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Abstract

Nonverbal synchrony has received a great deal of attention from many different scientific areas for

its relatedness to the quality of interaction and interpersonal relationships, functions in early infancy,

and ability to be used as a predictor for variables such as therapy outcome. This motivates a need

for automated synchrony analysis in order to exclude the possibility of human error and subjectivity.

In this study the different methodologies used to extract movement data from video, as well as the

methodologies to measure synchrony in movement data have been investigated. The goal of this study

is to find the methodologies and settings that allow for the best quantification of synchrony in dyads.

Synchrony is operationalized as the ability to distinguish rapport-building trained interviewers from

interviewers that did not receive this training. For motion energy time series creation OpenPose and

motion energy analysis (MEA) have been compared. Using the motion energy time series generated

by MEA, the ability to measure synchrony of windowed cross-lagged correlation (WCLC), windowed

cross-lagged regression (WCLR) and recurrence quantification analysis (RQA) have been investigated.

The parameters of each of these methods have been tweaked to investigate their influence on the output

score and find optimal values. The results show that MEA provides the best motion energy time series

and that WCLR most accurately quantifies synchrony. Furthermore, the results show that the output

score of WCLR is not robust against frame skip, therefore frame skip should not be used.
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Chapter 1

Introduction

Nonverbal synchrony is usually an unconscious mutual behavior between humans that can often occur

spontaneously and is closely related to the quality of the interaction. Synchrony can be used as an

indicator of interpersonal relationships, has several functions during early infancy and adulthood and

is also closely related to how dyadic partners are perceived [17]. Synchrony has also been used as

a predictor, in [49] it was shown that by analysing nonverbal synchrony it is possible to effectively

predict therapy outcome, as well as distinguish genuine interactions from pseudointeractions. Over the

course of the last years, synchrony has received a great deal of attention from many different scientific

areas, such as psychology, anthropology, sociology, linguistics psychotherapy, medicine, education,

computational neurosciences and child psychiatry. Synchrony has come to influence these fields,

because it can be used as a proxy for relevant concepts such as affection.

Before the arrival of computational methods, synchrony had to be manually measured by trained

observers. These measurements suffered from drawbacks, such as the relatively long time required to

do manual labeling and the subjectivity of the labeling. In consequence, a need for automatic analysis

methods that can reliably quantify synchrony to eliminate the need for human experts and exclude

possibilities of human error arose. In order to create such a method, synchrony must first be defined

in a way that allows us to use it in a computational method. However, despite all the attention

synchrony has received, a well-defined quantitative definition is still not available. Most literature

refers to synchrony as individuals’ temporal coordination during social interactions [17].

In this thesis we will analyse human body movement to create an estimate for synchrony between

dyads. A measure of synchrony will be obtained by analysing the coordination of body movement

between two dyadic partners. There are several methods to retrieve body movement from video, such

as motion energy analysis, motion tracking devices and human pose estimators. Using one of these

methods, a time series corresponding to the amount of body movement in between successive frames

can be created for each individual. By using time series analysis methods, analysing the similarity

between segments of the two time series can be used to obtain a measure of synchrony. This thesis

aims to provide the best method to measure synchrony by comparing the body movement extraction

techniques, the time series analysis methods, the settings of the time series analysis methods and also

investigate practical considerations when creating an algorithm to measure synchrony.

1
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The remainder of introduction is split up in three sections. Section 1.1 will describe the data that we

will use to create and test our algorithm. Section 1.2 will define the focus of this thesis project, and

will introduce the research questions. Finally, section 1.3 will provide an overview of the outline of

the thesis.

1.1 Data

To create an algorithm that can automatically analyse synchrony, data displaying synchrony is required

to test the algorithm. This data is provided by Wright et al. and consists of videos recorded in a

comprehensive study conducted at Goldsmiths University of London [71]. The data consists of videos

in which a pair of individuals is shown seated in a small room. Most interviews were recorded from

two stationary viewpoints, however some were recorded from only one stationary viewpoint. The data

shows one individual conducting the interview whilst the other answers the posed questions.

In their experiment, interviews were held in two waves. For the first wave, all interviewers received

an initial interview training. In the second wave, some of the interviewers were also trained to use

9 rapport-building techniques. The 9 rapport-building techniques are: (1) using the preferred name,

(2) self disclosure/reciprocity, (3) smiling, (4) conversational tone of voice, (5) open body posture, (6)

eye-contact, (7) head-nodding, (8) active-listening, (9) empathy. After the interview concluded, the

information disclosure was examined as well as several other variables, among which is rapport. For

the purpose of this thesis, rapport will be used as a proxy for synchrony, because it has been shown

that synchrony is closely related to rapport [64, 6]. Example frames extracted from the data are shown

in Figure 1.1.

Figure 1.1: Example interview video fragments shown from the three different stationary viewpoints.

Before this data could be used, several adjustments had to be made. Some of the recordings still

contained the instructional part, in which the researcher stands in the frame to talk to the participants,

often even occluding one of the participants. These parts are not relevant for synchrony detection and

were thus trimmed from the video. The videos also contained speech, which has also been shown to

have a relation with synchrony [32]. However, since the focus of this thesis is on nonverbal synchrony,

the audio was removed from the video to reduce the size of the data. Furthermore, as can be seen in

Figure 1.1, the camera caused a slight fisheye distortion, which had to be undistorted using the right

camera matrix. From the adjusted data we would like to extract the motion energy of the dyadic

partners.
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1.2 Research Objective

The vast interdisciplinary interest in synchrony and the need for an accurate automated approach for

measuring synchrony contribute to the motivation for this work. This thesis’ overall objective is to

investigate the feasibility of creating an automated analysis algorithm for measuring synchrony from

video and find the methodologies and settings that allow for the best quantification of synchrony. In

order to achieve this objective, several challenges need to be solved.

Before an algorithm that automatically analyses synchrony can be created, a set of questions must be

considered. Three theoretical challenges with respect to conducting an interaction study have been

formulated by Capella: ‘what to observe, how to represent observations and when and how frequently

to make observations’ [13].

Besides these three questions, the use of human pose estimators also introduces several challenges.

Despite the simple poses of the dyadic partners in the data, human pose estimators still produce error

in their estimations. One source of error is missing observations, which may be caused by events as

self-occlusion or insufficient color difference in foreground and background. Another source of error are

incorrect measurements, which may happen when people occlude each other, causing the human pose

estimator to incorrectly assign body parts to individuals. A final possible cause of error is inaccurate

measurements, where the human pose estimator’s found body parts are not on the correct point in

space, which may be caused by events as lighting changes. Therefore, with respect to pose estimation,

one problem that needs to be solved is how to filter the error caused by signal-distortion.

Furthermore, there exists a more practical problem with respect to making the algorithm computation-

ally feasible. Since human pose estimation from video is a computationally costly task, performance

enhancing methods are desirable. For example, since humans generally do not move fast enough to

significantly move in between successive frames, we may choose to skip frames in order to reduce

computational cost.

The solutions to these problems will be explored in the attempt to create an accurate algorithm

capable of automatically analysing synchrony in dyadic communication. The research questions of

this thesis are:

1. Which synchrony measuring method most accurately measures synchrony?

2. What are the optimal parameter settings for each synchrony measurement method?

3. Do time series created by human motion analysis provide better synchrony measurements for

the best synchrony measuring method than time series created with motion energy analysis?

4. What is the ideal frame rate for measuring interpersonal synchrony in dyadic interactions?

To answer these questions, this thesis aims to design, implement and evaluate an algorithm that

automatically analyses synchrony in dyadic communication. To answer the first research question, the

three most promising methods, windowed cross-lagged correlation, windowed cross-lagged regression
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and recurrence analysis are implemented and their accuracy is investigated. The accuracy is defined

as the ability to distinguish rapport-trained interviewers from control interviewers. This distinction

is made by assigning higher output scores for wave 2 than for wave 1 for dyads that did receive the

rapport-building training, whilst assigning similar output scores amongst waves for dyads that did not

receive the rapport-building training.

The second question is answered by running each synchrony method with different values for each

parameter. How changes in parameter settings influences the synchrony measurement and the ability

of the synchrony measurement method to distinguish rapport-trained interviewers from control inter-

viewers is investigated. The optimal parameter settings are defined as the set of parameter values that

allow for the best distinction between rapport-trained interviewers and control interviewers.

To answer the third question, the ability of both methods to create time series, human motion analysis

and motion energy analysis, to accurately represent movement is investigated. The best synchrony

measuring algorithm is tested on the time series created by human motion analysis and the time series

created by motion energy analysis. The accuracy of each time series creation method is determined

by comparing the synchrony output score of each dyad per wave. The accuracy is determined by how

well the synchrony measuring algorithm assigns a higher score in the second wave than in the first

wave to dyads that have received the rapport-building training. On the other hand, the synchrony

score per wave should be similar for dyads that did not receive the rapport-building training. The

method that provides the time series which results in the most accurate synchrony measurement is

deemed the better technique.

The fourth question is answered by testing several different numbers of frames to skip and look at

the impact it has on the synchrony measurement for each of the three synchrony measuring methods.

Greater frame skips will generally result in a faster running algorithm, but may also cause the algorithm

to miss small movement. Therefore, we want the frame skip to be as large as possible without

compromising the synchrony measurement. For fair comparison, the time series creation method will

remain constant.

1.3 Thesis structure

The structure of the thesis is as follows. In Chapter 2 the related work will be discussed in order to

provide the reader with background information required to understand the methods and results of

this thesis. Chapter 3 provides the implemented approach to measure synchrony and a description of

the algorithm’s pipeline. In Chapter 4 the implemented approach will be evaluated and the results of

the evaluation will be discussed. Finally, the conclusion of this thesis and a direction for future work

is presented in Chapter 5.



Chapter 2

Related Work

This chapter is dedicated to providing an overview and explanation of the current literature. Section

2.1 is dedicated to defining synchrony and its most relevant properties. By using a definition that

allows for computation, synchrony can be quantified. A general introduction on how synchrony can

be measured is provided in Section 2.1.3. The frame-based movement measurement methods, motion

energy analysis, motion capture and human pose estimation, to create movement time series are

discussed in Section 2.2. These time series will contain error, Section 2.3 discusses the different types

of error and how to remove them. The time series analysis methods are discussed in Section 2.4.

This section will provide a description of one of the standardized analysis methods, called windowed

cross-lagged correlation in Section 2.4.1, its altered version, called windowed cross-lagged regression

in Section 2.4.2, and another method called recurrence analysis in Section 2.4.3. Finally, a method to

determine whether detected synchrony is significant is given in Section 2.5.

2.1 Synchrony

Despite all the multidisciplinary attention synchrony has received, synchrony remains difficult to define

and delimit. Synchrony has been defined using multiple terms and conceptualizations, many of which

are synonymous or to some extent overlapping. For example, Schoenherr et al. identified synchrony

as a suitable overarching term encompassing different conceptualisations such as facial imitation,

movement synchrony or speech convergence [58].

In [17], Delaherche et al. stated that several synonyms for synchrony have been used throughout liter-

ature to describe the interdependence of dyadic partners’ behaviors, such as mimicry, social resonance,

coordination, attunement, chameleon effect, etc. Therefore, in order to define synchrony, they tried to

first study its relation to similar concepts and define synchrony in terms of its physical manifestation

as “the dynamic and reciprocal adaptation of the temporal structure of behaviors between interactive

partners”. They argued that synchrony is inextricably related to the study of communicative inter-

action and language. They refer to [14], in which Clark defines a conversation to be a joint activity

that requires coordination at two levels: content and process. At the content level, coordination of

what is being said is required for conversational partners to reach a common understanding. At the

5
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process level, conversational partners can accurately predict when conversation phases start and end.

By predicting the ending of the speaker’s turn, can the listener begin his turn at the correct time,

thereby achieving synchrony between the conversational partners.

On the other hand, in [20], Feldman explored to what extent synchrony influences the emergence of

complex social behavior and higher-order cognitive capacities. Feldman offers a construct in which

synchrony is posed as an “overarching, biologically based, micro-level behavioral framework that

coordinates the ongoing exchanges of sensory, hormonal, and physiological stimuli between parent and

child during social interactions”. Along the lines of this conceptualisation, synchrony in terms of its

underlying processes was defined as “the temporal coordination of micro-level social behavior”.

Bernieri et al. defined behavioral entrainment, or synchrony, as “the adjustment or moderation of

behavior to coordinate or synchronize with another, similar to the synchronization occurring between

members of an orchestra” [8]. Furthermore, they suggest that the definitions of synchrony may be

classified in three broad categories: biological rhythms, simultaneous behaviour, and perceived syn-

chrony. The biological rhythms category is based on biological sciences, in which human behavior

occurs rhythmically and can be described in cycles. Therefore, this category describes synchrony as

the degree of conformity between the behavioral cycles of two or more people. The simultaneous be-

havior category is related to behavioral mirroring or mimicry. Along these lines, synchrony is defined

as the quantity in which one person directly imitates or mimics another person’s behavior. The per-

ceived synchrony category defines synchrony as a perceptual social phenomenon. The essential feature

in this definition is that the apparent synchronous events can be combined to create a perceptual unit,

described as a ’whole’.

Finally, Harrist and Waugh view synchrony as a type of dyadic interaction, displaying an observ-

able pattern that is mutually regulated, reciprocal, and harmonious [25]. They found that, in rela-

tion to caregiver-infant synchrony, synchrony is primarily achieved via attunement of the caregiver.

They argued that caregiver-infant synchrony has three critical prerequisites. The first prerequisite is

maintained engagement, synchrony can only occur in prolonged engagement with mutual attention

and shared focus to track each other. The second prerequisite is temporal coordination, synchrony

requires matching each other’s activity level and finding a rhythm in their interaction. The final re-

quirement is contingency, which represents the relationship between events, in which the occurrence

of one event increases the likelihood of another event. Caregiver-toddler synchrony differs in two ways

from caregiver-infant synchrony. The first difference is that, rather than one-directional attunement

from the caregiver towards the infant, mutual affiliation is now required. Furthermore, since the

communicative capabilities of the child have improved, interactions with the child now also require

more variability in who leads and who follows. The second change is in the array of information

and behaviors used by the caregiver. During early childhood, synchrony differs in two ways from

caregiver-toddler synchrony. Firstly, involvement of the caregiver and the child has become equal or

near-equal, resulting in a balance in turn-taking. Initiating has now become a critical characteristic

of synchrony. Secondly, they argued that during early childhood synchronous exchanges should only

occur with non-negative affect. They argued that interactions that are both synchronous and mutually

negative may function in a particularly destructive way.
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The previously mentioned definitions are but some of the many definitions used in literature and many

definitions share common characteristics. The first commonality of the definitions is that synchrony

has a temporal nature. Besides its temporal nature, another common characteristic the definitions of

synchrony share is that synchrony must involve some notion of behavioral entrainment or adjustment

to another, which can be simultaneous, time delayed or converging.

2.1.1 Properties of Synchrony

Previously, the definitions of synchrony throughout literature have been provided as well as the com-

monalities between the definitions. What has not been discussed yet are the properties of synchrony

that will aid us in its measurements.

Time delay For behavior to be considered synchronous, each behavior produced by one partner

must be reciprocated by the coordinated behavior of the other partner within a limited window of time

[17]. Altmann suggested that, with respect to time delay, synchronous phenomena can be grouped

into three categories: simultaneous, time delayed or converging [3]. Simultaneous synchrony means

there is no time lag between movements of a dyad. Converging synchrony refers to the phenomenon

that movements of a dyad become more similar over time.

However, there is no consensus over what the size of the limited window should be. Robinson et al.

defined this range to be at most 7 seconds [52], whereas Bilakhia et al. defined this range to be 0.04

seconds up to 4 seconds [9]. Currently, the selection of the appropriate range is largely left up to

the researcher. However, the findings of Sonnby-Borgström et al. may be used as an indication for a

lower bound. They have shown that humans do not display facial mimicking at the 17ms level, but

high-empathy participants do display significant facial mimicking at the 56ms level [60].

Orientation Orientation of synchrony refers to the leader-follower relationship within an interac-

tion. Usually a conversation will be led by a person, who is driving the interaction and sets the pace,

and a person that follows along. In social interaction this relation is often dynamic and will not remain

constant throughout the entirety of the conversation [16]. One way to determine the orientation of

synchrony is by looking at the time lag. A positive lag between partner 1’s features and partner 2’s

features accounts for “partner 1 is leading the interaction”, a negative lag between partner 1’s features

and partner 2’s features accounts for “partner 2 leading the interaction”. A zero lag between each

partner’s features accounts for mutual synchrony.

Mirroring Unlike mirroring or mimicry, synchrony is dynamic in the sense that the important

element is the timing, rather than the nature of the behaviors. For example, dyadic partners both

sitting cross-legged exhibit mimicry, however only when one person uncrosses their legs and the other

follows by also uncrossing their legs, do they display synchrony [17].
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2.1.2 Importance of Synchrony

As social organisms, synchrony influences our lives in many ways. A functional aspect of synchrony

is its relevance in the development of rapport and interpersonal relationships. Firstly, Stel and Vonk

argued that mimicry is beneficial for people in social interactions [63]. They showed that mimicry

caused mimickers and mimickees to became more affectively attuned to one another, form a stronger

bond with each other and rate the interaction as smoother. Secondly, LaFrance has shown that there

exists a positive correlation between posture sharing and rapport [31]. Similarly, Bernieri et al. have

shown that interactant rapport reported by women is positively correlated with synchrony [7]. On

top of this, Tickel-Degnen and Rosenthal have shown that coordination, or interactional synchrony,

is one of the key components that make up rapport, along with positivity and mutual attention [64].

Furthermore, Valdesolo et al. have shown that synchrony leads people to perceive those with whom

they engage in synchronous behavior as more similar to themselves [66]. They also showed that people

are more willing to help those with whom they had engaged in synchronous behavior and will do so

for longer periods of time in comparison to unsynchronized individuals.

In addition to being an important component that substantiates rapport and influences interpersonal

relationships, synchrony also plays an important role in children’s development. The effect of syn-

chrony with respect to children has been thoroughly studied in relation to parent-infant synchrony.

Rocissano et al. have shown that in the toddler stage, children were more likely to comply with

instructions of synchronous caregivers than with instructions of asynchronous caregivers. Further-

more, it was shown that children who did not participate in synchronous communication with their

mother were least likely to comply with instructions [53]. Synchrony also seems to be related to the

co-regulation of parent-infant affective states. In a study by Feldman, the co-regulation of affective

states and synchrony were examined in video tapes of couples interacting with their first-born child.

They found that mothers use co-regulation and synchrony to maintain and regulate the exchanges

with their infant during face-to-face interaction. Through these synchronized exchanges, the mother

can smoothly move the infant from one affective state to another [19]. Finally, for the curious reader

we refer to [25], in which Harrist and Waugh provide an extensive review of empirical and theoretical

work on the influence of dyadic synchrony on children’s development during infancy, toddlerhood and

early childhood.

On top of this, a relationship between synchrony and psychotherapy outcome has also been found.

