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1. Introduction 

According to the yearly State of Agile surveys, an increasing amount of software development 

companies are embracing Agile in order to increase their performance. It’s methodologies boast many 

positive effects, such as more flexible projects, reductions in project duration, increases in adaptation 

and satisfaction, fewer deadline-transcending projects, and lower overall project costs. One of the 

most prominent and oft-quoted advantage of the Agile approach is the claim that it makes your 

development process more efficient (Sutherland, 2014), (Prechelt, 2019), (Leffingwell, 2018). 

The methodology provides a number of ways to measure a team’s performance, such as Story Point 

Velocity  or Focus Factor (Padmini, Bandara & Perera, 2015), yet it remains to be seen if these are 

strong measures of software development team performance. If not, this means that management 

will not be able to accurately determine which teams are performing admirably, or even extremely 

well, and which teams are not.  At the same time, individual team members will not know whether 

their team is excelling or failing.  

The problem with these performance metrics is in their manner of size estimation. All size estimation 

is done in terms of Story Points. Story Points are estimated from the expert opinions of the team that 

is going to perform the work. First, an initial reference story is set to an arbitrary number of Story 

Points. From there, the team members estimate the Story Points of the other stories in a relative 

fashion, comparing the size of the work of the new story to that of the reference story and other, 

already estimated stories. Their expert opinions are based on relative estimates of the effort required 

for implementing the story, but are likely to be coloured by their experience, expertise, technical 

aptitude, or even ulterior motives. This means that the size estimation of a story in terms of Story 

Points, may differ quite substantially from team to team. Consequently, a comparison between their 

performance in terms of their Story Point Velocity or Focus Factor, is inherently flawed, and easy to 

game. 

Until an accurate assessment of software development performance can be performed, the inability 

for an organization to accurately determine the benefits that the adoption of Agile has brought them 

in terms of efficiency, remains (Oszewska, 2016).  

[Problem Statement] In this thesis, we will attempt to devise or consider a new model, which can be 

used to accurately measure the performance of a software development team.  The following chapters 

of this thesis describe the execution of this attempt.  



5 
 
 

 

2. Research Methods 

In this chapter, we will devise a primary research question and divide it into several sub-questions. 

Finally, we will go over the research methods that we will use for our investigation.  

2.1 Research Questions 

This section introduces the main research question. By answering this question, we will have defined 

or considered a new set of metrics for measuring team performance. The main research question is 

outlined below, labelled R1.  

R1: How can we measure the performance of a 

software development team? 

Subsequently, the main research question is supported by three additional sub-questions. These sub-

questions are outlined below, labelled S1 through S3. 

 

Before we can determine how we can accurately measure the performance of a software 

development team, we need to determine what constitutes an accurate and objective metric in the 

first place. The following sub-question addresses this need. 

S1: What constitutes a strong software development metric? 

In order to determine what constitutes a valid and accurate efficiency metric, we need to determine 

what metrics already exist today. Additionally, we will need to extrapolate what makes these metrics 

valid or accurate. The following sub-question addresses this. 

S2: Which software development metrics already exist today? 

Finally, we need to determine what set of software development metrics is most suitable for 

measuring team performance, based on their strength, their domain, and the potential correlations 

caused by a shared set of input data-points.  The following sub-question addresses this need. 

S3: What set of software development metrics is most suitable  

for measuring team performance? 
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2.2 Methods 

In our attempt to answer the various research and sub-questions, we will employ a Grounded Theory 

approach, consisting of a data-collection phase, and a data-structuring phase. Afterwards, two new 

models are constructed, based on discussions and conversations about the collected data with 

prevalent experts in the field. Finally, the constructed models are subjected to a preliminary 

validation, gauging their perceived clarity, relevance and completeness. 

2.2.1 Data Collection 

2.2.1.1 Structured Literature Review 

In order to determine the current state of the literature, we will perform a structured literature 

review, consisting of two phases. In the first phase, an automated search on Google Scholar and 

Scopus is performed, followed by the second phase, in which the results are snowballed, based on the 

snowballing technique outlined in (Wohlin, 2014). The aim of this investigation is to determine what 

software development metrics exist in literature today.  

2.2.1.2 Expert Inquiry 

Additionally, an expert inquiry will be held among some prevalent experts in the field, where the 

collected set of metrics will be presented and discussed. The aim of this expert inquiry is to determine 

additional software development metrics which could potentially be strong metrics for team 

performance, that have not been discovered in literature. 

2.2.2 Data Structuring 

2.2.2.1 Axial Encoding 

The software development metrics that are found, as well as the aspects of the software development 

process that they target, and their individual input data-points, are then processed using the Grounded 

Theory approach of axial encoding. Here, the concepts will be encoded into a final set of aspects and 

input groups.  

2.2.2.2 Systematic Mapping 

The software development metrics that are found, will be systematically mapped in a graphing 

database, along with the inputs required to calculate them, the papers that mention them, the authors 

who wrote them, the keywords those papers use, the journals in which they were published, and the 

publishers who published them. This systematic mapping is subsequently used for the theory building 

phase that follows. 
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2.2.3 Grounded Theory Building 

2.2.3.1 Model for Metric Strength 

The software development metrics that are found, as well as their aspects and inputs, and the 

systematic mapping, are presented to and discussed with the experts. In these discussions, we will 

attempt to extrapolate the expert’s tacit knowledge about determining which metrics can be 

considered strong, and which metrics can be considered weak. This tacit knowledge will then be 

distilled in a newly devised model for metric strength. All of the encountered metrics can subsequently 

be assessed on their strength, using the new model. 

2.2.3.2 Model for Team Performance 

Subsequently, we construct a model for team performance, based on additional discussions and 

conversations with the experts. This model is to focus on a set of metrics targeting a broad set of 

software development process aspects, while sharing a minimum amount of input data-points so that 

cause-and-effect can be more easily isolated. 

2.2.3.3 Validation 

Finally, we probe the perceived clarity, relevance and completeness of the models using a preliminary 

validation survey among professionals in the field. A thorough validation process is postponed to 

future work. 

2.2.4 Deliverables 
The primary deliverable of this thesis will thus be the systematic mapping of the available software 

development metrics in industry and literature, which is embodied in a graph database. Similarly, a 

newly devised model for metric strength will be constructed, as well as a newly devised model for 

team performance.  
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3. Systematic Literature Review 

In this chapter, we will detail the execution and the results of our systematic literature review, 

consisting of two phases. The first phase identifies a starting set through an automated search process, 

whereas the second phase aims to identify missing work, based on Wohlin’s snowballing technique 

(2014), until an iteration no longer results in additional discovered relevant metrics. The aim of this 

review is to discover as many software development metrics as possible. The process denoted in the 

remainder of this section was performed on Google Scholar, and duplicated on Scopus. 

 

3.1 Methods 

3.1.1 Inclusion Criteria 
 

The inclusion criteria used for selecting or discarding literature was kept as broad as possible. The 

selected papers should be written in English, and should be published in a peer-reviewed journal, or 

presented at a venue which was facilitated by a peer-reviewed journal, such as a conference or 

workshop. We will not employ inclusion criteria based on year of publication, specific authors or 

specific journals. The latter two because we want to evade any such bias, and the former because we 

deem year of publication to be irrelevant to our purpose. The final decision on whether or not to 

include a piece of literature is done through manual examination of the candidate work. Here, the 

abstract of the candidate is examined, and if needed, the paper is thoroughly studied. In this 

examination, we will look for the presence of metrics in the work, that are deemed relevant to the 

field of software development. In the context of this review, a relevant metric is defined as a metric 

that can be used to measure any aspect of a software development process. This results in the 

following collection of inclusion and exclusion criteria: 

• [exclusion] is not written in English; 

• [exclusion] is not published in a peer-reviewed journal, or not presented at a venue which 

was facilitated by a peer-reviewed journal; 

• [inclusion] must mention relevant software development metrics that have not yet been 

mentioned in previous snowballing iterations. 
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3.1.2 Approach 

 

A starting set of literature will be selected using an automated search on four different queries. These 

queries will be executed on the academic search engines Scopus and Google Scholar. From this starting 

set, backward and forward snowballing will be performed until an iteration no longer yields any 

additional included work.  

The following sections will detail the execution details of our systematic literature review, and we will 

end this chapter by providing a brief summary and discussion of the collected work.  

 

3.2 Execution 

3.2.1 Start Set 
 

The search for the starting set of literature was performed on Tuesday the 22nd of January, 2019. In 

the following section, we will introduce each of the search queries used to generate a part of the 

starting set. Note that these search queries were devised so as to get an extremely varied start set. 

This was done by approaching the field from many different angles. The result sets for some of these 

queries on Google Scholar were so large, that complete analysis was unfeasible for the size and scope 

of this study. This has caused us to make compromises in terms of validity, for the sake of time. This 

means that, instead of analysing over 3.500.000 results in order to generate a starting set, only the 

first ten results were considered for inclusion when performing the automated search on Google 

Scholar. On Scopus, however, the entire result set was considered, as it was significantly smaller. This 

consolidation is a severe threat to the validity of our results. 

The search queries performed on both Google Scholar and Scopus are listed below in table 1, together 

with the total amount of results that were returned. 

Search Engine Query Results 

Google Scholar Software Development Metrics 3.590.000 

Google Scholar Agile Efficiency Metrics 42.200 

Google Scholar Scrum Productivity Metrics 7.170 
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Google Scholar Agile Productivity 115.000 

Scopus Software Development Metrics 14 

Scopus Agile Efficiency Metrics 42 

Scopus Scrum Productivity Metrics 7 

Scopus Agile Productivity 1 

 

Table 1 -  Automated Search Queries and Amount of Results 

3.2.1.1 Google Scholar 

The results of the automated search on Google Scholar are outlined in Appendix A. From this set of 

candidate literature, we extract a start set of literary work according to the set of inclusion and 

exclusion criteria introduced in section 3.1.1. The first criteria is whether or not the work is written in 

English. All of the candidates pass this criteria. Subsequently, the next criteria is whether or not the 

work is published in a peer-reviewed journal. This criteria eliminates candidates GS.2.03, GS.2.08 and 

GS.2.09. Finally, the candidates that were left over were inspected in more detail, to determine 

whether or not it mentions relevant software development performance metrics, as described in 

section 3.1.1.  The results of the application of the inclusion criteria can be found in table 2 below. 

This lead to the inclusion of 12 candidate works. 

Candidate English Peer Reviewed Relevant Metrics Included 

  

GS.1.01 Yes Yes No No 

GS.1.02 Yes Yes Yes Yes 

GS.1.03 Yes Yes No No 

GS.1.04 Yes Yes Yes Yes 

GS.1.05 Yes Yes No No 

GS.1.06 Yes Yes No No 

GS.1.07 Yes Yes No No 

GS.1.08 Yes Yes No No 

GS.1.09 Yes Yes No No 

GS.1.10 Yes Yes No No 

          

GS.2.01 Yes Yes No No 

GS.2.02 Yes Yes No No 

GS.2.03 Yes No N.A. No 

GS.2.04 Yes Yes No No 
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GS.2.05 Yes Yes No No 

GS.2.06 Yes Yes Yes Yes 

GS.2.07 Yes Yes No No 

GS.2.08 Yes No N.A. No 

GS.2.09 Yes No N.A. No 

GS.2.10 Yes Yes No No 

          

GS.3.01 Yes Yes Yes Yes 

GS.3.02 Yes Yes Yes Yes 

GS.3.03 Yes Yes No No 

GS.3.04 Yes Yes Yes Yes 

GS.3.05 Yes Yes Yes Yes 

GS.3.06 Yes Yes Yes Yes 

GS.3.07 Yes Yes Yes Yes 

GS.3.08 Yes Yes No No 

GS.3.09 Yes Yes No No 

GS.3.10 Yes Yes Yes Yes 

          

GS.4.01 Yes Yes No No 

GS.4.02 Yes Yes No No 

GS.4.03 Yes Yes No No 

GS.4.04 Yes Yes Yes Yes 

GS.4.05 Yes Yes No No 

GS.4.06 Yes Yes Yes Yes 

GS.4.07 Yes Yes No No 

GS.4.08 Yes Yes No No 

GS.4.09 Yes Yes No No 

GS.4.10 Yes Yes No No 
 

Table 2 -  Applied Inclusion Criteria on Google Scholar (GS) Candidates 

3.2.1.2 Scopus  

The results of the automated search on Scopus are outlined in Appendix B. From this set of candidate 

literature, we extract the second part of the starting set of literary work according to the set of 

inclusion and exclusion criteria introduced in section 3.1.1. All of the candidates are written in English 

and published in a peer-reviewed journal, or presented at a venue that is facilitated by a peer-

reviewed journal. Then, 18 candidates were found to mention relevant software development 

metrics, which were subsequently included in the starting set. The results of applying these criteria 

are shown below in table 3. 

Candidate English Peer Reviewed Relevant Metrics Included 
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SC.1.01 Yes Yes Yes Yes 

SC.1.02 Yes Yes No No 

SC.1.03 Yes Yes Yes Yes 

SC.1.04 Yes Yes No No 

SC.1.05 Yes Yes Yes Yes 

SC.1.06 Yes Yes No No 

SC.1.07 Yes Yes No No 

SC.1.08 Yes Yes No No 

SC.1.09 Yes Yes No No 

SC.1.10 Yes Yes No No 

SC.1.11 Yes Yes No No 

SC.1.12 Yes Yes No No 

SC.1.13 Yes Yes Yes Yes 

  

SC.2.01 Yes Yes No No 

SC.2.02 Yes Yes No No 

SC.2.03 Yes Yes No No 

SC.2.04 Yes Yes No No 

SC.2.05 Yes Yes No No 

SC.2.06 Yes Yes Yes Yes 

SC.2.07 Yes Yes No No 

SC.2.08 Yes Yes Yes Yes 

SC.2.09 Yes Yes Yes Yes 

SC.2.10 Yes Yes No No 

SC.2.11 Yes Yes No No 

SC.2.12 Yes Yes No No 

SC.2.13 Yes Yes No No 

SC.2.14 Yes Yes No No 

SC.2.15 Yes Yes No No 

SC.2.16 Yes Yes No No 

SC.2.17 Yes Yes No No 

SC.2.18 Yes Yes No No 

SC.2.19 Yes Yes Yes Yes 

SC.2.20 Yes Yes No No 

SC.2.21 Yes Yes Yes Yes 

SC.2.22 Yes Yes No No 

SC.2.23 Yes Yes No No 

SC.2.24 Yes Yes No No 

SC.2.25 Yes Yes No No 

SC.2.26 Yes Yes No No 

SC.2.27 Yes Yes No No 
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SC.2.28 Yes Yes No No 

SC.2.29 Yes Yes No No 

SC.2.30 Yes Yes No No 

SC.2.31 Yes Yes No No 

SC.2.32 Yes Yes No No 

SC.2.33 Yes Yes Yes Yes 

SC.2.34 Yes Yes No No 

SC.2.35 Yes Yes Yes Yes 

SC.2.36 Yes Yes No No 

SC.2.37 Yes Yes Yes Yes 

SC.2.38 Yes Yes No No 

SC.2.39 Yes Yes No No 

SC.2.40 Yes Yes No No 

SC.2.41 Yes Yes No No 

SC.2.42 Yes Yes Yes Yes 

  

SC.3.01 Yes Yes No No 

SC.3.02 Yes Yes No No 

SC.3.03 Yes Yes No No 

SC.3.04 Yes Yes Yes Yes 

SC.3.05 Yes Yes Yes Yes 

SC.3.06 Yes Yes Yes Yes 

SC.3.07 Yes Yes Yes Yes 

  

SC.4.01 Yes Yes Yes Yes 
 

Table 3 -  Applied Inclusion Criteria on Scopus (SC) Candidates 

3.2.2 Snowballing 
 

From here on out, no more distinctions will be made between work retrieved using Scopus, and work 

retrieved using Google Scholar. For all included work, snowballing will be performed until an iteration 

no longer yields new software development metrics. As snowballing has a huge potential for blowing 

up, and this study is limited in terms of time and resources, references will initially be judged on their 

title. Only if a title indicates that the work might mention new software development metrics, is the 

reference inspected more closely. If it is then determined that the work mentions no new relevant 

software development metrics, it is discarded after all, and the snowballing path for that branch ends 

there. 
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3.2.2.1 Backwards Snowballing 

The backwards snowballing process identified 18 additional literary works to be included in the review. 

These additional works were identified in four iterations of backwards snowballing. The details of 

these iterations can be found in Appendix C. 

 

3.2.2.2 Forwards Snowballing 

Forwards snowballing was performed by using the Google Scholar search tools to repeat the defined 

queries on each of the starting set’s paper’s citations. It is interesting to note here, that this process 

did not actually yield any additional work to be included. We presume that this is primarily because of 

the fact that it was performed after having performed the backwards snowballing, causing all of the 

work to be excluded due to the fact that it mentioned no new software development metrics. This 

points at a decent probability of having included a significant portion of the available body of 

knowledge. While we find that the probability is quite low, there might still exist clusters of literary 

work that are completely separated from any of the works in the starting set.  

 

3.2.2.3 Visual Representation 

A visual representation of the relationships between works included in the start set, and those 

identified through the snowballing process, is shown below in figure 1. 
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Figure 1 - Included Work and their Snowballing Relationships 

 

3.2.3 Rebranding 
Before we continue, we re-brand the selected work according to the mapping displayed in table 4. 

Note that GS.4.06 is actually the same work as GS.3.07, and has therefore been left out of the table. 

The same applies to SC.3.04, being a duplicate of SC.2.20, SC.3.05, being a duplicate of GS.3.01, and 

SC.4.01, being a duplicate of GS.3.10. In total, the Scopus and Google Scholar candidate sets showed 

little overlap, with only 6 overlapping candidate works.  
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Source Candidate ID Inclusion ID 
Reference 

Google Scholar   

  GS.1.02 P1.01 Jefferey, Ruhe & Wieczorek, 2001 

  GS.1.04 P1.02 Boehm, Abts & Chulani, 2000 

  GS.2.06 P1.03 Padmini, Bandara & Pererea, 2015 

  GS.3.01 P1.04 Downey & Sutherland, 2013 

  GS.3.02 P1.05 Greening, 2010 

  GS.3.04 P1.06 Agarwal & Majumdar, 2012 

  GS.3.05 P1.07 Sutherland, Schoonheim & Rijk, 2009 

  GS.3.06 P1.08 Sutherland, Harrison & Riddle, 2014 

  GS.3.07 P1.09 Maurer & Martel, 2002 

  GS.3.10 P1.10 Shah, Papatheocharous & Nyfjord, 2015 

  GS.4.04 P1.11 Moser, Abrahamsson, pedrycz, Sillitti & Succi, 2008 

Scopus   

  SC.1.01 P1.12 Bhardwaj & Rana, 2016 

  SC.1.03 P1.13 Fitzegrald, Musial & Stol, 2014 

  SC.1.05 P1.14 Calikli, Bener, Aytac & Bozcan, 2013 

  SC.1.13 P1.15 Moreau & Dominick, 1989 

  SC.2.06 P1.16 Beer & Felderer, 2018 

  
SC.2.08 P1.17 

Alfraihi, Lano Kolahdouz-Rahimi, Sharbaf & 
Haughton, 2018 

  
SC.2.09 P1.18 

Lano, Alfraihi, Kolahdouz-Rahimi, Sharbaf & 
Haughton, 2018 

  SC.2.19 P1.19 Rosero, Gómez & Rodríguez, 2016 

  SC.2.21 P1.20 Grimaldo, Perrotta, Corvello & Verteramo, 2016 

  
SC.2.33 P1.21 

Cuatrecasas-Arbos, Fortuny-Santos  & Vitro-Sanchez, 
2011 

  SC.2.35 P1.22 Koru & El Emam, 2009 

  SC.2.37 P1.23 Khadem, Ali & Seifoddini, 2008 

  SC.2.42 P1.24 Kupiainen, Mäntylä & Itkonen, 2015 

  SC.3.06 P1.25 Huijgens & Van Solingen, 2013 

  SC.3.07 P1.26 Sjøberg, Johnsen & Solberg, 2012 

Snowballing Iteration 1   

  SN.1.01 P2.01 Minkiewicz, 1998 

  SN.1.02 P2.02 Oza & Korkala, 2012 

  SN.1.03 P2.03 Kunz, Dumke & Zenker, 2008 

  SN.1.04 P2.04 Kemerer & Paulk, 2009 

  SN.1.05 P2.05 Rosenburg & Hyatt, 1997 

  SN.1.06 P2.06 Demeyer, Ducasse & Nierstrasz 

  SN.1.07 P2.07 Sahraoui, Godin & Miceli, 2000 

  SN.1.08 P2.08 Petersen & Wohlin, 2011 

  SN.1.09 P2.09 He, Avgeriou, Liang & li, 2016 
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  SN.1.10 P2.10 Leung & White, 1991 

Snowballing  Iteration 2   

  SN.2.01 P2.11 Hartmann & Dymond, 2006 

  SN.2.02 P2.12 Mahnic & Zabkar, 2008 

  SN.2.03 P2.13 Tegarden, Sheetz & Monarchi, 1992 

  SN.2.04 P2.14 Damm, Lundberg & Wohlin, 2006 

  SN.2.05 P2.15 Fontana, Braione & Zanoni, 2012 

  SN.2.06 P2.16 Li, Liang, Avgeriou & Guelfi, 2014 

Snowballing Iteration 3   

  SN.3.01 P2.17 
Oliveira, Redin, Carro, Da Cuhna Lamb & Wagner, 

2008 

Snowballing Iteration 4   

  SN.4.01 P2.18 Aggarwal, Singh, Kaur & Malhotra, 2006 
 

Table 4 - All Included Work 

3.4 Discovered Metrics 

The following section details the results of the analysis of the included work. 

3.4.1 Scrum Metrics 
 

The first category of discovered metrics are those that are closely related to Scrum. Being the most 

prevalent Agile framework in the world, Scrum advertises itself as a framework within which people 

can address complex adaptive problems, while productively and creatively delivering products of the 

highest possible value. In its attempt to deliver, it is lightweight, highly iterative, and extremely 

empirical.  

 

3.4.1.1 Story Points and Velocity 

The most prevalent metric we encountered for size estimation is Story Points. This metric was 

mentioned by P1.03, P1.04, P1.05, P1.06, P1.07, P1.12, P1.24, P2.02, P2.11, and P 2.12. Most of these 

also mentioned the efficiency metric of Velocity. These metrics are widely known and used throughout 

the agile community, as they are a standard part of Scrum. As explained in the introduction, story 

point estimation employs a Delphi approach towards size estimation, and thus leads to a velocity that 

is heavily coupled to the professionals who performed the estimation. This in turn results in a metric 

that is difficult to compare across different teams.  
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3.4.1.2 Accuracy of Forecast and Accuracy of Estimation 

Study P1.03, as well as P1.04, mention the Accuracy of Forecast and Accuracy of Estimation metrics. 

While both of these metrics are closely related to Scrum, they are not an integrated part of the 

standard Scrum methodology. They are also closely related to the metrics of Percentage of Found 

Work and Percentage of Adopted Work. The Accuracy of Estimation refers to the team’s ability to 

accurately estimate their story backlog items. Measuring the Accuracy of Estimation involves adjusting 

the story point estimate of user stories post-sprint, to reflect the actual effort that was involved in 

implementing the story. The Accuracy of Estimation is then defined by the sum of the changes in story 

point estimates, divided by the total initial story point commitment of the sprint. This definition is 

outlined below in equation 1.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =  1 −
∑(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝐷𝑒𝑙𝑡𝑎𝑠)

∑(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠)
 

Equation 1 – Accuracy of Estimation 

The author of these metrics, Jeff Sutherland, implies that the ideal value for this metric is somewhere 

between 72% and 88%. A value higher than that indicates that the team is spending an inordinate 

amount of time researching and digesting information on what the story backlog item entails. Lower 

than 72% indicates that the story backlog items are too poorly understood upon estimation, and 

signals that an investigation on outside pressures on the team is necessary by the Scrum Master.  

 

The Accuracy of Forecast instead measures the team’s ability to accurately estimate the work they can 

accomplish in their sprints. The metric looks at the sum of the original estimates of a sprint’s story 

backlog items, and compares it to the sum of the actual effort that was involved in implementing it. 

The latter is defined by the sum of the original estimates of a sprint’s story backlog items, as well as 

the sum of their additional found work, and the sum of the adopted work. The latter two metrics are 

described in section 3.4.1.3. It’s official definition is outlined below in equation 2.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  
∑(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠)

∑(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠)  +  ∑(𝐹𝑜𝑢𝑛𝑑 𝑊𝑜𝑟𝑘)  +  ∑(𝐴𝑑𝑜𝑝𝑡𝑒𝑑 𝑊𝑜𝑟𝑘)
 

Equation 2 - Accuracy of Forecast 
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Here, Jeff Sutherland implies that the ideal value for this metric is somewhere between 75% and 90%. 

Any higher than that, and the Scum Master will need to evaluate the environment of the team to make 

sure that they feel safe making a good faith effort at more work. Lower than 75% usually indicates 

that the team is not sufficiently protected by the Scrum Master from outside forces, leading to story 

backlog items inside the sprint that aren’t sufficiently worked out, have no clear definition of done, or 

are still waiting for dependencies to be resolved. 

In the end, study P1.03 found that 54% of the teams they investigated used this metric, while 58% of 

the teams used the Accuracy of Estimation metric. This lead them to be the 16th and shared 

17th/18th/19th/20th most used metric they encountered. 

 

3.4.1.3 Percentage of Adopted Work and Percentage of Found Work 

Both P1.03 and P1.04 mention the metrics of Percentage of Adopted Work and Percentage of Found 

Work. The first study found 81% of the teams they interviewed used the first of the two metrics, 

making it the fourth most commonly used metric of the 22 that they encountered. Adopted work is 

defined as new work pulled into the sprint, because the team has completed its forecast. The 

percentage of adopted work is then defined as the sum of the original estimates of the adopted work, 

divided by the sum of the original estimates of the items that were initially included in sprint.  

Similarly, found work is defined as the unexpected extra work that is necessary to complete a backlog 

item. The percentage of found work is then defined as the sum of the increase in estimates, divided 

by the sum of the original estimates of the items that were initially included in the sprint. These metrics 

can be useful post-sprint to determine how accurate the initial estimates were. 

Closely related to these metrics are the Average Number of Stories Added to an Iteration and the 

Average Number of Stories Removed from an Iteration. These metrics were mentioned by P2.02, and 

essentially measure the same concepts, yet are not normalized on story point estimates.  

 

3.4.1.4 Effort Burndown  

Additionally, studies P1.03, P1.04, P1.06 and P1.24 also mention the Sprint Level Effort Burndown. 

This metric is also widely adopted as a standard part of the Scrum process, but will most likely require 

some form of automated tooling to measure. The metric determines the relationship between the 

remaining work capacity and the remaining estimated effort of a sprint over the duration of that 
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sprint. Ideally, this relationship should have a negative linear direction from 100% to 0% work capacity 

and remaining effort. This metric gives the team a post-sprint indication of how accurate their 

estimation of the backlog items in that sprint was. Similarly, the Release Level Effort Burndown is also 

mentioned by study P1.24, shifting the scope of the metric from an individual sprint to an entire 

release. 

 

3.4.1.5 Enterprise Velocity 

Study  P1.05 mentions scaling the Story Point Velocity metric to an entire enterprise, dubbing the 

resulting metric the Enterprise Story Points and Enterprise Velocity. The paper states that an Enterprise 

Story Point is roughly equivalent to “estimated team months times 100”. This seemingly arbitrary 

measure is then used to determine the velocity of the entire organization, as opposed to a single team. 

 

3.4.1.6 Focus Factor  

P1.03 and P1.04 mention the Focus Factor metric. The metric is defined as the story point velocity of 

a team, divided by the total amount of hours (or Work Capacity) that the team has spent on the project 

during that sprint. It essentially measures the story point velocity per working-hour, instead of per 

sprint, and can thus be used to normalize velocity over the amount of team members. 

 

3.4.1.7 Stories per Iteration  

While most studies mention using Story Point Velocity when trying to gauge efficiency, P2.02 also 

mentions using a raw count of the amount of stories delivered per iteration as a means of measuring 

efficiency, but it does not take in to account the apparent size differences between stories at all. 

 

3.4.1.8 Stories per Day per Developer 

Similarly, P2.02 mentions using a raw count of the amount of Stories Delivered per Day per Developer 

as a means of measuring efficiency. Again, this metric does not take into account the apparent size 

differences between stories at all, and can be expected to fluctuate more wildly than its per iteration 

cousin. 
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3.4.1.9 Targeted Value Increase 

Studies P1.03 and P1.04 both mention the Targeted Value Increase metric. It denotes by how much 

the team has overshot (or undershot) their expected story point velocity for a particular sprint. In 

essence, it is a ratio between the sprint’s actual velocity and the velocity that was forecast based on 

historical data. The official definition it outlined below in equation 3.  

𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 =  
𝑆𝑝𝑟𝑖𝑛𝑡′𝑠 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 

Equation 3 - Targeted Value Increase 

In P1.03, the metric was the least encountered metric, with only 35% of the investigated teams 

indicating that they used the metric.  

 

3.4.1.10 Success at Scale 

Studies P1.03 and P1.04 introduce the Success at Scale metric. This metric can actually be calculated 

for each value along the Fibonacci sequence, which are used to estimate story backlog items in terms 

of story points. The metric works by looking at all of the stories that have been estimated with a 

specific Fibonacci value (e.g. all story backlog items that have been estimated as 8 story points worth 

of effort). Then, the Success at Scale metric for Fibonacci value 8 is defined as the total amount of 

story backlog items that were estimated as 8 story points worth of effort, that have ever been 

successfully implemented in a single sprint, divided by total amount of attempts to do so. This official 

definition is outlined below in equation 4. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑎𝑡 𝑆𝑐𝑎𝑙𝑒(𝑖) =  
𝑆𝑢𝑐𝑐𝑒𝑠𝑓𝑢𝑙 𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑝𝑟𝑖𝑛𝑡 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑖

𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 𝑡𝑜 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑖 𝑖𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑝𝑟𝑖𝑛𝑡
 

Equation 4 - Success at Scale 

The metric can help a team to determine whether or not it is wise to include a story backlog item of a 

particular effort estimation size into the sprint, even if it appears to fit within their projected velocity. 

The author does, however, stress that a team should never be denied the opportunity to try, but 

including a 13 point story backlog item when it has been unsuccessful 19 out of 20 times might be 

unwise, and the team might be better off splitting up the functionality into multiple, smaller stories. 
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3.4.1.11 Win/Loss record 

The authors of P1.03 and P1.04 also introduce the concept of keeping a win/loss record. In their 

definition, a sprint can only be deemed a win if (a) a minimum of 80% of the work is accepted into 

production, and (b) the sum of the found and adopted work during the sprint remains at 20% or less 

of the original sprint forecast. The evolution of wins versus losses can then be tracked over time in 

order to determine whether or not the team is improving. This is essentially a measure of how capable 

the team is in estimating the required effort of a work-item. 

 

3.4.1.12 Yesterday’s Weather 

In P1.08, the author introduces the Yesterday’s Weather metric. It denotes the unabridged, absolute 

amount of story points that was delivered into production in the last sprint. Here, Jeff Sutherland, Neil 

Harrison and Joel Riddle argue that “Yesterday’s Weather is, in most cases, the most reliable predictor 

of how many story points the team will complete in the next sprint”.  

 

3.4.1.13 Summary 

While some of the discovered Scrum metrics, such as Story Points and Velocity, were introduced 

directly at the genesis of Scrum, many have been introduced more recently. Virtually all of these 

metrics tell the user something about their capabilities in terms of estimating required effort and 

projecting commitment. Yet, they tell very little about actual effort, productivity, performance or 

speed. 

 

3.4.2 Lean Metrics  
 

The Lean Manufacturing philosophy, originating from the industrial manufacturing industry, has had 

considerable impact on software development in the form of Lean Software Development. The 

philosophy promotes eliminating waste from the development process, and limiting the concurrent 

amount of work-in-progress, in order to minimize the lead-time of individual stories. 
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3.4.2.1 Lead Time  

The metric of Lead Time was mentioned in studies P1.03, P1.21, P1.23, P1.24 and P1.26, and measures 

the total time it takes for a particular component to go from conception to being delivered to its user. 

In the world of industrial manufacturing, this is the time it takes to create one additional product from 

start to finish (e.g. from when a new car is ordered to when it is delivered to the customer). In the 

world of software development, this is often the time between getting a request for a particular 

functionality from a customer, to having that functionality available to that customer in its production 

environment. This metric is also sometimes referred to as Total Time. 

 

3.4.2.2 Queue Time  

Studies P1.03, P1.21, P1.24 and P1.26 also mention the metric of Queue Time, which is most often  

defined in the world of software development as the time in which a particular story is defined, but is 

not yet picked up by a developer (e.g. sitting idle on a backlog). In industrial manufacturing, it is 

defined as the time in which a particular component “sits around waiting for someone to work on it”. 

The shorter a team can keep its Queue Time, the shorter its Lead Time will be as a result. 

 

3.4.2.3 Cycle Time  

Studies P1.23, P1.24 and P2.02 also mention the metric of Cycle Time, which is defined as the total 

amount of time that elapsed from the moment the work on that task is started, until its completion. In 

software development, this means the time from when a particular story is first being worked on, until 

its functionality is available in the production environment(s). 

 

3.4.2.4 Interrupted Time  

Study P1.20 mentions the Interrupted Time, indicating the amount of time that was spent on a 

particular component, but did not produce any tangible outcome. An example of interrupted time 

could be a co-worker who comes and asks you a question for ten minutes, while you were working on 

a particular component. The Interrupted Time is closely related to the Value-Added Time introduced 

in the next section, as they are each other’s inverse. 
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3.4.2.5 Value Added Time  

Additionally, studies P1.23 and P2.08 also mention the Lean metric of Value-Added Time. This is 

defined as the amount of time that was spent on a particular component, that did produce tangible 

outcome. Study P1.24 mentions the Actual Development Time metric, which is not clearly defined in 

the paper, but presumed to be the same as Value Added Time. 

 

3.4.2.6 Work in Progress  

Studies P1.03, P1.13, P1.21, P1.23, P1.24 and P1.26 all mentioned the Work in Progress metric. This 

metric denotes the amount of components that is being worked on concurrently at a particular time. 

Additionally, P1.21 and  P1.23 also mention the Average Work in Progress, while P1.23 and P1.26 

mention the Maximum Work in Progress. The idea behind this metric is that superfluous context 

switching is harmful to productivity, and should be kept to a feasible minimum.  

 

3.4.2.7 Common Tempo Time or Task Time 

P1.24 and P2.08 mention the Common Tempo Time metric. This metric is fairly similar to the Cycle 

Time metric, and is defined as the net working hours available divided by the number of work items 

required. In traditional industrial manufacturing, it provides an estimated cycle time needed in order 

to accomplish the required work items, given the available working hours. E.g. if a particular factory 

needs to produce 50.000 paperclips, and they can produce 25.000 paperclips per 8 hour day, the 

Common Tempo Time would be 50.000 / (16 * 60 * 60), and the factory would thus need a Cycle Time 

of 0.87 seconds per paperclip. Applied to software development, this gives the team an indication of 

how much time, on average, they have left per work item (or normalized on story points) that needs 

to be delivered. P1.21 refers to this metric as Task Time. 

