized Distance from Main
Sequence

FALSE FALSE FALSE FALSE TRUE

Number of Bounce Backs FALSE FALSE TRUE TRUE FALSE

Number of Classes TRUE FALSE FALSE FALSE TRUE

Number of Defects Found by Tests TRUE FALSE TRUE TRUE TRUE

Number of Generated Files TRUE FALSE FALSE FALSE TRUE

Number of Inherited Methods per
Class

TRUE FALSE FALSE FALSE TRUE

Number of Interfaces TRUE FALSE FALSE FALSE TRUE

Number of Manually Created Files TRUE FALSE FALSE FALSE TRUE

Number of Methods Added per
Class

TRUE FALSE FALSE FALSE TRUE

Number of Modified Generated
Files

TRUE FALSE FALSE FALSE TRUE

Number of Overridden Methods
per Class

TRUE FALSE FALSE FALSE TRUE

Number of Packages TRUE FALSE FALSE FALSE TRUE

Number of Requests From
Customers

TRUE TRUE TRUE TRUE FALSE

Number of Requirements per
Feature

TRUE FALSE FALSE TRUE FALSE

Number of Scrum Teams on Project TRUE FALSE FALSE TRUE TRUE

Number of Static Methods per Class TRUE FALSE FALSE FALSE TRUE

Number of Static Variables per
Class

TRUE FALSE FALSE FALSE TRUE

Number of Stories per Iteration TRUE FALSE FALSE TRUE TRUE

Open Defect Count TRUE FALSE TRUE TRUE TRUE

Open Defect Severity Index TRUE FALSE TRUE FALSE TRUE

Parameters per Method TRUE FALSE FALSE FALSE TRUE

Percentage of Adopted Work TRUE FALSE TRUE TRUE TRUE

Percentage of Completed Stories TRUE FALSE TRUE TRUE TRUE

Percentage of Dead Code TRUE TRUE FALSE FALSE TRUE

Percentage of Found Work TRUE FALSE TRUE TRUE TRUE

Percentage of Modified Generated
Files

TRUE FALSE FALSE FALSE TRUE

Percentage of Modified Generated
Lines of Code

TRUE FALSE FALSE TRUE TRUE

Percentage of Successful Builds TRUE TRUE FALSE FALSE TRUE

Person Hours TRUE FALSE FALSE TRUE TRUE

Person Months TRUE FALSE FALSE TRUE TRUE

177

Personnel Turnover TRUE TRUE FALSE TRUE TRUE

Polymorphism Factor FALSE FALSE FALSE FALSE TRUE

Predictive Object Points FALSE FALSE FALSE FALSE TRUE

Process Efficiency TRUE TRUE TRUE TRUE TRUE

Processing Time TRUE TRUE TRUE TRUE TRUE

Queue Time TRUE TRUE TRUE TRUE TRUE

Regression Test Cycle Time TRUE TRUE TRUE FALSE TRUE

Release Level Effort Burndown TRUE FALSE TRUE TRUE TRUE

Remaining Task Effort TRUE FALSE TRUE TRUE FALSE

Requirement Clarity Index TRUE FALSE TRUE FALSE TRUE

Requirements Inventory Size FALSE TRUE TRUE TRUE TRUE

Response for a Class FALSE FALSE FALSE FALSE TRUE

Return on Investment TRUE TRUE TRUE TRUE TRUE

Reuse Ratio FALSE FALSE FALSE FALSE TRUE

Revenue per Customer TRUE TRUE TRUE TRUE TRUE

Running Tested Features TRUE FALSE FALSE FALSE TRUE

Schedule Performance Index FALSE FALSE FALSE FALSE TRUE

Self-Assigned Happiness TRUE TRUE TRUE TRUE TRUE

Smoke Test Cycle Time TRUE TRUE TRUE FALSE TRUE

Specialization Index TRUE FALSE TRUE TRUE TRUE

Reuse Ratio FALSE FALSE FALSE FALSE TRUE

Sprint Level Effort Burndown TRUE FALSE TRUE TRUE TRUE

Standard Violations FALSE FALSE FALSE FALSE FALSE

Statements per Method TRUE FALSE FALSE FALSE TRUE

Stories per Day per Developer TRUE FALSE TRUE TRUE TRUE

Story Point Velocity TRUE FALSE TRUE TRUE TRUE

Success at Scale TRUE FALSE FALSE TRUE TRUE

System Analysis Cost FALSE FALSE FALSE FALSE FALSE

Targeted Value Increase TRUE FALSE TRUE TRUE TRUE

Task Time TRUE TRUE TRUE FALSE TRUE

Team Effectiveness FALSE FALSE FALSE FALSE FALSE

Technical Efficiency FALSE FALSE FALSE FALSE TRUE

Test Execution Cost FALSE FALSE FALSE FALSE FALSE

Test Failure Rate FALSE FALSE FALSE FALSE FALSE

Test Growth Ratio FALSE FALSE FALSE FALSE TRUE

Test Pass Rate FALSE FALSE FALSE FALSE FALSE

Test Result Analysis Cost FALSE FALSE FALSE FALSE FALSE

Test Runtime TRUE TRUE FALSE FALSE TRUE

Test Selection Cost FALSE FALSE FALSE FALSE FALSE

Tests per Story TRUE FALSE FALSE TRUE TRUE

Throughput TRUE TRUE TRUE TRUE TRUE

Thumbs Up Rule TRUE TRUE TRUE TRUE FALSE

178

Time to Market in Days TRUE TRUE TRUE TRUE TRUE

Unit Test Coverage TRUE FALSE FALSE FALSE TRUE

Value Added Time TRUE TRUE TRUE TRUE TRUE

Value Delivered Over Time TRUE FALSE FALSE FALSE FALSE

Weighted Method per Class FALSE FALSE FALSE FALSE TRUE

Win Loss Record TRUE FALSE TRUE TRUE TRUE

Work Capacity TRUE TRUE FALSE TRUE TRUE

Work Effectiveness FALSE FALSE FALSE FALSE FALSE

Work In Progress TRUE TRUE TRUE TRUE TRUE

Yesterday’s Weather TRUE TRUE FALSE TRUE TRUE

179

Draft Paper

180

Models for metric strength and software

development team performance.

