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Abstract

In this Thesis we analyze, both in theory and experiment, the phenomenon of stochastic reso-
nance in an optical microcavity with a non-instantaneous nonlinearity. Such a non-instantaneous
nonlinearity is found, for example, in media that heat and cool in finite time under constant illu-
mination. Starting from a driven-dissipative Kerr model, we develop a new theory modeling the
field in such media by introducing a memory kernel that assigns a timescale to the nonlinearity.
The memory kernel makes the state of system explicitly depend on its complete history, and not
only on its immediate past. The deviation from a Markovian approximation is characterized by
the residence time distribution, which we find is no longer an exponential on timescales compa-
rable to the characteristic timescale of the nonlinearity. This is an indication of level crossings
which are correlated in time, a signature of non-Markovian dynamics. The model successfully
reproduces experimental results demonstrating dynamical hysteresis in an optical microcavity
with a thermal nonlinear medium inside.

We furthermore explore the concept of stochastic resonance in this new model. This effect
manifests itself in a resonance-like peak in the signal-to-noise ratio as a function of the noise
intensity. The role of the thermal relaxation time is also studied and is found to shift the peak
in the signal-to-noise ratio to larger noise strengths. We finally report the first experimental
observation of stochastic resonance in a thermal nonlinear medium. Comparing experimental
results with simulations, we find a good agreement between theory and experiment.
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Chapter 1

Introduction

The topic of stochastic processes has been around for quite some time already, with some ma-
jor contributions to field in the beginning of the twentieth century regarding Brownian mo-
tion1;2;3 and Johnson noise4;5. Recently, however, the topic has been gaining new momentum
in the context of nonlinear systems. It may seem counterintuitive, but noise may play in fact
a constructive role in nonlinear systems, when the conditions are just right. Some examples in
relatively simple systems include noise-enhanced information transfer6, signal detection7;8 and
image processing9. In complex networks, where spatial disorder can disrupt transfer of signals, it
has been shown that transport can be assisted by the presence of noise10, for example in neural
networks11, light-harvesting complexes12 and in disordered13 and ordered quantum systems14.
Noise-assisted transport in an optical cavity network has also been observed15 and it has been
proposed to simulate complex networks found in nature, using cavity-based networks16.

Although we ultimately aim to move our line of research to complex networks of nonlinear
optical resonators to study noise assisted transport, we first need to get a thorough understanding
of a single component in such a network. Even then, for the simplest nonlinear systems, e.g.
double well potentials, there is rich physics to be explored. It has for example been shown that
the stability of an unstable system is enhanced by a finite noise intensity17;18. Furthermore, the
work by Kramers19 on diffusion of a Brownian particle across a potential barrier has prompted
a flurry of research. Two effects that immediately spring to mind are resonant activation20 and
stochastic resonance21, which are related, but describe different physics. Both effects boil down
to a matching of two timescales: one is the mean residence time, which is the average time spent
on either side of the potential barrier, and the other is determined by a periodic modulation
of the potential. Resonant activation may occur when modulating the height of the potential
barrier. Cooperative interplay between the modulation and barrier crossing events causes a
minimum in the mean residence time, enhancing diffusion across the barrier and increasing
reaction kinetics22;23.

The perhaps more intriguing effect of the two is stochastic resonance, where the response of
a nonlinear system to a periodic signal can be optimized by the presence of a suitable amount
of noise. The effect was first introduced in 198124 and was not much later used to explain the
recurrence of the ice ages25;26.

Although the effect is counterintuitive, the mechanism behind stochastic resonance is easy to
explain in the context of an overdamped Brownian particle in a symmetric double well potential,
V (x), as shown in Fig. 1.1. The particle has mass m and experiences a friction or drag, leading
to a dissipation rate γ. As shown by Kramers19, the Brownian behavior of the particle causes
it to randomly cross the potential barrier at the Kramers rate, which is given by

rK =
ωbωt
2πγ

exp

(
−∆V

D

)
, (1.1)

where ωb =
√
V ′′(xb)/m is the angular frequency at the bottom of the wells, ωt =

√
|V ′′(xt)/m|

the frequency at the top of the potential barrier, ∆V the height of the barrier and D the noise
variance, which is the mean squared displacement for a Brownian particle.

By then periodically tilting the double well in an asymmetric fashion, i.e. applying a force
on the particle, the noise will still cause the particle to transition between the two wells, even

1



𝑉(𝑥)

𝑥−𝑥& 𝑥&

𝑥'

∆𝑉

(a) (b)

Figure 1.1: Mechanism of stochastic resonance in a double well potential. In (a) a double well potential
V (x) = − 1

2
x2 + 1

4
x4 is shown, with ±xb the positions of the minima, xt the position of the barrier

maximum and ∆V the barrier height. In (b) we show the movement of a Brownian particle (black circle)
in a modulated double well, demonstrating stochastic resonance: the right amount of noise synchronizes
the barrier crossings with the modulation.

while the potential barrier stays intact. It is now important to notice that the Kramers rate
depends directly on the noise intensity. This means that by tuning the noise intensity, one can
set the Kramers rate to satisfy the time-scale matching condition

1

rK
= 2T, (1.2)

where T is the period of the periodic forcing on the particle. When this condition is met,
the initially random barrier crossings become synchronized with the periodic forcing. In other
words, the response of the system to a periodic system has an optimum, i.e. when the time-scale
matching condition is satisfied. This optimum is known as stochastic resonance.

The first experimental observations of stochastic resonance in optical systems were made in
a bistable ring laser in 198827;28. In these bistable ring lasers, light can travel in two directions,
clockwise and counterclockwise29. Random switching between the two modes is initiated by
spontaneous emission in the laser medium and fluctuations in the pump mechanism. Stochastic
resonance in this system was demonstrated by periodically biasing the two modes, similar to the
periodic forcing on a Brownian particle in a double well potential. At the nanoscale stochastic
resonance was recently demonstrated in the transmission in an exciton-polariton system30, which
is bistable due to a Kerr-type nonlinearity31. By the same authors and using the same system,
spinor stochastic resonance was observed32, where the synchronization happens between random
spin flips and a modulation in the polarization of the incoming laser. Even more recently the first
observation of stochastic resonance in the quantum regime, i.e. where quantum fluctuations play
the role of noise, was also reported33. Here the synchronization occurs between the tunneling
process of electrons in a quantum dot and a periodic driving signal.

Most of these observations of stochastic resonance in optical systems at the nanoscale require
extremely low temperatures. Here, however, we make use of a thermal nonlinear medium in a
microcavity, as opposed to a Kerr medium. This enables us to demonstrate, to our knowledge
for the first time, optical stochastic resonance at room temperature on the nanoscale.

The remainder of this Thesis is structured as follows. In Chapter 2 we provide an introduction
to dissipative nonlinear optical microcavities under coherent driving, assuming the nonlinearity
is instantaneous. In particular, we discuss the origin of the nonlinearity leading to effective
photon-photon interactions and derive the mean field equation of motion for the field inside such
cavities, largely following Ref. 34. Furthermore, we provide an assessment of the steady-states
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in this mean field approximation and compare the classical bistable solutions to the unique
quantum mechanical solution, which follows from the master equation for the density operator.

In Chapter 3 we introduce stochasticity into our model to study how the system behaves
in a noisy environment. The addition of noise renders the previously studied bistable solutions
metastable. Using simulations, we first consider a static cavity and compute the residence time
statistics for both metastable states under various conditions. We use these residence times to
determine the conditions for which the residence times are symmetric. We then apply a weak
periodic modulation to the detuning to study stochastic resonance in a nonlinear microcavity
with an instantaneous nonlinearity.

In Chapter 4 we develop a theory to model the field in a cavity when the nonlinearity is not
instantaneous. This is done by introducing a memory kernel, which accounts for the timescale
of the nonlinearity. The introduction of a memory kernel renders the system non-Markovian,
since the future dynamics of the system now explicitly depend on its past. In the context of
dynamical hysteresis, we compare simulations based on this new model to measurements and
find a good agreement between theory and experiment. We then repeat the analysis provided
in Chapter 3 and compare the Markovian and non-Markovian results along the way.

In Chapter 5 we move to experimental results. Starting with a description of the setup
itself, we then provide a characterization of the microcavity and discuss a method to measure
the thermal relaxation time of the medium inside the cavity. Finally we cover the experimental
realization of stochastic resonance in an oil-filled optical microcavity at room temperature, for
which the nonlinearity is not instantaneous.

Finally, in Chapter 6 we provide a summary of our most important results and an outlook
to future work.
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Chapter 2

Nonlinear optical resonators

In this chapter we provide a basic introduction to driven-dissipative nonlinear resonators. We will
see that a change in temperature of the medium inside the cavity leads to effective photon-photon
interactions, making the system nonlinear. Following the work by Drummond and Walls34, we
derive a mean field equation of motion and show that the system becomes bistable under the
correct driving conditions.

