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Introduction

One of the main objectives of Algebraic Topology is to associate algebraic invariants to topo-
logical spaces. There are plenty and of many different flavours, but some of them – namely
cohomology theories – are closely related to other topological objects called spectra. These ob-
jects arise in a quite natural way, and one can view them as some generalization of spaces: it is
possible to do homotopy theory or cohomology theory of spectra, but furthermore they have
better properties than spaces.

In this Master’s thesis we aim to describe the equivariant version of the former, namely
given a (finite) group G, we want to explore cohomology theories for G-spaces (which encode
the equivariant phenomena) and the equivariant version of spectra. Our main example, which
gives the title of the thesis, will be K-theory with Reality, a slightly different version for Z/2-
spaces of the usual complex K-theory.

The main goal of this thesis is to relate real K-theory and K-theory with Reality at the level
of spectra. The standard way to do this is using the homotopy fixed points spectral sequence,
constructed by Dugger in [8]. However, we will present a different version, quite uncommon
in the literature, which avoids the computation of the spectral sequence. Therefore, this thesis
also has the purpose to present a self-contained solution to this problem.

Throughout this thesis, we denote by Top the category of compactly generated topological
spaces (that is, weak Hausdorff k-spaces1), so that we have a convenient category of spaces. This
means that Top is complete and cocomplete, (that is, it has all small limits and colimits), and it
is cartesian closed, meaning that the direct product X × Y and the hom-set Map(X, Y) can be
endowed with compactly generated topologies such that there is a natural homeomorphism

Map(X×Y, Z) ∼= Map(X, Map(Y, Z)).

This category is large enough to contain CW-complexes, metric spaces, topological manifolds
and in general locally compact Hausdorff spaces. We will refer to objects in Top simply as
“spaces”.

Similarly, we denote by Top∗ the category of well-pointed spaces, that is, based spaces
(X, x0) with the property that the inclusion {x0} ↪−→ X is a Hurewicz cofibration. The sus-
pension Σ and the loop space Ω preserve well-pointedness and the compactly generated to-
pology (see [5, VII.1.9] and [5, §VII.6], so they define the usual suspension-loop adjunction
Σ : Top∗ � Top∗ : Ω. It is also worth mentioning that the smash product ∧ also preserves
well-pointedness [40, §5.4].

1A topological space X is a k-space if the closed subsets A ⊂ X are precisely those for which for any map
u : K −→ X with K compact Hausdorff, u−1(A) is closed in K. A topological space X is weak Hausdorff if
u(K) ⊂ X is closed for any map u : K −→ X with K compact Hausdorff.
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Structure of the Thesis

In chapter 1, we firstly introduce G-spaces from a categorical perpective, where G is a finite
group. Then we introduce G-CW-complexes and develop homotopy theory from the equiva-
riant perspective, restating the classical results of Whitehead, cellular approximation, etc. We
also construct a model structure in the category of G-spaces and prove Elmendorf’s theorem,
and at the end of the chapter we present Bredon homology and cohomology.

In chapter 2, we start by reviewing complex and real K-theory, recall their basic properties,
lift them to cohomology theories and find classifying spaces for them. In the second part, we
introduce K-theory with Reality for Z/2-spaces, and mimic the results from the first part of
the chapter. We also find a classifying space for it and find two equivariant versions of Bott
periodicity. The standard and only reference where one can find a full description of K-theory
with Reality is Atiyah’s original paper [1], where he uses a not very desirable notation and
mostly deals with relative groups instead of the more usual reduced groups. We present here,
we believe, a better exposition of K-theory with Reality, following the spirit of Hatcher’s Vector
bundles and K-theory [14], but also emphasizing the role played by classifying spaces.

In chapter 3, we construct the categories of spectra and orthogonal spectra following the
modern perspective of Model categories of diagram spectra [24]. We briefly discuss enriched ca-
tegory theory and diagram spaces first, and we define (orthogonal) spectra as the category of
modules over some monoid object on D-spaces for suitable diagrams. We also discuss ho-
motopy theory of spectra, and we endow both categories with model structures. At last, we
introduce the stable homotopy category, and discuss its most important properties.

In chapter 4, we present G-spectra and orthogonal G-spectra: the analogues of spectra for
the equivariant setup. As the main example, we lift K-theory with Reality to a Z/2-spectrum.
We also discuss some equivariant homotopy theory for G-spectra and describe a model struc-
ture on it, inducing the equivariant stable homotopy category. Later we discuss RO(G)-graded
cohomology theories, and lift K-theory with Reality to a RO(Z/2)-graded one. At the end, we
show the main result of this Master’s thesis, stating that the homotopy fixed points of the
Z/2-spectrum of K-theory with Reality is isomorphic, in the stable homotopy category, to the
spectrum of real K-theory.



Contents

Acknowledgments v

Introduction vii

1 The category of G-spaces 1
1.1 A categorical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Equivariant homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Elmendorf theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Homology and cohomology of G-spaces . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Topological K-theory 19
2.1 Complex and real K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 K-theory as a reduced cohomology theory. Classifying spaces. . . . . . . . . . . . 23
2.3 KR-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Stable homotopy theory 37
3.1 Diagram spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Spectra and orthogonal spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Homotopy theory of spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 The stable homotopy category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Equivariant stable homotopy theory 65
4.1 G-spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 RO(G)-graded cohomology theories . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 The homotopy fixed points of the KR-spectrum . . . . . . . . . . . . . . . . . . . . 77

A Model categories 85
A.1 Model structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 The homotopy category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.3 Quillen functors and derived functors . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4 The model structure of topological spaces . . . . . . . . . . . . . . . . . . . . . . . 92
A.5 Triangulated categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 101

Index of Notation 103

Index 105

ix



x CONTENTS



Chapter 1

The category of G-spaces

K-theory with Reality deals with spaces with an involution, that is, spaces with a Z/2-action.
In order to construct the general framework of equivariant stable homotopy theory, it will be
necessary to discuss in the first place about the general theory of spaces with a group action
and lay the foundations of equivariant homotopy theory, that is, how to adapt the well-known
homotopy theory of spaces when we introduce the action of a group. For the rest of this text,
we let G be a finite group. Some of our results are also true for compact Lie groups, but we
will not treat this case.

In §1.1 and §1.2, we mostly use [3] and [31], although all proofs we present are original
work of the author. In §1.3 we follow the great exposition of [37], and in §1.4 we make use of
[3] and [25]. Concretely, in 1.4.4 we fix a mistake that appears in [3, 1.4.8].

1.1 A categorical setup

We can regard our group G as a category with one object • and Hom(•, •) := G: the identity
is given by the neutral element e ∈ G and composition is defined by the product of G.

Definition. The category of G-spaces is the functor category GTop := TopG.
Similarly, the category of based G-spaces is the functor category GTop∗ := TopG

∗ .

An alternative description is the following: there is a monad

G×− : Top −→ Top

with unit η and multiplication µ given by
ηX : X G× X

x (e, x),

µX : G× G× X G× X

(g, g′, x) (gg′, x).

For the based case, there is a monad1

G+ ∧− : Top∗ −→ Top∗

with unit X −→ G+ ∧ X and multiplication (G× G)+ ∧ X −→ G+ ∧ X as above.

Proposition 1.1.1 The category of G-spaces (resp. based G-spaces) is isomorphic to the category of
algebras over the monad G×− (resp. G+ ∧−).

Moreover, GTop and GTop∗ are both complete and cocomplete.
1For a space Y, we write Y+ := Y ä ∗.

1



2 CHAPTER 1. THE CATEGORY OF G-SPACES

Proof. Unravelling definitions, we see that in both cases a G-space consists of a topological
space X together with a continuous map G × X −→ X satisfying the required associativity
and unit conditions; and the morphisms are the G-equivariant continuous maps X −→ Y.
The second assertion follows from the fact that if J is a small category and C is complete and
cocomplete, so is CJ (see [31, §3.3]). The based case is similar.

We now define some useful concepts in the theory of G-spaces:

Definition. Let X : G −→ Top be a G-space.

(a) The translation grupoid of X is the category TGX whose objects are elements x ∈ X and
whose morphisms are g : x −→ y for g ∈ G whenever gx = y.

(b) The isotropy subgroup or stabilizer at x ∈ X is Ix := HomTGX(x, x)

(c) The orbits G · x of the group action are the elements of sk(TGX), the skeleton2 of TGX.

(d) The fixed points of X is XG := lim X.

(e) The orbit space of X is X/G := colim X.

Of course, these definitions coincide with the usual notions on G-spaces,

Ix = {g ∈ G : gx = x} , G · x = {gx ∈ X : g ∈ G},
XG = {x ∈ X : G · x = {x}} , X/G = X/ ∼, x ∼ gx.

Every monad gives rise to an adjunction between a category and the category of algebras
over the monad. In our case it takes the form

Top ⊥ GTop

F

U

where U is the obvious forgetful functor and FX := G×X with the obvious action g · (g′, x) :=
(gg′, x). For the based case this is analogous.

For (based) topological spaces X, Y, we let Map(X, Y) be the space of (based) continuous
maps X −→ Y.

Definition. Let X, Y be (based) G-spaces. We will write MapG(X, Y) ⊂ Map(UX, UY) for the
space of G-equivariant maps X −→ Y, endowed with the subspace topology of Map(UX, UY).

Moreover, we will write GMap(X, Y) := Map(UX, UY) for the G-space of maps X −→ Y,
where G acts as

(g · f )(x) := g−1 f (gx).

Lemma 1.1.2 GMap(X, Y)G = MapG(X, Y).

Proof. A map f is a fixed point of GMap(X, Y) if and only if g · f = f , that is, g−1 f (gx) =
f (x) for all x ∈ X. This expression is rewritten as f (gx) = g f (x), which means that f is
G-equivariant. Both topologies agree by definition.

2A category C is skeletal if there is only one object in every isomorphism class. The skeleton sk C of C is the
unique (up to isomorphism) skeletal category equivalent to C.
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Example 1.1.3 Let ϕ : H −→ G be a group homomorphism. This can be viewed as a functor
between categories with only one object, which induces a precomposition functor ϕ∗ : TopG =
GTop −→ HTop = TopH that we consider as a restriction of scalars functor, by analogy with
commutative algebra. The left and right Kan extensions of an H-space define left and right
adjoints to the restriction of scalars functor, called induction and coinduction,

HTop GTop

indG
H

coindG
H

⊥

⊥

ϕ∗

which are given by the balanced product

indG
HX := G×H X := G× X/ ∼ , (gh, x) ∼ (g, hx)

for all g ∈ G, h ∈ H, x ∈ X; and

coindG
HX := MapH(ϕ∗G, X).

For the induction indG
HX, the group G acts via the left action on G, g · [(g′, x)] := [(gg′, x)].

For the coinduction coindG
HX, the group G acts as (g · f )(g′) := f (g′g). It is routine to check

that these are well-defined G-actions. The upshot is that given a G-space X and an H-space Y
we have bijections

MapG(G×H Y, X) ∼= MapH(Y, X), (1.1)
MapH(ϕ∗X, Y) ∼= MapG(X, MapH(G, Y)). (1.2)

For based G-spaces, this is rewritten as

MapG(G+ ∧H Y, X) ∼= MapH(Y, X), (1.3)
MapH(ϕ∗X, Y) ∼= MapG(X, MapH(G+, Y)). (1.4)

If G = e is the trivial group, then viewed as a category it is the discrete category with
one single object; thus the unique group homomorphism H −→ e induces the unique functor
H −→ e. In this case, the left and right Kan extensions along this functor are the colimit and
limit of the chosen H-space, respectively (see [31, 6.5.1]), so

inde
HX = colim X = X/H , coinde

HX = lim X = XH.

In conclusion, rewriting G for the nontrivial group for a more familiar notation, we recover
the adjunctions

MapG(Y, X) ∼= Map(Y, XG), (1.5)
MapG(X, Y) ∼= Map(X/G, Y), (1.6)

where X is a G-space and Y has the trivial G-action, both based and unbased.
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Example 1.1.4 In the first place observe that if H ⊂ G is a subgroup of G, then given a G-space
X we obtain an H-space by restriction of scalars, that we will also denote as X, so we can
consider the H-fixed points of X.

Now consider the orbit category OG, whose objects are the G-spaces of left cosets G/H,
and whose morphisms are G-equivariant maps G/H −→ G/K. It is easy to see that there is
a G-map G/H −→ G/K if and only if H is subconjugate of K, ie, there is γ ∈ G such that
γ−1Hγ ⊂ K, and such map must be of the form [g] 7→ [gγ].

Then the claim is that taking fixed points with respect to a subgroup of G is the right Kan
extension of X along the embedding G ↪−→ Oop

G sending the single object to G/e,

G Top

Oop
G

X

Ran X=X(−)

Indeed, by the explicit description of the right Kan extension [31, 6.2.1], the limit that

defines (Ran X)(G/H) is given by the limit of the composite H −→ G X−→ Top, which is
XH. The upshot is that (Ran X)(G/H) = XH and a morphism γ : G/H −→ G/K as before is
sent to XK −→ XH, x 7→ γx.

Lemma 1.1.5 Let X be a (based) G-space. We have the following homeomorphisms:

1. XH ∼= MapG(G/H, X). For the based case, XH ∼= MapG((G/H)+, X).

2. G×H X ∼= G/H × X. For the based case, G+ ∧H X ∼= (G/H)+ ∧ X

3. MapH(G, X) ∼= GMap(G/H, X). For the based case, MapH(G+, X) ∼= GMap((G/H)+, X).

Proof. 1. Every G-equivariant map f : G/H −→ X corresponds to the element f ([e]) in X,
which is an H-fixed point since h f ([e]) = f ([h]) = f ([e]). Conversely, given an H-fixed point
x ∈ XH, we consider the map f ([g]) := gx, which is well defined as f ([gh]) = ghx = gx. Both
assignments are obviously continuous and it is straightforward to check that one is inverse of
each other.

2. By (1.1), giving a G-map G×H X −→ G/H × X is the same as giving an H-map X −→
G/H × X. The assignment x 7→ ([e], x) has as inverse ([g], x) 7→ (g, g−1x), and as before it is
easy to do the usual checkings.

3. This is a consequence of the universal property of the quotient.

In particular, the previous lemma says that XG = lim X ∼= MapG(∗, X). As for the rest of
limits and colimits, we also have the notion with the right homotopy type (see page 95):

Definition. Let X be a G-space. The homotopy fixed points of X is XhG := holim X.

We aim to give a more explicit description of the homotopy fixed points of a G-space.
Consider the simplicial space

E∗G : ∆op −→ Top , EnG := G× n+1· · · × G,

where the face and degeneracy maps are the following: write g0|g1| · · · |gn| for an element
of EnG, also with the bars indexed from 0 to n. Then the face map di “deletes” the i-th bar;
and the degeneracy map si “inserts” e| after the i-th bar. This space is usually called the bar
construction of the one-point space associated to the free a forgetful adjunction of G-spaces.
Write EG := |E∗G| for its geometric realization. Moverover, the multiplication of G factorwise
induces a G-action on EG.
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Proposition 1.1.6 For a G-space X, we have that XhG ∼= MapG(EG, X).
In the based case, XhG ∼= MapG(EG+, X).

Proof. We will use the explicit description of the homotopy limit given in A.4.4. We again view
G as a category with only one object •. The first observation is that EG ∼= |N(G/•)|, where
N(G/•) denotes the nerve of the slice category G/•. Indeed, N(G/•)n consists of diagrams

• • • · · · •

•

h1

g0

h2

g1

h3

g2

hn

gn

where the hi are determined by the gi (they must satisfy gi = gi+1hi+1), so N(G/•)n is in

bijection with EnG = G× n+1· · · × G. In particular, it is straightforward to see that this bijection
commutes with the face and degeneracy maps of both simplicial spaces, so N(G/•)

∼=−→ E∗G
is an isomorphism of simplicial spaces.

Now, by A.4.4, we have that

XhG ∼= eq

(
XEG ⇒∏

G
XEG

)
,

where for f : EG −→ X, the first arrow is the composite

EG
f−→ X

g·−→ X

in the factor indexed by g ∈ G; and the second arrow is the composite

EG
g·−→ EG

f−→ X

in the factor indexed by g ∈ G. In other words, XhG is the subspace of XEG of maps f : EG −→
X such that f g = g f , that is, the space of G-equivariant maps MapG(EG, X).

1.2 Equivariant homotopy theory

Now that we have described G-spaces, we now continue to develop homotopy theory on them.
The first step, of course, is to specify what a homotopy should be.

Definition. Let f0, f1 : X −→ Y be G-equivariant maps and let G act trivially on I = [0, 1]. A
G-homotopy from f0 to f1 is a map H : X × I −→ Y in GTop. In the based case, this is a map
H : X ∧ I+ −→ Y in GTop∗.

This is the same, of course, as a map I −→ MapG(X, Y); or alternatively, a G-equivariant
map I −→ GMap(X, Y) (adding disjoint points in the based case).