Frank Verbruggen

Hi Efficiency

frank@diamongagile.net

Jan Martijn van der Werf

Universiteit Utrecht

j.m.e.m.vanderwerf@uu.nl

 Teun Kooijman

Universiteit Utrecht

teun.kooijman@gmail.com

Sietse Overbeek

Universiteit Utrecht

s.j.overbeek@uu.nl

Abstract – This paper addresses the need for a means of

comparing the performance of two different software

development teams. A structured literature review was

performed to identify the software development metrics

that exist today, which was later supplemented with the

results of an expert inquiry aimed at identifying software

development metrics that the review had missed. This

yielded a total of 191 distinct software development

metrics, identified in 44 included papers, as well as 6

additional software development metrics, identified by the

experts. These results were systematically mapped in a

graphing database, and analysed in focus groups with the

experts in order to extrapolate tacit knowledge about what

makes these metrics strong or weak. The extrapolated

knowledge was encapsulated in a new model for metric

strength, which was subsequently used to assess the

strength of the 197 identified software development

metrics. This model states that a metric should (a) be

simple to explain and simple to measure, (b) be hard to

optimize without increasing business value, (c) correlate

strongly with increased business value when optimized,

(d) be universally applicable in many different contexts,

without confusing edge cases, and (e) be transparent in

how it’s measured and how it’s formulae are calculated.

A new model of software development team performance

was then created, using a diverse set of software

development metrics that were all deemed strong, targeted

many different aspects of the software development

process, and shared little input data-points.

1. Introduction

According to the yearly State of Agile surveys, an

increasing amount of software development

companies are embracing Agile in order to increase

their performance. It’s methodologies boast many

positive effects, such as more flexible projects,

reductions in project duration, increases in

adaptation and satisfaction, fewer deadline-

transcending projects, and lower overall project

costs. One of the most prominent and oft-quoted

advantage of the Agile approach is the claim that it

makes your development process more efficient

(Sutherland, 2014), (Prechelt, 2019), (Leffingwell,

2018).

The methodology provides a number of ways to

measure a team’s performance, such as Story Point

Velocity or Focus Factor (Padmini, Bandara &

Perera, 2015), yet it remains to be seen if these are

strong measures of software development team

performance. If they are not, this means that

management will not be able to accurately determine

which teams are performing admirably, or even

extremely well, and which teams are not. At the

same time, individual team members will not know

whether their team is excelling or failing.

The most likely problem with these performance

metrics is in their manner of size estimation. All size

estimation is done in terms of Story Points. Story

Points are estimated from the expert opinions of the

team that is going to perform the work. First, an

initial reference story is set to an arbitrary number of

Story Points. From here, the team members estimate

the Story Points of the other stories in a relative

fashion, comparing the size of the work of the new

story to that of the reference story and other, already

estimated stories. Their expert opinions are based on

relative estimates of the effort required for

mailto:frank@diamongagile.net
mailto:j.m.e.m.vanderwerf@uu.nl
mailto:teun.kooijman@gmail.com
mailto:s.j.overbeek@uu.nl

181

implementing the story, but are likely to be coloured

by their experience, expertise, technical aptitude, or

even ulterior motives. This means that the size

estimation of a story in terms of Story Points, may

differ quite substantially from team to team.

Consequently, a comparison between their

performance in terms of their Story Point Velocity or

Focus Factor, is inherently flawed, and easy to

game.

Until an accurate assessment of software

development team performance can be performed,

the inability for an organization to accurately

determine the benefits that the adoption of Agile has

brought them in terms of performance remains. In

this paper, we thus attempt to answer the primary

research question outlined below.

RQ: How can we measure the performance of a

software development team?

Before we can determine how we can accurately

measure the performance of a software development

team, we need to determine what constitutes an

accurate and objective metric in the first place. The

following sub-question addresses this need.

S1: What constitutes a strong software

development metric?

In order to determine what constitutes a valid and

accurate efficiency metric, we need to determine

what metrics already exist today. Additionally, we

will need to extrapolate what makes these metrics

valid or accurate. The following sub-question

addresses this.

S2: Which software development metrics

already exist today?

Finally, we need to determine what set of software

development metrics is most suitable for measuring

team performance, based on their strength, their

domain, and the potential correlations caused by a

shared set of input data-points. The following sub-

question addresses this need.

S3: What set of software development metrics is

most suitable for measuring team performance?

2. Methods

In our attempt to answer the various research and

sub-questions, we will employ a Grounded Theory

approach, consisting of a data-collection phase, and

a data-structuring phase. Afterwards, two new

models are constructed, based on discussions and

conversations about the collected data with

prevalent experts in the field. Finally, the

constructed models are subjected to a preliminary

validation, gauging their perceived clarity, relevance

and completeness.

2.1 Structured Literature Review

In this chapter, we will detail the execution and the

results of our systematic literature review, consisting

of two phases. The first phase identifies a starting set

through an automated search process, whereas the

second phase aims to identify missing work, based

on Wohlin’s snowballing technique (2014), until an

iteration no longer results in additional discovered

relevant metrics. The aim of this review is to

discover as many software development metrics as

possible. The process denoted in the remainder of

this section was performed on Google Scholar, and

duplicated on Scopus.

2.1.1 Inclusion Criteria

The inclusion criteria used for selecting or

discarding literature was kept as broad as possible.

The selected papers should be written in English,

and should be published in a peer-reviewed journal,

or presented at a venue which was facilitated by a

peer-reviewed journal, such as a conference or

workshop. We will not employ inclusion criteria

based on year of publication, specific authors or

specific journals. The latter two because we want to

evade any such bias, and the former because we

deem year of publication to be irrelevant to our

purpose. The final decision on whether or not to

include a piece of literature is done through manual

182

examination of the candidate work. Here, the

abstract of the candidate is examined, and if needed,

the paper is thoroughly studied. In this examination,

we will look for the presence of metrics in the work,

that are deemed relevant to the field of software

development. In the context of this review, a

relevant metric is defined as a metric that can be

used to measure any aspect of a software

development process.

2.1.2 Search Queries

The search for the starting set of literature was

performed on Tuesday the 22nd of January, 2019.

