
Utrecht University
Faculty of Science
Dept. of Information and Computing Sciences

Generating Constrained Test Data using
Datatype Generic Programming

Author

C.R. van der Rest

Supervised by:

Dr. W.S. Swierstra
Dr. M.M.T. Chakravarty

Dr. A. Serrano Mena

A thesis submitted for the degree of ”Master of Science”

July 12, 2019



2



Contents

Declaration iii

Abstract v

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research question and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background & Prerequisites 7
2.1 Type theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Generic programming and type universes . . . . . . . . . . . . . . . . . . . . 8
2.4 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Theoretical Model 13

3 Regular Types 15
3.1 Universe definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Deriving generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Constant types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Proving completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Indexed Containers 29
4.1 Universe definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Deriving generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Indexed Descriptions 39
5.1 Universe definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Deriving generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Proving completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II Implementation 53

6 Generators for Indexed Descriptions in Haskell 55
6.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

i



6.2 Representing indexed descriptions in Haskell . . . . . . . . . . . . . . . . . . 56
6.3 Deriving generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Discussion 69
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Next steps & future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ii



Declaration

I am very grateful to my advisors Wouter Swierstra and Manuel Chakravarty, without
whom this work would not have been what it is today. Their encouragement, guidance
and constructive criticism has been invaluable to me, and I am glad to have had the oppor-
tunity to conductmyMaster’s thesis under their supervision. Furthermore, I am thankful to
the members of IOHK’s Plutus team for finding time in their schedule to discuss the project
with me, and for the financial support provided by IOHK.

I declare that this thesis has been composed solely by myself and that it has not been sub-
mitted, in whole or in part, in any previous application for a degree. Except where stated
otherwise by reference or acknowledgment, the work presented is entirely my own.

iii



iv



Abstract

The generation of suitable test data is an essential part of property based testing. Obtaining
test data is simple enoughwhen there are no additional constraints, however things become
more complicated once we require data with a richer structure, for example well-formed
programs when testing a compiler. We observe that we can often describe constrained data
as an indexed family. By generating values of an indexed family that describes a set of con-
strained test data, we simultaneously obtain away to generate the constrained data itself. To
achieve this goal, we consider three increasingly expressive type universes: regular types, in-
dexed containers and indexed descriptions. We show how generators can be derived from codes
in these universes, and for regular types and indexed descriptions we show that these derived
generators are complete. We implement the generic generator for indexed descriptions in
Haskell, and use this implementation to generate constrained test data, such as well-typed
lambda terms.
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1
Introduction

A proven method for assuring ourselves that the programs we write behave according to
our intentions is by simply running them, and observing their behavior. This approach,
where we do not try to reason about a program by looking at its code, but rather treat it
as a black box which we expect to have a certain behavior is commonly known as property
based testing. Of course, this requires us to come up with suitable input values to run our
program on. This thesis concerns itself with the question of how we can find these input
values, specifically if our input data is subject to constraints. For example, if we want to test
that the code generation stage of a compiler produces correct results, we need well-formed
programs to run it on. We approach this problem by developing a general framework with
which we can both describe and generate many kinds of constrained data, using indexed
families as a uniform representation of these constraints.

The topic of this thesis was originally proposed by Wouter Swierstra, who suggested
this work as a means to work towards term generation for Plutus Core [21], which is the
compilation target of the smart contract language used by the Cardano [3] blockchain.

1.1 Problem statement

At first glance, defining properties that capture the desired behavior of a programmay seem
like the challenging aspect of property based testing. While properly defining a program’s
behavior in terms of a few universal properties is certainly hard, so is generating suitable
test data. To illustrate this, we consider a simple example in the context of QuickCheck [10].
Suppose we are writing an implementation of insertion sort, and we want to make sure that
we can insert an element into a sorted list while preserving its sortedness. We write the
following predicate that checks whether a list of integers is sorted:

sorted ∶∶ [Int ] → Bool

sorted [ ] = True

sorted [x ] = True

sorted (x ∶y ∶xs) = x ≤ y ∧ sorted (y ∶xs)

1



With this predicate at hand, we set out to define a property that we believe should hold
for the insert function.

prop ∶∶ Int → [Int ] → Property

prop x xs = sorted xs ==> sorted (insert x xs)

However, once we try to test this property by simply calling quickCheck prop we are
presented with the following output:

> quickCheck prop
*** Gave up! Passed only 70 tests; 1000 discarded tests.

QuickCheck was not able to find enough suitable test cases! To obtain test values,
QuickCheck uses its Arbitrary typeclass, meaning in this case that xs will just be a list
of random integers. This has two important implications:

1. A random list of integers has a very small probability of being sorted. Hence, the an-
tecedent of the implicationwill returnTrue in a very small number of cases. QuickCheck
will reject these test cases, since they are trivially true and thus do not really assert
anything about themerge function. Consequently it exhausts the maximum number
of 1000 tests before it finds 100 test cases that pass the precondition.

2. The test cases that QuickCheck finds that satisfy the precondition are very likely to be
extremely short lists, often with only 0, 1 or 2 elements. This is simply a result of the
fact that the probability that a random list is sorted exponentially decreases with the
length of the randomly generated list. Consequently there is a heavy bias towards
short lists, making it unlikely that we test the insert function on any larger inputs.

The common approach to deal with this problem is to take matters in our own hands
and to define a generator that only generates elements that satisfy the constraints we put on
our test data. For sorted lists we might write the following QuickCheck generator:

gen_sorted ∶∶ Gen [Int ]
gen_sorted = arbitrary >>= return . diff . map abs

where diff ∶∶ [Int ] → [Int ]
diff [ ] = [ ]
diff (x ∶xs) = x ∶map (+x ) (diff xs)

For sorted lists, defining a customgenerator is amanageable task. However ifwe require
our test data to satisfy complicated constraints, defining these generators can become very
difficult; even synthesizing well-typed lambda terms is a surprisingly tricky problem [32,
19, 9].
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We present a possible solution to this problem by observing that the desired constraints
on test data can often be expressed as an indexed family that ranges over the type of our test
values. For example, we can define an indexed family that is indexedwith a list of numbers,
which is only inhabited if its index list is a sorted list.

data Sorted : (xs : List ℕ) → Set where
nil : Sorted []
single : ∀ {n} → Sorted (n ∷ [])
step : ∀ {n m xs} → n ≤ m → Sorted (m ∷ xs)

→ Sorted (n ∷ m ∷ xs)

Given a value of type Sorted xs, it is easy to convert it to a value of type List ℕ. This
means that if we are able to generate values of type Sorted xs, we are able to generate
values of type List ℕ for which we know that they are sorted, even though this is no
longer guaranteed by the type system of the host language. By generalizing this approach
and finding a way to generate values of arbitrary indexed families, we are able to generate
constrained test data. There is some existing work in this context [16, 25], but we take a
novel approach by considering various type universes that provide a generic description of
a set of (indexed) datatypes, and deriving generators from the codes in these universes

1.2 Research question and goals

The main research question that this thesis attempts to answer is the following:

How can we derive generators for arbitrary indexed families?

By obtaining a way to generically generate values of indexed families, we hope to be able
to generate constrained test data without having to define custom generation procedures.
The goal is to find a generic solution which covers many different indexed families, to pro-
vide a formalization of this solution in Agda, and to implement our solution in Haskell to
demonstrate the feasibility of our approach. We aim to devise a framework that is highly
flexible and allows us to describe many different kinds of constrained data.

1.3 Contributions

This thesis makes the following contributions:

• A formalization in Agda of enumerative generators for regular datatypes, together with
a proof that these generators satisfy a completeness property.
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• A formalization in Agda of enumerative generators for inductive families that can be
described as an indexed container.

• A formalization in Agda of enumerative generators for inductive families that can be
described as an indexed description, together with a proof that they satisfy a complete-
ness property.

• A small Haskell library that implements the enumerative generator for indexed de-
scription, and is able to generate constrained test data.

This thesis consists of two main parts: one describing the theoretical model we have
developed, and one describing our implementation. The first two chapters introduce the
topic and provide background and prerequisites necessary for understanding our work.
Chapter 3, 4 and 5 describe our Agda model, each considering a different (and increasingly
expressive) type universe. In chapter 6 we describe how the ideas developed in our theo-
retical model can be adapted to Haskell by developing a small library for the generation of
constrained test data. Finally, we conclude in chapter 7 with a discussion of our work and
the academic context surrounding it, together with some suggestions for future work.

1.4 Deliverables

This thesis is accompanied by the following deliverables:

• A Github repository containing the Agda model

• A Github repository containing the Haskell library.

• An extended abstract based on the contents of chapters 3 through 5, submitted and
accepted to TyDe 2019.

• An extended abstract based on the contents of chapter 6, submitted and accepted to
ICFP SRC 2019.

1.5 Methodology

We use Agda [31], a programming language/proof assistant based on Martin-Löf type the-
ory, for the formalization of the type universes and accompanying proofs that the genera-
torswe derive from them are correct. We use the functional programming languageHaskell
[22] to implement a library based on this formalization. To enforce as much static guaran-
tees as possible we use various extensions of The Glasgow Haskell Compiler [2], most notably
TypeFamilies [35], DataKinds [43] and GADTs [20].

4



Notational conventions This thesis contains many snippets with both Agda andHaskell
code. While it will generally be clear from the context which language is shown, they can
be easily be distinguished by by the fonts and color schemes used as well. Below is a small
example in respectively Haskell and Agda:

data Bin a = Leaf ∣ Node (Bin a) a (Bin a)

data Bin (A : Set) : Set where
leaf : Bin A
node : Bin A → A → Bin A → Bin A

Universe polymorphism All Agda snippets throughout this thesis have been compiled
with the {-# OPTIONS --type-in-type #-} pragma, since this makes them much more
readable than their universe polymorphic counterparts. In the Agda model accompanying
this thesis we have avoided this option wherever possible in order to keep our development
consistent.
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2
Background & Prerequisites

In this section, wewill briefly discuss some of the theoretical background that is relevant for
the work presented in this thesis, and explain some aspects of our Agda development that
are necessary prerequisites to understanding the remainder of this thesis. To summarize,
we touch upon the following subjects:

• Type theory and its relationship with logic through the Curry-Howard correspondence

• Datatype generic programming using type universes and the design patterns associated
with datatype generic programming.

• The type of generators used across the development, together with the completeness
property we use to assert their correctness.

2.1 Type theory

Type theory is the mathematical foundation that underlies the type systems of many modern
programming languages. In type theory, we reason about terms and their types. The Curry-
Howard equivalence establishes an isomorphism between propositions and types and proofs and
terms [38]. This means that for any type there is a corresponding proposition, and any
term inhabiting this type corresponds to a proof of the associated proposition. Types and
propositions are generally connected using the mapping shown in table 2.1.

In general, we may prove any proposition by writing a program that inhabits its corre-
sponding type. Allmost all constructs are readily translatable fromproposition logic, except
boolean negation, for which there is no corresponding construction in type theory. Instead,
we model negation using functions to the empty type ⊥. That is, we can prove a property
𝑃 to be false by writing a function 𝑃 → ⊥. This essentially says that if 𝑃 is true, then we
can derive a contradiction, thus it must be false. Some properties are provable in predicate
logic, but not in type theory. The most notable example of this is the law of excluded middle,
stating that every property must be either true or false.

7



Logic Type Theory
False ⊥
True ⊤
𝑃 ∨ 𝑄 𝑃 + 𝑄
𝑃 ∧ 𝑄 𝑃 ∗ 𝑄
𝑝 ⇒ 𝑄 𝑃 → 𝑄
∃ 𝑥 . 𝑃 𝑥 Σ(𝑥∶𝐴)𝑃(𝑥)
∀ 𝑥 . 𝑃 𝑥 Π(𝑥∶𝐴)𝑃(𝑥)

Table 2.1: Correspondence between constructive logic and type theory

2.2 Agda

Agda is a programming language and proof assistant based on Intuitionistic type theory
[31]. Its syntax is broadly similar to Haskell’s, though Agda’s type system is arguably more
expressive, since types may depend on term level values. Agda uses the Curry-Howard
correspondence to model propositions as types and proofs as programs.

2.3 Generic programming and type universes

In Datatype generic programming, we define functionality for an entire class of types at once
by induction over their structure. This means that generic functions will not take values of
a particular type as input, but rather a code that describes the structure of a type.

2.3.1 Design pattern

Datatype generic programming often follows a common design pattern that is independent
of the structural representation of types involved. In general we follow the following steps:

1. First, we define a datatype 𝒰 representing the structure of types, often referred to as
the Universe.

2. Next, we define a semantics of the form ⟦_⟧ : 𝒰 → K that associates codes in 𝒰 with
an appropriate type of kind K.

3. Finally, we define a fixed point operation of type (u : 𝒰) → Set that calculates the
fixpoint of ⟦ u ⟧.

The semantics and fixpoint operation should be designed such that if a code u : 𝒰
represents a type T, then the fixpoint of u is isomorphic to T.

8



Given these ingredients we have everything we need at hand to write generic functions.
Section 3 of Ulf Norell’s Dependently Typed Programming in Agda [31] contains an in depth
explanation of how this can be done in Agda. In general, a datatype generic function is
supplied with a code u : 𝒰 , and returns a function whose type is dependent on the code
it was supplied with. For example, we might write the following function that implements
decidable equality for all types in the universe 𝒰 .

_ ?=_ : ∀ {u : 𝒰} → (x : Fix u) → (y : Fix u) → Dec (x ≡ y)

Allowing us to obtain a decision procedure for a type by instantiating ?= with the asso-
ciated code in 𝒰 .

2.3.2 Isomorphisms

Throughout this thesis, we will often talk about isomorphisms between types. An isomor-
phism between two types A and B asserts a one to one correspondence (or a bijection) be-
tween their values. We use the following formal definition:

record _≃_ (A B : Set) : Set where
field

from : A → B
to : B → A
iso₁ : ∀ {x : A} → to (from x) ≡ x
iso₂ : ∀ {y : B} → from (to y) ≡ y

Isomorphisms form an equivalence relation between types, meaning that they are re-
flexive, symmetric and transitive:

≃-refl : ∀ {A} → A ≃ A
≃-sym : ∀ {A B} → A ≃ B → B ≃ A
≃-trans : ∀ {A B C} → A ≃ B → B ≃ C → A ≃ C

We will refrain from explicitly including any isomorphism between types in this thesis,
butwhereverwemention that an isomorphismexists between two typeswehave formalized
said isomorphism in our theoretical model.

9



Listing 2.1: The abstract generator type

data Gen {I} : (Set) → (I → Set) → I → Set where
Pure : ∀ {A T i} → A → Gen A T i
Ap : ∀ {A B T i j} → Gen (B → A) T i → Gen B T j

→ Gen A T i
Bind : ∀ {A B T i j} → Gen A T j → (A → Gen B T i)

→ Gen B T i
Or : ∀ {A T i} → Gen A T i → Gen A T i

→ Gen A T i
μ : ∀ {A} → (i : I) → Gen (A i) A i
None : ∀ {A T i} → Gen A T i
Call : ∀ {J S T i} → ((j' : J) → Gen (S j') S j')

→ (j : J) → Gen (S j) T i

2.4 Generators

In this thesis, we use the datatype shown in listing 2.1 as an abstract representation of the
concept of generators.