2.1 Effective photon-photon interactions

When part of the laser power passing through an optical material is absorbed, the illuminated
material will experience a local change in temperature35. Consequently, the refractive index will
change, leading to nonlinear optical effects. Assuming a Gaussian laser intensity distribution,
one can write the refractive index as a function of time and position (relative to the beam center)
as35;36

n(r, t) = n0 +
dn

dT
∆T (r, t), (2.1)

where we assume an increase in temperature leads to an increase in refractive index when dn/dT
is also positive. The quantity dn/dT is the thermo-optic coefficient of the material, describing
the temperature dependence of the refractive index.

Note that one can write the maximum change in refractive index as (See for example Ref.
37)

∆n =

(
dn

dT

)
αI(max)R2

κ
(2.2)

where α is the polarisability of the medium, I(max) is the laser intensity at the center of the
beam, R is the beam radius and κ the thermal conductivity of the medium. Hence we can write
the refractive index as

n = n0 + n2I, (2.3)

where n2 = (dn/dT )αR2/κ. Therefore, the heating of the material leads effectively to the optical
Kerr effect.

Note that the local change in temperature of the medium, and consequently the change in
refractive index, is not instantaneous, which is what is assumed in the discussion above. The
timescale associated with these changes can in fact be quite long37, resulting in nonlinear effects
which are strongly correlated in time. However, when studying dynamics on timescales much
larger then the thermal relaxation time of the medium, the nonlinearity may be considered
instantaneous. The implementation of a non-instantaneous nonlinearity in the model, and the
consequences, will be discussed in detail in Chapter 4.

We furthermore know that the polarization of a nonlinear medium can be written as the
following expansion in the electric field37

P = χ(1)E + χ(2)EE + χ(3)EEE + ..., (2.4)

5



with χ(i) the ith-order susceptibility, which in general is a tensor. It was shown by Bloembergen38

that the Hamiltonian for the interaction of a single-mode field in a cavity containing such a
nonlinear dispersive medium can be written as (~ = 1)

H = :

∫
d3r

{
1

2µ0
|B|2 + E

[
1

2

(
ε0 + χ(1)

)
E +

1

3
χ(2)EE +

1

4
χ(3)EEE

]}
:, (2.5)

where : ... : denotes normal ordering of operators. By assuming no phase matching, second
harmonic generation, and thus the χ(2) term, can be neglected.

Upon making a normal-mode expansion

E = i

(
ω

2ε0

)1/2 [
âu(r)− â†u∗(r)

]
,

∫
d3r u∗(r)

[
1 + χ(1)(r)/ε0

]
u(r) = 1 (2.6)

Drummond and Walls34 showed that the full Hamiltonian in the rotating wave approximation
corresponds to a single-mode Hubbard model,

Ĥ(t) = ω0â
†â+

U

2

(
â†â− 1

)
â†â, (2.7)

where ω0 is the fundamental cavity resonance, â† and â are respectively the creation and anni-
hilation operators, and U now represents an effective interaction between photons.

2.2 The driven-dissipative Bose-Hubbard model

To describe a driven-dissipative cavity, we start from a second quantized single-mode Bose-
Hubbard model with coherent driving, i.e. a Hamiltonian given by

Ĥ(t) = ω0â
†â+

U

2

(
â†â− 1

)
â†â+ i

√
κ1

(
F â†e−iωt + F ∗âeiωt

)
, (2.8)

where we denote the boson creation and annihilation operators as â† and â, respectively. Here,
ω0 is the resonance frequency of the cavity, U is the effective photon-photon interaction and κ1

is the input coupling rate of the driving field with amplitude F and frequency ω.
To account for dissipation, the system is coupled to another system, acting as a bath. For

our purposes, we assume a Bose-Hubbard system coupled to a Markovian environment, in which
case the dynamics are governed by a Lindblad-form master equation. The density matrix ρ̂
therefore evolves according to

∂ρ̂(t)

∂t
= i[ρ̂, Ĥ(t)] +

1

2

∑
l

(
2L̂lρ̂L̂

†
l − L̂

†
l L̂lρ̂− ρ̂L̂

†
l L̂l

)
(2.9)

Here, L̂l are the Lindblad operators, which are determined by the specific coupling of the system
to the environment. In our case, we consider three different localized single-particle loss chan-
nels39: intrinsic loss at rate γ, losses at the input at rate κ1 and at the output at rate κ2. The
corresponding Lindblad operators40 are L̂†1 =

√
γâ, L̂†2 =

√
κ1â and L̂†3 =

√
κ2â, respectively.

We thus have the master equation

∂ρ̂(t)

∂t
= i[ρ̂, Ĥ(t)] +

Γ

2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (2.10)

with total dissipation rate Γ = γ + κ1 + κ2.
The mean field equation of motion can be derived (see App. A) by assuming a coherent field

with amplitude α(t) = 〈â〉. This approximation is valid when the field in the cavity is strongly
confined, such that the cavity modes are well-separated, and when the number of photons in the
cavity is much larger than unity. Use of the master equation and the commutator [â, â†] = 1
then leads to

iα̇ =

[
ω0 − i

Γ

2
+ U

(
|α|2 − 1

)]
α+ i

√
κ1F e−iωt, (2.11)

6



where we adopted the dot notation, i.e. α̇ = ∂α/∂t. Note that this result closely resembles a
classical overdamped Duffing oscillator, i.e. ẍ + c1ẋ + c2x + c3x

3 = c4 cos(ωt), with c1 � 1.
The main difference is that the Duffing oscillator is real valued, whereas the intracavity field we
consider is complex. Albeit this difference, we may expect very similar behavior in our system.

For convenience, we move to a frame which is rotating at the driving frequency ω, such that
we can write

iα̇ =

[
−∆− iΓ

2
+ U

(
|α|2 − 1

)]
α+ i

√
κ1F, (2.12)

where ∆ = ω − ω0 is the detuning.

2.3 Steady states and their stability

The steady-state field is obtained by requiring α̇ = 0, i.e. it is a solution to the equation

0 =

[
−∆− iΓ

2
+ U

(
|α|2 − 1

)]
α+ i

√
κ1F. (2.13)

Taking i
√
κ1F to the left-hand side, recalling that |α|2 = N is the number of photons and

multiplying both sides by their complex conjugates we find that the steady-state density is given
by the roots of the third order polynomial

κ1|F |2 =

[
−∆− iΓ

2
+ U (N − 1)

] [
−∆ + i

Γ

2
+ U (N − 1)

]
N. (2.14)

Hence we can have up to three steady-state solutions.
To determine which of these solutions are stable, we use Eq. 2.12 and its complex conjugate

to write

i
∂

∂t

(
α
−α∗

)
=

( [
−∆− iΓ

2 + U
(
|α|2 − 1

)]
α+ i

√
κ1F[

−∆ + iΓ
2 + U

(
|α|2 − 1

)]
α∗ − i√κ1F

∗

)
(2.15)

and add a small fluctuation to the steady-state field, i.e. we substitute α→ α+ δα. It is then a
straightforward exercise (see App. B) to show that the fluctuations evolve according to

i
∂δα

∂t
= M δα, (2.16)

with δα = (δα δα∗)ᵀ and the matrix M given by

M =

([
−∆− iΓ

2 + 2U
(
|α|2 − 1

)]
α Uα2

U(α∗)2
[
−∆− iΓ

2 − 2U
(
|α|2 − 1

)]
α∗

)
. (2.17)

Differential equations of this form have solutions δα(t) = η exp(−iλt), with λ the eigenvalues of
the matrix M and η the eigenvectors. This implies that if for at least one eigenvalue Im(λj) ≥ 0,
then fluctuations will grow in time and hence the steady-state solution is unstable. On the other
hand, if Im(λj) < 0 ∀j, fluctuations are attenuated and hence the solution is stable.

Using the above-described procedure, we calculated the steady-state density for three different
driving strengths as a function of detuning (see Fig. 2.1(a) ). This shows that for small enough
driving, only a single steady-state solution exists. However, for larger values of the driving
amplitude, there is a detuning range for which we have three solutions, of which two are stable.
The reason is purely the nonlinear term: We know that for a linear oscillator (U = 0) the spectral
response is a Lorentzian. However, the nonlinear term can effectively be regarded as a correction
to the detuning, which depends on the number of photons in the cavity. The shift with respect
to the linear oscillator becomes larger when there are more photons in the cavity, which causes
the Lorentzian to tilt to one side, depending on the sign of U . When the tilt is sufficient, i.e. for
strong enough driving, multiple steady-state solutions arise for the same value of the detuning.

We also computed the steady-state solutions for various values of the detuning as a function
of the driving amplitude (Fig. 2.1(b) ). Here we see that close to resonance the number of

7
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Figure 2.1: Steady-state solutions for the number of photons inside the cavity, following from the mean
field description. In (a) as a function of the detuning and in (b) as a function of the driving amplitude.
Solid dots indicate stable solutions, whereas open circles indicate unstable solutions. Parameters: Γ = 1,
γ = Γ/6, κ1 = Γ/2, κ2 = Γ/3, U = −Γ/40.

photons increases continuously as function of the driving amplitude with only a single steady-
state solution. For an increased detuning, however, an S-shape shows up, again giving rise to
bistability.