The result sets for some of these queries on Google

Scholar were so large, that complete analysis was

unfeasible for the size and scope of this study. This

has caused us to make compromises in terms of

validity, for the sake of time. This means that,

instead of analysing over 3.500.000 results in order

to generate a starting set, only the first ten results

were considered for inclusion when performing the

automated search on Google Scholar. On Scopus,

however, the entire result set was considered, as it

was significantly smaller. This consolidation is a

severe threat to the validity of our results. The search

queries performed on both Google Scholar and

Scopus are listed below.

• “Software Development Metrics”

• “Agile Efficiency Metrics”

• “Scrum Productivity Metrics”

• “Agile Productivity”

2.2 Expert Inquiry

Additionally, an expert inquiry was held among

some prevalent experts in the field, where the

collected set of metrics will be presented and

discussed. The aim of this inquiry was to discover

additional software development metrics, that have

not yet been discovered in the literature review. In

this inquiry, we have not made any distinction as to

why they were not discovered in the literature

review. This could be, for example, because no prior

research has been performed on this metric, no peer-

reviewed work has been published on the subject, or

because the literature review missed it due to not

encompassing the entire body of knowledge

available in literature today. In this inquiry, the

experts were asked about their view on the current

state of efficiency and productivity metrics.

Additionally, they were asked to think about

possible efficiency metrics that we have not

encountered yet, for which they would be very

interested in seeing measurement results from the

industry. In total, four prevalent experts have

participated in the focus groups, some of which are

seen as true authorities in the field of agile software

development. These experts are Jeffrey Saltz, Jeff

Sutherland, Kyle Aretae and Frank Verbruggen.

2.3 Systematic Mapping

The software development metrics that were found,

as well as the aspects of the software development

process that they target, and their individual input

data-points, were then processed using the

Grounded Theory approach of axial encoding. Here,

the concepts will be encoded into a final set of

aspects and input groups.

Additionally, the metrics that were found were

systematically mapped in a graphing database, along

with the inputs required to calculate them, the papers

that mention them, the authors who wrote them, the

keywords those papers use, the journals in which

they were published, and the publishers who

published them. This systematic mapping was

subsequently used for the theory building phase that

followed.

2.4 Model Building

The software development metrics that were found,

as well as their aspects and inputs, and the

systematic mapping, were presented to and

discussed with the experts. In these discussions, we

have attempted to extrapolate the expert’s tacit

knowledge about determining which metrics can be

considered strong, and which metrics can be

considered weak. This tacit knowledge was then

distilled in a newly devised model for metric

strength. All of the encountered metrics can

subsequently be assessed on their strength, using the

new model.

Subsequently, we constructed a model for team

performance, based on additional discussions and

conversations with the experts, and the newly

devised model for metric strength. This model was

to focus on a set of metrics targeting a broad set of

software development process aspects, while

183

sharing a minimum amount of input data-points so

that cause-and-effect can be more easily isolated.

3. Results

3.1 Structured Literature Review

In total, the automated search produced 103

candidate papers to be included in the review. From

these 103 candidates, 44 works were selected for

inclusion, based on the defined inclusion and

exclusion criteria. The subsequent snowballing

process identified an additional 18 works eligible for

inclusion, bringing the total amount of included

papers up to 62.

These papers were published during the time period

1989 to 2018. Together, these studies were written

by 113 individual authors, using 166 distinct

keywords. They were published in 37 different

venues, facilitated by 12 different publishers.

Within these 62 papers, a total of 191 distinct

software development metrics were encountered,

targeting 10 different aspects of the software

development process, while looking at 14 different

categories of input for their data-points. The list of

encountered metrics can be found in appendix A.

3.2 Expert Inquiry

The focus groups of the expert inquiry yielded an

additional 6 software development metrics, which

were not represented in the body of knowledge

discovered by the structured literature review.

3.2.1 Priority Focus

The first additional metric, brought forward by

Jeffrey Saltz, is the Priority Focus, which measures

the time that an individual team member has spent

adding value to the highest priority story backlog

item, as a percentage of the total time spent working.

The metric can be calculated for each individual

team member, by taking the time that the team

member has spent working on the highest priority

story backlog item on the previous day, and dividing

it by the total time that he or she could have spent on

it. This metric can be calculated on multiple

granularities, e.g. per day or per sprint. At the same

time, the metric can easily be calculated for entire

teams or companies by aggregating the individual

measurements into weighted arithmetic means.

This metric can be used to determine a team’s

capability to do the most important things first.

Additionally, the metric can yield interesting

insights into how well the team is swarming on the

highest priority story backlog items. The act of

swarming has been shown to lead to a reduction of

waste in software development processes

(Verbruggen, Sutherland, van der Werf,

Brinkkemper & Sutherland, 2019). The following

sections detail the calculation of this metric for an

individual team member, and aggregated into an

arithmetic mean for an entire team.

The Member Priority Focus for sprint 𝑠 and member

𝑚, represented by 𝑝𝑓𝑠𝑚, is given by

𝑝𝑓𝑠𝑚 =

∑ {
𝑝𝑒𝑥

== 𝑡𝑟𝑢𝑒 |𝑑𝑒𝑚|

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0

|𝐸𝑠𝑚|
𝑥=1

𝑤𝑐𝑠𝑚

where 𝐸𝑠𝑚 is the set of the events that occurred in

sprint 𝑠 for member 𝑚, 𝑤𝑐𝑠𝑚 is the Work Capacity

in sprint 𝑠 for member 𝑚, as outlined in section

3.2.7, 𝑝𝑒𝑥
 is a Boolean value denoting whether the

𝑥𝑡ℎ event 𝑒𝑥 was marked as targeting the highest

current priority, and 𝑑𝑒𝑚 is the set of timestamps

included in the duration of event 𝑒 and the Work

Schedule of member 𝑚, as out lined in section 3.2.7.