The abstract generator type is essentially a deep embedding of the functions exposed
by the Applicative , Monad and Alternative typeclasses, with added constructors to mark
recursive positions and invoke other generators. We can map values of this abstract gen-
erator type to any desired concrete generator type. The reason for this separation between
abstract and concrete generators is twofold:

1. It becomes much easier to convince Agda’s termination checker that our generators
are terminating, since we do not require any recursive calls or a fixpoint operation to
write recursive generators, shifting this burden to the interpretation of the abstract
generator type.

2. Wepotentially add a bit of flexibility bydelaying the point atwhichwehave to commit
to a particular generator type, which might make interfacing with existing libraries
easier.

In practice, we will rarely use the constructors of the Gen type. Rather, we use the func-
tions exposed by the associated typeclasses. For example, we can define an abstract gener-
ator for the Fin type as follows:

fin : (n : ℕ) → Gen (Fin n) Fin n

10



fin zero = empty
fin (suc n) = L zero M

∥ L suc (μ n) M
2.4.1 Generator interpretations

A consequence of this design is that we need to transform abstract generators to a concrete
instantiation before we can prove properties about their behavior. We will for our proofs
use an enumerative interpretation, not unlike SmallCheck’s [34] Series typeclass, where
generators are functions from recursive depth to a list of values. The definition of this in-
terpretation is shown in listing 2.2.

Listing 2.2: Enumerative interpretation of abstract generators

enumerate : ∀ {I A T} → ((i : I) → Gen (T i) T i)
→ (i : I) → Gen A T i → ℕ → List A

enumerate tg i g zero = []
enumerate tg i (Pure x) (suc n) = x ∷ []
enumerate tg i (Ap {j = j} g₁ g₂) (suc n) =

concatMap (λ f → map f (enumerate tg j g₂ (suc n)))
(enumerate tg i g₁ (suc n))

enumerate tg i (Bind {j = j} g₁ fg) (suc n) =
concatMap (λ x → enumerate tg i (fg x) (suc n))

(enumerate tg j g₁ (suc n))
enumerate tg i (Or g₁ g₂) (suc n) =

merge (enumerate tg i g₁ (suc n))
(enumerate tg i g₂ (suc n))

enumerate tg i (μ .i) (suc n) =
enumerate tg i (tg i) n

enumerate tg i None (suc n) = []
enumerate tg i (Call g j) (suc n) =

enumerate g j (g j) (suc n)

2.4.2 Generator completeness

We formulate the desired completeness property, which assert that that generators do not
”skip” any values. We formalize this property as follows in Agda:

11



Complete : ∀ {I} {A : I → Set} → ((i : I) → Gen (A i) A i) → Set
Complete {I} {A} gen =

∀ {i : I} {x : A i} → ∃[ n ] (x ∈ enumerate gen i (gen i) n)

Basically this property asserts that all possible values of the type produced by a gener-
ator will occur in the enumeration at some point.

2.4.3 Generators for non-indexed types

Although our generator infrastructure is primarily designed for usage with indexed types,
we can adapt it to work for non-indexed types. We do this by choosing a trivial index, and
generating values of type ⊤ → A instead of generating values of the non-indexed type A

directly. This allows us to write a generator for natural numbers:

nat : Gen ℕ (λ { tt → ℕ }) tt
nat = L zero M

∥ L suc (μ tt) M
We occasionally take amore liberal approach to the notation of non-indexed generators,

writing Gen A A instead of Gen A (λ { tt → A}) tt and μ instead of μ tt.

12



Part I

Theoretical Model
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3
Regular Types

Wecandescribe a large class of recursive algebraic data types as a regular types. In this section
we describe this universe together with its semantics, and demonstrate how we may define
generators for regular types by induction over their codes. We will then prove that these
derived generators satisfy our completeness property.

3.1 Universe definition

Though the exact definition may vary across sources, the universe of regular types is gen-
erally regarded to consist of the empty type (containing no inhabitants), the unit type (con-
taining exactly one inhabitant) and constants types (which simply refer to another type).
Regular types are closed under both products (representing pairing of types) and coproducts
(representing a choice between types). Listing 3.1 shows the Agda datatype that we use to
represent codes in this universe, with the associated semantics of type Reg → Set → Set

being shown in listing 3.2.

Listing 3.1: The universe of regular types

data Reg : Set where
Z : Reg
U : Reg
_⊕_ : Reg → Reg → Reg
_⊗_ : Reg → Reg → Reg
I : Reg
K : Set → Reg

The semantics map a code to a functorial representation of the datatype described by
that code, commonly known as its pattern functor. The datatype that is represented by a
code is isomorphic to the least fixpoint of its pattern functor. We find this fixpoint with the
following fixpoint operation:

15



data Fix (c : Reg) : Set where
In : ⟦ c ⟧ (Fix c) → Fix c

Listing 3.2: Semantics of the universe of regular types

⟦_⟧ : Reg → Set → Set
⟦ Z ⟧ r = ⊥
⟦ U ⟧ r = ⊤
⟦ c₁ ⊕ c₂ ⟧ r = ⟦ c₁ ⟧ r ⊎ ⟦ c₂ ⟧ r
⟦ c₁ ⊗ c₂ ⟧ r = ⟦ c₁ ⟧ r × ⟦ c₂ ⟧ r
⟦ I ⟧ r = r
⟦ K s ⟧ r = s

Example Let us consider the type of natural numbers:

data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ

Nat exposes two constructors: the nullary constructor zero, and the unary con-
structor suc that takes one recursive argument. We can view this type then as a co-
product (or choice) between a unit type, representing zero, and a recursive position,
representing the recursive argument of the suc constructor.

ℕ' : Set
ℕ' = Fix (U ⊕ I)

We convince ourselves that ℕ' is indeed equivalent to ℕ by defining an isomor-
phism of type ℕ ≃ ℕ'.

In general, we say that a type is regular if and only if we can provide a proof that it is
isomorphic to the fixpoint of some code c of type Reg. We use a record to capture this notion,
which holds a code and an value that witnesses the isomorphism between the fixpoint of
this code and the regular type A.

record Regular (A : Set) : Set where
field

16



code : Reg
iso : A ≃ Fix code

By instantiating Regular for a type A, wemayuse any generic functionality by leveraging
the isomorphism stored with the record Regular A.

3.2 Deriving generators

We can derive generators for all regular types at once by induction over their associated
codes. In section 3.4 we will prove that the generators we derive from codes satisfy our
completeness property under the enumerative interpretation we defined in section 2.4.

3.2.1 Performing induction over codes

In our initial approach, we might be to try to define a generator that produces values of
type Fix c. Unfortunately, this will not work. By choosing Fix c as the type of elements
generated, we implicitly imposes the restriction that any I in c refers to Fix c. This restric-
tion is problematic in some cases, specifically when encountering a product or coproduct.
In that case, we destruct a code c into two smaller codes c₁ and c₂. Calling our deriving
function on these codes will yield two generators, one producing values of type Fix c₁ and
the other producing values of type Fix c₂. It is then not possible to combine these gener-
ators into a single generator producing values of type Fix c: the recursive positions in the
subgenerators refer to different types!

To remedy this, we make a distinction between the code we are doing induction over, c,
and the codewhich describes the type that recursive positions in c refer to, c'. Furthermore,
we do not produce elements of type Fix c, but rather of type ⟦ c ⟧ (Fix c') (i.e. values
of the type given by the semantics of c, but recursive positions refer to the type described
by c'). When calling our derivation function with two equal codes, the values produced
will be isomorphic to Fix c! This results in the following type signature of our generator
deriving function:

deriveGen : (c c' : Reg)
→ Gen (⟦ c ⟧ (Fix c')) (⟦ c' ⟧ (Fix c'))

This step allows us to perform induction over the first input code, while still being able
to have recursive positions refer to the correct top-level code. The first and second type param-
eter (respectively describing the typewe are generating, and the type of recursive positions)
of Gen are consequently distinct, with the second type parameter being isomorphic to Fix

c'.

17



3.2.2 Composing generic generators

Now that we have the correct type for deriveGen in place, we can begin to define it We do
this on a case by case basis, describing how to derive generators for each of the constructors
of the Reg datatype.

The empty (Z) and unit (U) type

We start with the generic generators for the Z and U constructors. Recall that the generators
we derive from these constructors should produce all inhabitants of the type given by their
semantics.

deriveGen Z c' = empty
deriveGen U c' = L tt M

In case of both Z and U this requirement is trivially fulfilled. For the Z combinator, we
yield a generator that produces no elements, since its semantics is the empty type (⊥). As
for the U combinator, ⟦ U ⟧ (Fix c') equals the unit type (⊤), so we need to return a
generator that produces all inhabitants of ⊤, which is only the value tt. We get a generator
that does this by lifting tt into the generator type.

Recursive positions (I)

We mark a recursive position in a generator with the 𝜇 constructor. However, given the
previously defined type signature for deriveGen, 𝜇 is a generator that produces elements
of type ⟦ c' ⟧ (Fix c'). We require that the generator derived from the I constructor
produces elements of type ⟦ I ⟧ (Fix c'), which by definition of ⟦_⟧ equals Fix c'. This
means that we need to apply the fixpoint wrapper In over the elements produced by 𝜇:

deriveGen I c' = L In μ M
Products (⊗) and coproducts (⊕)

For products and coproducts, we can quite easily define their generators by recursing on
the left and right subcodes now that we have the correct type for deriveGen in place. We
then only need to combine these generators in an appropriate way. We do this respectively
building a product type out of the elements produced by the subgenerators and bymarking
a choice between the generators derived from the subcodes.
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deriveGen (c₁ ⊕ c₂) c' =L inj₁ (deriveGen c₁ c') M ∥ L inj₂ (deriveGen c₂ c') M
deriveGen (c₁ ⊗ c₂) c' =L deriveGen c₁ c' , deriveGen c₂ c' M

Of course, the exact way in which the elements of subgenerators are combined still de-
pends on how we interpret the abstract generator type; here we only describe these opera-
tions in terms of the functions exposed by Applicative and Alternative .

Wrapping up

We have defined a function that derives generators from codes in the universe of regular
types (barring constant types, with with we will deal in section 3.3). We need to take one
final step before we can use deriveGen for all regular types. Any vallue Regular A holds
an isomorphism A ≃ Fix c, so we need to wrap the resulting generator in the In construc-
tor, which we can only do if deriveGen is called with two equal codes. We use the following
function to perform this initial call to deriveGen, and to wrap the values produced by the
resulting generator in the fixpoint operation:

genericGen : (c : Reg) → Gen (Fix c) (Fix c)
genericGen c = L In (Call (deriveGen c c)) M

The elements produced by genericGen can now readily be transformed into the re-
quired datatype through an appropriate isomorphism.

Example We derive a generator for natural numbers by invoking genericGen on the
appropriate code U ⊕ I, and applying an isomorphism of type ℕ ≃ ℕ' to the resulting
generator:

genℕ : Gen ℕ ℕ
genℕ = L (_≃_.to ℕ≃ℕ') (Call (genericGen (U ⊕ I))) M

We use the following function to define a generator for any type A for which there is an
instance argument Regular A in scope:

isoGen : ∀ {A} ⦃ p : Regular A ⦄ → Gen A A
isoGen ⦃ p = record { code = c ; iso = iso } ⦄ =L (_≃_.to iso) (Call (genericGen c)) M
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3.3 Constant types

Constant types present a bit of a challenge, since the code K s can carry any type in Set.
This means that we know nothing about the type s whatsoever. Since we have no general
procedure for deriving generators for arbitrary types in Set, we need to either restrict s to a
set of types for which we can derive generators (e.g. regular types), or have the user supply
generators for all constant types in a code. We choose the latter approach in order to retain
the flexibility that comes with the ability to refer to arbitrary types.

3.3.1 Metadata structure

We have the programmer supply the necessary generators by defining a metadata structure,
indexed by a code, that carries additional information for every K constructor used. We
parameterize deriveGen with a metadata structure that is indexed by the code we are in-
ducting over, carrying generators for every constant type used in said code. The definition
of this metadata structure is shown in listing 3.3.

Listing 3.3: Metadata structure carrying additional information for constant types

data KInfo (P : Set → Set) : Reg → Set where
Z~ : KInfo P Z
U~ : KInfo P U
_⊕~_ : ∀ {cₗ c𝑟} → KInfo P cₗ → KInfo P c𝑟

→ KInfo P (cₗ ⊕ c𝑟)
_⊗~_ : ∀ {cₗ c𝑟} → KInfo P cₗ → KInfo P c𝑟

→ KInfo P (cₗ ⊗ c𝑟)
I~ : KInfo P I
K~ : ∀ {S} → P S → KInfo P (K S)

We purposefully keep the type of information stored for constant types abstract, as we
will need to record information beyond generators when proving completeness for the gen-
erators produced by deriveGen.

3.3.2 Deriving a generator for constant types

Given the definition of the metadata structure, we augment deriveGen with an extra pa-
rameter that stores generators for every constant type in a code:

deriveGen : (c c' : Reg) → KInfo (λ S → Gen S S) c
→ Gen (⟦ c ⟧ (Fix c')) (⟦ c' ⟧ (Fix c'))
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We then define deriveGen as follows for constant types:

deriveGen (K x) c' (K~ g) = Call g

All cases for existing constructors remain the same, except for the fact that the metadata
parameter distributes over recursive calls in the case of products and coproducts.

With this, we have completed the definition of deriveGen.

3.4 Proving completeness

We set out to prove that the derived generators satisfy our completeness property. Obvi-
ously, this relies on the generators supplied by the programmer being complete as well.

We start the proof by instantiating the completeness property formulated in listing 2.1
with deriveGen to obtain the definition of the theorem that we will prove:

deriveGen-Complete : ∀ {c c' x}
→ ∃[ n ] (x ∈ enumerate (deriveGen c c') (deriveGen c' c') n)

We explicitly distinguish the codes c and c' to (again) be able to construct the proof by
performing induction over the input code c. The reasoning behind this is very much the
same as the reasoning behind the definition of deriveGen itself. If we invoke this lemma
with two equal codes, wemay utilize the fact that In is bijective to obtain a proof that gener-
icGen is complete too. The key observation here is that mapping a bijective function over a
complete generator results in another complete generator. We do not show this proof here
explicitly, but we have constructed a proof of the following statement in the Agda develop-
ment:

genericGen-Complete :
∀ {c x} → ∃[ n ] (x ∈ enumerate (genericGen c) (genericGen c) n)

Which we need to generalize the proof to all types which are isomorphic to some code
c : Reg.

3.4.1 Proof structure

The completeness proof roughly follows the following steps:

• First, we prove completeness for the individual constructors of the Reg type.

• Next, we assemble a suitable metadata structure to carry the required proofs for con-
stant types in this code.

• Finally, we generalize the proof over our generic generator to a proof that ranges over
all types A that are isomorphic to the fixpoint of some code c : Reg.
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3.4.2 Combinator correctness

We start our proof by asserting that the generators derived from the individual constructors
of the Reg datatype are complete. That is, we show that for every constructor of Reg the
derived generator produces all values of the type given by the semantics of that constructor.