For completeness we furthermore solved the master equation directly by using the methods
described in Ref. 41. These solutions are shown together with the mean field solutions in Fig. 2.2.
We immediately notice that the quantum mechanical steady-state solutions, i.e. the solutions of
Eq. 2.10, are unique, as opposed to the mean field solutions, which show the bistability. This is
due to the absence of fluctuations in the mean field description, which would make the bistable
solutions metastable. In that sense the (unique) solutions following from the master equation
are the weighted average of these metastable states34;42.

Finally, since the concept of stochastic resonance is often described in terms of a double well
potential, it is convenient to compute an effective potential for the number of photons in the
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Figure 2.2: Comparison between the mean field solutions (stable in red and unstable in gray) and solutions
of the quantum master equation (black). In (a) for a fixed driving amplitude (F = 5

√
Γ) and in (b) for

a fixed detuning (∆ = −Γ). Parameters: Γ = 1, γ = Γ/6, κ1 = Γ/2, κ2 = Γ/3, U = −Γ/40.
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cavity to use as a reference. Following Ref. 43, we derive an effective potential Veff(N) from Eq.
2.14 by writing

dN

dt
= κ1|F |2 −

[
−∆− iΓ

2
+ U (N − 1)

] [
−∆ + i

Γ

2
+ U (N − 1)

]
N = −dVeff

dN
. (2.18)

Integration then yields

Veff(N) = −κ1F
2N +

1

2

[(
Γ

2

)2

+ (∆ + U)2

]
N2 − 2

3
U(∆ + U)N3 +

1

4
U2N4, (2.19)

which is a fourth order polynomial in the photon number N . Then, for a given cavity with
losses κj and γ, and with a nonlinear medium inside giving rise to effective interactions with
strength U , the shape of the potential can be controlled by changing the detuning, ∆, and
driving strength, F . In Fig. 2.3 we have plotted this effective potential for three different values
of the detuning and all other parameters fixed. This shows that for a set of parameters leading
to bistability, we effectively have a double well potential. Moreover, by varying the detuning, we
can modulate the shape of the double well, which forms the basis for stochastic resonance.
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Chapter 3

Stochastic resonance

In this chapter we will study stochastic resonance using simulations, assuming the effective
interaction U is instantaneous. In doing so, we build a basic understanding of the system under
the influence of both noise and a periodic modulation of the detuning. We will then use the
knowledge gained in this chapter, to apply it in the next chapter when we extend the model to
incorporate an effective interaction which is no longer instantaneous.

To account for background noise and fluctuations, we include stochastic processes in our
model. In general we can have noise in both the driving and the detuning, yielding a Langevin-
type equation

iα̇ =

[
−∆ +Dξξ(t)− i

Γ

2
+ U

(
|α|2 − 1

)]
α+ i

√
κ1F +Dζζ(t), (3.1)

where D2
X is the variance of the noise, ξ(t) accounts for noise in the detuning and ζ(t) ac-

counts both for noise in the driving field and for noise related to the dissipation. Further-
more, since the driving field can have fluctuations both in amplitude and in phase, we take
ζ(t) = (ζ(1)(t) + iζ(2)(t))/

√
2, to include both in our model. Finally, we take both stochastic

processes to be Gaussian with zero mean and delta-correlated44, i.e.

〈ξ(t)〉 = 〈ζ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t− t′), 〈ζ(t)ζ(t′)〉 = δ(t− t′), (3.2)

Note the subtle, but important difference between the two types of noise: ξ(t) is multiplied
by the field α (multiplicative noise), whereas ζ(t) is not (additive noise). Hence, fluctuations
due to noise in the detuning are amplified by the field α, whereas the strength of fluctuations
due to driving noise is constant. In general there may exist correlations between additive and
multiplicative noise45. In our case, however, both types of noise have a different origin and hence
are uncorrelated, i.e. 〈ξ(t)ζ(t′)〉 = 0.

We finally also stress another, more fundamental, difference between the noise in detuning
and the one in driving. Because the noise in driving is related to the dissipation, the fluctuation-
dissipation theorem46 implies that we have a lower bound on Dζ , given by

√
Γ/2. For the noise

in detuning this is not the case.
In the rest of this chapter we will study simulations of the Langevin equation (Eq. 3.1) with

only additive noise, i.e. Dξ = 0, Dζ = D 6= 0. This is first done by keeping all parameters fixed
to study how the system behaves under the influence of noise. Next we will apply a periodic
modulation to the detuning, eventually bringing us to the notion of stochastic resonance, which
will be discussed in great detail.

We hereby note that for all our simulations we will make use of the xSPDE toolbox47 for
Matlab48.

3.1 Residence time analysis

In Fig. 3.1 we show simulations of the number of photons in the cavity as function of time
for three different values of the detuning, under the influence of a moderate amount of noise
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Figure 3.1: Simulation of the number of photons in the cavity as a function of time for three different
values of the detuning: ∆/Γ = −1.2126 (a), ∆/Γ = −1.1626 (b), ∆/Γ = −1.1126 (c). Parameters:
Γ = 1, γ = Γ/6, κ1 = Γ/2, κ2 = Γ/3, F = 5

√
Γ, U = −Γ/40, D = 2Γ.

(D = 2Γ). As can be seen in these trajectories, the noise induces switching events between the
two metastable states at random intervals. Furthermore, changing the detuning allows us to set
the average time the system spends in either of the two states, because the detuning determines
the relative depth of the two wells (Fig. 2.3). We can therefore bias the system to a specific state
as can be seen in the trajectories (see again Fig. 3.1). This is also evident in the corresponding
probability distributions of the photon number shown in Fig. 3.2.
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Figure 3.2: In black we show the probality distribution of the photon number P (|α|2) for three values of
the detuning. The effective potential is also shown in red for reference. Simulation parameters are the
same as in Fig. 3.1.
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Figure 3.3: Quasiprobability distribution for the real and imaginary part of the cavity field for three values
of the detuning. Brighter colors indicate a higher probability. Simulation parameters are the same as in
Fig. 3.1.

Interestingly, the magnitude of the fluctuations is different in the two states. This is hard
to notice in the time traces in Fig. 3.1, but is already more clearly visible when looking at the
widths of the two Gaussians in Fig. 3.2. It becomes even more clear when we take a look at the
(quasi)probability distribution of the intracavity field α in the complex plane, shown in Fig. 3.3.
Here we can see two bright spots, corresponding to the two different density states. However,
the spot corresponding to the high density state has a much wider spread in the imaginary part,
indicating a larger variance of the fluctuations in this state, even though the variance of the
noise that we put in stays the same.

The time spent in either of the two states between two switching events is known as the
residence time21, formally defined as follows. One can map the density N(t) to a stochastic
point process {ti} by setting a crossing threshold, N0. Below this threshold the system resides
in the low-density state, N↓, whereas above this threshold the system resides in the high-density
state, N↑. The crossing threshold is determined by the local maximum in the double well
potential, or equivalently, by the local minimum in the probability distribution of the photon
number (Fig. 3.2(b) ). The times {ti} are determined by the following procedure: acquisition
starts at t0 = 0 when the density first crosses the threshold N0. Then, each subsequent time the
threshold value is crossed, we observe another level crossing and record the corresponding time
as ti for the (i+ 1)-th crossing. One can then define the residence time between two subsequent
events as τ(i) = ti − ti−1. However, for our purpose it is useful to distinguish residence times in
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Figure 3.4: Residence time distribution on a logarithmic scale for the high density state (a) and low
density state (b). From the fitted exponentials we obtain TK = 284Γ−1 and TK, = 289Γ−1 for the high
and low density state, respectively. Simulation parameters are the same as in Fig. 3.1(b).
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Figure 3.5: Difference between the mean residence times of the high and low density state for F = 5Γ
(a), F = 6Γ (b) and F = 7Γ (c). Each point is the averaged result of 24 simulations with different
seeds for the noise, where each simulation evolves the system from t = 0 to t = 107Γ−1. Errorbars
indicate one standard deviation of the mean. The red solid line is a linear fit to the data. The black
dashed lines indicate where the fit is equal to zero, i.e. where the difference between the means is equal
to zero, respectively at ∆/Γ = −1.1626 (a), ∆/Γ = −1.4538 (b) and ∆/Γ = −1.7561 (c). Simulation
parameters: Γ = 1, γ = Γ/6, κ1 = Γ/2, κ2 = Γ/3, U = −Γ/40, D = 2Γ.

the high and low density states. This is done by considering in which state the system resides in
the interval τ(i); if it is in the high density state, we set τ↑(i) = τ(i), if it is in the low density
state we set τ↓(i) = τ(i). This way we can also use the residence times to determine how much
time the system spends, on average, in either of the two states.