 

3.4.2.8 First Time Yield 

Study P1.23 mentions the First Time Yield metric. This metric is defined as the percentage of units 

produced without a defect, and can be calculated by the formula denoted below in equation 5. In 

classical industrial manufacturing the production of a defective unit can yield quite devastating effects 

in the sense that an entire product might need to be discarded. In software development, however, 

defective units can often be repaired with a patch or update. However, the financial consequences of 
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a defective unit might be far larger in a software development context. The First Time Yield metric can 

thus be a relevant indicator in both contexts. 

𝐹𝑖𝑟𝑠𝑡 𝑇𝑖𝑚𝑒 𝑌𝑖𝑒𝑙𝑑 =
𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 − 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 

Equation 5 -  First Time Yield 

 

3.4.2.9 Flow Efficiency 

Study P1.24 mentions the concept of Flow Efficiency. This Lean metric measures the percentage of 

time spent adding value to a particular component, and can be calculated by the formula denoted 

below in equation 6. In the domain of software development, this is more commonly known as a 

Kanban metric, but its roots lie in Lean Manufacturing. This measure directly translates Lean’s focus 

on eliminating waste into an easy to grasp and easy to optimize metric for efficiency. 

𝐹𝑙𝑜𝑤 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑉𝑎𝑙𝑢𝑒 𝐴𝑑𝑑𝑒𝑑 𝑇𝑖𝑚𝑒

𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒
 

Equation 6 -  Flow Efficiency 

 

3.4.2.10 Throughput 

Study P1.24 also mentions the Throughput metric, which is defined as the number of units processed 

by a given phase or activity, per unit of time. While traditionally more of an industrial manufacturing 

metric, Throughput can be thought of in terms of Story Point Velocity, or even a simple count of work-

items delivered in the context of software development. 

 

3.4.2.11 Summary 

The majority of Lean Manufacturing metrics are generic enough to be applicable to any phased 

process, and are thus implemented almost exactly as-is in the Lean Software Development movement. 

The optimum values, however, may lay at wildly different numbers for each of these practices. In 

software development, for example, where faulty components can be easily fixed, the consequences 

of producing a faulty component are much less severe than in industrial manufacturing, where the 

entire component might need to be discarded. A metric such as First Time Yield will thus have to be 

much closer to 100% in industrial manufacturing than in software development. Similarly, the adverse 
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effects of context switching might be less severe for industrial manufacturers than for software 

developers, resulting in a different optimal value for Work in Progress. 

3.4.3 Function Points 
 

Another oft-recurring metric is the Function Point metric, which was introduced by Albrecht in 1979 

as a unit of measurement to express the amount of business functionality an information system 

provides to a user. In the process of function point size estimation, requirements are categorized into 

inputs, outputs, inquiries, internal files and external interfaces. For each of these classified 

requirements, an estimation of their complexity is made using function points. This approach leads to 

requirements that are very user-oriented, and allows for an easy mapping of functions to end-user-

functionality. Function point analysis requires individuals with loads of expertise to assess the 

requirements, which can cause problems in communication with other stakeholders. Additionally, the 

measure is not truly objective, even after thorough assessment by experts. The biggest drawback of 

function point analysis, however, is the fact that it tends to overlook internal functions, such as 

algorithms, which also require resources to implement. Over the years, many different forms of 

function point analysis have surfaced, each attempting to fix the perceived weaknesses of the original 

proposal, which is also known as IFPUG, and is specified in the ISO 20926 standard. There are several 

officially recognized standards and specifications for these other functional size measurement 

methods. These are COSMIC (ISO 19761), FiSMA (ISO 29881), Mark-II (ISO 20968), and Nesma (ISO 

24570). Other forms of function point analysis, not officially encapsulated in ISO standards, include 

ESTIMACS, AFP and SPQR/20. Function point analysis, in any of these forms, were mentioned in P1.01, 

P1.02, P1.07, P1.10, P1.17, P1.24, P2.01, P2.02, P2.03, P2.11, and P2.18. 

 

3.4.4 Code Analysis Metrics 
 

The following section introduces the code analysis metrics that were found. It introduces metrics that 

range from targeting quality and complexity, to size and efficiency. The big benefit of code analysis 

metrics is the fact that their calculation can be easily integrated in automated build, test or 

deployment tools. Their biggest downside, however, is the fact that they are often not very simple to 

understand or interpret. Additionally, they are often very prone to be used to infer about aspects of 

the software development process for which they were not designed. Lines of Code, for example, can 
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be an excellent measure of complexity or quality in the context of the average size of a method. 

However, it might seem very intuitive to start measuring efficiency in terms of Lines of Code per Unit 

of Time. In the last few decades, however, the latter form has been widely critiqued by the industry 

as invalid, inaccurate and misinformed. 

 

3.4.4.1 Lines of Code 

Unsurprisingly, a lot of work mentions lines of code as a form of post-process size estimation or a 

measure of efficiency when related to other metrics such as time. The line of code metric looks at 

either the absolute number of lines of code written, or at executable lines of code, in order to 

determine the size of an application, or the efficiency per unit of time of team members. The metric 

is part of a larger family of metrics, which we’ll call code analysis metrics, that attempt to provide size, 

complexity, quality and efficiency estimates through similar code analysis techniques. Lines of code 

are mentioned in P1.07, P1.09, P1.10, P1.11, P2.04, P2.05, P2.13, P2.15, and P2.17. An advantage of 

this approach is that it can easily be automated, and will deliver the same, objective answer every 

time. However, the metric has been widely critiqued by the industry as misinformed, inaccurate and 

invalid, and have lost most of its popularity over the past one or two decades. It’s most prevalent 

downside is the fact that its benchmarks are not stack-, framework- or even language-agnostic. 

Additionally, the metric can only be used for size estimations after the work has already been done, 

and refactoring can even cause a negative production or efficiency value.  The following famous, 

slightly paraphrased Antoine de Saint-Exupery quote is often used to expose the inherent flaw in 

determining efficiency at the hands of lines of code or other code analysis metrics: 

“Perfection is achieved, not when there is nothing more to add,  

but when there is nothing left to take away.” 

- Antoine de Saint-Exupery 

3.4.4.2 Code Generation 

 P2.09 mentions using the Percentage of Modified Generated Lines of Code in order to measure the 

complexity of a project. This metric relates the Amount of Generated Lines of Code metric to the 

Amount of Manually Modified Generated Lines of, and indicates a perceived project complexity. 

Minimizing this metric limits the amount of manual maintenance required on generated code. They 

thus also make an explicit distinction between Amount of Lines of Code and Amount of Manually 

Created Lines of Code, which no other study has done.   
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Similarly, P2.09 introduces the Percentage of Modified Generated Files metric, which takes the metric 

one level of granularity higher, relating the Amount of Generated Files to the Amount of Modified 

Generated Files. 

 

3.4.4.3 Component Counts 

Many studies mention component counts in source code. The following counts are mentioned in the 

following studies: Number of Classes (P2.17), Number of Generated Files (P2.09), Number of Manually 

Created Files (P2.09), Number of Inherited Methods per Class (P2.06, P2.07), Number of Interfaces 

(P2.17), Number of Methods Added per Class (P2.07), Number of Modified Generated Files (P2.09), 

Number of Overridden Methods per Class (P2.06, P2.07, P2.17, P2.18), Number of Packages (P2.17), 

Lines of Code per Method (P2.01, P2.06, P2.15, P2.16), Number of Static Methods per Class (P2.17), 

Parameters  per Method (P2.03, P2.05, P2.17) and Number of Static Variables per Class (P.2.17). These 

component counts can easily be automated in build, test and deployment pipelines, and allow its user 

to, for example, place limits on certain components that have been shown to limit complexity and 

increase quality, such as the amount of lines of code per method. 

 

3.4.4.4 Churn  

Study P1.26 introduces the metric of Churn, which is defined as the number of lines of code added, 

deleted or modified. This metric is closely related to Lines of Code, and exhibits the same drawbacks. 

While it might thus be unsuitable for measuring efficiency, it can yield interesting results in terms of 

how often particular components are touched, and how significant those changes are. 

 

3.4.4.5 Access to Foreign Data 

Study P2.15 mentions the code quality metric of Access to Foreign Data, which is defined as the 

number of external classes from which a given class accesses attributes, directly or via accessor 

methods. This can be used as a measure of coupling, and is indicative of code quality and complexity. 

 

3.4.4.6 Foreign Data Providers 

Study P2.15 also mentions the code quality metric of Foreign Data Providers. While the paper fails to 

clearly define the metric, it presumably measures the inverse of the coupling relationship of Access to 
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Foreign Data. Here, presumably, the coupling relationship of the number of external class that access 

the class’s attributes, directly or via accessor methods is measured. 

 

3.4.4.7 Efferent and Afferent Coupling  

Studies P2.13 and P2.17 define Efferent Coupling as a measure of the total number of external classes 

coupled with classes of a package, as a result of outgoing coupling. It can be more simply stated that 

Efferent Coupling measures the number of classes in other packages that the classes in the current 

package depend upon. Similarly, these studies mention Afferent Coupling, defined as a measure of the 

total number of external classes coupled to classes of a package, as a result of incoming coupling. 

Again, simplified, this metric measures the number of classes in other packages that depend upon 

classes within the current package.  

 

3.4.4.8 Attribute Import Coupling  

P2.07 then mentions the Attribute Import Coupling, but subsequently fails to properly introduce its 

definition. Presumably, it measures the same kind of coupling as Afferent Coupling. 

 

3.4.4.9 Coupling Between Objects  

Studies P2.01, P2.05, P2.07, P2.12 and P2.18 all mention the first widely known Chidamber and 

Kemerer code quality metric of Coupling Between Objects, which is defined as the number of other 

classes whose methods, field or properties are used. This metric appears to measure the same kind of 

coupling (outgoing coupling) as the Efferent Coupling metric from P2.13 and P2.17, and the Access to 

Foreign Data metric from P2.15.  

 

3.4.4.10 Response for a Class  

Studies P1.11, P2.05, P2.13 and P2.17 mention a second widely known Chidamber and Kemerer code 

quality metric called Response for a Class (RFC). It is defined as the count of (public) methods in a class 

and method directly called by these, and is used as a measure of complexity and coupling. 
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3.4.4.11 Weighted Methods per Class  

Studies P1.02, P1.11, P2.02, P2.05, P2.06, P2.13, P2.15, P2.17 and P2.18 all mention the third widely 

known Chidamber and Kemerer code quality metric of Weighted Methods per Class. It is defined as 

the sum of all cyclomatic complexities of all of the methods of a particular class, and can be used to 

indicate how much effort is required to develop and maintain a particular class. The Cyclomatic 

Complexity metric is introduced in section 3.4.4.32. 

 

3.4.4.12 Depth of Inheritance Tree 

The studies P1.22, P2.01, P2.05, P2.06, P2.13, P2.17 and P2.18 all mention the fourth Chidamber and 

Kemerer metric of Depth of Inheritance Tree. This metric measures the longest inheritance chain in a 

given program’s source code. Study P.2.07 also mentions averaging this metric for all inheritance 

chains in a given program’s source code, but calls it Average Class-to-Leaf Depth instead.  

 

3.4.4.13 Number of Children  

The studies P2.01, P2.05, P2.06, P2.07, P2.13 and P2.18 all mention the fifth Chidamber and Kemerer 

metric of Number of Children. This metric measures how many subclasses are going to inherit the 

method of a parent class. The value of this metric approximately represents the level of reuse in an 

application, and a higher value thus represents a higher level of reuse. It also states that, as the value 

increases, the amount of tests are also likely to increase, because more children indicate more 

responsibility. 

 

3.4.4.14 Lack of Cohesion of Methods 

Many studies mention the final Chidamber and Kemerer metric called Lack of Cohesion of Methods 

(LOCM). The metric was mentioned in studies P1.11, P1.15, P1.17, P1.18, P1.22, P2.05, P2.13, P2.15, 

P2.17 and P2.18, and is widely adopted in automated tooling such as linters and CI/CD pipeline 

facilitators. It measures the number of connected components in a class, where a connected 

component is a set of related methods and class-level variables. This measurement is done by looking 

at how interconnected these components are in terms of how many of the other components each 

particular component references directly. If more than one separate clusters of connected 
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components exist, this is often a strong indication that the object does not adhere to the Single 

Responsibility principle of Robert (Bob) C. Martin’s SOLID principles. 

 

3.4.4.15 Coupling Concentration Index 

P1.22 mentions the Coupling Concentration Index. The paper states that the metric is a measure of 

inequality, and is defined as twice the area between the concentration curve and the equality line, 

resulting from relating Coupling Between Objects to module size. 

 

3.4.4.16 Coupling Factor 

Study P2.18 introduces the Coupling Factor metric. The study fails to clearly introduce the metric, 

instead providing just a complicated formula for its calculation.  It appears to measure Total Coupling 

in terms of Dynamic Coupling and Static Coupling, and ignored coupling that is caused by inheritance 

relationships. Furthermore, the study states that Coupling Factor is 0% if no classes are coupled, and 

100% if all classes are coupled.  

 

3.4.4.17 Message Passing Coupling 

Study P2.18 introduces the concept of Message Passing Coupling, defined as the number of send 

statements defined in a class. While it does not explicitly defined what is considered send statement, 

the context of the introduction suggests that the access of a method or attribute of a different class, 

indicates a single send statement. This would make it nearly identical to other incoming coupling 

metrics discussed in this section. 

 

3.4.4.18 Information Based Coupling 

Study P2.07 introduces the concept of Information-Based Coupling, but subsequently fails to 

introduce the metric, or what it is supposed to measure. 
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3.4.4.19 Data Abstraction Coupling  

The Data Abstraction Coupling metric is mentioned by P2.07 and P2.18. It measures the coupling 

complexity caused by Abstract Data Types (ADTs), and is thus a coupling metric that is limited to type 

references, as opposed to object references. 

 

3.4.4.20 (Descendant) Method-to-Method Export Coupling 

Study P2.07 introduces the metrics of Method-to-Method Export Coupling and Descendant Method-

to-Method Export Coupling. It subsequently fails to properly introduce or explain them. 

 

3.4.4.21 Specialization Index 

Study P2.07 mentions the Specialization Index, which it defines as the amount of refined instance 

methods in all classes, times the total amount of super classes, divided by all instance methods of all 

classes. Here, a refined instance method is one that has been defined in a superclass, but adapted in 

a sub-class. It essentially measures how much functionality is refined by subclasses. 

 

3.4.4.22 Specialization Ratio 

In turn, study P2.18 mentions the Specialization Ratio, which it defines as the number of subclasses 

divided by the number of super classes. Where Specialization Index measures refinement at the level 

of instance methods, Specialization Ratio does so at the level of classes. 

 

3.4.4.23 (Normalized) Code Smell Occurrences 

Study P2.09 mentions the metric of Amount of Code Smell Occurrences. In their work, they aim to 

automatically detect these code smells based on other code analysis metrics. Similarly, they introduce 

the Normalized Amount of Code Smell Occurrences metric, where the former is normalized over the 

amount of files or the amount of lines of code. 
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3.4.4.24 Cycles in Dependency Graph 

Study P2.03 mentions the Amount of Cycles in the Dependency Graph as a measure of complexity and 

quality for a software project. They posit that more cycles in the dependency graph increase 

complexity, and are thus a sign of lower code-base-quality. 

 

3.4.4.25 Method and Attribute Hiding Factor 

Study P2.18 mentions the metric Method Hiding Factor. This metric is defined as a percentage of the 

methods in a particular program that cannot be called by other classes. This metric is 0% if, for 

instance, all metrics are declared public, and 100% if all method are declared private. Similarly, 

Attribute Hiding Factor measures the same concept for attributes. The study, however, is not clear on 

whether this metric should include static methods or attributes, or exclude them from consideration. 

Similarly, it is unclear if protected access modifiers are considered as hidden or not. 

 

3.4.4.26 Method and Attribute Inheritance Factor 

Similarly, study P2.18 defined the Attribute Inheritance Factor as the sum of the number of attributes 

declared in all classes, divided by the sum of the number of attributes inherited in all classes. It denotes 

a percentage of attributes that are declared by the class itself, as opposed to inherited from a base 

class. Method Inheritance Factor measures the same concept for methods, as opposed to attributes. 

 

3.4.4.27 (Code) Abstractness 

Studies P2.13 and P2.17 introduce the concept of Abstractness. It defines the metric as a comparison 

of the number of abstract classes and interfaces, to the total number of classes in the evaluated 

package. The metric thus has a range of 0% to 100%, where the former signifies an absolute concrete 

package, and the latter an absolute abstract package. 

 

3.4.3.28 (Code) Instability 

Similarly, studies P2.13 and P2.17 introduce the concept of Instability, which they define as the ratio 

of Efferent Coupling to Total Coupling. Here, they define Total Coupling as the sum of Efferent Coupling 

and Afferent Coupling. Again, this metric has a domain of 0% to 100%, where the former signifies an 
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absolutely stable package, and the latter signifies an absolutely instable package. Here, stability refers 

to how much impact changing a particular component would have. 

 

3.4.4.29 Normalized Distance from Main Sequence 

Studies P2.13 and P2.17 also introduce the Normalized Distance from Main Sequence metric. The 

metric is defined as the perpendicular distance of a package from the idealized line of Abstractness + 

Instability = 1. The authors state that a package is ideally absolutely abstract and stable, or absolutely 

concrete and unstable. If the package is somewhere in between, the sum of both should ideally equal 

1. Thus the normalized distance from the main sequence should ideally be 0. 

 

3.4.4.30 Comment Percentage 

Studies P2.05 and P2.13 mention the metric of Comment Percentage, which is defined as the 

percentage of Lines of Code that are comments. The former posits that they have found a perceived 

optimum at 30%, while the latter does not make any such claim. It does, however, mention that a 

code-base that is adequately named and built, should require less comments than one that does not 

exhibit those qualities, indicating that a lower percentage of comment can, in some cases, be better 

than a higher percentage. 

 

3.4.4.31 Percentage of Dead Code 

Study P2.02 mentions the Percentage of Dead Code as a metric for evaluating the quality of a code 

base. Similar to most other metrics that this study introduces, the metric is not properly defined, and 

no further reference to it has been made in the remainder of the text. Dead code, however, is 

presumed to mean code that is no longer in use, in the sense that no execution path through the 

application’s expression tree can ever reach the declared code. Technically, code reflection will 

sometimes be able to reach such code at run-time, and is thus often not included in such definitions. 

Examples could be code that is written after a return statement, or written inside an if statement that 

will always evaluate to false, but it might also include code in classes or methods that are simply not 

used anymore and thus not referenced anywhere else in the code-base. 
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3.4.4.32 Cyclomatic Complexity 

The Cyclomatic Complexity metric is mentioned by P1.03, P1.14, P1.15, P1.16, P1.17, P1.18, P2.02, 

P2.05, P2.15, and P2.17. The metric measures the number of linearly independent paths within a 

section of source code, and can be easily computed using a program’s Control Flow Graph. A lower 

value is regarded as less complex and thus easier to grasp. 

 

3.4.4.33 Halstead Complexity Measures  

Studies P1.03, P1.14 and P2.15 mention the Halstead Complexity Measures, which is a set of software 

metrics introduced by Maurice Howard Halstead in 1977 (Halstead, 1977). The set includes measures 

for program vocabulary, length, volume, difficulty, effort and estimations of required time and 

expected defects. 

 

3.4.4.34 Duplicate Expressions 

Studies P1.17, P1.18 and P2.02 mention the Duplicate Expressions metric. This metric calculates the 

percentage of a code base that contains duplicated code. None of them, however, explain how this is 

measured, or at what granularity. When asked, one of the experts introduced in chapter 4 indicated 

that code duplication is often measured at the ‘two lines-of-code’ granularity. 

 

3.4.4.35 Index of Inter-Package Extending  

Study P2.16 introduces the Index of Inter-Package Extending. This metric is defined as the ratio of the 

number of ‘extend’ dependencies between classes within a local package, against the total number of 

‘extend’ dependencies between all classes of the software system. It explicitly states that the ‘extend’ 

dependency can both be an inheritance relationship between two classes, or an implementation 

relationship between a class and an interface. 

 

3.4.4.36 Index of Inter-Package Extending Diversion 

Study P2.16 also introduces the Index of Inter-Package Extending Diversion. It continues to define the 

metric as the average extent of how diverse the classes extended by a specific package, distribute in 

different packages.  
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3.4.4.37 Index of Inter-Package Usage  

Study P2.16 introduces the Index of Inter-Package Usage. The metric is defined as the ratio of the 

number of ‘use’ dependencies between classes within a local package, against the total number of 

‘use’ dependencies between all classes of the software system. 

 

3.4.4.38 Index of Inter-Package Usage Diversion 

Similarly, study P2.16 introduces the Index of Inter-Package Usage Diversion, and continues to define 

the metric as the average extent of how diverse the classes used by a specific package distribute in 

different packages. 

 

3.4.4.39 Index of Package Changing  

Study P2.16 also introduces the Index of Package Changing. The study defines the metric as the 

percentage of the number of the non-dependency package pairs against the total number of all 

possible package pairs. It claims that this metric measures the strength of the independency of 

packages. 

 

3.4.4.40 Index of Package Goal Focus 

Study P2.16 also introduces the Index of Package Goal Focus, which is defined as the average extent 

of the overlap between the different service sets provided by the same component to other different 

components in a software system. The study claims that the metric indicates the average extent to 

which the services of a specific package serve the same goal. 

 

3.4.4.41 Information Based Cohesion 

Study P2.18 introduces the concept of Information-Based Cohesion. This metric is defined as the 

number of invocations of other methods of the same class, weighted by the number of parameters of 

the invoked method.  
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3.4.4.42 Locality of Attribute Access 

Study P2.15 mentions Locality of Attribute Access as a tool for identifying classes or methods that use 

too many attributes from classes other than their own. The study subsequently fails to introduce how 

this metric is measured. 

 

3.4.4.43 Maximum Nested Block Depth 

Study P2.17 mentions the Maximum Nested Block Depth, defined as the maximum depth of nested 

blocks of code. It posits that more nested blocks lead to worse readability and more complex solutions, 

and thus advocate for a low maximum and average nested block depth. 

 

3.4.4.44 Release Deltas 

Study P1.09 introduces New Classes per Release, New Methods per Release and New Lines of Code per 

Release as a means of gauging the size of a software project over time. Similarly, the study introduces 

the New Features per Release as a means of gauging the development speed of a particular project 

over time. 

 

3.4.4.45 Polymorphism Factor 

P2.18 mentions the Polymorphism Factor metric. The study states that the metric measures the 

degree of method overriding in the class inheritance tree, and formally defines it as the sum of all newly 

introduced methods in all classes, divided by the sum of all overridden methods in all classes, times 

something they call the descendant count, which is presumably the depth of the inheritance tree or 

class-to-leaf distance for that particular class. 

 

3.4.4.46 Reuse Ratio  

Study P2.18 also mentions the Reuse Ratio metric, defined as the number of super classes divided by 

the total number of classes. The Reuse Ratio indicates how much reuse is apparent in the code-base 

specifically due to inheritance relationships. 
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3.4.4.47 Summary 

The class of Code Analysis Metrics has by far yielded the most software development metrics. Their 

applications range from quality and complexity, to size and efficiency. It is interesting to note that, 

while you would expect most of these metrics to from the latter part of the previous century, new 

code analysis metrics are still being devised today. Additionally, it appears that concepts such as 

technical debt and code smells are universally accepted as having a detrimental effect on the health 

of a code base, but remain somewhat elusive for automated code analysis tools to detect, leading to 

more and more complex and complicated concepts of cohesion and coupling. 

3.4.5 Complex Mathematical Metrics 
 

The code analysis metrics mentioned in the previous section, are often accompanied by studies that 

employ complex mathematical models to analyse them even further. Some examples include 

regression models, the COCOMO/COCOMO2 method, and SLIM. For the purpose of this study, we 

have decided to omit them from the review. 

 

3.4.6 Testing Metrics 
 

The next section introduces metrics for testing a product or code-base. Just as with code analysis 

metrics, most of the discovered metrics can be easily automated and incorporated in deployment 

pipelines.  

 

3.4.6.1 Unit Test Coverage  

Studies P1.03, P1.07, P1.16, P1.24 and P2.02 mention the metric of Unit Test Coverage. This metric 

was used by 88% of teams that were examined in P1.03. Nowadays, unit test coverage is a metric that 

is embedded in many Continuous Integration/Delivery (CI/CD) pipelines, Command Line Interface (CLI) 

tools and Integrated Development Environments (IDE). The metric is a measure that is used to describe 

the degree to which the source code of a program is executed when the test suite runs. The underlying 

idea is that a program that has more of its code executed by its test suite, should have a lower chance 

of containing undetected bugs.  
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3.4.6.2 Amount of Tests  

Additionally, studies P1.06, P1.16, P1.19, and P1.24 mention the Amount of Tests as a valid metric for 

assessing code quality, while also stressing the importance of automation when it comes to executing 

them. 

 

3.4.6.3 Review Rates  

Study P2.04 mentions using the Average Code Review Rate and Average Design Review Rate to denote 

the average amount of time between code or design reviews, as a means of indicating how well these 

review practices are embodied in their software development processes.  

 

3.4.6.4 Test Suite Rates  

Study P1.16 mentions the Regression Test Cycle Time and the Smoke Test Cycle Time as a means to 

gauge how often regression and smoke test suites are ran, and how much overhead there is in doing 

so. 

 

3.4.6.5 Running Tested Features  

Study P1.24 and P2.02 mention the Running Tested Features metric. While neither explicitly defines 

the metric, it is presumed that it measures the amount of features that currently pass their automated 

test suite. 

 

3.4.6.6 Test Failure Rate  

The Test Failure Rate metric is introduced in P1.24, but subsequently not explained or referenced. 

Presumably, the metric measures what percentage of a test suite fails their criteria. 

 

3.4.6.7 Test Pass Rate  

The Test Pass Rate metric is introduced in P1.24, but subsequently not explained or referenced. 

Presumably, the metric measures what percentage of a test suite passes their criteria. 
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3.4.6.8 Test Growth Ratio 

Similarly, the Test Growth Ratio metric is introduced in P1.24. The metric relates the increase of lines 

of code of the test suite(s) to the increase in lines of code of the code base under test. In some 

investigations, it is found that the test growth is disproportionate from the source-code growth, which 

may in turn require practices to remove unit tests that have not failed for an extended amount of 

time, as proposed by James O. Coplien. This remains a highly debated view, however, to this day. 

 

3.4.6.9 Test Runtime 

Study P2.02 introduces the Test Runtime metric as a means of gauging its perceived overhead on the 

code-build-test cycle. If the runtime of a test suite becomes too large, developers might be tempted 

not to run them after every cycle, or be severely encumbered by the overhead. 

 

3.4.6.10 Tests per Story 

Study P2.02 also introduces the Tests per Story metric, but fails to define or reference it, simply 

introducing it as a well-known agile metric. It can be presumed that it’s a simple division of the number 

of test cases written by the number of user stories currently implemented. 

 

3.4.6.11 System Analysis Cost  

Study P2.10 introduces four cost aspects to testing. The first of these is the System Analysis Cost. It 

states that, before a test can be selected, the test analyst must become familiar with the system 

specification, design and possibly the program. Time must be spent studying the various requirements 

and design documents. The costs associated with this process, are introduced as the System Analysis 

Costs of a tester. 

 

3.4.6.12 Test Selection Cost 

P2.10 then introduces the Test Selection Cost metric, stating that, after gaining some knowledge about 

the system, the test analyst can finally select the test cases for testing the actual behaviour of the 

system. The costs uncured include working out the test input, and identifying the correct output or 

system behaviour.  
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3.4.6.13 Test Execution Costs 

Similarly, P2.10 states that additional testing costs are incurred by having the tester setting up the 

environment for testing (such as loading and computing required modules, and entering the proper 

data tables), and the actual time spent executing the tests. It continues to state that this cost can be 

quite high for some applications, and brings forward the example of the telecommunication industry, 

in which the costs of setting up a testing lab to simulate an actual communications network, can be as 

high as several million dollars. It calls this metric the Test Execution Cost metric. 

 

3.4.6.14 Test Result Analysis Costs 

Finally, P2.10 introduces the Test Result Analysis Cost as the last cost associated with the testing 

process. It identifies the tester’s time spent collecting the test outputs, comparing those outputs to 

the system specifications, and computing resources required for recording the system behaviour 

under test.  

 

3.4.6.15 Summary  

Most of the testing metrics that were discovered, focus on the frequency at which tests are 

performed, how much of the product is being tested, or the costs of performing those tests. They also 

make surprisingly little distinction between unit-, regression-, integration- or smoke-tests.   

 

3.4.7 Team Composition Metrics 
 

3.4.7.1 Amount of Team Members  

Several studies mention team composition metrics, such as the Amount of Team Members in a given 

team, or the Maximum or Average Amount of Team Members in a given team, in a particular time 

period. These kinds of metrics are mentioned in P1.01, P1.02, P1.12, P1.20 and P1.25. 
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3.4.7.2 Average Projects per Employee  

Additionally, P2.12 mentions the Average Projects per Employee metric, which measures how many 

projects, on average, an individual employee is working on concurrently. The idea behind this metric 

is that excessive context switching has a detrimental effect on productivity, and should thus be kept 

to a feasible minimum.  

 

3.4.7.3 Scrum Teams per Project 

Study P1.20 mentions the Scrum Teams per Project metric, which it uses in its subsequent calculations 

of Technical Efficiency. 

 

3.4.7.4 Personnel Turnover 

Finally, P2.12 mentions the Personnel Turnover metric, as a means of gauging the stability of a team 

or the entire workforce of a company. It measures how many team members leave or join an 

organization or team during a particular time-span. 

 

3.4.8 Build Metrics 
 

3.4.8.1 Build Runtime  

Study P2.02 mentions the Build Runtime metric (introduced here as time taken per build). Sadly, the 

study does not properly introduce the metric, nor quotes an appropriate reference, simply introducing 

it as a well-known agile metric. Presumably, this metric can be used to give some sort of an indication 

as to whether or not the iterative code-build-test cycle is sufficiently quick. Additionally, the study also 

mentions the Builds per Day metric, but similarly fails to properly introduce, reference or describe the 

metric.  

 

3.4.8.2 Percentage of Successful Builds 

Study P2.02 also introduces the Percentage of Successful Builds. Just as with Build Runtime, the study 

makes no further reference to the metric, simply introducing them all as well-known agile metrics. We 
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can thus not make any deductions about why the metric is important, and whether a high or low value 

is preferable and why that might me the case. 

 

3.4.9 Time Based Metrics 
 

While Scrum explicitly attempts to stay away from time based metrics, there are still plenty such 

metrics to be found in literature. Note that, while they were initially introduced in section 3.4.2, most 

Lean Manufacturing metrics, such as Lead Time, Processing Time, Value Added Time and Queue Time, 

may also be considered time based metrics. Where most Scrum metrics are meant to estimate future 

capabilities, most time-based metrics can often be used to retroactively assess performance. 

3.4.9.1 Hours  

These range from simple estimations in terms of hours or days, to somewhat more complex estimation 

techniques. Studies P1.02, P1.05, P1.07, P1.09, P1.11, P1.12, and P1.20 mention using Person Hours 

as a means to estimate work effort, while P1.07, P1.12, and P1.16 mention Person Months instead. 

Additionally, P1.11 mentions measuring the average time in seconds spent coding a specific method. 

Furthermore, P1.24 mentions the Actual Development Time, defined as the time which was spent 

actually developing a story or product. As an extension, studies P1.01 and P1.10 mention the metric 

of Hours per Function Point, while study P1.07 mentions the metric of Hours per Story Point instead. 

 

3.4.9.2 Ideal Days 

Alternatively, P1.06 and P2.02 mention working with Ideal Days, which is defined as a unit for 

estimating the size of product backlog items based on how long an item would take to complete if it 

were the only work being performed, there were no interruptions, and all resources necessary to 

complete the work were immediately available. Ideal days are often easier to grasp than function 

points or story points, for team members as well as managers and outside stakeholders. This can lead 

to a higher standard of communication amongst stakeholders, which may in turn translate into a 

higher success rate. Additionally, the metric requires less training and expertise than function- and 

story points, because of its intuitiveness. This may lead to more confident estimates than would be 

achieved by means of other point-based estimation techniques. The metric, however, also has 

significant downsides. For example, the estimation technique does not really allow for team members 

to collaborate, which fosters a sense of individuality instead of teamwork. Additionally, a task that 
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might take five ideal days at the start of the project, might only take three later on down the line, once 

the team members are more comfortable with the project. This results in the estimate becoming less 

accurate over time. Outside stakeholders might also have a hard time grasping why a project that is 

estimated as 50 ideal days will take the team closer to 100 real days to complete. 

 

3.4.9.3 Load Factor 

Study P1.24 refers to the Load Factor metric, which denotes the amount of real days in an engineering 

day. This metric appears to be closely related and inverse to Ideal Days, where Ideal Days denotes 

how many engineering days are in a real day. 

 

3.4.9.4 Work Capacity 

The metric of Work Capacity denotes the total amount of hours that an entire team can spend on a 

given sprint or iteration. This metric was mentioned in studies P1.03 and P1.04 and is sometimes used 

to estimate future capacity, and sometimes used to indicate factual historical capacity. Study P1.20 

also mentions this metric, but calls it Ideal Capacity instead. 

 

3.4.9.5 Overtime 

Study P2.12 mentions the Average Overtime per Day and Average Overtime per Sprint metrics as an 

indication of healthy company culture. 

 

3.4.9.6 Time to Market (per Function Point) 

Study P1.25 mentions the Time to Market in Days per Function Point as a means of measuring how 

long it takes a particular team to deliver a single Function Point to the production environment(s).  

 

3.4.10 Defect Metrics 
 

3.4.10.1 Mean Time to Recovery 

Studies P1.03, P1.08, P1.24, P2.02, P2.04 and P2.12 mention a Mean Time to Recovery metric. This 

metric determines the average time it takes for a backlog item of the type bug or defect to be closed. 
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For most use-cases, the time starts ticking as soon as the item enters the backlog, but some variants 

opt to start from the moment the bug is estimated, or even from the moment the bug enters a sprint. 

The latter variants allow the team to more easily game the metric, and a good average time thus fails 

to prove that additional value was provided to the end-user in a sufficiently quick fashion. Not all 

occurrences use the same term for this metric, where terms like Bug Correction Time,  Average Defect 

Correction Time or Defect Removal Efficiency have also been used. Study P1.09 also mentions using 

Defects Fixed per Release as a measure of gauging defect removal efficiency. 

 

3.4.10.2 Fault Latency 

Study P2.14 introduces the metric of Fault Latency, which is defined as the difference in time between 

when a particular piece of code was written, and when a particular defect in that piece of code was 

identified. While in traditional waterfall development, the former may be easy to identify, in iterative 

development this may not be so easy. 

 

3.4.10.3 (Open) Defect Severity Index 

According to P1.03, the Defect Severity Index can be used to measure the quality of the delivered 

work. The underlying metric of Defect Severity denotes a measure of impact a particular defect has, 

expressed as an integral value. In this denotation, defects with a higher impact have a higher integral 

value assigned to them. The Defect Severity Index, then, aggregates the Defect Severity of an entire 

backlog. The most common approach to calculate the index appears to be to take the sum of all 

defect’s severity, and divide it by the total amount of stories on the backlog. Finally, the Open Defect 

Severity Index only takes into account the defects that are still unresolved, as well as the total amount 

of stories on the backlog that are still unresolved. The metric can then be used to determine the quality 

of the product after each iteration, and tracked over time to see whether the team is improving. A 

downside of the Defect Severity Index is that it is extremely easy to game, as the defects can simply 

be estimated at a lower severity in order to “increase the team’s performance”. 
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3.4.10.4 Average Fault Cost 

Study P2.14 mentions measuring the Average Fault Cost. The cost of a fault or defect sums the cost of 

the resources spent fixing the bug, the cost of the damages caused by the bug, and the revenue missed 

by the effects of the bug. 