Empty (Z) and unit (U) types

In the case of Z and U, completing the completeness proof is relatively easy:

deriveGen-Complete {Z} {c'} {()}
deriveGen-Complete {U} {c'} {tt} = 1 , here

The semantics of Z is the empty type, so any generator producing values of type ⊥ is
trivially complete: we simply close this branch with an absurd pattern. In the case of U we
simply need to show that interpreting pure tt returns a list containing tt, which we can
do by returning a trivial proof that tt is an element of the singleton list [ tt ].

Recursive positions (I)

The proof that a recursive position 𝜇 is interpreted to a complete enumeration is simply the
induction hypothesis, which states that deriveGen c' c' is complete. A subtlety here is
that we must pattern match on In x, otherwise Agda’s termination checker will flag the
recursive call.

deriveGen-Complete {I} {c'} {In x}
with deriveGen-Complete {c'} {c'} {x}

... | prf = { }?

We can complete this definition by proving a lemma that asserts that mapping In over
a generator preserves completeness:

lemma-In : ∀ {x g g'}
→ ∃[ n ] (x ∈ enumerate g g' n)
→ ∃[ n ] (In x ∈ enumerate (L In x M) g' n)
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Products and coproducts

Things become a bit more interesting once we move to products and coproducts, since this
requires us to prove that theway inwhichwe combine subgenerators satisfies completeness
under our enumerative interpretation. In both cases, this proof follows a similar structure:

1. Obtain completeness proofs for the subgenerators with recursive calls to deriveGen-

Complete

2. Construct a lemma that asserts that the enumerative interpretation of generators pre-
serves completeness

3. Invoke this lemma to complete the definition

Coproducts To find out what lemma we need to prove completeness for the generators
derived from coproducts, we observe the following equality by unfolding the defintions of
enumerate and deriveGen:

enumerate (deriveGen (cₗ ⊕ c𝑟) c') (deriveGen c' c') n
≡ merge (enumerate L inj₁ (deriveGen cₗ c') M (deriveGen c' c') n)

(enumerate L inj₂ (deriveGen c𝑟 c') M (deriveGen c' c') n)

The generators on the right hand side of the equation are virtually the same as the re-
cursive calls we make, modulo the inj₁ and inj₂ constructors we map over them to unify
their result types. We can obtain a proof of completeness for the right hand side of this
equality by proving the following two lemmas about the merge function we use to combine
the results of the subgenerators of a coproduct.

merge-complete-left : ∀ {A} {xsₗ xs𝑟 : List A} {x : A}
→ x ∈ xsₗ → x ∈ merge xsₗ xs𝑟

merge-complete-right : ∀ {A} {xsₗ xs𝑟 : List A} {x : A}
→ x ∈ xs𝑟 → x ∈ merge xsₗ xs𝑟

Proofs for these lemmas can readily be extended to a proof that if the left and right
subgenerator are complete under the enumerative interpretation, then the interpretation of
their coproduct (which is a call to merge), is also complete, simply by pairing themwith the
depth value returned by the recursive call.
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Products Similarly, by unfolding enumerate one step in the case of products, we get the
following equality:

We can prove completeness for the right hand side of this equality by proving the fol-
lowing lemma about the applicative instance of lists:

×-complete : ∀ {A B} {x : A} {y : B} {xs ys}
→ x ∈ xs → y ∈ ys → (x , y) ∈ L xs , ys M

We can again extend this lemma to a proof that the enumerative interpretation of prod-
uct types is completeness preserving. In section 3.4.4 we describe in more detail how an
appropriate depth value can be obtained.

3.4.3 Completeness for constant types

Since our completeness proof relies on completeness of the supplied generators for constant
types, we need the programmer to supply a completness proof for the generators stored
in the provided metadata structure. To this end, we parameterize the completeness proof
over a metadata structure that carries both generators for all constant types in a code, and
a proof that these generators are complete. We express the relation between generator and
proof with a dependent pair, using the following type synonym to describe the type of this
metadata parameter:

ProofMD : Reg → Set
ProofMD c = KInfo (λ S → Σ[ g ∈ Gen S S ]

(∀ {x} → ∃[ n ] (x ∈ enumerate g g n))) c

In order to be able to use the completeness proof from the metadata structure in the K

branch of deriveGen-Complete, we need to be able to express the relationship between the
metadata structure used in the proof, and the metadata structure used by deriveGen. To
do this, we need a way to transform the type of information that is carried by a metadata
structure. This will allow us to map a metadata structure containing generators and proofs
to a metadata structure containing only generators.

KInfo-map : ∀ {c P Q} → (∀ {s} → P s → Q s)
→ KInfo P c → KInfo Q c

KInfo-map f (K~ x) = K~ (f x)
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We only present the case for constant types; in all other cases we simply distribute the
mapping operation over all recursive positions. Given a definition of KInfo-map, we can
take the first projection of the metadata input to deriveGen-Complete, and use the result-
ing metadata structure as input to deriveGen. We define a type synonym to describe this
mapping operation:

◀_ : ∀ {c : Reg} → KInfo (λ A → Σ[ g ∈ Gen A A ]
(∀ {x} → ∃[ n ] (x ∈ enumerate g g n))) c

→ KInfo (λ A → Gen A A) c
◀ m = KInfo-map proj₁ m

Which results in the following final type of deriveGen-Complete.

deriveGen-Complete : (c c' : Reg)
→ (i : ProofMD c) → (i' : ProofMD c')
→ ∀ {x} → ∃[ n ] (x ∈ enumerate (deriveGen c c' (◀ i))

(deriveGen c' c' (◀ i')) n)

By expressing the relation between the metadata structure supplied to the proof and
the metadata structure supplied to deriveGen explicitly in the proof’s type signature, Agda
is able to infer that the completeness proofs range over the generators that were supplied to
deriveGen. This allows us to complete the proof for constant types simply by returning the
proof that is stored in the metadata structure.

3.4.4 Generator monotonicity

There is one crucial detail we ignored when describing how to prove completeness for gen-
erators derived from product types. Since existential quantification is modelled in type
theory as a dependent pair, we have to explicitly supply the depth at which an element
occurs in an enumeration when proving completeness. A problem, however arises when
choosing a depth value for generators derived from product types. We combine values of
both subgenerators in a pair, so at what depth does this pair occur in the enumeration of the
combined generator? Generally, we say that the recursive depth of a pair is the maximum
of the depth of its components. Suppose the first component occurs at depth 𝑛, and the sec-
ond at depth 𝑚. The depth of the pair is then max n m. However, the second components
of the returned completeness proofs respectively have the type x ∈ enumerate ... n and
x ∈ enumerate ... m. In order to unify their types, we need a lemma that transforms a
proof that some value x occurs in the enumeration at depth k into a proof that x occurs in
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the enumeration at depth k', given that 𝑘 ≤ 𝑘′. In other words, the set of values that occurs
in an enumeration monotonously increases with the enumeration depth. We thus require
a proof of the following lemma in order to finish the completeness proof:

n ≤ m → x ∈ enumerate (deriveGen c c' (◀ i))
(deriveGen c' c' (◀ i')) n

→ x ∈ enumerate (deriveGen c c' (◀ i))
(deriveGen c' c' (◀ i')) m

We do not show the definition of this proof here, but it can be completed using the exact
same proof structure we used for the completeness proof.

3.4.5 Extending completeness to all regular types

By bringing all these elements together, we can prove that deriveGen is complete for any
code c, given that the programmer is able to provide a suitable metadatastructure. We can
transform this proof into a proof that isoGen returns a complete generator by observing
that any isomorphism A ≃ B establishes a bijection between the types A and B. Hence, if
we apply such an isomorphism to the elements produced by a generator, completeness is
preserved.

We have the required isomorphism readily at our disposal in isoGen, since it is con-
tained in the instance argument Regular a. This allows us to have isoGen return a com-
pleteness proof for the generator it derives:

isoGen : ∀ {A} → ⦃ p : Regular A ⦄
→ Σ[ g ∈ Gen A A ] ∀ {x} → ∃[ n ] (x ∈ enumerate g g n)

With which we have shown that if a type is regular, we can derive a complete generator
producing elements of that type.

Conclusion

In this chapter, we have shown how generators can be derived from codes in the universe
of regular types. While this is not necessarily a new result (e.g. SmallCheck does this as
well), we have also proven that these generators are complete under an enumerative inter-
pretation, meaning that they are guaranteed to produce every inhabitant of the type they
range over at some point.

Futhermore, the work done to establish this generic generator and the accompanying
proof provides a solid basis for extending this result to generic generators for more expres-
sive type universes. As we will see in the upcoming chapters, the approach described in
this chapter is to a large extent applicable to other type universes as well.
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Although we can describe many familiar datatypes with a code in the universe of reg-
ular types, there are some limitations. Most notably, we cannot describe any family of mu-
tually recursive types. The way the universe is set up includes the implicit assumption that
all occurrences of I reference the same type. If we attempt to describe a datatype that is a
composite of more than one recursive algebraic datatype, such as for example the type of
rose trees:

data Rose (A : Set) : Set where
node : List (Rose A) → Rose A

The other obvious shortcoming is that this universe only allows us to describe non-
indexed datatypes. In the following chapters we will consider two type universes that can
do this.
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4
Indexed Containers

This chapter discusses the universe of indexed containers [5], which provide a generic frame-
work to describe indexed datatypes that can be defined by induction on their index type.
Examples of datatypes we can describe using this universe include finite sets (Fin) and
vectors (Vec). In this chapter, we give the definition of this universe together with its se-
mantics and a few examples, and show how a generic generator may be derived for indexed
containers.

Unfortunately, we were not able to construct a completeness proof for the generators
derived from this universe, hence we will give a short outline of why we were unable to do
so using the approach we used for regular types.

4.1 Universe definition

We choose to follow the representation used by Dagand in The Essence Of Ornaments [13],
which provides an good introduction to indexed containers, alongside various examples.
Just as in the previous chapter, we follow the pattern of first defining a datatype describing
codes in the universe before giving the semantics and fixpoint operation.

4.1.1 Defintion and semantics

To give the reader some context, we will first introduce W-types, which are an alternative to
regular types for describing non-indexed datatypes. Indexed containers describe indexed
types using an approach that is very similar to how W-types describe non-indexed types.
We show how these universes relate, and how we may view indexed containers as an ex-
tension to W-types.

W-types

Introduced by Per Martin-Löf [26], W-types abstract over tree-shaped data structures, such
as natural numbers or binary trees. W-types are defined by their shape and position, describ-
ing respectively the set of constructors and the number of recursive positions.
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Perhaps the best known definition of W-types is using an inductive datatype, with one
constructor taking a shape value, and a function from position to W-type:

data WType (S : Set) (P : S → Set) : Set where
sup : (s : S) → (P s → WType S P) → WType S P

However, we can use an alternate definition where we separate the universe into codes,
semantics and a fixpoint operation (listing 4.1)

Listing 4.1: W-types defined with separate codes and semantics

record WType : Set where
constructor _∼_
field

S : Set
P : S → Set

⟦_⟧sup : WType → Set → Set
⟦ S ∼ P ⟧sup r = Σ[ s ∈ S ] (P s → r)

data Fix (w : WType) : Set where
In : ⟦ w ⟧sup (Fix w) → Fix w

We take this extra step for two reasons:

1. To unify the definition of W-types with the design pattern for type universes we de-
scribed in section 2.3.1.

2. To make the similarities between W-types and indexed containers more apparent.

Example Let us again consider natural numbers as an example. We can define the
following W-type that is isomorphic to ℕ:

Wℕ : Set
Wℕ = Fix (Bool ∼ λ { false → ⊥ ; true → ⊤ })

The ℕ type has two constructors, hence our shape is a finite type with two inhab-
itants (Bool in this case). We then map false to the empty type, signifying that zero
has no recursive subtrees, and true to the unit type, denoting that suc has one recursive
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subtree.

Indexed containers

Indexed containers extend the notion of a W-type by parameterizing the shape and position
over the index type, and including a typing discipline that describes the indices of recursive
subtrees. Types are described using Signatures, which are a triple of operations, arities and a
typing discipline. Their definition is shown in listing 4.2.

Listing 4.2: Signatures

record Sig (I : Set) : Set where
constructor _◁_∣_
field

Op : (i : I) → Set
Ar : ∀ {i} → (Op i) → Set
Ty : ∀ {i} {op : Op i} → Ar op → I

The operations of a signature correspond to aW-type’s shape, and its arity corresponds a
W-type’s position. The semantics of a signature is, just as for aW-type, a dependent pair, with
the first element being a choice of operation, and the second element a function mapping
arities to an appropriate recursive type. Contrary to the semantics ofW-types, whichmap a
code to a value in Set → Set, the semantics of a signature are parameterized over the index
type, meaning they map a signature to a value in (I → Set) → (I → Set). The semantics
are shown in listing 4.3.

Listing 4.3: The semantics of indexed containers

⟦_⟧ : ∀ {I} → Sig I → (I → Set) → I → Set
⟦ Op ◁ Ar ∣ Ty ⟧ r i =

Σ[ op ∈ Op i ] ((ar : Ar op) → r (Ty ar))

Consequently, the fixpoint operation needs to be lifted from Set to I → Set as well. The
required adaptation follows naturally from the definition of the semantics:

data Fix {I : Set} (𝒮 : Sig I) (i : I) : Set where
In : ⟦ 𝒮 ⟧ (Fix 𝒮) i → Fix 𝒮 i
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It is worth noting that, since Set ≅ ⊤ → Set, we can describe non-indexed datatypes as
an indexed container by choosing ⊤ as the index type. More precisely, there exists a bijection
between WType and Sig ⊤, such that for every W : WType and S : Sig ⊤, Fix W and Fix S

tt are isomorphic.

Proving isomorphisms

One thing to keep in mind when defining signatures for types is that part of their semantics
is a dependent function type. Thismeans that proving an isomorphism between a signature
and the type it represents requires some extra work. More specifically, we need to postulate
a variation on extensional equality for function types that establishes equality between two
dependent functions:

funext' : ∀ {A : Set} {B : A → Set} → (f g : (a : A) → B a)
→ (∀ {x} → f x ≡ g x) → f ≡ g

We need this postulate to define isomorphisms both for W-types as well as indexed
containers.

4.1.2 Examples

We consider a few example datatypes represented as indexed containers, in order to get a
feel for how we can represent types in this universe.

Natural numbers

We start by defining a suitable set of operations. The ℕ datatype has two constructor, so
we return a type with two inhabitants. We use ⊤ as the index of the signature, since ℕ is a
non-indexed datatype.

Op-Nat : ⊤ → Set
Op-Nat tt = ⊤ ⊎ ⊤

Next, we map each of those operations to the right arity. The zero constructor has no
recursive branches, so its arity is the empty type (⊥), while the suc constructor has a single
recursive argument, so its arity is the unit type (⊤).

Ar-Nat : Op-Nat tt → Set
Ar-Nat (inj₁ tt) = ⊥
Ar-Nat (inj₂ tt) = ⊤
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Since the index type has only one inhabitant, the associated typingdiscipline just returns
tt in all cases. We bring all these elements together into a single signature, for which we
can show that its fixpoint is isomorphic to ℕ.