The residence time distributions (RTD) are shown in Fig. 3.4 for the same parameters as the
trajectory in Fig. 3.1(b). The RTDs were computed by evolving the system for a long duration
(from t = 0 to t = 107Γ−1) and then following the above-described procedure. As expected from
literature21, we find exponential RTDs, i.e. the residence times τ are distributed according to
N(τ) ∝ exp(−τ/TK), where TK is a characteristic lifetime and gives us the Kramers escape rate
rK = 1/TK

19;49. As we will see in Chapter 4, this exponential behavior no longer holds when
the interaction is non-instantaneous.

We observe a large deviation of the first bin from the exponential distribution and the origin
is twofold. First off, there are some really fast consecutive crossings of the threshold we set, for
which it is debatable whether or not they are actual switches between the two states or are due
to numerical artifacts. The second reason is due to the finite bin duration: the first bin includes
all events that are shorter than the bin duration. It thus also includes intrawell dynamics that
cross the density threshold, and not only interwell dynamics.

Before we continue to the next section, it is useful to consider the average residence times
〈τ↑,↓〉, since this allows us to determine for which parameters the system spends an equal amount
of time in either of the two states. This is done by evolving the system for a range of detunings
in the bistable regime and computing the difference between the two average residence times,
i.e. 〈τ↑〉 − 〈τ↓〉, for each simulation. Assuming this difference depends linearly on the detuning
when close to the center of the bistable regime, we fit a linear function to the data (Fig. 3.5)
and use this to determine for which detuning 〈τ↑〉 = 〈τ↓〉. This value is then used for the study
of stochastic resonance in the next section.

3.2 Stochastic resonance

Now that we understand how the system behaves under the influence of Gaussian white noise,
we are ready to study stochastic resonance. This not only requires a noisy environment, but also
a subthreshold modulation of the detuning. Here, subthreshold means a modulation amplitude
that does not induce level crossings in the absence of noise, i.e. we keep the modulation within
the bistable regime. The idea behind stochastic resonance is to choose the right amount of noise,
such that the average residence time is equal to half the modulation period21.

In Fig. 3.6(a)-(d) we have shown the number of photons in the cavity as a function of time
when modulating the detuning, for different values of the noise strength. The modulation of the
detuning is chosen to be a triangular waveform, such that the speed of the scan in ∆ is always
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Figure 3.6: In (a)-(d) we show simulations of the number of photons in the cavity when both noise and a
periodic modulation of the detuning are present, for an increasing amount of noise (from top to bottom:
D = 0.225Γ, D = 0.35Γ, D = 0.425Γ and D = 0.8Γ). The mean and the extrema of the detuning
modulation are the same values as used in Fig. 3.1. In (e)-(h) we show the corresponding positive
(black) and negative trajectory (red) vs the detuning, averaged over 100 modulation periods. In (i)-(l)
part of the corresponding power spectral density is shown. Simulation parameters: Γ = 1, γ = Γ/6,
κ1 = Γ/2, κ2 = Γ/3, U = −Γ/40, F = 5

√
Γ, T = 104Γ−1, ∆0 = −1.1626Γ, ∆dif = 0.1Γ.
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constant, with the exception of the extrema in the waveform. We define these extrema as ∆+

and ∆− for the maxima and minima, respectively. The mean value of the modulation is then
defined as ∆0 = (∆+ + ∆−)/2 and the amplitude as ∆dif = ∆+ − ∆−. For later reference,
we define the response of the system when the detuning is increased from ∆− to ∆+ as the
positive trajectory, whereas the response when decreasing from ∆+ to ∆− is called the negative
trajectory. In doing so, we are able to plot the average response of the system in both cases
separately and study the differences.

When changing the noise strength while keeping all other parameters fixed, we can distinguish
four different regimes, which are all shown in Fig. 3.6. The first regime, shown in (a), corresponds
to a too low noise intensity to observe switching events in the first place. In this regime, the
system will always stay either in the low or in the high density state, depending on its initial
conditions. Therefore, the average of all positive trajectories is approximately the same as the
average of all negative trajectories, as can be seen in Fig. 3.6(e).

In the second regime there is enough noise to observe level crossings, but these switching
events are still random, as can be seen in Fig. 3.6(b). The reason for random switching events
in this regime is that the noise intensity is still too low, such that the average residence time
is less than half the modulation period. Therefore, we observe less than two level crossings per
modulation period. However, since there are switching events, the average response of the system
when increasing or decreasing the detuning is now different, such that we see a difference in the
average positive and negative trajectories, as seen in (f). When looking at the residence time
distribution in this regime (Fig. 3.7(a) ), we observe a series of peaks, centered at odd multiples
of half the modulation period T , i.e. at (n − 1/2)T , with n an integer, and the height of these
peaks decays exponentially. The origin of these peaks is quite straightforwardly explained: The
best time for the system to jump between the states is when the potential barrier is minimal,
and this is exactly when the modulation is at one of its extrema. If the system switches at this
point in time, then it takes another half period for the barrier to reach a minimum once more.
Hence, T/2 is a preferred waiting time between level crossings. However, if the system doesn’t
jump between states when the potential barrier is minimal, it has to wait one full period before
it reaches a minimum again. Therefore, the preferred residence intervals are odd multiples of the
half modulation period. The exponential decay of the peak height is simply due to the already
exponential decaying RTD in the absence of a modulation.

The third regime is when there is just the right amount of noise, such that the average
residence time is equal to half the modulation period. This causes exactly two switching events
per period, and from an energy perspective, it is most favorable to have these jumps occur
at the modulation extrema. This synchronizes the level crossings with the modulation, known
as stochastic resonance. The reasoning behind the name of this effect will become clear in a
moment, when we will quantify this effect. Due to the increased coherence in the response
of the system, we also see a more pronounced difference in the average positive and negative
trajectories, shown in Fig. 3.6(g). This regime is furthermore characterized by a maximal area

16



under the peak at T/2 in the residence time distribution (Fig. 3.7(b) ), also because the average
residence time equals the half modulation period.

In the fourth and final regime there is too much noise present, such that the average residence
time is shorter than half the modulation period, as seen in Fig. 3.6(d). This then leads to switch-
ing events in between half modulation periods, i.e. we observe more than two level crossings
per period. The response of the system therefore becomes randomized and when increasing the
noise strength more and more, the system will on average spend an equal amount of time in both
states, during only half a modulation period. On average the positive and negative trajectories
will therefore become equal again, as shown in (h). In the corresponding RTD in Fig. 3.7(c) this
regime features a large amount of switching events a timescales shorter than T/2, as expected.

To quantify the effect of stochastic resonance, one has a multiple options, such as the signal-
to-noise ratio (SNR) and the spectral amplification factor21. The SNR describes how well
a signal is distinguishable from the background noise, and is defined as the ratio between the
power in the delta-like peak in the power spectral density (PSD) at the modulation frequency
(see Fig. 3.6(i)-(l) for reference) and the power of the noise, which can be computed as the mean
in the PSD when excluding the peak at f = f0. The resulting SNR as a function of the noise
strength is shown in Fig. 3.8(a), showing a resonance-like peak. At first, the SNR decreases,
which is true for any system when adding noise, but once the random switching events become
synchronized with the modulation, the SNR quickly increases before decreasing again. This
resonance-like behavior is where the term stochastic resonance originates from.

Another quantifier for stochastic resonance is based on the difference in the positive and
negative trajectories. Specifically, we consider the area between the two average curves shown
in Fig. 3.6(e)-(h), as function of the standard deviation of the noise. The result is shown in Fig.
3.8(b) and gives a very good indication for which noise strength the stochastic resonance takes
place. At first, the area is zero, since the system doesn’t switch between the two states. Then,
as discussed previously, the level crossings starts to occur, causing a difference in the positive
and negative trajectories, and therefore a nonzero area between the two average curves. The
area reaches a maximum when there is a complete synchronization between the noise-induced
switching events and the periodic driving. For a greater noise variance the area tends towards
zero as the response of the system becomes random once more.

It is interesting to study how the stochastic resonance behavior depends on the different
parameters of the system. In Fig. 3.6 we have shown the signal-to-noise ratio, SNR, and the
hysteresis area, A, for three different modulation periods. This shows that when the modulation
period is longer, the peak in both the SNR and in the area shift to lower noise strength. The
reason is that the noise has more time to kick the system to the other state. In other words, since
the (half) modulation period is longer, the mean residence time can also be longer, corresponding
to a lower noise intensity.