The Mean Team Priority Focus for sprint 𝑠 and team

𝑡, represented by 𝜇𝑝𝑓𝑠𝑡
, is given by

𝜇𝑝𝑓𝑠𝑡
=

∑ 𝑝𝑓𝑠𝑚
|𝑀𝑡𝑠|
𝑚=1

|𝑀𝑡𝑠|

where 𝑀𝑡𝑠 is the set of the members of team 𝑡 who

have participated in sprint 𝑠, and 𝑝𝑓𝑠𝑚 is the Member

Priority Focus for sprint 𝑠 and member 𝑚.

3.2.2 Context Concurrency

The second additional metric, brought forward by

Frank Verbruggen, is the Context Concurrency

metric. This metric determines the maximum

amount of story backlog items that the team has had

to work on concurrently throughout a day, sprint or

project. Superfluous context switching can hurt

productivity, and keeping the amount of concurrent

contexts to switch between to a feasible minimum

will help minimize its impact. The metric denotes

184

the maximum number of stories that were in

progress at any given time, during a particular

period of time.

The Context Concurrency of sprint 𝑠 at timestamp 𝑡,

represented by 𝑐𝑐𝑠𝑡 , is given by

𝑐𝑐𝑠𝑡 = |𝑆𝑡| − |𝐹𝑡|

where 𝑆𝑡 is the set of all stories that were started at

timestamp 𝑡, and 𝐹𝑡 is the set of all stories that were

finished at timestamp 𝑡.

The Maximum Context Concurrency of sprint 𝑠,

represented by 𝑚𝑐𝑐𝑠, is given by

𝑚𝑐𝑐𝑠 = ⋁ 𝑐𝑐𝑠𝑡
𝑓𝑠
𝑡 = 𝑠𝑠

where 𝑓𝑠 is the timestamp at which sprint 𝑠 was

finished, 𝑠𝑠 is the timestamp at which sprint 𝑠 was

started, and 𝑐𝑐𝑠𝑡 is the Context Concurrency of sprint

𝑠 at timestamp 𝑡.

3.2.3 Degree of Swarming

The third additional metric, brought forward by Jeff

Sutherland, is the Degree of Swarming. This metric

determines the degree of collaboration and

teamwork within the team. It indicates whether team

members tend to work on story backlog items

individually or in association with other members of

the team. It is defined here as the percentage of the

team that has performed work on a specific story

during a particular day, whether this was two

minutes or eight hours.

The Story Degree of Swarming on story backlog

item 𝑖 on day 𝑑, represented by 𝑑𝑜𝑠𝑖𝑑 , is given by

𝑑𝑜𝑠𝑖𝑑 =
|𝑀𝑖𝑑|

|𝑀𝑑|

where 𝑀𝑖𝑑 is the set of all members who participated

in work performed on story 𝑖 on day 𝑑, and 𝑀𝑑 is the

set of all members who were working on day 𝑑.

The Mean Day Degree of Swarming on day 𝑑,

represented by 𝜇𝑑𝑜𝑠𝑑
, is given by

𝜇𝑑𝑜𝑠𝑑
=

∑ 𝑑𝑜𝑠𝑖𝑥𝑑
|𝐼𝑑|
𝑥=1

|𝐼𝑑|

where 𝐼𝑑 is the set of all story backlog items that

were in progress at any time during day 𝑑, and

𝑑𝑜𝑠𝑖𝑥𝑑 is the Story Degree of Swarming on the 𝑥𝑡ℎ

story backlog item 𝑖𝑥 on day 𝑑.

The Mean Sprint Degree of Swarming on sprint 𝑠,

represented by 𝜇𝑑𝑜𝑠𝑠
, is given by

𝜇𝑑𝑜𝑠𝑠
=

∑ 𝜇𝑑𝑜𝑠𝑑𝑥

|𝐷𝑠|
𝑥 = 1

|𝐷𝑠|

where 𝐷𝑠 is the set of days in sprint 𝑠, and 𝜇𝑑𝑜𝑠𝑑
 is

the Mean Day Degree of Swarming on the 𝑥𝑡ℎ day

𝑑𝑥.

3.2.4 Small Correct Change Into Production

The fourth additional metric, brought forward by

Kyle Aretae, is the Small Correct Change Into

Production (SCCIP). This metric looks at the

overhead of the act of deploying the product into

production. It is defined as the time it takes for a

single, extremely simple change to the code base, to

be available in the production environment(s). If the

target team works with deployment windows, it is

assumed that the last deployment window has just

closed. Kyle has seen this metric range from under 5

minutes in some of the truly high-performance

teams, to over a year in some of the worst.

The Simple Correct Change Into Production for

project 𝑝 , represented by 𝑠𝑐𝑐𝑖𝑝𝑝 , is given by

𝑠𝑐𝑐𝑖𝑝𝑝 = 𝑡𝑑 − 𝑡𝑐

Where 𝑡𝑑 is the timestamp at which the change is

available in production, and 𝑡𝑐 is the timestamp at

which the change was committed.

3.2.5 Process Efficiency

The fifth proposed metric, brought forward by Jeff

Sutherland and Frank Verbruggen, is the Process

Efficiency metric. This metric determines the

efficiency of a software development team from the

perspective of their work, instead of the individual

team members. It is defined as the value-added-time

divided by the total time spent working. Here,

excellency measures a low throughput time, but

could also lead to a low capacity utilization.

The Story Process Efficiency for story backlog item

𝑖, in sprint 𝑠, represented by 𝑝𝑒𝑖𝑠, is given by

185

𝑝𝑒𝑖𝑠 =
∑ 𝑓𝑒𝑥

 − 𝑠𝑒𝑥

|𝐸𝑠𝑚𝑖|
𝑥=1

𝑐𝑡𝑖

where 𝐸𝑠𝑚𝑖 is the set of the events that occurred in

sprint 𝑠 for member 𝑚, targeting story backlog item

𝑖, 𝑐𝑡𝑖 is the Story Cycle Time of story backlog item

𝑖, as outlined in section 3.2.7, 𝑓𝑒𝑥
 is the timestamp at

which the 𝑥𝑡ℎ event 𝑒𝑥 has finished, and 𝑠𝑒𝑥
 is the

timestamp at which the 𝑥𝑡ℎ event 𝑒𝑥 has started.