A natural question any homotopy theorist would ask is: what are the homotopy groups? Of
course, to answer this question one should answer first: what objects play the role of spheres,
and therefore disks? The following will lead us to the right answer:
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Definition. Let A be a G-space. A G-CW-complex relative to A is the colimit of a sequence of
G-spaces Xn, where Xn arises from Xn−1 as a pushout

ä
H⊆G

JH
n × G/H × ∂Dn Xn−1

ä
H⊆G

JH
n × G/H × Dn Xn

p

where A = X−1, H varies over all subgroups of G, JH
n is a discrete space with trivial action and

∂Dn and Dn also have the trivial action.
In the based case, maps are pointed and the space äH⊆G JH

n × G/H × ∂Dn should be re-
placed by

∨
H⊆G(JH

n )+ ∧ (G/H)+ ∧ ∂Dn

Examples 1.2.1 Let us now discuss some Z/2-CW-structures for the sphere S2 endowed with
three different Z/2-actions:

(a) If S2 has the trivial Z/2-action, then all points are fixed and a Z/2-CW-structure is given by
one 0-cell (Z/2)/(Z/2)× D0 and one 2-cell (Z/2)/(Z/2)× D2, where the attaching map
collapses ∂D2 to D0, as in the nonequivariant case.

(b) Now consider S2 with the Z/2-action given by rotation of π with respect to the z axis.
The north and south pole, that we denote by n and s, are fixed points, so there are two 0-
cells (Z/2)/(Z/2)×D0. We also have one 1-cell (Z/2)/e×D1 attached by mapping (0, 0),
(1, 0) to n and (0, 1), (1, 1) to s. Finally, there is one 2-cell (Z/2)/e×D2 attached as follows:
parametrize the 1-skeleton (homeomorphic to S1 ⊂ C as Z/2-space) with θ ∈ [0, 2π],
where the parameter runs through the copy indexed by 0 from n to s in the first half of
the time and the copy indexed by 1 from s to n in the second half of the time. In a similar
fashion, ∂D2 is also parametrized by θ. Then the attaching map Z/2× ∂D2 −→ S1 sends

(0, θ) 7→ θ , (1, θ) 7→ 2π − θ.

(c) Consider in third place the sphere S2 with the antipodal action, so this time there are
not fixed points. There is a Z/2-CW-structure with one 0-cell (Z/2)/e × D0, one 1-cell
(Z/2)/e × D1 and one 2-cell (Z/2)/e × D2. The north and south poles correspond, of
course, to the 0-cells. The 1-cell is attached by sending (0, 0), (1, 1) to n and (0, 1), (1, 0)
to s. At last, the 2-cell is attached by a map Z/2 × ∂D2 −→ S1 (where S1 now has the
antipodal action) mapping

(0, θ) 7→ θ , (1, θ) 7→
{

θ + π, θ ∈ [0, π],
θ − π, θ ∈ [π, 2π].

Examples 1.2.2 For the sake of exposition, let us allow G to be a compact Lie group for one
moment and let us describe some S1-CW-structures on a couple of S1-spaces. This is useful to
note that for groups not necessarily finite, the topological dimension does not agree with the
highest dimension of the attached cells:

(a) Consider the sphere S2 with the S1-action given by rotation along the z axis. As before
there are two fixed points n and s, which correspond with two 0-cells S1/S1×D0. There is
also one 1-cell S1/e× D1 attached to the endpoints in the obvious way.
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Figure 1.1: Z/2-CW-structures of Example 1.2.1.

(b) Consider the torus T = S1 × S1 with the action given by multiplication on the first factor,
so in particular there are not fixed points. A possible S1-CW-structure is given by one 0-cell
S1/e× D0 and one 1-cell S1/e× D1, where the attaching map collapses the endpoints of
D1 to D0.

The definition of G-CW-complex suggests what should play the role of spheres: G/H× Sn,
so now we have as many spheres as subgroups3 of G. For G-spaces Y, Y′, let G[Y, Y′] be the set
of G-homotopy classes of G-maps. In the based case, we will denote it as G[Y, Y′]∗.

Definition. Let X be a pointed G-space and let H be a subgroup of G. The H-n-th homotopy
group of X is

πH
n (X) := G[(G/H)+ ∧ Sn, X]∗.

We have an alternative description of these homotopy groups:

Lemma 1.2.3 For any pointed G-space X,

πH
n (X) ∼= πn(XH).

Proof. The main observation is that in GTop∗ we also have the exponential adjunction: for a
pointed G-space X, this says that the functor X ∧− is left adjoint to GMap(X,−). In particular
we compute

πH
n (X) = G[(G/H)+ ∧ Sn, X]∗ ∼= G[Sn, GMap((G/H)+, X)]∗

1.1.3∼= [Sn, GMap((G/H)+, X)G]∗
1.1.2∼= [Sn, MapG((G/H)+, X)]∗

1.1.5∼= [Sn, XH ]∗ ∼= πn(XH)

This allows us to define

Definition. A map of G-spaces f : X −→ Y is a weak equivalence if

f∗ : πH
n (X)

∼=−→ πH
n (Y)

is an isomorphism for every subgroup H ⊆ G, every n ≥ 0 and every choice of basepoint.
Equivalently, if f H : XH −→ YH is a weak equivalence of spaces for all subgroups H ⊆ G.

3 Another plausible choice would have been the representation spheres SV , the one-point compactification of
an orthogonal representation V of G. It turns out that our original choice is the minimal one: any other arises as a
G-CW-complex as we have just defined it. For a reference see [18].
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As in the nonequivariant case, sometimes we are interested that our maps are isomor-
phisms not for all n ≥ 0 but only up to some degree. Of course, now we have our homotopy
groups indexed also by subgroups of G, so we need a criterion to decide how connected a map
should be for every subgroup. This is the equivariant version:

Definition. Let S be the set of conjugacy classes of subgroups of G, and let θ : S −→ Z≥−1
be an assignment. A map of G-spaces f : X −→ Y is θ-connected if f H : XH −→ YH is
θ(H)-connected for all H ⊆ G.

Such an assignment θ : S −→ Z≥−1 can be also used to define the dimension of a G-CW-
complex:

Definition. A G-CW-complex is θ-dimensional if all cells of orbit type G/H have nonequiva-
riant dimension at most θ(H).

With these notions of CW-complexes and homotopy groups, we recover all main results of
the usual homotopy theory, that we record next:

Theorem 1.2.4 (Equivariant HELP) Let (X, A) be a θ-dimensional relative G-CW-complex and let
e : Y −→ Z be a θ-connected map between G-CW-complexes. Then given a solid diagram in GTop

A Y

X Z

g

e
f

g̃

commuting up to G-homotopy H : A× I −→ Z, there is a lift g̃ : X −→ Y which makes the upper
triangle commutative and the lower one commutative up to a G-homotopy H̃ : X × I −→ Z which
extends H.

In other words, given a commutative diagram

A Y

A× I Z,

A X

g

i0
e

H

i1
f

it extends to the following commutative diagram, where the dashed arrows exist:

A Y

X

A× I X× I Z

A X

g

i0
e

i0

g̃

H

H̃

i1 i1
f
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Proof. The two desired maps g̃ and H̃ are constructed by induction on the dimension of X
and then cell by cell, so we may assume that X = G/H × Dn and A = G/H × ∂Dn. By the
exponential adjunction and 1.1.5, the statement is equivalent to the nonequivariant HELP with
e : YH −→ ZH, X = Dn and A = ∂Dn (cf. [26, §10.3]).

This technical result has two important consequences:

Theorem 1.2.5 Let X be a G-CW-complex and let e : Y −→ Z be a θ-connected G-map between
G-CW-complexes. Then

e∗ : G[X, Y] −→ G[X, Z]

is a bijection if dim X < θ and surjective if dim X = θ.
In particular, if e is a weak equivalence and X is any G-CW-complex, then e∗ is a bijection.

Proof. Surjectivity is just rephrasing the theorem for A = ∅. For injectivity, let us suppose that
[e ◦ g0] = [e ◦ g1], and let J = [0, 1]. If H : X × J −→ Z is the homotopy between both maps,
let H : (X× J)× I −→ Z be as before with the map constant on I. Then applying the previous
theorem for the G-CW pair (X × J, X × ∂J) (which has one higher dimension), we get a lift
g̃ : X× J −→ Y of g = g0 ∪ g1 : X× ∂J −→ Y, which is our desired homotopy.

Theorem 1.2.6 (Equivariant Whitehead) Any θ-connected G-map e : Y −→ Z between G-CW-
complexes of dimension less than θ is a G-homotopy equivalence.

In particular, if e is a weak equivalence for any G-CW-complexes Y, Z, then it is a G-homotopy
equivalence.

Proof. By the previous theorem, the homotopy inverse of e is given by a map f : Z −→ Y such
that e∗[ f ] = [IdY].

Theorem 1.2.7 (Equivariant cellular approximation) Any G-map f : (X, A) −→ (Y, B) between
G-CW-complexes is G-homotopic rel. A to a cellular map.

Theorem 1.2.8 (Equivariant CW-approximation) For any G-space X, there is a G-CW-complex
cw(X) and a weak equivalence γ : cw(X)

'−→ X.

The proofs of these two last results can be found in [25, I.3.4] and [25, I.3.6]

1.3 Elmendorf theorem

We now recover the categorical perspective of the first section. From this part on we will make
use of the theory of model categories. A quick review can be found in Appendix A.

The first step is to show that the category of G-spaces has a model structure. This can
actually be done in a more general way: let F be a family of subgroups of G, that is, a collection
of subgroups containing the trivial one. We will construct a model structure with respect to
this family.

Proposition 1.3.1 Let F be a family of subgroups of G. There is a model structure on GTop such that
a G-map f : X −→ Y is a weak equivalence (resp. fibration) if for all subgroups H ∈ F , the map
f H : XH −→ YH is a weak equivalence (resp. fibration) in Top.

In GTop∗ the statement is exactly the same.
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Proof. We want to apply the Model Structure Lifting theorem A.4.3. For that, we use the family
of adjunctions given by

Top ⊥ GTop

G/H×−

(−)H

for H ∈ F , which can be obtained simply as composition of the adjunctions

Top ⊥ HTop ⊥ GTop.

trivial G×H−

(−)H restr

As we already saw, GTop is complete and cocomplete, so we are left to check the conditions
of A.4.3. For the smallness assumptions (1) and (2) from A.4.3, let G∞ = colimn Gn be one of
the infinite gluing constructions in question. By the naturality of the adjunction, it is enough
to check that

colim
n

Map(A, (Gk)H) −→ Map(A, (G∞)H)

is an isomorphism for all H ∈ F , where A = Sn−1 or A = Dn. The isomorphism holds as the
inclusions

Sn−1 ↪−→ Dn , Dn × 0 ↪−→ Dn × I

are closed embeddings between T1-spaces, and both Sn−1 and Dn are compact spaces. Here
we also used that (−)H preserves filtered colimits of closed inclusions.

For the property (3) of A.4.3, we just need to check that the factor iH
∞ in question is a weak

homotopy equivalence. But this follows from the elementary fact that if Y is the sequential
colimit of a sequence pushouts Yn of diagrams Dn × I ←↩ Dn × 0 → Yn then Y is weak homo-
topy equivalent to Y0.

The assertion claiming what arrows are weak equivalences and what arrows are fibrations
is immediate using the adjunction.

We will write GTopF to emphasize that the model structure depends on the family F .

Now observe that the orbit category OG from 1.1.4 can be viewed as the full subcategory

of GTop on the objects G/H, with maps MapG(G/H, G/K)
1.1.5∼= (G/K)H. As we saw, the right

Kan extension of a G-space X defines a functor

X(−) : Oop
G Top

G/H XH.

Given a G-map f : X −→ Y, it induces a map f H : XH −→ YH commuting with the
morphisms induced by maps of OG, so the previous assignment defines itself a functor

Φ : GTop TopO
op
G

X X(−).
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Lemma 1.3.2 Let Θ : TopO
op
G −→ GTop be evaluation at G/e. Then Θ is left inverse and left adjoint

to Φ,

TopO
op
G ⊥ GTop

Θ

Φ

Proof. It is clear that ΘΦ(X) = Θ(X(−)) = Xe = X and that the G-action agrees with the one
on X. For the adjunction, the desired bijection

MapG(F(G/e), X) ∼= Hom
TopO

op
G
(F, X(−))

is the following: any natural transformation α : F ⇒ X(−) corresponds to its evaluation at G/e,
the G-map αG/e : F(G/e) −→ X. Here F(G/e) inherits a G-space structure as follows: the map
·g : G/e −→ G/e, g′ 7→ g′g in OG defines a map of spaces F(·g) : F(G/e) −→ F(G/e). Then
for a ∈ F(G/e), setting g ∗ a := F(·g)a endows F(G/1) with a G-action. The map is indeed
G-invariant by the commutativity of the following diagram:

F(G/e) X

F(G/e) X

g

αG/e

g

αG/e

Conversely, consider the map π : G/e −→ G/H for a subgroup H ⊆ G. Then a G-map
f : F(G/e) −→ X corresponds with the natural transformation η : F ⇒ X(−) such that ηG/H is
defined as the composite

F(G/H)
Fπ−→ F(G/e)

f−→ X.

Now the observation is that the image of this map lies on XH: indeed, for h ∈ H, we have a
commutative diagram in OG

G/e G/H

G/e G/H

·h

π

·h=Id

π

which induces a diagram

F(G/e) F(G/H)

F(G/e) F(G/H).

Fπ

h Id

Fπ

Therefore
h · ( f ◦ (Fπ))(a) = f (h · (Fπ)(a)) = ( f ◦ Fπ)(a),

as desired. It is obvious that both assignments are inverses of each other.

Elmendorf theorem will say that this is more than an adjunction: this is a Quillen equiva-
lence for a suitable model structure on the functor category. Moreover, the result is even true
if we restrict to a family of subgroups F of G.
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In the first place we have to see how we can lift the model structure of Top to a model
structure on TopO

op
G . As before we will use theorem A.4.3: let J be a small category enriched

over Top. Then it is easy to see that the functor category TopJ is also enriched over Top: here
HomTopJ (F, G) is a subspace of ∏j∈J Map(Fj, Gj). Moreover, TopJ is complete and cocom-
plete, with limits and colimits constructed objectwise. The first step is to use the Model Struc-
ture Lifting theorem A.4.3 to obtain a model structure on TopJ op

.

Proposition 1.3.3 For j ∈ J , let j := HomJ (−, j) : J op −→ Top; and define Θj : TopJ op −→ Top
as evaluation at j. Then there is an adjunction

Top ⊥ TopJ op

j×−

Θj

Proof. The observation that ignites the proof is that, for a space Y and F, G ∈ TopJ op
, there is

an “exponential adjunction”

HomTopJ op (F×Y, G) ∼= HomTopJ op (F, Map(Y, G−))

defined objectwise, inherited from the one in Top. Taking F = j we obtain

HomTopJ op (j×Y, G) ∼= HomTopJ op (j, Map(Y, G−))
Yoneda∼= Map(Y, Gj)

Corollary 1.3.4 Let F be a subset of objects of J . Then the adjunctions

{
Top ⊥ TopJ op

}
k∈F

j×−

Θj

define a model structure on TopJ op
.

The proof is very similar to 1.3.1 and we omit it. Returning to our original problem, this
will allow us to endow the functor category TopO

op
G with a model structure. This can be done

with slight more generality, as we did with the model structure on GTop:

Definition. The orbit category of G with respect to F is the full subcategory OF ⊂ OG on
the objects G/H, where H ∈ F .

Setting J = OF and F = F in the previous corollary, we obtain

Corollary 1.3.5 Let F be a family of subgroups of G. The adjunctions

{
Top ⊥ TopO

op
F

}
k∈F

G/H×−

ΘG/H

make TopO
op
F into a model category.
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We now have all necessary ingredients to state Elmendorf theorem. In a nutshell, the theo-
rem states that from the point of view of homotopy theory, the categories GTop and TopO

op
F are

the same.

Theorem 1.3.6 (Elmendorf) Let F be a family of subgroups of G. The adjunction

TopO
op
F ⊥ GTopF

Θ

Φ

is a Quillen equivalence. Therefore, there is a equivalence of categories

Ho(GTopF ) ' Ho(TopO
op
F ).

Proof. Let us check in the first place that the former is a Quillen adjunction, more concretely
that Φ is right Quillen: given a (trivial) fibration f in GTopF , Φ( f ) is a (trivial) fibration if and
only if ΘG/HΦ( f ) = f H is a (trivial) fibration, but this holds by 1.3.1.

Let us check now that the adjunction is a Quillen equivalence: let Y ∈ TopO
op
F be a cofibrant

object and let X ∈ GTopF be fibrant. We need to show that

f ′ : Y −→ Φ(X) is weak equivalence ⇐⇒ Θ( f ′) : Θ(Y) −→ X is weak equivalence.

In GTopF , every object is fibrant, just because in Top the same happens. Factor the unique
map i : ∅ −→ Y as a cofibration i∞ : ∅ −→ G∞ followed by a trivial fibration p∞ : G∞ −→ Y,
where G∞ = G∞(FI , i) and FI is the family of all maps G/H × Sn−1 −→ G/H × Dn for all
subgroups H ∈ F and all n ≥ 0 (see A.4.3). Since Θ is left Quillen, by the Ken Brown lemma
A.1.6 we have that Θ preserves weak equivalences between cofibrant objects, thus Θ(p∞) is a
weak equivalence. Therefore, by the 2-out-of-3 property, f ′ is a weak equivalence if and only
if so is f ′p∞; so it is enough to show that

f : G∞ −→ Φ(X) is weak equivalence ⇐⇒ Θ( f ) : Θ(G∞) −→ X is weak equivalence.