Ramseyer and Tschacher found an association between nonverbal synchrony and the patient’s view of

the process as well as with therapy outcome. They showed that higher levels of nonverbal synchrony

resulted in better symptom reduction [49]. A similar relation was found by Paulicker et al. They

found the highest level of synchrony in patients with non-improvement and consensual termination,

improved patients showed a medium level of synchrony, and non-improved patients with drop-out

showed the lowest level of synchrony at the beginning of therapy, even when controlling for the

therapeutic relationship [45].

Vinciarelli et al. argue for the indispensability of social intelligence and the role it has in achieving suc-

cess in life [67]. Therefore, they investigated the possibility of bringing social intelligence to computers

by using Social Signal Processing (SSP). They argue that although the first steps towards artificial so-
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cial intelligence and socially-aware computing have been taken, the road is still long as four issues still

need to be addressed. The first issue relates to the required collaboration between engineers and social

scientists. No automatic analysis of social interactions is possible without accounting for the basics

of social behaviours such as interactional synchrony. Therefore, engineers need to include the social

sciences in their reflection, while social scientists need to formulate their findings in a form useful for

engineers. The second issue relates to need of implementing multi-cue, multi-modal approaches, since

nonverbal behaviours may correspond to different interpretations depending on context and culture

and are therefore ambiguous. The third issue relates to the need to use real-world data. Data is often

acquired in an artificial setting, which causes a simplification of the investigated situation and may

influence the assessment of the automatic approaches. The final issue relates to finding applications

that will benefit from SSP as applications have the advantage that they link the effectiveness of SSP

to reality.

2.1.3 Measuring Synchrony

Now that the common aspects between the definitions of synchrony and its properties have been

investigated, the techniques used to measure synchrony can be investigated. Considering the properties

of synchrony, to measure synchrony, the algorithm should analyse the co-regulation within a limited

time window of body movement between two people and consider varying orientation.

In earlier days, this had to be done manually by trained observers. One proposed manual rating

method by Bernieri et al. is the judgement method, in which synchrony raters represent subjective

ratings for three aspects of synchrony on a 9-point Likert scale [8]. Firstly, simultaneous movement,

which is the quantity in which the intaractant’s movement begin and end at the same time. Secondly,

tempo, or rhythm, similarity, which represents “the degree to which the two people in the clip seem

to be ‘marching to the beat of the same drummer’”. And finally, coordination and smoothness,

representing how smoothly the interactant’s flow of behavior intertwines. An alternative way of

measuring synchrony within time windows is by focusing on discrete movements (e.g. pose shift,

touch of the face) and then correlating the occurrences over time [62]. However, it can be argued that

the occurrence of these discrete movements is relatively rare and is therefore not suitable as a reliable

source for synchrony. Such non-computational methods suffered from drawbacks, such as the required

time to do manual labeling and the subjectivity of the labeling. Often, the annotator must make

a trade-off, because no label exactly describes the observation. The judges’ reliability in assessing

such a subjective and complex construct is also questionable, and no general framework for synchrony

assessment has been accepted to date [17]. On top of this, it is not possible to closely examine how

various aspects of behavior (e.g. speed, body part, orientation, etc) affect synchrony.

Nowadays, the developments within the field of computer vision brought along new computational

methods for measuring synchrony. The benefit of using computational methods is that we can avoid

the drawbacks of non-computational methods. Even though coding is still required to create a com-

putational method (for training or testing purposes), after the algorithm is completed future uses will

no longer require raters to do behavioral coding. Furthermore, the issue of subjectivity of the judges

will be solved, because an algorithm’s output will be deterministic by nature.
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However, before considering computational methods, we must define what movement should be con-

sidered. Schmais and Felber split synchronous body movement into three categories: (1) rhythmic

synchrony, which considers movement rhythms in some body part between people (not necessarily the

same body part), (2) effort synchrony, quantifying similar effort quality or dynamics between people,

and (3) spatial synchrony, a measure of how much all body parts move in the same relative direction

[56]. In more recent work, we see that some focused on movement of specific body parts, such as eyes

[51], legs [57] or fingers [43], whilst others chose to focus on more global features, such as posture [40].

Even though many existing computational methods consider all general movement within a predefined

region, when opting to look at a single body part another aspect to consider is whether mirrored

synchronous movement is also considered to be synchrony. Mirrored synchronous movement in this

context refers to the event when two people are standing opposite to each other and move the same

body part, but on the opposite side of the body (e.g. person 1 raising their left arm and person 2

raising their right arm).

2.2 Frame-based Movement Measuring

Before it is possible to measure synchrony, it is necessary to retrieve the movement of a dyad from

video. Several acquisition techniques capable of accomplishing this task are prominent in the literature:

motion energy analysis, for analysing general movement within a region, motion capture, to measure

motion of specific body parts, and human pose extraction, which estimates the human pose within an

image.

2.2.1 Motion Energy Analysis

In [23], Grammer et al. proposed a new computational method to analyse behavior they called

automatic movie analysis (AMA). AMA is an approach based on automatic analysis of changes in

body contours between successive frames in a video. AMA quantifies the amount of motion energy by

subtracting pixel color values of successive frames. This results in a measure of the total amount of

movement within a certain time span.

The method described above is often referred to as motion energy analysis (MEA) [58]. In most litera-

ture MEA was applied to a region of interest (ROI) to create time series representing the total amount

of movement between frames for that ROI. MEA is therefore an objective method that quantifies the

intensity of videotaped movements within a region of interest in a frame-wise manner [49]. In relation

to synchrony, useful time series were obtained by enveloping each person in their own ROI.

However, a ROI does not mitigate the error of measuring non-movement related pixel changes as

movement. The pixel color changes may occur due to events as lighting changes or a change in camera

position. To reduce the noise caused by events like these, pixel changes are only considered to be

movement related if the change exceeds a threshold, as is shown in Figure 2.1. In general, setting the

threshold too low will inadequately remove noise, on the other hand, setting the threshold too high

will make the system unable to pick up small movement.
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Figure 2.1: Removing noise from the measured movement by applying a threshold. The left image
has a too low threshold, the center image has a good threshold and the right image has a too high
threshold. This Figure is provided by [49].

Another issue is scale. If one person appears closer to the camera, then even small movement will result

in a lot of pixel value changes. If the person farther from the camera recreates the same movement,

then MEA would still quantify this as less movement, because fewer pixels changes. This issue cannot

be solved by using a threshold, however some accounted for the different size ROIs by z-transforming

the data [45].

Furthermore, the measure is heavily affected by the color of the clothing and the viewpoint under

which the persons are recorded. For example, if the color of the clothing is similar to the background

then movement may be overlooked, because the pixel color change did not exceed the threshold. The

viewpoint determines what movement can be seen by the camera, if the viewpoint causes self-occlusion

then the movement of the occluded body part will mostly be overlooked.

Overall, while the method is automatic, the constraints on the physical setup of the recordings need

to be very strict in order to result in reliable measurements. One could argue that this reduces the

ecological validity of the measurement.

2.2.2 Motion Capture

In an attempt to remedy the shortcomings of manual annotating synchrony ratings, researchers have

started to investigate motion capture as a means to automatically measure human movement [47].

Advances in computing technology and the development of dedicated technologies have made it easier

to record and analyse human nonverbal behavior. Motion capture can be used to create motion energy

time series by tracking the position of sensors over time. Two distinctions can be made between the

motion capture methods. The first distinction can be made based on whether the method relies on

markers or sensors to record body movement. The second distinction is made based on whether the

method offers full-body (global) or single body part (local) movement capture. The output of motion

capture methods generally consists of a series of body parts, represented as shapes with a certain

length, and joints, which is a single point in space.

Marker-based approaches captures the location of the markers worn on the body by triangulating

the 3D position of a subject between two or more calibrated cameras. In order to avoid occlusion,

usually many cameras are needed. There are two types of marker-based approaches: passive-marker
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and active-marker approaches. Passive-marker are markers coated with retro-reflective material that

reflect light that is generator near the camera, whereas active-markers transmit the light themselves.

Passive-marker approaches ensure good visibility, but may confuse markers. Active-markers do not

suffer from this, because each marker emits its own unique frequency by which they can be distin-

guished, but must be guaranteed power to avoid data loss.

Inertial systems employ a suit equipped with sensors to measure movement of the body. The

sensors attached to this suit usually consist of 3D gyroscopes, accelerometers and magnetometers [54].

An example of this suit is shown in Figure 2.2. By combining the signal of each sensor, estimates

about their position can be made. The accuracy of inertial systems is generally high, but may suffer

from drift due to presence of sensor noise, sensor signal offset, or sensor orientation errors. Sensor

noise may be the result of the presence of metal in the recording environment.

Figure 2.2: Xsens MVN consists of 17 inertial and magnetic sensor modules [54].

One drawback of motion capture systems is its intrusive nature, since it requires subjects to be

equipped either with markers or with a suit equipped with sensors. It can be argued that this may

cause subjects to be more conscious of their behavior than they would in a real-life setting, which

would decrease the ecological validity of this method.

2.2.3 Human Pose Estimation

Due to the developments in computer vision have human pose estimation (HPE) techniques become

a viable alternative to MEA and motion capture. HPE doesn’t suffer from the same drawbacks as

MEA and Motion Capture, as it doesn’t require a ROI and will generally not count non-movement

related pixel changes as movement, because those pixels do not belong to a human. Furthermore,

HPE techniques do not require the participants to wear sensors and is therefore not as intrusive as

motion capture. However, HPE techniques still suffer from scale and relies on contrasting colors to

find humans in images, therefore clothing should preferably not be the same color as the background.

Besides our application HPE has also been used in surveillance, animation, video games, athletic

performance analysis and human-computer interaction.
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In general, the goal of human pose estimators is to find 2D or 3D body part locations within an

image, which can be connected to create a set of lines representing the human’s pose. By comparing

the location of a keypoint or line segment between keypoints in successive frames an estimate of motion

can be calculated. The process of estimating poses over time is called human motion analysis. By

comparing keypoints found by human motion analysis in successive frames, a motion energy time

series can be created.

The process of human motion analysis has been summarised by Liu et al. in two main stages: pre-

processing and body parts parsing. An illustration of their summarised common pipeline of human

motion analysis is shown in Figure 2.3. The preprocessing stage includes feature extraction, camera

calibration, body detection and foreground segmentation. It is necessary to do data calibration, be-

cause HPE is not always applied to images taken from the same camera viewpoint, for example camera

calibration is often applied to alleviate the error caused by viewpoint changes.

Figure 2.3: Model illustrating the common human motion analysis pipeline, provided by [34]. In this
model, dashed-borders represent optional states.

The aim of the body parts parsing stage is to locate different body parts in the images. The body

parsing methods can be split in methods estimating 2D body parts locations and methods estimating

3D body parts locations. 2D body parsing is done using feature extraction or feature learning. Feature

extracting in images can be done with features such as histogram of oriented gradients and scale

invariant feature transform [61]. Feature extraction in videos may be done with optical flow [55].

The alternative to feature extracting is feature learning, where the method is trained to recognise

body parts. For example, Newell et al. proposed using a ‘stacked hourglass‘ design for convolutional

deep neural network to predict human poses from a single image [42]. The design is referred to as

hourglass, because it consists of the steps of pooling followed by upsampling to get the final output of

the network, which when visualised looks similar to an hourglass.

Many taxonomies have been proposed to categorize human motion analysis methods. In [46], Poppe

discusses the characteristics and distinctions of human motion analysis methods used throughout

literature. Poppe observes that methods fall in two main classes: model-based (or generative), which

employ an a priori human body model, and model-free (or discriminative) approaches. These main

classes can be further subdivided: model-based estimation can be split up in top-down and bottom-up,

and model-free approaches can either be learning-based or example-based. On the other hand, Gavrilla

assigned methods to one of three categories: 2D approaches with shape models, 2D approaches without

shape models or 3D approaches [22]. Whereas Ji and Liu categorised view-invariant human motion
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analysis methods in two classes: pose representation and estimation, and action representation and

recognition [28]. The difference is that the former represents methods that estimate a 3D pose from

an individual image in a sequence, the latter is focused on inferring and understanding human action

patterns. However, the two types of methods are closely connected, because the view-invariant pose

estimate can be used as input for the action recognition.

Model-based vs. model-free There are two main approaches for model-based estimation: top-

down and bottom-up. However, recent work combines the approaches to benefit from the advantages

of both [46]. Top-down approaches find the human pose within an image by searching for a projection

of the human body. After an initial pose is found the estimate will in general be further improved with

a local search around the pose. The high dimensionality of the pose space prevents a bruteforce local

search, therefore local search is usually done with gradient descent on the cost surface. A drawback of

top-down approaches is that it requires a (manually) specified initial pose estimation in the first frame

of a sequence, because the initial estimate is often obtained from the estimate in the previous frame.

This method also suffers from the computational cost of forward rendering the human body model

and calculating the distance between this model and the image observation. On top of this, top-down

approaches are sensitive to error caused by (self)occlusions. Moreover, errors are propagated through

the kinematic chain. Error in the estimation for a body part at the beginning of the kinematic chain

may cause errors in estimating the orientation of body parts lower in the kinematic chain.

Bottom-up approaches start by finding body parts throughout the entire image and then assembles

these into a human body. These approaches find body parts by matching a 2D template. These

approaches generally suffer from many false-positives, because there are many limb-like regions within

an image. To find sufficient body parts in the image to construct a human, a part detector for

most body parts is necessary. Body parts are assembled by taking physical constraints such as body

part proximity into account. Bottom-up approaches are able to cope with occlusions by introducing

temporal constraints. Furthermore, bottom-up approaches have the advantage that it does not require

manual initialization.

Model-based approaches may choose to use appearance models or structure models to aid it in its

search. Appearance models aim to parse each part of the body individually, whereas structure models

also look at the relationship between different body parts. A popular appearance model is called

poselet, whose purpose is to describe a particular part of the human pose under a given viewpoint [11].

Specifically, a poselet is a set of linear support vector machines, which bridges the gap between the body

part appearance and configuration. Structure models represent the human body as a constrained tree

model in which body parts are represented as nodes and each node is connected with its neighbouring

body parts. The most popular structure model is the pictorial structure model, in which each node is

modeled individually in a deformable form, and spring like connections are used to connect different

parts [21], as is shown in Figure 2.4. This model is able to assume many different poses due to its

special structure.

Model-free approaches aim to find a direct relation between the image observation and a pose. Two dis-

tinctions between model-free approaches can be made: learning-based and example-based. Learning-

based approaches learn a function from image space to pose space from training data. Whereas
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Figure 2.4: Illustration of the pictorial structure model with springs and as tree model, provided by
[27].

example-based approaches do a similarity search to select candidate poses from a database containing

exemplars and their pose descriptions. The pose estimate is obtained by interpolating the candidate

poses.

Tracking Tracking is the process of estimating poses from frame to frame. Tracking is used to

provide an initial pose estimate and to ensure temporal coherence between poses over time. When it

is assumed that the time between subsequent frames is small, the difference in body poses is likely

to be small as well. The body pose of the current frame be used to as a reasonable initialization for

the next frame, because the difference in body pose between two successive frames is not significantly

large. These body pose differences can be approximately linearly tracked, for example with particle

filtering or a Kalman filter. Traditionally, tracking was aimed at maintaining a single hypothesis over

time. Since this often causes the estimation to lose track, most recent work use multiple hypotheses

to decrease the chance of losing track.

Benchmark Researchers have created a myriad of datasets to evaluate their proposed techniques for

the specific task, which makes the fair comparison on the different algorithms even harder. Due to the

large variations in different scenes, it is difficult to build a universal dataset to evaluate the human pose

estimation. Therefore, datasets have been able to cover the entirety of the overall pose estimation

challenges. In recent years, to compare the performance of each human pose estimators, several

common sources created to evaluate, train and compare different models on have been developed,

such as MPII Human Pose [5], PoseTrack [4] and COCO [33].

The MPII Human Pose benchmark provides a comprehensive dataset created from a wide range of

human activites, such as recreational, occupational and householding activities, captured from a wide

range of viewpoints. Furthermore, they provide labels of body joints positions, full 3D torso and head

orientation, occlusion labels for joints and body parts, and activity labels. For each image they give

adjacent video frames to enable the use of motion information.

PoseTrack is a benchmark aimed at video-based human pose estimation and articulated tracking.
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They focus on three main tasks: (1) single-frame multi-person pose estimation, (2) multi-person pose

estimation in videos, (3) multi-person articulated tracking. Their dataset features videos with multiple

people labeled with person tracks and articulated pose.

The COCO benchmark dataset consists of images of complex everyday scenes containing common

objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise

object localization. Their dataset contains photos of 91 objects types that would be easily recognizable

by a 4 year old. The COCO dataset contains a total of 2.5 million labeled instances in 328k images.

Deep learning Recent advancements in artificial intelligence and the successes of deep learning for

classification problems have made deep learning a strong contender for human pose estimation and

has attracted a lot of research attention and brought forth many applications. For instance, Toshev

and Szegedy [65] use a seven-layered convolutional deep neural network in their body joint regressor

to represent the joint context and predict the body location. Also, Chen and Yuille [44] train deep

convolutional neural networks on the image patches around the body joints to learn the probabilities

for the absence and spatial relationship of different body parts. Newell et al. came up with a stacked

hourglass design for their deep convolutional neural network that consists of successive steps of pooling

and upsampling to produce a final set of predictions [42].

DensePose Güler et al. developed a promising deep learning open source multi-person human pose

estimator, called DensePose [24]. DensePose aims to map all human pixels of an RGB image to the 3D

surface of the human body without the need for depth information. They created a new fully convo-

lutional network architecture comprised of the Dense Regression architecture [1] and the Mask-RCNN

architecture [26]. To deal with scale differences, the DensePose architecture begins with extracting

region-adapted features through region of interest pooling. These featues are then propagated to a

region-specific branch, which is a fully-convolutional network that densely predicts discrete body part

labels and continuous surface coordinates. This output is given to another DensePose network with a

cross-cascading architecture for other specific tasks, such as keypoint detection. Once the predictions

for the specific task have been found, they will be further improved by a refinement unit.

OpenPose Another promising open source multi-person 2D pose estimation approach has been

proposed in [12]. Their approach, called OpenPose, estimates poses in a bottom-up manner by using

Part Affinity Fields (PAF) to learn to associate body parts with individuals in the image. Where a

PAF is defined as “a set of 2D vector fields that encode the location and orientation of limbs over

the image domain”. Due to the bottom-up nature of their approach is the algorithm’s runtime not

bound by the number of people in the image and does it not suffer from early commitment to perhaps

faulty person detection like top-down approaches do. The OpenPose pipeline consists of the following

steps: the entire image is used as input for a CNN, in which the body part confidence maps and the

PAFs are jointly predicted. Afterwards, body part candidates are connected by performing bipartite

matchings. Finally, all body parts are assembled into full body poses for all people in the image.
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2.3 Signal Smoothing

Since all frame-based movement measuring techniques are prone to some form of error, it is necessary

to correct the signal. In general will there be three types of noise in the data: (1) measurement noise,

caused by variation in the image, (2) missing detection, which occurs when a body part could not be

found in an image, and (3) wrong detection, for example when a body part is mistaken for another

body part. These errors may be caused by events such as camera position changes, self-occlusion,

lighting changes or tracking failure.