ℕSig : Sig ⊤
ℕSig = Op-Nat ◁ Ar-Nat ∣ λ _ → tt

The signature for natural numbers is quite similar to how we would represent them as
a W-type.

Finite sets

We consider the type of finite sets, Fin. Contrary to natural numbers, the set of available
operations varies with different indices. That is, Fin 0 is uninhabited, so the set of oper-
ations associated with index 0 is empty. A value of type Fin (suc n) can be constructed
using both suc and zero, hence the set of associated operations has two elements:

Op-Fin : ℕ → Set
Op-Fin zero = ⊥
Op-Fin (suc n) = ⊤ ⊎ ⊤

The arity of the Fin type is exactly the same as the arity of ℕ, with the exception of an
absurd pattern in the case of index zero.

Ar-Fin : ∀ {n} → Op-Fin n → Set
Ar-Fin {zero} ()
Ar-Fin {suc n} (inj₁ tt) = ⊥
Ar-Fin {suc n} (inj₂ tt) = ⊤

Recall the type of the suc constructor: Fin n → Fin (suc n). The index of the recursive
argument is one less than the index of the constructed value. The typing discipline describes
this relation between index of the constructed value, and indices of recursive arguments. In
the case of Fin, this means that we map suc n to n, if the index is greater than 0, and the
operation corresponding to the suc constructor is selected.

Ty-Fin : ∀ {n} {op : Op-Fin n} → Ar-Fin op → ℕ
Ty-Fin {zero} {()} ar
Ty-Fin {suc n} {inj₁ tt} ()
Ty-Fin {suc n} {inj₂ tt} tt = n

Again, we combine operations, arity and typing into a signature:

FinSig : Sig ℕ
FinSig = Op-Fin ◁ Ar-Fin ∣ Ty-Fin
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Vectors

One aspect we have not yet addressed is how to represent types that refer to other types,
such as Vec a. Indexed containers do not have an explicit way to reference other types, such
as regular types. Rather they include this kind of information as part of a type’s operations.
We consider the Vec type as an example, defining the following operations:

Op-Vec : ∀ {A : Set} → ℕ → Set
Op-Vec {A} zero = ⊤
Op-Vec {A} (suc n) = A

Notice that we map suc n to A, indicating that the ∷ constructor requires an argument
of type A. The remainder of the signature is then quite straightforward:

Ar-Vec : ∀ {A} {n} → Op-Vec {A} n → Set
Ar-Vec {A} {zero} tt = ⊥
Ar-Vec {A} {suc n} op = ⊤

Ty-Vec : ∀ {A} {n} {op : Op-Vec {A} n} → Ar-Vec {A} op → ℕ
Ty-Vec {A} {zero} {tt} ()
Ty-Vec {A} {suc n} {op} tt = n

VecSig : Set → ℕ → Sig ℕ
VecSig A n = Op-Vec {A} ◁ Ar-Vec {A}

∣ λ {i} {op} → Ty-Vec {op = op}

In fact, the arity and typing of Vec are almost the same as those of Fin.

4.2 Deriving generators

In order to be able to derive generators from signatures, there are two additional steps we
need to take: restricting the set of possible operations and arities, and defining co-generators
for regular types.

4.2.1 Restricting operations and arities

The set of operations of a signature, Op, is a value in Set. This means that we again run
into the problem that we have no way to generate values of type Op i without any further
input of the programmer. The same problem occurs with arities. We solve this problem by
restricting operations and arities to regular types. By doing this, we can reuse the generators
we defined for regular types to generate operations and arities. This leads to the slightly
altered variation on indexed containers shown in listing 4.4, where FixR and InR denote the
fixpoint operation for regular types. This implies that the definition of signatures changes
slightly as well.
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Listing 4.4: Indexed containers with restricted operations and arities

record Sig (I : Set) : Set where
constructor _◁_∣_
field

Op : (i : I) → Reg
Ar : ∀ {i} → FixR (Op i) → Reg
Ty : ∀ {i} {op : FixR (Op i)} → FixR (Ar op) → I

⟦_⟧ : ∀ {I} → Sig I → (I → Set) → I → Set
⟦ Op ◁ Ar ∣ Ty ⟧ r i =

Σ[ op ∈ FixR (Op i) ] ((ar : FixR (Ar op)) → r (Ty ar))

Example We use the following operation, arity and typing to describe the Fin type
as a restricted signature:

Op-Fin : ℕ → Reg
Op-Fin zero = Z
Op-Fin (suc n) = U ⊕ U

Ar-Fin : ∀ {n} → FixR (Op-Fin n) → Reg
Ar-Fin {zero} (InR ())
Ar-Fin {suc n} (InR (inj₁ tt)) = Z
Ar-Fin {suc n} (InR (inj₂ tt)) = U

Ty-Fin : ∀ {n} {op : FixR (Op-Fin n)} → FixR (Ar-Fin op) → ℕ
Ty-Fin {zero} {InR ()}
Ty-Fin {suc n} {InR (inj₁ tt)} (InR ())
Ty-Fin {suc n} {InR (inj₂ tt)} (InR tt) = n

This definition does not differ too much from the previous one, except that we now
pattern match on the fixpoint of some code in Reg instead of directly on an operation
or arity.

4.2.2 Generating function types

Toderive a generator from a signature, we need, in addition to generic generators for regular
types, a way to generate function types whose input argument is a regular type. That is, we
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need to define the following function:

cogenerate :
∀ {A : Set} → (r r' : Reg) → (Gen A (⟦ r' ⟧R (FixR r') → A))
→ Gen (⟦ r ⟧R (FixR r') → A) (⟦ r' ⟧R (FixR r') → A)

We draw inspiration from SmallCheck’s [34] CoSeries typeclass, for which instances
can be automatically derived. Co-generators for constant types are to be supplied by a pro-
grammer using a metadata structure; we choose to not make this explicit in the type signa-
ture. An example definition of cogenerate is included in listing 4.5.

Listing 4.5: Definition of cogenerate

cogenerate Z r' gen = empty
cogenerate U r' gen = L (λ { x tt → x }) gen M
cogenerate (r₁ ⊕ r₂) r' gen =L (λ { f g (inj₁ x) → f x ; f g (inj₂ y) → g y })

(cogenerate r₁ r' gen) (cogenerate r₂ r' gen) M
cogenerate (r₁ ⊗ r₂) r' gen =L uncurry (cogenerate r₁ r' (cogenerate r₂ r' gen)) M
cogenerate I r' gen =L (λ { f (InR x) → f x }) (μ {r'}) M

Since the semantics of an indexed container contain a dependent function type we need
to extend cogenerate to work for dependent function types as well.

Π-cogenerate : (r r' : Reg) →
∀ {P : (r r' : Reg) → ⟦ r ⟧R (FixR r') → Set}
→ ((x : ⟦ r ⟧R (FixR r'))

→ Gen (P r r' x) ((x : ⟦ r' ⟧R (FixR r')) → P r' r' x))
→ Gen ((x : ⟦ r ⟧R (FixR r')) → P r r' x)

((x : ⟦ r' ⟧R (FixR r')) → P r' r' x)

The type signature of Π-cogenerate may look a bit daunting, but it essentially follows
the exact same structure as cogenerate. The only real difference is that the the result type
of the generated functions may depend on the code we are inducting over, and that we do
not take a generator as input, but rather a function from index to generator. The definitions
of Π-cogenerate and cogenerate are virtually the same, but in order to prevent Agda from
getting stuck while solving metavariables describing the indices of return types, we need to
make the dependency between argument and result type explicit in the generator’s type.
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4.2.3 Constructing generators

We are now ready to construct a the generic generator for indexed containers. Recall that
genericGen c returns a generator for the regular type represented by c. We can write a
function deriveGen that derives generators from signatures:

deriveGen : ∀ {I : Set} → (S : Sig I)
→ (i : I) → Gen (Fix S i) (Fix S i)

deriveGen (Op ◁ Ar ∣ Ty) i = do
op ← Call (genericGen (Op i))
ar ← Call (Π-cogenerate (Ar op) (Ar op) (λ ar → μ))
pure (In (op , λ { (InR x) → ar x }))

The final generator is quite simple, really. We use the existing functionality for regular
types to generate operations and arities, and return them as a dependent pair, wrapping
and unwrapping fixpoint operations as we go along. The dependency between the first
and second element of said pair is captured using by using the monadic structure of the
generator type.

Conclusion

We have showed how we can describe a large set of indexed datatypes as indexed containers,
and how we can derive a generator from the types in this universe by constructing a gener-
ator for function types, and restricting operations and arities to regular types which enables
us to reuse the generator for regular types we derived in the previous chapter.

Unfortunately, we have not been able to assemble a completeness proof for the enu-
meration of deriveGen. As was the case with the completeness proof for regular types,
we need to explicitly pattern match on the value for which we are proving that it occurs in
the enumeration in order for the termination checker to recognize that the proof can be con-
structed in finite time. However, since part of the semantics of a signature is a function type,
we would need to destruct a function type such that it is clear to the termination checker
that we perform the recursive calls with a value that smaller than the original argument. It
was unclear to us how we should proceed with the proof at this point.

With the derived generator for indexed containers we have obtained recipe for the gen-
eration of indexed families. To motivate the need to study yet another type universe in the
next chapter, we consider a datatype for binary trees, that are indexed by their number of
nodes:

data STree (A : Set) : ℕ → Set where
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leaf : STree A 0
node : ∀ {n m} → STree A n → A → STree A m

→ STree A (suc (n + m))

.
When we set out to define a signature for STree, we run into a problem:

Op-STree : Set → ℕ → Reg
Op-STree _ zero = U
Op-STree A (suc n) = K A

Ar-STree : ∀ {A n} → FixR (Op-STree A n) → Reg
Ar-STree {A} {zero} (InR tt) = Z
Ar-STree {A} {suc n} (InR x) = U ⊕ U

Ty-STree : ∀ {A n} {op : FixR (Op-STree A n)}
→ FixR (Ar-STree op) → ℕ

Ty-STree {A} {zero} {InR tt} (InR ())
Ty-STree {A} {suc n} {InR x} (InR (inj₁ tt)) = { }?
Ty-STree {A} {suc n} {InR x} (InR (inj₂ tt)) = { }?

We cannot define a typing discipline! Indexed containers assume a deterministic map-
ping from arity to recursive index, with no dependencies between the indices of different
recursive subtrees. The STree type violates both these assumptions, hence we need a more
expressive type universe in order to generically describe it.
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5
Indexed Descriptions

To be able to represent arbitrary indexed families, we use the universe of IndexedDescriptions,
as described by Dagand [12] in his PhD thesis. We structure this chapter in the same way
as the previous two chapters, by first giving the definition and semantics of the universe,
before showing how a generator can be derived from codes in this universe and proving
that these generators are complete under our enumerative interpretation.

5.1 Universe definition

We give the definition of the universe, together with its semantics and fixpoint operation,
before considering well-typed lambda terms as an example to demonstrate how we might
model amore complex datatype in this universe and to show howwe can capture datatypes
that cannot be described as a regular type or indexed container.

5.1.1 definition & Semantics

Where indexed containers can be viewed as an extension to W-types, indexed description
take the universe of regular types as a basis and extend it to be able to deal with more
complex datatypes, adding the following elements:

1. A type parameter I : Set, describing the type of indices.

2. A generalized coproduct, `σ, that denotes choice between 𝑛 constructors, in favor of
the _⊕_ constructor.

3. A combinator, `Σ, denoting dependent pairs.

4. Recursive positions, `var, storing the index of recursive values.

This amounts to the Agda datatype describing indexed descriptions shown in listing
5.1. Types are not described by a value of type IDesc I, but rather as a function from index
to description, I → IDesc I. There is no explicit constructor for constant types; they can
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be modelled as a dependent pair consisting of the type we want to refer to, and a function
returning the unit type. Similarly, the universe does not contain a constructor representing
the empty type. We simply encode it as a coproduct of zero constructors: `σ 0 λ().

Listing 5.1: The Universe of indexed descriptions

data IDesc (I : Set) : Set where
`var : (i : I) → IDesc I
`1 : IDesc I
_`×_ : (A B : IDesc I) → IDesc I
`σ : (n : ℕ) → (T : Sl n → IDesc I) → IDesc I
`Σ : (S : Set) → (T : S → IDesc I) → IDesc I

We retain the product of two descriptions as a first order construct of the universe while
including a generalized notion for coproducts, which does not present a choice between 2,
but rather any possible number n of operations. The Sl datatype is used to select these op-
erations, and is isomorphic to Fin. We will require a lot of pattern matches this datatype
to build descriptions, and by using Sl over Fin we end up with slightly more succinct de-
scriptions. The definition of Sl is included below:

data Sl : ℕ → Set where
∙ : ∀ {n} → Sl (suc n)
▻_ : ∀ {n} → Sl n → Sl (suc n)

The semantics associated with the IDesc universe is mostly derived from the semantics
of the universe of regular types, the key difference being that we do not map codes to a
functor Set → Set, but rather to a function of type (I → Set) → Set. The semantics are
shown in listing 6.2.

Listing 5.2: Semantics of the IDesc universe

⟦_⟧ : ∀ {I} → IDesc I → (I → Set) → Set
⟦ `var i ⟧ r = r i
⟦ `1 ⟧ r = ⊤
⟦ dₗ `× d𝑟 ⟧ r = ⟦ dₗ ⟧ r × ⟦ d𝑟 ⟧ r
⟦ `σ n T ⟧ r = Σ[ sl ∈ Sl n ] ⟦ T sl ⟧ r
⟦ `Σ S T ⟧ r = Σ[ s ∈ S ] ⟦ T s ⟧ r
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We calculate the fixpoint of a description’s semantics using the following fixpoint oper-
ation:

data Fix {I : Set} (φ : I → IDesc I) (i : I) : Set where
In : ⟦ φ i ⟧ (Fix φ) → Fix φ i

Example We can describe the Fin datatype as follows using a code in the universe of
indexed descriptions:

finD : ℕ → IDesc ℕ
finD zero = `σ 0 λ()
finD (suc n) = `σ 2 λ

{ ∙ → `1
; (▻ ∙) → `var n
}

If the index is zero, there are no inhabitants, so we return a coproduct of zero
choices. Otherwise, we may choose between two constructors: zero or suc. Notice
that we describe the datatype by induction on the index type. This is not required,
although convenient in most cases. A different, but equally valid description, exists in
which we use the `Σ constructor to explicitly enforce the constraint that the index is of
the form suc n.

finD : ℕ → IDesc ℕ
finD = λ n → `Σ ℕ λ m → `Σ (n ≡ suc m) λ { refl →

`σ 2 λ { ∙ → `1
; (▻ ∙) → `var n
}}

We then have that Fix finD n is isomorphic to Fin n.

Of course, we could already describe the Fin type as an indexed container. Let us re-
consider the STree type (section 4.2.3), and see how it can be described as an indexed de-
scription.