The Mean Team Process Efficiency for sprint 𝑠,

represented by 𝜇𝑝𝑒 𝑠
, is given by

𝜇𝑝𝑒 𝑠
=

∑ 𝑝𝑒𝑖𝑥𝑠
|𝐼𝑠|
𝑥 = 1

|𝐼𝑠|

where 𝐼𝑠 is the set of all story backlog items in sprint

𝑠, and 𝑝𝑒𝑖𝑥𝑠 is the Story Process Efficiency of the

𝑥𝑡ℎ story 𝑖𝑥 in sprint 𝑠, as outlined in section 3.2.7.

3.2.6 Innovation Income

The final proposed metric, brought forward by

Frank Verbruggen and Kyle Aretae, is the

Innovation Income metric. This metric determines

the percentage of an organization’s income that’s

coming from innovations. It posits that if a

significant part of the value delivered by an

organization comes from recent innovation, the

organization has the ability to innovate, and dares to

move. Such an organization has the ability to change

the way they operate on their markets, and can

quickly react to changing circumstances.

The Innovation Income 𝑖𝑖 for organization 𝑜,

denoted by 𝑖𝑖𝑜, is given by

𝑖𝑖𝑜 =
𝑟<2

𝑟

Where 𝑟<2 is the amount of yearly revenue obtained

through projects that were released within the last

two years, while 𝑟 is the total amount of yearly

revenue for the organization. While the initial cut-

off is set at two years, empirical validation might

show more optimal values for this threshold.

3.2.7 Intermediate Metrics

While the following metrics are not part of the set of

metrics suggested by the experts, their values are

needed for the calculation of some of the metrics that

were. Their definitions are stated below in order to

provide an accurate and unambiguous account of

how their calculations are done.

The Work Capacity in sprint 𝑠 for member 𝑚,

represented by 𝑤𝑐𝑠𝑚 is given by

𝑤𝑐𝑠𝑚 = ∑ 𝑓𝑚𝑑𝑥
− 𝑠𝑚𝑑𝑥

|𝐷𝑠𝑚|

𝑥 = 1

where 𝐷𝑠𝑚 is the set of days during sprint 𝑠 on which

member 𝑚 worked on the project, 𝑓𝑚𝑑𝑥
 is the time

at which member 𝑚 stopped working on the 𝑥𝑡ℎ day

𝑑𝑥, and 𝑠𝑚𝑑𝑥
 is the time at which member 𝑚 started

working on the 𝑥𝑡ℎ day 𝑑𝑥.

The Work Schedule of member 𝑚 in sprint 𝑠,

represented by 𝑈𝑚𝑠, is the union of the intervals of

the times that member 𝑚 worked during sprint 𝑠, and

is given by

𝑈𝑚𝑠 = ⋃ [𝑠𝑚𝑑𝑥
, 𝑓𝑚𝑑𝑥

]

|𝐷𝑚𝑠|

𝑥 = 1

where 𝐷𝑚𝑠 is the set of days that member 𝑚 worked

during sprint 𝑠, 𝑠𝑚𝑑𝑥
is the time at which member 𝑚

started working on the 𝑥𝑡ℎ day 𝑑𝑥, and 𝑓𝑚𝑑X
 is the

time at which member 𝑚 stopped working on the 𝑥𝑡ℎ

day 𝑑𝑥.

The Event Duration for event 𝑒 of member 𝑚,

represented by 𝑑𝑒𝑚 is given by

𝑑𝑒𝑚 = {𝑥 | 𝑥 ∈ 𝑈𝑚𝑠 , 𝑥 ∈ [𝑠𝑒 , 𝑓𝑒] }

where 𝑈𝑚𝑠 is the Work Schedule of member 𝑚 in

sprint 𝑠, 𝑠𝑒 is the time at which event 𝑒 has started,

and 𝑓𝑒 is the time at which event 𝑒 has finished.

The Story Cycle Time of story backlog item 𝑖,

represented by 𝑐𝑡𝑖, is given by

𝑐𝑡𝑖 = 𝑓𝑖 − 𝑠𝑖

where 𝑓𝑖 is the timestamp at which story backlog

item 𝑖 is finished, and 𝑠𝑖 is the timestamp at which

story backlog item 𝑖 is started.

Similarly, the Story Cycle Interval of story backlog

item 𝑖, represented by 𝑐𝑖𝑖, is given by

𝑐𝑖𝑖 = {[𝑠𝑖 , 𝑓𝑖]}

186

where 𝑓𝑖 is the timestamp at which story backlog

item 𝑖 is finished, and 𝑠𝑖 is the timestamp at which

story backlog item 𝑖 is started.

The Mean Team Interruption Count for sprint 𝑠,

represented by 𝜇𝑖𝑐𝑠
, is given by

𝜇𝑖𝑐𝑠
=

|𝐼𝑠|

|𝑀𝑠|

where 𝐼𝑠 is the set of the interruptions that occurred

in sprint 𝑠, and 𝑀𝑠 is the set of the team members

who participated in sprint 𝑠.

The Mean Team Interruption Duration for sprint 𝑠

and team 𝑡, represented by 𝜇𝑖𝑑𝑠𝑡
, is given by

𝜇𝑖𝑑𝑠𝑡
=

∑ 𝑓𝑖𝑥
− 𝑠𝑖𝑥

|𝐼𝑠|
𝑥 = 1

𝑐𝑖𝑠

where 𝐼𝑠 is the set of the interruptions that occurred

in sprint 𝑠, 𝑓𝑖𝑥
 is the time at which the 𝑥𝑡ℎ

interruption 𝑖𝑥 was finished, and 𝑠𝑖𝑥
 is the time at

which the 𝑥𝑡ℎ interruption 𝑖𝑥 started.

3.3 Model for Metric Strength

In this section, we introduce a new model for metric

strength, which describes five qualities that a metric

should have in order to be considered a strong metric

for software development This model for metric

strength was developed through in-depth discussion

of metric strength with the experts, in which tacit

knowledge about what makes a metric good or bad,

was extrapolated and distilled into explicit

knowledge.