Measurement noise can be removed by applying a threshold, however this will also reduce the system’s

ability to pick up small movement. An alternative to applying a threshold is applying signal smoothing

techniques. Throughout literature several signal smoothing techniques have been used, such a as

moving average [45, 49] and a moving median [47].

Missing detections in data can be solved by interpolation, by replacing them with the mean/median

of the entire dataset or by omitting them. Wrong detections are the hardest kind of noise to correct,

because they are hard to detect and even if they are detected, assigning the data to the correct body

part may be difficult because it is not always clear what the correct body part should be. This problem

becomes increasingly difficult the longer the mistake persists. Since there is no single optimal solution

to this problem, solutions are usually pragmatical. These errors may for example be solved by omitting

all measurements within the timespan in which wrong detection errors were made.

However, opting to remove data introduces ’gaps’ in the time series. This introduces another problem

with respect to time series alignment. Usually this problem is solved pragmatically rather than

optimally, because no one optimal solution exists.

Moving Average Paulick et al. [45] and Ramseyer and Fabian [49] used moving average with

a window size of 0.4 seconds has been used to reduce noise caused by signal-distortion in motion

energy analysis. Moving average can be mathematically defined as follows. Consider dataset X =

{x1, x2, ..., xn} of n data points. The moving average filter generates an output dataset by sliding a

window over every data point in X and taking the average of all elements within the window centered

around the data point. The size of this window is defined by r. Formally, the output value of data

point i will be the average of all elements in {xi−r, xi−r+1, ..., xi−1, xi, xi+1, ..., xi+r−1, xi+r}.

Moving Median Poppe et al. used moving median to correct data distortions caused by measure-

ment noise and longer-term inconsistencies in motion capture data due to equipment or transmission

failure [47]. They used a modest window size, in the range of [0.25, 0.5] seconds. They noted that the

window size is a trade-off between the ability to suppress inaccuracies in the output and the level of

detail that is retained in the measurements. To emphasise their motivation for choosing to use moving

median instead of moving average, they provide an illustration shown in Figure 2.5.

In [39], Moore and Jorgenson described the median filter mathematically as follows. The median filter

takes as input dataset X = {x1, x2, ..., xn} of n data points, uses a filter rank r, where n > r ≥ 0
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Figure 2.5: Illustration of the smoothing achieved by a moving median filter and a moving average
filter, provided by [47].

and gives a filtered dataset Y with the same dimensions as X as output. Each point in Y is

the median of a subset of 2r + 1 data points centered on the corresponding point in X. For-

mally, the elements of Y are calculated by yi = median(Ji), for i = 0, 1, 2, ..., n − 1, where Ji =

{xi−r, xi−r+1, ..., xi−1, xi, xi+1, ..., xi+r−1, xi+r}. They note that the median filter preferentially re-

moves sharper peaks and passes broader features, and its discrimination between sharp and broad is

controlled by the value of the filter rank, r. Lower values of r give smaller windows and only remove

the sharpest peaks, while higher values of r give larger filtering windows and can result in the removal

of even relatively broad peaks from the input data.

2.4 Time Series Analysis Method

Once motion energy time series have been collected, an automated determination of synchrony using

time series analysis methods (TSAMs) can be made. As the name suggests, TSAMs can measure

the quantity and intensity of synchronous movement by analysing the similarity between time series.

However, not every TSAM analyses time series in the same manner; there exist several distinct analysis

methods [58].

The first distinction that can be made is between global and local analysis approaches, which depicts

whether the time series will be analysed as a whole versus splitting up the time series and analysing

it partially. For local methods another distinction can be made between overlapping windows and

non-overlapping windows, which will decide how the time series’ data is split. Thirdly, a distinction

can be made between whether to correlate the time series or to use regression. Finally, a distinction

can be made between the output scores of TSAMs. These distinctions should be carefully considered

when implementing a TSAM, because not every TSAM provides the same output, rather they each

make different assumptions about the manifestation of synchrony.

Global vs. local Regarding the length of the window sliding over the time series a distinction can

be made between global and local. A global approach will set the window size equal to the length

of the time series, which will result in an estimate using the time series as a whole. Two methods

using the global approach are cross-lagged correlation (CLC) and cross-lagged regression (CLR). These
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approaches calculate the Pearson correlation coefficient or regression, respectively, by looking at both

entire time series, however the starting point of each time series may differ. If the starting points are

not equal the difference is referred to as time lag. Currently no best amount of time lag has been

found, and is up to the researcher to come up with an appropriate value. The advantage of using

global approaches is that it is computationally less expensive than its local counterpart. However, one

disadvantage is the necessity of the global stationarity assumption: the mean and variance of the time

series have to remain constant. Furthermore, it requires that the person who leads the conversation

and sets the pace remains constant as well, which is rarely the case in natural conversations. In order

to eliminate the need for these assumptions local methods were created.

Local approaches calculate the Pearson correlation coefficient or regression between parts of the time

series. These approaches use a sliding window to go over the time series part-wise rather than using the

time series as a whole. Implementations of local approaches are windowed cross-correlation (WCC),

windowed cross-lagged correlation (WCLC) [10], and windowed cross-lagged regression (WCLR) [2].

By using sliding windows the stationarity assumption no longer has to apply globally, but only locally.

The size of the sliding window is referred to as the window size. Just as with finding the appropriate

time lag, finding the appropriate window size is also up to the researcher. A too large window size

will decrease the benefits of a local stationarity assumption, however settings window size too small

may result in the inability to pick up on synchronous movement over a large time span.

Overlapping windows vs. non-overlapping windows When using local approaches another

aspect that needs to be considered is whether to allow the sliding windows to overlap. Using overlap-

ping windows will be computationally more expensive, however it has the ability to find synchrony

everywhere within the time series. Opting for non-overlapping windows may result in synchronous

movement being undetected if it happened over a splitting point. Therefore, overlapping windows are

usually preferred.

Correlation vs. regression As mentioned before, TSAMs calculate either Pearson correlation

coefficient or regression to determine the relationship between the time series. Even though correla-

tion approaches can be viewed as single predictor regression, the advantage of using regression over

correlation is the ability to also take autocorrelation into account. In CLR two predictors are used, the

first predictor is autocorrelation and the second predictor is cross-correlation. If the model including

autocorrelation and cross-correlation cannot explain the data significantly better than the model that

only incorporates autocorrelation, the movement is categorized as non-synchronous.

Output score The final distinction can be made with respect to output scores. There are several

distinct outcomes TSAMs can give. In general a TSAM’s output score is average synchrony, maximum

synchrony and/or frequency of synchrony. Which output score should be used as an indication of

synchrony strength is dependent on the research question and is left for the researcher to decide.

For example, in [2], Altmann used the frequency of synchrony, which is the summative length of all

synchronous sequences of an episode in proportion to the episode length, as an output score to measure

the strength of synchrony between children playing a game. Even though the type of output score
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could serve as an indication to guide the definition of synchrony, this notion is largely lacking from

any working definition of synchrony.

2.4.1 Windowed Cross-Lagged Correlation

In [10], Boker at al. created the windowed cross-lagged correlation (WCLC) method to analyse the

association between two variables without need for the stationarity assumption. Eliminating the need

for stationarity is interesting when trying to understand how adaptable creatures such as ourselves

behave. Especially when considering correlations in exchanges between two individuals, because their

behavior will not remain constant throughout a conversation due to adaptation to each other. WCLC

is categorized as a local TSAM and employs overlapping windows to ensure correlation can be detected

in either direction and at any moment in the time series. The output of WCLC are estimates of both

the strength of peak association and the time lag when the peak association occurred. WCLC has

become a standard method to analyse the linear relationship between two time series [2], and is used

in [10] and [48].

To measure how the relationship between variables change over time WCLC calculates the Pearson

product moment correlations between the two windowed slices of the time series. The algorithm has

been created to work on time series with an equal interval of time between observation, however it

could be adapted to work on unequal intervals. The advantage of using partial data obtained denoted

with the windows on the time series is that the global stationarity assumption is reduced to a local

stationarity assumption. Furthermore, by allowing windows to overlap and by splitting the time lags

WCLC is able to calculate a moving estimate of association and lag without favoring one variable over

the other.

WCLC is able to do so in the following manner: suppose we have two time series, each with N

data points and equal interval between subsequent observations, X = {x1, x2, x3..., xN} and Y =

{y1, y2, y3..., yN}. Further suppose a window size wmax, a time lag τ on the integer interval −τmax ≤
τ ≤ τmax and an index i denoting the time within the time series. For each i = {τmax + 1, τmax +

2, ..., N − τmax−wmax}. A pair of windows Wx and Wy can be selected from X and Y respectively as

follows:

Wx =

{xi, xi+1, xi+2, ..., xi+wmax}, if τ ≤ 0

{xi−τ , xi+1−τ , xi+2−τ , ..., xi+wmax−τ}, otherwise
(2.1)

Wy =

{yi+τ , yi+1+τ , yi+2+τ , ..., yi+wmax+τ}, if τ ≤ 0

{yi, yi+1, xi+2, ..., yi+wmax}, otherwise
(2.2)

The cross-correlation between Wx and Wy can now be defined as:

r(Wx,Wy) =
1

wmax

wmax∑
i=1

(Wxi − µ(Wx))(Wyi − µ(Wy))

σ(Wx)σ(Wy)
, (2.3)
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By differentiating the items within Wx and Wy based on τ , the overall strength and lag of the cor-

relation will not be biased. By selecting the windows according to Equations 2.1 and 2.2 mirror

synchrony is guaranteed, if the variables X and Y were to be swapped, then the cross-correlations

remain the same, but in reverse order. A visualisation of how the windows slide over the data as

well as the resulting cross-correlation matrix is given in Figure 2.6. The resulting matrix will have a

number of columns equal to (τmax ∗ 2) + 1 and number of rows equal to the largest integer less than

(N − wmax − τmax)/winc.

Figure 2.6: Illustration of window sliding over the dataset, provided by [10]. In this example a
maximum time lag τmax = 1, the time increment τinc = 1, the window size wmax = 6 and the window
increment winc = 2 have been selected.

Selecting the four parameters of WCLC is no trivial task. There are two variables related to the

sliding window: window size and window increment. The window size, wmax, depicts the number

of samples that fit within a window. By setting the window size too small, the reliability of the

correlation estimate will be reduced. However it should be small enough to ensure little change in

who leads the conversation within the window’s time frame. The window increment, winc, is the

number of samples the window slides after the correlation for each time lag has been calculated. If

the window increment is too small, there may be little change in successive rows in the result matrix.

Short window increments also lead to large numbers of rows in the results matrix. On the other hand,

if the window increment is too big, there may be so much change that successive rows in the results

matrix will appear to be unrelated. Therefore, the window increment should be big, but still small

enough that the relation between successive rows in the results matrix persists.

Besides the window parameters, there are also two time lag related variables: maximum time lag

and time lag increment. The maximum time lag, τmax, is the maximum time interval between the

selected windows. A large maximum time lag will allow us to analyse synchrony with longer delays,

however a large maximum time lag will also result in a large number of columns in the result matrix.
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The time lag increment, τinc, is the number of data points a window slides after the correlation has

been calculated. Small lag increments lead to little difference between successive columns in the result

matrix and will result in many columns in the results matrix. On the other hand, long lag increments

lead to seemingly unrelated successive columns.

Peak-picking To estimate the time lag between the association of two time series WCLC is extended

with peak-picking. The goal of peak-picking is to find the difference in starting points of an event in

Wx and a similar event in Wy. By using peaks as representations for events, events can be compared

and deemed related to each other. The time lag can then be estimated by investigating the interval

in between the two similar events.

The peak-picking algorithm estimates the time lag by finding the peak cross-correlation that is closest

to a time lag of zero. Considering the results matrix in Figure 2.6, the search starts from column 0

and moves outwards, because peaks with a low time lag are most likely to be related. They defined

a peak to be “a maximum value of cross-correlation centered in a local region in which values are

monotonically decreasing on each side of the peak”. It is up to the researcher to define the size of

the local region. Peak-picking takes as input one row of the WCLC results matrix and finds a peak

by starting with the element with a lag of zero. Once a peak has been found will the peak-picking

algorithm return two numbers, the lag of the selected peak relative to the element with zero lag and

the value of the crosscorrelation at that peak. These numbers are found by incrementally increasing

the search region, until a search region is centered over a peak. Then the lag value, which is derived

from the index of the element centered at the peak, and the cross-correlation value are returned.

2.4.2 Windowed Cross-Lagged Regression

Altmann argued that windowed cross-lagged correlation (WCLC) does not take into account the

possibility to get a significant cross-correlation of two time series which are independent from each

other [2]. Such spurious cross-correlations could be arised if both time series are auto-correlated

(cyclic). In other words, WCLC could be biased with auto-correlation and consequently will the

conclusions about the occurrence of movement synchrony be biased too. Therefore did they develop

a new method called windowed cross-lagged regression (WCLR), which tackles the auto-correlation

problem by using regression rather than correlation.

First a window size (Wmax) and range of time lags (τmax) is defined and the regression is computed

in the same window-wise manner as in WCLC. To measure synchrony for each position t in the time

series and relative time lag τ , WCLR uses two models:

Model 1: Xt+τ = β0 + β1X1t + ε1t (2.4)

Model 2: Xt+τ = β0 + β1X1t + β2X2t + ε1t (2.5)

Where model 1 only keeps track of the auto-correlation and model 2 keeps track of both the auto-

correlation and cross-correlation. The variance explained by cross-correlation can now be defined
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Figure 2.7: Peaks selected by the original peak-picking algorithm by Boker et al. [10] and peaks
selected by the adjusted peak-picking algorithm, provided by [2].

by:

R2
CC = R2

Model2 −R2
Model1 (2.6)

Where R2
Model2 and R2

Model1 are the coefficient of determination of models 2 and 1 respectively. If

R2
CC > 0, then the model with cross-correlation fits better for the given t and τ than the model with

just auto-correlation.

Peak-picking Altmann implemented his own peak-picking algorithm to find intervals of synchrony.

For each R2
CC peak, the neighbouring peaks are identified and combined into a line, as can be seen in

Figure 2.7. Where neighbouring peaks are said to form a line if their time lags are within a certain

distance from the time lag of the original peak. It is up to the researcher to set the distance threshold.

If there are multiple lines spanning the same time frame, then the line with the highest average R2
CC

is selected to best represent the synchronous interval, where lines span the same time frame if both

lines contain share one or more peaks. The beginning and end of a line represents the beginning and

end of synchronous movement.

2.4.3 Recurrence Quantification Analysis

In [50], an alternative method to measure synchrony is proposed, called recurrence analysis (also

known as recurrence quantification analysis, and cross recurrence quantification analysis). Recurrence

analysis is originally designed to find recurring patterns in datasets and the main benefits of recurrence

analysis are its ability to take auto-correlation into account and its unboundedness by the stationarity

constraint. The unboundedness of the stationarity contraint allows recurrence analysis to work with
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varying orientation of synchrony. This allows us to analyse human social interaction in a more realistic

way, since human interaction usually has more variation in who leads and who follows throughout a

conversation.

In recurrence analysis the degree of synchrony depends on how often two time series are in similar

states, where a state refers to a subset of observations and are considered to be similar if the observa-

tions display a similar pattern. If the time series are in a similar state, a recurrence point for that point

of time is created. Next, the method quantifies those recurrences and outputs a two-dimensional plot

of the recurrence points matrix. It does so as follows: consider a time series X = {x1, x2, x3, ..., xN}
of N numerical measurements. By using a window with a window size, wmax, a set of time-delayed

vectors from these time series can be constructed, referred to as an “embedded” time series E{X}.

E{X} = {x1,x2,x3, ...,xN−wmax+1}, where xi = (xi, xi+1, ..., xi+wmax−1) (2.7)

For example, consider the time series X = {1, 2, 3, 4, 5}, by using wmax = 3, the following embedded

time series can be created: E{X} = {(1, 2, 3), (2, 3, 4), (3, 4, 5)}. Once embedded time series are cre-

ated, a recurrence plot (RP) can be created by creating recurrence points for vectors in the embedded

time series that lie below threshold ε according to distance measure d.

RP = {(i, j) | (d(xi,xj) < ε}, where xi,xj ∈ E{X} (2.8)

An RP is therefore a visualisation of points in time where the time series moved in a similar trajec-

tory. An example RP is given in Figure 2.8 and is provided by Webber et al. [70] where recurrence

points are denoted by darkened pixels located at specific i, j coordinates. These RPs were created

by analysing breathing patterns of unrestrained rats, where (A) shows quiet breathing and (B) shows

active breathing.

Figure 2.8: Visualisation of recurrence plots for (A) quiet breathing patterns and (B) active breathing
patterns of unrestrained rats where recurrence points are denoted as darkened points. Recurrence plots
reveal dramatic qualitative difference between quiet breathing (more complex) and active breathing
(less complex). Visualisation provided by [70].
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This method can be extended to be able to compare time series with each other by comparing recurrent

vectors of each time series, rather than comparing recurrent vectors within just one time series. The

output of the extended method is referred to as cross-recurrence plots (CRP).

CRP = {(i, j) | (d(xi,yj) < ε}, where xi ∈ E{X},yj ∈ E{Y } (2.9)

Another way to define recurrence and cross-recurrence plots is by using a matrix notation rather than

a set notation [37, 35, 69]. In these works they defined the recurrence plot R and cross-recurrence plot

CR as follows:

Ri,j = Θ(ε− ||xi − xj ||), i, j = 1, ..., N, (2.10)

CR
E{X},E{Y }
i,j (ε) = Θ(ε− ||xi − yj ||), i = 1, ..., N, j = 1, ...,M, (2.11)

where xi ∈ E{X}, yj ∈ E{Y }, N is the number of data points in E{X}, M is the number of data

points in E{Y }, and Θ is the Heaviside function.

To quantify synchrony Webber and Zbilut proposed five variables to depict similarity in structure of a

recurrence plot [70] and their mathematical definitions using matrix notations are given in [37, 35, 69].

The first variable is recurrence rate (RR) or percent recurrence, which quantifies the relative number

of recurrence points in relation to the total amount of points in the RP. Data displaying a pattern will

in general result in a higher percent recurrence than random data. Mathematically, recurrence rate is

defined as:

RR(ε) =
1

N2

N∑
i,j=1

Ri,j(ε) (2.12)

The next variables depend on the histogram P (ε, l) of diagonal lines of length l, defined as follows:

P (ε, l) =
N∑

i,j=1

(1−Ri−1,j−1(ε))(1−Ri+l,j+l(ε))
l−1∏
k=0

Ri+k,j+k(ε) (2.13)

Where N represents the length of the data series, and ε may be omitted for readability. The second

variable, percent determinism (DET), quantifies the percentage of recurrent points that form diagonal

structures. Random data tends to display only short diagonal structures, whereas data displaying a

pattern will display long diagonal line segments in the RP. Diagonal structures in the CRP indicate

periods of time in which similar phase space behaviour occurred in both time series [36].

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

(2.14)
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The third variable is entropy (ENTR), which quantifies the complexity of recurrence plots by con-

structing a histogram of diagonal line segment lengths.

ENTR = −
N∑

l=lmin

p(l) ln p(l), (2.15)

where p(l) is the probability to find a diagonal line of length l in the RP or CRP, defined as p(l) =

P (l)/Nl, where Nl is the number of diagonal lines.