Example When describing sized trees as an indexed description, the tricky part is to
describe the relation between the index of a node, and the indices of its subtrees. To do
this, we use the `Σ constructor, using it to include a valid decomposition of the index
suc n, given by a value of type Σ (ℕ × ℕ) λ ( m , k ) → m + k ≡ n . The
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second element is then a description depending on such a decomposition, including
two recursive positions: one of size m and one of size k. Below is the description as a
whole:

STreeD : Set → ℕ → IDesc ℕ
STreeD A zero = `1
STreeD A (suc n) =

`Σ (Σ (ℕ × ℕ) λ { ( m , k ) → m + k ≡ n })
λ { ((m , k) , _) →

(`var m `× `Σ A λ _ → `1) `× `var k }

We capture the notion of datatypes that can be described in the universe of indexed
descriptions by again constructing a record that stores a description and a proof that said
description is isomorphic to the type we are describing:

record Describe {I} (A : I → Set) : Set where
field φ : I → IDesc I
field iso : (i : I) → A i ≃ Fix φ i

This allows us to use Agda’s instance arguments to define functionality generically over
any type that we can describe as an indexed description.

5.1.2 Example: well-typed lambda terms

Todemonstrate the expressiveness of the IDescuniverse, and to showhowonemightmodel
a more complex datatype in it, we consider the simply typed lambda calculus as an example.
We model the simply typed lambda calculus in Agda according to the representation used
in Philip Wadler and Wen Kokke’s PLFA [39].

Modelling well-typed terms in Agda

Wadler and Kokke use a representation using De Bruijn indices [14], which represents vari-
ables as a natural number denoting the number of lambda abstractions between the variable
and the binder it refers to. Using De Bruijn indices has the clear advantage that any two 𝛼-
equivalent terms have the same representation. Listing 5.3 contains the datatype definitions
for raw terms, types and contexts, used to represent untyped lambda terms. Types can be
either a ground type `τ, or a function type σ `→ τ. Since we are using De Bruijn indices,
we do not need to store variable names in the context, only types. Hence the Ctx type is
essentially a list of types.

We write Γ ∋ 𝜏 to signify that a variable with type 𝜏 is bound in context Γ. Context
membership is described by the following inference rules:
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Listing 5.3: Datatypes for raw terms, types and contexts

data RT : Set where
tvar : ℕ → RT
tlam : RT → RT
tapp : RT → RT → RT

data Ty : Set where
`τ : Ty
_`→_ : Ty → Ty → Ty

data Ctx : Set where
∅ : Ctx
_,'_ : Ctx → Ty → Ctx

[Top]Γ, 𝜏 ∋ 𝛼 ∶ 𝜏 [Pop] Γ ∋ 𝜏
Γ, 𝜎 ∋ 𝛼 ∶ 𝜏

We describe these inference rules in Agda using an inductive datatype, shown in listing
5.4, which is indexedwith a pair of type and context. Its inhabitants correspond to all proofs
that a context Γ contains a variable of type τ.

Listing 5.4: Context membership in Agda

data _∋_ : Ctx → Ty → Set where

[Pop] : ∀ {Γ τ}
→ Γ ,' τ ∋ τ

[Top] : ∀ {Γ τ σ} → Γ ∋ τ
→ Γ ,' σ ∋ τ

We write Γ ⊢ 𝑡 ∶ 𝜏 to express a typing judgement stating that term 𝑡 has type 𝜏 when
evaluated under context Γ. The following inference rules determine when a term is type
correct:

[Var]Γ ∋ 𝛼 ∶ 𝜏
Γ ⊢ 𝛼 ∶ 𝜏 [Abs] Γ, 𝛼 ∶ 𝜎 ⊢ 𝑡 ∶ 𝜏

Γ ⊢ 𝜆 𝛼 . 𝑡 ∶ 𝜎 → 𝜏 [App]Γ ⊢ 𝑡1 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑡2 ∶ 𝜎
Γ ⊢ 𝑡1 𝑡2 ∶ 𝜏
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We model these inference rules in Agda using a binary relation between contexts and
typeswhose inhabitants correspond to all terms that have a given type under a given context
(listing 5.5)

Listing 5.5: Well-typed lambda terms as a binary relation

data _⊢_ : Ctx → Ty → Set where

[Var] : ∀ {Γ τ} → Γ ∋ τ
→ Γ ⊢ τ

[Abs] : ∀ {Γ σ τ} → Γ ,' σ ⊢ τ
→ Γ ⊢ (σ `→ τ)

[App] : ∀ {Γ σ τ} → Γ ⊢ (σ `→ τ) → Γ ⊢ σ
→ Γ ⊢ τ

Given an inhabitant of type Γ ⊢ τ, we can write a function toTerm that transforms the
typing judgement to its corresponding untyped term, simply by erasing the indices of the
proof term.

toVar : ∀ {Γ τ} → Γ ∋ τ → ℕ
toVar [Pop] = zero
toVar ([Top] Γ∋τ) = suc (toVar Γ∋τ)

toTerm : ∀ {Γ τ} → Γ ⊢ τ → RT
toTerm ([Var] Γ∋τ) = tvar (toVar Γ∋τ)
toTerm ([Abs] t) = tlam (toTerm t)
toTerm ([App] tₗ t𝑟) = tapp (toTerm tₗ) (toTerm t𝑟)

The untyped term returned by toTerm will has type τ under context Γ, even though
Agda’s type system does not guarantee this anymore.

An indexed description for well-typed terms

In section 5.1.1, we saw that we can describe the Fin both by induction on the index, as well
as by adding explicit constraints. Similarly, we can choose to define a description for well-
typed terms in two ways: either by induction on the type of the terms we are describing, or
by including an explicit constraint that the index type is a function type for the description
of the abstraction rule. In either case, we start by defining descriptions for each of the three
possible constructors (listing 5.6).
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Listing 5.6: Descriptions for the constructors of the simply typed lambda calculus

varDesc : Ctx × Ty → IDesc (Ctx × Ty)
varDesc (Γ , τ) = `Σ (Γ ∋ τ) λ _ → `1

absDesc : Ctx × Ty × Ty → IDesc (Ctx × Ty)
absDesc (Γ , σ , τ) = `Σ ℕ (λ α → `var (Γ ,' σ , τ))

appDesc : Ctx × Ty → IDesc (Ctx × Ty)
appDesc (Γ , τ) = `Σ Ty (λ σ → `var (Γ , σ `→ τ)

`× `var (Γ , σ))

Given the descriptions for the individual constructors, we can assemble a description
for the entire datatype by pattern matchin on the index type, and returning for each branch
a coproduct of the descriptions of all constructors that could have been used to create a
value with that particular index (listing 5.7).

Listing 5.7: Inductive description of the simply typed lambda calculus

wt : Ctx × Ty → IDesc (Ctx × Ty)
wt (Γ , τ) =

case τ of λ { `τ →
`σ 2 λ { ∙ → varDesc (Γ , τ)

; (▻ ∙) → appDesc (Γ , τ) }
; (τ₁ `→ τ₂) →

`σ 3 λ { ∙ → varDesc (Γ , τ)
; (▻ ∙) → absDesc (Γ , τ₁ , τ₂)
; (▻ ▻ ∙) → appDesc (Γ , τ) } }

Alternatively, we can describe the simply typed lambda calculus as a coproduct of the
descriptions of all its constructors, and adding an explicit constraint in the case of the ab-
straction rule that requires a proof that the index type is a function type (listing 5.8).

To convince ourselves that these descriptions do indeed describe the same type, we can
show that their fixpoints are isomorphic:

desc≃ : ∀ {Γ τ} → Fix Inductive.wt (Γ , τ)
≃ Fix Constrained.wt (Γ , τ)
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Listing 5.8: Description of the simply typed lambda calculus with explicit constraints

wt : Ctx × Ty → IDesc (Ctx × Ty)
wt (Γ , τ) =

`σ 3 λ { ∙ → varDesc (Γ , τ)
; (▻ ∙) →

`Σ (Σ (Ty × Ty) λ { (σ , τ') → τ ≡ σ `→ τ' })
λ { ((σ , τ') , _) → absDesc (Γ , (σ , τ')) }

; (▻ ▻ ∙) → appDesc (Γ , τ)
}

Given an isomorphismbetween the fixpoints of two descriptions, we can prove that they
are both isomorphic to the target type by establishing an isomorphism between the fixpoint
of one of them and the type we are describing. For example, we might prove the following
isomorphism:

wt≃ : ∀ {Γ τ} → Fix Constrained.wt (Γ , τ) → Γ ⊢ τ

Using the transitivity of isomorphisms, we can show that the inductive description also
describes well typed terms.

Both variations are equally valid descriptions of the simply typed lambda calculus (they
are isomorphic), but depending on the situation one might prefer one over the other. A
downside to defining descriptions by induction over the index type is that we often end
up with at least some code duplication, making them unnecessarily verbose in some cases.
Descriptions with explicit constraints do not have this downside. We could even substitute
varDesc, absDesc and appDesc for their respective definitions, since they are only referred
to once. This often results in descriptions that are much more succinct, but arguably less
straightforward.

When looking ahead to the derivation of generators fromdescriptions, we see that using
a description with explicit constraints has the effect of delaying the point at which we find
out that a certain constructor could not have been used to construct a valuewith a particular
index. In the case of inductive descriptions, we find out this fact relatively early; since the
set of available operations explicitly depends on the index, it will never include descriptions
that could not have been used to begin with. Contrary, when using a description that ex-
plicitly includes constraints, we only find that a particular constructor could not have been
used when we fail to synthesize the required equality proof. In the end this means that the
choice of descriptions style comes down to a tradeof between conciseness and efficiency.
Throughout the remainder of this thesis, we will stick with the inductive style of defining
descriptions.
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5.2 Deriving generators

The process of deriving a generator for indexed descriptions is mostly the same as for reg-
ular types. There are a few subtle differences, which we will outline in this section. We
define a function IDesc-gen that derives a generator from an indexed description. Let us
first look at its type signature:

IDesc-gen : ∀ {I} {i : I} → (δ : IDesc I) → (φ : I → IDesc I)
→ Gen (⟦ δ ⟧ (Fix φ)) (λ i → ⟦ φ i ⟧ (Fix φ)) i

We take a value of type IDesc I (the description we are inducting over) and a function
I → IDesc I (describing the type for which we are deriving a generator) as input. We
return an indexed generator, which produces values of the type dictated by the semantics of
the input description. We build this generator by defining it for the various constructors of
the IDesc type.

5.2.1 Unit, product and recursive positions

The definition for `var, `1 and `× can be readily transferred from the definition of derive-
Gen. Their definition is included below:

IDesc-gen (`var i) φ = L In (μ i) M
IDesc-gen `1 φ = L tt M
IDesc-gen (δₗ `× δ𝑟) φ = L (IDesc-gen δₗ φ) , (IDesc-gen δ𝑟 φ) M

5.2.2 Generalized coproduct

The generic generators for the generalized coproduct are slightly more involved, since we
have to return a generator that produces dependent pairs. This is tricky, because the ap-
plicative combinators are not expressive enough to capture the dependency between the
generated value of the first element, and the type of the second element. This means that we
have to utilize the monadic structure of the generator type in order to be able to capture this
dependency.

IDesc-gen {i = i} (`σ n T) φ = do
sl ← Call {x = i} n Sl-gen
t ← IDesc-gen (T sl) φ
pure (_,_ {B = λ sl → ⟦ T sl ⟧ (Fix φ)} sl t)
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Here we assume that Sl-gen : (n : ℕ) → Gen𝑖 (Sl n) Sl n is in scope, producing
values of the selector type. We capture the dependency between the generated first element
of the pair, and the type of the second element using the monadic bind of the generator
type, similar to when we were defining a generator for the universe of indexed containers.
The definition is pretty straightforward, although we need to explicitly pass around some
metavariables, which Agda would otherwise not be able to solve.

5.2.3 Dependent pairs

We can reuse this exact same structure when defining a generator for `Σ, however since the
type of its first element is chosen by the user, we need the programmer to supply a suitable
generator. We use the same approach using a metadata structure as we did previously to
enable the programmer to pass generators as input to IDesc-gen. We define this metadata
structure as a datatype data IDescM I (P : Set → Set) : IDesc I → Set. It is
largely similar to the metadata structure used for regular types (section 3.2), so we refrain
from including its entire definition here. The key difference is that we now require the
programmer to store a piece of data depending on the type of the first element of a `Σ:

`Σ~ : ∀ {S : Set} {T : S → IDesc I} → P S
→ ((s : S) → IDescM P (T s)) → IDescM P (`Σ S T)

The constructor of the IDescM type associated with the generalized coproduct follows
the same structure as `Σ∼, but without a value argument, and with S instantiated to the
selector type.

If we now assume that IDesc-gen is parameterized over ametadata structure containing
generators for the first argument of the `Σ constructor, we can define a generator for its
interpretation:

IDesc-gen (`Σ S T) φ (`Σ~ S~ T~) = do
s ← Call tt (λ { tt → S~ })
t ← IDesc-gen (T s) φ (T~ s)
pure (_,_ {B = λ s → ⟦ T s ⟧ (Fix φ ) } s t)

Given a definition for deriveGen , we can use an instance of the Describe record to
define a generic generator for all types that are isomorphic to the fixpoint of some indexed
description.

48



5.2.4 Example: deriving a generator for well-typed lambda terms

of Let us look at an example in which we use deriveGen to derive a generator in order to get
a feel for how the generic mechanism defined in this section works out when we actually
try to use it. We will use the inductive description of well-typed terms to derive a generator
from.

Looking at the description, we see that we use the `Σ combinator to build dependent
pairs that have either a proof that some τ is an element of a context Γ, or a type as their first
element. This means that we require generators that produce elements of type Γ ∋ τ and
Ty:

gen∋ : (Γ : Ctx) → (τ : Ty) → Gen (Γ ∋ τ) (λ { tt → Γ ∋ τ }) tt

genTy : Gen Ty (λ { tt → Ty }) tt

How we obtain these generators is entirely up to us. We can use any of the generic
derivation mechanisms described throughout this thesis, or manually define them accord-
ing to our needs. The latter has the advantage that it lets us guide the generation process
somewhat. In the case of lambda terms, we need to choose a new type 𝜎 when using the ap-
plication rule. It might be beneficial to, for example, write a generator that will first produce
a list of types that can be found in the context, and only later will exhaustively enumerate
the space of all types.

Given that the required generators are in scope, we define ametadata structure indexed
by the inductive description of well-typed lambda terms, which shown in listing 5.9. The
structure of thismetadata structure is entirely dependent on howwedefined the description
in the first place. We only really have a choice for the first element of `Σ∼.

Listing 5.9: Metadata structure for the inductive description of well-type lambda terms

wtM : (i : Ctx × Ty)
→ IDescM (λ S → Gen S (λ { tt → S }) tt) (wt i)

wtM (Γ , `τ) =
`σ~ λ { ∙ → `Σ~ (gen∋ Γ `τ) λ _ → `1~

; (▻ ∙) → `Σ~ genTy λ _ → `var~ `×~ `var~
}

wtM (Γ , (τ₁ `→ τ₂)) =
`σ~ λ { ∙ → `Σ~ (gen∋ Γ (τ₁ `→ τ₂)) (λ s → `1~)

; (▻ ∙) → `var~
; (▻ ▻ ∙) → `Σ~ genTy (λ s → `var~ `×~ `var~) }
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The metadata structure for well-typed terms quite neatly demonstrates how our ap-
proach separates the parts of generation that can be done mechanically from the parts for
which a little help from the programmer is required. Furthermore, after creating this separa-
tion we leave the programmer with complete freedom over how they provide the necessary
generator, giving them the option to either reuse any of the generic derivation mechanisms
we described or to define the required generators directly.