Simply by definitions, this statement is equivalent to

fG/H is weak equivalence for all H ∈ F ⇐⇒ ( fG/e)
H is weak equivalence for all H ∈ F .

Since f is a natural transformation, there is a commutative square

G∞
G/H XH

G∞
G/e X,

fG/H

fG/e

which in particular says that fG/H = ( fG/e)
H(ηG∞)G/H, where η is the unit of the adjunction.

Thus, by the 2-out-of-3 property, it suffices to show that

(ηG∞)G/H : G∞
G/H −→ (G∞

G/e)
H

is a weak equivalence in Top. But this map is in particular an homeomorphism: indeed, it is
not hard to check that the map

ηG/H×Z : G/H × Z −→ ΦΘ(G/H × Z)

is an isomorphism in TopO
op
F (cf. [37, 7.7]). Now the claim is immediate using induction and

the fact that the functor (−)H preserves coproducts, pushouts where one arrow is a closed
embedding, and filtered colimits of closed inclusions (see [21, 1.2]).
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1.4 Homology and cohomology of G-spaces

By completeness, we will briefly discuss one way to adapt the theory of homology and co-
homology for G-spaces. This will be inspired by cellular cohomology, so we will restrict
ourselves to G-CW-complexes (for general G-spaces, we just take G-CW-approximations, and
this does not depend on the choice of the approximations). Of course, the main problem is to
keep track of the G-action. Later in 4.2 we will describe a more general case.

Definition. A coefficient system is a functor M : Oop
G −→ Ab or N : OG −→ Ab.

Examples 1.4.1 (a) If A is an abelian group, we have the constant coefficient system A, send-
ing every object to A and every morphism to the identity of A.

(b) If X is a G-space, we saw that there is a functor X(−) : Oop
G −→ Top. The composition with

any functor Top −→ Ab defines a contravariant coefficient system

Oop
G

X(−)
−→ Top −→ Ab.

As a particular case, for homotopy groups we have

πn(X) : Oop
G −→ Ab

with πn(X)(G/H) := πH
n (X) ∼= πn(XH) sending every G-map G/H −→ G/K to the

induced map πn(XK) −→ πn(XH). For homology the story is the same: Hn(X)(G/H) :=
Hn(XH;Z).

We want to define cohomology with coefficients in a contravariant coefficient system; and
homology with coefficients in a covariant system. That is, we want to do homological algebra
in the functor categories AbO

op
G and AbOG . For that, luckily, we have

Lemma 1.4.2 The categories AbO
op
G and AbOG are abelian.

Proof. The zero object is given by the constant functor with values in the trivial abelian group;
and products, coproducts, kernels and cokernels are defined termwise.

Now let X be a G-CW-complex, and let Xn be its n-skeleton. We consider the coefficient
system

Cn(X) : Oop
G −→ Ab

sending G/H to C̃n(XH) = Hn(XH
n , XH

n−1;Z), the group of n-chains in cellular homology. There
is a differential (natural transformation)

∂n : Cn(X) −→ Cn−1(X)

that at G/H is the cellular differential of C∗(XH), i.e. the connecting homomorphism of the
long exact sequence of the triple (XH

n , XH
n−1, XH

n−2). Moreover, ∂n ◦ ∂n−1 = 0.

For a contravariant coefficient system M, consider the abelian group

Cn
G(X; M) := Hom

AbO
op
G
(Cn(X), M).

This defines a cochain complex of abelian groups C∗G(X; M) with codifferential δn := − ◦ ∂n+1.
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Definition. The Bredon cohomology of X with coefficients in M is

Hn
G(X; M) := Hn(C∗G(X; M)).

For homology, we proceed in a similar fashion: given a (covariant) coefficient system N :
OG −→ Ab, consider the abelian group

CG
n (X; N) :=

∫ G/H∈Oop
G

Cn(X)(G/H)⊗ N(G/H).

The previous coend4 is also denoted as Cn(X)⊗Oop
G

N. As before, this defines a chain complex

CG
∗ (X; N) with differential ∂n := ∂n ⊗ Id.

Definition. The Bredon homology of X with coefficients in N is

HG
n (X; N) := Hn(CG

∗ (X; N)).

Remark 1.4.3 For G-spaces, we have presented here Bredon (co)homology. There is another
cohomological invariant that we can associate to a G-space: the Borel cohomology of X with
coefficients in a ring R is

Hn
B(X; R) := Hn(hocolim X; R).

One can show, in a similar fashion as 1.1.6, that hocolim X ∼= EG ×G X (this is a balanced
product). Recall that EG is contractible, so X ∼= EG ×G X is just a “fattened up” version of
X/G = colim X.

Example 1.4.4 Let us compute the Bredon cohomology groups, with coefficients in Z, of the
sphere S2 with the Z/2-action given by rotation by π from 1.2.1.(b). There we already described
a Z/2-CW-structure with two 0-cells (Z/2)/(Z/2)× D0, one 1-cell (Z/2)/e× D1 and one 2-
cell (Z/2)/e× D2. We take this example from [3, 1.4.8], but we fix a mistake that it appears
there, with respect to the computation of the cellular differentials of the Z/2-CW-structure (in
particular, one does not get the codifferentials for C∗Z/2(S

2;Z) that he claims from the cellular
differentials he writes).

In the first place, let us make explicit the morphisms of the category Oop
Z/2: this is just

(Z/2)/e (Z/2)/(Z/2)Id

τ

π
Id

where π is the projection and τ is the switching map (which interchanges 0 and 1). The asso-
ciated “fixed points functor” Oop

Z/2 −→ Top maps π to the inclusion, and τ to the involution of
S2.

4For a bifunctor H : Cop × C −→ E , the coend
∫ C H is the coequalizer of the diagram

ä
f∈arrowsC

H(cod f , dom f )⇒ ä
C∈C

H(C, C) 99K
∫ C

H

where f : C −→ C′.
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By convenience of notation, let us write in this example only the subgroup when we mean
the orbit. Let us compute the coefficient system Cn(S2) : Oop

Z/2 −→ Ab. This is determined by

Cn(S2)(e) = Hn((S2)e
n, (S2)e

n−1;Z) ∼=
{
Z⊕ Z, n = 0, 1, 2
0, else

Cn(S2)(Z/2) = Hn((S2)Z/2
n , (S2)Z/2

n−1;Z) ∼=
{
Z⊕ Z, n = 0
0, else

(this is just counting the number of cells). The map induced by π is just either the trivial
map 0 −→ Z⊕ Z (for n = 1, 2) or the identity of Z⊕ Z (for n = 0). Similarly, τ induces an
automorphism of Z⊕ Z, which is flipping the terms (for n = 1, 2) or the identity (for n = 0).

Next, we have to compute the differentials ∂n : Cn(S2) −→ Cn−1(S2), which are given by
the cellular differential associated to the (nonequivariant) CW-structures that the fixed points
spaces inherit. This is depicted in the following diagram:

· · · 0 Z⊕ Z Z⊕ Z Z⊕ Z

· · · 0 0 0 Z⊕ Z

∂3(e)

C2(τ)

∂2(e)

C1(τ)

∂1(e)

Id

∂3(Z/2) ∂2(Z/2) ∂1(Z/2)
Id

By cellular homology, the (nontrivial) differentials are given by

∂2(e) =
(

1 −1
−1 1

)
, ∂1(e) =

(
1 1
−1 −1

)
and both switching maps are given by

τ := C2(τ) = C1(τ) =

(
0 1
1 0

)
.

We now look at the groups Cn
Z/2(S

2;Z) = Hom
AbO

op
Z/2

(Cn(S2),Z). For n = 1, 2, a natural

transformation C2(S2) ⇒ Z is determined by a group homomorphism ϕ : Z⊕ Z −→ Z such
that the diagram

Z⊕ Z

Z

Z⊕ Z

ϕ

τ

ϕ

commutes. Such a group homomorphism is determined by the image of (1, 0), so

C1
Z/2(S

2;Z) ∼= Z , C2
Z/2(S

2;Z) ∼= Z.

For n = 0, a natural transformation C0(S2) ⇒ Z is determined by a group homomorphism
ϕ : Z⊕ Z −→ Z, so

C0
Z/2(S

2;Z) ∼= HomAb(Z⊕ Z,Z) ∼= HomAb(Z,Z)⊕HomAb(Z,Z) ∼= Z⊕ Z,
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hence the cochain complex C∗Z/2(S
2;Z) looks like

Z⊕ Z δ0

−→ Z δ1

−→ Z −→ 0 −→ · · · .

Let us finally determine the codifferentials. In Z ⊕ Z, let e1 = (1, 0) and e2 = (0, 1). If
ϕn ∈ C1

Z/2(S
2;Z) corresponds with n ∈ Z, then δ1(n) is the image of e1 by the composite

Z⊕ Z Z⊕ Z Z
∂2(e) ϕn

which is ϕn(e1− e2) = n− n = 0, so δ1 = 0. Similarly, if ϕ(n,m) ∈ C0
Z/2(S

2;Z) corresponds with
(n, m) ∈ Z⊕ Z, then δ0(n, m) is the image of e1 by the composite

Z⊕ Z Z⊕ Z Z,
∂1(e) ϕ(n,m)

so δ0(n, m) = ϕ(n,m)(e1 − e2) = n− m. The upshot is that the Bredon cohomology of S2 with
the involution given by rotation by half-turn is

Hn
Z/2(S

2;Z) =

{
Z, n = 0, 2
0, else

.
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Chapter 2

Topological K-theory

We will devote the second chapter to discuss topological K-theory in some of its versions. The
origin of K-theory was, actually, not in Topology but in Algebra: it was invented by Grothen-
dieck to solve some hard problems of Algebraic Geometry. This idea soon spread to other areas
of mathematics, such as Topology, Number Theory or Functional Analysis. The letter K stands
for the German word Klasse (class).

In Topology, K-theory appeared first in Atiyah and Hirzebruch’s Riemann-Roch theorems for
differentiable manifolds [2]. It was the first generalized cohomology theory deeply studied, and
it actually allowed to give relatively easy proofs to problems such that the classification of real
division algebras. This was already solved using homology and cohomology, but with a very
intricate proof.

We mostly present complex K-theory and K-theory with Reality, where the latter is a
slightly different version for spaces endowed with an involution. In §2.1 we follow mostly
the approach of [14] but we are also influenced by [19], specially making emphasis in the
Grothendieck construction. For §2.2, we collect material from [14], [27], [38], and specially [13]
for the last part of the section. Finally, in §2.3 we give a full exposition of K-theory with Reality.
We keep close to the standard reference [1], but we present the material following the spirit of
[14] that we use in §2.1 and §2.2. We also improve the notation of [1] and use an original one.
Proofs in this section are due to the author.

2.1 Complex and real K-theory

In this first section we will briefly recall the general theory of complex (and real) K-theory.
This will give us one of the main examples in stable homotopy theory, that we will discuss in
chapter 3. Along this section, unless otherwise stated, all spaces will be considered compact
Hausdorff.

The first observation is that the forgetful functor U : Ab −→ CMon from abelian groups to
commutative monoids has a left-adjoint K,

Ab ⊥ CMon

U

K

19
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which is given by the Grothendieck construction: for a commutative monoid (M,⊕, 0) we
define

K(M) :=
Z[M]

〈m + m′ −m⊕m′〉 .

Moreover, if (M,⊕,⊗, 0, 1) is a commutative semi-ring, then the multiplication on M in-
duces a multiplication on K(M), [m] · [m′] := [m⊗ m′], so the latter is a ring. An alternative
description is the following: K(M) is the quotient of M×M modulo the equivalence relation

(m1, m2) ∼ (m′1, m′2) ⇐⇒ there is k ∈ M such that m1 ⊕m′2 ⊕ k = m2 ⊕m′1 ⊕ k.

From now on let us fix a compact, Hausdorff space X. For F = R or C, the set Vect•F(X) of
isomorphism classes of F-vector bundles of all possible ranks over X is a commutative monoid
with respect to the direct sum of vector bundles and the trivial vector bundle 0 = X × 0.
Moreover, it is a semi-ring if we also consider the tensor product of vector bundles and the
trivial line bundle 1 = X× F.

Definition. The complex K-theory of X is the Grothendieck construction of Vect•C(X),

K(X) := K(Vect•C(X)),

and its real K-theory is the Grothendieck construction of Vect•R(X),

KO(X) := K(Vect•R(X)).

By a matter of clarity, from now on we will only refer to complex K-theory, but it is good
that the reader keeps in mind that the rest of results until 2.1.4 are also valid for KO-theory.

If f : X −→ Y is a map of spaces, the pullback of vector bundles induces a morphism in
K-theory,

f ∗ : K(Y) −→ K(X).

Definition. The reduced K-theory of X is

K̃(X) := coker(K(∗) −→ K(X))

induced by the unique map X −→ ∗. Since Vect•C(∗) = N, K(∗) = Z and K̃(X) = K(X)/Z.

Any continuous map also induces a map in reduced K-theory, so they define functors

K : CHaus −→ Rng , K̃ : CHaus −→ Ab.

Given a vector bundle E −→ X, we will also denote by E its class in K(X) and K̃(X). The
following proposition is immediate:

Proposition 2.1.1 Let E, F −→ X be vector bundles over X.

1. In K(X), E = F if and only if E⊕ n ∼= F⊕ n for some n ∈ N (they are said stably isomorphic).

2. In K̃(X), E = F if and only if E⊕ n ∼= F⊕m for some n, m ∈ N.

If Vectn
C(X) denotes the set of isomorphism classes of vector bundles of rank n, there is a

map
−⊕ 1 : Vectn

C(X) −→ Vectn+1
C (X).

Corollary 2.1.2 If X is connected, K̃(X) ∼= colimn Vectn
C(X).
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Proof. If X is connected, every vector bundle over X has constant rank, so it lies on Vectn
C(X)

for some n ≥ 0 and by the previous characterization K̃(X) coincides with the colimit.

For spaces with a preferred basepoint we have a useful property:

Proposition 2.1.3 Let (X, x0) be a pointed compact Hausdorff space. There is a split short exact
sequence

0 −→ Z −→ K(X) −→ K̃(X) −→ 0

so in particular
K(X) ∼= K̃(X)⊕ Z.

Proof. Exactness holds by definition, and the splitting is given by a retract r : K(X) −→ Z,
where r(E− F) := dim Ex0 − dim Fx0 , which is induced by the inclusion of the basepoint.

The next result gives some properties of K-theory that reminisce the ones known for singu-
lar cohomology (see [14, §2.2]):

Proposition 2.1.4 The following properties hold for reduced K-theory:

1. If f , g : X −→ Y are homotopic maps between based spaces, then f ∗ = g∗ : K̃(Y) −→ K̃(X).

2. If (X, A) is a pair of pointed spaces, with A closed, there is a long exact sequence

· · · K̃(Σ2X) K̃(Σ2A)

K̃(Σ(X/A)) K̃(ΣX) K̃(ΣA)

K̃(X/A) K̃(X) K̃(A)

3. If (Xi)i∈I is a collection of pointed spaces, then

K̃(
∨
i∈I

Xi)
∼=−→∏

i∈I
K̃(Xi)

is an isomorphism.

If X, Y are spaces, let π1 : X × Y −→ X and π2 : X × Y −→ Y be the canonical projections.
The map

µ := π∗1 ⊗ π∗2 : K(X)⊗ K(Y) −→ K(X×Y)

is called the external product .

Now we make the following observation: if x is the tautological line bundle over CP1 ∼= S2,
then x2 + 1 = 2x, so in K-theory (x− 1)2 = 0. This induces a ring homomorphim

Z[x]/(x− 1)2 −→ K(S2).

A fundamental theorem, whose proof can be found in [14, 2.2], is the following:



22 CHAPTER 2. TOPOLOGICAL K-THEORY

Theorem 2.1.5 (Product theorem) Let X be a space. The composite

K(X)⊗ Z[x]/(x− 1)2 −→ K(X)⊗ K(S2)
µ−→ K(X× S2)

is an isomorphism.

Corollary 2.1.6 The map Z[x]/(x − 1)2 ∼=−→ K(S2) is a ring isomorphism. Moreover, the external
product

µ : K(X)⊗ K(S2)
∼=−→ K(X× S2)

is an isomorphism.

Proof. For the first assertion, take X = ∗ the one-point space. The second follows by the 2-out-
of-3 property for isomorphisms.

Proposition 2.1.7 Let X, Y be pointed spaces. For n ≥ 0, there is a split short exact sequence

0 −→ K̃(Σn(X ∧Y)) −→ K̃(Σn(X×Y)) −→ K̃(Σn(X ∨Y)) −→ 0.

Proof. The map K̃(Σn(X×Y)) −→ K̃(Σn(X∨Y)) ∼= K̃(ΣnX)⊕ K̃(ΣnY) has a section (Σnπ1)
∗⊕

(Σnπ2)∗, so in particular the map is surjective and we conclude by the long exact sequence of
the pair (X×Y, X ∨Y).