The fourth variable is ratio and represents the ratio between percent determinism and percent recur-

rence.

RATIO = N2

∑N
l=lmin

lP (l)

(
∑N

l=1 lP (l))2
(2.16)

Finally, the fifth variable, trend, is defined as the slope of the best fitted drift, where drift is the

percentage of recurrence points in long diagonals parallel to the central line and is plotted as a function

of distance away from the central diagonal. Trend provides information about the stationarity versus

nonstationarity in the process. The downside of the trend variable is that it is very sensitive to the

window size and small changes in the window size can reveal even contrary results [35]. Trend is

based on the τ -recurrence rate for those diagonal lines with distance τ from the line of identity. The

τ -recurrence rate RRτ is defined as follows:

RRτ =
1

N − τ

N−τ∑
l=1

lPτ (l) (2.17)

Now trend can be defined as:

TREND =

∑Ñ
τ=1(τ − Ñ/2)(RRτ − 〈RRτ 〉)∑Ñ

τ=1(τ − Ñ/2)2
, (2.18)

where 〈x〉 is the mean of x, and Ñ is defined by the researcher and depends on the studied process.

The trend variable is greatly affected by the window size [35].

Besides measures based on diagonal line structures, several measures have been proposed for vertical

line structures. Vertical and horizontal lines indicate that the phase within the phase space did not

change for some time [38]. In [37] three measures based on vertical structures have been used. First

histogram P of vertical line segment length v is created.

P (v) =
N∑

i,j=1

(1−Ri,j)(1−Ri,j+v)
v−1∏
k=0

Ri,j+k (2.19)
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The first measure of vertical line segments is similar to percent determinism variable, and is called

laminarity (LAM). Laminarity is the ratio between the recurrence points forming vertical lines in an

RP and the entire set of recurrence points. LAM will decrease if the RP consists of more individual

recurrence points than vertical structures.

LAM =

∑N
v=vmin

vP (v)∑N
v=1 vP (v)

(2.20)

The second measure is called trapping time (TT) and represents the average vertical line segment

length. TT estimates the mean time that the system will remain in a specific state or how long the

state will be trapped.

TT =

∑N
v=vmin

vP (v)∑N
v=vmin

P (v)
(2.21)

Finally, the third measurement representing the maximum vertical line segment length (Vmax).

Vmax = max({vl}Nv
l=1), (2.22)

where Nv is the absolute number of vertical lines.

2.5 Surrogate Testing

A critical question when attempting to measure synchrony is where the boundary between scores

indicating significant and insignificant synchrony should be [17]. Ramseyer and Wolfgang proposed

a method based on pseudo-interactions to create this distinction, called surrogate testing [48]. With

respect to dyadic movement time series, the method consists of generating surrogate data by isolating

each person from a video and randomly combining them with isolated persons from another video,

thereby creating pseudo-interactions. The scores assigned to the pseudo-interaction therefore represent

coincidental synchrony and can be used as a baseline for judging scores of original interaction.

The output of all surrogate data methods is ’new’ data created by rearranging an already available

original dataset. Several methods exist to rearrange data, such as jackknife, randomisation, permu-

tation, shuffling and bootstrap. An overview of the difference between these methods is provided in

Table 2.1.

• Jackknife: a resampling technique especially useful for variance and bias estimation. It recom-

putes the statistical estimates after drawing a subset from the available dataset. The method

does not use replacement and therefore removes the sampled data from the available dataset

after it has been drawn.
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Sample Size (for 1 dataset)
Subsample Full Sample

S
a
m
p
li
n
g

M
e
th

o
d

Without
Replacement

Jackknife
Randomization
Permutation
Shuffling

With
Replacement

Bootstrap

Table 2.1: A 2x2 taxonomy of data rearranging methods used to create a surrogate database from [48]

• Randomization, permutation, shuffling: resampling techniques that alter or restructures the

available dataset.

• Bootstrap: a resampling technique that randomly draws sample data with replacement, therefore

the same data sample may be drawn more than once.

Which sampling method should be used, depends on the research application at hand. When it

comes to resampling data of social interaction, choosing a technique with replacement may result

in a new interaction in which the same individual was chosen twice. On the other hand, allowing

replacement generally produces better results when the available dataset is small and its distribution

and characteristics are identical to the bootstrap data [48].
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Method

This chapter provides a description of the implemented approach to measure synchrony as well as an

in-depth description of the algorithm’s pipeline. The goal of the algorithm is to quantify synchrony

between individuals of a dyadic interview. An overview of the algorithm’s general pipeline is provided

in Figure 3.1.

Figure 3.1: Schematic of the algorithm’s general pipeline.

First of all, the algorithm begins with a pre-processing phase in which movement data is obtained from

the video and transformed into motion energy time series, as is explained in Section 3.1. The motion

energy time series are required by the time series analysis method in order to quantify synchrony.

Two methods are used to extract from videos: OpenPose [12] and Motion Energy Analysis (MEA)

[23, 58], these methods are further elaborated in Section 3.1.1 and Section 3.1.2, respectively. MEA

and OpenPose are used, because they are unobtrusive and require no specialized equipment to extract

movement data. They can also be applied in a post-processing fashion, allowing us to extract movement

data from the video data that came without extra information about the location or movement of the

subjects. Several human pose estimators have been tested on our dataset, such as DensePose [24],

AlphaPose [18, 72], Associative Embedding [41] and OpenPose [12]. Their outputs were compared

based on their ability to place keypoints at the correct location within the image and on their level

of noise. OpenPose is used, rather than one of its alternatives, because it is easy to use and generally

provides good pose estimations in our data and has relatively little noise. After motion energy has

been obtained, the data is transformed into time series so that they can be compared using a time

series analysis method. Afterwards, the time series will be smoothed using a moving median filter

to reduce noise which may be caused by lighting changes or camera position changes, as is explained

in Section 3.1.3, and will be corrected for the difference in body sizes per individual. The moving

median filter is chosen rather than the moving average filter, because the moving median will be less

29
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influenced by outliers.

The second phase of the algorithm quantifies synchrony by analysing the movement time series of

each individual. The time series obtained in the pre-processing phase will be used as input for one

of three time series analysis methods: windowed cross-lagged correlation (WCLC) [10], windowed

cross-lagged regression (WCLR) [2], and recurrence quantification analysis (RQA) [50]. These three

time series analysis method are chosen, because they have been used in synchrony research before and

a comparison between the three will help to understand the relative advantages and disadvantages.

Furthermore, because they are not bound by a global assumption of stationarity are they well suited

for measuring synchrony. Since they do not require the leader and follower of synchronous behaviour

to be constant throughout the video [58], can they deal with the orientation and temporal aspects of

synchrony. Descriptions of how each method analyses the time series and quantifies synchrony are

given in Sections 3.2.1, 3.2.2, and 3.2.3, respectively.

3.1 Pre-processing

In this first step, the input videos of dyadic interviews is passed through either OpenPose or MEA

to extract movement data, resulting in a list of 2D keypoint positions or in a list of motion energy

scalars, respectively. From these lists, movement time series are created by parsing the list by a

method tailored to the chosen movement extraction method, as is described in their respective section

below.

3.1.1 OpenPose

OpenPose is a 2D human pose estimator that is able to jointly detect keypoints in the human body,

hand, face, and foot in images. By passing a frame through the CNN can OpenPose find and output

the 2D location per keypoint. Which keypoints OpenPose tries to find depends on the supplied body

model.

Body model For the purpose of this thesis we used the 25-keypoint body model, containing only

keypoints for the body and feet, thereby excluding keypoints for the hand and face models. This

model is sufficient, because we are only interested in relatively large movements, which will not be

significantly be influenced by facial movement or the movement of individual fingers. On top of this,

due to the viewpoint and way the individuals face the camera, hands and face are often occluded. An

illustration of the 25-keypoint body model is provided in Figure 3.2. By tracking these keypoints is

OpenPose able to capture the movement of behaviours that involve movement of the torso, arms, legs,

feet and head, such as crossing of the legs or head scratching. However, it will not be able to pick up

movement of finer behaviours, such as smiling or finger tapping.

Filtering OpenPose occasionally assigns some keypoints of a single person to another non-existent

person, resulting in two partial sets of keypoints, which is the first problem that has to be solved.
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Figure 3.2: OpenPose 25 keypoint body and feet model, provided by [12]

However, since there is no way of knowing whether these keypoints belong to the same person or

whether they belong to a third person that happens to be in the same general location, only the

two persons with the highest number of keypoints found will be used for synchrony estimation. The

missing set of keypoints are linearly interpolated in a later stage of the filtering pipeline. This method

also allows us to remove the keypoints of the researcher, that were sometimes found at the beginning

of the video, at the end of the instructional phase. Since the researcher is always only partially in

view, the number of keypoints found for the researcher is always lower than the number of keypoints

found per participant, therefore the researcher is always excluded from the synchrony measurement.

Another problem is that, as of this moment, OpenPose does not have the ability to track people

over frames, but rather finds people from scratch in every single frame without using information

from previous frames. Therefore, it is not guaranteed that OpenPose finds people in the same order

throughout the video. If the order is mixed up, the movement of one person will be attributed to

the movement of the other person. These temporary confusions cause outliers in the motion energy

time series for both participants, since all of their keypoint locations made considerable jumps for the

duration of confusion. To remedy this, for each frame, the distance between successive keypoints in

original order and in mixed order are compared. If the keypoint distance is smaller in the mixed order,

then a vote is cast in favour of switching. After all keypoints have been checked and the number of

votes cast in favour of switching is greater than half the number of keypoints, then all keypoints in

that frame will be switched between the participants.

The keypoint estimations detected by OpenPose are also prone to noise, which may be caused by

lack of contrast between clothing and background or due to poor lighting. Therefore several filtering

techniques are applied to remedy these spurious keypoint locations after each keypoint has been

assigned to the correct person. First of all, keypoints which are rarely found throughout the video
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are excluded from the motion energy calculation, because these keypoints cannot be reliably used to

calculate movement between frames. Often the keypoints 19, 20, 21, 22, 23, and 24 located in the feet

of the 25 keypoint body model shown in Figure 3.2 could not be reliably found and are not excluded

from motion energy calculation.

Furthermore, the confidence score OpenPose assigns to keypoints makes it possible to exclude keypoint

locations that OpenPose did not confidently find. OpenPose assigns low confidence scores when it is

uncertain whether the keypoint location is accurate or if it is noise. Removing these keypoints can

be beneficial, because keypoints with a low confidence score are most likely noisy estimations. How-

ever, OpenPose still occasionally wrongly estimates a keypoint location with high confidence. These

locations are often quite far off from the correct keypoint location, resulting in incorrect movement

vectors. These incorrect keypoint locations are removed by applying a confidence threshold and ex-

treme movement threshold, respectively. Thereby removing all keypoint locations whose confidence

score does not exceed the confidence threshold or whose distance in successive frames exceeds the

extreme movement threshold.

As a final step, linear interpolation is used to fill the gaps in keypoint positions caused by keypoint

removal or by failure to track the keypoint. Linear interpolation suffices, because when the frame rate

is sufficiently high, then humans will not be able to make large complex movement in between frames.

If not enough keypoint locations have been found and interpolation cannot be done, then the entire

list of keypoint locations is ignored in the motion energy calculation. If there are locations missing at

the beginning or at the end of the keypoint location sequence, then the closest found location is copied

over the gaps. Thereby not influencing the motion energy, since the distance between the successive

locations in these gaps will then be 0. Extrapolation could not used for this, because occasionally the

number of missing entries at the beginning or end of the keypoint location sequence is large enough

that values will be set beyond the size of the frame.

Time series The time series are created by transforming the original keypoint locations after they

have been filtered. Time series are created by calculating movement vectors between frames. Where

movement vectors are calculated by taking the Euclidean distance between keypoint locations in

successive frames, resulting in a list of movement vectors per keypoint. Afterwards, the sum of the

length of all movement vectors of a frame is used to define motion energy scalars per frame, resulting

in a motion energy time series.

However, these motion energy scalars still have to be normalized between participants. Motion energy

may be exaggerated or underestimated depending on how tall an individual is and on the individual’s

distance to the camera [47]. For example, if both individuals are the same height, yet person 1 is

closer to the camera than person 2, then even if they make the same movement, person 1’s estimated

movement will be greater than person 2’s. Therefore, the pose is normalized by z-transforming all

keypoint positions after smoothing. By calculating the mean and standard deviation of the motion

energy scalar distribution, each motion energy scalar can be replaced with the amount of standard

deviations it is from the mean.
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3.1.2 Motion Energy Analysis

An alternative to using OpenPose for human movement extraction in video is Motion Energy Analysis

(MEA) [58, 23]. MEA measures movement by counting the pixels, within a predefined region of

interest, whose color change in successive frames exceeded a threshold. Where the region of interest

usually is a bounding box surrounding the subject.

Person distinguishment Unlike OpenPose is MEA not able to find the number of persons in

a frame and their respective location automatically. The researcher will have to define the number

of participants and their location beforehand. A naive approach would be to split the frame in the

center between individuals, but this approach is susceptible to attributing irrelevant background noise

to movement of an individual. This problem can be reduced by introducing a region of interest by

defining a bounding box.

A bounding box defines the region of interest per person in order to reduce the influence of background

noise by reducing the background considered in the movement estimation process. In general, the

bounding box will be centered around the person of interest and be large enough to completely

envelop the person whilst leaving room for movement, yet still small enough to not include unnecessary

background information. Usually this bounding box will be set manually the researcher. However, due

to our access to the OpenPose keypoint locations is it possible to use the extremes of these locations

to define a bounding box without manually going over every video. By sorting the keypoint locations

and taking the element located with an index of 95% of the length of the keypoint location list, we

can make sure that one of the highest or lowest keypoint locations is chosen, whilst making sure no

outlier is chosen. The last few element of the list should not be chosen, because these may be outliers

and therefore do not reliably represent the true extreme keypoint locations. Afterwards, a padding is

added to account for the keypoints not being located at the edges of the subject. An illustration of

the bounding boxes this method created is shown in Figure 3.3

Figure 3.3: Bounding box created by taking the extremes of OpenPose keypoint average locations and
adding a padding.
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Movement threshold MEA uses a movement threshold in order to make distinctions between

pixel color changes that were caused by movement and pixel color changes that are noise. This

threshold is usually set by the researcher and is largely dependant on the environment. The threshold

should be high enough to exclude noise, but still low enough to accept actual movement.

Time series MEA calculates motion energy scalars by counting the number of pixels whose color

value change in successive frames exceed the movement threshold. To reduce the influence light

has on the color changes are all pixel color values transformed into grayscale values before they are

compared. After the movement time series is created, it is smoothed using a moving median filter to

remove incidental outliers from the time series.

Since MEA does not account for the people sizes or the distance of the individual to the camera.

Therefore the time series is normalized by dividing the number of changed pixels by the total number

of pixels in the bounding box. Thereby preventing these variables from influencing the perceived

motion energy and make comparison between the two individuals more equitable.

3.1.3 Smoothing

Since both movement measuring methods are susceptible to noise is there a need to reduce the influ-

ence of noise without deforming the underlying patterns. In MEA the movement threshold already

reduces general noise present in the data, however this will often not be enough to fully filter out

background noise. OpenPose is less susceptible to changes in the background. However, it is still

prone to noise caused by occlusion. These erroneous keypoints can be partially corrected by removing

keypoint locations with a low confidence score, removing keypoint locations that are too far away from

the previous location, and finally interpolation. Afterwards, smoothing is applied to further reduce

the noise. Smoothing attempts to capture important structures in data while ignoring noise [59].

Throughout literature, two smoothing methods have been prominently used to smooth time series:

moving average and moving median. Both smoothing methods require a window size to be set. One

important thing to keep in mind when skipping frames is that the range of the window increases.

Moving Median Moving median was chosen, rather than moving average, because the moving

median smoothing method is less prone to outliers, because the median will not be as influenced by

outliers, given that the ratio between outliers and regular data points is small. The moving median

smoothing method smoothes the time series by sliding a window over the entirety of the time series.

The smoothed value is calculated by taking all values within the window and take the median. The

value at the center of the window is then replaced with the smoothed value.

3.2 Synchrony Measurement

After the time series have been created and smoothed, they will be passed to the second phase

of the algorithm: synchrony measurement, in which synchrony will be quantified. Three synchrony
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measurement methods have been implemented: windowed cross-lagged correlation (WCLC), windowed

cross-lagged regression (WCLR), and recurrence quantification analysis (RQA).

3.2.1 Windowed Cross-Lagged Correlation

WCLC measures synchrony by sliding a window over both time series, which can at most be a max-

imum time lag apart. It then computes a correlation matrix by calculating the Pearson correlation

between the items in both windows for each window and time lag step. To provide insight in the

dynamical structures of the correlation matrix, it is usually displayed as a heatmap, as is shown in

Figure 3.4.

Figure 3.4: On the left are two time series 200 frames long. On the right is the corresponding
correlation heatmap. Window size = 108, window increment = 3, max lag = 54, lag increment = 3.

This correlation matrix is then reduced to an estimate of synchrony by subjecting the rows of the

correlation matrix to a peak-picking algorithm.

Peak-picking The peak-picking algorithm [10] iterates over every row of the correlation matrix

and finds the peak correlation value and its corresponding time lag, where the search starts in the

center of the matrix, at a time lag of 0, and moves outwards towards the maximum time lag in both

directions. A peak is defined as a data point whose neighbouring data points, within a local region,

are monotonically decreasing on both sides of the peak. The number of neighbouring data points that

the local region covers is usually defined by the researcher. Before peaks are identified, the correlation

matrix is first subjected to linear loess smoothing in an effort to reduce high frequency noise [15].

Loess smoothing smoothes values in a window-wise fashion using locally weighted regression. It fits a

linear or quadratic fitting function through the portion of the data that is inside the window, whose

size is defined by the span. The window slides over the dataset in a similar fashion as the moving

median filter does. Linear spline fitting may be applied if intermediate results are required, which

may be the case if the sampling rate is low. However, in our case, there is no need for linear spline

fitting, since our dataset has a sufficiently high sampling rate. Although frame skipping decreases

the number of samples per second, linear spline splitting was not used. Linear spline fitting remained

unnecessary because the parameters are defined in seconds and tuned to ensure that enough samples

will be covered.
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One problem that may occur is that a peak with a smaller value is chosen than a peak with a larger

value on the opposite sign, because the smaller peak is closer to a lag of 0. To reduce this problem,

a peak will not be selected if values of the opposite sign are monotonically increasing. However, if

no peak is found, because there is no clear pattern in the data, then a peak with correlation 0 and

time lag 0 is returned. A peak with 0 lag and 0 correlation is returned, rather than not returning

any peak, to make sure not only relevant time is considered. If the rows in which no peak is found

are ignored, then the peak distribution will be skewed in favor of synchronous time sequences. Such

a skewed peak distribution will result in a higher synchrony quantification, despite there not being

more evidence suggesting that the synchrony quantification should indeed be higher. After all peaks

have been found, a peak distribution is created and an output can be formulated. The output of the

peak-picking algorithm is the average, standard deviation, and max peak value of the peak correlation

and peak time lag distributions.