In Fig. 3.9(a) we have shown the signal-to-noise ratio for three values of the driving strength
F , with the respective mean detuning ∆0 as found in Fig. 3.5. This shows that for an increased
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√
Γ in (b). In (c) we show the

combined effect of increasing the driving amplitude and the modulation amplitude. Parameters (unless
stated otherwise): Γ = 1, γ = Γ/6, κ1 = Γ/2, κ2 = Γ/3, U = −Γ/40, F = 5

√
Γ, ∆dif = 0.1Γ,

T = 103Γ−1. Values of the modulation center ∆0 are as computed in Fig. 3.5.

driving strength, whilst keeping all other parameters fixed, the peak in the SNR shifts to a
larger noise strength and the peak becomes smaller as well. This is because the barrier between
the two states becomes larger when the driving strength increases, as can be seen in Fig. 3.10,
where we show the calculated effective potential for various F . We thus require more noise to
make the jump to the other state in the first place. However, by increasing the modulation
amplitude ∆dif , we can bring the system closer to the crossing threshold, such that less noise is
required to make the jump. This results in an increased peak in the signal-to-noise ratio, which
is shifted to smaller D (Fig. 3.9(b) ), when all other parameters are kept fixed. Hence, when
combining an increased driving strength with an increased modulation amplitude, one can reach
an SNR comparable to a small driving strength with small modulation amplitude, as shown in
Fig. 3.9(c).

To conclude this chapter, we provide a brief summary of the main points. First of all,
we simulated a fixed nonlinear optical microcavity under the influence of noise and studied the
residence time statistics. We found that the residence time distribution is exponentially decaying.
By simulating the dynamics for a multitude of detuning values, we were able to determine the
parameters for which the mean residence times in the high and low density state are equal. By
then modulating the detuning around this value, we were able to study stochastic resonance by
varying the amount of noise in the system. We saw that the right amount of noise synchronizes
the switching events with the applied modulation. This leads to a resonance-like peak in the
signal-to-noise ratio, which is known as stochastic resonance. Increasing the modulation period
shifts the position of the peak in the SNR to lower noise strengths, because the system gets
more time to make the jump to the other state. On the other hand, increasing the driving
amplitude shifts the peak to higher noise intensities, because the barrier in the effective double
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well potential becomes larger and the system thus requires a stronger kick to cross.
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Chapter 4

Non-Markovian stochastic
resonance

Throughout the previous chapter we assumed an instantaneous effective photon-photon inter-
action. However, as discussed in Sec. 2.1, the nonlinearity of our system is based on a local
temperature change in the medium inside the cavity. Since this temperature change is not in-
stantaneous, the assumption of an instantaneous effective interaction does no longer hold. In
this chapter we will discuss how we adjust the model to account for effective photon-photon
interactions which are not instantaneous. As we will see, this introduces a memory effect in the
interaction term in the equation of motion, making the system by definition non-Markovian. We
will then study how this affects the residence time statistics of the system, before moving on to
non-Markovian stochastic resonance.

4.1 Non-instantaneous interactions

Non-Markovian systems and generalized Langevin equations have been studied in detail during
the second half of the previous century50;51;52, also in the context of stochastic resonance53;54.
The non-Markovian nature in these systems is due to non-instantaneous interactions between the
system and the bath dissipating the energy lost by the system. These non-instantaneous system-
bath interactions lead to correlated noise by the fluctuation-dissipation theorem46, rendering
the dynamics non-Markovian. The difference with the system we consider here is that the
effective photon-photon interaction is not instantaneous, while the system-bath interactions are
still assumed to be instantaneous.

To account for the non-instantaneous effective interaction, we take a similar approach as H.
Mori in his 1965 paper50. However, where Mori introduces a memory kernel in the dissipative
term in the equation of motion to account for colored noise, we put it in the interaction to
account for the timescale of the effective photon-photon interactions. We will thus make the
following substitution

U
(
|α(t)|2 − 1

)
→
∫ t

0

ds K(t− s)
(
|α(s)|2 − 1

)
≡ w(t) (4.1)

with the kernel function defined as

K(t) =
U

τ
e−t/τ (4.2)

and characteristic timescale τ , which for a thermal nonlinearity would be the thermal relaxation
time. The symbol should not be confused with the residence times τ↑ and τ↓ introduced in Sec.
3.1. However, the distinction will often be clear from context, or otherwise be stated explicitly.

It is important to note that with this definition of the memory kernel, the interaction strength
can be written as

U =

∫ ∞
0

dt K(t), (4.3)
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such that in the steady state, i.e. when α(t) is constant and can be taken out of the integral, we
retrieve Eq. 3.1. This implies that the steady-state solutions are the same, regardless of having
a memory kernel or not.

With this substitution we now have the integro-differential equation

α̇(t) =

(
i∆− Γ

2
− iw(t)

)
α(t) +

√
κ1F, (4.4)

which can be written as a set of two coupled ODEs by differentiating w(t) with respect to t.
This leads to{

α̇(t) =
(
i∆− Γ

2 − iw(t)
)
α(t) +

√
κ1F

ẇ(t) = τ−1
[
U
(
|α(t)|2 − 1

)
− w(t)

]
,

(4.5)

where, we used

d

dx

∫ b(x)

a(x)

dt f(x, t) = f (x, b(x)) b′(x)− f (x, a(x)) a′(x) +

∫ b(x)

a(x)

dt
∂f(x, t)

∂x
, (4.6)

with the prime denoting a derivative with respect to x.
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Figure 4.1: Comparison of the dynamical hysteresis predictions of the model, (a) and (b), and experi-
mental results, (c) and (d). Top panels show simulated (measured) dynamic hysteresis at three different
scanning frequencies (speeds), corresponding to the red dots in the lower panels. The lower panels show
the hysteresis area as a function of the period (1/speed). Measurements were performed by Zhou Geng.
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Having introduced the memory kernel K(t) it should be obvious from Eq. 4.4 that the system
is non-Markovian, since now the future states of the system explicitly depend on its past through
the integration over K(t). This introduces strong temporal correlations and as such makes the
system inherently non-Markovian.

The effect of this non-instantaneous nonlinearity becomes very clear when we scan the de-
tuning completely across the bistability (Fig. 4.1(a) ). Simulations then show that the lineshape
changes drastically when the period of the scan approaches the thermal relaxation time, τ . In
fact, it becomes clear that as the period decreases and approaches the thermal relaxation time,
the system appears to be not bistable anymore. This effect is in line with our reasoning that the
effective interaction strength needs time to grow.

If we then look at how the hysteresis area changes as a function of the scanning period (Fig.
4.1(b) ), we observe at first an increase in the area when we decrease the period, which is also
true for an instantaneous nonlinearity55. However, we find there is a maximum in the area, after
which it decreases again if we increase the speed of the scan even further. This closing of the
area between the two trajectories is due to the insufficient nonlinearity at short timescales. As
can also be seen, the predictions of the model agree very well with the experimental results (Fig.
4.1(c) and (d) ).

4.2 Residence time analysis

Just as in the previous chapter, we start by studying how the system behaves under the influence
of Gaussian white noise. To do so, we simulate the generalized Langevin equation we just derived,
i.e.

α̇(t) =

(
i∆− Γ

2
− i
∫ t

0

ds K(t− s)
(
|α(s)|2 − 1

))
α(t) +

√
κ1F +Dζ(t), (4.7)

with ζ(t) the Gaussian white noise.

From our simulations it then becomes clear that to observe (a considerable amount of) level
crossings within the same simulation time, we need to add a relatively large amount of noise.
The amount of noise needed is so much that the variance of each of the two levels is larger
than the distance between their means. This can be seen in the example trajectory in Fig.
4.2(a). Furthermore, as opposed to the Markovian simulations in Sec. 3.1, we no longer observe
two Gaussian peaks in the probability distribution (Fig. 4.2(a) ), but rather find one broad
distribution. As a consequence, we can no longer use the same method to detect level crossings.
We will now first discuss the method we use to detect the switching events based on statistics,
before studying the residence time distributions.
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Figure 4.2: (a) Simulation of the number of photons in the cavity for the model with a non-instantaneous
interaction. In (b) the corresponding probability density is shown. Simulation parameters: Γ = 1,
γ = Γ/6, κ1 = Γ/2, κ2 = Γ/3, ∆ = −1.21Γ, F = 5
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Figure 4.3: Simulation of the number of photons in the cavity for the model with a non-instantaneous
interaction (black) and the detected change points in the mean (red). Simulation parameters are the
same as in Fig. 4.2. The fixed penalty was set to be β = 104.

Change point detection

As the variance of each density level can now be larger than the difference between the means
of each level, we need a different method to detect changes in the mean of the density. There
are various methods available to detect these change points in a trajectory56;57;58. The method
we will use is based on using penalized contrasts59. There is no particular reason for this choice
other than that Matlab48 has a built-in function (findchangepts) that uses this method to find
the change points in a statistical property, e.g. the mean or variance, in a given trajectory.

The algorithm is as follows.

1. Choose a point and divide the signal in two subtrajectories at this point.

2. Compute the empirical estimate of the desired statistical property for each of the two
subtrajectories.

3. For each data point within a subtrajectory, measure the deviation of the statistical property
from the empirical estimate. Add the deviations of all points.