 

3.4.10.5 Defects Carried Over 

Study P2.02 introduces the metric of Average Amount of Defects Carried Over to Next Iteration. This 

metric essentially measures the amount of defects that still exist at the end of each iteration. 

Optimizing this metric may for instance lead to a lower Mean Time to Recovery or a lower Defect 

Severity Index. 

 

3.4.10.6 Defect Slippage Rate 

Additionally, studies P1.03, P1.24 and P2.02 mention the Defect Slippage Rate. This metric indicates 

the amount of defects that are not caught in the development, test or acceptance processes, and are 

subsequently discovered in production environments. While again the study does not outline exactly 

how the metric is calculated, Defect Slippage Rate is usually defined as the ratio between the amount 

of bugs discovered in production and the total amount of bugs discovered in the product. This 

definition is outlined below in equation 7 (Padmini et al. , 2018). 

𝐷𝑒𝑓𝑒𝑐𝑡 𝑆𝑙𝑖𝑝𝑝𝑎𝑔𝑒 𝑅𝑎𝑡𝑒 =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 

Equation 7 - Defect Slippage Rate 

This metric, as opposed to the Defect Severity Index, is less easy to game. At the same time, however, 

the metric is less telling about the impact of its outcome. A single, million dollar defect in production 

would still yield a low Defect Slippage Rate, but would be very undesirable none the less. 

 

3.4.10.7 Fault Slip Through 

Study P1.03 puts forward the concept of Fault Slip-Through. The studies define this metric as a 

measure which determines the amount of faults that would have been more cost-effective to find and 

fix in an earlier phase. The latter goes on to state that the metric simply calculates the amount of 
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defects or faults that were identified outside of the phase in which they should have been detected. 

Study P2.14 actually refers to this metric as Improvement Potential. 

 

3.4.10.8 Number of Bounce Backs 

Study P1.24 introduces the Number of Bounce Backs as the amount of defects that should not have 

occurred anymore if a root cause would have been fixed earlier. This makes it extremely similar to 

metrics such as Defect Slippage Rate and Fault Slip Through. 

 

3.4.10.9 Defect Density 

Additionally, studies P1.03, P2.04 and P2.12 also mention the Defect Density metric. This metric 

relates the amount of defects to specific constraints. For example, Defect Density in terms of a time-

based constraint could be Average Defects per Sprint or Average Defects per Day. Additionally, a 

Defect Density constrained on throughput could be the Average Defects per User Story or Average 

Defects per Story Point. The metric, in any shape or form, was used by 52% of the teams investigated 

in P1.03. Those who did not use it marked that they did not care for the value, as long as all defects 

were closed by the end of the sprint. The metric can be used as a rudimentary measure of competence, 

as one would assume less defects would be introduced per constraint by a more competent software 

developer, but this assumption is daring at best. Studies P1.03, P1.12, P1.22 and P1.124 also mention 

using simple Defect Counts for assessment of quality. 

 

3.4.11 Source Control Metrics 
 

3.4.11.1 Modified Components 

Study P2.16 mentions the Average Number of Modified Components per Commit. While the name 

suggests what it measures, it is not clearly defined what is considered a component and what is not. 

Additionally, it is not clearly stated what the benefits of such a measure could be.  
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3.4.11.2 Check-Ins per Day 

Additionally, P1.24 mentions the Check-Ins per Day, which was defined as the number of source control 

commits to the main trunk of the version control repository. They state that the metric can be used to 

manage risk, provide timely progress monitoring, and to communicate progress to upper-

management. 

 

3.4.12 Finance Metrics 
 

3.4.12.1 Cost of Quality 

At the same time, P1.03 mentions the Cost of Quality metric. This metric refers to the total cost of all 

materials and efforts required to make sure the resulting product conforms to the standard of quality 

that has been set by the organization. It is usually split up into several distinct parts. The first of these 

is the Cost of Control, which refers to the cost of preventing defects before they occur (prevention 

costs), as well as the cost associated with the inspection that occurred in order to find out whether 

defects exist at all (appraisal costs). The second constituent is the Cost of Failure to Control, which 

refers to the costs related to fixing defects after they have occurred, which is often split up once again 

into whether they have occurred internally (internal failure costs) or externally (external failure costs). 

The final formula for Cost of Quality is outlined below in equation 8 through 10. 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑜 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 

Equation 8 - Cost of Quality 

where 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠 + 𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙 𝐶𝑜𝑠𝑡𝑠 

Equation 9 - Cost of Control 

and 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑜 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐶𝑜𝑠𝑡𝑠 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐶𝑜𝑠𝑡𝑠 

Equation 10 - Cost of Failure to Control 

You will notice, however, that these equations do not dictate a unit of measurement for its definition 

of costs. While it may seem most obvious to take money as a primary unit of measurement for costs, 

some situations might instead call for measurements in terms of time, defects, or any combination of 
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these. The metric originates from physical manufacturing processes, but, according to P1.03, has  been 

applied to software development processes as well. In total, they found that 69% of the teams they 

interviewed used to metric in one form or the other. 

 

3.4.12.2 Cost Efficiency 

Study P2.08 mentions the Cost Efficiency metric. This metric is defined as the units delivered (in terms 

of lines-of-code-added) divided by the amount of hours invested, and thus measures the cost of 

adding a single line of code to the code base of a particular product.  

 

3.4.12.3 Net Present Value 

Studies P1.05, P2.02 and P2.11 mention the Net Present Value metric, which is defined as the 

difference between the present value of cash inflows, and the present value of cash outflows, over a 

period of time. The metric is used in capital budgeting and investment planning, in order to analyse 

the profitability of a projected investment or project. 

 

3.4.12.4 Return on Investment 

Studies P2.02 and P2.11 mention the finance metric of Return on Investment. This metric is defined as 

a ratio between the net profit and cost of a project. While it is a strong finance metric, it does not 

necessarily say much about agility. 

 

3.4.12.5 Internal Rate of Return 

Study P2.11 mentions the finance metric of Internal Rate of Return. The metric is very similar to the 

Net Present Value metric, and both are used in the evaluation process for capital expenditure. Where 

Net Present Value denotes the cash surplus or loss for a project, Internal Rate of Return calculates the 

percentage rate of return at which those same cash flows will result in a Net Present Value of zero. 

While it is a strong finance metric, it does not inherently say anything about agility. 
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3.4.12.6 Business Value Delivered 

Both P1.24 and P2.11 mention the Business Value Delivered metric. While the former fails to properly 

introduce the metric, the latter defines it as a metric that measures the rate of return on investment. 

It can be used to answer the questions of when a project or product will begin generating a return on 

investment, when it will break even, and what the projected earnings are. It states that the metric is 

expressed in Net Cashflow per Iteration.  

 

3.4.12.7 Cost Performance Index 

P1.24 mentions the Cost Performance Index. This metric is not defined in the source study, but 

presumably measures the ratio of work performed for which there was a defined budget, to the cost 

of work performed for which there was not a defined budget. The study claims that it can be used to 

monitor for deviances in the progress of a project, and can provide early signs that something is going 

wrong. 

 

3.4.12.8 Cost per Size Unit 

Study P1.08  directly relates the cost of a project or product to individual size units. It mentions the 

metrics of Cost per Function Point and Cost per Story Point.  

 

3.4.12.9 Cashflow per Iteration 

Study P2.11 introduces the Cashflow per Iteration as a metric to gauge the profitability of a project 

over time.  

 

3.4.12.10 Revenue per Customer (per Feature) 

Study P1.24 mentions the Revenue per Customer. This metric, unlike what the name suggests, 

estimates the (projected) revenue per customer that a particular feature will generate, and can be 

used to prioritize higher value features in a backlog. 

 

3.4.13 Requirements Metrics 
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3.4.13.1 Requirements Clarity Index 

While study P1.03 provides no references to any source literature, it does mention the Requirements 

Clarity Index. At the same time, further investigation on academic search engines does not yield any 

source material either. This is telling of a metric that was introduced not in the academic community, 

but in the unofficial spheres of the industry. Even though the metric has no clear origin in literature, 

the study found that 54% of the teams they investigated used the metric. Due to a lack of an official 

academic definition, what follows is a makeshift definition, defined by combining various blog posts 

and presentations.  

The Requirements Clarity Index is an indication of how well specific requirements are understood by 

the various team members. It can be used as a threshold to determine when work on a story backlog 

item can actually begin. While some advocates insist on withholding any work until all team members 

perfectly understand the requirements, this threshold can differ from team to team, depending on 

what level of uncertainty the team is comfortable with. The metric can be calculated by defining a 

scale depicting levels of acceptance for individual story backlog items. An arbitrary example of such a 

scale can be as follows:  

1. Denied 
2. Need Further Elicitation 
3. Accepted 

 

Each individual team member then inspects the requirements and determines where they are at. An 

average can then be taken to determine the final value for the Requirements Clarity Index metric, 

which can in turn be compared to the threshold to determine if the story backlog item is ready to be 

included in an upcoming sprint.  

 

3.4.13.2 Requirements Inventory Size 

Study P1.24 advocates tracking the Requirements Inventory Size over time. It states that the metric 

can be used to identify large handovers of requirements that might cause overloading situations to 

employees. Additionally, it had been used to identify problems in the development process. 
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3.4.13.3 Change Requests per Requirement 

Study P1.24 introduces the concept of Change Requests per Requirement, which it states can be used 

as an indicator of overall customer satisfaction, or an overall tool for understanding and improving 

quality.  

 

3.4.13.4 Critical Defects Sent by Customers 

P1.24 introduces the Critical Defects Sent by Customers metric. The study simply states that these 

defects were tracked and fixed in order to prevent losing customers, but fails to mention why the count 

is important or what the metric can be used for. 

 

3.4.13.5 Number of Requests from Customers 

Study P1.24 mentions the Number of Requests from Customers. However, the study does not explicitly 

define the metric, nor does it state how to use it or what its advantages could be. 

 

3.4.13.6 Implemented Versus Wasted Requirements 

Study P1.24 posits that not all requirements are always completely implemented, but sometimes 

some effort may still have been put in to them, for instance in the form of technical specification or 

prototyping. The study mentions the ratio metric of Implemented versus Wasted Requirements as a 

means of gauging the amount of wasted requirements work. 

 

3.4.13.7 Requirements per Feature/Work-Item 

Study P1.24 also mentions the Requirements per Feature/Work-Item metric, referred to collectively 

as the Requirements per Phase. The study posits that the metric can be used to reveal peaks in the 

workload, but fails to state how or why. 

 

3.4.14 Other Metrics 
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The following section introduces metrics that were not wholly assignable to a separate classification 

of metrics. These metrics cover a wide variety of aspects of software development processes, from 

quality and size, to efficiency and customer satisfaction. 

 

3.4.14.1 Work Effectiveness 

P2.12 introduces the concept of Work Effectiveness, defined as a ratio between the work spent and 

the decrement of work remaining. This definition closely relates it to the concept of Effort Burndown 

in Scrum, and can be used to determine whether or not a particular process is on track. 

 

3.4.14.2 Due Date Performance 

Study P1.24 introduces the Due Date Performance metric. While it fails to properly introduce the 

concept, the metric presumably calculates the average percentage of work-items that are delivered 

on time.  

 

3.4.14.3 Predictive Object Points  

Studies P1.02 and P2.01 mention Predictive Object Points as a new way of sizing object oriented 

development projects. It was introduced in 1998 by Minkiewics, which was in turn based on previous 

work by Chidamber et al. and Henderson-Sellers in 1994 and 1996 respectively. It was originally 

brought forward as an alternative for line of code and function point estimation metrics, because they 

were deemed unsatisfactory in Object Oriented (OO) contexts. In reality, it is an additional code 

analysis metric that has been designed specifically for the Object Oriented paradigm. It employs the 

code analysis metric of Weighted Methods per Class, which looks at each top level class and assigns a 

weight to the behaviours of that class that are seen by the world. That weight is determined by 

evaluating the effects that the behaviour has on the objects in the system (by counting the properties 

that this behaviour impacts), and the amount of control the objects in the system have over this 

behaviour (by counting the parameters of the method or the pieces of information that get passed to 

it) (Minkiewics, 1998). Subsequently, the weighted methods per class metric is combined with 

information about the grouping of objects into classes and the relationships between these classes of 

objects. According to Minkiewics, this value appeared to correlate to the effort associated with 
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implementing a solution. While there is some literature that mentions predictive object points and its 

application, there is little evidence that this is widely used in practice today. 

 

3.4.14.4 Technical Efficiency 

In P1.20, Technical Efficiency is introduced as a ratio between actual hours (AH) and ideal capacity (C), 

where C is the ideal number of hours which a team can deliver, depending on team size, number of 

teams, non-working days and days spent on principal ceremonies. The study states that the metric can 

be used as an indication of how well a team is being utilized, compared to the maximum capacity. 

 

3.4.14.5 Internal Efficiency 

Similarly, P1.20 introduces the Internal Efficiency metric. It state that the Internal Efficiency is defined 

as a ratio between actual hours (AH) and planned hours (PH), and that it measures how good the 

planning process is. It continues to state that a value of 1 means there is complete alignment between 

estimated effort and actual outcome. 

 

3.4.14.6 Delivery on Time 

In P1.03 and P2.08, several more specific metrics are introduced for determining the performance of 

individual teams. The first of these is the percentage of backlog items that Delivered on Time. In P1.03, 

it was identified as the most prevalent Agile Software Development (ASD) metric within the 26 

companies they interviewed. Of these 26 companies, 23 of them used the metric for determining 

whether or not the team was performing admirably. On time is defined here as within the sprint that 

they were initially included in. The thought behind this metric states that a team who delivers a larger 

percentage of its backlog items on time, performs better than a team with a lower percentage.  While 

intuitively this might seem true, the metric can easily be gamed by teams who understand how the 

metric works, leading to an inaccurate and untrustworthy metric.  

 

3.4.14.7 Impediments per Work-Item 

Study P2.12 mentions the metric of Impediments per Work-Item (referred to as the average number 

of impediments per task/sprint/team). The study states that the metric can help reach the goal of 
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efficiency impediment resolution. Here, an impediment is not defined as an interruption of the work, 

but an issues that is preventing work from happening efficiently. 

  

3.4.14.8 Value Delivered over Time 

P2.08 introduces the Value Delivered over Time metric, stating that it is more appropriate for software 

development teams than Cost Efficiency, because in software development, there is not necessarily a 

linear relationship between input and output (i.e. more lines of code does not mean more value 

delivered). The metric is defined as the difference of the value of output and the value of input within 

a particular time window, where the input represents the investment to be made to obtain the unit of 

input to be transformed in the development process and the output represents the value of the 

transformed input (i.e. the final product). 

 

3.4.14.9 Schedule Performance Index  

Studies P1.24 and P2.12 mention the Schedule Performance Index. While the former does not explicitly 

define the metric, the latter states that it is the ratio between the earned value (i.e. the value of all 

tasks completed) and the planned value (i.e. the initial estimate of value of all tasks to be completed 

until a certain point in the project). It states that the metric can be used to attain the goal of generating 

timely information on  project performance, but does not explicitly state how. 

 

3.4.14.10 Fulfilment of Scope 

Study P2.12 mentions the Fulfilment of Scope metric, which was defined as the ratio between the 

number of tasks completed in a Sprint, and the total number of tasks in the sprint backlog. The study 

also posits that the metric can be used at the scope of a release, instead of the scope of a Sprint. 

 

3.4.14.11 Net Promoter Score 

Studies P1.03 and P1.24 also mention the Net Promoter Score (NPS). This famous customer loyalty 

metric was introduced by Frederick F. Reichheld in 2003 and is currently said to be used by two-thirds 

of Fortune 1000 companies. In the original study, the NPS metric was found to correlate with profit 

and growth in all of the 13 industries in which it was measured. It was introduced because the classical 
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customer satisfaction surveys were extremely costly, lengthy, easy to game by downstream 

distributors, and showed little to no correlation with profit or growth. Additionally, these classical 

surveys often employed complicated, black box scaling functions that made it difficult to apply 

universally, or to encapsulate it in industry-wide standards. Instead of lengthy, complicated surveys, 

the NPS metric employs just a single question:  

“On a scale of 0 through 10, how likely are you to recommend this product 

to a friend or family member?” 

Subsequently, customers are grouped into one of three groups, depending on their answer. Promoters 

are those who are extremely likely to recommend the product, with a score of 9 or 10. Passively 

Satisfied are those who score a 7 or 8, and Detractors are those who score a 0 through 6. The Net 

Promoter Score, then, equals the percentage of Promoters minus the percentage of Detractors. The 

NPS metric thus represents the ratio of Promoters to Detractors, and has a domain of -100, where 

everyone is a Detractor, to +100, where everyone is a Promoter. In software development processes, 

the NPS of end-users can be a telling metric of the performance of a particular product in terms of 

customer satisfaction. 

 

3.4.14.12 Technical Debt 

P1.03 also mentions the aspect of Technical Debt. This is a term used to imply additional rework that 

is required by the development team at a later stage, due to having opted for an easier, sloppier 

solution at an earlier stage. While the terms technical debt and code-rot are often used 

interchangeably in the industry, the latter is more formally indicative of source code that is 

inconsistent, misleading or faulty due to the act of refactoring, instead of making poor initial design 

choices. The study has shown that 65% of the investigated teams used some form of technical debt 

indicator. However, it sadly does not mention which specific technical debt metrics were encountered. 

Most of the technical debt metrics in literature employ source code analysis techniques that yield 

metrics such as application size, number of rule branches, number of helper methods, cyclomatic 

complexity, and expression duplication (Alfraihi et al, 2018). Others exclusively use code quality 

metrics such as coupling, cohesion, and complexity metrics such as depth of decomposition (Seaman 

& Guo, 2011). 
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3.4.14.13 Percentage of Completed Stories 

P1.24 mentions the Percentage of Completed Stories as a means of gauging the progress of a particular 

software development process.  While it does not explicitly define what complete means in this 

context, it is presumed that the functionality should be available in the production environment(s). 

 

3.4.14.14 Standard Violation 

Studies P1.06 and P1.24 introduce the Standard Violation metric. This code quality metric is used to 

track the number of coding standards that are violated per sprint or iteration. It can be used to direct 

the team towards the behaviour which has been agreed upon and/or reasonably assumed to lead to 

a higher quality codebase. This metric thus tells us something about the quality of the delivered code, 

as well as the level of discipline exhibited by the team members. 

 

3.4.14.15 Interruptions 

While P1.08 does not technically introduce metrics for keeping track of introductions or their effects 

on productivity or efficiency, it does mention the practice of allocating specific timeslots for 

interruptions to occur in. Additionally, they advocate setting aside a specific portion of a sprint’s 

capacity for interruptions in the form of unexpected tasks, which is estimated based on historical data. 

The larger issue at hand, of course, is that the impact of interruptions on productivity has been shown 

to be far greater than they might at first appear (Coraggio, 1990). Given this premise, one might 

conclude that metrics for measuring the impact of interruptions might yield interesting insights, even 

if as simple as interruptions per day or mode interruption duration. P1.20 does mention measuring 

Impediments, which comes down to the amount of hours spent working, that did not produce tangible 

outcome, and can be seen as an inverse of the Value Added Time metric. 

 

3.4.14.16 Capacity Utilization 

P2.08 introduces the Capacity Utilization metric, which is defined as the work-in-progress, divided by 

the output capacity of the process. It states that a value smaller than 1 indicates a workload that is 

too low, while a value greater than 1 indicates a workload that is too high, with a perceived optimum 

at 1. It is not clearly defined what the output capacity of a software development process should be. 

This metric thus appears to be primarily introduced for use in industrial manufacturing, as opposed to 

software development processes. However, the output capacity of a software development team can 
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simply be equated to the amount of team members in the team under examination. Optimizing this 

metric could then lead to a severe reduction in concurrent contexts, and thus in excessive concurrency 

switching. 

 

3.4.14.17 Employee Happiness 

Study P.08 introduces the Employee Happiness metric. The authors claim that a self-assigned 

happiness score is unconsciously projected out into the future and onto the organization and their 

role in it. If the team member feels like the company is in trouble, they are doing the wrong thing, or 

employing the wrong processes, they will feel less happy. Additionally, the employee will probably 

feel less happy if they are experiencing a major roadblock, or have to implement a frustrating module 

that does not have a proper definition of done. Thus, the authors propose asking the team member 

about how happy they are with the company, and how happy they are with their role within it. The 

team member can then use a 1 to 5 Likert scale to indicate how they feel. The metric is then tracked 

over time, and the authors claim that significant differences from one measurement to another might 

need additional investigation.  

3.5 Overview 

An overview of which papers mentioned which metrics can be found in Appendix E, as well as an 

overview of which metrics were mentioned in which papers in Appendix F. 
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4. Expert Inquiry 

In this chapter, we will detail the setup, execution and results of an informal inquiry of prevalent 

experts in the field, in the form of an in-depth discussion and conversation about the encountered 

metrics. The aim of this inquiry is to discover additional software development metrics, that have not 

yet been discovered in the literature review of chapter 3. In this inquiry, we have not made any 

distinction as to why they were not discovered in the literature review. This could be, for example, 

because no prior research has been performed on this metric, no peer-reviewed work has been 

published on the subject, or because the literature review missed it due to not encompassing the 

entire body of knowledge available in literature today. In this inquiry, the experts will be asked about 

their view on the current state of efficiency and productivity metrics. Additionally, they will be asked 

to think about possible efficiency metrics that we have not encountered yet, for which they would be 

very interested in seeing measurement results from the industry.  

 

4.1 Experts 

In this section, we will introduce the people whose expertise we have requested for the expert inquiry. 

In total, four experts have been consulted during the execution, all of whom have exceptional track-

records in the world of agile, and most of which are considered as an authority in the field of software 

development. 

 

4.1.1 Jeffrey Saltz 
The first expert is Professor Jeffrey Saltz, who describes himself as an accomplished technology 

executive, working at the intersection of innovation, data science and business strategy. He is currently 

seated as a professor at Syracuse University, as well as the Chief Executive Officer at Sage Hill 

Consulting. Here, his primary focus is on transforming his client’s data into knowledge, knowledge into 

insights, and insights into business decisions. He started his career as a programmer, rose to project 

leader and consulting engineer, to end up as the Chief Technology Officer at Goldman Sachs, and later 

the Technology Director of JP Morgan Chase. Currently, he is also the head of the Agile/LEAN  track at 

the Hawaiian International Conference on System Sciences. 
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4.1.2 Jeff Sutherland 
The second expert is Jeff Sutherland Ph.D., well-known for being the co-inventor of Scum, alongside 

Ken Schwaber. Currently, he is a senior advisor at OpenView Venture Partners, as well as the chairman 

of Scrum, Inc. In 2006, Jeff Sutherland founded Scrum, Inc. in order to continue and extend thought 

leadership on Scrum by coaching, training, and transforming companies. Here, his primary focus is on 

moving Scrum beyond its initial IT focus to cover all business domains. 

 

4.1.3 Frank Verbruggen 
The third expert is Frank Verbruggen, who started his career as a programmer, but quickly rose to 

software architect within Ordina. Since then, he has been an IT architect at the Dutch Chamber of 

Commerce, and quickly rose to chapter lead at the Dutch ING bank. He is currently the founder and 

owner of Hi Efficiency and Diamond Agile, where he aims to transform organizations beyond their 

initial Agile scope. In the process of this thesis, Frank Verbruggen has also functioned as my external 

supervisor. 

 

4.1.4 Kyle Aretae 
The fourth expert is Kyle Aretae, who is the founder of Tech Edge, and author of Ceremony. He has 

spent his 35 year IT career shuffling between the roles of software developer, technical agile coach 

and trainer. He has taught over 10.000 students on over 100 topics, for over 25.000 hours in the last 

25 years. He is a huge evangelist for Extreme Programming and Agile practices, with a broad skill-set 

and loads of experience. 

 

4.2 Suggested Metrics 

The following section details the metrics that have been suggested by the experts in the expert inquiry. 

In order to make sure that these metrics are defined clearly and wholly transparent, we will attempt 

to provide unambiguous definitions of their data points and calculations when applicable. 
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4.2.1 Priority Focus 
The first additional metric, brought forward by Jeffrey Saltz, is the Priority Focus, which measures the 

time that an individual team member has spent adding value to the highest priority story backlog item, 

as a percentage of the total time spent working. The metric can be calculated for each individual team 

member, by taking the time that the team member has spent working on the highest priority story 

backlog item on the previous day, and dividing it by the total time that he or she could have spent on 

it. This metric can be calculated on multiple granularities, e.g. per day or per sprint. At the same time, 

the metric can easily be calculated for entire teams or companies by aggregating the individual 

measurements into weighted arithmetic means. 

This metric can be used to determine a team’s capability to do the most important things first. 

Additionally, the metric can yield interesting insights into how well the team is swarming on the 

highest priority story backlog items. The act of swarming has been shown to lead to a reduction of 

waste in software development processes (Verbruggen, Sutherland, van der Werf, Brinkkemper & 

Sutherland, 2019). The following sections detail the calculation of this metric for an individual team 

member, and aggregated into an arithmetic mean for an entire team. 

 

4.2.1.1 Member Priority Focus 

The Member Priority Focus for sprint 𝑠 and member 𝑚, represented by 𝑝𝑓𝑠𝑚,  is given by  

𝑝𝑓𝑠𝑚 =  

∑ {
𝑝𝑒𝑥

==  𝑡𝑟𝑢𝑒      |𝑑𝑒𝑚|

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            0        

|𝐸𝑠𝑚|
𝑥=1

𝑤𝑐𝑠𝑚  
 

where 𝐸𝑠𝑚 is the set of the events that occurred in sprint 𝑠 for member 𝑚, 𝑤𝑐𝑠𝑚  is the Work Capacity 

in sprint 𝑠 for member 𝑚, as outlined in section 4.2.7.1, 𝑝𝑒𝑥
 is a Boolean value denoting whether the 

𝑥𝑡ℎ event 𝑒𝑥 was marked as targeting the highest current priority, and 𝑑𝑒𝑚 is the set of timestamps 

included in the duration of event 𝑒 and the Work Schedule of member 𝑚, as out lined in section 4.2.7.2. 

 

4.2.1.2 Mean Team Priority Focus 

The Mean Team Priority Focus for sprint 𝑠 and team 𝑡, represented by 𝜇𝑝𝑓𝑠𝑡
, is given by 
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𝜇𝑝𝑓𝑠𝑡
=  

∑     𝑝𝑓𝑠𝑚
|𝑀𝑡𝑠|
𝑚=1

|𝑀𝑡𝑠|
 

where 𝑀𝑡𝑠 is the set of the members of team 𝑡 who have participated in sprint 𝑠, and 𝑝𝑓𝑠𝑚  is the 

Member Priority Focus for sprint 𝑠 and member 𝑚, as outlined in section 4.2.1.1. 

 

 

4.2.2 Context Concurrency 
The second additional metric, brought forward by Frank Verbruggen, is the Context Concurrency 

metric. This metric determines the maximum amount of story backlog items that the team has had to 

work on concurrently throughout a day, sprint or project. Superfluous context switching can hurt 

productivity, and keeping the amount of concurrent contexts to switch between to a feasible 

minimum will help minimize its impact. The metric denotes the maximum number of stories that were 

in progress at any given time, during a particular period of time. 

 

4.2.2.1 Context Concurrency 

The Context Concurrency of sprint 𝑠 at timestamp 𝑡, represented by 𝑐𝑐𝑠𝑡 , is given by 

𝑐𝑐𝑠𝑡  = |𝑆𝑡|  − |𝐹𝑡|   

where 𝑆𝑡  is the set of all stories that were started at timestamp 𝑡, and 𝐹𝑡 is the set of all stories that 

were finished at timestamp 𝑡. 

 

4.2.2.2 Maximum Context Concurrency 

The Maximum Context Concurrency of sprint 𝑠, represented by 𝑚𝑐𝑐𝑠, is given by  

𝑚𝑐𝑐𝑠 =  ⋁  𝑐𝑐𝑠𝑡
𝑓𝑠
𝑡 = 𝑠𝑠

  

where 𝑓𝑠 is the timestamp at which sprint 𝑠 was finished, 𝑠𝑠 is the timestamp at which sprint 𝑠 was 

started, and 𝑐𝑐𝑠𝑡  is the Context Concurrency of sprint 𝑠 at timestamp 𝑡, as outlined in section 4.2.2.1. 
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4.2.3 Degree of Swarming 
The third additional metric, brought forward by Jeff Sutherland, is the Degree of Swarming. This metric 

determines the degree of collaboration and teamwork within the team. It indicates whether team 

members tend to work on story backlog items individually or in association with other members of 

the team. It is defined here as the percentage of the team that has performed work on a specific story 

during a particular day, whether this was two minutes or eight hours.  

 

4.2.3.1 Story Degree of Swarming  

The Story Degree of Swarming on story backlog item 𝑖 on day 𝑑, represented by 𝑑𝑜𝑠𝑖𝑑, is given by 

𝑑𝑜𝑠𝑖𝑑 =
|𝑀𝑖𝑑|

|𝑀𝑑|
 

where 𝑀𝑖𝑑 is the set of all members who participated in work performed on story 𝑖 on day 𝑑, and 

𝑀𝑑  is the set of all members who were working on day 𝑑. 

 

4.2.3.2 Mean Day Degree of Swarming 

The Mean Day Degree of Swarming on day 𝑑, represented by 𝜇𝑑𝑜𝑠 𝑑, is given by 

𝜇𝑑𝑜𝑠 𝑑 =
∑  𝑑𝑜𝑠𝑖𝑥𝑑

|𝐼𝑑|
𝑥=1

|𝐼𝑑|
 

where 𝐼𝑑  is the set of all story backlog items that were in progress at any time during day 𝑑, and 

𝑑𝑜𝑠𝑖𝑥𝑑 is the Story Degree of Swarming on the 𝑥𝑡ℎ story backlog item 𝑖𝑥 on day 𝑑, as outlined in 

section 4.2.3.1. 

 

4.2.3.3 Mean Sprint Degree of Swarming 

The Mean Sprint Degree of Swarming on sprint 𝑠, represented by 𝜇𝑑𝑜𝑠 𝑠, is given by 

𝜇𝑑𝑜𝑠 𝑠 =
∑  𝜇𝑑𝑜𝑠 𝑑𝑥

|𝐷𝑠|
𝑥 = 1

|𝐷𝑠|
 

where 𝐷𝑠 is the set of days in sprint 𝑠, and  𝜇𝑑𝑜𝑠 𝑑 is the Mean Day Degree of Swarming on the  𝑥𝑡ℎ  

day 𝑑𝑥, as outlined in section 4.2.3.2. 
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4.2.4 Small Correct Change Into Production 
The fourth additional metric, brought forward by Kyle Aretae, is the Small Correct Change Into 

Production (SCCIP). This metric looks at the overhead of the act of deploying the product into 

production. It is defined as the time it takes for a single, extremely simple change to the code base, to 

be available in the production environment(s). If the target team works with deployment windows, it 

is assumed that the last deployment window has just closed. Kyle has seen this metric range from 

under 5 minutes in some of the truly high-performance teams, to over a year in some of the worst. 

The Simple Correct Change Into Production for project 𝑝 , represented by 𝑠𝑐𝑐𝑖𝑝𝑝, is given by 

𝑠𝑐𝑐𝑖𝑝𝑝 = 𝑡𝑑 − 𝑡𝑐  

Where 𝑡𝑑  is the timestamp at which the change is available in production, and 𝑡𝑐  is the timestamp at 

which the change was committed.  

 

4.2.5 Process Efficiency 
The fifth proposed metric, brought forward by Jeff Sutherland and Frank Verbruggen, is the Process 

Efficiency metric. This metric determines the efficiency of a software development team from the 

perspective of their work, instead of the individual team members. It is defined as the value-added-

time divided by the total time spent working. Here, excellency measures a low throughput time, but 

could also lead to a low capacity utilization.  

 

4.2.5.1 Story Process Efficiency 

The Story Process Efficiency for story backlog item 𝑖, in sprint 𝑠, represented by 𝑝𝑒𝑖𝑠, is given by 

𝑝𝑒𝑖𝑠 =  
∑ 𝑓𝑒𝑥

 − 𝑠𝑒𝑥

|𝐸𝑠𝑚𝑖|
𝑥=1

𝑐𝑡𝑖  
 

where 𝐸𝑠𝑚𝑖 is the set of the events that occurred in sprint 𝑠 for member 𝑚, targeting story backlog 

item 𝑖,  𝑐𝑡𝑖  is the Story Cycle Time of story backlog item 𝑖, as outlined in section 4.2.7.4, 𝑓𝑒𝑥
 is the 

timestamp at which the 𝑥𝑡ℎ event 𝑒𝑥 has finished, and 𝑠𝑒𝑥
 is the timestamp at which the 𝑥𝑡ℎ event 𝑒𝑥 

has started. 
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4.2.5.2 Mean Team Process Efficiency 

The Mean Team Process Efficiency for sprint 𝑠, represented by 𝜇𝑝𝑒𝑠
, is given by 

𝜇𝑝𝑒𝑠
=

∑   𝑝𝑒𝑖𝑥𝑠
|𝐼𝑠|
𝑥 = 1

|𝐼𝑠|
 

where 𝐼𝑠 is the set of all story backlog items in sprint 𝑠, and 𝑝𝑒𝑖𝑥𝑠 is the Story Process Efficiency  of 

the 𝑥𝑡ℎ story 𝑖𝑥 in sprint 𝑠, as outlined in section 4.2.7.2. 

 

4.2.6 Innovation Income 
The final proposed metric, brought forward by Frank Verbruggen and Kyle Aretae, is the Innovation 

Income metric. This metric determines the percentage of an organization’s income that’s coming from 

innovations. It posits that if a significant part of the value delivered by an organization comes from 

recent innovation, the organization has the ability to innovate, and dares to move. Such an 

organization has the ability to change the way they operate on their markets, and can quickly react to 

changing circumstances. 

The Innovation Income 𝑖𝑖 for organization 𝑜, denoted by 𝑖𝑖𝑜, is given by 

𝑖𝑖𝑜 =  
𝑟<2

𝑟
 

Where 𝑟<2 is the amount of yearly revenue obtained through projects that were released within the 

last two years, while 𝑟 is the total amount of yearly revenue for the organization. While the initial 

cut-off is set at two years, empirical validation might show more optimal values for this threshold. 

4.2.7 Intermediate Metrics 
While the following metrics are not part of the set of metrics suggested by the experts, their values 

are needed for the calculation of some of the metrics that were. Their definitions are stated below in 

order to provide an accurate and unambiguous account of how their calculations are done. 

 

4.2.7.1 Member Work Capacity 

The Work Capacity in sprint 𝑠 for member 𝑚, represented by 𝑤𝑐𝑠𝑚  is given by 
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𝑤𝑐𝑠𝑚  = ∑ 𝑓𝑚𝑑𝑥
− 𝑠𝑚𝑑𝑥

|𝐷𝑠𝑚|

𝑥 = 1

  

where 𝐷𝑠𝑚  is the set of days during sprint 𝑠 on which member 𝑚 worked on the project, 𝑓𝑚𝑑𝑥
 is the 

time at which member 𝑚 stopped working on the 𝑥𝑡ℎ  day 𝑑𝑥, and 𝑠𝑚𝑑𝑥
 is the time at which member 

𝑚 started working on the 𝑥𝑡ℎ  day 𝑑𝑥. 