3.2.2 Windowed Cross-Lagged Regression

It can be argued that WCLC may provide biased output, because it does not take auto-correlation

into account when quantifying synchrony. If auto-correlation is to be taken into account the time

series can be passed to WCLR. WCLR investigates both time series in the same window-wise manner

as WCLC, however fits two models and compares their coefficients of determination rather than

calculating the Pearson correlation. Therefore, making this approach more suitable in situation where

people move randomly or move completely unaware of each other. In these situations the difference

between coefficients of determination will be small. On the other hand, it will still be possible for

WCLC to assign a high Pearson correlation value to these cases.

Model fitting WCLR quantifies synchrony within a time frame by comparing the coefficient of

determination of two fitted models over the data points within the time frame. One model only

considers auto-correlation and thus only uses the previous movement of the individual as a dependent

variable. Whilst the other model takes into account auto-correlation as well as the previous movement

of the other individual. Synchrony within the time frame is then quantified as the difference between

the coefficient of determination of the model taking both persons’ movement into account and the

coefficient of determination of the model taking only auto-correlation into account.

Peak-picking The peak-picking algorithm of WCLR is similar to the one of WCLC, however has

been slightly adjusted by the authors of WCLR, because it could not correctly identify peaks in the

regression matrix rows. The main difference between the two peak-picking algorithms is that the

adjusted version takes structures over time into account, whereas the original version does not. It

was adjusted to select successive peaks that have the same time interval, a succession of peaks with a

similar time lag is displayed as a black line if the regression matrix were to be shown as a heatmap,

as is shown in Figure 2.7. Peaks are said to be similar if the the difference between their time lags

does not exceed a threshold. If there are multiple lines within the same time frame, then the line with

the highest average regression value is chosen. Lines are said to span the same time frame if one or
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more of their points are in both lines. The start point and end point of each line define a period of

synchrony. The output of the adjusted peak-picking algorithm is the ratio between the sum of the

length of all synchronous time frames and the total time.

3.2.3 Recurrence Quantification Analysis

The final synchrony measurement method is recurrence quantification analysis (RQA). It differs from

the previous two synchrony measurement methods in that it does not consider the time series in the

same window-wise manner, but rather looks at how often a system revisits states in any point of time.

Due to this approach does RQA not assume a linear relationship between the two time series. This

method can be extended by comparing states of one system to states of another system, allowing it to

be used to analyse how often the state of one time series corresponds with the state of another time

series. However, one drawback of this method is that it considers many points in time that are not

close enough to each other, thereby ignoring the temporal aspect of synchrony.

To analyse how often a system revisits states, states must first be defined first. The set of all states a

system has visited over time is called an embedded time series. An embedded time series is the time

series transformed to contain only sets of data points that together form a state. How many data

points are combined into a state depends on a window size.

After both embedded time series are created, RQA creates a recurrence matrix, in which moments

in time where both systems were in similar states are represented with a 1 and 0 otherwise. States

are deemed similar if the distance, according to some distance measure, between the states is smaller

than a threshold set by the researcher. The distance measure used is Euclidean distance between the

states that are represented as vectors.

From the recurrence matrix a histogram of diagonal line segments and vertical line segments can

be computed. These diagonal structures are interesting, because they represent time intervals in

which both systems transitioned into similar states in the same order. Vertical structures represent

points in time where the system stayed in the same state. Using the lengths and frequencies of these

histograms, several measurements can be made, such as recurrence rate, determinism, entropy, trend,

laminarity, trapping time, maximum vertical line segment, maximum diagonal line segment. The

mathematical definitions as well as further elaboration on these variables is given in Section 3.2.3.

Exemplary histograms of dyads achieving low synchrony output scores and high synchrony output

scores are displayed in Figure 3.2 and 3.1, respectively. The figures show that the histogram with

a higher synchrony output score contains a higher number of diagonal structures, as well as longer

diagonals than the histogram with a low synchrony output score.
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Table 3.1: Histogram of a dyad assigned a low
synchrony output score (percent determinism =
0.4552).

Table 3.2: Histogram of a dyad assigned a high
synchrony output score (percent determinism =
0.9344).

Output Since we are interested in how two systems transitioned similarly in their respective state

phases are only diagonal line segment measures included. The computation of vertical structure

measurements is unnecessary, because the duration in which a system stayed in the same phase is not

relevant for measuring synchrony. The measurements the algorithm takes into account are: recurrence

rate, percent determinism, entropy, average diagonal line segment length, and longest diagonal line

segment length. The recurrence rate represents the relative number of recurrence points in relation to

the total amount of points in the cross-recurrence plot. Percent determinism quantifies the percentage

of recurrence points that form diagonal structures. Entropy measures the complexity of recurrence

plots by constructing a histogram of diagonal line segment lengths. The average diagonal line segment

length represents the average length of all diagonal segments in the recurrence plot. Finally, the longest

diagonal line segment length represents the length of the longest diagonal line in the recurrence plot.



Chapter 4

Evaluation

This chapter first describes the dataset that was used to run the experiments on, then provides a setup

of the experiments and an overview of the used settings, and finally gives a discussion of the results

using the methods explained in Chapter 3.

4.1 Experiments

Since rapport is closely related to synchrony, as is explained in Section 2.1, rapport can be used as a

proxy for synchrony. Therefore rapport is used in the assessment of a synchrony estimation. Therefore,

the assumption is made that synchrony should increase between dyads after rapport-building training

has been received. This assumption is made to accommodate for the lack of ground-truth. How well a

synchrony measurement method performs will therefore be measured by its ability to assign increasing

scores for dyads that did receive rapport-building training, yet assign similar scores to dyads that did

not receive rapport-building training. Scores are deemed similar if their respective difference does not

exceed a threshold, which is uniquely set per output score for each synchrony measurement method.

The method’s ability to make distinction between trained and untrained interviewers is quantified

as the average F-score of the rapport-building trained interviewers and the interviewers that did not

receive the training. If no distinction is made and all interviewers are said to have received the rapport-

building training, then the average F-score will be 0.4359, because the F-score for trained interviewers

will then be 0.8718, however the F-score for the control interviewers will be 0. On the other hand, if all

interviewers are labelled as control, the average F-score will be 0.1852, because the F-score assigned

to trained interviewers will be 0 and the F-score assigned to control interviewers will be 0.3704. The

boundary delimiting similar output scores from distinct enough output scores is set using a threshold.

This threshold is set for each experiment setting and is found by testing every value between 0 and 1

with a step size of 0.001. The threshold that corresponds to the highest average F-score is used.

To investigate how well methods generalise, leave-one-out cross-validation is used. A total of 5 groups

are used to investigate the ability of a method to distinguish trained interviewers from control inter-

viewers. Each group contains 2 or 3 rapport interviewers and 1 control interviewer. Several values per

39
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setting will be tested resulting in an average F-score per setting per set of groups. Afterwards, the

average F-score for each setting will be taken; the highest average F-score will correspond with the

optimal value for that setting.

The hardware used for all experiments has been provided in the Lisa computer cluster from SurfSara.

An overview of the hardware used is listed on the following website: https://userinfo.surfsara.

nl/systems/lisa/description.

Despite OpenPose’s general good results in finding keypoints, several keypoints were still hard to find

mostly due to dark same colored clothing resulting in a lack of contrast. These keypoints were mostly

located in the feet. Because feet were rarely moved on their own and therefore barely influence the

movement vector were they removed from the calculation, because their positions are not reliably

detected. These set of keypoints that are ignored from the body model shown in Figure 2.4 are: 19,

20, 21, 22, 23, and 24.

The first experiment that will be performed will investigate the influence of frame skipping on the

output score, the setup of the experiment is described in Section 4.1.2 and its results are shown

in Section 4.2.1. The second experiment investigates how the parameter settings of each synchrony

measurement method influences the output score and its ability to distinguish rapport-building trained

interviewers from control interviewers. The settings of the second experiment are shown in Section

4.1.3 and its results are shown in Section 4.2.2. The third experiment compares the three synchrony

measurement methods with each other, the settings are shown in Section 4.1.4 and its results are

shown in Section 4.2.3. The fourth experiment investigates how time series generated by MEA and

OpenPose influence the output score of WLCR, the settings are described in Section 4.1.5 and its

results are shown in Section 4.2.4.

WCLR has only one output score that can be considered, which is the ratio between the synchronous

time fragments and the total time. WCLC on the other hand, has two output scores, the average and

the standard deviation of the peak correlation distribution. When estimating the ability of WCLC

to distinguish trained interviewers from control interviewers, the average of the peak distribution

output score will be used, because this provided better F-scores. The percent determinism output

score of RQA is used, because it is strongly related to the diagonal structures present in the cross-

recurrence plot. These diagonal structures represent points in time in which both systems transitioned

between states in a similar manner and is therefore able to capture the temporal aspect of synchrony.

Furthermore, percent determinism is chosen, because it has been used throughout literature to study

synchrony [29, 30, 68].

For all experiments which only require the use of a single synchrony measurement method, WCLR

is used, because it gives a single output variable which can easily be compared across experiments.

The WCLR settings are tailored to the values used in [10] and [2]: window size of 4 seconds, window

increment of 1/10 second, maximum time lag of 2 seconds and a lag increment of 1/10 second. However,

greater durations in seconds are used to compensate for the lower frame rate of 27 frames per second

in our data, versus the frame rate of 80 frames per second in the original papers, to make sure enough

samples are taken into consideration. Another benefit of increasing parameter values is that the

algorithm will be able to run faster, due to the increased window increment and lag increment.

https://userinfo.surfsara.nl/systems/lisa/description
https://userinfo.surfsara.nl/systems/lisa/description
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The recurrence threshold used in RQA is set along the lines of [73], in which the threshold is set in such

a way that the recurrence rate is approximately 1%. The goal of this guideline is to set a threshold in

such a way that it is big enough to not only consider noise, yet small enough to only capture values

that reoccur. Following this guideline the threshold was set so that the average recurrence rate of all

videos processed with a frame skip of 0 is approximately 1%.

The default settings for experiments are as follows:

• MEA

– Grey value difference threshold: 10

– Frame skip: 0

• WCLR

– Window size: 12 seconds

– Window increment: 0.3 second

– Maximum time lag: 6 seconds

– Lag increment: 0.3 second

– Local region size: 3

– Minimum synchrony line length: 0.5 second

– Allowed lag difference: 2

• Moving Median Filter

– Window size: 0.5 second

4.1.1 Data

To run the experiments a subset of the dataset provided by Wright et al. [71] is used. The original

dataset contained videos from different viewpoints as is shown in Figure 1.1. However, only the videos

taken from the center viewpoint have been used, because this viewpoint captures both participants

in the fairest way. Excluding participants that did not partake in both waves, a total of 87 videos

are used. Before these videos were used, they had to be transformed. Because the videos from this

viewpoint have been captured using a GoPro Hero 4, they suffer from a fisheye distortion. To remove

this distortion from the frame it was multiplied using the GoPro’s corresponding camera matrix.

In the original dataset all videos were split up into a number of different files. These files were

reconstructed into a single video. Another problem was the presence of the researcher in the beginning

the videos, because the instructional part of the experiment is not relevant for measuring synchrony

it was trimmed from the videos.

Because the hardware used for these experiments was powerful enough, no frames were skipped and

no resizing was applied. The size of the videos is 1280x720 and the frame rate is 27 frames per second.
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4.1.2 Frame Skip

The first experiment will investigate the effect frame skip has on the synchrony estimation. This

experiment is done first, because its result may be used to speed up other experiments. To analyze

the effect frame skip has on synchrony estimation the following frame skips were used on the dataset

for each synchrony measurement method: 0, 1, 2, 3, and 4. Since the frame rate of the data is 27

frames per second, the investigated frame rates are: 27, 14, 9, 7, and 5 frames per second. Trying

values beyond a frame skip of 4 are not considered, because it would skip many small movements and

decrease the number of samples required to detect synchrony resulting in many spurious synchrony

detections. The influence of frame skip on the synchrony measure will be tested on all 87 videos for

each synchrony measurement method.

Increasing the frame skip decreases the number of frames per second, thereby increasing the range

of the window and time lag variables. To account for the affect of frame skip on window and time

lag span, are the variables declared in seconds and their exact value is calculated according to the

following formula: number of seconds * 27 frames per second / (frame skip + 1).

The settings differ from the default settings as follows:

• MEA

– Frame skip: 0, 1, 2, 3, and 4

4.1.3 Parameter Settings

This experiment investigates the influence of the parameter settings of each synchrony method on the

output score and its ability to distinguish rapport-building trained interviewers from control inter-

viewers. To investigate how each parameter influences the output score and the ability to distinguish

interviewers, several values will be tested for each of the parameters.

The following parameter settings will be tested:

• WCLR

– Window size: 8, 10, 12, 14, and 16 seconds

– Window increment: 1/10, 2/10, 3/10, 4/10, and 5/10 second

– Maximum time lag: 2, 4, 6, 8, and 10 seconds

– Lag increment: 1/10, 2/10, 3/10, 4/10, and 5/10 second

– Minimum synchronous line length: 3/10, 4/10, 5/10, 6/10, and 7/10 second

• WCLC

– Window size: 8, 10, 12, 14, and 16 seconds

– Window increment: 1/10, 2/10, 3/10, 4/10, and 5/10 second
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– Maximum time lag: 2, 4, 6, 8, and 10 seconds

– Lag increment: 1/10, 2/10, 3/10, 4/10, and 5/10 second

• RQA

– Embedding dimension: 1/10, 2/10, 3/10, 4/10, and 5/10 second

– Recurrence threshold: embedding dimension * 0.00001, 0.00003, 0.00005, 0.00007, and

0.00009

– Diagonal line length threshold: 1/10, 2/10, 3/10, 4/10, and 5/10 second

4.1.4 Synchrony Measurement Method

This experiment investigates the ability of each synchrony measurement method to distinguish inter-

viewers that did receive rapport-building training from interviewers that did not receive this training.

To measure this ability the generalised F-scores of each synchrony measurement method are com-

pared. Furthermore, the correlation of the output scores of each synchrony measurement method is

investigated.

4.1.5 Motion Energy Time Series

Using the synchrony measurement method that is best at distinguishing rapport-building trained in-

terviewers from control interviewers with its optimal settings, the influence the movement estimator

on the ability to distinguish rapport-building trained interviewers from control interviewers is investi-

gated. To find out how movement estimators influences the synchrony measure, both methods: MEA

and OpenPose, are used to create motion energy time series of the entire dataset without skipping

frames. The resulting time series are analysed using WCLR and their output scores and ability to

distinguish rapport-building trained interviewers from control interviewers are evaluated.

The settings of MEA and OpenPose are as follows:

• MEA

– Grey value difference threshold: 10

– Frame skip: 0

• OpenPose

– Confidence threshold: 0.3

– Extreme movement threshold: 270 per second

– Frame skip: 0
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4.2 Results

This section will provide an overview of the obtained results per research question. The results are

shown by providing an overview of the distribution of output scores and the correlation between them.

If the experiment is about the ability to distinguish rapport-building trained interviewers from control

interviewers, then the F-score representing how well this distinction is made is listed alongside the

threshold used to make the distinction. For all experiments that investigate parameter settings the

changes per parameter value will also be visualised in a line graph.

4.2.1 Frame skip

Using the settings as described in Section 4.1.2, the influence of frame skip on the synchrony output

score is investigated for each synchrony measurement method. The distribution of the output score

per frame skip as well as the correlation between the output scores per frame skip are given.

WCLR The synchrony output score of WCLR is the ratio between synchronous time and total time.

The WCLR output score distribution for each frame skip are shown in Table 4.3 and in Figure 4.1.

The results show that frame skip does influence the output of WCLR. The average synchrony ratio

increases alongside the frame skip, however the standard deviation decreases. The correlation between

the output scores with frame skip and the output scores without frame skip is shown in Table 4.2. As

the frame skip increases, the correlation between the output with the original output decreases. The

average F-score per frame skip is shown in Table 4.1.

Frame Skip
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1 0.8500 0.5333 0.7619 0.9068 0.5500

2 0.7917 0.6606 0.8500 0.9068 0.6400

3 0.8295 0.5333 0.7847 0.7917 0.6591

4 0.8295 0.7222 0.7847 0.9206 0.6400

5 0.7257 0.6761 0.7681 0.7949 0.6444

µ 0.8053 0.6251 0.7899 0.8642 0.6267

Table 4.1: Average F-score achieved by WCLR per fold per frame skip. The bottom row depicts the
average score of all leave-out folds.

Frame Skip Correlation

1 0.8118

2 0.5424

3 0.5287

4 0.5577

Table 4.2: Pearson correlation between output scores using frame skips and output scores without a
frame skip
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Frame Skip Avg. Std. dev.

0 0.4375 0.0744

1 0.6413 0.0546

3 0.7664 0.0359

2 0.8310 0.0306

4 0.8054 0.0315

Table 4.3: Output score distribution of WCLR
per frame skip
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Figure 4.1: WCLR output score distribution
per frame skip

WCLC WCLC has two synchrony output scores, the average and the standard deviation of the peak

distribution. The Pearson correlation between output scores of WCLC using frame skips and output

scores without frame skip is shown in Table 4.5. The average F-score per frame skip using the average

peak correlation output score is shown in Table 4.4.

Frame Skip
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1 0.7205 0.7917 0.6411 0.7917 0.6411

2 0.7205 0.7917 0.6411 0.7917 0.6411

3 0.6400 0.6400 0.7000 0.6400 0.6411

4 0.6591 0.6591 0.7619 0.6591 0.7000

5 0.7257 0.7949 0.7922 0.7949 0.7333

µ 0.6932 0.7355 0.7073 0.7355 0.6714

Table 4.4: Average F-score achieved by WCLC per fold per frame skip using the average peak corre-
lation output score. The bottom row depicts the average score of all leave-out folds.

Frame Skip Correlation of Avg. Correlation of Std. dev.

1 0.1776 0.1969

2 0.4479 0.2622

3 0.1413 0.0674

4 0.1024 0.1538

Table 4.5: Pearson correlation between WCLC output scores using frame skips and WCLC output
scores without frame skip.

The WCLC peak correlation output score distribution for each frame skip is shown in Table 4.6 and

in Figure 4.2. The WCLC peak standard deviation output score distribution for each frame skip is

shown in Table 4.7 and in Figure 4.3. The results show that the average and standard deviation of the
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output scores are barely affected by frame skip. However, the correlation between the output scores

per frame skip is at most 0.4479.

Frame Skip Avg. Std. dev.

0 0.2109 0.0462

1 0.2108 0.0463

2 0.2223 0.0473

3 0.2103 0.0468

4 0.2106 0.0466

Table 4.6: Peak correlation output score dis-
tribution per frame skip using WCLC
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Figure 4.2: Average peak correlation output
score distribution of WCLC per frame skip.

Frame Skip Avg. Std. dev.

0 0.1992 0.0272

1 0.1993 0.0270

2 0.2056 0.0279

3 0.1998 0.0271

4 0.1997 0.0273

Table 4.7: Peak standard deviation out-
put score distribution per frame skip using
WCLC.
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Figure 4.3: Standard deviation output score
distribution of WCLC per frame skip.