Corollary 2.1.8 K̃(Sn) ∼=
{
Z, n even,
0, n odd.

Proof. From the general theory of vector bundles, we know that any complex vector bundle
over S1 is trivial, so K̃(S1) ∼= 0. By the previous corollary, K̃(S2) ∼= Z. Now use the previous
proposition.

Now we describe the periodicity theorem. If X, Y are pointed spaces, observe that by 2.1.3
and 2.1.7 we have splittings

K(X)⊗ K(Y) ∼= (K̃(X)⊗ K̃(Y))⊕ K̃(X)⊕ K̃(Y)⊕ Z

and
K(X×Y) ∼= K̃(X ∧Y)⊕ K̃(X)⊕ K̃(Y)⊕ Z.

Proposition 2.1.9 The external product restricts to a homomorphism

µ̃ : K̃(X)⊗ K̃(Y) −→ K̃(X ∧Y),

called the reduced external product .

Proof. For a ∈ K̃(X) ∼= Ker(K(X) −→ K(x0)) and b ∈ K̃(Y) ∼= Ker(K(Y) −→ K(y0)), the
element µ(a⊗ b) = π∗1(a)π∗2(b) restricts to zero in K(X × {y0}) and K({x0} × Y), so therefore
also in K(X ∨Y). This says that it lies in K̃(X×Y), and by 2.1.7 it lies in K̃(X ∧Y) in the above
splitting.

As before, let x represent the tautological line bundle over S2 ∼= CP1, and let β be the
composite

K̃(X)
(x−1)⊗−−→ K̃(S2)⊗ K̃(X)

µ̃−→ K̃(S2 ∧ X).

Theorem 2.1.10 (Bott periodicity) The previous homomorphism

β : K̃(X)
∼=−→ K̃(S2 ∧ X)

is an isomorphism for all based compact Hausdorff spaces X.

Proof. This is a direct consequence of 2.1.5 and 2.1.9.
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2.2 K-theory as a reduced cohomology theory. Classifying spaces.

In this section we will take a step closer to one of our main constructions, the category of
spectra. Here we will give rise to a coarser version of spectra, called Ω-spectra.

Our first observation is that the properties described in 2.1.4 are very similar to the ones
of singular cohomology. There are some axioms expressing the properties that a family of
functors must satisfy to be called a “cohomology theory”:

Definition. A reduced (generalized) cohomology theory is a sequence of functors

h̃n : Topop
∗ −→ Ab , n ∈ Z

together with natural isomorphisms h̃n ◦ Σ
∼=

=⇒ h̃n−1 satisfying:

(i) Homotopic maps induce the same map in h̃n.

(ii) Given a based map f : X −→ Y, the sequence

h̃n(C f ) −→ h̃n(Y) −→ h̃n(X)

is exact, where C f is the reduced mapping cone.

(iii) Given a collection of based spaces (Xi)i∈I , the canonical map

h̃n(
∨
i∈I

Xi)
∼=−→∏

i∈I
h̃n(Xi)

is an isomorphism.

Remark 2.2.1 These axioms are slightly different to the classic Eilenberg-Steenrod axioms. In
the first place, we do not have any long exact sequence, but one can be constructed with little
effort: given a map f : X −→ Y, it is easily verified that the cone of the inclusion Y ↪−→ C f is
homotopy equivalent to ΣX. Then there is a long exact sequence

· · · −→ h̃n−1(X)
δn−1

−→ h̃n(C f ) −→ h̃n(Y) −→ h̃n(X)
δn
−→ h̃n+1(C f ) −→ · · ·

where the connecting homomorphism is the composite

h̃n−1(X)
∼=−→ h̃n(ΣX)

∼=−→ h̃n(C(Y ↪−→ C f )) −→ h̃n(C f ).

Concretely, in singular cohomology, this recovers the long exact sequence of a pair (X, A),
since by excision

H̃n(Ci) ∼= Hn(Ci, CA) ∼= Hn(Ci− p, CA− p) ∼= Hn(X, A)

where i : A ↪−→ X is the inclusion and p is the cusp of the cone. In second place, we add the
adjective generalized because we dropped the “dimension axiom” h̃n(S0) = 0 for n 6= 0. Under
this extra axiom (one talks about ordinary cohomology theories), one can show that on pointed
CW-complexes all reduced ordinary cohomology theories are naturally isomorphic.
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The question now is how we can lift (reduced) K-theory to a reduced cohomology theory.
Inspired by 2.1.4, we define for n ≥ 0

K̃−n(X) := K̃(ΣnX) , K̃−n(X, A) := K̃−n(X/A).

We can also extend this to positive indices using Bott periodicity: for n ≥ 0 and a pointed
space X, define

K̃n(X) := K̃n−2s(X) , K̃n(X, A) := K̃n(X/A)

for 2s > n. More explicitly,

K̃2n(X) = K̃(X) , K̃2n+1(X) = K̃(ΣX) , K̃n(X, A) = K̃n(X/A)

where A ⊂ X is a closed subspace.

Theorem 2.2.2 The functors K̃n : CHaus∗ −→ Ab define a reduced cohomology theory.

Proof. The homotopy and wedge axioms were noted in 2.1.4, the natural isomorphism with
the suspension follows by definition and Bott periodicity, and the exactness axiom holds since
K̃(Ci) ∼= K̃(Ci/CA) ∼= K̃n(X/A).

Remark 2.2.3 It is often convenient to lift also K-theory to a unreduced cohomology theory (we
will not spell this out, but here one focuses the attention on pairs of spaces instead of pointed
spaces). This can be easily done by setting

Kn(X) := K̃n(X+) , Kn(X, A) := K̃n(X, A).

One readily checks that for n = 0 this definition agrees with our original K-theory, K0(X) ∼=
K(X); and moreover K1(X) ∼= K̃1(X). Bott periodicity states, in the unreduced case, that
K0(X) ∼= K2(X).

One fundamental result for reduced singular cohomology is that it is represented (in the
homotopy category of pointed CW-complexes) by the Eilenberg-MacLane spaces, that is, there
are natural isomorphisms

H̃n(−; A)
∼=

=⇒ [−, K(A, n)]∗

(here A is an abelian group). The suspension isomorphism implies that for any pointed CW-
complex X there are natural bijections

[X, K(A, n)]∗ ∼= H̃n(X; A) ∼= H̃n+1(ΣX; A) ∼= [ΣX, K(A, n + 1)]∗ ∼= [X, ΩK(A, n + 1)]∗

which implies that there are weak homotopy equivalences

K(A, n) '−→ ΩK(A, n + 1).

It will be useful (and extremely important) to give a name to this:

Definition. An Ω-spectrum is a sequence of pointed spaces (En) with weak homotopy equi-
valences En

'−→ ΩEn+1.

We will give a more general description of this in the next chapter, but at this point it is
important to note that this observation is true for any reduced generalized cohomology theory:
any reduced cohomology theory comes from an Ω-spectrum. This is an important result due
to Brown that we mention here without further comment (for a proof, see [38]) :
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Theorem 2.2.4 (Brown representability) The functor

{ Ω-spectra }


reduced generalized

cohomology theories on
pointed CW-complexes

 ,

where the assignment sends every Ω-spectrum E = (En) to the cohomology theory Ẽn := [−, En]∗, is
essentially surjective.

We cannot apply the previous result directly to reduced K-theory as we have only defined
it for compact Hausdorff spaces. However, as we will see, there is an Ω-spectrum representing
reduced K-theory, that can be used to extend it to a cohomology theory in all pointed CW-
complexes.

The following result is key in the theory of principal G-bundles (see [40] for a proof):

Theorem 2.2.5 If G is a topological group, and X is a paracompact1 space, there exists a space BG
(unique up to homotopy equivalence) and a principal G-bundle EG −→ BG such that2

[X, BG]

{
isomorphism classes of

principal G-bundles over X

}
,

∼=

where every homotopy class of map f : X −→ BG corresponds to the principal G-bundle f ∗EG −→ X.

Corollary 2.2.6 Vectn
C(X) ∼= [X, BU(n)] for any paracompact space X.

Proof. It is a well-know result that there is a bijection between complex vector bundles of rank
n over X and principal U(n)-bundles over X. Then this is a direct consequence of the previous
theorem.

The space BU(n) can be realized as the infinite Grassmanian Gn(C∞) := colimk Gn(Ck),
where Gn(Ck) is the space of n-dimensional linear subspaces of Ck.

Now consider X a compact Hausdorff space, and define the function dim : Vect•C(X) −→
[X,N] taking every vector bundle E to the map that takes every point to the dimension of its
fibre. The set [X,N] is a commutative monoid and its Grothendieck construction is precisely
K([X,N]) = [X,Z]. By the universal property of the Grothendieck construction, dim extends
to a map d̂im : K(X) −→ [X,Z]. Let K̂(X) := Ker d̂im.

Lemma 2.2.7 Let X be a compact Hausdorff space. There is a split short exact sequence

0 −→ K̂(X) −→ K(X) −→ [X,Z] −→ 0,

so K(X) ∼= K̂(X)⊕ [X,Z]. In particular, if X is a pointed connected space, K̂(X) ∼= K̃(X).

1This includes CW-complexes, compact Hausdorff spaces, topological manifolds, ... .
2The space EG is the same as in 1.1.6, and BG := EG/G. Another possible construction is the following: if

G∗n = G ∗ n· · · ∗ G denotes the n iterated join of G, there are inclusions G∗n ↪−→ G∗(n+1) and EG := colimn G∗n.
The multiplication of G induces a G-action on it, and as before BG := EG/G.
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Proof. A section of d̂im can be constructed as follows: any map f : X −→ N has compact image,
thus finite; say f (X) = {n1, . . . , nr}. If Xi = f−1(ni), then X = ä Xi and we define a bundle
over X by taking the trivial bundles ni at each Xi. This defines a map [X,N] −→ Vect•C(X)
which extends to the desired section by the universal property of K.

The last part follows from the 2-out-of-3 property of the diagram

0 K̂(X) K(X) [X,Z] 0

0 K̃(X) K(X) [∗,Z] 0

d̂im

since the third vertical map is an isomorphism when X is connected.

We can finally describe the space which represents reduced K-theory. The inclusions
U(n) ↪−→ U(n + 1) induce maps on the classifying spaces BU(n) ↪−→ BU(n + 1) (these are
actually embeddings). Set BU := colimn BU(n).

Proposition 2.2.8 Let X be a compact Hausdorff space. Then

K(X) ∼= [X, BU × Z],

and if X is pointed,
K̃(X) ∼= [X, BU × Z]∗

Proof. The first observation is that K̂(X) ∼= colimn Vectn
C(X) for X compact Hausdorff (compare

with 2.1.2). By 2.2.6, we get that

K̂(X) ∼= colim
n

Vectn
C(X) ∼= colim[X, BU(n)] ∼= [X, BU].

An argument of general topology ensures that the colimit commutes with the homotopy
classes, as X is compact and the maps which define BU are closed inclusions of T1 spaces.
Therefore, by 2.2.7 we get

K(X) ∼= K̂(X)⊕ [X,Z] ∼= [X, BU]⊕ [X,Z] ∼= [X, BU × Z],

and the last part follows from the computation that [X, BU × Z]∗ is precisely the kernel of the
map

K(X) ∼= [X, BU × Z] i∗−→ [∗, BU × Z] ∼= K(∗),

which can be done using the fact that our spaces are well-pointed.

How does this relate with the description of reduced K-theory as a cohomology theory?
Bott periodicity 2.1.10 suggests that BU×Z and Ω2(BU×Z) might be (weak) homotopy equi-
valent. This is actually the case, but we will take it for granted here (see [38, 11.60] for a proof):

Theorem 2.2.9 (Topological Bott periodicity) There is a weak homotopy equivalence

BU × Z ' Ω2BU,

or equivalently,
Ω2U ' U.
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The first consequence is that we can extend K-theory to all CW-complexes (not necessarily
compact Hausdorff) by setting

K(X) := [X, BU × Z] , K̃(X) := [X, BU × Z]∗

The second, with more importance for us, is that this classifying space forms an Ω-spectrum
which represents reduced K-theory: for n ≥ 0, set

K2n := BU × Z , K2n+1 := ΩBU.

Then K̃n(X) ∼= [X, Kn]∗ and by Bott periodicity Kn ' ΩKn+1.

Remark 2.2.10 Along this entire section we have focused our attention on complex K-theory.
A very similar discussion can be done about reduced KO-theory with some modifications: for
real vector bundles, we should have taken the classifying spaces BO(n) and the colimit BO,
concluding that reduced KO-theory is represented by BO × Z. Bott periodicity states in this
case that

BO× Z ' Ω8BO,

so K̃O(X) ∼= K̃O(Σ8X), which gives a 8-periodic reduced cohomology theory. The Ω-spectrum
representing reduced KO-theory is in this case KO8n+i := Ω8−i(BO× Z), for 0 ≤ i < 8.

2.3 KR-theory

In the previous two sections, we reviewed the foundations of complex and real K-theory. We
are now interested in extending these theories to G-spaces. This is possible and it is called
equivariant K-theory, and was developed by Segal in [36]. However, we will focus our atten-
tion on the particular case G = Z/2, and will take a different version of vector bundles over
Z/2-spaces. This is called K-theory with Reality and was carried out by Atiyah in [1]. This has
the advantage that it encodes complex and real K-theory, as we will see. As before, spaces will
be assumed compact Hausdorff, unless otherwise stated.

The first observation is that for a Z/2-space X, the action is completely determined by
an involution τ : X

∼=−→ X, that is, an homeomorphism such that τ2 = Id. For x ∈ X, we
will usually write x := τ(x), motivated by the standard Z/2-action on C given by complex
conjugation.

Definition. Let X be a Z/2-space. A Real3 vector bundle over X is a Z/2-space E together
with a Z/2-equivariant map π : E −→ X such that

(i) π : E −→ X is a complex vector bundle over X.

(ii) The map τx : Ex −→ Ex is anti-linear.

The “bar” notation happens to be useful: using this, (i) says that π(e) = π(e) for e ∈ E (so
the fibre of x maps indeed to the fibre of x); and moreover for λ ∈ C, we have λe = λe. This
only differs from Segal’s notion of Z/2-vector bundle in the fact that here we ask the involution
to be fibrewise anti-linear, instead of linear.

3Caution! Capitalized Real means something different than real.
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Examples 2.3.1 1. If X is a Z/2-space, and we consider over Cn the Z/2-action given by
complex conjugation termwise, then the trivial vector bundle X × Cn = n −→ X is a
Real vector bundle.

2. Let H be the tautological line bundle over CPn. Then taking complex conjugation com-
ponentwise defines Z/2-actions on both spaces and in particular H −→ CPn becomes a
Real vector bundle.

3. Let E −→ X be a real vector bundle in the category of Z/2-spaces, that is, a Z/2-
equivariant map between Z/2-spaces which is a real vector bundle over X, with the
involution of E being linear. Then its complexification E ⊗ C can be made into a Real
vector bundle over X, by extending fibrewise the involution τx : Ex ⊗ C −→ Ex ⊗ C
anti-linearly.

4. If E, E′ −→ X are Real vector bundles over X, then E ⊕ E′ and E ⊗ E′ are again Real
vector bundles, with involutions

(e, e′) := (e, e′) , e⊗ e′ := e⊗ e′.

5. If f : X −→ Y is a Z/2-map, and E −→ Y is a Real vector bundle, then the pullback
bundle f ∗E −→ X is also a Real vector bundle.

The previous examples show that we have Real trivial bundles, and also that the direct sum
and tensor product of Real vector bundles are Real vector bundles. So as in the nonequivariant
case, if Vect•R(X) denotes the set of isomorphism classes of Real vector bundles over a Z/2-
space X, then

(Vect•R(X),⊕,⊗, 0, 1)

is a commutative semiring, so we can make a similar construction:

Definition. Let X be a Z/2-space. The K-theory with Reality of X is the Grothendieck con-
struction

KR(X) := K(Vect•R(X)).

Observe that if f : X −→ Y is a Z/2-map, just as in the nonequivariant case, there is an
induced map f ∗ : KR(Y) −→ KR(X).

Definition. The reduced KR-theory of X is

K̃R(X) := coker(K(∗) −→ K(X))

induced by the unique Z/2-map X −→ ∗, where the one-point space has obviously the trivial
action.

As for nonequivariant spaces, we have functors

KR : (Z/2)CHaus −→ Rng , K̃R : (Z/2)CHaus −→ Ab.

Complex and real K-theory are very easily recovered: a simple observation of Linear Al-
gebra is enough to relate KR-theory with KO-theory:

Lemma 2.3.2 There is an equivalence of categories

{R-vector spaces}
{ C-vector spaces with

anti-linear involution

}
'
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where the assignment sends every real vector space V to V ⊗C.

Proof. The inverse functor maps every complex vector space V with an anti-linear Z/2-action
to VZ/2, the fixed points of the action. Observe that this is well-defined: if e ∈ VZ/2 and λ ∈ R,
then λe ∈ VZ/2 because λe = λe = λe.

On the one hand, if V is a R-vector space, then (V ⊗C)Z/2 ∼= V ⊗R ∼= V since the involu-
tion only takes place in C.