 

4.2.7.2 Work Schedule 

The Work Schedule of member 𝑚 in sprint 𝑠, represented by 𝑈𝑚𝑠, is the union of the intervals of the 

times that member 𝑚 worked during sprint 𝑠, and is given by 

𝑈𝑚𝑠 = ⋃ [𝑠𝑚𝑑𝑥
, 𝑓𝑚𝑑𝑥

]

|𝐷𝑚𝑠|

𝑥 = 1

 

where 𝐷𝑚𝑠 is the set of days that member 𝑚 worked during sprint 𝑠, 𝑠𝑚𝑑𝑥
is the time at which 

member 𝑚 started working on the 𝑥𝑡ℎ  day 𝑑𝑥, and 𝑓𝑚𝑑X
 is the time at which member 𝑚 stopped 

working on the 𝑥𝑡ℎ day 𝑑𝑥. 

 

4.2.7.3 Event Duration 

The Event Duration for event 𝑒 of member 𝑚, represented by 𝑑𝑒𝑚 is given by 

𝑑𝑒𝑚 =  {𝑥 | 𝑥 ∈ 𝑈𝑚𝑠 , 𝑥 ∈  [𝑠𝑒 , 𝑓𝑒] } 

where 𝑈𝑚𝑠 is the Work Schedule of member 𝑚 in sprint 𝑠, as defined in section 4.2.7.2, 𝑠𝑒 is the time 

at which event 𝑒 has started, and 𝑓𝑒 is the time at which event 𝑒 has finished. 

 

4.2.7.4 Story Cycle Time 

The Story Cycle Time of story backlog item 𝑖, represented by 𝑐𝑡𝑖, is given by 

𝑐𝑡𝑖 = 𝑓𝑖  − 𝑠𝑖  

where 𝑓𝑖  is the timestamp at which story backlog item 𝑖 is finished, and 𝑠𝑖  is the timestamp at which 

story backlog item 𝑖 is started.  
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4.2.7.5 Story Cycle Interval 

Similarly, the Story Cycle Interval of story backlog item 𝑖, represented by 𝑐𝑖𝑖, is given by 

𝑐𝑖𝑖 = {[𝑠𝑖 , 𝑓𝑖]} 

where 𝑓𝑖  is the timestamp at which story backlog item 𝑖 is finished, and 𝑠𝑖  is the timestamp at which 

story backlog item 𝑖 is started.  

 

4.2.7.6 Mean Team Interruption Count 

The Mean Team Interruption Count for sprint 𝑠,  represented by 𝜇𝑖𝑐𝑠
, is given by 

𝜇𝑖𝑐𝑠
=  

|𝐼𝑠|

|𝑀𝑠|
 

where 𝐼𝑠 is the set of the interruptions that occurred in sprint 𝑠, and 𝑀𝑠 is the set of the team 

members who participated in sprint 𝑠. 

 

4.2.7.7 Mean Team Interruption Duration 

The Mean Team Interruption Duration for sprint 𝑠 and team 𝑡, represented by 𝜇𝑖𝑑𝑠𝑡
, is given by 

𝜇𝑖𝑑𝑠𝑡
=  

∑    𝑓𝑖𝑥
−  𝑠𝑖𝑥

|𝐼𝑠|
𝑥 = 1

𝑐𝑖𝑠

 

where 𝐼𝑠 is the set of the interruptions that occurred in sprint 𝑠, 𝑓𝑖𝑥
 is the time at which the 𝑥𝑡ℎ 

interruption 𝑖𝑥 was finished, and 𝑠𝑖𝑥
 is the time at which the 𝑥𝑡ℎ interruption 𝑖𝑥 started. 
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5. Metric Quality Model 

In this chapter, we will introduce a model for metric strength, that can be used to determine whether 

a specific metric can be deemed strong. This model consists of five qualities that a metric should have 

in order to be considered a strong metric. This model for metric strength was developed through in-

depth discussion of metric strength with the experts introduced in section 4.1, in which tacit 

knowledge about what makes a metric good or bad, was extrapolated and distilled into explicit 

knowledge. 

These qualities state that a strong metric should (a) be simple to explain and simple to measure, (b) 

be difficult to optimize without increasing business value (c) correlate strongly with increased business 

value when optimized, (d) be useable in multiple contexts, without confusing edge-cases, and (e) have 

an unambiguous and transparent definition of its data points, as well as how those data points are 

used in its calculations. In the remainder of this study, we will refer to these qualities as simple, hard-

to-game, outcome-oriented, universal, and transparent respectively. Together, these criteria spell 

the acronym SHOUT. 

The rest of this chapter discusses these qualities in more detail, and ends with an assessment of the 

discovered metrics in terms of the SHOUT qualities. 

 

5.1 Qualities 

5.1.1 Simple 
The first quality criteria is simplicity. This addresses the need for a metric to be simple to explain, 

measure and interpret. It also takes into account how much effort, in terms of time and energy, is 

required to take the required measurements. Finally, it takes into account the perceived impact on 

the productivity of the team under investigation. If taking the required measurements takes only a 

second, but has to be done many times a day, the overall effort required is low, but the impact on 

overall team productivity might be too high, because of the numerous interruptions that it would 

cause.  
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5.1.2 Hard to Game 
Then, the metric is judged on whether or not its value is hard to game. In the context of this study, 

hard to game is defined as being difficult to optimize without increasing business value. This means 

that we do not truly care whether or not a metric is easy to game or not, as long as the act of gaming 

still results in the intended increase in business value. An excellent of example of a metric that is hard 

to game in this sense, is Work in Progress. The emergence of the hard-to-game quality is not all that 

surprising, as E.M. Goldratt’s ‘tell me how you measure me, and I’ll tell you how I’ll behave’ comes to 

mind. 

 

5.1.3 Outcome Oriented 
Strong metrics should also show a strong correlation with increased business value when optimized. 

This means that the metric should give a clear indication of where that optimum might be, and can 

reasonably be assumed to increase business value when a process gets closer to that optimum. 

 

5.1.4 Universal 
For a metric to be universal, it must be applicable to many different contexts, and not just software 

development or industrial manufacturing. Similarly, it should not have any confusing edge-cases for 

specific circumstances, resulting in  invalid measurements or values. 

 

5.1.5 Transparent 
Finally, metrics should be transparent, meaning that they should have an explicit and unambiguous 

definition of their data points. Additionally, all of the metrics should be transparent in the sense that 

they should unambiguously define how those data points are used to calculate the final metric 

value(s). 
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6. Systematic Mapping 

6.1 Data Structures 

The systematic mapping uses eight data structures in order to capture the information that was 

ascertained in the structured literature review. In this section, we will introduce each data structure, 

and demonstrate their underlying relationships. These are shown below in figure 2. 

 

 

Figure 2  -  Data Structures 

6.2 Technology 

We implemented the data structures introduced in the previous section in a NEO4J graphing database. 

Subsequently, an ASP.NET Core 2.1 application was created in order to enter and manipulate the 

entries and their relationships. Finally, the data set was coupled to a graph interpreter, allowing the 

inspection and analysis of the data based on the Cypher querying language.   
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The data structures and their relationships were inserted into the graph database. This resulted in a 

database schema as shown below in figure 3. 

 

 

Figure 3  - Database Schema 

The resulting systematic mapping became too large to coherently visualize with NEO4J’s visualization 

capabilities. The visualization of the resulting systematic mapping, was thus done using a small, 

custom-made vis.js app, resulting in a set of visual aggregates that highlight particular aspects of the 

systematic mapping. These aggregations are shown in chapter 7. 

6.3 Axial Encoding 

In this section we will apply the Grounded Theory technique of axial encoding, in order to encode 

every metric so that it targets at least one aspect of the software development process, as well as to 

encode every input so that it belongs to at least one category of inputs. 
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6.3.1 Aspects 
The following table shows the application of open encoding as well as axial encoding to the discovered 

software development metrics. Note that this table only shows the encodings, as well as the amount 

of metrics included in the encoding. Appendix G shows a complete overview of which metric was 

assigned to which encodings. 

Aspect Encoding 
Metrics 

Axial Encoding Open Encoding 

Efficiency Time 

54 

15 

  Rework 3 

  Cycle Times 9 

  Delivery 8 

  Flow 2 

  Impediments 2 

  Burndown 3 

  Presumed 4 

  Effort 8 

Complexity Cohesion 

61 

4 

  Coupling 22 

  Dependencies 1 

  Code Generation 8 

  Encapsulation 3 

  Inheritance 16 

  Cyclomatic Complexity 2 

  Expression Tree 5 

Risk Clarity 2 2 

Size Effort 

22 

2 

  Components 7 

  Estimation 5 

  Code Churn 6 

  Fulfilment 2 

Quality Anti-Patterns 

33 

8 

  Defects 17 

  Documentation 1 

  Tests 7 

Composition Team Composition 
5 

4 

  Project Composition 1 

Cost 
Cost of Performed 
Work 

20 

6 

  
Cost of Performed 
Rework 

3 

  Cost of Quality 5 
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  Financial 6 

Design Requirements 
6 

4 

  Reviews 2 

Process Story 

11 

3 

  Iteration 2 

  Team Member 2 

  Project 3 

  Requirements 1 

Satisfaction Satisfaction 2 2 
Table 9 - Axial Encoding of Software Development Aspects 

The encoding has resulted in a set of 10 software development process aspects, which have been 

listed below in table 5.  

Axial Encoding Open Encodings Metrics 

Efficiency 9 54 

Complexity 8 61 

Risk 1 2 

Size 5 22 

Quality 4 33 

Composition 2 5 

Cost 4 20 

Design 2 6 

Process 5 11 

Satisfaction 1 2 
Table 5 - Resulting Aspects of Axial Encodin 

In total, there are 217 encodings over 197 metrics, with the 20 aspects shown below in table 6 being 

assigned to multiple encodings.  

Metric Amount Encodings 

Interrupted Time 2 
Efficiency - Time 

Efficiency - Impediments 

Descendant Method to Method Export 
Coupling 

2 
Complexity - Coupling 

Complexity - Inheritance 

Information-Flow Based Inheritance 
Coupling 

2 
Complexity - Coupling 

Complexity - Inheritance 

Lines of Code (per Unit of Time) 2 
Efficiency - Effort 

Size - Components 

Lines of Code per Method 2 
Complexity - Expression Tree 

Size - Components 

Number of Interfaces 2 
Complexity - Encapsulation 

Size - Components 

Percentage of Adopted Work 2 Size - Effort 
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Size - Estimation 

Percentage of Found Work 2 
Size - Effort 

Size - Estimation 

New Classes Per Release 2 
Efficiency - Effort 

Size - Code Churn 

New Features Per Release 2 
Efficiency - Effort 

Size - Code Churn 

New Lines of Code Per Release 2 
Efficiency - Effort 

Size - Code Churn 

New Methods Per Release 2 
Efficiency - Effort 

Size - Code Churn 

Percentage of Completed Stories 2 
Efficiency - Effort 

Size - Fulfilment 

Halstead Complexity Metric 2 
Efficiency - Effort 

Size - Code Churn 

Normalized Distance from Main 
Sequence 

2 
Complexity - Coupling 

Quality - Anti Patterns 

Parameters per Method 2 
Complexity - Cohesion 

Quality - Anti Patterns 

Number of Defects Found by Tests 2 
Quality - Defects 

Quality - Tests 

Average Fault Cost 2 
Quality - Defects 

Cost - Cost of Performed Rework 

Faults Slip Through 2 
Quality - Defects 

Cost - Cost of Performed Rework 

Improvement Potential 2 
Quality - Defects 

Cost - Cost of Performed Rework 
Table 6 – Metrics assigned to multiple aspects. 

 

 

6.3.2 Inputs 
The following table shows the application of open encoding as well as axial encoding to the discovered 

software development metrics’ input parameters. Note that, again, the table only shows the 

encodings, as well as the amount of inputs belonging to each encoding. For a full overview of what 

input was assigned to which encoding, see Appendix H. 

Input Encoding 
Inputs 

Axial Encoding Open Encoding 

Backlog Backlog 6 6 

Company Company 1 1 

Defects Defect Counts 6 3 
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  Defect Cost 2 

  Defect Discovery 1 

Deployment Build 
3 

2 

  Version Control 1 

Estimate Size Estimate 

7 

5 

  Clarity Estimate 1 

  Commitment Estimate 1 

Lifecycle Day Lifecycle 

20 

4 

  Interruption Lifecycle 3 

  Iteration Lifecycle 2 

  Product Lifecycle 2 

  Team Lifecycle 2 

  Test Lifecycle 2 

  Work Item Lifecyle 5 

Financial Cost 
14 

12 

  Revenue 2 

Iteration Commitment 

8 

2 

  Delivery 4 

  Lifecycle 2 

Schedule Planned Production 

7 

2 

  Planning 3 

  Unplanned 2 

Source Code Code Churn 

15 

5 

  Code Complexity 6 

  Components 2 

  Code Coupling 2 

Survey Customer Inquiry 
2 

1 

  Team Member Inquiry 1 

Team Team Churn 

5 

2 

  Team Composition 2 

  Team Delivery 1 

Test Test Result 

4 

1 

  Test Lifecycle 2 

  Test Count 1 

Work Day Day Lifecycle 
3 

2 

  Planning 1 

Work Item Work Item Count 

17 

2 

  Work Item Estimate 4 

  Work Item Financials 2 

  Work Item Lifecyle 5 

  Work Item Meta Data 3 
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Work Item 
Requirements 

1 

 

Table 11 – Axial Encoding of Software Development Input Groups 

 

The encoding has resulted in a set of 15 groups of input parameters to software development 

metrics, which have been listed below in table 12. 

Axial Encoding Open Encodings Inputs 

Backlog 1 6 

Company 1 1 

Defects 3 6 

Deployment 2 3 

Estimate 3 7 

Lifecycle 7 20 

Financial 2 14 

Iteration 3 8 

Schedule 3 7 

Source Code 4 15 

Survey 2 2 

Team 3 5 

Test 3 4 

Work Day 2 3 

Work Item 6 17 

 

Table 7 - Resulting Input Groups of Axial Encoding 

In total, there are 118 encodings over 84 inputs, with the 34 inputs shown below in table 8 being 

assigned to multiple encodings.  

 

Input Amount Encodings 

Amount of Defects 2 
Backlog - Backlog 

Defects - Defect Counts 

Amount of Open Defects 2 
Backlog - Backlog 

Defects - Defect Counts 

Commit Timestamp 2 
Deployment - Version Control 

Lifecycle - Product Lifecycle 

Defect Cost 2 
Defects - Defect Cost 

Financial - Cost 

Adjusted Sprint Forecast 2 
Estimate - Commitment Estimate 

Iteration - Commitment 
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Sprint Story Point Original Forecast 2 
Estimate - Size Estimate 

Iteration - Commitment 

Amount of Stories in Iteration 2 
Backlog - Backlog 

Iteration - Delivery 

Sprint End Timestamp 2 
Lifecycle - Iteration Lifecycle 

Iteration - Lifecycle 

Sprint Start Timestamp 2 
Lifecycle - Iteration Lifecycle 

Iteration - Lifecycle 

Process Capacity 2 
Iteration - Delivery 

Schedule - Planned Production 

Planned Workday Start Timestamp 2 
Lifecycle - Day Lifecycle 

Schedule - Planning 

Planned Workday End Timestamp 2 
Lifecycle - Day Lifecycle 

Schedule - Planning 

Interruption End Timestamp 2 
Lifecycle - Interruption Lifecycle 

Schedule - Unplanned 

Interruption Start Timestamp 2 
Lifecycle - Interruption Lifecycle 

Schedule - Unplanned 

Team Members Added 2 
Lifecycle - Team Lifecycle 

Team - Team Churn 

Team Members Removed 2 
Lifecycle - Team Lifecycle 

Team - Team Churn 

Units Produced 2 
Iteration - Delivery 

Team - Team Delivery 

Test Deleted Timestamp 2 
Lifecycle - Test Lifecycle 

Test - Test Lifecycle 

Test Created Timestamp 2 
Lifecycle - Test Lifecycle 

Test - Test Lifecycle 

Workday Start Timestamp 2 
Schedule - Planning 

Work Day - Day Lifecyle 

Workday End Timestamp 2 
Schedule - Planning 

Work Day - Day Lifecyle 

Amount of Available Workdays 2 
Schedule - Planning 

Work Day - Planning 

Amount of Open Work Items 2 
Backlog - Backlog 

Work Item - Work Item Count 

Amount of Work Items 2 
Backlog - Backlog 

Work Item - Work Item Count 

Work Item Function Point Estimate 2 
Estimate - Size Estimate 

Work Item - Work Item Estimate 

Work Item Story Point Estimate 2 
Estimate - Size Estimate 

Work Item - Work Item Estimate 
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Work Item Use Case Point Estimate 2 
Estimate - Size Estimate 

Work Item - Work Item Estimate 

Adjusted Work Item Story Point 
Estimate 

2 
Estimate - Size Estimate 

Work Item - Work Item Estimate 

Work Item Cost 2 
Financial - Cost 

Work Item - Work Item Financials 

Work Item Finished Timestamp 2 
Lifecycle - Work Item Lifecycle 

Work Item - Work Item Lifecycle 

Planned Work Item Finished Time 2 
Lifecycle - Work Item Lifecycle 

Work Item - Work Item Lifecycle 

Work Item Deployed Timestamp 2 
Lifecycle - Work Item Lifecycle 

Work Item - Work Item Lifecycle 

Work Item Start Timestamp 2 
Lifecycle - Work Item Lifecycle 

Work Item - Work Item Lifecycle 

Work Item Created Timestamp 2 
Lifecycle - Work Item Lifecycle 

Work Item - Work Item Lifecycle 
 

Table 8 – Inputs assigned to multiple aspects. 
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7. Aggregation 

In total, we identified 44 studies mentioning software development metrics. These papers were 

published during the time period 1989 to 2018. Together, these studies were written by 113 individual 

authors, using 166 distinct keywords. They were published in 37 different venues, facilitated by 12 

different publishers. Collectively, these studies mention a total of 191 software development metrics, 

targeting 10 different aspects of the software development process. This section shows a thorough 

investigation of these results. 

7.1 Venues  

Figure 4, shown below, illustrates the distribution of venues over publishers.  

   

Figure 4 - Distribution of Venues over Publishers 

 

7.2 Publishers 

Collectively, these 12 publishers facilitated 37 venues, shown below in table 9, alongside the amount 

of literary works that were included from that venue. 

Publisher Venue Works 

ACM Proceedings of the International Conference on Software Engineering 1 

ACM Journal of Software Engineering 1 
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ACM Transactions on Computers 1 

ACM Journal of Electrical and Computer Engineering 1 

ACM Journal of Model-Driven Engineering Lanuages and Systems 1 

ACM 
Journal of Object-Oriented Programming, Systems, Languages and 
Applications 

1 

CSE 
Proceedings of the International Workshop on Requirements Engineering 
and Testing 

1 

CSE Journal of Object Technology 2 

CrossTalk Journal of Defense Software Engineering 1 

Elsevier Journal of Information and Software Technology 1 

Elsevier Journal of Systems and Software 1 

Elsevier Journal of Computers and Industrial Engineering 1 

Elsevier International Conference on System Analysis and Modeling 2 

Hindawi International Journal of Industrial Engineering 1 

Hindawi Journal of Communication and Security 1 

IEEE Proceedings of Seventh International Software Metrics Symposium 1 

IEEE 
Proceedings of the International Workshop on Global Software 
Development 

1 

IEEE 
International Symposium on Emperical Software Engineering and 
Measurement 

1 

IEEE International Workshop on Software Measurement 1 

IEEE International Conference on Software Process and Product Measurement 1 

IEEE Conference on the Quality of Software Architectures 1 

IEEE Journal of Software Maintenance 2 

IEEE Transactions on Software Engineering 1 

IEEE Moratuwa Engineering Research Conference 1 

IEEE 
Proceedings of the International Conference on Software and System 
Process 

1 

IEEE 
Conference on Model-Based Methodologies for Pervasive and Embedded 
Software 

1 

IEEE Hawaii International Conference on System Sciences 4 

IEEE IEEE Software 3 

IEEE Agile Conference 1 

IEEE Conference on Software Engineering Techniques 1 

IJETAE International Journal of Emerging Technology and Advanced Engineering 1 

Inderscience International Journal of Agile Systems and Management 1 

Springer Annals of Software Engineering 1 

UKAIS Journal of Information Systems 1 

Wiley Journal of Software Improvement and Practice 1 

Wiley Journal of Software Practice and Experience 1 

World 
Scientific International Journal of Software Engineering and Knowledge Engineering 

1 

 

Table 9 - Venues and their Publishers 
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7.3 Papers  

Figure 5, shown below, illustrates the distribution of the included work over the years. This distribution 

shows a significant skew towards the later end of the chart, with an arithmetic mean at June of 2008. 

 

Figure 5  - Distribution of Included Work over Time 

 

7.4 Keywords 

The included work lists 166 distinct keywords, with an average of 4.8 keywords per paper. These 

keywords, and their occurrences are listed below in table 10, which is limited to showing the 25 most 

often used keywords. It is interesting to note the lack of overlap in the occurrences of these keywords, 

dropping to 1 after only 25 keywords. The complete list with keywords and their occurrences is listed 

in Appendix I. 

Keyword Occurrences 

Productivity 7 

Software Metrics 6 

Measurement 5 

Software 5 

Software Engineering 5 

Software Measurement 5 

Companies 4 

Costs 4 
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Programming 4 

Testing 4 

Agile 3 

Metrics 3 

Refactoring 3 

Scrum 3 

Agile Development 2 

Agile Software Development Process 2 

Case Study 2 

Coupling 2 

Efficiency 2 

Large Scale Systems 2 

Lean 2 

Lean Manufacturing 2 

Outsourcing 2 

Quality Assurance 2 

Software Quality 2 
 

Table 10 - Occurrences of 25 most Prevalent Keywords 

 

7.5 Authors 

The included work is written by 113 distinct authors. In table 11, shown below, the authors of the 

included work are listed, limited to showing the authors with the most included work. The list drops 

to 1 included work after 14 authors, and is thus cut off at 14. The complete list with authors and their 

works is listed in Appendix J. 

First Name Last Name Works 

Jeff Sutherland 3 

Zengyang Li 2 

Turgay Aytac 2 

Shekoufeh Kolahdouz-Rahimi 2 

Peng Liang 2 

Paris Avgeriou 2 

Ovunc Bozcan 2 

Mohammadreza Sharbaf 2 

Kevin Leno 2 

Howard Haughton 2 

Hessa Alfraihi 2 

Gul Calikli 2 
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Claes Wohlin 2 

Ayse Bener 2 

 

Table 11 – Authors with the most included work 

Figure 6, then, shows the distribution of authors over the included work, as well as their 

interconnectedness. 

 

Figure 6 - Authors per paper 
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7.6 Metric Quality Assessment 

The metrics that were discovered in the literature are listed in appendix K, alongside their quality 

assessments. These quality assessments were performed and discussed with a subset of the experts 

identified in chapter 4.  

7.7 Metric Distributions 

7.7.1 Chronological Distribution 
When looking at the origins of the discovered metrics, figure 7, shown below, shows the distribution 

of the metric’s introductions over the years. A complete table of which authors introduced which 

metrics in what year, is shown in Appendix D. This is a good-faith, best-effort attempt to trace each 

metric back to its original academic introduction, and is bound to have some inaccuracies. Note that 

this figure, and its accompanying appendix, does not include all original introductions for all metrics, 

as not every metric could be traced back to its original academic introduction, or no reasonable 

deductions could be made as to where it was first introduced. This graph shows the introduction of 

121 out of 197 metrics, for which the academic introduction could be deduced. 

 

Figure 7 - Distribution of metric Introductions over the years 
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When we relate the year of origin to the aspects those metrics measure, we derive figure 8 below. 

Note that, because every metric can potentially target more than one aspect, the numbers do not 

necessarily match the ones in the previous figure. 

 

Figure 8 - Distribution of metric Introductions over the years per aspect 

When relating the year of origin to the input groups at which their metrics look, we derive figure 9 

below. Note, again, that a metric can have multiple inputs, and each input can belong to a different 

group. These numbers thus do not necessarily match with the previous figures. 
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Figure 9 - Input Groups per Year of Origin 

 

7.7.2 Conceptual Distribution 
Figure 10 below shows the distribution of the encountered metrics over the different aspects of the 

software development process. 
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Figure 10  - Metrics per aspect 

Figure 11 below shows the distribution of the encountered inputs over the different axial encodings 

of the input groups. 

 

Figure 11  - Inputs per Input Group 

7.7.3 Strength Distribution 
Figure 12 below shows the amount of metrics that were found to have x out of 5 strength qualities. 

From this figure, we can deduce that only 23 out of 197 metrics could be deemed strong. 

 

Figure 12  -  Qualities per Metric 
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Figure 13 below, shows the distribution of strong and weak metrics within each aspect 

 

 

Figure 13  - Weak versus strong metrics 

7.7.4 Quality Distribution 
Figure 14 shows the distribution of metrics within the quality criteria. 

 

Figure 14  - Distribution of metrics within quality criteria 

7.7.5 Paper Distribution 
Figure 15 then shows the amount of metrics that each paper mentions, regardless of whether they 

are considered to be weak or strong. 
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Figure 15 - Metrics per paper 
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8. Team Performance Model 

In this section, we will introduce a new model for assessing team performance, based on the concepts 

discovered in the structured literature review, the discussions with experts, and the systematic 

mapping of their results. This model assesses the performance of a team along four different axes, 

being process, people, technical and product. These perspectives were derived from a final encoding 

pass over the aspects of software development. This encoding has yielded an additional perspective, 

called enterprise, which focusses on metrics aimed at measuring how well a whole organization is 

performing. This perspective is left out, however, of the model for team performance. 

Each of these perspectives has a single key metric that adheres to the SHOUT model of metric strength, 

and is thus completely outcome-oriented. Consequently, the resulting measurements tell an 

individual team whether or not they are performing well on an individual perspective, but do not tell 

us anything about how to improve it. Additional metrics are required to provide a team with the 

necessary pulls and levers to actively navigate towards becoming a truly high-performance team. This 

is, however, part of our future research as indicated in section 11.2. 

The rest of this chapter introduces the set of strong candidate metrics in section 8.1, and each of the 

perspectives and its key metric in more detail in section 8.2, after which we will outline the predicted 

input correlation between the four key metrics in section 8.3. 

8.1 Candidate Metrics 

First, figure 16 shows the set of metrics that were considered strong during the evaluation with 

experts, adhering to all five SHOUT qualities for metric strength, alongside the aspects of the software 

development process which they target. Note that aspects that do not have any metrics that can be 

considered strong, are left out of this overview. 
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Figure 16  - SHOUT metrics per aspect 

 

 

8.2 Perspectives 

8.2.1 Process 
According to Lean Manufacturing, the best manufacturing processes are optimized to reduce waste. 

In our team performance model, we state that a team’s process is performant when it maximizes 

added-value, while minimizing wasted resources. The strong metric of Process Efficiency, introduced 
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in section 4.2.5, measures the percentage of total time spent adding value, and is used as the key 

metric for the process perspective on team performance.  

 

8.2.2 People 
In our model of team performance, we hold true the axiom that the members of a team need to feel 

good about themselves and their company in order to become a high performance team.  The 

Employee Happiness metric, introduced in section 3.4.14.17, measures this sense of purpose, 

belonging and satisfaction that the experts believe is a necessary ingredient to high performance, and 

is used as the key metric for the people perspective team performance. 

 

8.2.3 Technical 
High technical performance allows a team to translate concepts into profitable products and services 

in minimal time. This maximization of speed, alongside the minimization of required effort, is perfectly 

encapsulated in the Small Correct Change Into Production metric introduced in section 4.2.4, and is 

thus used as the key metric for the technical perspective on team performance. 

 

8.2.4 Product 
Doing the right thing is equally important as (if not more important than) doing the thing right. High 

performance in the product perspective means maximizing the value in the eyes of the customers. The 

Net Promoter Score metric, introduced in section 3.4.14.11, measures how many more people love 

the product or service you’ve created, than the amount of people that hate it, and is used as the key 

metric for the product perspective on team performance.  

 

8.3 Input Correlation 

The key metrics introduced in the previous sections were chosen, not solely because they encapsulate 

their respective high-performance aspects closely, but also because their formulae share little to no 

input data-points. This is advantageous because this helps to isolate the cause-and-effect relationship 

between an organizations attempt to improve, and the difference in their measurement outcomes.  
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Figure 17 below shows the four key metrics alongside the identified input data-points, and shows little 

interconnectivity. The only shared input data-point is the timestamp at which a particular work-item 

is finished, which is used by both the Process Efficiency metric, and the Small Correct Change Into 

Production metric. However, the input data-point represents a very dissimilar concept in each of these 

metrics. In Process Efficiency, the finished timestamp marks the end of the process, and concludes the 

period of examination for that particular work-item, while in Small Correct Change Into Production, it 

marks the start of that process.  

 

Figure 17 - Key metrics and their input data-points 
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8.4 Tooling 

A web-based measuring tool has been created to facilitate the measurement of each of the four key 

metrics. In this section, we will quickly go over the capabilities of this tooling set. The tooling has been 

made available through https://www.diamondagile.net/la. 

 

Image 1 - Survey Maintenance  

Image 1 above shows how an organization can create an account and set up customer-facing surveys 

for the Net Promoter Score and Employee Happiness Score. Here, the user can specify the question 

that is presented to the customer, as well as whether the survey is currently enabled or not. The 

resulting survey pages are shown below in image 2 and 3.  

https://www.diamondagile.net/la
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Image 2 - Happiness Metric survey for Rabobank 

 

 

 

Image 3 – Net Promoter Score survey for Rabobank 
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At the same time, the platform allows for and details the submission of bulk uploaded data on stories, 

meetings, happiness scores and promoter scores. Image 4 below shows the detailing of the stories 

bulk upload, with its required JSON format and an example input file. 

 

Image 4 - Bulk upload format details 

Finally, these measurements can be used to generate a dashboard containing indications on how well 

the organization or team is doing on each of the key metrics. Image 5 shows a generated performance 

dashboard with fictitious, generated data. You will notice a fifth perspective here, called Enterprise. 

This perspective was added for the context of an entire organization, as opposed to a single team, and 

is thus not included in this thesis on team performance, while it is available in the online tooling 

module. The dashboard shows, for each of the five perspectives, whether the organization or team is 

performing good (white), bad (orange) or mediocre (yellow).  
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Image 15 - Generated dashboard 

Note that the tooling module is a work-in-progress, and has focussed primarily on authentication, 

authorization, API development and initial user experience for the duration of this thesis. In future 

work, the generated dashboard will require a substantial UX overhaul to fit in with the design of the 

web UI, and additional features will have to be added for generating dashboards for a particular 

timespan or sprint. At the time of delivering this thesis, Rabobank is about to start onboarding some 

+- 70 teams onto the platform for initial use.  
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9. Validation 

In this chapter, we will detail the execution of an initial and superficial validation of the newly devised 

model for team performance. The aim of this validation is to gauge the perceived clarity, relevance 

and completeness of the model among software development experts in the field. This validation was 

performed using a small Google Forms survey that was distributed via various online software 

development communities on Reddit, resulting in 34 answers from various professionals in the field 

of software development. These results are outlined below, and finally discussed at the end of this 

chapter. 

9.1 What kind of role(s) do you have within your organization? 
Figure 18 below shows the distribution of their roles within their respective companies. Here, 

respondents could select multiple options, and with a total of 65 selections over 34 responses, each 

respondent selected an average of 1.91 roles. 

 

Figure 18 - Respondent roles 

9.2 Does your organization measure the performance of your software   

development process in any way? 
Figure 19 below shows that in nearly 80% of the cases, the target organization measures the 

performance of the software development process in one way or the other. An additional 12 percent 

did not know, while only 8.8% signalled a definitive no. Here, respondents could only select a single 

answer. 
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 Figure 19 - Percentage of respondents measuring software development performance 

9.3 Does your organization measure the performance of your software 

development performance? 
For the respondents that indicated that their software development process performance was 

measured, 96% indicated that the performance was measured on the level of their team. Individual, 

departmental and organizational measures were less common, with 38%, 76% and 34% respectively, 

as shown below in figure 20. Here, again, respondents could select multiple options, and with 64 

responses over 34 respondents, each respondent selected an average of 1.88 options. 

 

Figure 20 - Measurement granularity 

9.4 In terms of a gain in efficiency, how much of an increase has the 

application of these measurements brought you? 
In terms of the fruits of their labour, over half of all respondents signalled not knowing how much 

more performant their software development process has become as a result of using the 
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measurements, as shown below in figure 21. For those who could give an indication, it seems like a 

10% to 100% increase in performance was most prevalent. Here, respondents could only select a 

single option, and the total amount of responses is 27. The discrepancy between 27 and 34 is due to 

the fact that those who signalled not knowing whether or not their performance is measured, or 

signalled a definitive no (7 people in total), were not asked this question. 

 

 Figure 21 - Measurement application advantages 

9.5 What software development method does your team use? 
The overwhelming amount of respondents used Scrum or Kanban as their software development 

method, with over 80% of the results combined, as shown below in figure 22. Here, again, the total 

amount of responses equals 27, as respondents could only select a single software development 

method. 
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Figure 22 - Software development methods 

 

 

9.6 What software development metrics were used in their software 

development process? 
When asked “What software development metrics were used in their software development process”, 

the answers denoted below in table 12 were provided by the respondents. This question was asked 

to see if the structured literature review, as well as the expert inquiry, had failed to identify other 

industry-used metrics. These responses, however, did not identify any new metrics or concepts.  

The concepts that have been mentioned have been encoded to show story point estimates, velocity, 

metrics related to cycle-times, work-in-progress, test metrics, and others. In total, story point 

estimates were mentioned 22 out of 26 times. This is not surprising, as 22 out of 27 people signalled 

using Scrum or Kanban. Similarly, 16 out of 26 responses mentioned story point velocity. Metrics that 

relate to cycle-times, such as lead-, queue-, value-added-, and interrupted-times, were mentioned in 

14 out of 26 responses. Work-in-progress metrics, or ones that limit them, were mentioned in 12 out 

of 26 responses, while testing related metrics were mentioned in only three responses. Finally, metrics 

such as the Net Promoter Score, Overtime per Iteration, On-Time Delivery, Burndown Rate, Discovered 

Effort, Function Points, Targeted Value Increase, and Discarded Stories were only mentioned once. 

Story points and velocity. 

Velocity, story point and hours spent 

Story points, story point velocity, burndown rate, work in progress and cycle time 
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Story points, and velocity per sprint and hours. 

I am not sure about all of them but I suspect just the regular scrum stuff is used by our teams, like 
story point estimates and velocity and time spent per story etc. 

Story points and development time 

Story points and velocity, work in progress, net promoter scores, on-time delivery. 

Test coverage, test growth as opposed to source code growth, and standard Scrum/Kanban things 
like story points and work-in-progress. 

The usual Kanban things like flow, amount of stories in a swimlane, size estimates, etc. 

Things like cycle time, value added time, work in progress, time spent in meetings, overtime per 
iteration, story points and velocity. 

We measure flow, the amount of stories that are in each swimlane simultaneously, the average 
cycle time for stories, and we do effort estimations in story point. 