RQA The output scores of RQA are percent recurrence (%REC), percent determinism (%DET),

entropy (ENTR), ratio and average diagonal line length. Although the comparison between average

diagonal line length is unfair, because the minimal amount of points in the CRP required to form a

line decreases due to frame skip, thereby decreasing the average diagonal line length. The correlation

between frame skips for each variable is shown in Table 4.9. The average and standard deviation per

frame skip for %REC, %DET, ENTR, ratio and average diagonal line length are shown in Tables 4.10,

4.11, 4.12, 4.13, and 4.14 and Figures 4.4, 4.5, 4.6, 4.7, and 4.8, respectively. The average F-score per

frame skip using the percent determinism output score is shown in Table 4.8.
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Frame Skip
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1 0.5833 0.6032 0.6400 0.5500 0.6400

2 0.4643 0.4976 0.4886 0.4444 0.4444

3 0.5342 0.5833 0.6400 0.5249 0.6400

4 0.5833 0.5833 0.6400 0.4886 0.6400

5 0.5429 0.5897 0.6444 0.5000 0.6444

µ 0.5416 0.5714 0.6106 0.5016 0.6018

Table 4.8: Average F-score achieved by RQA per fold per frame skip using the percent determinism
output score. The bottom row depicts the average score of all leave-out folds.

Frame Skip %REC. %DET ENTR Ratio Avg. diagonal length

1 0.9927 0.9802 0.9537 0.9658 0.9988

2 0.9839 0.9623 0.9287 0.9771 0.9957

3 0.9778 0.9452 0.8877 0.8770 0.9920

4 0.9738 0.9258 0.8621 0.9445 0.9927

Table 4.9: Pearson correlation between RQA output scores with frame skips and RQA output scores
without frame skip.

Frame Skip Avg Std. dev.

0 0.0096 0.0119

1 0.0070 0.0091

2 0.0059 0.0080

3 0.0058 0.0076

4 0.0052 0.0071

Table 4.10: Recurrence rate output score dis-
tribution per frame skip using RQA.

0 1 2 3 4
Frame Skip

0.00

0.02

0.04

0.06

0.08

0.10

Ou
tp

ut
 sc

or
e

RQA recurrence rate output score distribution per frame skip
Average
Standard deviation

Figure 4.4: Recurrence rate output score dis-
tribution of RQA per frame skip.
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Frame Skip Avg. Std. dev.

0 0.6857 0.1668

1 0.7028 0.1675

2 0.6714 0.1859

3 0.7265 0.1695

4 0.6761 0.1847

Table 4.11: Percent determinism output score
distribution per frame skip using RQA.

0 1 2 3 4
Frame Skip

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 sc

or
e

RQA percent determinism output score distribution per frame skip
Average
Standard deviation

Figure 4.5: Percent determinism output score
distribution of RQA per frame skip.

Frame Skip Avg. Std. dev.

0 1.4793 0.5237

1 1.3032 0.4894

2 1.1272 0.4590

3 1.1134 0.4249

4 0.9820 0.4069

Table 4.12: Entropy output score distribution
per frame skip using RQA.
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Figure 4.6: Entropy output score distribution
of RQA per frame skip.

Frame Skip Avg. Std. dev.

0 314.7114 547.8369

1 679.6937 1291.5200

2 956.8003 1901.2531

3 1536.0934 2831.7570

4 1845.1801 261.2299

Table 4.13: Ratio output score distribution
per frame skip using RQA.
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Figure 4.7: Ratio output score distribution of
RQA per frame skip.
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Frame Skip Avg. Std. dev.

0 20.0671 20.1171

1 8.6405 10.2209

2 6.3492 11.2968

3 4.6630 12.4794

4 4.1387 10.0922

Table 4.14: Average diagonal line length out-
put score distribution per frame skip using
RQA.
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Figure 4.8: Average diagonal line length out-
put score distribution of RQA per frame skip.

4.2.2 Parameter setting

A total of five values will be tested for each parameter settings in order to find the optimal value for

the parameters of each synchrony measure method individually. Per synchrony measurement method

an overview of the influence of the parameter on the output score distribution and its influence on the

F-score are given.

WCLR The influence of the window size (wmax), window increment (winc), maximum time lag

(τmax), lag increment (τinc), and minimum synchronous line length (smin) on the ratio output score

distribution is shown in Tables 4.16, 4.18, 4.20, 4.22, and 4.24, and Figures 4.10, 4.12, 4.14, 4.16, and

4.18, respectively. Furthermore, the influence of these parameters on the F-score is shown in Tables

4.15, 4.17, 4.19, 4.21, and 4.23, and in Figures 4.9, 4.11, 4.13, 4.15, and 4.17, respectively.
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1 0.4886 0.4976 0.8500 0.6400 0.7917

2 0.4444 0.4231 0.7917 0.4231 0.5833

3 0.4976 0.4886 0.8295 0.6400 0.7205

4 0.5500 0.5342 0.8295 0.6400 0.7205

5 0.5636 0.5429 0.7257 0.6444 0.6444

µ 0.5089 0.4973 0.8053 0.5975 0.6921

Table 4.15: Average F-score achieved by
WCLR per fold per window size (wmax). The
bottom row depicts the average score across
all folds.
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Figure 4.9: The average F-score of WCLR per
window size (wmax).
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wmax Avg. Std. dev.

8 0.3182 0.0617

10 0.3825 0.0770

12 0.4375 0.0744

14 0.4693 0.0838

16 0.5028 0.0807

Table 4.16: The ratio output score distribu-
tion of WCLR per window size (wmax) in sec-
onds.
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Figure 4.10: The ratio output score distribu-
tion of WCLR per window size (wmax) in sec-
onds.

winc
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1 0.5500 0.6591 0.8500 0.6032 0.5342

2 0.5982 0.7917 0.7917 0.5342 0.4586

3 0.5333 0.6591 0.8295 0.6032 0.4586

4 0.6606 0.7619 0.8295 0.5500 0.4231

5 0.6537 0.7681 0.7257 0.6667 0.5000

µ 0.5992 0.7280 0.8053 0.5914 0.4569

Table 4.17: Average F-score achieved by
WCLR per fold per window increment (winc).
The bottom row depicts the average score
across all folds.
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Figure 4.11: The average F-score of WCLR
per window increment (winc).

winc Avg. Std. dev.

0.1 0.6961 0.0449

0.2 0.5682 0.0652

0.3 0.4375 0.0744

0.4 0.3341 0.0859

0.5 0.2543 0.0922

Table 4.18: The ratio output score distribu-
tion of WCLR per window increment (winc)
in seconds.
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Figure 4.12: The ratio output score distribu-
tion of WCLR per window increment (winc)
in seconds.
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τmax
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1 0.6032 0.7847 0.8500 0.8295 0.6591

2 0.6591 0.8295 0.7917 0.7847 0.7619

3 0.5342 0.7847 0.8295 0.7917 0.7000

4 0.5500 0.7000 0.8295 0.7847 0.6591

5 0.5152 0.7091 0.7257 0.8333 0.7922

µ 0.5723 0.7616 0.8053 0.8048 0.7145

Table 4.19: Average F-score achieved by
WCLR per fold per maximum time lag (τmax).
The bottom row depicts the average score
across all folds.
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Figure 4.13: The average F-score of WCLR
per maximum time lag (τmax).

τmax Avg. Std. dev.

2 0.4554 0.0693

4 0.4428 0.0798

6 0.4375 0.0744

8 0.4520 0.0696

10 0.4368 0.0720

Table 4.20: The ratio output score distribu-
tion of WCLR per maximum time lag (τmax)
in seconds.
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Figure 4.14: The ratio output score distribu-
tion of WCLR per maximum time lag (τmax)
in seconds.

τinc
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1 0.7205 0.5500 0.8500 0.5833 0.7222

2 0.7917 0.6591 0.7917 0.6032 0.5833

3 0.7205 0.5500 0.8295 0.6032 0.5249

4 0.7000 0.5333 0.8295 0.7000 0.6411

5 0.6537 0.5466 0.7257 0.7091 0.6000

µ 0.7173 0.5678 0.8053 0.6398 0.6143

Table 4.21: Average F-score achieved by
WCLR per fold per lag increment (τinc). The
bottom row depicts the average score across
all folds.
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Figure 4.15: The average F-score of WCLR
per lag increment (τinc).



52 Chapter 4. Evaluation

τinc Avg. Std. dev.

0.1 0.3408 0.0746

0.2 0.3840 0.0745

0.3 0.4375 0.0744

0.4 0.4586 0.0718

0.5 0.5084 0.0813

Table 4.22: The ratio output score distribu-
tion of WCLR per lag increment (τinc) in sec-
onds.
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Figure 4.16: The ratio output score distribu-
tion of WCLR per lag increment (τinc) in sec-
onds.

smin
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1 0.5333 0.6591 0.8500 0.5833 0.5342

2 0.6606 0.6591 0.7917 0.7000 0.5833

3 0.5333 0.6032 0.8295 0.6606 0.5342

4 0.7222 0.6411 0.8295 0.6411 0.5333

5 0.6761 0.7257 0.7257 0.6135 0.5429

µ 0.6251 0.6576 0.8053 0.6397 0.5456

Table 4.23: Average F-score achieved by
WCLR per fold per minimum synchronous
line segment length (smin). The bottom row
depicts the average score across all folds.
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Figure 4.17: The average F-score of WCLR
per minimum synchronous line segment length
(smin).

smin Avg. Std. dev.

0.3 0.6045 0.0622

0.4 0.5116 0.0698

0.5 0.4375 0.0744

0.6 0.3910 0.0785

0.7 0.3304 0.0854

Table 4.24: The ratio output score distribu-
tion of WCLR per minimum synchronous line
segment length (smin) in seconds.
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Figure 4.18: The ratio output score distribu-
tion of WCLR per minimum synchronous line
segment length (smin) in seconds.
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WCLC The influence of the window size (wmax), window increment (winc), maximum time lag

(τmax), and lag increment (τinc) on the average peak distribution output score distribution is shown in

Tables 4.26, 4.28, 4.30, and 4.32 and in Figures 4.20, 4.22, 4.24, and 4.26, respectively. Furthermore,

the influence of these parameters on the F-score is shown in Tables 4.25, 4.27, 4.29, and 4.31, and in

Figures 4.19, 4.21, 4.23, and 4.25, respectively.

wmax

8 10 12 14 16

L
ea

v
e-

o
u

t
fo

ld

1 0.6032 0.7000 0.7205 0.6400 0.6400

2 0.5249 0.7000 0.7205 0.7917 0.6411

3 0.6032 0.7000 0.6400 0.7917 0.7000

4 0.6032 0.8295 0.6591 0.7000 0.7222

5 0.7091 0.8545 0.7257 0.7949 0.7333

µ 0.6087 0.7568 0.6932 0.7436 0.6873

Table 4.25: Average F-score achieved by
WCLC per fold per window size (wmax). The
bottom row depicts the average score across
all folds.
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Figure 4.19: The average F-score of WCLC
per window size (wmax).

wmax Avg. Std. dev.

8 0.2522 0.0379

10 0.2299 0.0413

12 0.2109 0.0462

14 0.1947 0.0513

16 0.1809 0.0559

Table 4.26: The average of the peak distribu-
tion output score of WCLC per window size
(wmax) in seconds.
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Figure 4.20: The average of the peak distribu-
tion output score distribution of WCLC per
window size (wmax) in seconds.
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winc
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1 0.7205 0.7205 0.7205 0.7205 0.6591

2 0.7205 0.7205 0.7205 0.7205 0.6591

3 0.6400 0.6400 0.6400 0.6400 0.6032

4 0.6591 0.6591 0.6591 0.6591 0.6591

5 0.7257 0.7257 0.7257 0.7257 0.7091

µ 0.6932 0.6932 0.6932 0.6932 0.6579

Table 4.27: Average F-score achieved by
WCLC per fold per window increment (winc).
The bottom row depicts the average score
across all folds.
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Figure 4.21: The average F-score of WCLC
per window increment (winc).

winc Avg. Std. dev.

0.1 0.2107 0.0462

0.2 0.2107 0.0461

0.3 0.2109 0.0462

0.4 0.2106 0.0462

0.5 0.2109 0.0463

Table 4.28: The average of the peak distribu-
tion output score distribution of WCLC per
window increment (winc) in seconds.
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Figure 4.22: The average of the peak distribu-
tion output score distribution of WCLC per
window increment (winc) in seconds.
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1 0.6411 0.7000 0.7205 0.5982 0.6411

2 0.6606 0.8500 0.7205 0.5833 0.6032

3 0.6400 0.7619 0.6400 0.5500 0.5500

4 0.5249 0.7847 0.6591 0.6400 0.5342

5 0.5897 0.7333 0.7257 0.6537 0.6537

µ 0.6113 0.7660 0.6932 0.6050 0.5964

Table 4.29: Average F-score achieved by
WCLC per fold per maximum time lag (τmax).
The bottom row depicts the average score
across all folds.
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Figure 4.23: The average F-score of WCLC
per maximum time lag (τmax).
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τmax Avg. Std. dev.

2 0.2234 0.0663

4 0.2253 0.0537

6 0.2109 0.0462

8 0.2109 0.0425

10 0.1922 0.0372

Table 4.30: The average of the peak distribu-
tion output score distribution of WCLC per
maximum time lag (τmax) in seconds.
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Figure 4.24: The average of the peak distribu-
tion output score distribution of WCLC per
maximum time lag (τmax) in seconds.
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1 0.6591 0.6032 0.7205 0.7205 0.7917

2 0.6591 0.6411 0.7205 0.7619 0.7917

3 0.6411 0.6032 0.6400 0.7205 0.6400

4 0.7000 0.6591 0.6591 0.7205 0.6400

5 0.7333 0.7091 0.7257 0.7681 0.7949

µ 0.6785 0.6431 0.6932 0.7383 0.7316

Table 4.31: Average F-score achieved by
WCLC per fold per lag increment (τinc). The
bottom row depicts the average score across
all folds.
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Figure 4.25: The average F-score of WCLC
per lag increment (τinc).

τinc Avg. Std. dev.

0.1 0.2139 0.0466

0.2 0.2105 0.0463

0.3 0.2109 0.0462

0.4 0.2304 0.0484

0.5 0.2088 0.0451

Table 4.32: The average of the peak distribu-
tion output score distribution of WCLC per
lag increment (τinc) in seconds.
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Figure 4.26: The average of the peak distribu-
tion output score distribution of WCLC per
lag increment (τinc) in seconds.
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RQA The influence of the embedding size, the minimum diagonal line segment length (diagonal

length), and the recurrence threshold on the percent determinism (%DET) output score distribution

is shown in Tables 4.34, 4.36, 4.38, and 4.34 and Figures 4.30, and 4.32, respectively. Furthermore,

the influence of these parameters on the F-score is shown in Tables 4.33, 4.35, and 4.37, and in Figures

4.27, 4.29, and 4.31, respectively.

Embedding Dimension
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1 0.6400 0.5833 0.5833 0.6400 0.5833

2 0.4231 0.4444 0.4643 0.4976 0.5342

3 0.6400 0.5342 0.5342 0.6400 0.5833

4 0.6400 0.5342 0.5833 0.6400 0.5833

5 0.6444 0.5429 0.5429 0.6444 0.5897

µ 0.5975 0.5278 0.5416 0.6124 0.5748

Table 4.33: Average F-score achieved by RQA
per fold per embedding dimension. The bot-
tom row depicts the average score across all
folds.
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Figure 4.27: Average F-score achieved by
RQA per fold per embedding dimension.

Embedding Dimension Avg. Std. dev.

0.1 0.4903 0.2042

0.2 0.5878 0.1856

0.3 0.6682 0.1702

0.4 0.7126 0.1677

0.5 0.7468 0.1666

Table 4.34: The percent determinism (%DET)
output score distribution of RQA per embed-
ding dimension in seconds.
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Figure 4.28: The percent determinism
(%DET) output score distribution of RQA per
embedding dimension in seconds.
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Diagonal Threshold
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1 0.6400 0.5342 0.5833 0.5833 0.5500

2 0.4444 0.4976 0.4643 0.4976 0.4643

3 0.5833 0.4976 0.5342 0.5833 0.5342

4 0.5833 0.5342 0.5833 0.6400 0.5833

5 0.5897 0.5152 0.5429 0.5897 0.5429

µ 0.5682 0.5157 0.5416 0.5788 0.5349

Table 4.35: Average F-score achieved by RQA
per fold per diagonal line length threshold.
The bottom row depicts the average score
across all folds.
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Figure 4.29: Average F-score achieved by
RQA per fold per diagonal line length thresh-
old.

Diagonal Threshold Avg. Std. dev.

0.1 0.9533 0.0331

0.2 0.8716 0.0834

0.3 0.7293 0.1572

0.4 0.6051 0.1835

0.5 0.5049 0.1893

Table 4.36: The percent determinism (%DET)
output score distribution of RQA per diagonal
line length threshold in seconds.
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Figure 4.30: The percent determinism
(%DET) output score distribution of RQA per
diagonal line length threshold in seconds.

Recurrence Threshold
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1 0.5833 0.7917 0.7205 0.6591 0.7205

2 0.4643 0.5833 0.5833 0.6400 0.6400

3 0.5342 0.7205 0.6591 0.6591 0.7205

4 0.5833 0.5833 0.5833 0.6400 0.6400

5 0.5429 0.7257 0.6667 0.6667 0.7257

µ 0.5416 0.6809 0.6426 0.6530 0.6893

Table 4.37: Average F-score achieved by RQA
per fold per recurrence threshold. The bottom
row depicts the average score across all folds.
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Figure 4.31: Average F-score achieved by
RQA per fold per recurrence threshold.
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Recurrence Threshold Avg. Std. dev.

1e-05 0.6857 0.1668

3e-05 0.7692 0.1153

5e-05 0.7997 0.1033

7e-05 0.8179 0.0957

9e-05 0.8325 0.0899

Table 4.38: The percent determinism (%DET)
output score distribution of RQA per recur-
rence threshold in seconds.
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Figure 4.32: The percent determinism
(%DET) output score distribution of RQA per
recurrence threshold in seconds.

4.2.3 Synchrony Measurement Method

The settings of the three synchrony measurement methods are set at the values that allow the syn-

chrony measurement method to achieve the highest generalised F-score. The settings for this experi-

ment are as follows:

• WCLR

– Window size: 12 seconds

– Window increment: 0.3 seconds

– Maximum time lag: 6 seconds

– Lag increment: 0.3 seconds

– Local region size: 3

– Minimum synchrony line length: 0.5 seconds

– Allowed lag difference: 2

• WCLC

– Window size: 10 seconds

– Window increment: 0.3 seconds

– Maximum time lag: 4 seconds

– Lag increment: 0.4 seconds

– Local region size: 3

– Loess smoothing span: 0.25

• RQA

– Embedding dimension: 0.4 seconds



4.2. Results 59

– Recurrence threshold: embedding dimension * 0.00009

– Diagonal line length threshold: 0.4 seconds

Three of these parameters have not been investigated, because they are not defined in seconds or are

not varied throughout literature. The first parameter is the local region size of WCLC and WCLR,

which defines the number of neighbours must be monotonically decreasing on both sides of a peak.