5.3 Proving completeness

We aim to prove the same completeness property for generators derived from indexed de-
scriptions as we did for generators derived from regular types. Since both universes and the
functions that we use to derive generators from their inhabitants share quite a few structural
similarities, so do their respective completeness proofs. This means that we can recycle a
considerable portion of the completeness proof that we wrote for regular types.

Let us first look at the exact property we aim to prove. Since we deal with indexed
generators, the desired completeness property changes slightly. In natural language, we
might say that our goal is to prove that for every index i and value x of type P i, there is a depth
such that x occurs in the enumeration we derive from the code describing P. In Agda we formalize
this property as follows:

Complete : ∀ {I} {P : I → Set} → (i : I)
→ ((i : I) → Gen (P i) P i) → Set

Complete {I} {P} i gen =
∀ {x : P i} → ∃[ n ] (x ∈ enumerate gen i (gen i) n)

Which is essentially the same property we used for regular types, adapted for usage
with indexed types. To be able to inductively define the completeness proof, we use a slight
variation on this property that distinguishes between the generator we are inducting over,
and the generator describing recursive positions:

_∣𝑖_⇝_ : ∀ {I} {A : Set} {P : I → Set} {i : I}
→ Gen A P i → ((i : I) → Gen (P i) P i) → A → Set

In general, the second property is equivalent to the first if the two supplied generators
are the same. We then define the following completeness lemma for the generators derived
from indexed descriptions:

IDesc-gen-Complete :
∀ {δ φ x} → IDesc-gen δ φ ∣𝑖 (λ i → IDesc-gen (φ i) φ) ⇝ x

Wewill show how to define a proof for this lemma by considering the various construc-
tors of the IDesc type.
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5.3.1 Unit, product and recursive positions

The completeness proofs for `var, `1 and `× can again be transplanted almost without
changes from the proof for regular types:

IDesc-gen-Complete {`var i} {φ} {In x}
with IDesc-gen-Complete {φ i} {φ} {x}

... | prf = In-Complete prf
IDesc-gen-Complete {`1} {φ} {tt} = 1 , here
IDesc-gen-Complete {δ₁ `× δ₂} {φ} {x , y} =

`×-Complete (IDesc-gen-Complete {δ₁})
(IDesc-gen-Complete {δ₂})

Where we assume that a proofs of the following lemmas is in scope:

In-Complete : ∀ {g g' x}
→ g ∣𝑖 g' ⇝ x → (L In g M) ∣𝑖 g' ⇝ In x

`×-Complete : ∀ {g₁ g₂ g' x y}
→ g₁ ∣𝑖 g' ⇝ x → g₂ ∣𝑖 g' ⇝ y
→ L g₁ , g₂ M ∣𝑖 g' ⇝ (x , y)

Wewill not go into howwe can prove these lemmas, as we already discussed this when
describing the completeness proof for regular types.

5.3.2 Generalized coproducts and dependent pairs

Listing 5.10: Completeness for the bind operator

>>=-Complete :
∀ {I A} {P : A → Set} {T : I → Set} {x y}

{g : Gen A T x} {g' : (v : A) → Gen (P v) T y}
{x : Σ A P} {tg : (i : I) → Gen (T i) T i}

→ g ∣𝑖 tg ⇝ proj₁ x
→ g' (proj₁ x) ∣𝑖 tg ⇝ proj₂ x
→ (g >>= λ y → L (λ v → y , v) (g' y) M) ∣𝑖 tg ⇝ x

Since the generators for `Σ and `σ are assembled using monadic bind, we need to prove
that this operation is completeness preserving. Defining what completeness in general
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means for >>= is very difficult, but since both usages in IDesc-gen follow the same struc-
ture, we can get away with proving a completeness property over our specific use of the
bind operator. The lemma we use is shown in listing 5.10.

With this lemma, and an appropriatemetadata parameter supplied to our completeness
proof, we can fill in the cases for the generalized coproduct and dependent pairs, assuming
that a completeness proof for the generator producing values of the selector type is in scope.

5.3.3 Wrapping up the proof

It is worth noting that, since the universe of indexed descriptions exposes a product combi-
nator, we require a proof ofmonotonicity for generators derived using IDesc-gen as well. We
will not go into how to assemble this proof here (since its structure is essentially the same
as the monotonicity proof for regular types), but it is obviously not possible to assemble
this proof without proving the monotonicity property over our bind operation first.

Conclusion

In this chapter, we have shown how we can extend the generic derivation mechanism we
used for regular types and indexed containers can be extended to amore expressive universe
that is able to represent arbitrary indexed families. Furthermore, we have proved that the
generators we derive from codes in this universe satisfy our completeness property. We
demonstrated that this generic approach is powerful enough to generate well-typed lambda
terms, relying on the programmer to supply guidance for those parts of the datatype that
are too difficult to handle generically.

Given the fact that we have developed a mechanism to find inhabitants of arbitrary in-
dexed families, we may view this result though the Curry-Howard correspondence, which
implies that we have simultaneously obtained a mechanism is able to synthesize proofs
of propositions in arbitrary formal systems. If we place our work in the context of proof
search, we find that we can alternatively view our work as an implementation of backward-
chaining proof search [28] parameterized over a formal systemandwhose proofs are correct by
construction, enforced by Agda’s type system. In this context, our completeness property
implies that, if we enumerate these proofs, we will eventually find all proofs of a property,
given enough time and memory. Consequently, if a theorem has a proof in a given formal
system, we are guaranteed to find one in finite time. It is important to recognize that, al-
though our approach offers a great deal of flexibility, it is not very efficient. Eventually,
we exhaustively enumerate all possible proof chains that could have led to our goal type,
meaning that the practical applications of this work are most likely limited until we further
optimizations have been implemented.
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Part II

Implementation
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6
Generators for Indexed Descriptions in Haskell

We implement part of the ideas described in this thesis in Haskell to show their practical
applicability. More specifically, we port the universe of indexed descriptions as described
in section 5.1 together with the accompanying generic generator to Haskell. We show that it
is possible using this approach to generate constrained test data by describing constrained
data as an inductive datatype, and generating inhabitants of that datatype. We again con-
sider well-typed lambda terms as an example.

6.1 General approach

The general structure of our approach is notmuch different fromhowwederived generators
for indexed descriptions in Agda, and consists of the following steps:

1. First we define an abstract generator type, together with a mapping to enumerators
(i.e. functions with type Int → [a ]).

2. Next, we define a datatype for indexed descriptions, IDesc, together with its seman-
tics

3. Then we write a function that derives a generator from a value of type IDesc, pro-
ducing elements of a type dictated by the semantics of th input description.

4. Finally, we convert the generated values to some user defined, ”raw”, datatype.

Dagand originally defines the universe in a dependently typed setting [12], and simi-
larly we make extensive use of both dependent pairs and dependent function types in our
Agda development. Haskell’s type is unfortunately not expressive enough to facilitate this
approach. Instead, we will use a lot of singleton types [18] to work around this limitation.
Singleton types are a technique to simulate a restricted for of dependent types in a non
dependently typed language. They are intended to work together with the DataKinds ex-
tension [1]. A singleton type is indexed by some promoted datatype, and has exactly one
inhabitant for every inhabitant of the type it is indexed with.
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6.2 Representing indexed descriptions in Haskell

We take the datatype described in section 5.1 as our basis, adding an extra type parameter
a ∶∶ ∗, describing the raw (non-indexed) type we will be converting to. Listing 6.1 contains
the definition of this type, IDesc a i , with constructors for empty types, unit types, recursive
positions and product types taken almost directly from the corresponding Agda type.

Listing 6.1: Definition of IDesc a i in Haskell

data IDesc (a ∶∶ ∗) (i ∶∶ ∗) where
One ∶∶ IDesc a i
Empty ∶∶ IDesc a i
Var ∶∶ i → IDesc a i
( ∶∗∶ ) ∶∶ IDesc a i → IDesc a i → IDesc a i
( ∶+> ) ∶∶ Sing n → Vec (IDesc a i) n → IDesc a i
Σ ∶∶ Proxy s → IDesc a (s → i) → IDesc a i

We use variations of the constructors for the generalized coproduct and dependent
pairs, mainly because their semantics is a dependent pair, making it difficult to transfer
their definitions directly to Haskell.

6.2.1 Generalized coproducts

In the original definition, the generalized coproduct was defined by a natural number n and
a function that takes a value from the finite set of size n (Fin n) to a description number n .
We choose to use a vector (or size indexed list) in favor of a function, since this wil make
it considerably easier to define the semantics for this constructor. Assuming Nat = Zero ∣
Suc Nat is in scope, we use the following GADT to describe a vector:

data Vec (a ∶∶ ∗) (n ∶∶ Nat) where
VNil ∶∶ Vec a Zero

(∶∶∶) ∶∶ a → Vec a n → Vec a (Suc n)

We require a singleton type for natural numbers to relate the first parameter of ( ∶+> )
with the length of its second parameter.

6.2.2 The ‵Σ constructor

We choose to use a more restrictive form of the ‵Σ constructor, in order to be able to encode
its semantics in Haskell’s type system. Instead of having the second argument to ‵Σ be a
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function that maps values of the type s stored in its first argument to descriptions, we use
a single description with with type IDesc a (s → i). This has the effect of pushing the
dependency inwards: any recursive postion in this description will now store a function of
type s → i , meaning that the indices of recursive positions can still depend on a the chosen
value of type s , while the structure of the stored description will be constant. Although the-
oretically this means that we can describe fewer types, we have yet to encounter an example
of a type that cannot be described with this more restrictive universe definition.

The motivation behind this alteration is that it eliminates the dependency between the
chosen value of type s , and the semantics of the dependent pair as a whole. This works
because (as we will see in the next section, when we make the semantics precise) we use
shallow recursion, unfolding the isomorphism between a and the semantics of the description
that describes a one layer at a time. For this reason, the semantics of a recursive position
is the type a , meaning that the semantics of a description is completely independent of its
index type. By pushing the dependency on the chosen values of type s inwards to the recur-
sive indices stored, we have made this value irrelevant to the semantics of the description
as a whole.

It is important to note that we can map values of type IDesc a (s → i) to functions
with type s → IDesc a i , such that the interpretation of the resulting description is equal
for all possible arguments of type s . We will make this mapping precise when we set out to
derive generators from descriptions.

6.2.3 Semantics

Wedefine the semantics of the IDesc universe as a type family, mapping promoted values to
their semantics. The interpretation of descriptions is relatively straightforward, and largely
the same as for regular types. The semantics are shown in listing 6.2. E is a type with no
constructors, representing the empty type.

We use the following type synonym to unbox the type that is stored in a proxy:

type UnProxy (p ∶∶ Proxy a) = a

In case of the generalized coproduct, we map a vector of descriptions to a type repre-
senting a choice between the interpretation of any of the descriptions carried in that vector.
For example, we would map a vector d1 ∶∶∶ d2 ∶∶∶ VNil to the type Either (Interpret d1 )
(Interpret d2 ). We build the appropriate type by induction over the length of the vector.
We have two base cases, one for empty vectors and one for vectors containing one element.
We do so to reduce the complexity of the resulting type, preventing a vector with one el-
ement, d ∶∶∶ VNil , to be mapped to a coproduct of its semantics and the empty type. A
secondary reason is to prevent derived generators from including tomany unneeded empty
generators.
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Listing 6.2: Semantics of the IDesc type

type family Interpret (d ∶∶ IDesc a i) ∶∶ ∗
type instance Interpret One = ()
type instance Interpret Empty = E
type instance Interpret (Var ∶∶ IDesc a i) = a
type instance Interpret (dl ∶∗∶ dr) =

(Interpret dl , Interpret dr)
type instance Interpret (SZero ∶+> VNil) = E
type instance Interpret (SSuc SZero ∶+> (x ∶∶∶ VNil)) = Interpret x
type instance Interpret (SSuc (SSuc n) ∶+> (x ∶∶∶ xs)) =
Either (Interpret x ) (Interpret (SSuc n ∶+> xs))

type instance Interpret (Σ p fd) =
(UnProxy p, Interpret fd)

6.3 Deriving generators

Before we set out to describe how we derive generators from descriptions, we first briefly
outline the generator type used, and describe the singleton type for descriptions needed to
capture the dependency between the input description and the type of values produced by
the returned generator.

6.3.1 The generator type

We take the definition of the generator type, shown in listing 6.3, straight from our Agda
development. Again, we choose to not have separate generator types for indexed and non-
indexed generators, representing non-indexed types as types indexed by the unit tuple, ().

We make the Gen type an instance of Functor , Applicative , Monad and Alternative

(by relating the functions they exposed with the associated constructors), allowing us to
define generators using the familiar applicative programming style:

tree ∶∶ Gen () Tree Tree

tree = pure Leaf <∣> Node <$> 𝜇 () <∗> 𝜇 ()

6.3.2 A singleton type for descriptions

Since our goal is eventually to define a function idesc_gen ∶∶ Sing d → Gen i a (Interpret d),
we require an appropriate singleton type for the IDesc type. We again start by defining this
instance for One , Empty , Var and ∶∗∶ , shown in listing 6.4
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Listing 6.3: The Gen type in Haskell

data Gen i t a where
None ∶∶ Gen i a t
Pure ∶∶ a → Gen i a t
Or ∶∶ Gen i a t → Gen i a t → Gen i a t
Ap ∶∶ Gen i (b → a) t → Gen i b t → Gen i a t
Bind ∶∶ Gen i a t → (a → Gen i b t) → Gen i b t
𝜇 ∶∶ i → Gen i a a
Call ∶∶ (j → Gen j a a) → j → Gen i a t

Listing 6.4: Singleton instance for the IDesc type

SOne ∶∶ SingIDesc One
SEmpty ∶∶ SingIDesc Empty
SVar ∶∶ forall (i ′ ∶∶ i) . i → SingIDesc (Var i ′)
( ∶∗∶ z ) ∶∶ SingIDesc l → SingIDesc r → SingIDesc (l ∶∗∶ r)

In order to be able to define a singleton instance for the generalized coproduct, we re-
quire a singleton instance of SNat . We assume this instance, denoted SNat2 , is in scope:

( ∶+>$ ) ∶∶ SNat2 n → SVec xs → SingIDesc (n ∶+> xs)

The singleton definition for the Σ constructor (listing 6.5) has a few subtleties. First, the
type stored in its first element is required to be a member of the Promote typeclass. This
typeclass describes types which are an instance of Singleton , and for which we know how
to promote a value of type a to a value of typeSing a . ThePromote class has one associated
function promote ∶∶ a → Promoted a Sing , where Promoted is defined as follows:

data Promoted (a ∶∶ ∗) (f ∶∶ a → ∗) = forall (x ∶∶ a) . Promoted (f x )

Storing singleton values, but hiding the their index.
This results in the complete definition of SingIDesc shown in listing 6.6.
The singleton instance for Σ also stores an explicit generator for values of type s . We

could have used a typeclass here, but as we will see, when considering some examples, that
it is often more convenient to explicitly supply the generator to be used. This essentially has
the effect that SingIDesc will simultaneously function to describe the dependency between
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Listing 6.5: Singleton instance for the Σ constructor

SSigma ∶∶ Promote s ⇒ SingIDesc d
→ Gen () s s
→ (forall s ′ . Sing s ′ → Interpret d ∶∼∶ Interpret (Expand d s ′))
→ SingIDesc (Σ (Proxy ∶∶ Proxy s) d)

Listing 6.6: Singleton indexed description

data SingIDesc (d ∶∶ IDesc a i) where
SOne ∶∶ SingIDesc One
SEmpty ∶∶ SingIDesc Empty
SVar ∶∶ forall (i ′ ∶∶ i) . i → SingIDesc (Var i ′)
( ∶∗∶$ ) ∶∶ SingIDesc l → SingIDesc r → SingIDesc (l ∶∗∶ r)
( ∶+>$ ) ∶∶ SNat2 n → SVec xs → SingIDesc (n ∶+> xs)
SSigma ∶∶ Promote s ⇒ SingIDesc d

→ Gen s
→ (forall s ′ . Sing s ′ → Interpret d ∶∼∶ Interpret (Expand d s ′))
→ SingIDesc (Σ (Proxy ∶∶ Proxy s) d)

the input description, and the type of values produced by the output generator, and as a
metadata structure carrying generators for dependent pairs.