On the other hand, if V is a C-vector space with anti-linear Z/2-action, then consider the
subspace V ′ := {v ∈ V : v = −v}. Then it yields that V = VZ/2 ⊕ V ′: the intersection is
clearly trivial, and the sum is V since any v ∈ V can be written as v = 1

2 (v + v) + 1
2 (v− v). In

particular, multiplication by i ∈ C defines a linear isomorphism ·i : VZ/2 ∼=−→ V ′, so we get an
isomorphism of C-vector spaces with anti-linear involution

V ∼= VZ/2 ⊕ iVZ/2,

where on the right-hand side the involution is given by (v1, iv2) = (v1,−iv2). We conclude
that

VZ/2 ⊗C ∼= VZ/2 ⊗ (R⊕ iR) ∼= VZ/2 ⊕ iVZ/2 ∼= V.

It is routine to check that all isomorphisms involved are natural on spaces, so this certainly
defines an equivalence of categories.

Corollary 2.3.3 If X has the trivial Z/2-action, then there is an isomorphism of commutative semirings

Vect•R(X) Vect•R(X)

E E⊗ 1

∼=

In particular, KR(X) ∼= KO(X).

Proof. If the Z/2-action is trivial, then for a Real vector bundle E we have fibrewise anti-linear
involutions τx : Ex −→ Ex, and therefore a bijection by the previous proposition. The mor-
phism obviously preserves direct sums, but also tensor products since for R-vector spaces
V, V ′, we have a canonical isomorphism (V⊗R V ′)⊗RC ∼= (V⊗RC)⊗C (V ′⊗RC) as complex
vector spaces.

For complex K-theory, we have the following

Proposition 2.3.4 If X is a compact Hausdorff space, then there is an isomorphism of commutative
semirings

Vect•R(X ä X) Vect•C(X)

E E|X

∼=

where X ä X ∼= X× {±i} as Z/2-spaces. In particular, KR(X ä X) ∼= K(X).

Proof. Let E denote the conjugated vector bundle over X. Then the inverse is given by taking
every complex vector bundle p : E −→ X to E ä E −→ X ä X), where E ä E has also the
obvious switching map as involution and the map is just p factorwise. This is clearly Z/2-
equivariant, and moreover the action on E ä E is fibrewise anti-linear, since Ex −→ Ex = Ex is
just the anti-linear extension of the identity.
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Remark 2.3.5 Classically, spaces with an involution (ie, Z/2-spaces) are called Real spaces; and
complex vector spaces with anti-linear involution are called Real vector spaces. This is motivated
by 2.3.2, and also gives motivation for the name of K-theory with Reality.

According to 2.3.3, KR(∗) ∼= KO(∗) ∼= Z, so K̃R(X) ∼= KR(X)/Z for a Z/2-space X, just as
in the nonequivariant case. Moreover, the proof of 2.1.3 is still valid, so we get a splitting

KR(X) ∼= K̃R(X)⊕ Z

and K̃R(X) ∼= Ker(KR(X) −→ KR(x0)) for a pointed Z/2-space (X, x0).

Trying to mimic the first section of this chapter, now we are aimed to prove a product
theorem and a periodicity theorem. For that, the first thing that we need are spheres with a
Z/2-action. We will use the following description (though not the standard one): let p, q ≥ 0
and let Vp,q := Rp ⊕ iRq with the involution given by complex-conjugation and the standard
metric, so this is an orthogonal Z/2-representation. We will denote

Sp,q := SVp,q

for the one-point compactification of Vp,q, so this is a (p+ q)-dimensional sphere. In particular,
this means that

Sp,q ∼= S(S(Vp,q)) ∼= S(Vp+1,q)

as Z/2-spaces, where S(Vp,q) denotes the unit sphere of Vp,q and S is the unreduced suspen-
sion (where the trivial action is taken in the unit interval).

One can further show that all unit spheres arise as the one-point compactification of a Z/2-
representation, except for the unit sphere of iRq, which has the antipodal action (and therefore
no fixed points). To include this one also in our notation we let S−1,q+1 := S(iRq+1), so that
Sp,q is a (p + q)-dimensional sphere for p ≥ −1, q ≥ 0 and p + q ≥ 0, and the expresion
Sp,q ∼= S(Vp+1,q) is always valid.

As for the nonequivariant case, if X, Y are Z/2-spaces, we consider

µ := π∗1 ⊗ π∗2 : KR(X)⊗ KR(Y) −→ KR(X×Y)

the external product for KR-theory, where π1, π2 denote the projections.

In the product theorem 2.1.5 we had that the isomorphism involved CP1, which as Z/2-
space happens to be homeomorphic to S1,1 (just because CP1 ∼= SR⊕iR). With a bit of care, one
can check that the proof given for the product theorem for complex K-theory can be amended
for the equivariant case, where we replace S2 by S1,1. A proof of this fact can be found in [1,
2.1], but here we just state the result without further comment.

Theorem 2.3.6 (Product theorem) Let X be a Z/2-space. The composite

KR(X)⊗ Z[x]/(x− 1)2 −→ KR(X)⊗ KR(S1,1)
µ−→ KR(X× S1,1)

is a ring isomorphism.

Observe that here x represents the tautological line bundle over CP1, which is a Real vector
bundle. The same argument as in the nonequivariant case gives
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Corollary 2.3.7 The map Z[x]/(x− 1)2 ∼=−→ KR(S1,1) is a ring isomorphism. Moreover, the external
product

µ : KR(X)⊗ KR(S1,1)
∼=−→ KR(X× S1,1)

is an isomorphism.

Under this result, now Bott periodicity for KR-theory follows exactly by the same reasons
as for K-theory: for X, Y pointed Z/2-spaces, the external product for KR-theory restricts to a
reduced external product

µ̃ : K̃R(X)⊗ K̃R(Y) −→ K̃R(X ∧Y).

Then if β denotes the composite

K̃R(X)
(x−1)⊗−−→ K̃R(S1,1)⊗ K̃R(X)

µ̃−→ K̃R(S1,1 ∧ X),

we obtain

Theorem 2.3.8 (Equivariant Bott periodicity) The previous homomorphism

β : K̃R(X)
∼=−→ K̃R(S1,1 ∧ X)

is an isomorphism for all based compact Hausdorff Z/2-spaces X.

Higher KR-theory groups

Now we will discuss the “cohomological flavour” of (reduced) KR-theory. The way we ob-
tained higher K-theory groups in the nonequivariant case was by taking the iterated suspen-
sion of a space. Of course, in the category of based Z/2-spaces, we do not have the usual
suspension, but we do have spheres: for a based Z/2-space X, we consider

Σp,qX := Sp,q ∧ X

for p ≥ −1, q ≥ 0 and p + q ≥ 0. Then, mimicking K-theory, we simply define the higher
KR-theory groups as

K̃R
−p,−q

(X) := K̃R(Σp,qX) , K̃R
−p,−q

(X, A) := K̃R
−p,−q

(X/A)

where A ⊂ X is a closed subspace. With this notation, Bott periodicity states that

K̃R
−p,−q

(X) ∼= K̃R
−p−1,−q−1

(X)

since Sp,q ∧ Sp′,q′ ∼= Sp+p′,q+q′ as Z/2-spaces (for p′ ≥ 0). We can as well extend these groups to
positive integers using Bott periodicity: for p ≥ −1, q ≥ 0 and p + q ≥ 0, we set

K̃R
p,q
(X) := K̃R(Sn−p,n−q ∧ X) , K̃R

p,q
(X, A) := K̃R

p,q
(X/A)

for any n > p, q (compare with page 24).
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Remark 2.3.9 In the equivariant case we can also lift these higher groups to unreduced ones,
as usual by setting

KR−p,−q(X) := K̃R
−p,−q

(X+) , KR−p,−q(X, A) := K̃R
−p,−q

(X, A)

for a Z/2-space X and A ⊂ X a closed subspace (and the disjoint point is considered to be
fixed). It is important to note that, under this description,

KR−p,−q(X, A) = K̃R
−p,−q

(X/A) = K̃R(Sp,q ∧ X/A) ∼= K̃R(Dp,q/Sp−1,q ∧ X/A)

∼= KR(X× Dp,q, X× Sp−1,q ∪ A× Dp,q)

for p, q ≥ 0, where Dp,q = D(Vp,q) is the unit disk of Vp,q, so that ∂Dp,q ∼= Sp−1,q.

If we consider the spheres Sp,0 with the trivial action, then we can mimic the argument that
gives the long exact sequence of a pair in the nonequivariant case.

Proposition 2.3.10 Let (X, x0) be a pointed Z/2-space. Then the following properties hold:

1. If f , g : X −→ Y are homotopic, then f ∗ = g∗ : K̃R(Y) −→ K̃R(X).

2. If (X, A) is a pointed pair of Z/2-spaces, with A closed, there is a long exact sequence

· · · K̃R
−2,0

(X) K̃R
−2,0

(A)

K̃R
−1,0

(X/A) K̃R
−1,0

(X) K̃R
−1,0

(A)

K̃R
0,0
(X/A) K̃R

0,0
(X) K̃R

0,0
(A)

3. If (Xi)i∈I is a collection of pointed Z/2-spaces, then

K̃R(
∨
i∈I

Xi)
∼=−→∏

i∈I
K̃R(Xi)

is an isomorphism.

A mere algebraic consequence of the previous long exact sequence is the following

Corollary 2.3.11 Let (X, X′, X′′) be a pointed triple of Z/2-spaces. Then there is a long exact sequence

· · · K̃R
−2,0

(X, X′′) K̃R
−2,0

(X′, X′′)

K̃R
−1,0

(X, X′) K̃R
−1,0

(X, X′′) K̃R
−1,0

(X′, X′′)

K̃R
0,0
(X, X′) K̃R

0,0
(X, X′′) K̃R

0,0
(X′, X′′)



2.3. KR-THEORY 33

Corollary 2.3.12 Let (X, A) be a pointed pair of Z/2-spaces. For every q ≥ 0 there is a long exact
sequence

· · · K̃R
−2,−q

(X) K̃R
−2,−q

(A)

K̃R
−1,−q

(X/A) K̃R
−1,−q

(X) K̃R
−1,−q

(A)

K̃R
0,−q

(X/A) K̃R
0,−q

(X) K̃R
0,−q

(A)

Proof. Let us see that we can obtain the desired sequence by rewriting the long exact sequence
of the triple

(X× D0,q, X× S0,q−1 ∪ A× D0,q, X× S0,q−1 ∪ x0 × D0,q),

where x0 ∈ A ⊂ X is the basepoint. We simply compute

K̃R
−p,0

(X× D0,q, X× S0,q−1 ∪ A× D0,q) ∼= K̃R
−p,0

(D0,q/S0,q−1 ∧ X/A)

∼= K̃R
−p,0

(S0,q ∧ X/A) = K̃R(Sp,0 ∧ S0,q ∧ X/A)

∼= K̃R
−p,−q

(X/A) = K̃R
−p,−q

(X, A),

where we used that, for pairs of Z/2-spaces (X, A), (Y, B), we have

X×Y
X× B ∪ A×Y

∼= X/A ∧Y/B

also as Z/2-spaces. Similarly,

K̃R
−p,0

(X× D0,q, X× S0,q−1 ∪ x0 × D0,q) ∼= K̃R
−p,0

(S0,q ∧ X)

∼= K̃R(Sp,q ∧ X/A) ∼= K̃R
−p,−q

(X, A).

Finally, observe that the inclusion A × D0,q ↪−→ X × S0,q−1 ∪ A × D0,q induces, by the
universal property of the quotient topology, a continuous bijection

A× D0,q

A× S0,q−1 ∪ x0 × D0,q −→
X× S0,q−1 ∪ A× D0,q

X× S0,q−1 ∪ x0 × D0,q

between compact Hausdorff spaces, thus an homeomorphism. Therefore, we obtain

K̃R
−p,0

(X× S0,q−1 ∪ A× D0,q, X× S0,q−1 ∪ x0 × D0,q)

∼= K̃R
−p,0

(A× D0,q, A× S0,q−1 ∪ x0 × D0,q)

∼= K̃R
−p,0

(S0,q ∧ A) ∼= K̃R
−p,−q

(A)

For a pointed pair of Z/2-spaces (X, A), and n ≥ 0, it is customary to set

K̃R
−n

(X, A) := K̃R
−n,0

(X, A) , K̃R
n
(X, A) := K̃R

0,−n
(X, A).
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Corollary 2.3.13 There is a long exact sequence

· · · K̃R
−1
(X) K̃R

−1
(A)

K̃R
0
(X, A) K̃R

0
(X) K̃R

0
(A)

K̃R
1
(X, A) K̃R

1
(X) · · ·

Proof. It follows from 2.3.8, 2.3.10 and 2.3.12.

Moreover, from this we can also conclude that K̃R
n

is a reduced cohomology theory on
(Z/2)CHaus.

Represented KR-theory

We continue now our analogy with nonequivariant K-theory. Our next aim is to find a Z/2-
space which represents reduced KR-theory, as we did before. For complex K-theory, we
showed that K̃(X) ∼= [X, BU × Z]∗. We will see that this classifying space will be enough
for our purpose.

The first step is to imitate the notion of principal G-bundle for Γ-spaces, where Γ is a finite
group (or a compact Lie group) which also acts on G. Of course, we want to think Γ = Z/2
for our goal. Here we will only present the main results, and refer the interested reader to [39,
§I.8] for further details about principal G-bundles on Γ-spaces.

Let Γ be a discrete group, G a topological group and let α : Γ −→ Aut(G) be a group
homomorphism. We will denote α(γ) by αγ and additionally require that the map Γ×G −→ G
is continuous.

Definition. Let X be a Γ-space. A (Γ, α)-equivariant principal G-bundle over X is a principal
G-bundle p : E −→ X over X such that

(i) E is a Γ-space and the projection is Γ-equivariant.

(ii) γ(eg) = (γe) · αγ(g) for all γ ∈ Γ, g ∈ G and e ∈ E.

Example 2.3.14 If α : Z/2 −→ Aut(U(n)) acts by complex conjugation, then a (Z/2, α)-
equivariant principal U(n)-bundle is the same thing as a Real vector bundle of rank n. Indeed,
condition (ii) means that γ(eg) = (γe) · g for g ∈ U(n), which fibrewise means λe = λe for
λ ∈ C.

In the equivariant case, we still have a classification theorem as in 2.2.5:

Theorem 2.3.15 If X is paracompact, then there exists a Γ-space B(Γ, α, G) (unique up to Γ-homotopy
equivalence) and a (Γ, α)-equivariant principal G-bundle E(Γ, α, G) −→ B(Γ, α, G) such that4

Γ[X, B(Γ, α, G)]

{ isomorphism classes of
(Γ, α)-equivariant principal

G-bundles over X

}
∼= ,

4 In the equivariant case, these spaces can be constructed in the following way: in the first place, we consider a
family {pi : Ei −→ Γ/Λi}i∈I of (Γ, α)-equivariant principal G-bundles where Ei is Hausdorff and Γ/Λi is an orbit
space. If L := äi Ei, then setting EG := colimn L∗n (iterated join) and BG := EG/G gives the desired spaces.
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where every Γ-homotopy class of map f : X −→ BG corresponds to f ∗EG −→ X.

For our case of interest, with Γ = Z/2 and G = U(n), the involution U(n) −→ U(n) given
by complex conjugation termwise induces an involution BU(n) −→ BU(n) on classifying
spaces, so BU(n) is a Z/2-space. In particular, BU(n) with this involution is a model for
B(Z/2, α, U(n)), as the following proposition asserts:

Proposition 2.3.16 Vectn
R(X) ∼= Z/2[X, BU(n)], for any paracompact Z/2-space X.

Proof. We need to check that the bijection of 2.2.6 restricts to the desired correspondence.
For recall that there are explicit models for EU(n) and BU(n): if Gn(Ck) is the space of n-
dimensional linear subspaces of Ck and En(Ck) = {(`, v) ∈ Gn(Ck) × Ck : v ∈ `} then
EU(n) = colimk En(Ck) and BU(n) = colimk Gn(Ck).

Now observe that there are Z/2-actions on Gn(Ck) and En(Ck) given by taking com-
plex conjugation componentwise, so in particular both are Z/2-spaces and the projection
En(Ck) −→ Gn(Ck) is a Real vector bundle. Since this involution is compatible with the in-
clusions Gn(Ck) ⊂ Gn(Ck+1) and En(Ck) ⊂ En(Ck+1), we conclude that EU(n) −→ BU(n)
is a Real vector bundle. Therefore, the pullback of EU(n) along a Z/2-equivariant map
X −→ BU(n) inherits a Z/2-action such that the projection is Z/2-invariant and the invol-
ution is fibrewise anti-linear.

The last observation is that the Z/2-action on BU(n) induced by complex-conjugation is
compatible with the embeddings BU(n) ↪−→ BU(n + 1), so BU inherits a Z/2-action.

Corollary 2.3.17 Let X be a compact Hausdorff Z/2-space. Then

KR(X) ∼= Z/2[X, BU × Z],

where BU × Z has the trivial involution on Z. Moreover, if X is also pointed, then

K̃R(X) ∼= Z/2[X, BU × Z]∗

Proof. The arguments given in 2.2.7 and 2.2.8 are still valid here.