The second parameter is the allowed lag difference, which defines the maximum time lag difference

successive peaks may have before they are deemed unrelated to the same synchronous time segment.

Finally, the loess smoothing span of WCLC defines the range of loess smoothing applied to the rows

of the correlation matrix before peaks are found.

Using the optimal settings for each of the synchrony measurement methods found in the previous

experiment, their ability to distinguish rapport-building trained interviewers from control interviewers

is investigated. The output scores of each method and their respective generalised F-score achieved

when making distinctions based on the output score are shown in Table 4.39. The Pearson correlation

between the set of output scores obtained by running each synchrony measurement method on all

videos is shown in Table 4.40.

Synchrony Method

WCLR WCLC RQA

L
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-o

u
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ld

1 0.8500 0.7000 0.7205

2 0.7917 0.8500 0.5833

3 0.8295 0.7619 0.7205

4 0.8295 0.7619 0.6400

5 0.7257 0.7091 0.7257

µ 0.8053 0.7566 0.6780

Table 4.39: Generalised F-scores per synchrony measurement method. Using the ratio output score
of WCLR, the peak distribution average output score of WCLC, and the percent determinism output
score of RQA.

WCLR WCLC RQA

WCLR 1 -0.0875 -0.0133

WCLC -0.0875 1 -0.0179

RQA -0.0133 -0.0179 1

Table 4.40: Correlation between all output scores. Using the ratio output score of WCLR, the average
of the peak distribution output score of WCLC, and the percent determinism output score of RQA.

4.2.4 Motion Energy Time Series

The distribution of motion energy per person of MEA and OpenPose shown in Tables 4.41 and 4.42

and their respective time series are illustrated in Figures 4.33 and 4.34, respectively. The plot at
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the top of the figure represents the motion energy time series of one individual, whereas the plot at

the bottom of the figure represents the motion energy time series of the other individual. A visual

comparison of the motion energy per time series generated with both methods shows that OpenPose

has more fluctuations than MEA.

An overview of the output score distribution using both movement estimators are shown in Table 4.43.

The generalised F-scores per movement estimator is shown in Table 4.44. The correlation between

the sets of ratio output scores obtained using both movement estimators on all videos is -0.0242.

This means, that there is no relationship between the output scores, indicating that the movement

estimator’s generated motion energy time series greatly influences the output scores. The average

correlation between the motion energy scalars assigned to person 1 by MEA and the motion energy

scalars assigned to person 1 using OpenPose is 0.4207. The average correlation between the motion

energy scalars assigned to person 2 by MEA and the motion energy scalars assigned to person 2 using

OpenPose is 0.3857.

Person Avg. Std. dev.

1 0.0026 0.0053

2 0.0017 0.0030

Table 4.41: Motion energy distribution per per-
son for time series generated with MEA.
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Figure 4.33: Motion energy distribution per per-
son for time series generated with MEA.

Person Avg. Std. dev.

1 0.6938 0.6979

2 0.8504 0.8386

Table 4.42: Motion energy distribution per per-
son for time series generated with OpenPose.
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Figure 4.34: Motion energy distribution per per-
son for time series generated with OpenPose.
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Movement Estimator Avg. Std. dev.

MEA 0.4375 0.0744

OpenPose 0.6304 0.0722

Table 4.43: WCLR ratio output score distribution using time series generated with MEA and Open-
Pose.

Movement Estimator

MEA OpenPose

L
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1 0.8500 0.6606

2 0.7917 0.7847

3 0.8295 0.5982

4 0.8295 0.6606

5 0.7257 0.6761

µ 0.8053 0.6761

Table 4.44: Generalised F-scores per movement estimator. Using the ratio output score of WCLR.

4.3 Discussion

In this section the results shown in the previous sections will be discussed. First, Section 4.3.1 will

discuss the input data and its transformations. Afterwards, the results of the experiments will be

discussed. Section 4.3.2 discusses the results of the frame skip experiment. Section 4.3.5 discusses the

influence of the movement time series on the synchrony measurement. In Section 4.3.3 the influence

of the parameter settings on the synchrony measurement is discussed. Finally, in Section 4.3.4 the

results of the comparison between the synchrony measurement methods is discussed.

4.3.1 Data

The videos provided by Wright et al. [71] originally suffered from lens distortion. To correct this

distortion the frames were multiplied with the GoPro’s camera matrix, however this matrix was not

given, but had to be manually found. Although the corrected videos look good, the distortion was

most likely not completely corrected, which may influence the ability of OpenPose to correctly estimate

keypoint positions.

Furthermore, in the evaluation of the ability of synchrony measurement methods to distinguish

rapport-building trained interviewers from control interviewers it should be taken into account that

even the interviewers that did not receive the rapport-building training would perform better in the

second wave. This is because they will already have learnt from their experience during the first wave.

Furthermore, the duration of the interviews in the second wave are shorter than those of the first wave,

on average the duration of the videos in wave 1 is 7:40 versus an average duration of 6:33 in wave 2.
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This suggests that in the second wave the interviewers were more adapt at acquiring the necessary

information. However, this did not greatly influence the synchrony measurements, as only the output

score of WCLR became slightly higher in wave 2 than in the wave 1. WCLR achieved an average

output score of 0.4303 in wave 1 and an average output score of 0.4445 in wave 2. The average output

scores for RQA and WCLC remain similar across waves. RQA achieves an average output of 0.8069

in wave 1 and an average output of 0.7992 in wave 2. Finally, WCLC achieves an average output of

0.2695 in wave 1 and an average output of 0.2655 in wave 2.

On top of this, the clipboard held by the interviewer also restricted their hand movement as well as

the ability of OpenPose to correctly estimate the location of the hand occluded by the clipboard. The

overall implication of this is that the interviewer will most likely not move this hand as they would

have done in a more natural setting in which no clipboard is present. The implication for movement

estimation is that OpenPose will attribute noisy movement to the hand, due to not being able to find

the hand. On the other hand, MEA will attribute movement of the clipboard towards movement of

the interviewer, because the pixel changes caused by the clipboard lie within the bounding box.

4.3.2 Frame Skip

Overall, the results show that for WCLR and for WCLC the correlation between the output scores with

frame skip and the output scores without frame skip decreases as the frame skip increases. However,

the results show that the output scores of RQA show a greater resilience to frame skip. Therefore,

frame skip should only be considered when opting to use RQA if deviation from the original output

scores is unwanted.

WCLR The results of the frame skip experiment for WCLR show that as the frame skip increases,

the average of the ratio output scores distribution increases and its standard deviation decreases. The

correlation between the output scores hit a low point at a frame skip of three with a correlation of

0.5287. The correlation shows that there is a linear relationship between the output scores across

frame skips. However, the relatively low correlation between the output scores suggests that frame

skipping does compromise the synchrony measure. Furthermore, the average F-scores obtained per

frame skip, shown in Table 4.1, show that the highest average F-score is achieved at a frame skip of

0, corresponding to a frame rate of 27.

The sensitivity of the output scores to frame skip may be caused by skipping over small movement,

as well as by the influence of frame skip on its parameters. As the frame skip increases, the number

of frames per second decreases, thereby also decreasing the number of samples contained in windows

whose range is defined in seconds. This is most likely caused by the decrease in checked time lags,

this results in fewer columns in the regression matrix, making it more likely that peaks found for each

row of the regression matrix are found in roughly the same column. This results in longer periods of

perceived synchrony, resulting in a higher ratio output score.
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WCLC The results of WCLC show that the average and standard deviation distributions both

remain similar despite a change in frame skip. However, despite the similarity in the output score

distribution, the correlation between the output scores is low. Therefore, it can be said that frame

skip also compromises both output scores of WCLC. Furthermore, the average F-scores obtained per

frame skip, shown in Table 4.4, show that the highest average F-score is achieved at a frame skip of

3, corresponding to a frame rate of 9. The same average F-score is obtained at a frame skip of 1,

corresponding to a frame rate of 14. However, since a greater frame skip is preferred, as this reduces

the required runtime, the frame skip of 3 is preferable.

WCLC is influenced by the frame skip in a similar manner as WCLR is. By increasing the frame skip,

the number of frames in a second decreases. Thereby also decreasing the number of samples that its

window covers and the number of possible time lags that will be considered, since these parameters

are defined in number of seconds. It appears that the range of values the output scores can attain

is very limited, which reduces the impact the frame skip can have on the output score distribution,

because the average remains roughly 0.21 and the standard deviation remains close to 0.46. However,

it does assign different output scores when looking at individual videos. This explains the similarity

in distributions, despite the low correlation.

RQA Finally, the results of RQA show that its output scores are more robust to changes in frame

skip than WCLR and WCLC. With a high correlation between the output scores of all tested frame

skips and the output scores without frame skip. We see that the distribution of the %REC, %DET,

and the entropy output scores remains similar across frame skips. On the other hand, the ratio and

the average diagonal line length output score distribution are more sensitive to changes in frame skip.

The %REC output score average and standard deviation slightly decrease as the frame skip increases.

The results show that initially it is 1% and at a frame skip of 4, it is still at 0.52%. This variable

is strongly dependent on the recurrence threshold parameter, which has been set in such a way to

ensure that %REC will be roughly 1%. Since the frame skip influences the embedding dimension and

the recurrence rate threshold, the %REC will also be influenced. An increase in frame skip leads to

a decrease in the embedding dimension, delimiting the number of samples that together form states.

Decreasing the embedding dimension should increase the %REC, because fewer samples have to be

similar across states, leading to an increase in the number of recurrence points. However, an increase

in frame skip also decreases the recurrence threshold. The recurrence threshold sets the boundary

how far apart two states may be to still be considered similar. By decreasing this threshold, the states

have to be more similar in order to be considered a recurrence point. The decreased threshold culls

more recurrent points than the decreased embedding dimension adds, hereby decreasing the %REC.

The %DET output score is less affected by the frame skip than the %REC output score. The average

and the standard deviation remain roughly the same despite the increase in frame skip. %DET

measures is the ratio between recurrence point in the CRP that form diagonal structures and the

total number of recurrent points. An increase in frame skip leads to fewer points in the CRP, however

this does not fundamentally change the diagonal structures within the CRP. Therefore, the diagonal

structures remain the same, only their length decreases. Therefore, the ratio between recurrent points

that form diagonal structures and all recurrent points remains similar.
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The results show that the entropy output score average and standard deviation decrease as the frame

skip increases. Entropy measures the complexity of deterministic structures in the CRP and depends

greatly on the number of bins in the diagonal line segment length histogram. Therefore, this behaviour

can be explained by the influence frame skip has on the number of bins in the histogram. As the frame

skip increases, the number of recurrent points in the CRP decreases, thereby decreasing the length of

the diagonals. A decrease in diagonal line segment length results in a decrease in the number of bins

in the histogram.

The ratio output score average increases per frame skip, whereas its standard deviation reaches its

peak at a frame skip of 3 and then decreases. The ratio depicts the ratio between %DET and %REC.

The %DET remains roughly the same no matter the frame skip, however the %REC decreases as the

frame skip increases, thereby increasing the ratio.

The average diagonal line length distribution decreases per frame skip, because the number of points

in the cross-recurrence plot also decreases. Thereby decreasing the number of points that can be

present in diagonal structures. This results in a decrease in the average diagonal line segment length.

4.3.3 Parameter Settings

Due to the time constraints, it was not possible to try every unique combination of parameter settings

in order to find the globally optimal parameter settings. However, the influence each parameter

individually has on the generalised F-score and the output score distribution has been investigated in

order to find optimal settings for each synchrony measurement method, whilst using default settings

for the other parameters.

WCLR The investigated parameters of WCLR are the window size (wmax), window increment (winc,

maximum time lag (τmax), lag increment (τinc), and the minimum synchronous line segment length

(smin). The results of the WCLR parameter tuning show that the highest generalised F-score is

achieved for wmax = 12, winc = 0.3, τmax = 6, τinc = 0.3, and smin = 0.5. Furthermore, the results

show that parameters do influence the average of the ratio output score distribution, however the

standard distribution remains relatively unaffected.

Firstly, an increase in the wmax leads to an increase in the average of the output score distribution.

Increasing the wmax results in larger sliding windows, containing more samples, which influences the

rows in the regression matrix. The higher number of samples contained within the window, the more

similar two consecutive windows will be. The similarity increases, because the number of shared

samples also does, given that the winc is smaller than the wmax. The increased similarity propagates

to the rows in the regression matrix, thereby making it more likely that the time lag corresponding to

the peak of those rows is similar as well. Synchronous time fragments are defined by the consecutive

rows in in which the time lag of the peaks is similar. Therefore, the total amount of synchronous time

is increased, which results in a higher ratio between the synchronous time and the total time.

On the other hand, an increase in the winc leads to a decrease in the average of the output score

distribution, yet also leads to a slight increase in its standard deviation. A larger winc leads to fewer
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window comparisons, since the steps size the window uses to slide over the data increases. Therefore,

the number of rows in the regression matrix decreases. The output score of WCLR is the ratio

between the synchronous time and the total time. It defines synchronous time as a period of time

in which the peak regression values are all at a similar time lag. Since window increment causes the

window to skip over movement, the difference between consecutive windows, and therefore rows in the

regression matrix, will be greater. The greater difference in consecutive rows in the regression matrix

makes it less likely that their respective peaks will be at a similar time lag. The greater difference in

consecutive peak time lags decreases the amount of synchronous time and thereby the ratio between

the synchronous time and the total time.

The output score distribution’s average and standard deviation are not influenced by a change in the

τmax and remain similar throughout. Increasing τmax leads to an increase in the number of columns

in the regression matrix. However, the added columns hardly influence the output score distribution,

because the peaks found within the rows of the regression matrix are usually found close to the

column corresponding to a time lag of 0, which is located at the center column, where the search

starts. Therefore increasing the number of columns does not influence the selection of peaks, because

the peak will be found before the added columns are considered.

Unlike increasing the winc, increasing the τinc also increases the average of the output score distribution.

Similarly to τmax, increasing the τinc also decreases the number of columns found in the correlation

matrix. However, rather than decreasing the range of time lags that are considered, as is done when

τmax is increased, it decreases the number of columns by skipping samples. A reduction in the number

of columns in the regression matrix makes it more likely that peaks in consecutive rows of the regression

matrix will be found in a similar column, at a similar time lag, because the range of possible time lags

has been decreased. Rows with peaks at a similar time lag are defined to be synchronous time and an

increase in total synchronous time will increase the ratio between the synchronous time and the total

time.

Finally, an increase in the smin parameter leads to a decrease in the average of the output score

distribution. As the threshold increases, fewer periods in time will be considered synchronous, because

the threshold delimits the number of consecutive peaks in the regression matrix that must have a

similar time lag. This causes the total synchronous time to decrease, because an increase in this

threshold means that fewer selection of consecutive rows will fulfill this criteria. The decrease in total

synchronous time leads to the decrease of the ratio between the synchronous time and the total time.

Overall, the results show that all parameters influence the average of the ratio output score distribution,

whereas the standard deviation remains relatively unaffected. The influence on the output scores is

also visible in the generalised F-score, where clear optimal values can be seen.

WCLC The investigated parameters of WCLC are the window size (wmax), window increment

(winc), maximum time lag (τmax), and lag increment (τinc). The results show that the highest gener-

alised F-scores are obtained using wmax = 10, winc can be 0.1, 0.2 or 0.3, τmax = 4, and τinc = 0.4.

The results show that an increase in wmax decreases the average of the peak distribution. An increase
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in the wmax leads to an increase in the number of samples contained within the window. An increase in

the number of samples within the window makes it less likely that all samples within the two windows

transform in a similar fashion, resulting in a lower correlation between the two windows.

The influence of winc on the output score distribution is minimal. Increasing the winc decreases the

number of rows in the correlation matrix, because some combinations of windows will be skipped.

However, this does not influence the output score distribution, because the correlation assigned to

windows throughout the dataset remains similarly spread around the same average. Therefore a

decrease in the number of windows that are considered for synchrony does not significantly influence

the output score distribution, since the average remains unaffected.

An increase in τmax results in a slight decrease in the average of the output score distribution. In-

creasing the τmax also increases the number of columns in the correlation matrix. However, this barely

influences the output score distribution, because the peaks found within the rows of the correlation

matrix are usually found close to the column corresponding to a 0 lag, located at the center of the

row, where the search starts. Therefore increasing the number of columns does not influence the peak-

picking algorithm, because the peak will be found before the columns corresponding to the greater

time lag are considered.

Finally, similarly to the winc, does the τinc barely influence the output score distribution. An increase

in the τinc leads to fewer time lags being considered, thereby decreasing the number of columns in the

correlation matrix. Despite this, the correlation of the peaks found in the rows with fewer columns

does not differ much from the correlation of the peaks found in the original columns. The correlations

are similar, because in most cases it is close to the original average. Therefore, the output score

distribution remains relatively unaffected.

Overall, the results show that none of the parameters greatly influence the output score distribution,

as all output scores retain a similar mean and standard distribution. This effect is also visible when

investigating the generalised F-scores achieved by WCLC. The influence of the τmax is minimal, because

peaks are often found close to a time lag of zero. Furthermore, the winc and the τincalso barely influence

the output and F-score as the outputs throughout the video remain close to the mean, therefore it

does not matter if samples are skipped. Finally, the wmax parameter shows the greatest influence on

the generalised F-score, as this is the only parameter that influences the output score distribution.

RQA The parameters of RQA that are investigated are the embedding dimension, diagonal line

segment length threshold (diagonal threshold), and the recurrence threshold. The results show that

the highest generalised F-scores are attained using embedding dimension = 0.4, diagonal threshold =

0.00009, and the recurrence threshold = 0.4.

Firstly, as the embedding dimension increases, so does the percent determinism output score. The

embedding dimension defines the number of samples that together form a state. Increasing this number

leads to fewer recurrence points within the cross-recurrence plot, because it becomes less likely that

similar states will be found throughout the system, as more samples are now required to be similar.

However, the diagonal structures within the cross-recurrence plot remain relatively unaffected, only
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the number of samples they consist of decreases. The percent determinism output score increases,

because the number of recurrent points that do not form diagonal structures decreases more than the

number of recurrent points in diagonal structures.

On the other hand, as the diagonal threshold increases, the percent determinism output score distribu-

tion average decreases. The diagonal threshold delimits the minimal number of recurrent points in the

cross-recurrence plot that a diagonal line structure must contain. Increasing this threshold, decreases

the percent determinism as the diagonal structures that no longer contain the necessary number of

recurrent points are now dropped.

Finally, an increase in the recurrence threshold leads to an increase in the average percent deter-

minism. The recurrence threshold represents the maximal Euclidean distance the two states can be

apart from each other for them to still be considered similar. Increasing this threshold, allows for

the creation of more recurrent points in the cross-recurrence plot, thereby increasing the number of

diagonal structures that may be found within the cross-recurrence plot, which leads to an increase in

the percent determinism. Although a higher generalised F-score may have been achieved with an even

higher recurrence threshold, increasing the recurrence threshold further also increases the number of

recurrence points in the cross-recurrent plot. The increase in recurrence points comes at a computa-

tional cost and it was not possible to test greater values for the recurrence threshold due to memory

limitations.