4. Add the deviations section-to-section to find the total residual error.

5. Vary the position of the division point until the total residual error reaches a minimum.

6. Repeat from 1 for the subsections before and after this division point.

Given a signal x1, x2, ..., xN containing K change points, it minimizes the cost function

J(K) =

K−1∑
r=0

kr+1−1∑
i=kr

δ
(
xi;χ

([
xkr . . . xkr+1−1

]))
+ βK, (4.8)

where χ
([
xkr . . . xkr+1−1

])
is the empirical estimate of the desired statistical property of the

subtrajectory xkr . . . xkr+1−1, δ is the deviation measurement and β is a fixed penalty added for
each change point to prevent overfitting.

Since we are interested in change points in the mean of a signal, µ, the function uses

n∑
i=m

δ(xi;χ ([xm . . . xn])) =

n∑
i=m

(xi − µ ([xm . . . xn]))
2

= (n−m+ 1)var ([xm . . . xn]) . (4.9)

By means of illustration, Fig. 4.3 shows an example trajectory and the changepoints detected
by the above-described algorithm.
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Figure 4.4: Residence time distributions of the low density state for three different values of the thermal
relaxation time: (a) τ = 5Γ−1, (b) τ = 10Γ−1 and (c) τ = 25Γ−1. Red circles indicate the deviation
from an exponential distribution. The RTDs were formed by combining the residence time statistics of
12 separate simulations with different noise seeds. In each simulation the system was evolved from t = 0
to t = 107Γ−1. Simulation parameters are the same as in Fig. 4.2. Penalties are set to be β = 5× 103

for (a), β = 104 for (b) and β = 3× 104 for (c).

Effect of thermal relaxation on residence times

Now that we have a method to detect level crossings, we can compute the residence time distri-
butions and see how these depend on the thermal relaxation time. We have done simulations for
three values of the thermal relaxation time and the corresponding residence time distributions
are shown in Fig. 4.4.

On timescales much longer than the thermal relaxation time the RTD retains its exponential
behavior. This was to be expected, since on those timescales the effect of the memory kernel
becomes negligible. Interestingly, however, on timescales comparable to the thermal relaxation
time the shape deviates from the exponential one would get in the Markovian model. Deviating
from the purely exponential behavior is a clear indication of non-Markovian dynamics60, since
it implies the level crossings are no longer independent of each other. Such RTDs have been
observed experimentally in various systems60;61;62, where stretched exponentials or power law
behavior has been observed.

The fact that switching events on timescales shorter than the thermal relaxation time are
suppressed are quite easily understood if one recalls that the thermal relaxation time sets the
timescale for the effective interaction to grow. Essentially, this sets the reaction time of the
system. On timescales shorter than the thermal relaxation time, the system doesn’t react to small
perturbations. Therefore, we don’t observe level crossings on those timescales. On timescales
comparable to the thermal relaxation time, the system is able to react. However, the level
crossings are correlated, which is why the RTD deviates from a decaying exponential on these
timescales. On time scales much larger than the thermal relaxation we observe the regular
exponential decaying RTD, because the thermal relaxation time, and thus the correlation time
of the level crossings, becomes negligible.

4.3 Stochastic resonance

To study stochastic resonance in this non-Markovian system, we again apply a weak periodic
modulation to the detuning. Since the previous analysis of the residence times shows that level
crossings on timescales comparable to the thermal relaxation time are heavily suppressed, we
keep the modulation period considerably larger than the thermal relaxation time.

Fig. 4.5 shows the resulting signal-to-noise ratio (SNR) and hysteresis area as a function
of the noise intensity. We have also shown the result with an instantaneous interaction for the
same parameters as a reference in the same figure. This shows that in the non-Markovian model
the general behavior under the influence of both noise and a periodic modulation is similar to
when having an instantaneous interaction. We still observe the resonance-like peak in the SNR
and in the hysteresis area, although the peak shifts to higher noise intensities when we increase
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the thermal relaxation time. To understand this, we can follow the same line of reasoning as
when we studied the residence time statistics. Because the nonlinearity of the system now needs
time to grow, the system requires a stronger perturbation to make the jump to the other state.
Since this time is defined by the thermal relaxation time, increasing the thermal relaxation time
makes the reaction time of the system also longer, such that the strength of the perturbation
required to cross the potential barrier becomes even larger. Hence, the noise intensity to obtain
coherent level crossings shifts to larger values for a fixed modulation period.

A second observation we can make is a decrease in the height of the peak in the SNR, as
well as a broadening of the peak. The reason for the decrease is the same as discussed in Sec.
3.2 when increasing the driving strength. The output power of the signal stays the same under
the conditions of stochastic resonance, so the requirement of having more noise lowers the SNR.
The broadening of the peak is due to the suppression of fast events, since it are mainly the
fast events that lower the SNR after the peak, but these require a larger noise intensity to
occur when the interaction is not instantaneous. In other words, the conditions for stochastic
resonance become more robust to having too much noise. The same line of reasoning explains
the decrease and broadening of the peak in the hysteresis area.

In systems with an instantaneous nonlinearity, stochastic resonance can be achieved by
matching the mean residence time with the half modulation period. This can be done by
either changing the noise intensity, which affects the escape rate, or by changing the modulation
period itself. In this system with a non-instantaneous nonlinearity we obtain another means to
reach the condition for stochastic resonance, which is by tuning the thermal relaxation time. In
experiment, this would be done by changing the material inside the cavity.
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Chapter 5

Observation of stochastic
resonance

In this chapter we will discuss the experimental realization of stochastic resonance in an optical
microcavity. First we shall address the experimental setup and the characterization of the system
in Sec. 5.1. In Sec. 5.2 we discuss where we get the nonlinearity from and describe a method
to determine the timescale of the nonlinearity. Finally, we cover the main results in Sec. 5.3,
which show the experimental realization of stochastic resonance in an optical microcavity at
room temperature.

5.1 Setup

The setup used to study stochastic resonance in a system with a non-instantaneous interaction
consists of the following (see Fig. 5.1). The heart of our system is a tunable optical microcavity,
consisting of one planar DBR mirror and one planar silver mirror with a thickness of 50nm. At
the center of the DBR mirror there is a square flat pillar of dimensions 200 × 200µm2; we call
it a plinth (shown in Fig. 5.2(a) ). The small area of the plinth makes it easier to align the two
mirrors parallel to each other. On top of the plinth there are micron-sized curved features milled
out (Fig. 5.2(b) ), such that the light can be contained in all three dimensions. The radius of
curvature of these features ranges from 1.5 to 25µm and their depths from 200 to 600nm. For
the main experiment, discussed in the next section, we used a microcavity with a 12µm radius
of curvature and a 600nm depth.

The DBR mirror is situated on a piezo actuator with six degrees of freedom, such that we
have full control over its position and orientation. This allows us to (i) align it with the silver
mirror, (ii) select the curved feature we are interested in and (iii) set the initial distance between
the two mirrors. The planar silver mirror is connected to a different piezo actuator, which can
translate the mirror along one axis, allowing us to scan the cavity length. This change in cavity

Figure 5.1: Schematic representation of the experimental setup. Both EOMs are connected to different
waveform generators, such that we can use one to add noise to the amplitude of the laser and the other
to add noise to the phase.
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Figure 5.2: Optical microscope image of the plinth in (a) with an enlargement of the curved micromirrors
in (b). In (c) we see the plinth in transmission when a 532nm laser is focused on the planar part.
Resonances occur in some of the micromirrors due to a slight misalignment of the mirrors, such that
some curved features are on resonance, whereas some are not.

length changes the resonance frequency of the cavity. Thus, when the cavity is illuminated by
a laser with constant frequency, we can control the detuning by changing the cavity length. In
between the two mirrors we put a drop of macadamia oil, providing the thermal nonlinearity.

For the excitation we have two sources of light. One is a white light source, allowing simple
imaging and white light transmission experiments. The other source is a single-mode 532nm
laser, which is used for the main experiment. The laser light can be sent through two electro-
optic modulators. These modulators are connected to different waveform generators, such that
we can add noise to both the phase and the amplitude of the light. Using a 10x objective the
light is then focused onto the sample, and then collected using another 10x objective. On the
collection side of the cavity we have access to a CCD camera, a spectrometer and a photodiode.
The photodiode is used for the main experiment discussed in the next section.