The last corollary together with (equivariant) Bott periodicity say that for any compact
Hausdorff Z/2-space X,

Z/2[X, BU × Z]∗ ∼= K̃R(X) ∼= K̃R(Σ1,1X) ∼= Z/2[Σ1,1X, BU × Z]∗ ∼= Z/2[X, Ω1,1(BU × Z)]∗

where Ω1,1 = GMap(S1,1,−). One can show, as in the nonequivariant case, that BU × Z and
Ω1,1(BU × Z) are related:

Theorem 2.3.18 (Equivariant topological Bott periodicity I) There is a Z/2-equivariant weak
homotopy equivalence

BU × Z ' Ω1,1(BU × Z).

As we did in last section, we can now extend KR-theory for all Z/2-CW-complexes (not
necessarily compact Hausdorff), setting

KR(X) := Z/2[X, BU × Z] , K̃R(X) := Z/2[X, BU × Z]∗
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Surprisingly, for KR-theory, we have one more version of Bott periodicity. Recall from 2.3.3
that if X is a based compact Hausdorff space with trivial G-action, then K̃R(X) = K̃O(X). In
particular this implies

Z/2[X, Ω8,0(BU × Z)]∗ ∼= Z/2[Σ8,0X, BU × Z]∗ ∼= K̃R(Σ8,0X) ∼= K̃O(Σ8X) ∼= K̃O(X)

∼= [X, BO× Z]∗ ∼= [X, (BU × Z)Z/2]∗
(1.5)∼= Z/2[X, BU × Z]∗

This suggests a relation between BU × Z and Ω8,0(BU × Z), which is indeed true:

Theorem 2.3.19 (Equivariant topological Bott periodicity II) There is a Z/2-equivariant weak
homotopy equivalence

BU × Z ' Ω8,0(BU × Z).

Remark 2.3.20 One would now like to make the K̃R
p,q
(X) groups into a cohomology theory,

but at this point it is not clear how to do it, as we index KR-theory with two indices. Such a
cohomology theory will be RO(Z/2)-graded, instead of Z-graded. This roughly means that
instead of indexing by integers, we will index by representations of Z/2. We will tackle this in
4.2.4.



Chapter 3

Stable homotopy theory

We will devote the next two chapters to the main part of this Master’s thesis: (equivariant)
stable homotopy theory, where K-theory and KR-theory will be our most important examples.
Before giving a detailed construction and description, we would like to start off with some
motivation for what follows, picking ideas from [22], [27] , and [32].

Why do we care about stable homotopy theory?

One of the main goals of Algebraic Topology is the study of algebraic invariants of topological
spaces, and more concretely of (finite) CW-complexes, such as homology, cohomology, homo-
topy groups, K-theory, etc. However, these invariants strongly depend on the dimension of
the CW-complex, and more concretely on taking suspensions. We would like to develop some
analogues to spaces where the objects are “independent of dimension” and “stable under sus-
pension”, for some suitable notions.

In (unstable) homotopy theory we can also encounter examples of such a stable phe-
nomenon: let us look at the table of Figure 3.1, which shows the homotopy groups of the
spheres.

π1 π2 π3 π4 π5 π6 π7 π8 π9

S1 Z 0 0 0 0 0 0 0 0

S2 0 Z Z Z/2 Z/2 Z/12 Z/2 Z/2 Z/3

S3 0 0 Z Z/2 Z/2 Z/12 Z/2 Z/2 Z/3

S4 0 0 0 Z Z/2 Z/2 Z⊕ Z/12 Z/2⊕ Z/2 Z/2⊕ Z/2

S5 0 0 0 0 Z Z/2 Z/2 Z/24 Z/2

S6 0 0 0 0 0 Z Z/2 Z/2 Z/24

Figure 3.1: Homotopy groups of the spheres.

These are, in general, really hard to compute (in fact there is no sphere Sn for n > 1 that we
know all its homotopy groups) but there is some regularity that we can explain: for instance,
the lower left triangle of πk(Sn) ∼= 0 for k < n is by Cellular Approximation, the upper row
of πk(S1) ∼= 0 for k > 1 is due to covering theory, the diagonal πn(Sn) ∼= Z is by Hurewicz,
the two equal rows πk(S2) ∼= πk(S3) for k ≥ 3 are given by the Hopf fibration, etc. And

37
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there is another regularity shown in the table: diagonals stabilize. This is due to the following
stabilization theorem (see [38, 15.46]):

Theorem 3.0.1 (Freudenthal suspension) Let X be a pointed (n − 1)-connected space. Then the
suspension homomorphism

πn+k(X) πn+k+1(ΣX)

[Sn+k f−→ X] [Sn+k+1 Σ f−→ ΣX]

Σ

is an isomorphism for k ≤ n− 2 and surjective for k = n− 1.

According with the theorem, πn+k(Sn)
∼=−→ πn+k+1(Sn+1) is an isomorphism as soon as

n ≥ k + 2, so indeed diagonals stabilize. In particular, for any pointed space X, the sequence

πk(X)
Σ−→ πk+1(ΣX)

Σ−→ πk+2(Σ2X)
Σ−→ πk+3(Σ3X) −→ · · ·

will eventually stabilize as ΣnX becomes more and more connected. It is customary to give a
name to this stable value.

Definition. Let X be a based space. The k-th stable homotopy group of X is

πst
k (X) := colim

n
πn+k(ΣnX).

Directly from the definition, we have that πst
k (X) ∼= πst

k+1(ΣX), just as the suspension iso-
morphism in a (reduced) homology theory. Of course this is not a coincidence, and we will
come back later to this. Moreover, these stable homotopy groups are very related with the
class of objects we want to get in stable homotopy theory.

Let us discuss another feature which brings to light this stable phenomenon (and it was in
particular the starting point of stable homotopy theory). The following result is also due to
Freudenthal (see [32, §3.4 ]):

Theorem 3.0.2 Let X be a pointed n-connected CW-complex and let Y be a pointed CW-complex of
dimension ≤ 2n. Then the suspension map

[X, Y]∗
Σ−→ [ΣX, ΣY]∗

is a bijection of pointed sets.

This result motivated Spanier to define the S-category , with objects pointed CW-complexes
and morphisms

HomS(X, Y) := colim
n

[ΣnX, ΣnY]∗

By the suspension-loop adjunction, this is a colimit of groups for n ≥ 1, which are abelian for
n ≥ 2, so HomS(X, Y) is an abelian group. Moreover, the suspension functor Σ : S −→ S
is fully faithful (since HomS(X, Y)

∼=−→ HomS(ΣX, ΣY) by definition), but it is not essentially
surjective on objects. If we want our desired “stable homotopy category” to be independent
of suspensions, then Σ (for some suitable notion) should be an equivalence of categories. One
can force this on the S-category by introducing formal desuspensions of spaces, giving rise
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to the Spanier-Whitehead category SW: this has as objects pairs (X, k), where X is a pointed
CW-complex and k ∈ Z; and arrows

HomSW((X, k), (Y, r)) := colim
n

[Σk+nX, Σr+nY]∗

This SW-category is much better than the S-category, in the sense that now Σ : SW −→ SW is an
equivalence of categories, and moreover it is triangulated, additive and symmetric monoidal.
However, it lacks other desirable properties: for instance, it is not large enough to represent
cohomology theories. But, respect to this last property, we already saw Brown representability
(theorem 2.2.4): every reduced cohomology theory is represented by an Ω-spectrum. Being
interested in suspensions rather than loop spaces, it seems sensible to consider the adjoints
maps.

Definition. A spectrum is a sequence of pointed spaces (En) together with structure maps
ΣEn −→ En+1.

Of course, every Ω-spectrum is a spectrum.

This is the starting point to construct the stable homotopy category, and it is possible to do
it from this definition (see [27], [38]). However, we will not proceed in this fashion and will
take a more modern setup, which will allow us to generalize this notion of spectra to other
models and to the equivariant version in a more direct way.

3.1 Diagram spaces

We will follow the modern approach described in Model categories of diagram spectra [24] now 20
years ago. Our goal is to define and describe categories SpI and SHC and functors as depicted
in the following diagram:

Top Top∗ SpI Ab

Ho(Top) Ho(Top∗) SHC grAb

(−)+ Σ∞◦ cw H

0-th deg

(−)+ LΣ∞

LΣ

π∗

where LΣ : SHC '−→ SHC is an equivalence of categories and cw is a CW-approximation
functor.

Enriched category theory

We will start our construction of the stable homotopy category with some background on en-
riched category theory, that we will constantly use. For the elaboration of this section we follow
[30, §3.1 – 3.5] for the first part, and [3, §2.3] and [24] for the second, but proofs are original
work of the author.

Definition. A symmetric monoidal category (V ,⊗, ∗) is the data of:

(i) A complete and cocomplete category V ,

(ii) A bifunctor −⊗− : V × V −→ V , called monoidal product,

(iii) An object ∗ ∈ V , called the unit,
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together with natural isomorphisms

V ⊗W
∼=

=⇒W ⊗V , U ⊗ (V ⊗W)
∼=

=⇒ (U ⊗V)⊗W , ∗ ⊗V
∼=⇐= V

∼=
=⇒ V ⊗ ∗

which express symmetry, associativity and unit conditions on the monoidal product. These
isomorphisms must also satisfy a handful of coherence conditions, see [20, §VII.1]

Examples 3.1.1 One encounters many examples of symmetric monoidal categories in nature:

(a) If R is a commutative ring, the category (ModR,⊗R, R) of R-modules together with the
tensor product and the ring R (viewed as a module over itself) as unit is symmetric mo-
noidal. In particular, this includes (Ab,⊗Z,Z) and (Vectk,⊗k, k).

(b) The categories (Top,×, ∗) and (Set,×, ∗), with the direct product and the one-point space.

(c) The pointed versions of the previous ones (Top∗,∧, S0) and (Set∗,∧, S0), with the smash
product and the two-points space.

(d) If G is a topological group, then (GTop,×, ∗) as well as its pointed version (GTop∗,∧, S0)
(where S0 has the trivial action) are symmetric monoidal.

(e) For a fixed space S, the slice category (Top/S,×S, S) , with the fibre product and the space
S serving as the unit.

We also have preferred functors between symmetric monoidal categories:

Definition. Let F : (V ,⊗, ∗) −→ (W ,∧, •) be a functor between symmetric monoidal catego-
ries. We say that F is lax (symmetric) monoidal if there exist (symmetric), associative and
unital natural transformations

F(V1) ∧ F(V2) −→ F(V1 ⊗V2) , • −→ F(∗).

When the previous maps are natural isomorphisms, we say that F is strong (symmetric) mon-
oidal.

It is usual to find categories where the hom-sets have some extra structure, for instance
when they are also objects of the category. There are some subtleties in this concept, so let us
be precise about this:

Definition. Let (V ,⊗, ∗) be a symmetric monoidal category. A V-category D or an enriched
category over V is the data of:

(i) A collection of objects C, D . . . ∈ D,

(ii) For every pair of objects C, D ∈ D, a hom-object HomD(C, D) ∈ V ,

(iii) For every object C ∈ D, an arrow IdC : ∗ −→ HomD(C, C) in V ,

(iv) For every triple C, D, E ∈ D, an arrow ◦ : HomD(D, E)⊗HomD(C, D) −→ HomD(C, E)
in V ,

such that the following diagrams commute1 for all C, D, E, F ∈ D:

1Given an arrow f : V ⊗W −→ U and an object S in V , the arrow f ⊗ IdS : V ⊗W ⊗ S −→ U ⊗ S is defined as
the image of the arrow ( f , IdS) : (V ⊗W, S) −→ (U, S) in the category V × V via the functor ⊗ : V × V −→ V .
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HomD(E, F)⊗HomD(D, E)⊗HomD(C, D) HomD(D, F)⊗HomD(C, D)

HomD(D, E)⊗HomD(C, D) HomD(C, F)

1⊗◦

◦⊗1 ◦

◦

HomD(C, D)⊗ ∗ HomD(C, D)⊗HomD(C, C)

HomD(C, D)⊗HomD(D, D) HomD(C, D)

1⊗IdC

1⊗IdD
∼= ◦

◦

(we have omitted one associativity isomorphism in the first diagram and one symmetry iso-
morphism in the second).

Example 3.1.2 Let R be a commutative ring. Then ModR is enriched over (Ab,⊗Z,Z): indeed,
for R-modules M, N, the set HomModR(M, N) is an abelian group, and moreover the composite
of R-module maps is bilinear, which induces a group homomorphism

HomModR(N, P)⊗HomModR(M, N) −→ HomModR(M, P).

We also have that the forgetful functor U : Ab −→ Set is represented by Z ∈ Ab,
HomAb(Z,−) ∼= U, since any group homomorphism Z −→ A is determined by the image
of 1 ∈ Z. Therefore, IdM ∈ HomModR(M, M) is represented by a group homomorphism
Z −→ HomModR(M, M) (sending 1 to IdM). The diagrams encoding associativity and the unit
condition are readily verified.

Definition. Let (V ,⊗, ∗) be a symmetric monoidal category enriched over itself, that is, also
endowed with internal homs HomV (−,−) satisfying the above axioms. We say that V is
closed if the monoidal product defines a two-variable adjunction using internal homs, so that
we have natural isomorphisms

HomV (U, HomV (V, W)) ∼= HomV (U ⊗V, W) ∼= HomV (V, HomV (U, W)).

Example 3.1.3 The symmetric monoidal categories (Ab,⊗Z,Z), (Top,×, ∗), (GTop,×, ∗),
(Top∗,∧, S0) and (GTop∗,∧, S0) are all closed.

However, the category of all topological spaces is not closed symmetric monoidal. This
is the main reason why we choose the category Top of compactly generated spaces as our
preferred category of spaces.

Remark 3.1.4 In principle, there is no reason to automatically deduce that a V-category has an
underlying category in the usual sense. For instance, it is not clear at all what the hom-sets
should, or what the composite should be. Anyway, even if this was the case, this might be
trickier than expected. For the too optimistic reader, here you have a discouraging counter-
example.

Consider the category GTop of G-spaces and G-equivariant maps. This category can be
enriched in two different ways:

1. GTop is enriched over (Top,×, ∗), where HomGTop(X, Y) := MapG(X, Y) endowed with
the subspace topology of Map(X, Y). The identity arrow of a G-space X is the unique
map ∗ −→ MapG(X, X) with image IdX : X −→ X.
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2. GTop is also enriched over (GTop,×, ∗), setting HomGTop(X, Y) := GMap(X, Y) the G-
space of all maps with the G-action (g · f )(x) := g−1 f (gx) (see page 2). As before, the
identity arrow of a G-space X is the unique G-map ∗ −→ GMap(X, X) with image IdX :
X −→ X.

The naive “underlying category” of GTop obtained by taking the underlying set of
HomGTop(X, Y) as hom-set returns something larger than expected in the second case, namely
the set of all continuous maps. One needs to be a bit more astute (cf. [30, 3.4.5 and 3.4.9] for a
proof):

Proposition 3.1.5 Let (V ,⊗, ∗) be symmetric monoidal and let D be a V-category. Then there exists
an underlying category D with same objects as D and hom-sets

HomD(C, D) := HomV (∗, HomD(C, D)).

In particular, if V is closed symmetric monoidal, the underlying category of V is V .

Example 3.1.6 Let us see how we recover the desired hom-sets in both enrichments of
GTop: on the one hand, Map(∗, MapG(X, Y)) is the set of points of MapG(X, Y), i.e., the set
of G-equivariant maps. On the other hand, MapG(∗, GMap(X, Y)) are the fixed points of
GMap(X, Y), as ∗ has the trivial action; and by 1.1.2 we also recover the G-equivariant maps.

Of course, similarly, GTop∗ is enriched over both Top∗ and GTop∗.

In order to make explicit the difference between a V-category and its underlying category,
the former is usually underlined. However, we will not underline enriched categories and will
not distinguish between them and their underlying categories, as it should be clear from the
context which one we handle.

There are enriched versions of functors, natural transformations, adjunctions, equivalences
of categories, Yoneda lemma, etc. Unless stated otherwise, we will refer to these ones with no
further comment. For detail descriptions of all these concepts, we refer to [30, ch. 3].

Diagram spectra

We have now all tools to construct the category of spectra (generalizing the previous provi-
sional definition), which will allow us to construct the so-advertised “stable homotopy catego-
ry”.

Definition. A diagram D is a small symmetric monoidal category (D,⊗, 0) enriched over
(Top∗,∧, S0).

The category ofD-spaces is the category of enriched functors TopD∗ , where Top∗ is enriched
over itself.

Notation 3.1.7 The D-spaces will be the analogous of “spaces” in stable homotopy theory, so
it makes sense to denote them as X, Y, Z, . . .. Moreover, for a D-space X, we will write XD for
X(D).

We now aim to construct a (monoidal) product onD-spaces: if X, Y ∈ TopD∗ , there is a naive
product taking smash termwise,

X∧̃Y : D ×D D
(D, D′) (X∧̃Y)(D,D′) := XD ∧YD′ .
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We can extend this to a D-space by using the left Kan extension of this functor along the mo-
noidal product ⊗ : D ×D −→ D,

D ×D Top∗

D

⊗

X∧̃Y

X∧Y:=Lan⊗X∧̃Y

Definition. The previous left Kan extension X ∧Y := Lan⊗X∧̃Y is called Day convolution.