Overall, the results show that although changes in the embedding dimension, recurrence threshold,

and the diagonal line length threshold influence the output score distribution, however the generalised

F-score remains relatively unaffected. The setting of the parameters does not greatly increase nor

diminish its ability to distinguish rapport-building trained interviewers from control interviewers. If

memory or computational power is limited it is recommended to decrease the recurrence threshold,

as this decreases the number of recurrence points in the cross-recurrence plot, thereby greatly reduce

the required memory and runtime.

4.3.4 Synchrony Measurement Method

Overall, every synchrony measurement method is able to distinguish rapport-building trained inter-

viewers from control interviewers better than when no distinction is made, as this would have resulted

in a generalised F-score of 0.4242 if all interviewers are classified as trained, or 0.2084 if all interview-

ers are classified as control. The results show that WCLR achieves the highest generalised F-score

of 0.8053, WCLC achieves the second highest generalised F-score of 0.7566, and RQA achieves the

lowest generalised F-score of the three with a value of 0.6780.

Furthermore, no correlation is found between the outputs scores of the synchrony measurement meth-

ods, which is in line with the findings of Schoenherr et al. in [58], who found that there is no correlation

between the WCLR ratio and WCLC average peak strength. The lack of correlation between the out-

put scores may be caused by the underlying dataset. Since WCLR achieves the highest generalised

F-score, it is plausible that auto-correlation has a strong presence throughout the dataset, which only

WCLR capitalises on. On top of this, the lack of correlation may be caused because the synchrony



68 Chapter 4. Evaluation

measurement methods measure different facets of synchrony. WCLR measures the ratio between syn-

chronous time and the total time, WCLC measures the average strength of synchrony, and the percent

determinism output score of RQA measures the frequency of synchrony.
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Table 4.45: Motion energy per person for
windows that receive a low synchrony out-
put score from WCLR (R2

CC = 6.7188e−08),
as well as a low synchrony output score from
WCLC (average peak correlation = −0.0929).
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Table 4.46: Motion energy per person for win-
dows that receive a high synchrony output
score from WCLR (R2

CC = 0.2507), as well
as a high synchrony output score from WCLC
(average peak correlation = 0.5995).

Exemplary windows of motion energy of both persons that achieve high synchrony output scores and

low synchrony output scores by WCLR and WCLC are shown in Figures 4.45 and 4.46, respectively.

The windows corresponding to the high synchrony output scores are of a time interval in which both

persons move their hands to aid with their explanation. The windows corresponding to low synchrony

output score are based on a time interval in which the interviewee used large arm movement to aid

her explanation, however the interviewer only pays attention to his clipboard whilst barely moving.

This suggests that both WCLR and WCLC are able to detect synchrony in behaviours where both

individuals perform similar behaviour, without the need for motion energy to be of similar strength.
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Table 4.47: Motion energy of both per-
son which created no diagonal in the cross-
recurrence plot.
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Table 4.48: Motion energy of both person
which created the longest diagonal in the
cross-recurrence plot.
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Figures 4.47 and 4.48 show motion energy for time intervals of about 2 seconds to which RQA assigned

a low synchrony output score and a high synchrony output score, respectively. The time interval that

received the high synchrony output score is of both individuals moving just one hand up and down.

The low synchrony output score is assigned to a time interval in which the interviewee made big hand

movements to aid her explanation and the interviewer only made small hand movements to write on

the clipboard. Overall, RQA only detects synchrony if the motion energy of both individuals is similar.

Therefore, RQA cannot detect synchrony in events where the movement is copied, but executed on a

different scale by one person than by the other. For example, if both individuals scratch their head,

but one of them makes large hand movements whereas the other only slightly moves their fingers, then

this will not be classified as synchronous. On the other hand, it does pick up on movement that is

caused by a different behaviour but causes the same amount of motion energy. For example, if one

individual moves their arms and the other individual moves their legs and both events occur with

similar motion energy, then this event will be classified as synchronous.

4.3.5 Motion Energy Time Series

The low correlation between the output scores of all videos obtained using both movement estimators

suggests that the movement time series greatly influences the WCLR output score and that MEA

provides vastly different time series than OpenPose. On the other hand, the average correlation

between the movement scalars assigned by MEA and the movement scalars of the same person assigned

by OpenPose suggests that there is a relation between the assigned movement scalars. The average

correlation between motion energy assigned to person 1 is 0.4207, and the average correlation between

motion energy assigned to person 2 is 0.3857, indicating that there is a correlation, albeit low. Although

there is a relation between the assigned motion energy scalars, the motion energy time series remain

vastly different from each other. This difference is indicated by the lack of correlation between the

output scores generated using the time series generated using OpenPose and MEA. Had there been

more similarity between the motion energy time series, then there would also have been a greater

similarity in the output scores of WCLR as its input would have been more alike. However, the low

correlation of -0.0242 shows that no similarity in the output scores is present.

The mean of the movement distribution of both persons for both movement estimators is relatively

close to zero, indicating that generally there is little movement throughout the video. The standard

deviation is large in comparison to the mean of the distribution, which is required to capture the short

bursts of relatively large movement. Furthermore, when looking at Figures 4.33 and 4.34 the graphs

show that the time series created by OpenPose have stronger fluctuations than the time series created

by MEA. These fluctuations suggest that, despite the filtering applied to the OpenPose keypoint

estimations, some noise is still present in the OpenPose time series.

With respect to the output score distribution, the results show that the average of the ratio output score

distribution is higher when OpenPose is used than if MEA is used, despite the stronger fluctuations

present in the time series of OpenPose. On the other hand, the standard deviation of the ratio output

score distribution of both MEA and OpenPose is similar. This suggests that, despite having a different

average, the difference between the output scores assigned to videos may be similar. However, the low
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correlation between the output scores and the different F-scores shows that this is not the case. It is

plausible that the output scores generated using MEA time series better represent the true movement,

as they allowed for a higher generalised F-score than time series generated with MEA.

The results show that both movement estimators achieve a higher F-score than when no distinction

is made, which would have resulted in a generalised F-score of 0.4242 if all interviewers are classified

as trained, or 0.2084 if all interviewers are classified as control. Furthermore, Table 4.44 shows that

WCLR achieves the highest generalised F-score by using time series created with MEA. Therefore,

when estimating synchrony, it is recommended that MEA is used to generate time series.

Relation between motion and synchrony The relation between the amount of movement of

a dyad and the synchrony output score is investigated. To find this relation, the correlation between

the average movement of the dyad and the output scores of WCLC, WCLR and RQA is used. The

average movement of the dyad is defined as the average movement of both persons as measured by

MEA. The output scores are obtained using the optimal settings per synchrony measurement method

on MEA time series. The correlation between the output scores of WCLC and the average movement is

-0.0332. The correlation between the output scores of WCLR and the average movement is 0.0252. The

correlation between the output scores of RQA and the average movement is -0.3199. The correlations

show that for WCLR and WCLC there is no significant relation between movement and synchrony

output score. On the other hand, the output scores of RQA have a negative relation with the average

movement, indicating that as the average movement decreases, the output score increases. This is

plausible, because as the average movement decreases, the number of states containing little to no

movement increases. Since the states with little to no movement will be similar to each other, will the

number of recurrence points increase. The higher number of recurrence points allows for the creation

of more diagonal structures that satisfy the minimal diagonal line length threshold, thereby increasing

the percent determinism output score.

4.3.6 Research Questions Revisited

The first research question is “which synchrony measuring method most accurately measures syn-

chrony?”, and has been answered in the synchrony measurement method experiment in Section 4.2.3.

In this experiment the accuracy of three synchrony measurement methods, WCLC, WCLR and RQA,

using their optimal parameter settings on time series generated by MEA is investigated. The accu-

racy is determined by the ability to distinguish rapport-trained interviewers from control interviewers.

This distinction is made by comparing the output scores assigned in wave 2 to a dyad to the output

scores assigned to the same dyad in wave 1. If the output scores are sufficiently different, then the

dyad is classified as having received the rapport-building training, or will be classified as control oth-

erwise. The distance between output scores is sufficiently different if it exceeds a threshold. How well

this distinction is made is quantified as the average F-score of how well rapport-trained interviewers

have been classified correctly and how well control interviewers have been classified correctly. These

F-scores are used in leave-one-out cross validation to obtain a generalised F-score representing the

accuracy of the synchrony measurement. The results of the synchrony measurement method experi-
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ment show that WCLR achieves a generalised F-score of 0.8053, WCLC a score of 0.7566 and RQA

achieves a generalised F-score of 0.6780. Therefore, we can conclude that WCLR provides the best

distinction between dyads that did receive rapport-building training and dyads that did not receive

rapport-building training.

The second research question is “what are the optimal parameter settings for each synchrony measure-

ment method?”, and has been answered in the parameter settings experiment in Section 4.2.2. The

results of this experiment show that the highest generalised F-score is achieved by WCLC for settings:

wmax = 10, winc can be 0.1, 0.2 or 0.3, τmax = 4, and τinc = 0.4. The winc and τinc parameters of

WCLC barely influence the generalised F-score. However, the wmax and the τmax do influence the

generalised F-score, but also show a clear optimal value and are therefore easily set. The highest

generalised F-score is achieved by WCLR for settings: wmax = 12, winc = 0.3, τmax = 6, τinc = 0.3,

and smin = 0.5. All parameters of WCLR show a clear optimal value and are therefore easily set. The

highest generalised F-score is achieved by RQA for settings: embedding dimension = 0.4, diagonal

threshold = 0.00009, and the recurrence threshold = 0.4. The embedding dimension and diagonal

threshold parameters barely influence the generalised F-score and therefore their exact setting is less

critical. On the other hand, the recurrence threshold parameter shows a greater influence on the gen-

eralised F-score and the trend shows that as the recurrence threshold increases, so does the generalised

F-score. Therefore, it is uncertain if the optimal value is 0.00009, as higher values could not been

tested due to memory limitations.

The third research question is “do time series created by human motion analysis provide better syn-

chrony measurements for the best synchrony measuring method than time series created with motion

energy analysis?”, and has been answered in the motion energy time series experiment in Section 4.2.4.

In this experiment the influence of time series generated using OpenPose and MEA on the output

scores of WCLR and its ability to distinguish rapport-trained interviewers from control interviewers is

investigated. The results show that the mean output score using OpenPose time series is higher than

the mean output score using MEA time series, however the variance of the output scores is similar.

Furthermore, the highest generalised F-score is obtained using MEA time series, achieving a score

of 0.8053, whereas the generalised F-score obtained using OpenPose time series is 0.6761. Therefore,

time series created by human motion analysis do not provide better synchrony measurements for the

best synchrony measuring method than time series created with motion energy analysis.

Finally, the fourth research question is “what is the ideal frame rate for measuring interpersonal

synchrony in dyadic interactions?”, and has been answered in the frame skip experiment in Section

4.2.1. In this experiment the influence of frame skip on the output score of each synchrony measurement

method is investigated. The investigated frame skip values are: 0, 1, 2, 3, and 4. The results show that

the output of WCLC and WCLR are not robust against frame skip, as the correlation between their

output scores obtained without frame skip and their output scores obtained with frame skip quickly

drops as the frame skip increases. On the other hand, the output scores of RQA show resilience

against frame skip, as the correlation between the output scores obtained without frame skip and the

output scores obtained with frame skip remain close to 1. Furthermore, based on the average F-scores

achieved per frame skip, the results show that the ideal frame rate for measuring synchrony of WCLR

is 27 frames per second, of WCLC is 7 frames per second, and of RQA is 9 frames per second.
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Conclusion

This chapter summarises the results of this thesis in Section 5.1, and suggests improvements to the

methods used in this thesis in Section 5.2.

5.1 Summary of Thesis Achievements

Synchrony has received a great deal of attention from many different scientific areas for its relatedness

to the quality of interaction and interpersonal relationships, functions in early infancy, and ability to be

used as a predictor for variables such as therapy outcome. The multidisciplinary attention synchrony

receives inspired a need for automated synchrony analysis in order to exclude the possibility of human

error and subjectivity. In this thesis the different methodologies used to extract movement data from

video, as well as the methodologies that measure synchrony in movement data have been investigated.

The goal of the research of this thesis is to find the methodologies and settings that allow for the

best quantification of synchrony. Where synchrony is operationalized as the ability to distinguish

rapport-building trained interviewers from interviewers that did not receive this training. Therefore,

the assumption is made that synchrony should increase between dyads after rapport-building training

has been received. This assumption is made to accommodate for the lack of ground-truth. How well a

synchrony measurement method performs will therefore be measured by its ability to assign increasing

scores for dyads that did receive rapport-building training, yet assign similar scores to dyads that did

not receive rapport-building training. Scores are deemed similar if their respective difference does not

exceed a threshold, which is uniquely set per output score for each synchrony measurement method.

With the data provided by Wright et al. [71], motion energy time series from rapport-building trained

and control interviewers and their subjects are extracted using Motion Energy Analysis (MEA) [23,

58] and OpenPose [12]. The resulting motion energy time series have been used as input for three

synchrony measurement methods: windowed cross-lagged correlation (WCLC) [10], windowed cross-

lagged regression (WCLR) [2], and recurrence quantification analysis (RQA) [50]. These methods have

been chosen, because they have been used in synchrony research before and because from the myriad

of time series analysis methods these are adapt at handling the temporal aspect of synchrony.

72
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Firstly, the possibility of frame skipping to speed up the runtime of the algorithm was explored. The

following frame skip values have been tested: 0, 1, 2, 3, and 4. The results show that the output scores

of WCLC and WCLR are greatly influenced by frame skipping, as is indicated by the low correlation

between the output scores obtained using a frame skip and the original output scores. On the other

hand, RQA shows a great resilience against frame skip, as the correlation of four out of five output

scores obtained with frame skip and the original output scores does not drop below 0.92 even at a

frame skip of 4. Furthermore, the results show that for measuring synchrony the ideal frame rate of

WCLR is 27 frames per second, of WCLC is 7 frames per second, and of RQA is 9 frames per second.

Since all synchrony measurement methods require several parameters to be set by the experimenter,

the parameters of each synchrony measurement method that have been different across literature

have been investigated. For each of these parameters multiple values have been tested on time series

generated with MEA in order to find out how they influence the output scores and what values

optimises the generalised F-score. The optimal values for the parameters of WCLC are wmax = 10,

winc can be 0.1, 0.2 or 0.3, τmax = 4, and τinc = 0.4. The optimal values for the parameters of

WCLR are wmax = 12, winc = 0.3, τmax = 6, τinc = 0.3, and smin = 0.5. The optimal values for the

parameters of RQA are embedding dimension = 0.4, diagonal threshold = 0.00009, and the recurrence

threshold = 0.4.

The comparison between the three synchrony measurement methods show that WCLR most accurately

quantifies synchrony, as it provides the best distinction between rapport-building trained interview-

ers and control interviewers, achieving a generalised F-score of 0.8053. WCLC is able to achieve a

generalised F-score of 0.7566. Finally, RQA is able to achieve an F-score of 0.6780. All synchrony

measurements method are able to measure synchrony, as they all achieve a higher F-scores than if

no distinction is made between the interviewers. Failure to distinguish rapport-trained interviewers

from control interviewers would have resulted in a generalised F-score of 0.4242 if all interviewers

are classified as trained, or 0.2084 if all interviewers are classified as control. Furthermore, we found

that the correlation of the output scores per video between the synchrony measurement methods is

low. This indicates that despite all being able to distinguish rapport-building trained interviewers

from control trainers relatively well, each method makes this distinction based on a different facet of

synchrony. Therefore, each method assigns other pairs of people low and high rapport. Both WCLC

and WCLR assign higher synchrony output scores to events where both individuals display similar

behaviour without the need for similar strength in motion energy. For example, both WCLR and

WCLC will assign high synchrony output scores to events where both individuals move their hands

to aid their explanation, even if one of the individuals uses smaller movements. Despite WCLC and

WCLR detecting synchrony in the same windows, the eventual output scores remain different because

WCLC measures the strength of synchrony, whereas WCLR measures the frequency of synchrony.

RQA detects synchrony when the amount of motion energy between two individuals remains similar

over time, without considering how the motion energy transforms over time. For example, RQA will

detect synchrony when one individual moves their arms with similar motion energy as the other in-

dividual moves their legs. On the other hand, if both individuals move their arms but one individual

does so with smaller movements, then the difference in motion energy may cause RQA to classify this

as not synchronous despite the similarity in behaviour.
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Finally, movement energy time series created with OpenPose and movement energy time series created

by MEA have both been used as input for WCLR to investigate their influence on the output scores

and the generalised F-scores. A visual comparison between the time series created with OpenPose

and the time series created by MEA show that the time series created with OpenPose contain more

fluctuations. Furthermore, the results show that there is no correlation between the output scores of

WCLR using MEA time series and the output scores of WCLR using OpenPose time series. However,

there is a positive average correlation between the motion energy assigned to person 1 by MEA and

the motion energy assigned to person 1. A slightly lower positive average correlation is also found

between the motion energy assigned to person 2 by MEA and the motion energy assigned to person

2 by OpenPose. Finally, The highest generalised F-score is achieved using the time series of MEA.

Overall, the results show that it is feasible to automatically analyse synchrony. Furthermore, the

recommended methodologies to apply in automatic synchrony analysis are WCLR with the following

settings: wmax = 12, winc = 0.3, τmax = 6, τinc = 0.3, and smin = 0.5. It is recommended that MEA

is used for the creation of the motion energy time series. Finally, the recommended frame rate for

WCLR is 27, of WCLC is 7, and of RQA is 9.

5.2 Limitations And Future Work

Although the used dataset allowed us to investigate the accuracy of a synchrony measuring method

by its ability to distinguish rapport-building trained interviewers from control interviewers, it requires

the assumption that the rapport-building training also increased synchrony. This approach does not

take into account that not all interviewers may have benefited from the training. Nor does it take into

account that some interviewers may naturally be skillful at rapport-building, and therefore achieve

higher rapport scores without the need for the rapport-building training. To gain more insight in

the accuracy of the synchrony measurement methods the experiments may be repeated using data

alongside human annotated synchrony values.

Furthermore, there is room for further improvement in the motion energy time series created by Open-

Pose. Although the pre-trained neural network of OpenPose was generally already able to adequately

estimate the keypoint location in the setting of our data, training the neural network ourselves would

most likely have resulted in an even higher accuracy. On top of this, OpenPose currently does not

have the ability to track people over frames but finds persons from scratch for every frame without

using previous results. Tracking may also have increased the accuracy of the keypoint estimations,

which would result in more accurate time series. Additionally, OpenPose is not able to estimate the

3D location of the keypoints, but provides 2D keypoint locations within the image. Some information

is lost in the translation from a real world 3D location to the 2D image coordinates. Being able to

capture 3D keypoint locations would result in a more accurate representation of a person’s real world

location, allowing for the creation of more accurate movement energy time series.

Since OpenPose has the ability to measure movement of any body part individually, it may be inter-

esting to investigate how the synchrony output score is influenced per body part. This will provide
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insight in which body parts contribute to the synchrony measurement, so that body parts that do not

contribute no longer have to be considered.

Finally, for synchrony measurement methods that provide multiple output scores, the output score

that is predominantly used throughout literature is used in the experiments. It may be interesting to

investigate what generalised F-scores are obtained when other output scores are considered.
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