These qualities state that a strong metric should (a)

be simple to explain and simple to measure, (b) be

difficult to optimize without increasing business

value (c) correlate strongly with increased business

value when optimized, (d) be useable in multiple

contexts, without confusing edge-cases, and (e) have

an unambiguous and transparent definition of its

data points, as well as how those data points are used

in its calculations. In the remainder of this study, we

will refer to these qualities as simple, hard-to-game,

outcome-oriented, universal, and transparent

respectively. Together, these criteria spell the

acronym SHOUT.

3.3.1 Simple

The first quality criteria is simplicity. This addresses

the need for a metric to be simple to explain,

measure and interpret. It also takes into account how

much effort, in terms of time and energy, is required

to take the required measurements. Finally, it takes

into account the perceived impact on the

productivity of the team under investigation. If

taking the required measurements takes only a

second, but has to be done many times a day, the

overall effort required is low, but the impact on

overall team productivity might be too high, because

of the numerous interruptions that it would cause.

3.3.2 Hard to Game

Then, the metric is judged on whether or not its value

is hard to game. In the context of this study, hard to

game is defined as being difficult to optimize without

increasing business value. This means that we do

not truly care whether or not a metric is easy to game

or not, as long as the act of gaming still results in the

intended increase in business value. An excellent of

example of a metric that is hard to game in this

sense, is Work in Progress. The emergence of the

hard-to-game quality is not all that surprising, as

E.M. Goldratt’s ‘tell me how you measure me, and

I’ll tell you how I’ll behave’ comes to mind.

3.3.3 Outcome Oriented

Strong metrics should also show a strong

correlation with increased business value when

optimized. This means that the metric should give a

clear indication of where that optimum might be,

and can reasonably be assumed to increase business

value when a process gets closer to that optimum.

3.3.4 Universal

For a metric to be universal, it must be applicable to

many different contexts, and not just software

development or industrial manufacturing. Similarly,

it should not have any confusing edge-cases for

specific circumstances, resulting in invalid

measurements or values.

3.3.5 Transparent

Finally, metrics should be transparent, meaning that

they should have an explicit and unambiguous

definition of their data points. Additionally, all of the

metrics should be transparent in the sense that they

187

should unambiguously define how those data points

are used to calculate the final metric value(s).

3.4 Model for Team Performance

In this section, we will introduce a new model for

assessing team performance, based on the concepts

discovered in the structured literature review, the

discussions with experts, and the systematic

mapping of their results. This model assesses the

performance of a team along four different axes,

being process, people, technical and product. These

perspectives were derived from a discussion with the

experts of the final encoding pass over the aspects of

software development that metrics can target

Each of these perspectives has a single key metric

that adheres to the SHOUT model of metric strength,

and is thus completely outcome-oriented.

Consequently, the resulting measurements tell an

individual team whether or not they are performing

well on an individual perspective, but do not tell us

anything about how to improve it. Additional

metrics are required to provide a team with the

necessary pulls and levers to actively navigate

towards becoming a truly high-performance team.

This is, however, part of our future research as

indicated in section 5.3.

3.4.1 Process

According to Lean Manufacturing, the best

manufacturing processes are optimized to reduce

waste. In our team performance model, we state that

a team’s process is performant when it maximizes

added-value, while minimizing wasted resources.

The strong metric of Process Efficiency, introduced

in section 4.2.5, measures the percentage of total

time spent adding value, and is used as the key

metric for the process perspective on team

performance.

3.4.2 People

In our model of team performance, we hold true the

axiom that the members of a team need to feel good

about themselves and their company in order to

become a high performance team. The Employee

Happiness metric, introduced in section 3.4.14.17,

measures this sense of purpose, belonging and

satisfaction that the experts believe is a necessary

ingredient to high performance, and is used as the

key metric for the people perspective team

performance.

3.4.3 Technical

High technical performance allows a team to

translate concepts into profitable products and

services in minimal time. This maximization of

speed, alongside the minimization of required effort,

is perfectly encapsulated in the Small Correct

Change Into Production metric introduced in section

4.2.4, and is thus used as the key metric for the

technical perspective on team performance.

3.4.4 Product

Doing the right thing is equally important as (if not

more important than) doing the thing right. High

performance in the product perspective means

maximizing the value in the eyes of the customers.

The Net Promoter Score metric, introduced in

section 3.4.14.11, measures how many more people

love the product or service you’ve created, than the

amount of people that hate it, and is used as the key

metric for the product perspective on team

performance.

4. Discussion

4.1 Structured Literature Review

The structured literature review yielded a large set

of metrics, hinting at a large body of knowledge for

software development metrics. The collected work,

spanning more than 40 individual papers on the

subject and over 1000 potential candidates, shows a

healthy distribution over venues and publishers,

giving us no reason to suspect any form of venue or

publisher bias.

The study found 197 individual metrics, which is

more than 4.5 times as many as the largest literature

review on the subject that we found, giving us

adequate reason to believe that our current work has

added significant value to the field of measuring

software development processes, by the results of

the structured literature review alone. This seems to

have been a necessary endeavour, seeing as the

resulting set of keywords hint at an industry that

lacks a clearly defined lexicon of standardized

terms, with lots of synonyms and very little overlap

188

between papers. Similarly, when looking at the set

of authors working on the included work, we see that

they rarely publish more than one paper on the

subject, with the most prevalent expert being Jeff

Sutherland at three included papers. This also hints

at a field that lacks well-known and prominent

experts on the subject. Given the fact, however, that

our inclusion criteria stated that a paper should

mention a new, previously unmentioned software

development metric, we cannot be all too sure about

the latter two conclusions.

Surprisingly, no golden age of software

development metric research can be identified, as

the field has seen continuous and consistent

attention since its inception. The distribution of

metric mentions does, however, show a focus of

research on complexity, quality and efficiency

metrics, with 146 metrics targeting just these three

aspects of the software development process.

Similarly, a significant amount of metrics seem to

have input data-points coming from work-items and

their lifecycle, as well the source code, with 52 out

of 118 inputs originating from just these three input

categories.