Explicitly2, this is

(X ∧Y)D =
∫ A,B∈D

HomD(A⊗ B, D) ∧ XA ∧YB.

Moreover, the universal property of the left Kan extension is rewritten for Day convolution
as

HomTopD∗
(X ∧Y, Z) ∼= HomTopD×D∗

(X∧̃Y, Z ◦ ⊗).

Lemma 3.1.8 Let D ∈ D. There is an adjunction

Top∗ ⊥ TopD∗

MD

evD

where evD is just evaluation at D, evD(X) = XD; and for a based space T,

MDT(D′) := HomD(D, D′) ∧ T

(this is called the shift desuspension functor).

Proof. The bijection
HomTopD∗

(MDT, X) ∼= HomTop∗(T, XD)

is described as follows: given a natural transformation α : MDT ⇒ X, the pointed map
αD : HomD(D, D) ∧ T −→ XD corresponds, by the exponential adjunction, to a map
HomD(D, D) −→ HomTop∗(T, XD). The image if the identity IdD is the image of α by
the desired bijection. Its inverse is the following: a pointed map f : T −→ XD maps
to the natural transformation α : MDT ⇒ X which for an object D′ ∈ D is the map
αD′ : HomD(D, D′) ∧ T −→ XD′ which by the exponential adjunction corresponds to the
pointed map HomD(D, D′) −→ HomTop∗(T, XD′) which sends ϕ : D −→ D′ to the composite

T
f−→ XD

Xϕ−→ XD′ .
2If C,D, E are V-categories, with C small, D locally small and E cocomplete and tensored over V , then the left

Kan extension of a diagram

C E

D

F

K LanK F

exists and it is

LanK F(D) =
∫ C∈C

HomC (KC, D)� FC,

where � stands for the copower of E over V . In the V-category V , the copower is the monoidal product.
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Let us now describe an internal hom-object for D-spaces3: if X is a D-space and Z is a
(D ×D)-space, there is a naive version of function D-space,

F̃(X, Z)D := HomTopD∗
(X, Z(D,−)).

In particular, for a D-space Y, the functor −∧̃Y is left adjoint to F̃(Y,−),

HomTopD×D∗
(X∧̃Y, Z) ∼= HomTopD∗

(Y, F̃(Y, Z)).

Definition. Let X, Y be D-spaces. The internal function D-space F(X, Y) is

F(X, Y) := F̃(X, Y ◦ ⊗).

Using the definitions and the universal property of the left Kan extension, we get the ad-
junction

HomTopD∗
(X ∧Y, Z) ∼= HomTopD∗

(X, F(Y, Z)).

With this, the following proposition becomes formal (see [15, 3.3.5] for a proof):

Proposition 3.1.9 The category of D-spaces (TopD∗ ,∧, M0S0) is closed symmetric monoidal under
Day convolution and unit M0S0.

We will use this symmetric monoidal structure on D-spaces to construct the category of
spectra.

Definition. Let (V ,⊗, ∗) be symmetric monoidal. A monoid object is an object R equipped
with multiplication and unit maps

µ : R⊗ R −→ R , u : ∗ −→ R

satisfying associativity and unit conditions

µ ◦ (µ⊗ Id) = µ ◦ (Id⊗ µ) , µ ◦ (u⊗ Id) = µ ◦ (Id⊗ u) = Id

(here we have omitted the natural isomorphisms of the symmetric monoidal structure).
Moreover, the monoid object is commutative if the multiplication commutes with the sym-
metric natural isomorphism τ of V , µ ◦ τ = µ.

A map of monoid objects f : R −→ R′ is a map in V which is compatible with the multi-
plication and unit maps,

ϕ ◦ µ = µ′ ◦ (ϕ⊗ ϕ) , ϕ ◦ u = u′.

Remark 3.1.10 If R ∈ TopD∗ is a monoid object, we have a “unit map” S0 −→ R0 of pointed
topological spaces coming from evaluating M0S0 −→ R at 0. Similarly, for a pair of objects
D, D′ ∈ D, there is a “multiplication map”

µD,D′ : RD ∧ RD′ −→ RD⊗D′

coming from the universal property of the left Kan extension. Moreover, we can recover the
original ones from these:

3The following assumes that skD is a small category, which ensures that the category ofD-spaces TopD∗ is again
a topological category. We will always assume this when necessary.
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Proposition 3.1.11 The category of (commutative) monoid objects on D-spaces is isomorphic to the
category of lax (symmetric) monoidal functors D −→ Top∗.
Proof. If R is a monoid object in D-spaces, then by the universal property of the left Kan exten-
sion it is equivalent to a natural transformation R∧̃R ⇒ R ◦ ⊗; and the unit map M0S0 −→ R
is equivalent to a map S0 −→ R0, by 3.1.8. Such a natural transformation and the latter map
define a lax monoidal functor R : D −→ Top∗. Under this equivalence, the commutativity
condition for a monoid object is rewritten as the symmetry condition for its corresponding lax
monoidal functor.

This proposition immediately gives a very useful criterion:

Corollary 3.1.12 Let R be a monoid object on D-spaces. Then R is commutative if and only if for any
D, D′ ∈ D, the diagram

RD ∧ RD′ RD⊗D′

RD′ ∧ RD RD′⊗D

tw

µD,D′

R(tw)

µD′ ,D

commutes.

Example 3.1.13 A commutative monoid object in (Ab,⊗Z,Z) is a ring. Indeed, the morphisms
µ and u give the product and unit element.

The previous example motivates the following

Definition. Let R be a monoid object in (V ,⊗, ∗). A (left) R-module is an object M together
with a multiplication map

m : R⊗M −→ M

satisfying the obvious associativity and unit conditions,

µ ◦ (Id⊗m) = m ◦ (µ⊗ Id) , m ◦ (u⊗ Id) = Id

(again we have omitted one natural isomorphism).
A map of R-modules is a map f : M −→ M′ in V compatible with the multiplication,

f ◦m = m′ ◦ (Id⊗ f ). We denote by ModR the category of R-modules in V .

Example 3.1.14 Of course, for a monoid object R in (Ab,⊗Z,Z) (that is, a ring), an R-module
in this sense is an R-module in the algebraic sense.

When a monoid object in D-spaces is commutative, the category of modules inherits a
desirable structure (cf. [24, 1.7] for a proof).

Proposition 3.1.15 Let R be a commutative monoid object in (TopD∗ ,∧, M0S0). Then there is a product
∧R for R-modules defined as the coequalizer of

X ∧ R ∧Y X ∧Y X ∧R Y
m∧Id

Id∧m

making (ModR,∧R, R) into a closed symmetric monoidal category. Concretely, the internal hom-
module FR(M, N) is defined as the equalizer on D-spaces

FR(X, Y) F(X, Y) F(R ∧ X, Y)
m∗

ω

where m∗ = F(m, Id) and ω is the adjoint map to the composite F(X, Y) ∧ X ∧ R ε∧Id−→ Y ∧ R m−→ Y,
and ε is the counit of the adjunction (−∧ X) a F(X,−).
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We will make use of this category of modules over suitable monoid objects to define models
of spectra, both in the nonequivariant and the equivariant case.

3.2 Spectra and orthogonal spectra

Along this section we will describe our two preferred models of spectra and see the relation
between them. Later in §3.4 we will construct the so-advertised “stable homotopy category”
from that. We would like to mention that for this section we have mostly followed [3], [24], [27],
[32] and [35], although our text is more detailed and connects the abstract definitions with the
explicit ones that appear in the literature. As before, the proofs we include are original work
of the author.

Spectra

In the first place, considerD = N the discrete category with objects non-negative integers (that
is, only identities). Trivially, this category is enriched over Top, and therefore over Top∗ by
attaching a disjoint point to the hom-spaces. Moreover, (N,+, 0) is symmetric monoidal under
sum with unit 0 ∈ N.

Now we look at the category of N-spaces TopN∗ : there is a (non-commutative) monoid object
SN ∈ TopN∗ given by

SN(n) := Sn.

Here we view Sn = S1 ∧ · · · ∧ S1, so that there are preferred homeomorphisms Sn ∧ Sm ∼=
Sn+m. The unit of SN is given by M0S0 −→ SN, only nontrivial when evaluating at 0, which is
the identity M0S0(0) = S0 −→ S0 = SN(0). The multiplication map SN ∧ SN −→ SN (here ∧
denotes Day convolution) is given by the preferred homeomophism

SN(n) ∧ SN(m)
∼=−→ SN(n + m)

described before.

Definition. The category of spectra is the category ModSN of SN-modules in (TopN∗ ,∧, M0S0),
and it is denoted by SpN.

We will spend some time now spelling this out: a spectrum is, therefore, a sequence of
pointed spaces X = (Xn) together with a multiplication map SN ∧ X −→ X, which by the
universal property of the left Kan extension is the same thing as a collection of maps

Sn ∧ Xm −→ Xn+m

for all n, m ∈ N. In particular, the associativity condition of the multiplication map implies that
these are determined by the maps

σn : ΣXn = S1 ∧ Xn −→ Xn+1

(compare with page 39). A map of spectra f : X −→ Y is therefore determined by a sequence
of pointed maps fn : Xn −→ Yn such that the diagram

ΣXn ΣYn

Xn+1 Yn+1

Σ fn

σn σn

fn+1
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commutes for all n ≥ 0. Under this description, as expected, we say that a spectrum X is an
Ω-spectrum when the adjoint maps Xn

'−→ ΩXn+1 are weak homotopy equivalences.

Remark 3.2.1 SN is not a commutative monoid object: indeed, using the criterion 3.1.12, we
see that the diagram

Sn ∧ Sm Sn+m

Sm ∧ Sn Sn+m

tw

∼=

∼=

does not commute, as the symmetry isomorphism n + m
∼=−→ m + n in (N,+, 0) is just the

identity. We will solve this problem using orthogonal spectra (to be defined later). However,
we can modify slightly our category N so that our monoidal object becomes commutative,
and in this way induce our desired symmetric monoidal structure on spectra. This is called
symmetric spectra and it is due to Jeff Smith [17]: instead of N, we consider now the category
Σ with same objects as N but with morphisms HomΣ(n, n) = Σn, the symmetric group, and
no arrows n −→ m if n 6= m. This category happens to be symmetric monoidal with sum
of integers and block sum of permutations. Similarly, there is a monoid object SΣ sending n
to Sn = S1 ∧ · · · ∧ S1, but now the morphisms of Σ make SΣ commutative. For a detaiedl
exposition of symmetric spectra, see [34].

Let us also explicitly describe what it means that the category of N-spaces is closed sym-
metric monoidal. In the first place, TopN∗ is complete and cocomplete with limits and colimits
created levelwise: for J −→ TopN∗ , we have

(colim
j

Xj)n = colim
j

(Xj)n , (lim
j

Xj)n = lim
j
(Xj)n.

It is important to have an explicit description of Day convolution for N-spaces:

Lemma 3.2.2 Let X, Y be N-spaces. Then

(X ∧Y)n =
∨

p+q=n
Xp ∧Yq.

Proof. Since the category N only has identities, we have

(X ∧Y)n =
∫ p,q∈N

HomN(p + q, n)+ ∧ Xp ∧Yq

= coeq
(∨

p,q
Hom(p + q, n)+ ∧ Xp ∧Yq

Id //

Id
//
∨
p,q

Hom(p + q, n)+ ∧ Xp ∧Yq

)
=
∨
p,q

Hom(p + q, n)+ ∧ Xp ∧Yq

=
∨

p+q=n
Xp ∧Yq

We can also explicitly describe the internal function N-space: given N-spaces X, Y, the N-
space F(X, Y) ∈ TopN∗ is given by

F(X, Y)n := HomTopN
∗
(X, shnY) = ∏

m≥0
Map(Xm, Yn+m),
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where shnY is the N-space (shnY)m := Yn+m.

Lastly, it is also worth mentioning that the category of N-spaces is tensored and cotensored
over Top∗: given a pointed space T and an N-space X, there are N-spaces X ∧ T and F(T, Y)
defined levelwise,

(X ∧ T)n := Xn ∧ T , F(T, X)n := Map(T, Xn),

and it is readily verified that (−∧ T) is left adjoint to F(T,−).

Examples 3.2.3 (a) Of course, the monoid object SN, as a SN-module, is a spectrum, called the
sphere spectrum . Trivially, the structure maps are given by the identification S1 ∧ Sn ∼=−→
Sn+1.

(b) If T is a pointed space, then its suspension spectrum Σ∞T is given by

(Σ∞T)n := ΣnT = Sn ∧ T

with the obvious structure maps S1 ∧ (Sn ∧ X)
∼=−→ Sn+1 ∧ T.

In particular, SN = Σ∞S0, and with more generality, ΣkSN ∼= Σ∞Sk.

(c) Let A be an abelian group. The Eilenberg-MacLane spectrum HA is given by

(HA)n := K(A, n).

The structure maps S1 ∧ K(A, n) −→ K(A, n + 1) are the adjoint maps to the weak ho-
motopy equivalences K(A, n) '−→ ΩK(A, n + 1) (see page 24). Therefore, this is an Ω-
spectrum.

(d) Similarly, we have the K and KO spectra, given by

Kn := Ωi(BU × Z) , KOn := Ωj(BO× Z),

where 0 ≤ i < 2, 0 ≤ j < 8 and n + i ≡ 0(mod 2), n + j ≡ 0(mod 8). These are also
Ω-spectra, as we saw.

(e) If T is a pointed space and X is a spectrum, the N-space X ∧ T is a spectrum, with structure
maps (S1 ∧ Xn) ∧ T −→ Xn+1 ∧ T. Similarly, the N-space F(T, X) is also a spectrum, with
structure maps given by the composite

S1 ∧Map(T, Xn) −→ Map(T, S1 ∧ Xn)
(σn)∗−→ Map(T, Xn+1),

where the first map sends (s, f ) to (t 7→ (s, f (t)). This says that SpN is tensored and
cotensored over Top∗.
In particular, Σ∞T = SN ∧ T.

Orthogonal spectra

Let us now describe another remarkable (and improved) notion of spectra. Now we let
D = I be the category of finite dimensional real inner product vector spaces, with mor-
phisms isometric isomorphisms. This category is enriched over Top ( we have HomI(V, W) ⊂
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HomR−lin(V, W) with the subspace topology, where in the latter space we consider the topo-
logy given by any norm), thus also over Top∗ by attaching a disjoint basepoint to the hom-
spaces. Moreover, (I,⊕, 0) is symmetric monoidal under direct sum and the trivial inner
product space 0 ∈ I as unit.

We now look at the category TopI∗ of I-spaces: there is a monoid object SI given by

SI(V) = SV ,

the one-point compactification of V, where the extra point serves as basepoint. The unit of SI is
given by M0S0 −→ SI, only nontrivial when evaluating at 0, which is the identity M0S0(0) =
S0 −→ S0 = SI(0) (because the one-point compactification of 0 ∈ I is S0). The multiplication
map SI ∧ SI −→ SI is given by the natural isomorphism

SI(V) ∧ SI(W) = SV ∧ SW ∼=−→ SV⊕W = SI(V ⊕W).

Now an important observation is that SI is a commutative monoid object: indeed, the sym-
metry isomorphism V ⊕W

∼=−→ W ⊕ V of (I,⊕, 0) is nontrivial, and this makes that the dia-
gram

SV ∧ SW SV⊕W

SW ∧ SV SW⊕V

tw

∼=

∼=

commutes, so we conclude by 3.1.12.

Definition. The category of orthogonal spectra is the category ModSI of SI-modules in
(TopI∗,∧, M0S0), and it is denoted by SpI.

Let us spell this out: unravelling definitions, an orthogonal spectrum is a collection of
pointed O(V)-spaces X = (XV) for every V ∈ I, together with O(V)×O(W) maps

σV,W : SV ∧ XW −→ XV⊕W ,

called structure maps, for every pair of inner product spaces V, W, satisfying the following
associativity condition: if U is a third inner product space, then the diagram

SV ∧ SW ∧ XU SV ∧ XW⊕U

SV⊕W ∧ XU XV⊕W⊕U

∼=∧Id

Id∧σW,U

σV,W⊕U

σV⊕W,U

commutes. There are also maps XV −→ XW for every isometric isomorphism V −→ W, but
these are not very relevant (we will see why in 3.2.8).

A map of orthogonal spectra f : X −→ Y is, therefore, a collection of based O(V)-maps
fV : XV −→ YV for every V ∈ I which are compatible with the structure maps, that is, for
every V, W ∈ I the following diagram commutes:

SV ∧ XW SV ∧YW

XV⊕W YV⊕W

σV,W

Id∧ fW

σV,W

fV⊕W

As before it is handy to have an explicit description of Day convolution for I-spaces:
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Lemma 3.2.4 Let X, Y be I-spaces. Given V ∈ I, choose for every 0 ≤ p ≤ dim V a linear subspace
Vp ⊆ V of dimension p. Then

(X ∧Y)V =
dim V∨
p=0

O(V)+ ∧O(Vp)×O(V−Vp) XVp ∧YV−Vp ,

where V −Vp denotes the orthogonal complement of Vp in V.