Story points. 

We measure story points and story point velocity, the amount of work in progress, how long each 
story is in a particular state, how long it’s on the backlog before its included in a sprint, how many 
sprints it takes on average to implement a story, and how often we change story point estimates 
during a sprint (discovered effort). 

We mainly use story points, but for some legacy projects we also still employ function points. 

Story points. 

We restrict the amount of work in progress, and estimate the effort required in terms of story points. 

We measure code coverage, the growth of tests versus the code base, and the required time to run 
the entire test base. 

Work in progress, story points, velocity, average time spent in swimlane. 

Story points, velocity. 

We measure how long a story is in a particular state, how many stories were in a particular state at 
the same time, how often a state was at "full-capacity", the average cycle-time for a story, how long 
a story has had to wait before being picked up, and how many stories are thrown away. 

Unit test coverage, how many of the builds during the day are successful, we measure our velocity 
and the growth in our velocity. We also have stuff like PMD for quality assessments. 

Story points and the sprint velocity. 

The amount of work that is in progress at the same time, the story points and our velocity. 

Story point velocity and hours spent developing a story 

We measure velocity, story points, maximize swimlane capacity, cycle time and hours spent on the 
level of teams. 

Story point estimates, hours spent, remaining effort and velocity. 

 

Table 12 - Used software development metrics 

9.7 How would you assess the strength of a particular software development 

metric? 
Similarly, the question “How would you assess the strength of a particular software development 

metric?” yielded the following responses, denoted below in table 13. This question was asked to 

identify additional qualities of strong metrics that the experts might have overlooked. The quality of 

effectiveness was mentioned an overwhelming amount of times, with 17 out of 27 responses 

mentioning the quality in one form or another. 4 out of 27 respondents looked for adoption of the 
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metric in the industry, while only 2 mentioned the impact that measuring it would have on the 

performance of the team under investigation. Similarly, only 2 respondents mentioned simplicity or 

intuitiveness of the metric. Additionally, 3 respondents mentioned validity as a primary quality for 

metric strength. Finally, 3 respondents mention the quality of usefulness or applicability.  

We would expect a strong metric to be widely adopted and to have proven itself in the industry. 

Proven effectiveness. 

How well it works in practice, so if it yields results. 

How ubiquitous it is in the field. 

How well they work. 

How well the measurements correspond with the reality. 

Simplicity and effectiveness. 

I feel like you should be able to notice growth fairly quickly once adopting a metric. If it does not 
help soon, you should let it be. 

How applicable the results are to the problems we face. 

If big tech companies are using it. 

How much impact it has on the performance of a team. 

How intuitive it is and how accurate the results are. 

The impact on the process. 

A strong metric should have meaningful, measurable impact on your performance. If you cannot 
measure that the adoption of the metric has brought you an increase of performance, the metric is 
weak; or at least it's weak in your context. 

Theoretical validity. 

How much it has improved our process. 

I would not know but I would usually just do whatever other successful teams are doing. 

If it's academically validated or has been shown in industry to be beneficial. 

We look at how well we can use the results to improve our process. 

How good the results are from using it. 

I think the strength of a metric comes from the benefits it provides for the process. If it does not 
bring enough benefit, it's not a very strong metric. 

How effective it is. 

Research. 

How well they work when applied to your process. 

How useful it is for management and the teams. 

Usefulness to upper management. 

How much better the process is when they’re used. 

 

Table 13 - Metric strength assessment qualities 

9.8 Relevance 
Figure 23 below shows the individual responses on the perceived relevance of each of the five 

qualities. 
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Figure 23 - Relevance of SHOUT qualities 

 

9.9 Clarity 
In terms of clarity of definition, all of the qualities were received well. Figure 24, shown below, shows 

the individual results.  

 

Figure 24 - Clarity of SHOUT quality definitions 

9.10 Completeness 
 

Figure 25, shown below, shows how well the respondents think the five qualities encompass 

everything that a strong metric should have. 



105 
 
 

 

 

Figure 25 - Perceived completeness 

 

9.11 Summary 
With a total of 34 respondents, the set is too small to draw any significant conclusions from our 

preliminary validation. Additionally, the participants were drafted from online software development 

communities on Reddit, and were subsequently not validated in terms of whether they actually were 

software development professionals or not. While this leads to a validation that might not yield any 

conclusive results on the model’s validity, it is an interesting first step towards gauging the relevance, 

clarity and completeness of the model.  

It is surprising to see that a significant proportion of respondents  (21%) signalled not knowing whether 

they measure performance, or definitively stating that they don’t measure performance at all. 

Similarly, over half of the respondents (51%) who did measure performance, had no idea about what 

they had factually gained in doing so.  

The open questions did not yield any additional software development metrics, which yields us some 

confidence in having a fairly exhaustive set - especially considering the largest systematic literature 

review that we found on the subject had only discovered 43 software development metrics, as 

opposed to our set of 197 metrics. The second open question did, however, mention the quality of 

effectiveness an overwhelming amount of times. At this point in time, it is difficult to say with certainty 

whether effectiveness, as meant by the respondents, corresponds with the outcome-oriented quality 

in the SHOUT model for metric strength. While there are definite similarities between the two, we can 

only be certain after a proper discussion with the advocates of effectiveness. 

In terms of relevance, the model was received fairly well. The qualities of simple, hard-to-game and 

outcome-oriented showed significant positive results, with median scores of 4.5, 5 and 5 respectively. 

The universal and transparent qualities, however, were only received as fairly relevant, with median 
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scores of 3.5. In terms of Net Promoter Scores, the qualities received a score of 46%, 93%, 83%, 10% 

and 23% respectively, which seems to support the same conclusion. Similarly, in terms of clarity, the 

model was received extremely well. Here, all qualities have a median score of 5, and Net Promoter 

Scores of 100%, 100%, 63%, 83% and 86% respectively. Finally, the model was perceived as fairly 

complete as well, with a median score of 4, and a Net Promoter Score of 56%.  
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10. Discussion 

In this chapter, we discuss the findings of our study. We start with a discussion of the structured 

literature review results, the expert inquiry, and the systematic mapping, followed by a discussion of 

the SHOUT model for metric strength and the model for team performance, and we finish the chapter 

by listing the threats to the validity of these results. 

10.1 Metrics 

10.1.1 Structured Literature Review 
The structured literature review yielded a large set of metrics, hinting at a large body of knowledge 

for software development metrics. The collected work, spanning more than 40 individual papers on 

the subject and over 1000 potential candidates, shows a healthy distribution over venues and 

publishers, giving us no reason to suspect any form of venue or publisher bias.  

The study found 197 individual metrics, which is more than 4.5 times as many as the largest literature 

review on the subject that we found (P1.24), giving us adequate reason to believe that our current 

work has added significant value to the field of measuring software development processes, by the 

results of the structured literature review alone. This seems to have been a necessary endeavour, 

seeing as the resulting set of keywords hint at an industry that lacks a clearly defined lexicon of 

standardized terms, with lots of synonyms and very little overlap between papers. Similarly, when 

looking at the set of authors working on the included work, we see that they rarely publish more than 

one paper on the subject, with the most prevalent expert being Jeff Sutherland at three included 

papers. This also hints at a field that lacks well-known and prominent experts on the subject. Given 

the fact, however, that our inclusion criteria stated that a paper should mention a new, previously 

unmentioned software development metric, we cannot be all too sure about the latter two 

conclusions. 

Surprisingly, no golden age of software development metric research can be identified, as the field  

has seen continuous and consistent attention since its inception. The distribution of metric mentions 

does, however, show a focus of research on complexity, quality and efficiency metrics, with 146 

metrics targeting just these three aspects of the software development process. Similarly, a significant 

amount of metrics seem to have input data-points coming from work-items and their lifecycle, as well 

the source code, with 52 out of 118 inputs originating from just these three input categories. 
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In terms of metric strength, according to the newly introduced SHOUT model of metric strength, it is 

surprising to see that five out of ten aspects failed to yield any strong metrics. Even more surprising is 

the fact that complexity and quality are among them, while 98 such metrics were identified. While we 

expected this to be because they were not classified as universal (and thus only adhering to a SHOT 

model of metric strength), we found that most often, they were not classified as outcome-oriented 

instead. This is not surprising, as code quality and complexity metrics can be excellent tools to 

maintain a high level of maintainability and clarity, but optimizing them does not necessarily correlate 

with increased business value. Similarly, such metrics can fairly easily be gamed, with various adverse 

effects. The lines of code per method metric, for example, can be kept artificially low by limiting it to 

one per method, but this might severely hurt readability and maintainability. The efficiency aspect, 

however, has yielded 12 strong metrics, most of which come from LEAN software development or 

manufacturing. Most of these metrics target various aspects of the life-cycle of a work-item (e.g. lead-

time, queue-time, cycle-time, interrupted-time, and value-added-time). Similarly, the Work-in-

Progress metrics that were encountered in the process aspect of software development, also have 

their roots in LEAN manufacturing or software development.  

According to the distribution of qualities over metrics, the hard-to-game quality appears to be the 

hardest quality to inhibit for a metric, with just 26.3% of the encountered metrics adhering to it. 

Similarly, only 31.4% of the encountered metrics have shown to be outcome-oriented, making it the 

second hardest quality to adhere to. Finally, just 23 out of 197 metrics can be considered strong, being 

only 11.6% of the entire set of encountered software development metrics. This hints at the necessity 

of an accurate model for metric strength, as well as the need to keep quality in mind when devising 

new software development metrics. While the review has yielded a large set of metrics, it has yielded 

no model for determining metric strength or quality. The goal-question-metric model came closest, 

but focusses on what makes a metric good for a particular organization’s context instead. A model for 

metric strength is thus a welcome addition to the field of software development metrics. 

10.1.2 Expert Inquiry 
The expert inquiry was done with a small group of experts, yet the group consisted of very prominent 

and prevalent experts in the field, with lots of experience and expertise between them. We found that 

it was surprisingly easy for a small group of experts to unanimously and quickly determine whether or 

not a metric could be considered strong or not, even without the SHOUT model for metric strength in 

place. 
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The inquiry yielded six additional metrics that were not identified through the structured literature 

review and its snowballing process. It is interesting to note that all six metrics could be considered 

simple, hard-to-game, outcome-oriented and universal. Now that their definitions, as well as their 

data-points have been clearly and unambiguously defined in this work, they can also be considered to 

be transparent. This means that all of the metrics retrieved from the expert inquiry can now be 

considered strong metrics, and can now be used by software development teams to determine some 

aspects of their performance. 

Context Concurrency, Priority Focus and Degree of Swarming show clear similarities with Kanban, 

where the amount of work-in-progress is limited in order to prevent an abundance of context 

switching and to stimulate a focus on the highest current priority. Additionally, Degree of Swarming 

shows similarities with the rise of pair programming, and the move away from the stereotypical 

independent and anti-social software developer. Small Correct Change Into Production and Innovation 

Income can both be considered as very simple, fast indicators of general technical and organizational 

performance, while in-depth analysis would require other, more complex and time-consuming 

metrics. Finally, it is interesting to note that Process Efficiency is a strong metric, while all of its inputs 

can also be considered strong, hinting at a very promising application that will need to be validated in 

future empirical research. 

10.1.3 Systematic Mapping 
The systematic mapping has proven to be very helpful in analysing and interpreting the results of the 

structured literature review and the expert inquiry. While the axial-encoding would most likely have 

yielded different results if performed by other researchers, we feel like it has fulfilled its purpose 

adequately. At the same time, however, we feel very strongly that potentially many more patterns 

and insights can be extracted from the systematic mapping, or with a potentially different axial-

encodings. For this reason, we have decided to publish the data set in its entirety on 

https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping.   

10.2 Models 

10.2.1 Model for Metric Strength 
The SHOUT model for metric strength was received fairly well by the participants of the small 

validation survey. In their responses, the participants signalled the definitions of the qualities to be 

very clear, with high median values, just as the relevance of these qualities. In the end, the model was 

https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping
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thought to reasonably encompass every quality that a metric should have in order to be considered 

strong, with a median score of 4 and a Net Promoter Score of 56%. 

The model does, however, need a larger-scale validation in the industry, with a larger set of verified 

participants, whereas the current validation was just a small probe into the general reception of the 

model. 

10.2.2 Model for Team Performance 
The model for team performance shows very little correlation based on shared input data-points, with 

only the timestamp at which a work-item has finished being used for both Small Simple Change Into 

Production and Process Efficiency. As stated in chapter 8, however, the input data-point is used for 

widely different things, and represents different concepts in both metrics. The resulting model has, 

however, not been validated in this study, and so reception and performance of the model is difficult 

to gauge.  

10.3 Threats to Validity 

In this section, we will analyse the apparent threats to the validity of our research.  In their work, Zhou 

et al. (2016) identified various common threats to the validity of systematic literature reviews in the 

field of software engineering. The following section details the common threats to validity that are 

applicable to our context, and mentions the considerations that we have adhered to in order to ensure 

the validity of our work to the largest feasible extent.  

10.3.1 Non-specification of settings 

In order to circumvent the threat of non-specification of settings, we have ensured to properly 

document and mention the venues,  search strings, and query settings with which the searches were 

performed. Due to the size and scope of the snowballing process, and the limited resources available 

to us in this study, we have had to make some concessions regarding the reproducibility of the 

snowballing process, which has in turn lowered the validity of our results slightly.  

10.3.2 Inappropriate search methods 

Subsequently, the threat of inappropriate search methods has been circumvented by performing the 

searches automatically, yet following the automated search with a manual snowballing procedure, in 

order to ensure that we did not miss some large part of the body of knowledge.  
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10.3.3 Incomprehensive venues or databases 

The incomprehensive venues or databases threat, states that the review might miss relevant work due 

to not including important resource databases. To circumvent this threat to some extent, the search, 

and subsequent snowballing, has been duplicated on multiple academic search engines. However, due 

to time and resource constraints, this effort duplication was limited to only two of the most prevalent 

academic search engines available today, being Google Scholar and Scopus. Additionally, we have 

made sure to accurately and appropriately document our inclusion and exclusion criteria, as to ensure 

that the work being performed is valid and reproducible. 

10.3.4 Culture bias 

In order to circumvent the culture bias threat, we have ensured to include any work that meets our 

inclusion criteria, regardless of apparent author nationality or cultural heritage. Because some of this 

bias may be unconsciously exerted, we have attempted not to inspect or make deductions about the 

cultural background of a paper’s author(s), until we had determined whether or not the paper meets 

our inclusion criteria. Once inclusion criteria were met, the work could no longer be excluded from 

the results based on nationality or cultural heritage.  

10.3.5 Hidden work 

While we have set out to include all of the relevant work, in some cases this was simply not possible 

due to paywall protection. We have attempted to retrieve such papers using the University of 

Utrecht’s proxies, and contacting the authors directly if those proxies could not successfully retrieve 

the work either. However, due to the limited availability of time and resources, work of unresponsive 

or unwilling authors has ultimately not been included, thus marginally reducing the validity of our 

results. 

10.3.6 Primary study duplication 

In order to circumvent the threat of primary study duplication, papers that were included in more than 

one result set, or published in more than one journal, have been manually identified and removed. 

Additionally, a prevention module in the systematic mapping application has actively ensured that no 

duplicate work could have been inserted into the systematic mapping. 

10.3.7 Publication bias 

The publication bias, which states that positive results are more likely to be published than negative 

results, as well as the fact the reproduction papers are less likely to be published than new work, was 

not circumvented in this study. This is largely due to the fact that academia has only recently 
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acknowledged this problem and brought forward solutions in order to combat it (for instance by 

launching journals that actively aim to publish papers regardless of whether their results were 

successful or not, or whether the paper is a reproduction or not). Because our systematic review ought 

to be timespan-agnostic, we have concluded that eliminating this threat would do substantially more 

harm than good to the validity of our results. Thus, we have still adhered to the inclusion criteria of 

work being peer-reviewed and published, instead of including grey/white work, or limiting our search 

to result- and type-agnostic journals. 

10.3.8 Subjective quality assessment and lack of expert evaluation 

The subjective quality assessment bias is a significant threat to the validity of our results. While you 

would prefer quality assessment to occur based on prior research, no such prior work was found to 

exist for every discovered metric. In order to ensure that the quality assessments exhibit the least 

amount of subjectivity, we have validated the resulting model by attempting to reach consensus 

within the focus-group of prevalent experts in the field. Using the same validation construct, the lack 

of expert evaluation threat is circumvented. 
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11. Conclusion 

The strength of Agile software development has largely been acknowledged by academia and industry, 

but an accurate way of measuring the exact benefits of adopting Agile has yet to be uncovered. In this 

chapter, we conclude our attempt to develop a new model for measuring software development team 

performance, and describe its impact on the field. Here, we also attempt to answer our primary 

research question and its sub-questions, and also outline some limitations in the current work. Finally, 

we posit some potential future work, following the implications of the current work.. 

11.1 Research Questions 

11.1.1 Which software development metrics already exist today? 

In this study, we performed a structured literature review as to determine what software 

development metrics exist today, resulting in 191 software development metrics. In order to ensure 

that no metrics were overlooked, we performed an expert inquiry in which we asked prevalent experts 

in the field of software development whether they thought the resulting list was complete, resulting 

in an additional 6 metrics.  

11.1.2 What constitutes a strong software development metric? 

The results of this endeavour were structured in a systematic mapping, and discussed with the experts 

in order to determine what makes them strong or weak. From this discussion, a new model for metric 

strength was developed, identifying five qualities that a metric should possess in order to be 

considered strong. These qualities state that a strong metric should (a) be simple to explain and simple 

to measure, (b) be difficult to optimize without increasing business value (c) correlate strongly with 

increased business value when optimized, (d) be useable in multiple contexts, without confusing edge-

cases, and (e) have an unambiguous and transparent definition of its data points, as well as how those 

data points are used in its calculations. We have dubbed these qualities simple, hard-to-game, 

outcome-oriented, universal, and transparent respectively, and together, these qualities spell the 

acronym SHOUT.   

11.1.3 What set of software development metrics is most suitable for measuring team 

performance? 

Finally, this model was used to identify strong metrics in the result set of the structured literature 

review and the expert inquiry. From this set of strong metrics, we have created a new model for 
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measuring software development team performance. This model is based on the Process Efficiency, 

Employee Happiness, Net Promoter Score and Small Simple Change Into Production metrics, targeting 

the process, people, product and technical perspectives of the software development process 

respectively. This model has not been validated in this study, but initial analysis have shown that little 

correlation between these metrics is to be expected, based on their shared input data-points.  

11.1.4 How can we measure the performance of a software development team? 

Finally, by answering our three sub-questions, we are able to answer our primary research question 

of how we can measure the performance of a software development team. The final answer to this 

question is thus to use strong software development metrics, utilizing independent input-data-points 

in order to isolate cause-and-effect relationships, while targeting multiple aspects of the software 

development process. In this thesis, we have presented a model for assessing the strength of a 

software development metric, as well as a model for measuring team performance, based on strong 

metrics, sharing little input data-points and targeting four different aspects of the process. These 

models can help organizations assess the performance of their software development teams. Finally, 

we have introduced automated tooling in order to help organizations measure these four key metrics.  

11.2 Limitations 

11.2.1 Limited Google Scholar starting set 

There are several limitations in our execution of this research. First and foremost, we have had to 

make some concessions as to how thorough our manual search for candidate work could be. Here, we 

have limited the initial collection of candidate work from Google Scholar to just the first 10 results, 

instead of incorporating the whole result set. This may have, in the end, led to less valid results, due 

to not having exhausted the entire existing body of knowledge. However, as we have found more than 

4.5 times as many metrics as the largest literature review we have found on the subject, we feel very 

confident that the extent to which these factors threaten the validity of our results is fairly minimal. 

11.2.2 Limiting inclusion criteria 

Similarly, our inclusion criteria of needing to mention a new software development metric, as opposed 

to just any software development metric, has a significant influence on the validity of our results. The 

possibility exists that we have missed a substantial portion of the existing body of knowledge, due to 

potential separate clusters that our practice may have missed due to this inclusion criteria. A 

reproduction study would be wise to broaden this inclusion criteria to mentioning any software 
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development metric, but we fear that this will substantially increase the effort required to properly 

perform the study. 

11.2.3 Initial focus on efficiency 

Additionally, we set out to perform this literature review with an initial focus on efficiency metrics. For 

this reason, the search queries that were executed on the Google Scholar and Scopus search engines, 

were deliberately biased to target software development metrics targeting efficiency. Only after 

having performed the searches, and having seen the amount and quality of the results, did we decide 

to register all software development metrics. This bias in search queries might have caused us to mis 

significant clusters of metrics in the body of knowledge on software development metrics.  

11.2.4 Limited model validation 

Finally, the validation of the SHOUT model for metric strength cannot be considered thorough and 

complete. The participants of the validation survey were reached through social-media, and therefore 

not verified to be software development professionals. Additionally, the model for team performance 

has not seen any validation in this study at all, which calls for future work investigating the 

effectiveness of the model in, for example, separate case-studies.  

 

11.3 Future Work 

11.3.1 Thorough model validation 

With this study, we have set a first step towards enabling organizations to measure the performance 

of a software development team. We have not, however, proven that this model for team 

performance is accurate or valid. In future work, we plan to validate the model in an industry setting 

using case-studies in which the model’s accuracy is validated. Only after this has happened, can 

mainstream adoption potentially occur.  

Similarly, the validation of the SHOUT model for metric strength has yet to see a thorough validation 

of its capacities. While we have performed a small survey on these qualities, this was solely meant as 

an initial probing into their perceived clarity, relevance and completeness, and additional, more 

thorough validation is required in order to draw any significant conclusions. 
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11.3.2 Additional analysis of the systematic mapping 

Additionally, we have acquired and systematically mapped a substantial part of the available body of 

knowledge on software development metrics. While this mapping served its purpose in our research 

more than adequately, we feel very strongly that there are additional patterns and insights to be 

discovered within it. We have therefore opted to open-source the results, in order to enable other 

researchers to draw their own conclusions from them. 

11.3.3 Investigate the effectiveness quality 

The preliminary validation of the model for metric strength brought forward an additional quality that 

many seem to associate with strong software development metrics, namely effectiveness. Future work 

could benefit from determining what exactly respondents mean with effectiveness, whether it is the 

same as outcome-oriented, or whether it might be a potential sixth quality for strong software 

development metrics. 

11.3.4 Multidisciplinary approach 

Additionally, it might prove beneficial to approach future work from a multi-disciplinary perspective, 

as the fields of psychology, sociology and even anthropology might have valuable insights into what 

qualities contribute to the strength of a metric. In this study, a focus on software development was 

used, but a broader view might yield a more robust and universal model for metric strength or team 

performance.  

11.3.5 Broader inclusion criteria 

Finally, the inclusion criteria of having to mention new software development metrics, as opposed to 

just any software development metric, is a significant blow to the validity of our results. While we 

have found more than 4.5 times as many software development metrics than any other literature 

review we have found on the subject, we feel that we will still have potentially missed numerous other 

metrics due to this inclusion criteria. A thorough reproduction of this literature review will have to 

broaden this inclusion criteria to state that a work will be included if it mentions any software 

development metric, but this will increase the required effort, time and resources substantially. 
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Succi, 2008 

101 
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52 
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Maurer & Martel, 
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32 
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31 

GS.4.08 
Introducing an agile process to an 
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Cohn & Ford, 2003 282 

GS.4.09 
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Barza, Franca &  
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47 
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Appendix B - Scopus Candidates 

Query Candidate Title Reference Citations 

  

Software Development Metrics 

  

SC.1.01 
Key software metrics and its impact on 
each other for software development 
projects 

Bhardwaj & 
Rana, 2016 

2 

SC.1.02 
Moving forward with digital reliability 
assessments 

Jackson, 2015 0 

SC.1.03 
Evidence-based decision making in lean 
software project management 

Fitzegrald, Musial 
& Stol, 2014 

13 

SC.1.04 
Challenges and novel solutions for SoC 
verification 

Oddone & Chen, 
2014 

0 

SC.1.05 
Towards a metric suite proposal to quantify 
confirmation biases of developers 

Calikli, Bener, 
Aytac & Bozcan, 

2013 
5 

SC.1.06 
Some throughput metrics for (SOA) 
application development 

Choobineh, 
Anderson & 
Barry, 2009 

3 

SC.1.07 
Software reliability assessment based on 
agile software development metrics 

Dascula et al., 
2005 

4 

SC.1.08 Testing: Organization and evaluation 
Burgin & 

Debnath, 2008 
6 

SC.1.09 Quality of software that does not exist 
Burgin & 

Debnath, 2005 
3 

SC.1.10 
Software modelling of S-Metrics Visualizer: 
Synergetic interactive metrics visualization 
tool 

Dascula et al., 
2005 

1 

SC.1.11 
Product and Project Challenges in 
Electronic Commerce Software 
Development 

Hevner, Collins & 
Garfield, 2002 

14 

SC.1.12 
Performance evaluation metrics for 
information systems development: A 
principal-agent model 

Banker & 
Kemerer, 1992 

99 

SC.1.13 
Object-oriented graphical information 
systems: Research plan and evaluation 
metrics 

Moreau & 
Dominick, 1989 

55 

  

Agile Efficiency Metrics 

  SC.2.01 

A multi-objective binary-encoding 
differential evolution algorithm for 
proactive scheduling of agile earth 
observation satellites 

Li & Li, 2019 0 
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SC.2.02 
Building a rig state classifier using 
supervised machine learning to support 
invisible lost time analysis 

Coley, 2019 0 

SC.2.03 
Plant effectiveness improvement of overall 
equipment effectiveness using autonomous 
maintenance training: - A case study 

Achara, Garg, 
Singh & Gahlaut, 

2019 
0 

SC.2.04 
Optimization model and algorithm for 
dynamic service-aware traffic steering in 
network functions virtualization 

Pham, 2018 0 

SC.2.05 
Maintaining Electric System Safety Through 
An Enhanced Network Resilience 

Dehghanian & 
Aslan, 2018 

16 

SC.2.06 

Measuring and improving testability of 
system requirements in an industrial 
context by applying the goal question 
metric approach 

Beer & Felderer, 
2018 

1 

SC.2.07 
Optimisation of a sustainable 
manufacturing system design using the 
multi-objective approach 

Nujoom, Wang & 
Mohammed, 

2018 
5 

SC.2.08 
The impact of integrating agile software 
development and model-driven 
development: A comparative case study 

Alfraihi, Lano 
Kolahdouz-

Rahimi, Sharbaf 
& Haughton, 

2018 

0 

SC.2.09 
Comparative case studies in agile model-
driven development 

Lano, Alfraihi, 
Kolahdouz-

Rahimi, Sharbaf 
& Haughton, 

2018 

 0 

SC.2.10 
Real-time detection of under-reamer 
failure: An example of agile data analytics 
development and deployment 

De Wardt, 
Chapman & 

Behounek, 2012 
4 

SC.2.11 
“Effing” the military: a political 
misunderstanding of management 

White, 2017 1 

SC.2.12 
Performance estimation of firms by G-L-A 
supply chain under imperfect data ( Book 
Chapter) 

Sahu & Sahu, 
2017 

7 

SC.2.13 
Ball drive configurations and kinematics for 
holonomic ground mobility 

Gebre & 
pochiraju, 2017 

2 

SC.2.14 
Mathematical modelling, simulation and 
validation of a boiler drum: Some 
investigations 

Sunil, Barve & 
Nataraj, 2017 

12 

SC.2.15 
Dynamic impact of the structure of the 
supply chain of perishable foods on logistics 
performance and food security 

Castro & Jaimes, 
2017 

7 

SC.2.16 
A simplex optimization technique for real-
time, reconfigurable transmitter power 
amplifiers 

Tsatsoulas, 
Barkate, Baylis & 

Marks, 2016 
2 
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SC.2.17 
A Programmable Analog-to-Information 
Converter for Agile Biosensing 

Wang, Jin & Xu, 
2016 

1 

SC.2.18 
Anticipating resource management and 
QoE provisioning for mobile video 
streaming 

Triki, El-Azouzi & 
Haddad, 2016 

9 

SC.2.19 
15 Years of Software Regression Testing 
Techniques - A Survey 

Rosero, Gómez & 
Rodríguez, 2016 

14 

SC.2.20 
Beyond energy-efficiency: Evaluating green 
datacenter applications for energy-agility 

Subramanya, 
Mustafa, Irwin & 

Shenoy, 2016 
5 

SC.2.21 
An agile, measurable and scalable approach 
to deliver software applications in a large 
enterprise 

Grimaldo, 
Perrotta, 

Corvello & 
Verteramo, 2016 

2 

SC.2.22 
Novel fiber fused lens for advanced optical 
communication systems 

Chesworth et al., 
2015 

0 

SC.2.23 
The effect of agile workspace and remote 
working on experiences of privacy, 
crowding and satisfaction 

Keeling, 
Clements-
Croome & 

Roesch, 2015 

5 

SC.2.24 
An optimal allocation method for virtual 
resource considering variable metrics of 
cloud manufacturing service 

Cui, Ren, Zhang & 
Wu, 2015 

5 

SC.2.25 
Cross-layer security management 
framework for mobile tactical networks 

Song, Tang, 
Mason & Wei, 

2013 
3 

SC.2.26 
Interoperability for virtual manufacturing 
systems 

Lee, Lee, Riddick, 
Libes & Kibira, 

2013 
5 

SC.2.27 
Port efficiency modelling in the post 
concessioning era: The role of logistics 
drivers, agile ports and other perspectives 

Onyemechi, 2013 0 

SC.2.28 
Quality evaluation for Model-Driven Web 
Engineering methodologies 

Domínguez-
Mayo, Escalona, 
Mejías, Ross & 
Staples, 2012 

26 

SC.2.29 
An approach to assessing virtual 
environments for synchronous and remote 
collaborative design 

Germani, 
Mengoni &  

Peruzzini, 2012 
17 

SC.2.30 
Risk-driven security metrics in agile 
software development - An industrial pilot 
study 

Savola, Frühwith 
& Pietikäinen, 

2012 
17 

SC.2.31 A lean, green, school bus making machine Hughes, 2012 2 

SC.2.32 Stochastic overall equipment effectiveness 
Zammori, Braglia 
& Frosolini, 2011 

57 
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SC.2.33 

The Operations-Time Chart: A graphical 
tool to evaluate the performance of 
production systems - From batch-and-
queue to lean manufacturing 

Cuatrecasas-
Arbos, Fortuny-
Santos  & Vitro-
Sanchez, 2011 

35 

SC.2.34 
Collaborative routing, scheduling and 
frequency assignment for wireless Ad Hoc 
networks using spectrum-agile radios 

Wang & Garcia, 
2011 

13 

SC.2.35 
The theory of relative dependency: Higher 
coupling concentration in smaller modules 

Koru & El Emam, 
2009 

7 

SC.2.36 
Collaborative Routing, scheduling and 
frequency assignment for Wireless ad hoc 
Networks using spectrum-agile radios 

Wang & Garcia-
Luna-Aceves, 

2011  
13 

SC.2.37 
Efficacy of lean metrics in evaluating the 
performance of manufacturing systems 

Khadem, Ali & 
Seifoddini, 2008 

44 

SC.2.38 
Business flexibility and operational 
efficiency -making trade-offs in service 
oriented architecture 

Zhang & Tanniru, 
2005 

6 

SC.2.39 
SimEC3: An innovative simulation based 
acquisition tool for the France's 
cooperative fighting system 

Wiart, 
Peyronney, 

Moity & 
Pradeilles, 2002 

1 

SC.2.40 
Agile computing: Bridging the gap between 
grid computing and ad-hoc peer-to-peer 
resource sharing 

Suri er al., 2003 35 

SC.2.41 
A capability maturity model-based 
approach to the measurement of shared 
situational awareness 

Bates, 2003 0 

SC.2.42 
Using metrics in agile and lean software 
development a systematic literature review 
of industrial studies 

Kupiainen, 
Mäntylä & 

Itkonen, 2015 
90 

  

Scrum Productivity Metrics 

  

SC.3.01 
Methods and metrics for estimating and 
planning agile software projects 

Canedo & Costa, 
2007 

0 

SC.3.02 
Exploring the individual project progress of 
scrum software developers 

Scoot & Pfahl, 
2017 

0 

SC.3.03 
Transition from plan driven to SAFe®: 
Periodic team self-assessment 

Razak, Noll, 
Richardson, 

Canna & 
Beecham, 2017 

1 

SC.3.04 
An agile, measurable and scalable approach 
to deliver software applications in a large 
enterprise 

Grimaldo, 
Perrotta, 
Corvello, 

Verteramo, 2016 

2 

SC.3.05 
Scrum metrics for Hyperproductive Teams: 
How they fly like fighter aircraft 

Downey & 
Sutherland, 2013 

47 
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SC.3.06 Measuring best-in-class software releases 
Huijgens & Van 
Solingen, 2013 

4 

SC.3.07 
Quantifying the effect of using Kanban 
versus scrum: A case study 

Sjøberg, Johnsen 
& Solberg, 2012 

84 

  

Agile Productivity 

  
SC.4.01 Measuring productivity in agile software 

development process: A scoping study 

Shah, 
Papatheocharous 
& Nyfjord, 2015 

5 
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Appendix C - Snowballing Results 

Iteration Inclusion Title Reference 

Iteration 1 

  SN.1.01 Empirical Study of Object-Oriented Metrics 
Minkiewicz, 

1998 

  SN.1.02 
Lessons Learned In Implementing Agile Software 
Development Metrics 

Oza & Korkala, 
2012 

  SN.1.03 Software Metrics for Agile Software Development 
Kunz, Dumke & 

Zenker, 2008 

  SN.1.04 
The Impact of Design and Code Reviews on Software 
Quality: An Empirical Study Based on PSP Data 

Kemerer & 
Paulk, 2009 

  SN.1.05 
Software Quality Metrics for Object-Oriented 
Environments 

Rosenburg & 
Hyatt, 1997 

  SN.1.06 Finding Refactorings via Change Metrics 
Demeyer, 
Ducasse & 
Nierstrasz 

  SN.1.07 
Can metrics help to bridge the gap between the 
improvement of OO design quality and its 
automation? 