Focusing the white light source on a curved micromirror and using the spectrometer, we can
take a white light transmission spectrum. Since we have control over the cavity length, we can
take one spectrum, close the cavity one step (6nm due to software limitations) and take another
spectrum. By repeating this process, we built the color map shown in Fig. 5.3, which shows the
transmitted intensity as a function of both cavity length and wavelength. We observe enhanced
transmission when the optical path length is an integer times half the wavelength, i.e. when
the condition nL = qλ/2 is satisfied, with n the refractive index, L the cavity length, λ the
wavelength and q the longitudinal mode number. Furthermore, for each longitudinal mode (the
brightest and widest bands in Fig. 5.3) we observe a family of transverse modes (the narrower
and less bright bands in Fig. 5.3). We did these measurements both for an empty cavity (Fig.
5.3(a) ) and with macadamia oil inside (Fig. 5.3(b) ), but other than a difference in contrast
and a slight change in the distance between the modes, there is no striking difference between
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Figure 5.3: White light transmission spectrum as a function of cavity length, for an empty cavity (a) and
filled with macadamia oil (b), when focusing the light on a micromirror with a 12µm radius of curvature
and a 600nm depth.
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(a) (b) (c) (d)

Figure 5.4: Transversal cavity modes in a cavity with a 12µm radius of curvature and a depth of 600nm.
From (a)-(d) we can distinguish the zeroth up to the third order angular mode.

the two. The difference in the distance between longitudinal modes is due to the difference in
refractive index (n = 1.4690 for macadamia oil at 25◦C 63).

To get back to the transversal cavity modes, we can visualize these by focusing the laser on a
curved featured and then changing the cavity length until we hit one of those resonances. Using
the camera we then observe the characteristic shapes of the transverse electromagnetic modes,
shown in Fig. 5.4.

5.2 The nonlinear medium

The nonlinearity of the system is obtained by introducing macadamia oil in the cavity. As
described in Sec. 2.1, a local temperature change of the medium, induced by the laser, causes a
change in refractive index. This leads to nonlinear dynamics, because the refractive index now
depends on the intensity of the incident light. As discussed in detail in Chapter 4, there is a
characteristic timescale associated with the nonlinearity, because the local temperature change
is not instantaneous. Here, we describe a method to extract this timescale from measurements.

From simulations (Fig. 5.5(b) ) it follows that if we initialize the system at a driving strength
on the left side of the bistability (see Fig. 2.1(c) ) and then suddenly increase the driving strength
to bring the system across the bistability, we observe an overshoot which has a full width at half
maximum (FWHM) equal to half the thermal relaxation time, i.e. FWHM = τ/2, (Fig. 2.1(e)
). By sending the laser through the cavity and chopping the light at a relatively slow rate, we
replicate this effect in the lab (Fig. 5.5(a) ). This enables us to extract the thermal relaxation
time from the FWHM of the overshoot. However, due to a lack of data points in the overshoot
region, we are not comfortable to put an exact number to the thermal relaxation time yet. As a
rough estimate, this method yields a thermal relaxation time of macadamia oil of ∼ 10µs (Fig.
2.1(d) ).

5.3 Experiments on non-Markovian stochastic resonance

To measure the stochastic resonance in our optical microcavity, we send the laser through the
two modulators to add both phase and amplitude noise, similar to the simulations. We hereby
note that due to scattering in the modulators, a lot of the initial laser power is lost. The
measurements were performed using 20mW of laser power, which correspond to 2.2mW at the
input of the cavity.

We furthermore need to modulate the detuning inside the bistable regime. This is done by
starting out with a relatively large modulation amplitude and then decreasing it until we observe
no more deterministic level crossings. This gives us a transmission signal as shown in part in
Fig. 5.6(a). The modulation frequency was set at 50Hz, but as became clear from the Fourier
transform (Fig. 5.6(e) ), the actual frequency is slightly larger (53Hz).

By increasing the peak-to-peak voltage of the noise setting on the waveform generators, which
directly determines the noise variance, we were able to observe random level crossings. Part of
the measured trajectory is shown in Fig. 5.6(b). At this point it is important to note that we
had to bias the system to the high density state, which is why the system stays in the high
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Figure 5.5: Thermal relaxation measurement in (a) where the laser beam is chopped before entering the
cavity. Red line displays the chopper signal, black is the transmission of the cavity. In (b) we show
an enlarged section close to the level crossing, which shows comparable behavior as the simulation in
(c). In (d) and (e) we show enlargements of the overshoot, respectively for the measurement and the
simulation, which have a full width at half maximum (red arrow) equal to the thermal relaxation time.
Experimental parameters: Laser power 2mW, chopper frequency 20Hz, cavity ROC12 (depth 600nm),
8th longitudinal cavity mode. Simulation parameters: Γ = 1, γ = Γ/6, κ1 = Γ/2, κ2 = Γ/3, U = −Γ/40,
∆ = −

√
2Γ, Fmin = 5

√
Γ, Fmax = 7

√
Γ, τ = 1000Γ−1.

density state if it doesn’t switch states. The reason we had to bias it, is due to a constant drift
of the cavity length. The oil inside exerts a force on the mirrors, pushing them slowly apart. To
counter this effect, we didn’t set the cavity length in the center of the bistability, but slightly
more closed, which corresponds to a less negative detuning and thus a bias of the high density
state (see Fig. 3.1 for reference).

Increasing the peak-to-peak voltage even more, we get to the point where we observe coherent
switching events (Fig. 5.6(c) ). We notice that we needed a relatively large amount of noise,
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Figure 5.6: In (a)-(d) we show sections of the measured transmitted signal when linearly modulating the
cavity length at 50Hz over a distance of 10nm, and under the influence of different noise intensities. In
(e)-(h) we show the power spectral density in a frequency range close to the modulation frequency. The
PSD is computed from the full signal, consisting of ∼ 50 modulation periods. From top to bottom the
peak-to-peak voltage set on the waveform generators is VPP = 0, VPP = 5, VPP = 8, VPP = 10. The
measurements were performed using 20mW of laser power, corresponding to 2.2mW at the cavity input.
The cavity we used has a radius of curvature of 12µm and a 600nm depth. In between the two mirrors
was a drop of macadamia oil, acting as the thermal nonlinear medium.

which we expected from the theory. Furthermore, we can clearly see that the variance of the high
density state is much larger than of the low density state. This is likely to be due to vibrations
in the cavity length, corresponding to noise in the detuning. This noise is multiplicative, as
described in the introduction of Chapter 3, giving rise to the difference in variance of the two
states.

Finally, we increase the peak-to-peak voltage to its maximum value, but this appeared to be
not enough to observe multiple level crossings within a single half modulation period. Computing
the signal-to-noise ratio as a function of the peak-to-peak voltage (Fig. 5.7(a) ), we were therefore
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not able to probe the stochastic resonance peak at high noise variances in the current state of
our setup. However, we obtain a signal-to-noise ratio which shows the same behavior as found
in the simulations (Fig. 5.7(b) for reference). At first, it decreases when increasing the amount
of noise, and then at some point increases again. We do seem to have reached the maximum
value of the peak in the SNR, but we did not observe the decay due to having reached the limit
of our waveform generators and amplifiers.

From the measurements we can make the following conclusions. First and foremost, we
observed signatures of stochastic resonance at room temperature in a system with a non-
instantaneous nonlinearity, and the results are in line with our theoretical predictions. Secondly,
in the current state of the setup there are two main issues to be solved. One is to change the
amplifiers, such that a larger noise variance can be added to the incoming beam. This should
then allow us to probe the full extent of the stochastic resonance peak in the signal-to-noise
ratio. The second change to be made is to get rid of the constant drift in the cavity length. By
implementing a feedback loop as described in the supporting information of Ref. 64, it should be
possible to keep the mean position of the cavity fixed throughout the modulation. The method
relies on sending two additional laser beams through the cavity and using the relative phase dif-
ference of their transmitted signal to build a feedback loop. According to the authors it should
be possible to reach a positioning precision of around 10pm at a 50Hz refresh rate, in which
they are limited by their software. This means that we can use this method and still apply a
modulation, as long as the modulation frequency is much larger than the refresh rate.

0.5 1 1.5 2
D

90

100

110

120
SN

R 
(d

B)

0 2 4 6 8 10
40

60

80

100

𝑉"" (𝑉)

𝑆𝑁
𝑅
(𝑑
𝐵
)

0 2 4 6 8 10

40

60

80

100 (b)

𝐷/Γ

120

110

90

0.5 1 2

𝑆𝑁
𝑅
(𝑑
𝐵
)

(a)

100

1.5

Figure 5.7: Measured signal-to-noise ratio as a function of the peak-to-peak voltage set on the wave-
form generators (a). In (b) we show the simulated result with τ = 25Γ−1 of Fig. 4.5 as a reference.
Experimental parameters are the same as in Fig. 5.6.
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Chapter 6

Summary and Outlook

We conclude this thesis by providing a summary of the main theoretical and experimental results
and an outlook to future research.

In Chapter 2 we introduced driven-dissipative nonlinear resonators. Here we discussed that
a local change in temperature in the dispersive medium leads to a change in refractive index,
which in turn leads to effective photon-photon interactions. These effective interactions make
the system nonlinear, and cause it to become bistable under the right driving conditions. We
derived the mean field equation of motion following the work by Drummond and Walls34 and
calculated the steady-state solutions to show the bistability.