In terms of metric strength, according to the newly

introduced SHOUT model of metric strength, it is

surprising to see that five out of ten aspects failed to

yield any strong metrics. Even more surprising is the

fact that complexity and quality are among them,

while 98 such metrics were identified. While we

expected this to be because they were not classified

as universal (and thus only adhering to a SHOT

model of metric strength), we found that most often,

they were not classified as outcome-oriented

instead. This is not surprising, as code quality and

complexity metrics can be excellent tools to

maintain a high level of maintainability and clarity,

but optimizing them does not necessarily correlate

with increased business value. Similarly, such

metrics can fairly easily be gamed, with various

adverse effects. The lines of code per method metric,

for example, can be kept artificially low by limiting

it to one per method, but this might severely hurt

readability and maintainability. The efficiency

aspect, however, has yielded 12 strong metrics, most

of which come from LEAN software development

or manufacturing. Most of these metrics target

various aspects of the life-cycle of a work-item (e.g.

lead-time, queue-time, cycle-time, interrupted-time,

and value-added-time). Similarly, the Work-in-

Progress metrics that were encountered in the

process aspect of software development, also have

their roots in LEAN manufacturing or software

development.

According to the distribution of qualities over

metrics, the hard-to-game quality appears to be the

hardest quality to inhibit for a metric, with just

26.3% of the encountered metrics adhering to it.

Similarly, only 31.4% of the encountered metrics

have shown to be outcome-oriented, making it the

second hardest quality to adhere to. Finally, just 23

out of 197 metrics can be considered strong, being

only 11.6% of the entire set of encountered software

development metrics. This hints at the necessity of

an accurate model for metric strength, as well as the

need to keep quality in mind when devising new

software development metrics. While the review has

yielded a large set of metrics, it has yielded no model

for determining metric strength or quality. The goal-

question-metric model came closest, but focusses on

what makes a metric good for a particular

organization’s context instead. A model for metric

strength is thus a welcome addition to the field of

software development metrics.

4.2 Expert Inquiry

The expert inquiry was done with a small group of

experts, yet the group consisted of very prominent

and prevalent experts in the field, with lots of

experience and expertise between them. We found

that it was surprisingly easy for a small group of

experts to unanimously and quickly determine

whether or not a metric could be considered strong

or not, even without the SHOUT model for metric

strength in place.

The inquiry yielded six additional metrics that were

not identified through the structured literature

review and its snowballing process. It is interesting

to note that all six metrics could be considered

simple, hard-to-game, outcome-oriented and

universal. Now that their definitions, as well as their

data-points have been clearly and unambiguously

defined in this work, they can also be considered to

be transparent. This means that all of the metrics

retrieved from the expert inquiry can now be

considered strong metrics, and can now be used by

189

software development teams to determine some

aspects of their performance.

Context Concurrency, Priority Focus and Degree of

Swarming show clear similarities with Kanban,

where the amount of work-in-progress is limited in

order to prevent an abundance of context switching

and to stimulate a focus on the highest current

priority. Additionally, Degree of Swarming shows

similarities with the rise of pair programming, and

the move away from the stereotypical independent

and anti-social software developer. Small Correct

Change Into Production and Innovation Income can

both be considered as very simple, fast indicators of

general technical and organizational performance,

while in-depth analysis would require other, more

complex and time-consuming metrics. Finally, it is

interesting to note that Process Efficiency is a strong

metric, while all of its inputs can also be considered

strong, hinting at a very promising application that

will need to be validated in future empirical

research.

4.3 Systematic Mapping

The systematic mapping has proven to be very

helpful in analysing and interpreting the results of

the structured literature review and the expert

inquiry. While the axial-encoding would most likely

have yielded different results if performed by other

researchers, we feel like it has fulfilled its purpose

adequately. At the same time, however, we feel very

strongly that potentially many more patterns and

insights can be extracted from the systematic

mapping, or with a potentially different axial-

encodings. For this reason, we have decided to

publish the data set in its entirety on

https://www.silvester-

consultancy.com/portfolio/thesis/download/system

atic-mapping.

4.4 Model for Metric Strength

The SHOUT model for metric strength was received

fairly well by the participants of the small validation

survey. In their responses, the participants signalled

the definitions of the qualities to be very clear, with

high median values, just as the relevance of these

qualities. In the end, the model was thought to

reasonably encompass every quality that a metric

should have in order to be considered strong, with a

median score of 4 and a Net Promoter Score of 56%.

The model does, however, need a larger-scale

validation in the industry, with a larger set of

verified participants, whereas the current validation

was just a small probe into the general reception of

the model.

4.5 Model for Team Performance

The model for team performance shows very little

correlation based on shared input data-points, with

only the timestamp at which a work-item has

finished being used for both Small Simple Change

Into Production and Process Efficiency. As stated in

chapter 8, however, the input data-point is used for

widely different things, and represents different

concepts in both metrics. The resulting model has,

however, not been validated in this study, and so

reception and performance of the model is difficult

to gauge.

5. Conclusion

5.1 Research Questions

5.1.1 Which software development metrics already

exist today?

In this study, we performed a structured literature

review as to determine what software development

metrics exist today, resulting in 191 software

development metrics. In order to ensure that no

metrics were overlooked, we performed an expert

inquiry in which we asked prevalent experts in the

field of software development whether they thought

the resulting list was complete, resulting in an

additional 6 metrics.

5.1.2 What constitutes a strong software develop-

ment metric?

The results of this endeavour were structured in a

systematic mapping, and discussed with the experts

in order to determine what makes them strong or

weak. From this discussion, a new model for metric

strength was developed, identifying five qualities

that a metric should possess in order to be considered

strong. These qualities state that a strong metric

should (a) be simple to explain and simple to

https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping
https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping
https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping

190

measure, (b) be difficult to optimize without

increasing business value (c) correlate strongly with

increased business value when optimized, (d) be

useable in multiple contexts, without confusing

edge-cases, and (e) have an unambiguous and

transparent definition of its data points, as well as

how those data points are used in its calculations.

We have dubbed these qualities simple, hard-to-

game, outcome-oriented, universal, and transparent

respectively, and together, these qualities spell the

acronym SHOUT.

5.1.3 What set of software development metrics is

most suitable for measuring team performance?

Finally, this model was used to identify strong

metrics in the result set of the structured literature

review and the expert inquiry. From this set of strong

metrics, we have created a new model for measuring

software development team performance. This

model is based on the Process Efficiency, Employee

Happiness, Net Promoter Score and Small Simple

Change Into Production metrics, targeting the

process, people, product and technical perspectives

of the software development process respectively.