Sahraoui, Godin 
& Miceli, 2000 

  SN.1.08 Measuring the flow in Lean software development 
Petersen & 

Wohlin, 2011 

  SN.1.09 
Technical Debt in MDE: A Case Study on GMF / EMF - 
Based Projects 

He, Avgeriou, 
Liang & li, 2016 

  SN.1.10 A Cost Model to Compare Regression Test Strategies 
Leung & White, 

1991 

Iteration 2 

  SN.2.01 
Appropriate Agile Measurement: Using Metrics and 
Diagnostics to Deliver Business Value 

Hartmann & 
Dymond, 2006 

  SN.2.02 
Using COBIT Indicators for Measuring Scrum - based 
Software Development 

Mahnic & 
Zabkar, 2008 

  SN.2.03 
Effectiveness of software metrics for object-oriented 
system 

Tegarden, 
Sheetz & 

Monarchi, 1992 

  SN.2.04 
Faults-slip-through - A Concept for Measuring the 
Efficiency of the Test Process 

Damm, 
Lundberg & 

Wohlin, 2006 

  SN.2.05 
Automatic detection of bad smells in code: An 
experimental assessment 

Fontana, Braione 
& Zanoni, 2012 

  SN.2.06 
An Empirical Investigation of Modularity Metrics for 
Indicating Architectural Technical Debt 

Li, Liang, 
Avgeriou & 
Guelfi, 2014 

Iteration 3 
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  SN.3.01 
Software Quality Metrics and their Impact on 
Embedded Software 

Oliveira, Redin, 
Carro, Da Cuhna 
Lamb & Wagner, 

2008 

Iteration 4 

 
  

SN.4.01 Empirical Study of Object-Oriented Metrics 
Aggarwal, Singh, 

Kaur & 
Malhotra, 2006 
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Appendix D - Metric Introductions 

Metric Origin 

Access to Foreign Data (Marinescu, 2001) 

Accuracy of Estimation (Downey & Sutherland, 2013) 

Accuracy of Forecast (Downey & Sutherland, 2013) 

Afferent Coupling (Martin, 1995) 

Amount of Code Smell Occurrences (Fowler & Beck, 1999) 

Amount of Cycles in Dependency Graph (Kunz, Dumke & Zenker, 2008) 

Amount of Lines of Generated Code (He, Avgeriou, Liang & Li, 2016) 

Amount of Manually Created Lines of Code (He, Avgeriou, Liang & Li, 2016) 

Amount of Modified Lines of Generated Code (He, Avgeriou, Liang & Li, 2016) 

Attribute Hiding Factor (Abreu & Carapuça, 1994) 

Attribute Inheritance Factor (Abreu & Carapuça, 1994) 

Average Amount of Defects Carried to Next 
Iteration 

(Hartmann & Dymond, 2006) 

Average Class-to-Leaf Depth (Chidamber & Kemerer, 1994) 

Average Code Review Rate (Kemerer & Paulk, 2009) 

Average Design Review Rate (Kemerer & Paulk, 2009) 

Average Fault Cost (Damm, Lundberg & Wohlin, 2006) 

Average Number of Modified Components per 
Commit 

(Li, Liang, Avgeriou, Guelfi & Ampatzoglou, 
2014) 

Average Number of Stories Added to Iteration (Oza & Korkala, 2012) 

Average Number of Stories Removed to 
Iteration 

(Oza & Korkala, 2012) 

Average Overtime per Day (Mahnic & Vrana, 2007) 

Average Overtime per Sprint (Mahnic & Vrana, 2007) 

Average Projects per Employee (Mahnic & Vrana, 2007) 

Average Work in Progress (Hall, 1981) 

Business Value Delivered (Hartmann & Dymond, 2006) 

Capacity Utilization (Petersen & Wohlin, 2011) 

Cashflow per Iteration (Hartmann & Dymond, 2006) 

Change Requests per Requirement (Petersen & Wohlin, 2010) 

Check-Ins per Day (Humble, Read & North, 2006) 

Class Attribute Import Coupling (Li & Henry, 1993) 

Code Abstractness 
(Oliveira, Redin, Carro, Da Cunha & Wagner, 
2008) 

Code Instability 
(Oliveira, Redin, Carro, Da Cunha & Wagner, 
2008) 

Comment Percentage (Rosenverg & Stapko, 1999) 

Common Tempo Time (Tanner & Roncarti, 1994) 

Cost Efficiency (Petersen & Wohlin, 2011) 
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Cost of Quality (Gupta & Campbell, 1995) 

Cost Performance Index (Mahnic & Vrana, 2007) 

Coupling Between Objects (Chidamber & Kemerer, 1994) 

Coupling Concentration Index (Koru & El Emam, 2009) 

Coupling Factor (Abrey & Carapuça, 1994) 

Critical Defects Sent by Customers (Cheng, Jansen & Remmers, 2009) 

Cycle Time (De Jong, 1957) 

Cyclomatic Complexity Metric (McCabe, 1976) 

Data Abstraction Coupling (Li & Henry, 1993) 

Delivery on Time (Petersen & Wohlin, 2011) 

Depth of Inheritance Tree (Chidamber & Kemerer, 1994) 

Descendant Method-to-Method Export Coupling (Sahraoui, Goding & Miceli, 2000) 

Due Date Performance (Seidmann & Smith, 1981) 

Efferent Coupling (Martin, 1994) 

Enterprise Velocity (Greening, 2010) 

Fault Latency (Damm, Lundberg & Wohlin, 2006) 

Faults Slip Through (Damm, Lundberg & Wohlin, 2006) 

Focus Factor (Downey & Sutherland, 2013) 

Fulfilment of Scope (Mahnic & Vrana, 2007) 

Halstead Complexity Metric (Maurice, 1977) 

Ideal Days (Angioni et al., 2006) 

Impediments per Work-Item (Mahnic & Vrana, 2007) 

Implemented Versus Wasted Requirements (Petersen & Wohlin, 2010) 

Improvement Potential 
(Tanaka, Sakamoto, Kusumoto, Matsumoto & 
Kikuno, 1995) 

Index of Inter-Package Extending (Abdeen, Ducasse & Sahraoui, 2011) 

Index of Inter-Package Extending Diversion (Abdeen, Ducasse & Sahraoui, 2011) 

Index of Inter-Package Usage (Abdeen, Ducasse & Sahraoui, 2011) 

Index of Inter-Package Usage Diversion (Abdeen, Ducasse & Sahraoui, 2011) 

Index of Package Changing Impact (Abdeen, Ducasse & Sahraoui, 2011) 

Index of Package Goal Focus (Abdeen, Ducasse & Sahraoui, 2011) 

Information-Based Cohesion (Lee, Liang, Wu & Wang, 1995) 

Internal Efficiency 
(Grimaldo, Perrotta, Corvello & Verteramo, 
2016) 

Kick-Off Days 
(Grimaldo, Perrotta, Corvello & Verteramo, 
2016) 

Lack of Cohesion of Methods (Chidamber & Kemerer, 1994) 

Lead Time (Krafcik, 1988) 

Locality of Attribute Accesses (Lanzá & Marinescu, 2006) 

Maximum Nested Block Depth (Wichmann & Cox, 1992) 

Message Passing Coupling (Henderson-Sellers, 1996) 

Method Hiding Factor (Abreu & Carapuça, 1994) 

Method Inheritance Factor (Abreu & Carapuça, 1994) 
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Method-to-Method Export Coupling (Sahraoui, Goding & Miceli, 2000) 

Net Promoter Score (Reichheld & Frederick, 2003) 

Non Compliance Index (Padmini, Bandara & Perera, 2015) 

Normalized Amount of Code Smell Occurrences (Fowler & Beck, 1999) 

Normalized Distance from Main Sequence 
(Oliveira, Redin, Carro, Da Cunha & Wagner, 
2008) 

Number of Bounce Backs (Middleton, Taylor, Flaxel & Cookson, 2007) 

Number of Generated Files (He, Avgeriou, Liang & Li, 2016) 

Number of Inherited Methods per Class (Henderson-Sellers, 1996) 

Number of Manually Created Files (He, Avgeriou, Liang & Li, 2016) 

Number of Modified Generated Files (He, Avgeriou, Liang & Li, 2016) 

Number of Overridden Methods per Class (Henderson-Sellers, 1996) 

Number of Static Methods per Class 
(Oliveira, Redin, Carro, Da Cunha & Wagner, 
2008) 

Number of Static Variables per Class 
(Oliveira, Redin, Carro, Da Cunha & Wagner, 
2008) 

Percentage of Adopted Work (Downey & Sutherland, 2013) 

Percentage of Found Work (Downey & Sutherland, 2013) 

Percentage of Modified Generated Files (He, Avgeriou, Liang & Li, 2016) 

Percentage of Modified Generated Lines of 
Code 

(He, Avgeriou, Liang & Li, 2016) 

Polymorphism Factor (Abreu & Carapuça, 1994) 

Predictive Object Points (Minkiewicz, 1997) 

Process Efficiency (Sutherland, Harrison & Riddle, 2014) 

Processing Time (Krafcik, 1988) 

Queue Time (Krafcik, 1988) 

Regression Test Cycle Time (Manila, 2013) 

Response for a Class (Chidamber & Kemerer, 1994) 

Reuse Ratio (Henderson-Sellers, 1996) 

Running Tested Features (Abbas, Gravell & Wills, 2010) 

Schedule Performance Index (Mahnic & Vrana, 2007) 

Self-Assigned Happiness (Sutherland, Harrison & Riddle, 2014) 

Smoke Test Cycle Time (Manila, 2013) 

Specialization Index (Henderson-Sellers, 1996) 

Story Point Velocity (Downey & Sutherland, 2013) 

Success at Scale (Downey & Sutherland, 2013) 

System Analysis Cost (Leung & White, 1991) 

Targeted Value Increase (Downey & Sutherland, 2013) 

Task Time (Krafcik, 1988) 

Technical Efficiency 
(Grimaldo, Perrotta, Corvello & Verteramo, 
2016) 

Test Execution Cost (Leung & White, 1991) 

Test Result Analysis Cost (Leung & White, 1991) 
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Test Selection Cost (Leung & White, 1991) 

Throughput (Krafcik, 1988) 

Thumbs Up Rule 
(Grimaldo, Perrotta, Corvello & Verteramo, 
2016) 

Time to Market in Days (Stata, 1980) 

Value Added Time (Krafcik, 1988) 

Value Delivered Over Time (Petersen & Wohlin, 2011) 

Weighted Method per Class (Chidamber & Kemerer, 1994) 

Win Loss Record (Downey & Sutherland, 2013) 

Work Capacity (Downey & Sutherland, 2013) 

Work Effectiveness (Mahnic & Vrana, 2007) 

Yesterday’s Weather (Downey & Sutherland, 2013) 
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Appendix E - Metrics per Paper 

Paper Encountered Metrics 

P1.01 Maximum Amount of Team Members, Hours per Function Point, Function Points 

P1.02 
Function Points, Predictive Object Points, Weighted Methods per Class, Person Hours, 
Amount of Team Members 

P1.03 

Delivery on Time, Work Capacity, Unit Test Coverage, Percentage of Adopted Work, 
Mean Time to Recovery, Lines of Code per Unit of Time, Halstead Complexity Metrics, 
Cyclomatic Complexity, Defect Density, Story Point Velocity, Focus Factor, Percentage of 
Found Work, Accuracy of Forecast, Targeted Value Increase, Success at Scale, Win/Loss 
Record, Smoke Test Cycle Time, Regression Test Cycle Time, Defect count, Faults Slip-
Through, Lead Time, Work in Progress, Queue Time, Cost of Quality, Defect Severity 
Index, Open Defect Severity Index, Defect Slippage Rate, Requirement Clarity Index, 
Sprint Level Effort Burndown, Non Compliance Index, Accuracy of Estimation, Net 
Promoter Score 

P1.04 

Sprint Level Effort Burndown, Story Point Velocity, Work Capacity, Focus Factor, 
Percentage of Adopted Work, Percentage of Found Work, Accuracy of Estimation, 
Accuracy of Forecast, Targeted Value Increase, Success at Scale, Win/Loss Record, 
Function Points 

P1.05 Net Present Value, Story Point Velocity, Enterprise Velocity, Person Hours 

P1.06 Ideal Days, Sprint Level Effort Burndown, Story Point Velocity, Defects per Iteration, 
Amount of Tests, Standard Violations 

P1.07 Story Point Velocity, Lines of Code per Unit of Time, Function Points, Person Months, 
Person Hours, Open Defect Count, Unit Test Coverage, Hours per Story Point 

P1.08 
Story Point Velocity, Yesterday's Weather, Mean Time to Recovery, Self-Assigned 
Happiness, Process Efficiency 

P1.09 
Person Hours, Lines of Code per Unit of Time, New Classes per Release, New Methods per 
Release, New Features per Release, New Lines of Code per Release, Defects Fixed per 
Release 

P1.10 Function Points, Lines of Code per Unit of Time, Hours per Function Point 

P1.11 Lines of Code per Unit of Time, Person Hours, Lack of Cohesion of Methods, Weighted 
Methods per Class, Statements per Method, Response for Class 

P1.12 Maximum Amount of Team Members, Function Points, Person Hours, Person Months, 
Story Point Velocity, Defect Count 

P1.13 Work in Progress 

P1.14 
Lines of Code per Unit of Time, Halstead Complexity Metrics, Cyclomatic Complexity, 
Function Points 

P1.15 Lines of Code per Unit of Time, Lack of Cohesion of Methods, Cyclomatic Complexity 

P1.16 
Cyclomatic Complexity, Person Months, Defects per Iteration, Amount of Tests, Unit Test 
Coverage 

P1.17 
Lines of Code per Unit of Time, Cyclomatic Complexity, Duplicate Expressions, Lack of 
Cohesion of Methods 

P1.18 
Lines of Code per Unit of Time, Cyclomatic Complexity, Duplicate Expressions, Lack of 
Cohesion of Methods 

P1.19 Lines of Code per Unit of Time, Amount of Tests 
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P1.20 
Maximum Amount of Team Members, Amount of Team Members, Work Capacity, Ideal 
Capacity, Person Hours, Kick-Off Days, Technical Efficiency, Internal Efficiency, Number of 
Scrum Teams per Project, Interrupted Time 

P1.21 Work in Progress, Average Work in Progress, Maximum Work in Progress, Task Time, 
Lead Time, Queue Time, Defects per Iteration 

P1.22 Lack of Cohesion of Methods, Defect Count, Lines of Code per Unit of Time, Depth of 
Inheritance Tree, Coupling Concentration Index 

P1.23 Cycle Time, Value Added Time, Lead Time, First Time Yield, Average Work in Progress 

P1.24 

Story Point Velocity, Sprint Level Effort Burndown, Test Pass Rate, Defect Count, Amount 
of Tests, Running Tested Features, Work in Progress, Critical Defects Sent by Customers, 
Open Defect Count, Test Failure Rate, Test Pass Rate, Remaining Task Effort, Team 
Effectiveness, Check-Ins per Day , Defects per Iteration, Number of Defects Found by 
Tests, Net Promoter Score, Revenue per Customer, Cycle Time, Business Value Delivered, 
Mean Time to Recovery, Unit Test Coverage, Test Growth Ratio, Standard Violations, 
Release Level Effort Burndown, Cost Performance Index, Common Tempo Time, Number 
of Bounce Backs, Customer Satisfaction, Lead Time, Processing Time, Queue Time, 
Change Requests per Requirement, Defect Slippage Rate, Implemented Versus Wasted 
Requirements, Number of Requests from Customers, Requirements Inventory Size, 
Number of Requirements per Feature, Throughput, Percentage of Completed Stories, 
Load Factor, Actual Development Time, Due Date Performance, Flow Efficiency 

P1.25 Lines of Code per Unit of Time, Function Points, Time to Market in Days, Cost per 
Function Point, Cost per Story Point, Amount of Team Members 

P1.26 
Lead Time, Lines of Code per Unit of Time, Work in Progress, Maximum Work in Progress, 
Queue Time, Churn 

P2.01 
Lines of Code per Unit of Time, Weighted Methods per Class, Methods per Class, Number 
of Children, Depth of Inheritance Tree, Lines of Code per Method, Coupling Between 
Objects, Number of Instance Variables per Class, Predictive Object Points 

P2.02 

Stories per Day per Developer, Cost per Iteration, Tests per Story, Defects per Story, Test 
Runtime, Manual Tests per Story, Mean Time to Recovery, Average Amount of Defects 
Carried to Next Iteration, Unit Test Coverage, Builds per Day, Build Runtime, Percentage 
of Successful Builds, Cycle Time, Net Present Value, Return on Investment, Story Point 
Velocity, Ideal Days, Number of Stories per Iteration, Amount of Open Work Items, 
Average Number of Stories Added to Iteration, Average Number of Stories Removed from 
Iteration, Cyclomatic Complexity, Lines of Code per Unit of Time, Running Tested 
Features, Defect Slippage Rate, Duplicate Expressions, Percentage of Dead Code 

P2.03 Parameters per Method, Amount of Cycles in Dependency Graph 

P2.04 Mean Time to Recovery, Amount of Lines of Code, Defect Density, Average Design Review 
Rate, Average Code Review Rate 

P2.05 
Cyclomatic Complexity, Amount of Lines of Code, Comment Percentage, Weighted 
Methods per Class, Response for Class, Lack of Cohesion of Methods, Coupling Between 
Objects, Depth of Inheritance Tree, Number of Children 

P2.06 

Messages per Method, Statements per Method, Lines of Code per Method, Weighted 
Methods per Class, Number of Instance Variables per Class, Depth of Inheritance Tree, 
Number of Children, Number of Inherited Methods per Class, Number of Overridden 
Methods per Class 

P2.07 
Average Class-to-Leaf Depth, Number of Children, Number of Overridden Methods per 
Class, Number of Inherited Methods per Class, Number of Methods Added per Class, 
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Specialization Index, Coupling Between Objects, Data Abstraction Coupling, Information-
Flow Based Inheritance Coupling, Class Attribute Import Coupling, Descendant Method-
to-Method Export Coupling, Method-to-Method Export Coupling 

P2.08 Common Tempo Time, Capacity Utilization, Delivery on Time, Cost Efficiency, Value 
Delivered over Time, Value Added Time 

P2.09 

Number of Generated Files, Number of Modified Generated Files, Number of Manually 
Created Files, Percentage of Modified Generated Files, Amount of Lines of Generated 
Code, Amount of Modified Lines of Generated Code, Amount of Manually Created Lines 
of Code, Percentage of Modified Generated Lines of Code, Amount of Code Smell 
Occurrences, Normalized Amount of Code Smell Occurrences 

P2.10 System Analysis Cost, Test Selection Cost, Test Execution Cost, Test Result Analysis Cost 

P2.11 Business Value Delivered, Story Point Velocity, Return on Investment, Internal Rate of 
Return, Cashflow per Iteration, Net Present Value 

P2.12 

Story Point Velocity, Work Effectiveness, Schedule Performance Index, Defect Density, 
Cost of Failure to Control, Fulfilment of Scope, Average Overtime per Sprint, Average 
Projects per Employee, Impediments per Work-Item, Mean Time to Recovery, Personnel 
Turnover 

P2.13 

Comment Percentage, Amount of Lines of Code, Weighted Methods per Class, Depth of 
Inheritance Tree, Number of Children, Coupling Between Objects, Response for Class, 
Lack of Cohesion of Methods, Efferent Coupling, Afferent Coupling, Code Instability, Code 
Abstractness, Normalized Distance from Main Sequence 

P2.14 Faults Slip-Through, Fault Latency, Improvement Potential, Average Fault Cost 

P2.15 

Access to Foreign Data, Locality of Attribute Accesses, Foreign Data Providers, Weighted 
Methods per Class, Lack of Cohesion of Methods, Amount of Lines of Code, Lines of Code 
per Method, Cyclomatic Complexity, Halstead Complexity Metrics, Parameters per 
Method 

P2.16 

Index of Inter-Package Usage, Index of Inter-Package Extending, Index of Package 
Changing Impact, Index of Inter-Package Usage Diversion, Index of Inter-Package 
Extending Diversion, Index of Package Goal Focus, Average Number of Modified 
Components per Commit 

P2.17 

Afferent Coupling, Efferent Coupling, Code Instability, Lack of Cohesion of Methods, Code 
Abstractness, Normalized Distances from Main Sequence, Depth of Inheritance Tree, 
Number of Overridden Methods per Class, Number of Instance Variables per Class, 
Number of Classes, Number of Interfaces, Methods per Class, Number of Packages, 
Parameters per Method, Number of Static Variables per Class, Number of Static Methods 
per Class, Amount of Lines of Code, Cyclomatic Complexity, Lines of Code per Method, 
Maximum Nested Block Depth, Weighted Methods per Class 

P2.18 

Response for Class, Number of Instance Variables per Class, Methods per Class, Weighted 
Methods per Class, Coupling Between Objects, Data Abstraction Coupling, Message 
Passing Coupling, Coupling Factor, Lack of Cohesion of Methods, Information Based 
Cohesion, Method Hiding Factor, Attribute Hiding Factor, Number of Children, Depth of 
Inheritance Tree, Method Inheritance Factor, Attribute Inheritance Factor, Number of 
Overridden Methods per Class, Polymorphism Factor, Reuse Ratio, Specialization Ratio 
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Appendix F - Papers per Metric 

Metric Papers 

Access to Foreign Data P2.15 

Accuracy of Estimation P1.03, P1.04 

Accuracy of Forecast P1.03, P1.04 

Actual Development Time P1.24 

Afferent Coupling P2.13, P2.17 

Amount of Code Smell 
Occurrences 

P2.09 

Amount of Cycles in Dependency 
Graph 

P2.03 

Amount of Lines of Generated 
Code 

P2.09 

Amount of Manually Created Lines 
of Code 

P2.09 

Amount of Modified Lines of 
Generated Code 

P2.09 

Attribute Hiding Factor P2.18 

Attribute Inheritance Factor P2.18 

Average Amount of Defects 
Carried to Next Iteration 

P2.02 

Average Class-to-Leaf Depth P2.07 

Average Code Review Rate P2.04 

Average Design Review Rate P2.04 

Average Fault Cost P2.14 

Average Number of Modified 
Components per Commit 

P2.16 

Average Number of Stories Added 
to Iteration 

P2.02 

Average Number of Stories 
Removed to Iteration 

P2.02 

Average Overtime per Day   

Average Overtime per Sprint P2.12 

Average Projects per Employee P2.12 

Average Work in Progress P1.21, P1.23 

Build Runtime P2.02 

Builds per Day P2.02 

Business Value Delivered P1.24, P2.11 

Capacity Utilization P2.08 

Cashflow per Iteration P2.11 

Change Requests per 
Requirement 

P1.24 

Check-Ins per Day P1.24 
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Churn P1.26 

Class Attribute Import Coupling P2.07 

Code Abstractness P2.13, P2.17 

Code Instability P2.13, P2.17 

Comment Percentage P2.05, P2.13 

Common Tempo Time P1.24, P2.08 

Cost Efficiency P2.08 

Cost of Quality P1.03 

Cost Performance Index P1.24 

Cost per Function Point P1.25 

Cost per Iteration P2.02 

Cost per Story Point P1.25 

Coupling Between Objects P2.01, P2.05, P2.07, P2.13, P2.18 

Coupling Concentration Index P1.22 

Coupling Factor P2.18 

Critical Defects Sent by Customers P1.24 

Cycle Time P1.23, P1.24, P2.02 

Cyclomatic Complexity Metric 
P1.03, P1.14, P1.15, P1.16, P1.17, P1.18, P2.02, P2.05, P2.15, 
P2.17 

Data Abstraction Coupling P2.07, P2.18 

Defect Count P1.03, P1.12, P1.22, P1.24 

Defect Density P1.03, P2.04, P2.12 

Defect Severity Index P1.03 

Defects Fixed Per Release P1.09 

Defect Slippage Rate P1.03, P1.24, P2.02 

Defects Per Iteration P1.06, P1.16, P1.21, P1.24 

Defects per Story P2.02 

Delivery on Time P1.03, P2.08 

Depth of Inheritance Tree P1.22, P2.01, P2.05, P2.06, P2.13, P2.17, P2.18 

Descendant Method-to-Method 
Export Coupling 

P2.07 

Due Date Performance P1.24 

Duplicate Expressions P1.17, P1.18, P2.02 

Efferent Coupling P2.13, P2.17 

Enterprise Velocity P1.05 

Fault Latency P2.14 

Faults Slip Through P1.03, P2.14 

First Time Yield P1.23 

Flow Efficiency P1.24 

Focus Factor P1.03, P1.04 

Foreign Data Providers P2.15 

Fulfilment of Scope P2.12 

Halstead Complexity Metric P1.03, P1.14, P2.15 
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Hours per Function Point P1.01, P1.10 

Hours per Story Point P1.07 

Ideal Capacity P1.20 

Ideal Days P1.06, P2.02 

Impediments per Work-Item P2.12 

Implemented Versus Wasted 
Requirements 

P1.24 

Improvement Potential P2.14 

Index of Inter-Package Extending P2.16 

Index of Inter-Package Extending 
Diversion 

P2.16 

Index of Inter-Package Usage P2.16 

Index of Inter-Package Usage 
Diversion 

P2.16 

Index of Package Changing Impact P2.16 

Index of Package Goal Focus P2.16 

Information-Based Cohesion P2.18 

Information-Flow Based 
Inheritance Coupling 

P2.07 

Internal Efficiency P1.20 

Internal Rate of Return P2.11 

Impediments P1.20 

Kick-Off Days P1.20 

Lack of Cohesion of Methods 
P1.11, P1.15, P1.17, P1.18, P1.22, P2.05, P2.13, P2.15, P2.17, 
P2.18 

Lead Time P1.03, P1.21, P1.23, P1.24, P1.26 

Lines of Code per Method P2.01, P2.06, P2.15, P2.17 

Lines of Code (per Unit of Time) 
P1.03, P1.07, P1.09, P1.10, P1.11, P1.14, P1.15, P1.17, P1.18, 
P1.19, P1.22, P1.25, P1.26, P2.01, P2.02 

Load Factor P1.24 

Locality of Attribute Accesses P2.15 

Manual Tests per Story P2.02 

Maximum Amount of Team 
Members 

P1.01, P1.12, P1.20 

Maximum Nested Block Depth P2.17 

Maximum Work in Progress P1.21, P1.26 

Mean Time to Recovery P1.03, P1.08, P1.24, P2.02, P2.04, P2.12 

Message Passing Coupling P2.18 

Messages per Method P2.06 

Method Hiding Factor P2.18 

Method Inheritance Factor P2.18 

Method-to-Method Export 
Coupling 

P2.07 

Net Present Value P1.05, P2.02, P2.11 
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Net Promoter Score P1.03, P1.24 

New Classes Per Release P1.09 

New Features Per Release P1.09 

New Lines of Code Per Release P1.09 

New Methods Per Release P1.09 

Non Compliance Index P1.03 

Normalized Amount of Code Smell 
Occurrences 

P2.09 

Normalized Distance from Main 
Sequence 

P2.13, P2.17 

Number of Bounce Backs P1.24 

Number of Classes P2.17 

Number of Defects Found by Tests P1.24 

Number of Generated Files P2.09 

Number of Inherited Methods per 
Class 

P2.06, P2.07 

Number of Interfaces P2.17 

Number of Manually Created Files P2.09 

Number of Methods Added per 
Class 

P2.07 

Number of Modified Generated 
Files 

P2.09 

Number of Overridden Methods 
per Class 

P2.06, P2.07, P2.17, P2.18 

Number of Packages P2.17 

Number of Requests From 
Customers 

P1.24 

Number of Requirements per 
Feature 

P1.24 

Number of Scrum Teams on 
Project 

P1.20 

Number of Static Methods per 
Class 

P2.17 

Number of Static Variables per 
Class 

P2.17 

Number of Stories per Iteration P2.02 

Open Defect Count P1.07, P1.24 

Open Defect Severity Index P1.03 

Parameters per Method P2.03, P2.15, P2.17 

Percentage of Adopted Work P1.03, P1.04 

Percentage of Completed Stories P1.24 

Percentage of Dead Code P2.02 

Percentage of Found Work P1.03, P1.04 

Percentage of Modified 
Generated Files 

P2.09 
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Percentage of Modified 
Generated Lines of Code 

P2.09 

Percentage of Successful Builds P2.02 

Person Hours P1.02, P1.05, P1.07, P1.09, P1.11, P1.12, P1.20 

Person Months P1.07, P1.12, P1.16 

Personnel Turnover P2.12 

Polymorphism Factor P2.18 

Predictive Object Points P1.02, P2.01 

Process Efficiency P1.08 

Processing Time P1.24 

Queue Time P1.03, P1.21, P1.24, P1.26 

Regression Test Cycle Time P1.03 

Release Level Effort Burndown P1.24 

Remaining Task Effort P1.24 

Requirement Clarity Index P1.03 

Requirements Inventory Size P1.24 

Response for a Class P1.11, P2.05, P2.13, P2.18 

Return on Investment P2.02, P2.11 

Reuse Ratio P2.18 

Revenue per Customer P1.24 

Running Tested Features P1.24, P2.02 

Schedule Performance Index P1.24, P2.12 

Self-Assigned Happiness P1.08 

Smoke Test Cycle Time P1.03 

Specialization Index P2.07 

Reuse Ratio P2.18 

Sprint Level Effort Burndown P1.03, P1.04, P1.06, P1.24 

Standard Violations P1.06, P1.24 

Statements per Method P1.11, P2.06 

Stories per Day per Developer P2.02 

Story Point Velocity 
P1.03, P1.04, P1.05, P1.06, P1.07, P1.08, P1.12, P1.24, P2.02, 
P2.11, P2.12 

Success at Scale P1.03, P1.04 

System Analysis Cost P2.10 

Targeted Value Increase P1.03, P1.04 

Task Time P1.21 

Team Effectiveness P1.24 

Technical Efficiency P1.20 

Test Execution Cost P2.10 

Test Failure Rate P1.24 

Test Growth Ratio P1.24 

Test Pass Rate P1.24, P1.24 

Test Result Analysis Cost P2.10 
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Test Runtime P2.02 

Test Selection Cost P2.10 

Tests per Story P2.02 

Throughput P1.24 

Thumbs Up Rule P1.03 

Time to Market in Days P1.25 

Unit Test Coverage P1.03, P1.07, P1.16, P1.24, P2.02 

Value Added Time P1.23, P2.08 

Value Delivered Over Time P2.08 

Weighted Method per Class P1.02, P1.11, P2.01, P2.05, P2.06, P2.13, P2.15, P2.17, P2.18 

Win Loss Record P1.03, P1.04 

Work Capacity P1.03, P1.04, P1.20 

Work Effectiveness P2.12 

Work In Progress P1.03, P1.13, P1.21, P1.24, P1.26 

Yesterday’s Weather P1.08 
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Appendix G - Full Aspect Encoding 

Aspect Encoding 
Metric Axial 

Encoding 
Open Encoding 

Efficiency 

Time 

Actual Development Time 

Hours per Function Point 

Hours per Story Point 

Ideal Capacity 

Ideal Days 

Interrupted Time 

Lead Time 

Load Factor 

Person Hours 

Person Months 

Processing Time 

Queue Time 

Task Time 

Technical Efficiency 

Value Added Time 

Rework 

Average Amount of Defects Carried to Next Iteration 

Defects Fixed Per Release 

Mean Time to Recovery 

Cycle Times 

Build Runtime 

Builds per Day 

Check-Ins per Day 

Common Tempo Time 

Cycle Time 

Regression Test Cycle Time 

Smoke Test Cycle Time 

Test Runtime 

Time to Market in Days 

Delivery 

Delivery on Time 

Due Date Performance 

Enterprise Velocity 

Stories per Day per Developer 

Story Point Velocity 

Targeted Value Increase 

Throughput 

Yesterday's Weather 

Flow Flow Efficiency 
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Process Efficiency 

Impediments 
Impediments per Work-Item 

Interrupted Time 

Burndown 

Release Level Effort Burndown 

Remaining Task Effort 

Sprint Level Effort Burndown 

Presumed 

Internal Efficiency 

Kick-Off Days 

Team Effectiveness 

Work Effectiveness 

Effort 

Focus Factor 

Lines of Code (per Unit of Time) 

New Classes Per Release 

New Features Per Release 

New Lines of Code Per Release 

New Methods Per Release 

Number of Stories per Iteration 

Percentage of Completed Stories 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cohesion 

Index of Package Goal Focus 

Information-Based Cohesion 

Lack of Cohesion of Methods 

Parameters per Method 

Coupling 

Access to Foreign Data 

Afferent Coupling 

Average Number of Modified Components per 
Commit 

Class Attribute Import Coupling 

Code Instability 

Coupling Between Objects 

Coupling Concentration Index 

Coupling Factor 

Data Abstraction Coupling 

Descendant Method to Method Export Coupling 

Efferent Coupling 

Foreign Data Providers 

Index of Inter-Package Usage 

Index of Inter-Package Usage Diversion 

Index of Package Changing Impact 

Information-Flow Based Inheritance Coupling 

Locality of Attribute Accesses 

Message Passing Coupling 

Method to Method Export Coupling 
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Complexity 

Normalized Distance from Main Sequence 

Response for a Class 

Weighted Method per Class 

Dependencies Amount of Cycles in Dependency Graph 

Code Generation 

Amount of Lines of Generated Code 

Amount of Manually Created Lines of Code 

Amount of Modified Lines of Generated Code 

Number of Generated Files 

Number of Manually Created Files 

Number of Modified Generated Files 

Percentage of Modified Generated Files 

Percentage of Modified Generated Lines of Code 

Encapsulation 

Attribute Hiding Factor 

Method Hiding Factor 

Number of Interfaces 

Inheritance 

Attribute Inheritance Factor 

Average Class-to-Leaf Depth 

Code Abstractness 

Depth of Inheritance Tree 

Descendant Method to Method Export Coupling 

Index of Inter-Package Extending 

Index of Inter-Package Extending Diversion 

Information-Flow Based Inheritance Coupling 

Method Inheritance Factor 

Number of Inherited Methods per Class 

Number of Methods Added per Class 

Number of Overridden Methods per Class 

Polymorphism Factor 

Reuse Ratio 

Specialization Index 

Specialization Ratio 

Cyclomatic Complexity 
Cyclomatic Complexity Metric 

Halstead Complexity Metric 

Expression Tree 

Duplicate Expressions 

Lines of Code per Method 

Maximum Nested Block Depth 

Messages per Method 

Statements per Method 

Risk Clarity 
Requirements Clarity Index 

Success at Scale 

Size Effort 
Percentage of Adopted Work 

Percentage of Found Work 
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Components 

Lines of Code (per Unit of Time) 

Lines of Code per Method 

Number of Classes 

Number of Interfaces 

Number of Packages 

Number of Static Methods per Class 

Number of Static Variables per Class 

Estimation 

Accuracy of Estimation 

Accuracy of Forecast 

Percentage of Adopted Work 

Percentage of Found Work 

Predictive Object Points 

Code Churn 

Churn 

New Classes Per Release 

New Features Per Release 

New Lines of Code Per Release 

New Methods Per Release 

Test Growth Ratio 

Fulfilment 
Fulfilment of Scope 

Percentage of Completed Stories 

Quality 

Anti-Patterns 

Amount of Code Smell Occurrences 

Halstead Complexity Metric 

Non Compliance Index 

Normalized Amount of Code Smell Occurrences 

Normalized Distance from Main Sequence 

Parameters per Method 

Percentage of Dead Code 

Standard Violations 

Defects 

Average Fault Cost 

Critical Defects Sent by Customers 

Defect Count 

Defect Density 

Defect Severity Index 

Defect Slippage Rate 

Defects Per Iteration 

Defects per Story 

Fault Latency 

Faults Slip Through 

Improvement Potential 

Number of Bounce Backs 

Number of Defects Found by Tests 

Open Defect Count 
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Open Defect Severity Index 

Percentage of Successful Builds 

First Time Yield 

Documentation Comment Percentage 

Tests 

Manual Tests per Story 

Number of Defects Found by Tests 

Running Tested Features 

Test Failure Rate 

Test Pass Rate 

Tests per Story 

Unit Test Coverage 

Composition 
Team Composition 

Maximum Amount of Team Members 

Personnel Turnover 

Self-Assigned Happiness 

Work Capacity 

Project Composition Number of Scrum Teams on Project 

Cost 

Cost of Performed Work 

Cost Efficiency 

Cost per Function Point 

Cost per Iteration 

Cost per Story Point 

Cost Performance Index 

Value Delivered Over Time 

Cost of Performed 
Rework 

Average Fault Cost 

Faults Slip Through 

Improvement Potential 

Cost of Quality 

Cost of Quality 

System Analysis Cost 

Test Execution Cost 

Test Result Analysis Cost 

Test Selection Cost 

Financial 

Cashflow per Iteration 

Internal Rate of Return 

Net Present Value 

Return on Investment 

Revenue per Customer 

Schedule Performance Index 

Design 

Requirements 

Change Requests per Requirement 

Implemented Versus Wasted Requirements 

Number of Requirements per Feature 

Requirements Inventory Size 

Reviews 
Average Code Review Rate 

Average Design Review Rate 
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Process 