We then built the foundation for the thesis in Chapter 3. We started out by discussing
simulations of an optical microcavity with an instantaneous nonlinearity under the influence of
noise. We found a bimodal probability distribution of the number of photons in the cavity and
saw that we can bias the system in either of the two states by changing the detuning, which
corresponds to a tilt of the effective double well potential. We then looked at the residence times
in these two metastable states and found that their distributions are exponentially decaying,
which is in agreement with the literature21;49. Next we applied a weak periodic modulation to
the detuning and studied stochastic resonance by gradually increasing the amount of noise we
put in the system. The results are once more in line with existing literature about stochastic
resonance.

The main theoretical results were obtained in Chapter 4. Up to this point, an instantaneous
nonlinearity was assumed. However, we know that the nonlinear term arises due to a local
temperature change, which is not instantaneous. To account for this effect, we introduced a
memory kernel in the effective interaction. We compared simulations where we scan the detuning
completely across the bistability to experiments. This gives rise to dynamical hysteresis and we
have shown that the predictions of the model agree nicely with the experimental results. We
then study the residence times in this new model and find that their distributions are no longer
exponential, a signature of a non-Markovian bistable system60. We concluded this chapter with
simulations of the system under the influence of both noise and a weak periodic modulation and
found again a peak in the signal-to-noise ratio as a function of the noise strength, indicating
non-Markovian stochastic resonance. We found that the position of the resonance-like peak is
determined by the characteristic timescale of the nonlinearity.

Finally, in Chapter 5, we discussed the experimental realization of stochastic resonance at
room temperature in an optical microcavity with macadamia oil inside. We started out by
giving an overview of the setup used for the experiment and discussed a method to measure
the thermal relaxation time. Due to a limited temporal resolution we are not able to put a
definitive number to the thermal relaxation time, but we roughly estimate a thermal relaxation
time of macadamia oil of ∼ 10µs. We then considered the results obtained when applying a
weak periodic modulation to the cavity length and gradually increasing the amount of noise.
The results clearly show a synchronization between the initially random switching events and
the applied modulation. However, we were limited in the amount of noise we could apply and
therefore we were only able to observe one side of the resonance-like peak in the signal-to-noise
ratio.

The obtained experimental results are very promising. After some small changes to the
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setup, we should be able to probe the full peak in the signal-to-noise ratio. The simplest change
is to use different waveform generators and amplifiers, such that we can apply more noise to
the system. The other improvement that needs to be made is to stabilize the cavity against the
constant drift, which is due to the force exerted on the mirrors by the oil in between them. We
are currently working on implementing the method described in the supplementary material of
Ref. 64.

Now that we understand the properties of a single nonlinear microcavity under the influence
of noise, we want to continue our line of research to coupled cavities. First we will analyze
two coupled cavities to study multistability and spontaneous symmetry breaking65, particularly
how the latter is affected by having a non-instantaneous nonlinearity. Ultimately we envisage
nonlinear cavities on a lattice, such that we can study (noise assisted) transport in complex
networks16 and possible topological effects. Having access to such lattices furthermore allows
us to construct an analog simulator for the Ising model, as it has been shown that a lattice of
bistable optical resonators can be mapped to the Ising model66.
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Appendix A

Mean field cavity EOM

Here we will derive the equation of motion for the cavity field in the mean field approximation,
i.e. Eq. 2.11. For the mean field approximation, we assume the field is coherent with amplitude
α(t) = 〈â〉. We also note that the expectation value of an operator Â is given by 〈Â〉 = Tr(Âρ̂).
We thus have

α̇ =
d

dt
〈a〉 =

d

dt
Tr (âρ̂) = Tr

(
â
dρ̂

dt

)
, (A.1)

where for the last step we used the fact that we are working in the Schrödinger picture, meaning
operators are time-independent.

Next, we insert the master equation (Eq. 2.10), such that we get the following two terms on
the right-hand side

α̇ = iTr
(
â[ρ̂, Ĥ(t)]

)
+

Γ

2
Tr
(
2ââρ̂â† − ââ†âρ̂− âρ̂â†â

)
. (A.2)

Starting with the first term on the right, we insert the Hamiltonian (Eq. 2.8), leading to the
following three terms

iTr
(
â[ρ̂, Ĥ(t)]

)
= iω0Tr

(
â[ρ̂, â†â]

)
(A.3a)

+ i
U

2
Tr (â[ρ̂, n̂(n̂− 1)]) (A.3b)

−
√
κ1Tr

(
â[ρ̂, F e−iωtâ† + F ∗eiωtâ]

)
(A.3c)

From here, we will repeatedly use the trace’s property of cyclic invariance, i.e. Tr(âb̂ĉ) =

Tr(b̂ĉâ) = Tr(ĉâb̂), to write all traces in the form Tr[f(â, â†)ρ̂] = 〈f(â, â†)〉. We will show the
process for A.3a explicitly, the other terms follow from the same procedure. We have

iω0Tr
(
â[ρ̂, â†â]

)
= iω0Tr

(
âρ̂â†â− ââ†âρ̂

)
= iω0

(〈
â†ââ

〉
−
〈
ââ†â

〉)
= iω0

(〈
(ââ† − 1)â

〉
−
〈
ââ†â

〉)
= −iω0α. (A.4)

Here we made use of the commutation relation [âj , â
†
k] = δjk to get from the second line to the

third.
Similarly using the cyclic property of the trace and the commutator for the creation and

annihilation operators, we find for A.3b and A.3c

i
U

2
Tr (â[ρ̂, n̂(n̂− 1)]) = −iUα

(
|α|2 − 1

)
(A.5)

and

−
√
κ1Tr

(
â[ρ̂, F e−iωtâ† + F ∗eiωtâ]

)
=
√
κ1F e−iωt (A.6)
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For the term involving U , we furthermore used a semiclassical approximation, such that corre-
lation functions factorize.

We now have

iTr
(
â[ρ̂, Ĥ(t)]

)
= −i

[
ω0 + U

(
|α|2 − 1

)]
α+
√
κ1F e−iωt (A.7)

and in a similar fashion one can easily show that the second term in Eq. A.2 can be written as

Γ

2
Tr
(
2ââρ̂â† − ââ†âρ̂− âρ̂â†â

)
= −Γ

2
α. (A.8)

Finally, inserting A.7 and A.8 in A.2 leads to

iα̇ =

[
ω0 − i

Γ

2
+ U

(
|α|2 − 1

)]
α+ i

√
κ1F e−iωt, (A.9)

which is the equation of motion for the field inside the cavity in the mean field approximation.
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Appendix B

Bogoliubov-like excitations

Here we will derive Eq. 2.16, which describes the evolution of fluctuations in the field in the
microcavity.

Using Eq. 2.12 and its complex conjugate, we can write

i
∂

∂t

(
α
−α∗

)
=

( [
−∆− iΓ

2 + U
(
|α|2 − 1

)]
α+ i

√
κ1F[

−∆ + iΓ
2 + U

(
|α|2 − 1

)]
α∗ − i√κ1F

∗

)
. (B.1)

Then by substituting α → α + δα, with δα a small deviation from the steady-state solution α,
we obtain

i
∂

∂t

(
α+ δα
−α∗ − δα∗

)
=

( [
−∆− iΓ

2 + U
(
|α+ δα|2 − 1

)]
(α+ δα) + i

√
κ1F[

−∆ + iΓ
2 + U

(
|α+ δα|2 − 1

)]
(α∗ + δα∗)− i√κ1F

∗

)
.

Since we assume the fluctuations are small, we only need to consider the lowest order terms in
δα. Neglecting higher order terms leads to

i
∂

∂t

(
α+ δα
−α∗ − δα

)
=

( [
−∆− iΓ

2 + U
(
|α|2 − 1

)]
(α+ δα) + U

(
α2δα∗ + |α|2δα

)
+ i
√
κ1F[

−∆ + iΓ
2 + U

(
|α|2 − 1

)]
(α∗ + δα∗) + U

(
|α|2δα∗ + (α∗)2δα

)
− i√κ1F

∗

)
.

Now note that for the steady-state solution the following condition holds

0 = i
∂

∂t

(
α
−α∗

)
=

( [
−∆− iΓ

2 + U
(
|α|2 − 1

)]
α+ i

√
κ1F[

−∆ + iΓ
2 + U

(
|α|2 − 1

)]
α∗ − i√κ1F

∗

)
,

such that we get

i
∂

∂t

(
δα
−δα∗

)
=

( [
−∆− iΓ

2 + U
(
|α|2 − 1

)]
δα+ U

(
α2δα∗ + |α|2δα

)[
−∆ + iΓ

2 + U
(
|α|2 − 1

)]
δα∗ + U

(
|α|2δα∗ + (α∗)2δα

)) .
This can finally be rewritten as

i
∂

∂t

(
δα
δα∗

)
=

(
−∆− iΓ

2 + U
(
2|α|2 − 1

)
Uα2

−U(α∗)2 ∆− iΓ
2 − U

(
2|α|2 − 1

))( δα
δα∗

)
, (B.2)

which we identify with Eq. 2.16.
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