Finally, we require a proof that the interpretation of the expansion of the second argument
is equal to the interpretation of the second argument, for all values of type s . We require
this proof in order unify the index types of the generator derived for a Σ and the generator
derived from its second argument. We define the expansion operation a the type level using
a mutually recursive type family, shown in listing 6.7.

Similarly, we use two mutually recursive functions to describe expansion for singleton
descriptions (listing 6.8)

6.3.3 Constructing the generator

We now have all necessary ingredients in place to define a function idesc_gen that returns
a generator based on its input description. It has the following type signature:

idesc_gen ∶∶ forall (d ∶∶ IDesc a i) . (Singleton i)
⇒ SingIDesc d → Gen i a a (Interpret d)
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Listing 6.7: Description expansion

type family VExpand (sn ∶∶ SNat n)
(xs ∶∶ Vec (IDesc a (s → i)) n) (x ∶∶ s) ∶∶ Vec (IDesc a i) n

type instance VExpand SZero VNil s = VNil
type instance VExpand (SSuc sn) (x ∶∶∶ xs) s = Expand x s

∶∶∶ VExpand sn xs s

type family Expand (d ∶∶ IDesc a (s → i)) (x ∶∶ s) ∶∶ IDesc a iconven
type instance Expand One s = One
type instance Expand Empty s = Empty
type instance Expand (Var i) s = Var (i s)
type instance Expand (dl ∶∗∶ dr) s = (Expand dl s) ∶∗∶ (Expand dr s)
type instance Expand (sn ∶+> xs) s = sn ∶+> VExpand sn xs s
type instance Expand (Σ p d) s = Σ p (Expand d s)

The definitions for the unit type, empty type, recursive positions and product type fol-
low naturally:

idesc_gen SOne = pure ()
idesc_gen SEmpty = empty

idesc_gen (SVar v) = 𝜇 v

idesc_gen (dl ∶∗∶$ dr) = (, ) <$> idesc_gen dl <∗> idesc_gen dr

Wedefine a generator for the generalized coproduct by (again) inducting over the vector
length, returning a choice between the generator derived from the head of the vector and
the generator derived from the tail of the vector.

idesc_gen (SZero2 ∶+>$ SVNil) = empty

idesc_gen (SSuc2 SZero2 ∶+>$ (d ∶∶∶$ SVNil)) = idesc_gen d

idesc_gen (SSuc2 (SSuc2 n) ∶+>$ (d ∶∶∶$ ds)) =
Left <$> idesc_gen d

< | > Right <$> idesc_gen (SSuc2 n ∶+>$ ds)

If we now turn our attention to the generator derived from the Σ combinator, it becomes
clear why we need to define the expansion operator and the proof of equality between the
interpretation of a description and the interpretation of its expansion.

idesc_gen (SSigma desc gen eq) = do
x ← Call (𝜆() → gen) ()
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Listing 6.8: Description expansion for singletons

vexpand ∶∶ (Singleton s) ⇒ Sing sn → Sing xs → Sing s ′

→ SVec (VExpand sn xs s ′)
vexpand SZero2 SVNil s = SVNil
vexpand (SSuc2 sn) (x ∶∶∶$ xs) s = expand x s ∶∶∶$ vexpand sn xs s

expand ∶∶ (Singleton s) ⇒ Sing d → Sing s ′ → Sing (Expand d s ′)
expand SOne sv = SOne
expand SEmpty sv = SEmpty
expand (SVar ix ) sv = SVar (ix sv)
expand (dl ∶∗∶$ dr) sv = expand dl sv ∶∗∶$ expand dr sv
expand (sn ∶+>$ xs) sv = sn ∶+>$ vexpand sn xs sv

let px = promote x

case px of
Promoted x ′ → do
p ← idesc_gen (expand desc x ′)
pure (x , eqConv (eq x ′) p)

First, we obtain a suitable value for the first element by calling the supplied generator.
Next, we promote this value x to get a singleton value x ′ of type Sing x . We apply the
promoted value x ′ to the expansion of the second argument of Σ, which returns a generator
producing values which have the type Interpret (Expand desc s). We use this generator
to get a value p of this type, which we can cast to a value of type Interpret desc using the
stored equality proof.

With the definition of idesc_gen complete, we candefine a function genDesc ∶∶ forall (d ∶∶
IDesc a i) → Sing d → Gen i a a that produces elements of the raw type represented
by a description. Note that we need a conversion function to ∶∶ Interpret d → a to convert
the values produced by idesc_gen d .

6.4 Examples

We consider two examples to see how we can use the approach described in this section
to generate constrained test data. First we consider the type of finite sets (e.g. Fin), and
after that the recurring example of well-typed lambda terms. In order to be able to test the
derived generators, we assume that a function run ∶∶ (i → Gen i a a) → i → Int → [a ]
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is in scope, interpreting abstract generators as an exhaustive enumeration up to a certain
depth.

6.4.1 Finite sets

We assume the canonical definition of Fin , shown in listing 6.9. If we erase the index of
a value of type Fin n , we end up with a value of type Nat , hence Nat is the raw type of
our description. The goal is then to derive a generator producing values of typeNat , which
we interpret as values of type Fin n , but with their indices erased. This means that if we
choose n as our index, the generator can only produce values that are less than the chosen
index n . For example, index Suc (Suc Zero) should only produce the values Suc Zero or
Zero, and using index Zero should result in a generator producing no values at all.

Listing 6.9: Finite sets in Haskell

data Fin (n ∶∶ Nat) ∶∶ ∗where
FZero ∶∶ Fin (Suc n)
FSuc ∶∶ Fin n → Fin (Suc n)

We start by defining a type family that maps indices to descriptions:

type family FinDesc (n ∶∶ Nat) ∶∶ IDesc Nat Nat

type instance FinDesc Zero = Empty

type instance FinDesc (Suc n) = (SSuc (SSuc SZero))
∶+> (One ∶∶∶ Var n ∶∶∶ VNil)

If the index is Zero, we return an empty description. Otherwise we have a choice be-
tween two constructors: Suc and Zero. Next, we need to a singleton value of this descrip-
tion:

finSDesc ∶∶ Sing n → SingIDesc (FinDesc n)
finSDesc SZero = SEmpty

finSDesc (SSuc n) =
SSuc2 (SSuc2 SZero2 ) ∶+>$ (SOne ∶∶∶$ SVar n ∶∶∶$ SVNil)

In this case, the definition offinSDesc is completely dictated by our definition ofFinDesc.
Finally, we define a conversion function, mapping interpretations to values:

toFin ∶∶ Sing n → Interpret (FinDesc n) → Nat

toFin (SSuc sn) (Left ()) = Zero

toFin (SSuc sn) (Right n) = Suc n
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We are now ready to generate values using the description for Fin . We do this simply
by promoting the provided index, and calling genDesc.

genFin ∶∶ forall (n ∶∶ Nat) . Nat → Gen Nat Nat Nat

genFin n =
case promote n of

(Promoted sn) → genDesc sn

If we now run genFin , we see that it indeed produces the expected output:

> run genFin Zero 10
[]
> run genFin (Suc (Suc (Suc Zero))) 10
[Zero,Suc Zero,Suc (Suc Zero)]

6.4.2 Well-typed lambda terms

The process for generating well-typed lambda terms is exactly the same as for finite sets al-
beit slightlymore involveddue to the complexity of the datatypedescribingwell-formedness
involved. We use the description shown in listing 5.7 as a basis, modelling types, terms and
contexts with the following datatypes:

data Type = Type ∶−> Type ∣ T

data Term = TVar Nat ∣ TAbs Term ∣ TApp Term Term

type Ctx = [Type ]

We use the datatype CtxPos to describe a position in a context:

data CtxPos = Here ∣ There CtxPos

Next, we define a generator for context positions:

genElem ∶∶ Ctx → Type → Gen () CtxPos CtxPos
genElem [ ] = empty

genElem (t ∶ts) t ′ = (if t ≡ t ′ then pure Here else empty)
< | > (There <$> genElem ts t ′)

Here, genElem takes a context and a type, and returns all positions at which that type
occurs in the context. With all the necessary prerequisites in place to generate well-typed
terms, we start by defining a type family that captures an appropriate description, show
in listing 6.10. This is a direct translation of the description shown in chapter 7 5.7. Since
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Listing 6.10: Type level description of well typed terms

type VarDesc = Σ (Proxy ∶∶ Proxy CtxPos) One
type AppDesc = Σ (Proxy ∶∶ Proxy Type) (Var I ∶∗∶ Var I )
type family SLTCDesc (i ∶∶ (Ctx ,Type)) ∶∶ IDesc Term (Ctx ,Type)
type instance SLTCDesc ((, ) Γ T ) =
SSuc (SSuc SZero) ∶+> (VarDesc ∶∶∶ AppDesc ∶∶∶ VNil)

type instance SLTCDesc ((, ) Γ (t1 ∶−> t2 )) =
SSuc (SSuc (SSuc SZero)) ∶+>

(VarDesc ∶∶∶ Var ((, ) (t1 ∶Γ) t2 ) ∶∶∶ AppDesc ∶∶∶ VNil)

we never need recursive indices at the type level, we use a type family I (s ∶∶ ∗) ∶∶ i as a
placeholder for the recursive positions inside a Σ.

Next we define a singleton value that inhabits this description (listing 6.11). Its struc-
ture is again dictated completely by the type family SLTCDesc. It now becomes clear why
we chose to have the programmer explicitly supply a generator to a Σ, since we can conve-
niently apply the index context and type to genElem to obtain a generator that produces
the required context positions.

Listing 6.11: Singleton description of well typed terms

sltcDesc ∶∶ Sing i → Sing (SLTCDesc i)
sltcDesc (SPair Γ ST ) = (SSuc2 (SSuc2 SZero2 )) ∶+>$

( SSigma SOne (genElem Γ T ) (\_ → Refl)
∶∶∶$ SSigma (SVar (𝜆𝜎 → (Γ, 𝜎 ∶−> T )) ∶∗∶$ SVar (Γ, ))

genType (\_ → Refl)
∶∶∶$ SVNil)

sltcDesc (SPair Γ (t1 ∶−>$ t2 )) = (SSuc2 (SSuc2 (SSuc2 SZero2 ))) ∶+>$
( SSigma SOne (genElem (Γ) (t1 ∶−> t2 )) (\_ → Refl)

∶∶∶$ SVar (t1 ∶Γ, t2 )
∶∶∶$ SSigma (SVar (𝜆𝜎 → (Γ, 𝜎 ∶−> (t1 ∶−> t2 ))) ∶∗∶$ SVar (Γ, ))

genType (\_ → Refl)
∶∶∶$ SVNil)

We now only have to define a convertion function that takes generated values and pro-
duces raw terms:
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toTerm ∶∶ Sing i → Interpret (SLTCDesc i) → Term

toTerm (SPair ST ) (Left (n , ())) = TVar (toNat n)
toTerm (SPair ST ) (Right ( , (t1 , t2 ))) = TApp t1 t2

toTerm (SPair ( ∶−>$ )) (Left (n , ())) = TVar (toNat n)
toTerm (SPair ( ∶−>$ )) (Right (Left y)) = TAbs y

toTerm (SPair ( ∶−>$ )) (Right (Right ( , (t1 , t2 )))) = TApp t1 t2

Giving us everything we need to start generating well-typed terms. We do this again by
promoting the supplied index, and calling genDesc with this value:

termGen ∶∶ (Ctx ,Type) → Gen (Ctx ,Type) Term Term

termGen i =
case promote i of

(Promoted i ′) → genDesc i ′

We can now use run termGen to produce well-typed given a context and a goal type:

�> run termGen ([T , T :-> T] , T) 3
[TVar Zero,TApp (TVar ... ... ... (TVar (Suc (Suc (Suc Zero))))))]

To assert that the produced values are indeed type correct, we define a function check ∶∶
Ctx → Type → Term → Bool that checks whether a raw term has a certain type under
certain context.

�> all (check [T , T :-> T] T) $ run termGen ([T , T :-> T] , T) 3
True

Conclusion

Wehave given an implementation of the generic generator for indexeddescriptions inHaskell,
whose produced elements satisfy the constraint described by the input description by con-
struction. Perhaps surprisingly so, we have been able to enforce the same static guarantees
in the Haskell development as in our Agda development, without sacrificing too much in
terms of expressiveness. Of course, the question what exactly we lose by restricting the ‵Σ
constructor remains a lingering question, which is definitely not easy to answer; writing a
description in Agda that we cannot convert to the Haskell development is easy, but who is
to say that no other description exists describing the same type, which we can write with
the Haskell datatype.

It is worth noting that we have been as true as possible to the Agda development, for-
feiting possible change in design. The primary reason for this is that it allows us to use
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the completeness proof we have written in Agda as an argument for the correctness of our
Haskell development with greater confidence.

With this implementation, we have provided a framework in Haskell with which it is
indeed possible to generate constrained test data, so long we are able to find a suitable
indexed family that describes the relevant constraints. We considered the recurring example
of well-typed lambda terms, and have shown howwell-formed raw terms can be generated.
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7
Discussion

In this final chapter, we will discuss the work presented in this thesis and place it in the
context of existing literature. Will also consider some possible next steps, and reflect on the
results and some of the design choices we have made.

7.1 Conclusion

We have explored various approaches to the generation of test data using datatype generic
programming, with the ultimate goal being to be able to generate test data that is subject
to arbitrary constraints. Based on the observation that constrained test data can often be
described as an indexed family, we approached this problem by looking at how to generate
values of indexed families. We have looked at three distinct type universes, starting with
the universe of Regular types, which is able to describe a set of algebraic datatypes roughly
equal to the algebraic datatypes in Haskell 98 [22]. We described this universe in Agda, and
showed how a generator can be derived from a code in this universe. Although the exact
generator type is kept abstract in this derivation, we have described an example instantiation
where generators are functions of type Int → List a, similar to SmallCheck’s Series [34]
typeclass. For this particular generator type, we have proved that the generator derived
from a code is complete. That is, every value of the type described by the input code will
eventually show up in the enumeration.