Story 

Average Work in Progress 

Maximum Work in Progress 

Work in Progress 

Iteration 
Average Number of Stories Added to Iteration 

Average Number of Stories Removed to Iteration 

Team Member 
Average Overtime per Day 

Average Overtime per Sprint 

Project 

Average Projects per Employee 

Business Value Delivered 

Capacity Utilization 

Requirements Number of Requests From Customers 

Satisfaction Satisfaction 
Net Promoter Score 

Thumbs Up Rule 
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Appendix H - Full Input Encoding 

Input Encoding 
Input Axial 

Encoding 
Open Encoding 

Backlog Backlog 

Amount of Open Defects 

Change Request Time Created 

Amount of Work Items 

Amount of Stories in Iteration 

Amount of Defects 

Amount of Open Work Items 

Company Company Amount of Customers 

Defects 

Defect Counts 

Amount of Defects 

Defective Units Produced 

Amount of Open Defects 

Defect Cost 
Defect Severity 

Defect Cost 

Defect Discovery Defect Discovery Environment 

Deployment 
Build 

Build Cycle Time 

Build Status 

Version Control Commit Timestamp 

Estimate 

Size Estimate 

Work Item Story Point Estimate 

Sprint Story Point Original Forecast 

Work Item Use Case Point Estimate 

Adjusted Work Item Story Point Estimate 

Work Item Function Point Estimate 

Clarity Estimate Requirement Clarity 

Commitment Estimate Adjusted Sprint Forecast 

Lifecycle 

Day Lifecycle 

Planned Workday Start Timestamp 

Planned Workday End Timestamp 

Workday Start Timestamp 

Workday End Timestamp 

Interruption Lifecycle 

Interruption Type 

Interruption End Timestamp 

Interruption Start Timestamp 

Iteration Lifecycle 
Sprint Start Timestamp 

Sprint End Timestamp 

Product Lifecycle 
Commit Timestamp 

Release Date 

Team Lifecycle 
Team Members Added 

Team Members Removed 
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Test Lifecycle 
Test Created Timestamp 

Test Deleted Timestamp 

Work Item Lifecyle 

Planned Work Item Finished Time 

Work Item Start Timestamp 

Work Item Created Timestamp 

Work Item Finished Timestamp 

Work Item Deployed Timestamp 

Financial 

Cost 

Cash Outflow 

Cost of Actual Work Performed 

Cost of Appraisal 

Cost of Budgeted Work Performed 

Cost of Control 

Cost of External Failure 

Cost of Failure Control 

Cost of Internal Failure 

Cost of Prevention 

Defect Cost 

Project Cost 

Work Item Cost 

Revenue 
Cash Inflow 

Project Revenue 

Iteration 

Commitment 
Adjusted Sprint Forecast 

Sprint Story Point Original Forecast 

Delivery 

Amount of Stories in Iteration 

Features Added 

Process Capacity 

Units Produced 

Lifecycle 
Sprint End Timestamp 

Sprint Start Timestamp 

Schedule 

Planned Production 
Scheduled Production 

Process Capacity 

Planning 

Planned Workday Start Timestamp 

Amount of Available Workdays 

Planned Workday End Timestamp 

Unplanned 
Interruption End Timestamp 

Interruption Start Timestamp 

Source Code 
Code Churn 

Lines of Code Deleted 

Lines of Code Added 

Classes Added 

Methods Added 

Lines of Code Edited 

Code Complexity Number of Distinct Operators 
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Number of Distinct Operands 

Number of Children 

Total Number of Operators 

Number of Instance Variables per Class 

Total Number of Operands 

Components 
Number of Top Level Classes 

Methods per Class 

Code Coupling 
Control Flow Graph 

Inheritance Tree 

Survey 
Customer Inquiry Customer Promoter Score 

Team Member Inquiry Happiness Score 

Team 

Team Churn 
Team Members Added 

Team Members Removed 

Team Composition 
Amount of Team Members 

Assigned Project 

Team Delivery Units Produced 

Test 

Test Result Test Result 

Test Lifecycle 
Test Deleted Timestamp 

Test Created Timestamp 

Test Count Amount of Tests 

Work Day 
Day Lifecycle 

Workday Start Timestamp 

Workday End Timestamp 

Planning Amount of Available Workdays 

Work Item 

Work Item Count 
Amount of Open Work Items 

Amount of Work Items 

Work Item Estimate 

Work Item Function Point Estimate 

Work Item Story Point Estimate 

Work Item Use Case Point Estimate 

Adjusted Work Item Story Point Estimate 

Work Item Financials 
Work Item Revenue 

Work Item Cost 

Work Item Lifecyle 

Work Item Finished Timestamp 

Planned Work Item Finished Time 

Work Item Deployed Timestamp 

Work Item Start Timestamp 

Work Item Created Timestamp 

Work Item Meta Data 

Work Item Reporter 

Work Item State 

Work Item Resolve 

Work Item 
Requirements 

Work Item Requirements 
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Appendix I - Keyword Occurrences 

Keyword Occurrences 

Productivity 7 

Software Metrics 6 

Software 5 

Measurement 5 

Software Engineering 5 

Software Measurement 5 

Programming 4 

Costs 4 

Companies 4 

Testing 4 

Agile 3 

Refactoring 3 

Scrum 3 

Metrics 3 

Large Scale Systems 2 

Agile Software Development Process 2 

Outsourcing 2 

Lean 2 

Case Study 2 

Agile Development 2 

Efficiency 2 

Lean Manufacturing 2 

Quality Assurance 2 

Software Quality 2 

Coupling 2 

Computer Science 1 

Computer Industry 1 

Robustness 1 

Data Engineering 1 

Software Standards 1 

Interviews 1 

Traditional Software Development Process 1 

Scrum Development Process 1 

Indexes 1 

Estimation 1 

Accuracy 1 

MySpace 1 

Planning 1 



166 
 
 

 

Agile Metrics 1 

CMMI 1 

Myths About Agile 1 

Tracking Tools 1 

Progress Chart 1 

Burndown Chart 1 

Scrum Metrics 1 

Project Management Tools 1 

Global Communication 1 

Geography 1 

Project Management 1 

Cultural Differences 1 

Continents 1 

Acceleration 1 

Meteorology 1 

Communities 1 

Strong Productivity Gain 1 

Agile Practice 1 

Small Software Company 1 

Industrial 1 

Agile Software Practice 1 

Productvitiy Metric 1 

Software Process 1 

Methodology 1 

Software Development Metrics 1 

Project Duration 1 

Software Size 1 

Effort 1 

Kanban 1 

Empirical Study 1 

Evidence-Based Decision Making 1 

Psychology 1 

Tools 1 

Complexity Theory 1 

Insurance 1 

Model Driven Development 1 

Financial Applications 1 

Agile Model-Driven Development Integration 1 

Prioritization 1 

Minimization 1 

Optimization 1 

Selection 1 
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Software Regression Testing 1 

Offshoring 1 

Software Development 1 

Capacity-Based Model 1 

Agile Methodologies 1 

Delivery Process 1 

Scalability 1 

SAFe3.0 1 

Modeling 1 

Operations Time Chart 1 

Work in Progress 1 

Efficacy 1 

Lean Simulation 1 

Lean Metrics 1 

Systematic Literature Review 1 

Internet Technology Metrics 1 

Performance Measurement 1 

Quality 1 

Time to Market 1 

Software Management 1 

Product Lifecycle Management 1 

Agile Manufacturing 1 

Computer Bugs 1 

Quality Management 1 

Product Design 1 

Lab-on-a-Chip 1 

Computer Society 1 

Job Shop Scheduling 1 

Inspection 1 

Software Performance 1 

Business Continuity 1 

Software Design 1 

Software Evolution 1 

Reverse Engineering 1 

Object-Oriented Frameworks 1 

Error Correction 1 

Computer Aided Software Engineering 1 

Error Detection 1 

Object Oriented Methods 1 

Development Flow 1 

Goal-Question-Metric 1 

Lean Software Development 1 
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Test Cost 1 

Regression Testing 1 

Aggregates 1 

Shape Measurement 1 

Software Development Management 1 

Monitoring 1 

Teamwork 1 

IT Performance Measurement 1 

AGIT 1 

Agile Software Development 1 

COBIT 1 

IT Balanced Scoreboard 1 

IT Indicators 1 

Basis Path 1 

Chidamber and Kemerer Metrics 1 

Cyclomatic Complexity 1 

Object-Oriented 1 

Fault Latency 1 

Software Process Improvement 1 

Fault-Slip-Through 1 

Early Fault Detection 1 

Fault Metrics 1 

Software Quality Evaluation 1 

Code Smell Detection Tools 1 

Code Smells 1 

Architectural Technical Debt 1 

Modularity Metric 1 

Commit 1 

Software Architecture 1 

Unified Modeling Language 1 

Embedded Software 1 

Computer Languages 1 

Embedded System 1 

Software Systems 1 

Computer Architecture 1 

Informatics 1 

Model Driven Engineering 1 

Standards Development 1 

Inheritance 1 

Polymorphism 1 

Object-Oriented Software 1 

Information Hiding 1 
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Cohesion 1 
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Appendix J - Author Occurrences 

First Name Last Name Works 

Jeff Sutherland 3 

Turgay Aytac 2 

Ayse Bener 2 

Ovunc Bozcan 2 

Gul Calikli 2 

Hessa Alfraihi 2 

Kevin Leno 2 

Shekoufeh Kolahdouz-Rahimi 2 

Howard Haughton 2 

Mohammadreza Sharbaf 2 

Claes Wohlin 2 

Paris Avgeriou 2 

Peng Liang 2 

Zengyang Li 2 

M Ruhe 1 

I Wieczorek 1 

R Jefferey 1 

Barry Boehm 1 

Chris Abts 1 

Sunita Chulani 1 

Indika Perera 1 

K Padmini 1 

H Bandara 1 

Scott Downey 1 

Daniel Greening 1 

Rana Majumdar 1 

Monika Agarwal 1 

Maurits Rijk 1 

Guido Schoonheim 1 

Neil Harrison 1 

Joel Riddle 1 

Frank Maurer 1 

Sebastien Martel 1 

Papatheocharous Efi 1 

Muhammad Syed 1 

Jaana Nyfjord 1 

Raimund Moser 1 

Witold Pedrycs 1 
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Giancarlo Succi 1 

Pekka Abrahamsson 1 

Alberto Sillitti 1 

Ajay Rana 1 

Mridul Bhardwaj 1 

Mariusz Musial 1 

Klaas-Jan Stol 1 

Brian Fitzgerald 1 

Michael Felderer 1 

Armin Beer 1 

Omar Gómez 1 

Glen Rodríguez 1 

Raúl Rosero 1 

Saverino Verteramo 1 

Vincenzo Corvello 1 

Carla Vintro-Sanchez 1 

Jordi Fortuny-Santos 1 

Lluis Cuatrecasas-Arbos 1 

Günes Koru 1 

Khaled El Emam 1 

Hamid Seifoddini 1 

Mohammed Khadem 1 

Sk Ahad Ali 1 

Juha Itkonen 1 

Mika Mäntylä 1 

Eetu Kupiainen 1 

Rini van Sollingen 1 

Hennie Huijgens 1 

Anders Johnsen 1 

Dag Sjøberg 1 

Jørgen Solberg 1 

Arlene Minkiewicz 1 

Nilay Oza 1 

Mikko Korkala 1 

Martin Kunz 1 

Reiner Dumke 1 

Niko Zenker 1 

Mark Paulk 1 

Chris Kemerer 1 

Lawrence Hyatt 1 

Linda Rosenburg 1 

Serge Demeyer 1 
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Oscar Nierstrasz 1 

Stéphane Ducasse 1 

Thierry Miceli 1 

Houari Sahraoui 1 

Robert Godin 1 

Kay Peterson 1 

Xiao He 1 

Hareton Leung 1 

Lee White 1 

Deborah Hartmann 1 

Robin Dymond 1 

Viljan Mahnic 1 

Natasa Zabkar 1 

Santanu Kumar Rath 1 

Jayadeep Pati 1 

Yeresime Suresh 1 

Lars Ola Damm 1 

Lars Lundberg 1 

Marco Zanoni 1 

Pietro Braione 1 

Francesca Arcelli Fontana 1 

Nicolas Guelfi 1 

Luis Lamb 1 

Flavio Rech Wagner 1 

Luigi Carro 1 

Marcio Oliveira 1 

Ricardo Miotto Redin 1 

Yogesh Singh 1 

K Aggarwal 1 

Ruchika Malhotra 1 

Arvinder Kaur 1 
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Appendix K - Metric Quality Assessment 

Name Simple 
Hard to 
Game 

Outcome 
Oriented 

Universal Transparent 

Access to Foreign Data FALSE FALSE FALSE FALSE TRUE 

Accuracy of Estimation TRUE TRUE FALSE TRUE TRUE 

Accuracy of Forecast TRUE FALSE FALSE TRUE TRUE 

Actual Development Time TRUE TRUE TRUE TRUE TRUE 

Afferent Coupling FALSE FALSE FALSE FALSE TRUE 

Amount of Code Smell Occurrences FALSE FALSE FALSE FALSE FALSE 

Amount of Cycles in Dependency 
Graph 

FALSE FALSE FALSE FALSE TRUE 

Amount of Lines of Generated Code TRUE FALSE FALSE FALSE FALSE 

Amount of Manually Created Lines 
of Code 

TRUE FALSE FALSE FALSE FALSE 

Amount of Modified Lines of 
Generated Code 

TRUE FALSE FALSE FALSE FALSE 

Attribute Hiding Factor FALSE FALSE FALSE FALSE TRUE 

Attribute Inheritance Factor FALSE FALSE FALSE FALSE TRUE 

Average Amount of Defects Carried 
to Next Iteration 

TRUE TRUE FALSE FALSE TRUE 

Average Class-to-Leaf Depth TRUE FALSE FALSE FALSE TRUE 

Average Code Review Rate TRUE TRUE FALSE FALSE TRUE 

Average Design Review Rate TRUE TRUE FALSE FALSE TRUE 

Average Fault Cost FALSE FALSE FALSE FALSE FALSE 

Average Number of Modified 
Components per Commit 

FALSE FALSE FALSE FALSE FALSE 

Average Number of Stories Added 
to Iteration 

TRUE TRUE FALSE TRUE TRUE 

Average Number of Stories 
Removed to Iteration 

TRUE TRUE FALSE TRUE TRUE 

Average Overtime per Day TRUE FALSE FALSE TRUE TRUE 

Average Overtime per Sprint TRUE FALSE FALSE TRUE TRUE 

Average Projects per Employee TRUE TRUE FALSE FALSE TRUE 

Average Work in Progress TRUE TRUE TRUE TRUE TRUE 

Build Runtime TRUE TRUE FALSE FALSE TRUE 

Builds per Day TRUE FALSE FALSE FALSE TRUE 

Business Value Delivered TRUE TRUE TRUE TRUE FALSE 

Capacity Utilization TRUE TRUE TRUE TRUE FALSE 

Cashflow per Iteration TRUE TRUE TRUE TRUE FALSE 

Change Requests per Requirement FALSE FALSE FALSE TRUE FALSE 

Check-Ins per Day TRUE FALSE FALSE FALSE FALSE 

Churn TRUE FALSE FALSE FALSE TRUE 
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Class Attribute Import Coupling FALSE FALSE FALSE FALSE FALSE 

Code Abstractness FALSE FALSE FALSE FALSE TRUE 

Code Instability FALSE FALSE FALSE FALSE TRUE 

Comment Percentage TRUE FALSE FALSE FALSE TRUE 

Common Tempo Time FALSE FALSE FALSE TRUE TRUE 

Cost Efficiency TRUE FALSE FALSE FALSE TRUE 

Cost of Quality FALSE TRUE TRUE TRUE FALSE 

Cost Performance Index FALSE FALSE FALSE TRUE FALSE 

Cost per Function Point TRUE FALSE TRUE TRUE TRUE 

Cost per Iteration TRUE FALSE FALSE TRUE TRUE 

Cost per Story Point TRUE FALSE TRUE TRUE TRUE 

Coupling Between Objects FALSE FALSE FALSE FALSE TRUE 

Coupling Concentration Index FALSE TRUE FALSE FALSE TRUE 

Coupling Factor FALSE FALSE FALSE FALSE FALSE 

Critical Defects Sent by Customers FALSE FALSE FALSE TRUE FALSE 

Cycle Time TRUE TRUE TRUE TRUE TRUE 

Cyclomatic Complexity Metric TRUE FALSE FALSE FALSE TRUE 

Data Abstraction Coupling FALSE FALSE FALSE FALSE TRUE 

Defect Count TRUE FALSE FALSE TRUE TRUE 

Defect Density TRUE FALSE FALSE TRUE TRUE 

Defect Severity Index TRUE FALSE TRUE FALSE TRUE 

Defects Fixed Per Release TRUE FALSE FALSE TRUE TRUE 

Defect Slippage Rate FALSE FALSE FALSE TRUE TRUE 

Defects Per Iteration FALSE FALSE FALSE FALSE TRUE 

Defects per Story TRUE FALSE TRUE TRUE TRUE 

Delivery on Time TRUE FALSE TRUE TRUE TRUE 

Depth of Inheritance Tree TRUE FALSE FALSE FALSE TRUE 

Descendant Method-to-Method 
Export Coupling 

FALSE FALSE FALSE FALSE FALSE 

Due Date Performance TRUE FALSE TRUE TRUE FALSE 

Duplicate Expressions TRUE FALSE FALSE FALSE FALSE 

Efferent Coupling FALSE FALSE FALSE FALSE TRUE 

Enterprise Velocity TRUE FALSE TRUE TRUE FALSE 

Fault Latency FALSE FALSE FALSE FALSE FALSE 

Faults Slip Through FALSE FALSE FALSE TRUE FALSE 

First Time Yield TRUE TRUE FALSE TRUE TRUE 

Flow Efficiency TRUE TRUE TRUE TRUE TRUE 

Focus Factor TRUE FALSE TRUE TRUE TRUE 

Foreign Data Providers FALSE FALSE FALSE FALSE FALSE 

Fulfilment of Scope FALSE FALSE FALSE FALSE FALSE 

Halstead Complexity Metric FALSE TRUE FALSE FALSE TRUE 

Hours per Function Point TRUE FALSE TRUE TRUE TRUE 
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Hours per Story Point TRUE FALSE TRUE TRUE TRUE 

Ideal Capacity FALSE FALSE FALSE TRUE TRUE 

Ideal Days TRUE FALSE FALSE TRUE TRUE 

Impediments per Work-Item TRUE TRUE FALSE TRUE TRUE 

Implemented Versus Wasted 
Requirements 

TRUE FALSE TRUE TRUE TRUE 

Improvement Potential FALSE FALSE FALSE FALSE FALSE 

Index of Inter-Package Extending FALSE FALSE FALSE FALSE TRUE 

Index of Inter-Package Extending 
Diversion 

FALSE FALSE FALSE FALSE TRUE 

Index of Inter-Package Usage FALSE FALSE FALSE FALSE TRUE 

Index of Inter-Package Usage 
Diversion 

FALSE FALSE FALSE FALSE TRUE 

Index of Package Changing Impact FALSE FALSE FALSE FALSE TRUE 

Index of Package Goal Focus FALSE FALSE FALSE FALSE TRUE 

Information-Based Cohesion FALSE FALSE FALSE FALSE TRUE 

Information-Flow Based Inheritance 
Coupling 

FALSE FALSE FALSE FALSE FALSE 

Internal Efficiency FALSE FALSE FALSE FALSE TRUE 

Internal Rate of Return TRUE TRUE TRUE TRUE TRUE 

Impediments TRUE TRUE TRUE TRUE TRUE 

Kick-Off Days TRUE TRUE TRUE TRUE TRUE 

Lack of Cohesion of Methods FALSE FALSE FALSE FALSE TRUE 

Lead Time TRUE TRUE TRUE TRUE TRUE 

Lines of Code per Method TRUE FALSE FALSE FALSE TRUE 

Lines of Code (per Unit of Time) TRUE FALSE FALSE FALSE TRUE 

Load Factor TRUE TRUE TRUE TRUE TRUE 

Locality of Attribute Accesses FALSE FALSE FALSE FALSE FALSE 

Manual Tests per Story FALSE FALSE FALSE FALSE FALSE 

Maximum Amount of Team 
Members 

TRUE TRUE FALSE TRUE TRUE 

Maximum Nested Block Depth TRUE FALSE FALSE FALSE TRUE 

Maximum Work in Progress TRUE TRUE TRUE TRUE TRUE 

Mean Time to Recovery TRUE TRUE TRUE TRUE TRUE 

Message Passing Coupling FALSE FALSE FALSE FALSE TRUE 

Messages per Method TRUE FALSE FALSE FALSE FALSE 

Method Hiding Factor FALSE FALSE FALSE FALSE TRUE 

Method Inheritance Factor FALSE FALSE FALSE FALSE TRUE 

Method-to-Method Export Coupling FALSE FALSE FALSE FALSE FALSE 

Net Present Value TRUE TRUE TRUE TRUE TRUE 

Net Promoter Score TRUE TRUE TRUE TRUE TRUE 

New Classes Per Release TRUE FALSE FALSE FALSE FALSE 

New Features Per Release TRUE FALSE TRUE TRUE FALSE 
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New Lines of Code Per Release TRUE FALSE FALSE FALSE TRUE 

New Methods Per Release TRUE FALSE FALSE FALSE TRUE 

Non Compliance Index FALSE FALSE TRUE TRUE FALSE 

Normalized Amount of Code Smell 
Occurrences 

FALSE FALSE FALSE FALSE FALSE 

Normalized Distance from Main 
Sequence 

FALSE FALSE FALSE FALSE TRUE 

Number of Bounce Backs FALSE FALSE TRUE TRUE FALSE 

Number of Classes TRUE FALSE FALSE FALSE TRUE 

Number of Defects Found by Tests TRUE FALSE TRUE TRUE TRUE 

Number of Generated Files TRUE FALSE FALSE FALSE TRUE 

Number of Inherited Methods per 
Class 

TRUE FALSE FALSE FALSE TRUE 

Number of Interfaces TRUE FALSE FALSE FALSE TRUE 

Number of Manually Created Files TRUE FALSE FALSE FALSE TRUE 

Number of Methods Added per 
Class 

TRUE FALSE FALSE FALSE TRUE 

Number of Modified Generated 
Files 

TRUE FALSE FALSE FALSE TRUE 

Number of Overridden Methods 
per Class 

TRUE FALSE FALSE FALSE TRUE 

Number of Packages TRUE FALSE FALSE FALSE TRUE 

Number of Requests From 
Customers 

TRUE TRUE TRUE TRUE FALSE 

Number of Requirements per 
Feature 

TRUE FALSE FALSE TRUE FALSE 

Number of Scrum Teams on Project TRUE FALSE FALSE TRUE TRUE 

Number of Static Methods per Class TRUE FALSE FALSE FALSE TRUE 

Number of Static Variables per 
Class 

TRUE FALSE FALSE FALSE TRUE 

Number of Stories per Iteration TRUE FALSE FALSE TRUE TRUE 

Open Defect Count TRUE FALSE TRUE TRUE TRUE 

Open Defect Severity Index TRUE FALSE TRUE FALSE TRUE 

Parameters per Method TRUE FALSE FALSE FALSE TRUE 

Percentage of Adopted Work TRUE FALSE TRUE TRUE TRUE 

Percentage of Completed Stories TRUE FALSE TRUE TRUE TRUE 

Percentage of Dead Code TRUE TRUE FALSE FALSE TRUE 

Percentage of Found Work TRUE FALSE TRUE TRUE TRUE 

Percentage of Modified Generated 
Files 

TRUE FALSE FALSE FALSE TRUE 

Percentage of Modified Generated 
Lines of Code 

TRUE FALSE FALSE TRUE TRUE 

Percentage of Successful Builds TRUE TRUE FALSE FALSE TRUE 

Person Hours TRUE FALSE FALSE TRUE TRUE 

Person Months TRUE FALSE FALSE TRUE TRUE 
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Personnel Turnover TRUE TRUE FALSE TRUE TRUE 

Polymorphism Factor FALSE FALSE FALSE FALSE TRUE 

Predictive Object Points FALSE FALSE FALSE FALSE TRUE 

Process Efficiency TRUE TRUE TRUE TRUE TRUE 

Processing Time TRUE TRUE TRUE TRUE TRUE 

Queue Time TRUE TRUE TRUE TRUE TRUE 

Regression Test Cycle Time TRUE TRUE TRUE FALSE TRUE 

Release Level Effort Burndown TRUE FALSE TRUE TRUE TRUE 

Remaining Task Effort TRUE FALSE TRUE TRUE FALSE 

Requirement Clarity Index TRUE FALSE TRUE FALSE TRUE 

Requirements Inventory Size FALSE TRUE TRUE TRUE TRUE 

Response for a Class FALSE FALSE FALSE FALSE TRUE 

Return on Investment TRUE TRUE TRUE TRUE TRUE 

Reuse Ratio FALSE FALSE FALSE FALSE TRUE 

Revenue per Customer TRUE TRUE TRUE TRUE TRUE 

Running Tested Features TRUE FALSE FALSE FALSE TRUE 

Schedule Performance Index FALSE FALSE FALSE FALSE TRUE 

Self-Assigned Happiness TRUE TRUE TRUE TRUE TRUE 

Smoke Test Cycle Time TRUE TRUE TRUE FALSE TRUE 

Specialization Index TRUE FALSE TRUE TRUE TRUE 

Reuse Ratio FALSE FALSE FALSE FALSE TRUE 

Sprint Level Effort Burndown TRUE FALSE TRUE TRUE TRUE 

Standard Violations FALSE FALSE FALSE FALSE FALSE 

Statements per Method TRUE FALSE FALSE FALSE TRUE 

Stories per Day per Developer TRUE FALSE TRUE TRUE TRUE 

Story Point Velocity TRUE FALSE TRUE TRUE TRUE 

Success at Scale TRUE FALSE FALSE TRUE TRUE 

System Analysis Cost FALSE FALSE FALSE FALSE FALSE 

Targeted Value Increase TRUE FALSE TRUE TRUE TRUE 

Task Time TRUE TRUE TRUE FALSE TRUE 

Team Effectiveness FALSE FALSE FALSE FALSE FALSE 

Technical Efficiency FALSE FALSE FALSE FALSE TRUE 

Test Execution Cost FALSE FALSE FALSE FALSE FALSE 

Test Failure Rate FALSE FALSE FALSE FALSE FALSE 

Test Growth Ratio FALSE FALSE FALSE FALSE TRUE 

Test Pass Rate FALSE FALSE FALSE FALSE FALSE 

Test Result Analysis Cost FALSE FALSE FALSE FALSE FALSE 

Test Runtime TRUE TRUE FALSE FALSE TRUE 

Test Selection Cost FALSE FALSE FALSE FALSE FALSE 

Tests per Story TRUE FALSE FALSE TRUE TRUE 

Throughput TRUE TRUE TRUE TRUE TRUE 

Thumbs Up Rule TRUE TRUE TRUE TRUE FALSE 
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Time to Market in Days TRUE TRUE TRUE TRUE TRUE 

Unit Test Coverage TRUE FALSE FALSE FALSE TRUE 

Value Added Time TRUE TRUE TRUE TRUE TRUE 

Value Delivered Over Time TRUE FALSE FALSE FALSE FALSE 

Weighted Method per Class FALSE FALSE FALSE FALSE TRUE 

Win Loss Record TRUE FALSE TRUE TRUE TRUE 

Work Capacity TRUE TRUE FALSE TRUE TRUE 

Work Effectiveness FALSE FALSE FALSE FALSE FALSE 

Work In Progress TRUE TRUE TRUE TRUE TRUE 

Yesterday’s Weather TRUE TRUE FALSE TRUE TRUE 
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Abstract – This paper addresses the need for a means of 

comparing the performance of two different software 

development teams. A structured literature review was 

performed to identify the software development metrics 

that exist today, which was later supplemented with the 

results of an expert inquiry aimed at identifying software 

development metrics that the review had missed. This 

yielded a total of 191 distinct software development 

metrics, identified in 44 included papers, as well as 6 

additional software development metrics, identified by the 

experts. These results were systematically mapped in a 

graphing database, and analysed in focus groups with the 

experts in order to extrapolate tacit knowledge about what 

makes these metrics strong or weak. The extrapolated 

knowledge was encapsulated in a new model for metric 

strength, which was subsequently used to assess the 

strength of the 197 identified software development 

metrics. This model states that a metric should (a) be 

simple to explain and simple to measure, (b) be hard to 

optimize without increasing business value, (c) correlate 

strongly with increased business value when optimized, 

(d) be universally applicable in many different contexts, 

without confusing edge cases, and (e) be transparent in 

how it’s measured and how it’s formulae are calculated. 

A new model of software development team performance 

was then created, using a diverse set of software 

development metrics that were all deemed strong, targeted 

many different aspects of the software development 

process, and shared little input data-points.  

1. Introduction 

 

According to the yearly State of Agile surveys, an 

increasing amount of software development 

companies are embracing Agile in order to increase 

their performance. It’s methodologies boast many 

positive effects, such as more flexible projects, 

reductions in project duration, increases in 

adaptation and satisfaction, fewer deadline-

transcending projects, and lower overall project 

costs. One of the most prominent and oft-quoted 

advantage of the Agile approach is the claim that it 

makes your development process more efficient 

(Sutherland, 2014), (Prechelt, 2019), (Leffingwell, 

2018). 

The methodology provides a number of ways to 

measure a team’s performance, such as Story Point 

Velocity  or Focus Factor (Padmini, Bandara & 

Perera, 2015), yet it remains to be seen if these are 

strong measures of software development team 

performance. If they are not, this means that 

management will not be able to accurately determine 

which teams are performing admirably, or even 

extremely well, and which teams are not.  At the 

same time, individual team members will not know 

whether their team is excelling or failing.  

The most likely problem with these performance 

metrics is in their manner of size estimation. All size 

estimation is done in terms of Story Points. Story 

Points are estimated from the expert opinions of the 

team that is going to perform the work. First, an 

initial reference story is set to an arbitrary number of 

Story Points. From here, the team members estimate 

the Story Points of the other stories in a relative 

fashion, comparing the size of the work of the new 

story to that of the reference story and other, already 

estimated stories. Their expert opinions are based on 

relative estimates of the effort required for 

mailto:frank@diamongagile.net
mailto:j.m.e.m.vanderwerf@uu.nl
mailto:teun.kooijman@gmail.com
mailto:s.j.overbeek@uu.nl
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implementing the story, but are likely to be coloured 

by their experience, expertise, technical aptitude, or 

even ulterior motives. This means that the size 

estimation of a story in terms of Story Points, may 

differ quite substantially from team to team. 

Consequently, a comparison between their 

performance in terms of their Story Point Velocity or 

Focus Factor, is inherently flawed, and easy to 

game. 

Until an accurate assessment of software 

development team performance can be performed, 

the inability for an organization to accurately 

determine the benefits that the adoption of Agile has 

brought them in terms of performance remains. In 

this paper, we thus attempt to answer the primary 

research question outlined below. 

 

RQ: How can we measure the performance of a 

software development team? 

 

Before we can determine how we can accurately 

measure the performance of a software development 

team, we need to determine what constitutes an 

accurate and objective metric in the first place. The 

following sub-question addresses this need. 

 

S1: What constitutes a strong software 

development metric? 

 

In order to determine what constitutes a valid and 

accurate efficiency metric, we need to determine 

what metrics already exist today. Additionally, we 

will need to extrapolate what makes these metrics 

valid or accurate. The following sub-question 

addresses this. 

 

S2: Which software development metrics  

already exist today? 

 

Finally, we need to determine what set of software 

development metrics is most suitable for measuring 

team performance, based on their strength, their 

domain, and the potential correlations caused by a 

shared set of input data-points.  The following sub-

question addresses this need. 

 

S3: What set of software development metrics is 

most suitable for measuring team performance? 

 

2. Methods 

In our attempt to answer the various research and 

sub-questions, we will employ a Grounded Theory 

approach, consisting of a data-collection phase, and 

a data-structuring phase. Afterwards, two new 

models are constructed, based on discussions and 

conversations about the collected data with 

prevalent experts in the field. Finally, the 

constructed models are subjected to a preliminary 

validation, gauging their perceived clarity, relevance 

and completeness. 

2.1 Structured Literature Review 

In this chapter, we will detail the execution and the 

results of our systematic literature review, consisting 

of two phases. The first phase identifies a starting set 

through an automated search process, whereas the 

second phase aims to identify missing work, based 

on Wohlin’s snowballing technique (2014), until an 

iteration no longer results in additional discovered 

relevant metrics. The aim of this review is to 

discover as many software development metrics as 

possible. The process denoted in the remainder of 

this section was performed on Google Scholar, and 

duplicated on Scopus. 

2.1.1 Inclusion Criteria 

The inclusion criteria used for selecting or 

discarding literature was kept as broad as possible. 

The selected papers should be written in English, 

and should be published in a peer-reviewed journal, 

or presented at a venue which was facilitated by a 

peer-reviewed journal, such as a conference or 

workshop. We will not employ inclusion criteria 

based on year of publication, specific authors or 

specific journals. The latter two because we want to 

evade any such bias, and the former because we 

deem year of publication to be irrelevant to our 

purpose. The final decision on whether or not to 

include a piece of literature is done through manual 
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examination of the candidate work. Here, the 

abstract of the candidate is examined, and if needed, 

the paper is thoroughly studied. In this examination, 

we will look for the presence of metrics in the work, 

that are deemed relevant to the field of software 

development. In the context of this review, a 

relevant metric is defined as a metric that can be 

used to measure any aspect of a software 

development process.  

2.1.2 Search Queries 

The search for the starting set of literature was 

performed on Tuesday the 22nd of January, 2019.  

The result sets for some of these queries on Google 

Scholar were so large, that complete analysis was 

unfeasible for the size and scope of this study. This 

has caused us to make compromises in terms of 

validity, for the sake of time. This means that, 

instead of analysing over 3.500.000 results in order 

to generate a starting set, only the first ten results 

were considered for inclusion when performing the 

automated search on Google Scholar. On Scopus, 

however, the entire result set was considered, as it 

was significantly smaller. This consolidation is a 

severe threat to the validity of our results. The search 

queries performed on both Google Scholar and 

Scopus are listed below. 

• “Software Development Metrics” 

• “Agile Efficiency Metrics” 

• “Scrum Productivity Metrics” 

• “Agile Productivity” 

2.2 Expert Inquiry 

Additionally, an expert inquiry was held among 

some prevalent experts in the field, where the 

collected set of metrics will be presented and 

discussed. The aim of this inquiry was to discover 

additional software development metrics, that have 

not yet been discovered in the literature review. In 

this inquiry, we have not made any distinction as to 

why they were not discovered in the literature 

review. This could be, for example, because no prior 

research has been performed on this metric, no peer-

reviewed work has been published on the subject, or 

because the literature review missed it due to not 

encompassing the entire body of knowledge 

available in literature today. In this inquiry, the 

experts were asked about their view on the current 

state of efficiency and productivity metrics. 