This model has not been validated in this study, but

initial analysis have shown that little correlation

between these metrics is to be expected, based on

their shared input data-points.

5.1.4 How can we measure the performance of a

software development team?

Finally, by answering our three sub-questions, we

are able to answer our primary research question of

how we can measure the performance of a software

development team. The final answer to this question

is thus to use strong software development metrics,

utilizing independent input-data-points in order to

isolate cause-and-effect relationships, while

targeting multiple aspects of the software

development process. In this thesis, we have

presented a model for assessing the strength of a

software development metric, as well as a model for

measuring team performance, based on strong

metrics, sharing little input data-points and targeting

four different aspects of the process. These models

can help organizations assess the performance of

their software development teams. Finally, we have

introduced automated tooling in order to help

organizations measure these four key metrics.

5.2 Limitations

5.2.1 Limited Google Scholar starting set

There are several limitations in our execution of this

research. First and foremost, we have had to make

some concessions as to how thorough our manual

search for candidate work could be. Here, we have

limited the initial collection of candidate work from

Google Scholar to just the first 10 results, instead of

incorporating the whole result set. This may have, in

the end, led to less valid results, due to not having

exhausted the entire existing body of knowledge.

However, as we have found more than 4.5 times as

many metrics as the largest literature review we have

found on the subject, we feel very confident that the

extent to which these factors threaten the validity of

our results is fairly minimal.

5.2.2 Limiting inclusion criteria

Similarly, our inclusion criteria of needing to

mention a new software development metric, as

opposed to just any software development metric,

has a significant influence on the validity of our

results. The possibility exists that we have missed a

substantial portion of the existing body of

knowledge, due to potential separate clusters that

our practice may have missed due to this inclusion

criteria. A reproduction study would be wise to

broaden this inclusion criteria to mentioning any

software development metric, but we fear that this

will substantially increase the effort required to

properly perform the study.

5.2.3 Initial focus on efficiency

Additionally, we set out to perform this literature

review with an initial focus on efficiency metrics.

For this reason, the search queries that were

executed on the Google Scholar and Scopus search

engines, were deliberately biased to target software

development metrics targeting efficiency. Only after

having performed the searches, and having seen the

amount and quality of the results, did we decide to

register all software development metrics. This bias

in search queries might have caused us to mis

significant clusters of metrics in the body of

knowledge on software development metrics.

5.2.4 Limited model validation

191

Finally, the validation of the SHOUT model for

metric strength cannot be considered thorough and

complete. The participants of the validation survey

were reached through social-media, and therefore

not verified to be software development

professionals. Additionally, the model for team

performance has not seen any validation in this study

at all, which calls for future work investigating the

effectiveness of the model in, for example, separate

case-studies.

5.3 Future Work

5.3.1 Thorough model validation

With this study, we have set a first step towards

enabling organizations to measure the performance

of a software development team. We have not,

however, proven that this model for team

performance is accurate or valid. In future work, we

plan to validate the model in an industry setting

using case-studies in which the model’s accuracy is

validated. Only after this has happened, can

mainstream adoption potentially occur.

Similarly, the validation of the SHOUT model for

metric strength has yet to see a thorough validation

of its capacities. While we have performed a small

survey on these qualities, this was solely meant as an

initial probing into their perceived clarity, relevance

and completeness, and additional, more thorough

validation is required in order to draw any

significant conclusions.

5.3.2 Additional analysis of the systematic mapping

Additionally, we have acquired and systematically

mapped a substantial part of the available body of

knowledge on software development metrics. While

this mapping served its purpose in our research more

than adequately, we feel very strongly that there are

additional patterns and insights to be discovered

within it. We have therefore opted to open-source

the results, in order to enable other researchers to

draw their own conclusions from them.

5.3.3 Investigate the effectiveness quality

The preliminary validation of the model for metric

strength brought forward an additional quality that

many seem to associate with strong software

development metrics, namely effectiveness. Future

work could benefit from determining what exactly

respondents mean with effectiveness, whether it is

the same as outcome-oriented, or whether it might

be a potential sixth quality for strong software

development metrics.

5.3.4 Multidisciplinary approach

Additionally, it might prove beneficial to approach

future work from a multi-disciplinary perspective, as

the fields of psychology, sociology and even

anthropology might have valuable insights into what

qualities contribute to the strength of a metric. In this

study, a focus on software development was used,

but a broader view might yield a more robust and

universal model for metric strength or team

performance.

5.3.5 Broader inclusion criteria

Finally, the inclusion criteria of having to mention

new software development metrics, as opposed to

just any software development metric, is a

significant blow to the validity of our results. While

we have found more than 4.5 times as many software

development metrics than any other literature review

we have found on the subject, we feel that we will

still have potentially missed numerous other metrics

due to this inclusion criteria. A thorough

reproduction of this literature review will have to

broaden this inclusion criteria to state that a work

will be included if it mentions any software

development metric, but this will increase the

required effort, time and resources substantially.

6. References

Leffingwell, D. (2018). SAFe 4.5 Reference Guide: Scaled Agile

Framework for Lean Enterprises. Addison-Wesley Professional.

Padmini, K. J., Bandara, H. D., & Perera, I. (2015, April). Use of

software metrics in agile software development process. In

Moratuwa Engineering Research Conference (MERCon),

2015(pp. 312-317). IEEE.

Prechelt, L. (2019). The Mythical 10x Programmer. In

Rethinking Productivity in Software Engineering (pp. 3-11).

Apress, Berkeley, CA.

Sutherland, J. (2014). Scrum: the art of doing twice the work in

half the time. Currency.

Verbruggen, F., Sutherland, J., van der Werf, J. M., Brinkkemper,

S., & Sutherland, A. (2019, January). Process Efficiency-

Adapting Flow to the Agile Improvement Effort. In Proceedings

of the 52nd Hawaii International Conference on System Sciences.

192

Wohlin, C. (2014). Guidelines for snowballing in systematic

literature studies and a replication in software engineering. In

Proceedings of the 18th international conference on evaluation

and assessment in software engineering (p. 38).