We then looked at twomore expressive type universes, which are able to describe (some)
indexed datatypes: Indexed Containers [5] and Indexed Descriptions [12]. For both universes,
we described how a generic generator may be constructed from codes in these universes.
For the universe of indexed descriptions, we also proved that the enumerative instantia-
tion of the generator type satisfied our completeness property. For indexed containers, we
were unfortunately not able to complete this proof. Attempts to construct a proof using the
same structure as used to construct the completeness proofs for regular types and indexed
descriptions failed, as this approach would require induction over function types.

Having constructed a mechanism that allows generation for arbitrary indexed families
in Agda, we implemented the generic generator for indexed descriptions in Haskell. Al-
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though in order to enforce correctness of the generated data in Haskell’s type system we
needed to impose some restrictions on the descriptions that could be used, we were still
able to describe all the example datatypes. We used this implementation to generate some
example constrained test data, including well-typed lambda terms. The final result is a
Haskell library that is able to generate constrained test data, given that the user provides a
description of an indexed family that describes the desired test data.

7.2 Reflection

While the framework we have developed is very flexible and expressive in terms of what
kind of test datawe can generate, it is important to recognize that it is still verymuch experi-
mental, and that much improvement is needed before it can be used in any practical setting.
Here, we shortly outline some of the problems that remain with our current development,
and critically reflect on some of the design choices made along the way.

7.2.1 Remaining problems

First, finding a description that accurately describes an indexed family is not at all trivial.
Often, there exist multiple descriptions that all describe the same datatype. These differ-
ent descriptions are all mapped to distinct generators, which may not necessarily exhibit
the same behavior in terms of computational efficiency, or the order in which elements are
generated. The fact that Haskell’s type system in noway enforces the semantics of the input
description to be actually isomorphic to the datatype it describes leaves room for mistakes
when defining descriptions and the conversion between their semantics and the desired
datatype. Furthermore, it is hard to say how well this approach scales when we require
more complex test data, especially since this would require the programmer to come up
with increasingly complex descriptions. Although our Agda formalization allows us to be
reasonably confident that the generators we derive indeed produce values of the intended
datatype, we have no knowledge about how efficient they are at doing this, and to what
extent a generator’s efficiency depends on the structure of the derived generator.

7.2.2 Design choices

While we did in the end reach our goal of developing a method for generation of arbitrary
indexed families, there are some aspects of our development for which, in hindsight, a dif-
ferent approach or design might have been beneficial.
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Instantiation of the abstract generator type

The primary reason we settled for the particular enumerative interpretation of generators
that we use in our model is that it is relatively convenient to work with and easy to reason
about. While these are important properties when assembling a theoretical model, there
are some practical downsides. Most notably, the size parameter we choose is very crude,
giving the programmer little control over the amount of test values generated.

We have looked at Colists in combination with sized types [4] to use as a result type for
our generators. Colists allow (possible) infinite lists to be defined in Agda (normally the
termination checker does not allow this) bymaking the operational semantics explicit. Sized
types further expand the space of functionswe candefine by including information about the
size of values in the type. The nice thing about having colists as our result type is that they
give the user a lot of control over the amount of elements generated. Furthermore, infinite
lists are idiomatic in Haskell, making it likely that generators producing colists carry over
well once we implement our development in Haskell.

Unfortunately, wewere unable tomake this approachwork, specifically because we had
trouble convincingAgda’s termination checker that our notion of cartesian product between
two colists was terminating, even with the usage of sized types.

Usage of existing libraries

In many places throughout our Agda model, we have performed unnecessary work by
defining functionality that is already defined in Agda’s standard library. Although this
is perhaps unsurprising given the author’s unfamiliarity with Agda previous to this work,
it still harms the composability and reusability of our development. A similar concern ex-
ists with the Haskell library, which relies on our own notion of singleton types, instead of
using the existing package.

Completeness property

While our completeness property guarantees that all values of a type will eventually be
generated, it still leaves a lot of room for erroneous behavior of generators. Mainly, it does
not guarantee anything about the order in which generators produce elements, and allows
enumerations to contain the same value more than once. While the completeness property
we have chosenworks fine if we regard it just as a sanity check that the generators we derive
do not contain any fatal mistakes, it does not guarantee that these generators are actually
usable in practice.
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7.3 Related Work

In this section, we briefly discuss some of the academic context surrounding our work.

7.3.1 Libraries for property based testing

Different libraries may take different approaches towards the generation of test data. Study-
ing these libraries provides us with valuable insight into the established methods for test
data generation, and how these methods relate to our work.

QuickCheck

Published in 2000 by Claessen & Hughes [10], QuickCheck implements property based
testing forHaskell. Test values are generated by sampling randomly from the domain of test
values. QuickCheck supplies the typeclass Arbitrary, whose instances are those types for
which random values can be generated. A property of type a → Bool can be tested if a is an
instance of Arbitrary. Although instances formost commonHaskell types are supplied by
the library, QuickCheck refrains from employing any form of generic programming, instead
choosing to provide a comprehensive set of combinators with which a programmer can
assemble generators.

Perhaps somewhat surprising is that QuickCheck is also able randomly generate values
for function types bymodifying the seed of the randomgenerator (which is used to generate
the function’s output) based on it’s input.

SmallCheck

Contrary to QuickCheck, SmallCheck [34] takes an enumerative approach to the generation
of test data. While the approach to formulation and testing of properties is largely similar to
QuickCheck’s, test values are not generated at random, but rather exhaustively enumerated
up to a certain recursive depth. Zero-arity constructors have depth 0, while the depth of any
positive arity constructor is one greather than the maximum depth of its arguments. The
motivation behind this approach is the small scope hypothesis, which states that if a program is
incorrect, then it will almost allways fail on some small input value [6].

In addition to SmallCheck, there is also Lazy SmallCheck, which evaluates properties on
partial test values, making it possible to test entire classes of test data at once.

LeanCheck

Where SmallCheck uses a value’s depth to bound the number of test values, LeanCheck uses a
value’s size [27], where size is defined as the number of construction applications of positive
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arity. This gives a more fine-grained notion of size, which helps to battle the rapid growth
of the space of test values.

Feat

A downside to both SmallCheck and LeanCheck is that they they are very inefficient when
it comes to the generation of large test values; they both require all that are smaller (in terms
of their respective definition of size) to be enumerated first. QuickCheck has no problem
with either, but generators are often more tedious to write compared to their SmallCheck
counterpart. Feat [17] aims to fill this gap by providing a way to efficiently enumerate
algebraic types, employingmemoization techniques to efficiently index these enumerations.

Hedgehog

Hedgehog [37] is a framework similar to QuickCheck, that employs random sampling to
find test values. Hedgehog has no facilities for the automatic derivation of generators, and
is even more rigorous in its approach than QuickCheck, only exposing a minimal set of
combinators with which users can assemble their own generator.

QuickChick

QuickChick is a QuickCheck clone for the proof assistant Coq [16]. The fact that Coq is
a proof assistant enables the user to reason about the testing framework itself [33]. This
allows one, for example, to prove that generators adhere to some distribution.

QuickSpec

A surprising application of property based testing is the automatic generation of program
specifications, proposed by Claessen et al. [11] with the tool QuickSpec. QuickSpec auto-
matically generates a set of candidate formal specifications given a list of pure functions,
specifically in the form of algebraic equations. Random property based testing is then used
to falsify specifications. In the end, the user is presented with a set of equations for which
no counterexample was found.

7.3.2 Type universes

Besides the universes of of indexed containers and indexed descriptions, other generic rep-
resentations of indexed families have been developed as well. Here we briefly discuss some
alternative type universes.
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Indexed functors

Löh and Magalhães propose in their paper Generic Programming with Indexed Functors [24]
a type universe for generic programming in Agda, that is able to handle a large class of
indexed datatypes. Their universe takes the universe of regular types as a basis.

The semantics of the universe, however, is not a functor Set → Set, but rather an indexed
functor (I → Set) → O → Set. Additionally, they add some combinators, such as first order
constructors to encode isomorphisms and fixpoints as part of their universe.

Combinatorial species

Combinatorial species [42] were originally developed as a mathematical framework, but
can also be used as an alternative way of looking at datatypes. A species can, in terms
of functional programming, be thought of as a type constructor with one polymorphic ar-
gument. Haskell’s algebraid datatypes (or regular types in general) can be described by
defining familiar combinators for species, such as sum and product.

Mutually recursive sums of product

On of the more simple representations is the so called Sum of Products view [15], where
datatypes are respresented as a choice between an arbitrary amount of constructors, each of
which can have any arity. This view corresponds to how datatypes are defined in Haskell,
and is closely related to the universe of regular types. As we have seen when discussing
regular types, other universes too employ sum and product combinators to describe the
structure of datatypes, though they do not necessarily enforce the representation to be in
disjunctive normal form. Sum of Products, in its simplest form, cannot represent mutually
recursive families of datatypes. An extension that allows this has been developed in [29],
and is available as a Haskell library through Hackage.

7.3.3 Generating constrained test data

Some work in the direction of generating constrained test data has already be done. For
example, an approach to generation of constrained test data for Coq’s QuickChick was pro-
posed by Lampropoulos et al. [23] in their 2017 paper Generating Good Generators for Inductive
Relations. They observe a the same common pattern onwhich thework in this thesis is based,
where the required test data is of a simple type, but constrained by some precondition. The
precondition can then be modeled as some inductive dependent relation indexed by said
simple type. The Sorted datatype shown in chapter 1 is a good example of this

They derive generators for such datatypes by abstracting over dependent inductive re-
lations indexed by simple types. For every constructor, the resulting type uses a set of
expressions as indices, that may depend on the constructor’s arguments and universally
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quantified variables. These expressions induce a set of unification constraints that apply
when using that particular constructor. These unification constraints are then used when
constructing generators to ensure that only values for which the dependent inductive rela-
tion is inhabited are generated.

A slightly different approach was taken by Claessen and Duregaard [9], who adapt the
techniques described by Duregaard [17] to allow efficient generation of constrained data.
They use a variation on rejection sampling, where the space of values is gradually refined
by rejecting classes of values through partial evaluation (similar to Lazy SmallCheck [34])
until a value satisfying the imposed constrained is found.

7.3.4 Generating well-typed lambda terms

Aproblemoften considered in literature is the generation of (well-typed) lambda terms [32,
19, 9]. Good generation of arbitrary program terms is especially interesting in the context of
testing compiler infrastructure, and lambda terms provide a natural first step towards that
goal.

An approach centered around the semantics of the simply typed lambda calculus is de-
scribed by Pałka et al. [32]. Contrary to the work done by Claessen and Duregaard [9],
where typechecking is viewed as a black box, they utilize definition of the typing rules to
devise an algorithm for generation of random lambda terms. The basic approach is to take
some input type, and randomly select an inference rule from the set of rules that could have
been applied to arrive at the goal type. Obviously, such a procedure does not guarantee ter-
mination, as repeated application of the function application rule will lead to an arbitrarily
large goal type. As such, the algorithm requires a maximum search depth and backtrack-
ing in order to guarantee that a suitable term will eventually be generated, though it is not
guaranteed that such a term exists if a bound on term size is enforced [30].

Wang [40] considered the problem of generating closed untyped lambda terms. Fur-
thermore, Claessen and Duregaard [9] specifically apply their work to the problem of gen-
eratingwell-typed lambda terms, considering this particular problem as a running example
throughout their paper.

7.4 Next steps & future work

As highlighted throughout this chapter, there is plenty of room for improvement upon the
current state of the work. In this section we discuss a few of the possibilities.

Generator optimizations

As of yet, no work has been done to make generators more efficient. In practice, this means
that the derived generators are likely to be too slow to generate usable data formost practical
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applications. One of the more promising approaches to fix this is by memoization. It is
likely that a generator solves the same subproblem many times, so it could greatly benefit
in terms of efficiency by reusing previous solutions. For example, when generating a well-
typed lambda term, the generator might encounter the same combination of goal context
and type multiple times, meaning that it solves the same subproblem more often than it
needs to. We might find inspiration in the work done by Claessen and Duregård [17], who
devised a memoization strategy that allows for efficient indexing of the enumeration of
algebraic datatypes.

Generating mutually recursive families

As of yet, the library we have developed cannot be used to generate inhabitants of mu-
tually recursive datatypes. This is a severe limitation, as many abstract syntax datatypes
utilize mutual recursion. Type universes that are able to represent mutually recursive types
exist [29][41], however they are not necessarily able to represent arbitrary indexed fami-
lies. Bringert and Ranta [7] propose a pattern for converting mutually recursive types to
a GADT, indexed with a tag that marks which datatype of the mutually recursive family a
recursive position refers to. Yakushev et al. [41] use this technique for their approach. Our
Haskell library is expressive enough to generate values for these GADT’s, so this appears
to be a promising approach to generation of mutually recursive indexed families.

Integration with existing testing frameworks

We have provided a sample instantiation of the abstract generator type as a bounded enu-
meration. However, theoretically it is possible to transform the abstract generator type to
any desired generator type, as long as we are able to come up with a suitable mapping.
This allows our library to be potentially integrated with external testing libaries by defin-
ing a mapping between the abstract generator type, and the type of generators used by a
particular library. For SmallCheck, this is simple enough, as their generator type is almost
exactly equal to our example instantiation. However, when transforming abstract genera-
tors to sampling generators (such as used in QuickCheck and Hedgehog), this mapping is
not at all trivial. Most notably, it is not immediately clear how we should deal with genera-
tors that produce no elements, and recursive positions. Especially deriving sized generators
for the QuickCheck library is challenging without including additional information in the
abstract generator type.

Property based testing for GADT’s

Most testing frameworks for Haskell currently only include functionality to generate values
of regular algebraic datatypes. Ifwewere to test a function that has aGADTas its input type,
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we are only left with the possibility of defining a custom generator for the type. Since the
universe of indexed descriptions is potentially expressive enough to describe any GADT,
we could leverage the work from this thesis to extend existing testing libraries with the
possibility to automatically derive generators for GADT’s.

Increasing usability and practicality of the Haskell Library

Currently, the provided library that implements generic generators for indexed descriptions
is very basic, and requires the user to supply both a type family describing the datatype,
as well as a singleton value. Additionally, they need to write a conversion function that
converts the generated values to a non-indexed type. In terms of practicality and usability
there is much to be gained by further automating this process. Possibilities include the def-
inition of smart constructors to abstract over common patterns, and using template Haskell
[36] to (partially) automate the definition of the singleton description from the type level
description, making a ”bootstrapping” approach in which we single out the difficult parts
of generation for a larger datatype, and reuse our facilities to derive generators for these
bottlenecks much more feasible.

Generating well-formed programs in a realistic programming language

The examples presented in this thesis aremostly relatively simple indexed families. In order
to further investigate the practical applicability of our work, we think that it is essential to
study how our approach applies to a more complex example. A prime candidate for this
purpose would be term generation for Plutus Core, which motivated our work in the first
place. James Chapman’s formalization in Agda, which is available through IOHK’s website
[8], would be a natural starting point for this.
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