Additionally, they were asked to think about 

possible efficiency metrics that we have not 

encountered yet, for which they would be very 

interested in seeing measurement results from the 

industry. In total, four prevalent experts have 

participated in the focus groups, some of which are 

seen as true authorities in the field of agile software 

development. These experts are Jeffrey Saltz, Jeff 

Sutherland, Kyle Aretae and Frank Verbruggen. 

2.3 Systematic Mapping 

The software development metrics that were found, 

as well as the aspects of the software development 

process that they target, and their individual input 

data-points, were then processed using the 

Grounded Theory approach of axial encoding. Here, 

the concepts will be encoded into a final set of 

aspects and input groups.  

Additionally, the metrics that were found were 

systematically mapped in a graphing database, along 

with the inputs required to calculate them, the papers 

that mention them, the authors who wrote them, the 

keywords those papers use, the journals in which 

they were published, and the publishers who 

published them. This systematic mapping was 

subsequently used for the theory building phase that 

followed. 

2.4 Model Building 

The software development metrics that were found, 

as well as their aspects and inputs, and the 

systematic mapping, were presented to and 

discussed with the experts. In these discussions, we 

have attempted to extrapolate the expert’s tacit 

knowledge about determining which metrics can be 

considered strong, and which metrics can be 

considered weak. This tacit knowledge was then 

distilled in a newly devised model for metric 

strength. All of the encountered metrics can 

subsequently be assessed on their strength, using the 

new model. 

Subsequently, we constructed a model for team 

performance, based on additional discussions and 

conversations with the experts, and the newly 

devised model for metric strength. This model was 

to focus on a set of metrics targeting a broad set of 

software development process aspects, while 
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sharing a minimum amount of input data-points so 

that cause-and-effect can be more easily isolated. 

 

3. Results 

3.1 Structured Literature Review 

In total, the automated search produced 103 

candidate papers to be included in the review. From 

these 103 candidates, 44 works were selected for 

inclusion, based on the defined inclusion and 

exclusion criteria. The subsequent snowballing 

process identified an additional 18 works eligible for 

inclusion, bringing the total amount of included 

papers up to 62. 

These papers were published during the time period 

1989 to 2018. Together, these studies were written 

by 113 individual authors, using 166 distinct 

keywords. They were published in 37 different 

venues, facilitated by 12 different publishers.  

Within these 62 papers, a total of 191 distinct 

software development metrics were encountered, 

targeting 10 different aspects of the software 

development process, while looking at 14 different 

categories of input for their data-points. The list of 

encountered metrics can be found in appendix A. 

3.2 Expert Inquiry 

The focus groups of the expert inquiry yielded an 

additional 6 software development metrics, which 

were not represented in the body of knowledge 

discovered by the structured literature review.  

3.2.1 Priority Focus 

The first additional metric, brought forward by 

Jeffrey Saltz, is the Priority Focus, which measures 

the time that an individual team member has spent 

adding value to the highest priority story backlog 

item, as a percentage of the total time spent working. 

The metric can be calculated for each individual 

team member, by taking the time that the team 

member has spent working on the highest priority 

story backlog item on the previous day, and dividing 

it by the total time that he or she could have spent on 

it. This metric can be calculated on multiple 

granularities, e.g. per day or per sprint. At the same 

time, the metric can easily be calculated for entire 

teams or companies by aggregating the individual 

measurements into weighted arithmetic means. 

This metric can be used to determine a team’s 

capability to do the most important things first. 

Additionally, the metric can yield interesting 

insights into how well the team is swarming on the 

highest priority story backlog items. The act of 

swarming has been shown to lead to a reduction of 

waste in software development processes 

(Verbruggen, Sutherland, van der Werf, 

Brinkkemper & Sutherland, 2019). The following 

sections detail the calculation of this metric for an 

individual team member, and aggregated into an 

arithmetic mean for an entire team. 

The Member Priority Focus for sprint 𝑠 and member 

𝑚, represented by 𝑝𝑓𝑠𝑚,  is given by  

𝑝𝑓𝑠𝑚 =  

∑ {
𝑝𝑒𝑥

==  𝑡𝑟𝑢𝑒      |𝑑𝑒𝑚|

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            0        

|𝐸𝑠𝑚|
𝑥=1

𝑤𝑐𝑠𝑚  
 

where 𝐸𝑠𝑚 is the set of the events that occurred in 

sprint 𝑠 for member 𝑚, 𝑤𝑐𝑠𝑚 is the Work Capacity 

in sprint 𝑠 for member 𝑚, as outlined in section 

3.2.7, 𝑝𝑒𝑥
 is a Boolean value denoting whether the 

𝑥𝑡ℎ event 𝑒𝑥 was marked as targeting the highest 

current priority, and 𝑑𝑒𝑚 is the set of timestamps 

included in the duration of event 𝑒 and the Work 

Schedule of member 𝑚, as out lined in section 3.2.7. 

The Mean Team Priority Focus for sprint 𝑠 and team 

𝑡, represented by 𝜇𝑝𝑓𝑠𝑡
, is given by 

𝜇𝑝𝑓𝑠𝑡
=  

∑     𝑝𝑓𝑠𝑚
|𝑀𝑡𝑠|
𝑚=1

|𝑀𝑡𝑠|
 

where 𝑀𝑡𝑠  is the set of the members of team 𝑡 who 

have participated in sprint 𝑠, and 𝑝𝑓𝑠𝑚 is the Member 

Priority Focus for sprint 𝑠 and member 𝑚. 

3.2.2 Context Concurrency 

The second additional metric, brought forward by 

Frank Verbruggen, is the Context Concurrency 

metric. This metric determines the maximum 

amount of story backlog items that the team has had 

to work on concurrently throughout a day, sprint or 

project. Superfluous context switching can hurt 

productivity, and keeping the amount of concurrent 

contexts to switch between to a feasible minimum 

will help minimize its impact. The metric denotes 
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the maximum number of stories that were in 

progress at any given time, during a particular 

period of time. 

The Context Concurrency of sprint 𝑠 at timestamp 𝑡, 

represented by 𝑐𝑐𝑠𝑡 , is given by 

𝑐𝑐𝑠𝑡  = |𝑆𝑡|  −  |𝐹𝑡|   

where 𝑆𝑡  is the set of all stories that were started at 

timestamp 𝑡, and 𝐹𝑡 is the set of all stories that were 

finished at timestamp 𝑡. 

 

The Maximum Context Concurrency of sprint 𝑠, 

represented by 𝑚𝑐𝑐𝑠, is given by  

𝑚𝑐𝑐𝑠 =  ⋁  𝑐𝑐𝑠𝑡
𝑓𝑠
𝑡 = 𝑠𝑠

  

where 𝑓𝑠 is the timestamp at which sprint 𝑠 was 

finished, 𝑠𝑠 is the timestamp at which sprint 𝑠 was 

started, and 𝑐𝑐𝑠𝑡  is the Context Concurrency of sprint 

𝑠 at timestamp 𝑡. 

3.2.3 Degree of Swarming 

The third additional metric, brought forward by Jeff 

Sutherland, is the Degree of Swarming. This metric 

determines the degree of collaboration and 

teamwork within the team. It indicates whether team 

members tend to work on story backlog items 

individually or in association with other members of 

the team. It is defined here as the percentage of the 

team that has performed work on a specific story 

during a particular day, whether this was two 

minutes or eight hours.  

The Story Degree of Swarming on story backlog 

item 𝑖 on day 𝑑, represented by 𝑑𝑜𝑠𝑖𝑑 , is given by 

𝑑𝑜𝑠𝑖𝑑 =
|𝑀𝑖𝑑|

|𝑀𝑑|
 

where 𝑀𝑖𝑑 is the set of all members who participated 

in work performed on story 𝑖 on day 𝑑, and 𝑀𝑑 is the 

set of all members who were working on day 𝑑. 

The Mean Day Degree of Swarming on day 𝑑, 

represented by 𝜇𝑑𝑜𝑠𝑑
, is given by 

𝜇𝑑𝑜𝑠𝑑
=

∑  𝑑𝑜𝑠𝑖𝑥𝑑
|𝐼𝑑|
𝑥=1

|𝐼𝑑|
 

where 𝐼𝑑 is the set of all story backlog items that 

were in progress at any time during day 𝑑, and 

𝑑𝑜𝑠𝑖𝑥𝑑 is the Story Degree of Swarming on the 𝑥𝑡ℎ 

story backlog item 𝑖𝑥 on day 𝑑. 

The Mean Sprint Degree of Swarming on sprint 𝑠, 

represented by 𝜇𝑑𝑜𝑠𝑠
, is given by 

𝜇𝑑𝑜𝑠𝑠
=

∑  𝜇𝑑𝑜𝑠𝑑𝑥

|𝐷𝑠|
𝑥 = 1

|𝐷𝑠|
 

where 𝐷𝑠 is the set of days in sprint 𝑠, and  𝜇𝑑𝑜𝑠𝑑
 is 

the Mean Day Degree of Swarming on the  𝑥𝑡ℎ  day 

𝑑𝑥. 

3.2.4 Small Correct Change Into Production 

The fourth additional metric, brought forward by 

Kyle Aretae, is the Small Correct Change Into 

Production (SCCIP). This metric looks at the 

overhead of the act of deploying the product into 

production. It is defined as the time it takes for a 

single, extremely simple change to the code base, to 

be available in the production environment(s). If the 

target team works with deployment windows, it is 

assumed that the last deployment window has just 

closed. Kyle has seen this metric range from under 5 

minutes in some of the truly high-performance 

teams, to over a year in some of the worst. 

The Simple Correct Change Into Production for 

project 𝑝 , represented by 𝑠𝑐𝑐𝑖𝑝𝑝 , is given by 

𝑠𝑐𝑐𝑖𝑝𝑝 = 𝑡𝑑 − 𝑡𝑐 

Where 𝑡𝑑 is the timestamp at which the change is 

available in production, and 𝑡𝑐 is the timestamp at 

which the change was committed.  

3.2.5 Process Efficiency 

The fifth proposed metric, brought forward by Jeff 

Sutherland and Frank Verbruggen, is the Process 

Efficiency metric. This metric determines the 

efficiency of a software development team from the 

perspective of their work, instead of the individual 

team members. It is defined as the value-added-time 

divided by the total time spent working. Here, 

excellency measures a low throughput time, but 

could also lead to a low capacity utilization.  

The Story Process Efficiency for story backlog item 

𝑖, in sprint 𝑠, represented by 𝑝𝑒𝑖𝑠, is given by 
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𝑝𝑒𝑖𝑠 =  
∑ 𝑓𝑒𝑥

 − 𝑠𝑒𝑥

|𝐸𝑠𝑚𝑖|
𝑥=1

𝑐𝑡𝑖  
 

where 𝐸𝑠𝑚𝑖 is the set of the events that occurred in 

sprint 𝑠 for member 𝑚, targeting story backlog item 

𝑖,  𝑐𝑡𝑖 is the Story Cycle Time of story backlog item 

𝑖, as outlined in section 3.2.7, 𝑓𝑒𝑥
 is the timestamp at 

which the 𝑥𝑡ℎ event 𝑒𝑥 has finished, and 𝑠𝑒𝑥
 is the 

timestamp at which the 𝑥𝑡ℎ event 𝑒𝑥 has started. 

The Mean Team Process Efficiency for sprint 𝑠, 

represented by 𝜇𝑝𝑒 𝑠
, is given by 

𝜇𝑝𝑒 𝑠
=

∑   𝑝𝑒𝑖𝑥𝑠
|𝐼𝑠|
𝑥 = 1

|𝐼𝑠|
 

where 𝐼𝑠 is the set of all story backlog items in sprint 

𝑠, and 𝑝𝑒𝑖𝑥𝑠 is the Story Process Efficiency  of the 

𝑥𝑡ℎ story 𝑖𝑥 in sprint 𝑠, as outlined in section 3.2.7. 

3.2.6 Innovation Income 

The final proposed metric, brought forward by 

Frank Verbruggen and Kyle Aretae, is the 

Innovation Income metric. This metric determines 

the percentage of an organization’s income that’s 

coming from innovations. It posits that if a 

significant part of the value delivered by an 

organization comes from recent innovation, the 

organization has the ability to innovate, and dares to 

move. Such an organization has the ability to change 

the way they operate on their markets, and can 

quickly react to changing circumstances. 

The Innovation Income 𝑖𝑖 for organization 𝑜, 

denoted by 𝑖𝑖𝑜, is given by 

𝑖𝑖𝑜 =  
𝑟<2

𝑟
 

Where 𝑟<2 is the amount of yearly revenue obtained 

through projects that were released within the last 

two years, while 𝑟 is the total amount of yearly 

revenue for the organization. While the initial cut-

off is set at two years, empirical validation might 

show more optimal values for this threshold. 

3.2.7 Intermediate Metrics 

While the following metrics are not part of the set of 

metrics suggested by the experts, their values are 

needed for the calculation of some of the metrics that 

were. Their definitions are stated below in order to 

provide an accurate and unambiguous account of 

how their calculations are done. 

The Work Capacity in sprint 𝑠 for member 𝑚, 

represented by 𝑤𝑐𝑠𝑚 is given by 

𝑤𝑐𝑠𝑚  = ∑ 𝑓𝑚𝑑𝑥
− 𝑠𝑚𝑑𝑥

|𝐷𝑠𝑚|

𝑥 = 1

  

where 𝐷𝑠𝑚 is the set of days during sprint 𝑠 on which 

member 𝑚 worked on the project, 𝑓𝑚𝑑𝑥
 is the time 

at which member 𝑚 stopped working on the 𝑥𝑡ℎ  day 

𝑑𝑥, and 𝑠𝑚𝑑𝑥
 is the time at which member 𝑚 started 

working on the 𝑥𝑡ℎ  day 𝑑𝑥. 

The Work Schedule of member 𝑚 in sprint 𝑠, 

represented by 𝑈𝑚𝑠, is the union of the intervals of 

the times that member 𝑚 worked during sprint 𝑠, and 

is given by 

𝑈𝑚𝑠 = ⋃ [𝑠𝑚𝑑𝑥
, 𝑓𝑚𝑑𝑥

]

|𝐷𝑚𝑠|

𝑥 = 1

 

where 𝐷𝑚𝑠 is the set of days that member 𝑚 worked 

during sprint 𝑠, 𝑠𝑚𝑑𝑥
is the time at which member 𝑚 

started working on the 𝑥𝑡ℎ  day 𝑑𝑥, and 𝑓𝑚𝑑X
 is the 

time at which member 𝑚 stopped working on the 𝑥𝑡ℎ 

day 𝑑𝑥. 

The Event Duration for event 𝑒 of member 𝑚, 

represented by 𝑑𝑒𝑚 is given by 

𝑑𝑒𝑚 =  {𝑥 | 𝑥 ∈ 𝑈𝑚𝑠 , 𝑥 ∈  [𝑠𝑒 , 𝑓𝑒] } 

where 𝑈𝑚𝑠 is the Work Schedule of member 𝑚 in 

sprint 𝑠, 𝑠𝑒  is the time at which event 𝑒 has started, 

and 𝑓𝑒 is the time at which event 𝑒 has finished. 

The Story Cycle Time of story backlog item 𝑖, 

represented by 𝑐𝑡𝑖, is given by 

𝑐𝑡𝑖 = 𝑓𝑖  −  𝑠𝑖  

where 𝑓𝑖 is the timestamp at which story backlog 

item 𝑖 is finished, and 𝑠𝑖 is the timestamp at which 

story backlog item 𝑖 is started.  

Similarly, the Story Cycle Interval of story backlog 

item 𝑖, represented by 𝑐𝑖𝑖, is given by 

𝑐𝑖𝑖 = {[𝑠𝑖 , 𝑓𝑖]} 
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where 𝑓𝑖 is the timestamp at which story backlog 

item 𝑖 is finished, and 𝑠𝑖 is the timestamp at which 

story backlog item 𝑖 is started.  

The Mean Team Interruption Count for sprint 𝑠,  

represented by 𝜇𝑖𝑐𝑠
, is given by 

𝜇𝑖𝑐𝑠
=  

|𝐼𝑠|

|𝑀𝑠|
 

where 𝐼𝑠 is the set of the interruptions that occurred 

in sprint 𝑠, and 𝑀𝑠 is the set of the team members 

who participated in sprint 𝑠. 

The Mean Team Interruption Duration for sprint 𝑠 

and team 𝑡, represented by 𝜇𝑖𝑑𝑠𝑡
, is given by 

𝜇𝑖𝑑𝑠𝑡
=  

∑    𝑓𝑖𝑥
−  𝑠𝑖𝑥

|𝐼𝑠|
𝑥 = 1

𝑐𝑖𝑠

 

where 𝐼𝑠  is the set of the interruptions that occurred 

in sprint 𝑠, 𝑓𝑖𝑥
 is the time at which the 𝑥𝑡ℎ 

interruption 𝑖𝑥 was finished, and 𝑠𝑖𝑥
 is the time at 

which the 𝑥𝑡ℎ interruption 𝑖𝑥 started. 

3.3 Model for Metric Strength 

In this section, we introduce a new model for metric 

strength, which describes five qualities that a metric 

should have in order to be considered a strong metric 

for software development This model for metric 

strength was developed through in-depth discussion 

of metric strength with the experts, in which tacit 

knowledge about what makes a metric good or bad, 

was extrapolated and distilled into explicit 

knowledge. 

These qualities state that a strong metric should (a) 

be simple to explain and simple to measure, (b) be 

difficult to optimize without increasing business 

value (c) correlate strongly with increased business 

value when optimized, (d) be useable in multiple 

contexts, without confusing edge-cases, and (e) have 

an unambiguous and transparent definition of its 

data points, as well as how those data points are used 

in its calculations. In the remainder of this study, we 

will refer to these qualities as simple, hard-to-game, 

outcome-oriented, universal, and transparent 

respectively. Together, these criteria spell the 

acronym SHOUT. 

3.3.1 Simple 

The first quality criteria is simplicity. This addresses 

the need for a metric to be simple to explain, 

measure and interpret. It also takes into account how 

much effort, in terms of time and energy, is required 

to take the required measurements. Finally, it takes 

into account the perceived impact on the 

productivity of the team under investigation. If 

taking the required measurements takes only a 

second, but has to be done many times a day, the 

overall effort required is low, but the impact on 

overall team productivity might be too high, because 

of the numerous interruptions that it would cause.  

3.3.2 Hard to Game 

Then, the metric is judged on whether or not its value 

is hard to game. In the context of this study, hard to 

game is defined as being difficult to optimize without 

increasing business value. This means that we do 

not truly care whether or not a metric is easy to game 

or not, as long as the act of gaming still results in the 

intended increase in business value. An excellent of 

example of a metric that is hard to game in this 

sense, is Work in Progress. The emergence of the 

hard-to-game quality is not all that surprising, as 

E.M. Goldratt’s ‘tell me how you measure me, and 

I’ll tell you how I’ll behave’ comes to mind. 

3.3.3 Outcome Oriented 

Strong metrics should also show a strong 

correlation with increased business value when 

optimized. This means that the metric should give a 

clear indication of where that optimum might be, 

and can reasonably be assumed to increase business 

value when a process gets closer to that optimum. 

3.3.4 Universal 

For a metric to be universal, it must be applicable to 

many different contexts, and not just software 

development or industrial manufacturing. Similarly, 

it should not have any confusing edge-cases for 

specific circumstances, resulting in  invalid 

measurements or values. 

3.3.5 Transparent 

Finally, metrics should be transparent, meaning that 

they should have an explicit and unambiguous 

definition of their data points. Additionally, all of the 

metrics should be transparent in the sense that they 
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should unambiguously define how those data points 

are used to calculate the final metric value(s). 

3.4 Model for Team Performance 

In this section, we will introduce a new model for 

assessing team performance, based on the concepts 

discovered in the structured literature review, the 

discussions with experts, and the systematic 

mapping of their results. This model assesses the 

performance of a team along four different axes, 

being process, people, technical and product. These 

perspectives were derived from a discussion with the 

experts of the final encoding pass over the aspects of 

software development that metrics can target 

Each of these perspectives has a single key metric 

that adheres to the SHOUT model of metric strength, 

and is thus completely outcome-oriented. 

Consequently, the resulting measurements tell an 

individual team whether or not they are performing 

well on an individual perspective, but do not tell us 

anything about how to improve it. Additional 

metrics are required to provide a team with the 

necessary pulls and levers to actively navigate 

towards becoming a truly high-performance team. 

This is, however, part of our future research as 

indicated in section 5.3. 

3.4.1 Process 

According to Lean Manufacturing, the best 

manufacturing processes are optimized to reduce 

waste. In our team performance model, we state that 

a team’s process is performant when it maximizes 

added-value, while minimizing wasted resources. 

The strong metric of Process Efficiency, introduced 

in section 4.2.5, measures the percentage of total 

time spent adding value, and is used as the key 

metric for the process perspective on team 

performance.  

3.4.2 People 

In our model of team performance, we hold true the 

axiom that the members of a team need to feel good 

about themselves and their company in order to 

become a high performance team.  The Employee 

Happiness metric, introduced in section 3.4.14.17, 

measures this sense of purpose, belonging and 

satisfaction that the experts believe is a necessary 

ingredient to high performance, and is used as the 

key metric for the people perspective team 

performance. 

3.4.3 Technical 

High technical performance allows a team to 

translate concepts into profitable products and 

services in minimal time. This maximization of 

speed, alongside the minimization of required effort, 

is perfectly encapsulated in the Small Correct 

Change Into Production metric introduced in section 

4.2.4, and is thus used as the key metric for the 

technical perspective on team performance. 

3.4.4 Product 

Doing the right thing is equally important as (if not 

more important than) doing the thing right. High 

performance in the product perspective means 

maximizing the value in the eyes of the customers. 

The Net Promoter Score metric, introduced in 

section 3.4.14.11, measures how many more people 

love the product or service you’ve created, than the 

amount of people that hate it, and is used as the key 

metric for the product perspective on team 

performance.  

 

4. Discussion 

4.1 Structured Literature Review 

The structured literature review yielded a large set 

of metrics, hinting at a large body of knowledge for 

software development metrics. The collected work, 

spanning more than 40 individual papers on the 

subject and over 1000 potential candidates, shows a 

healthy distribution over venues and publishers, 

giving us no reason to suspect any form of venue or 

publisher bias.  

The study found 197 individual metrics, which is 

more than 4.5 times as many as the largest literature 

review on the subject that we found, giving us 

adequate reason to believe that our current work has 

added significant value to the field of measuring 

software development processes, by the results of 

the structured literature review alone. This seems to 

have been a necessary endeavour, seeing as the 

resulting set of keywords hint at an industry that 

lacks a clearly defined lexicon of standardized 

terms, with lots of synonyms and very little overlap 



188 
 
 

 

between papers. Similarly, when looking at the set 

of authors working on the included work, we see that 

they rarely publish more than one paper on the 

subject, with the most prevalent expert being Jeff 

Sutherland at three included papers. This also hints 

at a field that lacks well-known and prominent 

experts on the subject. Given the fact, however, that 

our inclusion criteria stated that a paper should 

mention a new, previously unmentioned software 

development metric, we cannot be all too sure about 

the latter two conclusions. 

Surprisingly, no golden age of software 

development metric research can be identified, as 

the field  has seen continuous and consistent 

attention since its inception. The distribution of 

metric mentions does, however, show a focus of 

research on complexity, quality and efficiency 

metrics, with 146 metrics targeting just these three 

aspects of the software development process. 

Similarly, a significant amount of metrics seem to 

have input data-points coming from work-items and 

their lifecycle, as well the source code, with 52 out 

of 118 inputs originating from just these three input 

categories. 

In terms of metric strength, according to the newly 

introduced SHOUT model of metric strength, it is 

surprising to see that five out of ten aspects failed to 

yield any strong metrics. Even more surprising is the 

fact that complexity and quality are among them, 

while 98 such metrics were identified. While we 

expected this to be because they were not classified 

as universal (and thus only adhering to a SHOT 

model of metric strength), we found that most often, 

they were not classified as outcome-oriented 

instead. This is not surprising, as code quality and 

complexity metrics can be excellent tools to 

maintain a high level of maintainability and clarity, 

but optimizing them does not necessarily correlate 

with increased business value. Similarly, such 

metrics can fairly easily be gamed, with various 

adverse effects. The lines of code per method metric, 

for example, can be kept artificially low by limiting 

it to one per method, but this might severely hurt 

readability and maintainability. The efficiency 

aspect, however, has yielded 12 strong metrics, most 

of which come from LEAN software development 

or manufacturing. Most of these metrics target 

various aspects of the life-cycle of a work-item (e.g. 

lead-time, queue-time, cycle-time, interrupted-time, 

and value-added-time). Similarly, the Work-in-

Progress metrics that were encountered in the 

process aspect of software development, also have 

their roots in LEAN manufacturing or software 

development.  

According to the distribution of qualities over 

metrics, the hard-to-game quality appears to be the 

hardest quality to inhibit for a metric, with just 

26.3% of the encountered metrics adhering to it. 

Similarly, only 31.4% of the encountered metrics 

have shown to be outcome-oriented, making it the 

second hardest quality to adhere to. Finally, just 23 

out of 197 metrics can be considered strong, being 

only 11.6% of the entire set of encountered software 

development metrics. This hints at the necessity of 

an accurate model for metric strength, as well as the 

need to keep quality in mind when devising new 

software development metrics. While the review has 

yielded a large set of metrics, it has yielded no model 

for determining metric strength or quality. The goal-

question-metric model came closest, but focusses on 

what makes a metric good for a particular 

organization’s context instead. A model for metric 

strength is thus a welcome addition to the field of 

software development metrics. 

 

4.2 Expert Inquiry 

The expert inquiry was done with a small group of 

experts, yet the group consisted of very prominent 

and prevalent experts in the field, with lots of 

experience and expertise between them. We found 

that it was surprisingly easy for a small group of 

experts to unanimously and quickly determine 

whether or not a metric could be considered strong 

or not, even without the SHOUT model for metric 

strength in place. 

The inquiry yielded six additional metrics that were 

not identified through the structured literature 

review and its snowballing process. It is interesting 

to note that all six metrics could be considered 

simple, hard-to-game, outcome-oriented and 

universal. Now that their definitions, as well as their 

data-points have been clearly and unambiguously 

defined in this work, they can also be considered to 

be transparent. This means that all of the metrics 

retrieved from the expert inquiry can now be 

considered strong metrics, and can now be used by 
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software development teams to determine some 

aspects of their performance. 

Context Concurrency, Priority Focus and Degree of 

Swarming show clear similarities with Kanban, 

where the amount of work-in-progress is limited in 

order to prevent an abundance of context switching 

and to stimulate a focus on the highest current 

priority. Additionally, Degree of Swarming shows 

similarities with the rise of pair programming, and 

the move away from the stereotypical independent 

and anti-social software developer. Small Correct 

Change Into Production and Innovation Income can 

both be considered as very simple, fast indicators of 

general technical and organizational performance, 

while in-depth analysis would require other, more 

complex and time-consuming metrics. Finally, it is 

interesting to note that Process Efficiency is a strong 

metric, while all of its inputs can also be considered 

strong, hinting at a very promising application that 

will need to be validated in future empirical 

research. 

4.3 Systematic Mapping 

The systematic mapping has proven to be very 

helpful in analysing and interpreting the results of 

the structured literature review and the expert 

inquiry. While the axial-encoding would most likely 

have yielded different results if performed by other 

researchers, we feel like it has fulfilled its purpose 

adequately. At the same time, however, we feel very 

strongly that potentially many more patterns and 

insights can be extracted from the systematic 

mapping, or with a potentially different axial-

encodings. For this reason, we have decided to 

publish the data set in its entirety on  

https://www.silvester-

consultancy.com/portfolio/thesis/download/system

atic-mapping.   

4.4 Model for Metric Strength 

The SHOUT model for metric strength was received 

fairly well by the participants of the small validation 

survey. In their responses, the participants signalled 

the definitions of the qualities to be very clear, with 

high median values, just as the relevance of these 

qualities. In the end, the model was thought to 

reasonably encompass every quality that a metric 

should have in order to be considered strong, with a 

median score of 4 and a Net Promoter Score of 56%. 

The model does, however, need a larger-scale 

validation in the industry, with a larger set of 

verified participants, whereas the current validation 

was just a small probe into the general reception of 

the model. 

4.5 Model for Team Performance 

The model for team performance shows very little 

correlation based on shared input data-points, with 

only the timestamp at which a work-item has 

finished being used for both Small Simple Change 

Into Production and Process Efficiency. As stated in 

chapter 8, however, the input data-point is used for 

widely different things, and represents different 

concepts in both metrics. The resulting model has, 

however, not been validated in this study, and so 

reception and performance of the model is difficult 

to gauge.  

 

5. Conclusion 

5.1 Research Questions 

5.1.1 Which software development metrics already 

exist today? 

In this study, we performed a structured literature 

review as to determine what software development 

metrics exist today, resulting in 191 software 

development metrics. In order to ensure that no 

metrics were overlooked, we performed an expert 

inquiry in which we asked prevalent experts in the 

field of software development whether they thought 

the resulting list was complete, resulting in an 

additional 6 metrics.  

5.1.2 What constitutes a strong software develop-

ment metric? 

The results of this endeavour were structured in a 

systematic mapping, and discussed with the experts 

in order to determine what makes them strong or 

weak. From this discussion, a new model for metric 

strength was developed, identifying five qualities 

that a metric should possess in order to be considered 

strong. These qualities state that a strong metric 

should (a) be simple to explain and simple to 

https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping
https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping
https://www.silvester-consultancy.com/portfolio/thesis/download/systematic-mapping
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measure, (b) be difficult to optimize without 

increasing business value (c) correlate strongly with 

increased business value when optimized, (d) be 

useable in multiple contexts, without confusing 

edge-cases, and (e) have an unambiguous and 

transparent definition of its data points, as well as 

how those data points are used in its calculations. 

We have dubbed these qualities simple, hard-to-

game, outcome-oriented, universal, and transparent 

respectively, and together, these qualities spell the 

acronym SHOUT.   

5.1.3 What set of software development metrics is 

most suitable for measuring team performance? 

Finally, this model was used to identify strong 

metrics in the result set of the structured literature 

review and the expert inquiry. From this set of strong 

metrics, we have created a new model for measuring 

software development team performance. This 

model is based on the Process Efficiency, Employee 

Happiness, Net Promoter Score and Small Simple 

Change Into Production metrics, targeting the 

process, people, product and technical perspectives 

of the software development process respectively. 

This model has not been validated in this study, but 

initial analysis have shown that little correlation 

between these metrics is to be expected, based on 

their shared input data-points.  

5.1.4 How can we measure the performance of a 

software development team? 

Finally, by answering our three sub-questions, we 

are able to answer our primary research question of 

how we can measure the performance of a software 

development team. The final answer to this question 

is thus to use strong software development metrics, 

utilizing independent input-data-points in order to 

isolate cause-and-effect relationships, while 

targeting multiple aspects of the software 

development process. In this thesis, we have 

presented a model for assessing the strength of a 

software development metric, as well as a model for 

measuring team performance, based on strong 

metrics, sharing little input data-points and targeting 

four different aspects of the process. These models 

can help organizations assess the performance of 

their software development teams. Finally, we have 

introduced automated tooling in order to help 

organizations measure these four key metrics.  

5.2 Limitations 

5.2.1 Limited Google Scholar starting set 

There are several limitations in our execution of this 

research. First and foremost, we have had to make 

some concessions as to how thorough our manual 

search for candidate work could be. Here, we have 

limited the initial collection of candidate work from 

Google Scholar to just the first 10 results, instead of 

incorporating the whole result set. This may have, in 

the end, led to less valid results, due to not having 

exhausted the entire existing body of knowledge. 

However, as we have found more than 4.5 times as 

many metrics as the largest literature review we have 

found on the subject, we feel very confident that the 

extent to which these factors threaten the validity of 

our results is fairly minimal. 

5.2.2 Limiting inclusion criteria 

Similarly, our inclusion criteria of needing to 

mention a new software development metric, as 

opposed to just any software development metric, 

has a significant influence on the validity of our 

results. The possibility exists that we have missed a 

substantial portion of the existing body of 

knowledge, due to potential separate clusters that 

our practice may have missed due to this inclusion 

criteria. A reproduction study would be wise to 

broaden this inclusion criteria to mentioning any 

software development metric, but we fear that this 

will substantially increase the effort required to 

properly perform the study. 

5.2.3 Initial focus on efficiency 

Additionally, we set out to perform this literature 

review with an initial focus on efficiency metrics. 

For this reason, the search queries that were 

executed on the Google Scholar and Scopus search 

engines, were deliberately biased to target software 

development metrics targeting efficiency. Only after 

having performed the searches, and having seen the 

amount and quality of the results, did we decide to 

register all software development metrics. This bias 

in search queries might have caused us to mis 

significant clusters of metrics in the body of 

knowledge on software development metrics.  

5.2.4 Limited model validation 
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Finally, the validation of the SHOUT model for 

metric strength cannot be considered thorough and 

complete. The participants of the validation survey 

were reached through social-media, and therefore 

not verified to be software development 

professionals. Additionally, the model for team 

performance has not seen any validation in this study 

at all, which calls for future work investigating the 

effectiveness of the model in, for example, separate 

case-studies.  

5.3 Future Work 

5.3.1 Thorough model validation 

With this study, we have set a first step towards 

enabling organizations to measure the performance 

of a software development team. We have not, 

however, proven that this model for team 

performance is accurate or valid. In future work, we 

plan to validate the model in an industry setting 

using case-studies in which the model’s accuracy is 

validated. Only after this has happened, can 

mainstream adoption potentially occur.  

Similarly, the validation of the SHOUT model for 

metric strength has yet to see a thorough validation 

of its capacities. While we have performed a small 

survey on these qualities, this was solely meant as an 

initial probing into their perceived clarity, relevance 

and completeness, and additional, more thorough 

validation is required in order to draw any 

significant conclusions. 

5.3.2 Additional analysis of the systematic mapping 

Additionally, we have acquired and systematically 

mapped a substantial part of the available body of 

knowledge on software development metrics. While 

this mapping served its purpose in our research more 

than adequately, we feel very strongly that there are 

additional patterns and insights to be discovered 

within it. We have therefore opted to open-source 

the results, in order to enable other researchers to 

draw their own conclusions from them. 

5.3.3 Investigate the effectiveness quality 

The preliminary validation of the model for metric 

strength brought forward an additional quality that 

many seem to associate with strong software 

development metrics, namely effectiveness. Future 

work could benefit from determining what exactly 

respondents mean with effectiveness, whether it is 

the same as outcome-oriented, or whether it might 

be a potential sixth quality for strong software 

development metrics. 

5.3.4 Multidisciplinary approach 

Additionally, it might prove beneficial to approach 

future work from a multi-disciplinary perspective, as 

the fields of psychology, sociology and even 

anthropology might have valuable insights into what 

qualities contribute to the strength of a metric. In this 

study, a focus on software development was used, 

but a broader view might yield a more robust and 

universal model for metric strength or team 

performance.  

5.3.5 Broader inclusion criteria 

Finally, the inclusion criteria of having to mention 

new software development metrics, as opposed to 

just any software development metric, is a 

significant blow to the validity of our results. While 

we have found more than 4.5 times as many software 

development metrics than any other literature review 

we have found on the subject, we feel that we will 

still have potentially missed numerous other metrics 

due to this inclusion criteria. A thorough 

reproduction of this literature review will have to 

broaden this inclusion criteria to state that a work 

will be included if it mentions any software 

development metric, but this will increase the 

required effort, time and resources substantially. 
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