Proof. For a pair of maps f : U −→ U′ and g : W −→ W ′ in I, we write ( f , g) for the corres-
ponding pair of arrows in I× I. We compute

(X ∧Y)V =
∫ U,W∈I

HomI(U ⊕W, V)+ ∧ XU ∧YW

= coeq
( ∨

( f ,g)

HomI(U ⊕W, V)+ ∧ XU′ ∧YW ′ ⇒
∨

U,W

HomI(U ⊕W, V)+ ∧ XU ∧YW

)

∼= coeq
( ∨

U⊆V

O(V)+ ∧ XU ∧YV−U

ϕ1∧Id //

Id∧ϕ2

//
∨

U⊆V

O(V)+ ∧ XU ∧YV−U

)

∼= coeq
( dim V∨

p=0

O(V)+ ∧ XVp ∧YV−Vp

ϕ1∧Id //

Id∧ϕ2

//

dim V∨
p=1

O(V)+ ∧ XVp ∧YV−Vp

)

∼=
dim V∨
p=0

O(V)+ ∧O(Vp)×O(V−Vp) XVp ∧YV−Vp ,

where the morphisms ϕ1, ϕ2 stand for the O(U)×O(V −U)-actions on O(V) and XU ∧YV−U ,
respectively. We also used that in the coequalizer, all terms corresponding to subspaces of the
same dimension are identified.

In a similar fashion to N-spaces, we also have that the category of I-spaces is tensored
and cotensored over Top∗, and it is complete and cocomplete, everything defined termwise.
However, the main difference is that this time SI is a commutative monoid object, so by 3.1.15
we get

Theorem 3.2.5 There is a product of orthogonal spectra ∧I, called smash product , such that

(SpI,∧I,SI)

is a closed symmetric monoidal category.

In particular, this means that

HomSpI(X ∧I Y, Z) ∼= HomSpI(X, F(Y, Z)).

for all X, Y, Z ∈ SpI, where F denotes the internal hom-orthogonal spectrum. The smash
product, defined above as a coequalizer in I-spaces, is hard to state explicitly, but can be
handled easily thanks to the following observation:

Proposition 3.2.6 A map of orthogonal spectra f : X ∧I Y −→ Z is completely determined by a
collection of O(V)×O(W)-equivariant maps

fV,W : XV ∧YW −→ ZV⊕W , V, W ∈ I
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which make the diagram

XV ∧ SU ∧YW SU ∧ XV ∧YW

XV ∧YU⊕W SU ∧ ZV⊕W XU⊕V ∧YW

ZV⊕U⊕W ZU⊕V⊕W

Id∧σU,W

tw

Id∧ fV,W
σU,V∧Id

fV,U⊕W σU,V⊕W
fU⊕V,W

commute for all V, U, W ∈ I.

Proof. This follows directly from the universal properties of the coequalizer and Day convolu-
tion.

This additional internal product of orthogonal spectra allows us to define richer structures
on spectra. It is worth mentioning

Definition. A (commutative) orthogonal ring spectrum is a (commutative) monoid object in
(SpI,∧I,SI). Sometimes it is also called strict ring spectrum.

Examples 3.2.7 (a) The object SI, viewed as a SI-module, is called the sphere orthogonal
spectrum . It has the identifications SV ∧ SW ∼=−→ SV⊕W as structure maps. By defini-
tion, SV is a O(V)-space and the previous structure maps are O(V)×O(W)-equivariant.
Moreover, using the precious proposition one can check that this is an orthogonal ring
spectrum.

(b) Let T be a pointed space. The suspension orthogonal spectrum Σ∞T of T is given by

(Σ∞T)V := SV ∧ T,

endowed with the standard O(V)-action on SV and the trivial action on T. It has the
obvious structure maps SV ∧ SW ∧ T

∼=−→ SV⊕W ∧ T.

In particular, SI = Σ∞S0.

(c) Let us describe the orthogonal version of the Eilenberg-MacLane spectrum HA. One does
not have to think very deeply to notice that an abstract K(A, n) does not have in principle
an action of the orthogonal group. We have to deal with concrete models of Eilenberg-
MacLane spaces.

Let A be a (countable) abelian group. For a pointed set (T, t0), define the reduced A-
linearization of T as Ã[T] := A[T]/A[{t0}]. If T is a pointed space, we can topologize
Ã[T] with the final topology4 given by the maps

A× k· · · × A× T × k· · · × T Ã[T]

(a1, . . . ak, x1, . . . , xk) ∑k
i=1 aixi

4We really mean the final or strong topology. In the context of CW-complexes, this is somehow confusing as it
is customary to call “weak topology” to the coherent topology given by the closures of the cells. See [41, page 69]
for a discussion.
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for all k > 0, where A has the discrete topology. One can show that for an inner product
space V ∈ I, the reduced A-linearilization Ã[SV ] is a K(A, dim V); but moreover it has
an O(V)-action inherited from SV . These are our desired spaces: the Eilenberg-MacLane
orthogonal spectrum HA is given by (HA)V := Ã[SV ], with structure maps given by

SV ∧ Ã[SW ] Ã[SV⊕W ]

(v, ∑ aiwi) ∑ ai(v, wi).

Moreover, if A is a commutative ring, then HA becomes a comutative ring spectrum, with
the smash product HA ∧I HA −→ HA determined by the maps

Ã[SV ] ∧ Ã[SW ] Ã[SV⊕W ]

(∑i aivi , ∑j bjwj) ∑i,j aibj(vi, wj).

(d) The category of orthogonal spectra is again tensored and cotensored over Top∗: given
X ∈ SpI and T ∈ Top∗, we define X ∧ T as the orthogonal spectrum (X ∧ T)V := XV ∧ T
with trivial O(V)-action on T and structure maps (SV ∧ XW)∧ T −→ XV⊕W ∧ T. Similarly,
we define the orthogonal spectrum F(T, X) as F(T, X)V := Map(T, XV), where the O(V)-
action is inherited from the one on XV and the structure maps given by the composite

SV ∧Map(T, XW) −→ Map(T, SV ∧ XW)
(σV,W)∗−→ Map(T, XV⊕W),

where the first map sends (s, f ) to (t 7→ (s, f (t))).

Let us finish this exposition of orthogonal spectra with a different, easier description of
them. Let O be the category with objects non negative integers and morphisms HomO(n, n) :=
O(n) and no morphisms n −→ m if n 6= m. Of course, we think of n ∈ O as the euclidean
space Rn. The observation that ignites this alternative characterization is the following

Lemma 3.2.8 There is an equivalence of categories O '−→ I, where n is mapped to Rn with the usual
inner product. Therefore, the categories of I-spaces and O-spaces are equivalent, TopI∗ ' TopO∗ .

Proof. The assignment is, by definition, fully faithful, and it is essentially surjective because in
I every morphism is an isomorphism.

Let us see how we can rephrase orthogonal spectra under this description: there is a mo-
noid object SO acting as SO(n) := Sn with the standard O(n)-action. Observe that in O, the
symmetry isomorphism n + m ∼= m + n is not the identity, but it is given by the isometry(

0 Im
In 0

)
∈ O(n + m),

so as expected SO is commutative, just by the same argument as for SI. In a similar fashion,
there is an equivalence of categories

ModSI = SpI ' SpO := ModSO , (3.1)

so by an abuse of terminology we will also call orthogonal spectra to the latter. Under this
equivalence of categories, explicitly, an orthogonal spectrum consists of a sequence X = (Xn)
of based O(n)-spaces together with O(n)×O(m)-equivariant structure maps

σn,m : Sn ∧ Xm −→ Xn+m
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satisfying the obvious associativity condition. A map of orthogonal spectra f : X −→ Y is a
sequence of pointed O(n)-maps fn : Xn −→ Yn such that

Sn ∧ Xm Sn ∧Ym

Xn+m Yn+m

σn,m

Id∧ fm

σn,m

fn+m

commutes for n ≥ 0. Under this terminology, Day convolution of O-spaces becomes (compare
with 3.2.4)

(X ∧O Y)n =
n∨

p=0

O(n)+ ∧O(p)×O(n−p) Xp ∧Yn−p.

Connection between spectra and orthogonal spectra

We finish this section with a simple but important observation: there is a functor N −→ I
mapping n ∈ N to the euclidean space Rn with its standard inner product. Restriction along
this functor defines a forgetful functor

U : SpI −→ SpN.

It is straightforward to check that this functor preserves small limits and colimits and tensors
and cotensors with pointed spaces, as everything is defined termwise. This functor, which will
be key later, allows us to talk about properties of orthogonal spectra that we had in spectra:

Definition. An orthogonal spectrum X is an orthogonal Ω-spectrum if UX is an Ω-spectum.

Moreover, it is possible to show (cf. [24, §2]) that if R is a monoid onD-spaces, the category
ModR of R-modules is equivalent to the category of diagram spaces over a more complicated
diagram DR: the category DR has the same objects as D and morphisms

HomDR(C, D) := HomModR(MCS0 ∧ R, MDS0 ∧ R).

Furthermore, if R is commutative, then DR is symmetric monoidal. In particular, SpN is equi-

valent to the category of NSN-spaces TopNSN∗ and SpI is equivalent to ISI-spaces TopISI∗ .

The following proposition creates a left adjoint to U (see [24, 3.4] for a proof):

Proposition 3.2.9 Let C,D be diagrams and let ι : C −→ D be a functor. If R is a monoid object in D,
then ι extends to a functor κ : CUR −→ DR, so the forgetful functor

U : TopDR
∗ −→ TopCUR

∗

has a left adjoint P : TopCUR
∗ −→ TopDR

∗ , given by a left Kan extension.
Moreover, if R is commutative, then U is lax symmetric monoidal and κ and P are strong symmetric

monoidal.

For our particular case, this implies

Corollary 3.2.10 There is an adjunction

SpN ⊥ SpI
P

U

This adjunction will be of great importance later.
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3.3 Homotopy theory of spectra

We will now discuss some homotopy theory of spectra, and its relation with homology and
cohomology theories. Developing these tools will be necessary to obtain the “stable homotopy
category”. Our main references for this section have been [24] and [32], although we also
include results from [27] and [38].

We can define the homotopy groups of a spectrum in a fairly easy way:

Definition. Let X be a spectrum. Its k-th homotopy group is

πk(X) := colim
n

πn+k(Xn) , k ∈ Z,

where the colimit is taken along the sequence

πk(X0)
Σ−→ πk+1(ΣX0)

(σ0)∗−→ πk+1(X1)
Σ−→ πk+2(ΣX1)

(σ1)∗−→ · · ·

(of course, it starts as soon as it has positive indexes). If X is an orthogonal spectrum, then
πk(X) := πk(UX).

Observe that, if f : X −→ Y is a map of spectra, there is a commutative diagram

πk(X0) πk+1(ΣX0) πk+1(X1) · · ·

πk(Y0) πk+1(ΣY0) πk+1(Y1) · · ·

( f0)∗

Σ

(Σ f0)∗

(σ0)∗ Σ

( f1)∗

Σ (σ0)∗ Σ

which induces a map on colimits, thus a map

f∗ : πk(X) −→ πk(Y).

Definition. A map f : X −→ Y of spectra is a π∗-isomorphism or a weak equivalence if it
induces an isomorphism in all homotopy groups.

A map f : X −→ Y of orthogonal spectra is a π∗-isomorphism if so is U f .

In particular, these homotopy groups define functors

πk : SpN −→ Ab , πk : SpI −→ Ab.

Moreover, π∗(X) :=
⊕

k πk(X) is a graded abelian group, so we get functors

π∗ : SpN −→ grAb , π∗ : SpI −→ grAb.

In both cases, the second one is just the composite of U with the first one.

Recall that, as usual in algebraic topology, we endow grAb with a structure of symmetric
monoidal category by setting

(A∗ ⊗Z B∗)n :=
⊕

i+j=n

Ai ⊗Z Bj,

with symmetry isomorphism A∗ ⊗Z B
∼=−→ B∗ ⊗Z A∗, sending ai ⊗ bj to (−1)ijbj ⊗ ai.
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Theorem 3.3.1 The functor

π∗ : (SpI,∧I,SI) −→ (grAb,⊗Z,Z)

is lax symmetric monoidal.

Proof sketch. For orthogonal spectra X, Y, there is a natural pairing

π∗(X)⊗ π∗(Y) −→ π∗(X ∧I Y)

defined as follows: write Xn = XRn and similarly for Y. Given maps f : Sk+n −→ Xn and
g : Sr+m −→ Ym, we define f ∗ g as the composite

Sk+n ∧ Sr+m f∧g−→ Xn ∧Ym
in,m−→ (X ∧I Y)n+m

(the last map is one of the components of the identity of X ∧I Y by 3.2.6). This does
not depend on the homotopy classes of maps, so it gives a well defined Z-bilinear map
πk+n(Xn) × πr+m(Xm) −→ πk+n+r+m((X ∧I Y)n+m). This is compatible with the passage to
the colimit up to a sign, caused by a twist map tw : Sr ∧ Sn −→ Sn ∧ Sr. Therefore, we can
define the above pairing as

[ f ] · [g] := (−1)nr[ f ∗ g]

(see [32, 6.11] for the reason of the choice of the sign). The unit Z −→ π∗(SI) = πst
∗ is just given

by the identification Z
∼=−→ π1(S1) ∼= πst

0 .

Examples 3.3.2 (a) If T is a based space, then πk(Σ∞T) = πst
k (T), just by definition, as the

structure maps of Σ∞T are natural isomorphisms.

In particular, πk(SN) = πst
k (S

0).

(b) If X is an Ω-spectrum, then

πk(X) ∼=
{

πk(X0), k ≥ 0
π0(X−k), k ≤ 0.

Indeed, by the suspension-loop adjunction, the composite

πk+n(Xn)
Σ−→ πn+k+1(ΣXn)

(σn)∗−→ πn+k+1(Xn+1)

is the same as
πk+n(Xn)

(σ̃n)∗−→ πn+k(ΩXn+1) ∼= πn+k+1(Xn+1),

where σ̃n is the adjoint map of σ.

Proposition 3.3.3 If X is a spectrum, then

πk(X) ∼= πk+1(X ∧ S1).

Proof. Indeed, we have the chain of isomorphisms

πk(X) ∼= colim
n

(πk(X0)
Σ−→ πk+1(ΣX0)

(σ0)∗−→ πk+1(X1)
Σ−→ πk+2(ΣX1) −→ · · · )

∼= colim
n

(πk+1(ΣX0) −→ πk+2(ΣX1) −→ πk+3(ΣX2) −→ · · · )
∼= colim

n
(πk+1(X0 ∧ S1) −→ πk+2(X1 ∧ S1) −→ πk+3(X2 ∧ S1) −→ · · · )

∼= πk+1(X ∧ S1),
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where only the third one needs explanation: though all groups are isomorphic, the maps do
not agree under these isomorphisms, as they differ by a twist map tw : S1 ∧ S1 −→ S1 ∧ S1 of
degree −1. However, the colimit is still the same as we can go two steps at a time.

Corollary 3.3.4 A map f : X −→ Y of spectra is a π∗-isomorphism if and only if the map
f ∧ Id : X ∧ S1 −→ Y ∧ S1 is a π∗ isomorphism.

For X a spectrum, we let ΣX := X ∧ S1 and ΩX := F(S1, X). Let us write η : X −→ ΩΣX
and ε : ΣΩX −→ X for the unit and counit of the adjunction

HomSpI(X ∧ S1, Y) ∼= HomSpI(X, F(S1, Y)).

Proposition 3.3.5 The maps η : X −→ ΩΣX and ε : ΣΩX −→ X are π∗-isomorphisms.

Proof. There are commutative diagrams

πn+k(Xn) πk+n(ΩΣXn)

πn+k+1(Xn ∧ S1) πk+n(Ω(Xn ∧ S1))

(ηn)∗

−∧S1 ∼=
∼=

for all n + k ≥ 0, which are compatible for varying n, so they induce a commutative square in
the colimits,

πn+k(X) πk+n(ΩΣX)

πn+k+1(X ∧ S1) πk+n(Ω(X ∧ S1)).

η∗

−∧S1 ∼=
∼=

We conclude since − ∧ S1 is an isomorphism by 3.3.3. For the counit of the adjunction the
argument is similar.

Corollary 3.3.6 A map of spectra f : X −→ Y is a π∗-isomorphism if and only if Ω f : ΩX −→ ΩY
is a π∗-isomorphism.

Spectra and homology theories

We conclude this section discussing the relation between spectra and homology theories. In
chapter 2, we said that given an Ω-spectrum E, we can define a reduced cohomology theory
on pointed CW-complexes given by

Ẽn(T) := [T, En]∗

Moreover, Brown representability (theorem 2.2.4) stated that all reduced cohomology theories
on CW-complexes arise in this way. The question one may ask is: can an Ω-spectrum, or with
more generality a spectrum, induce a homology theory? The answer turns out to be positive,
in the strongest form.

Theorem 3.3.7 If E is a spectrum, the assignment

Ẽn(T) := πn(E ∧ T)

defines a reduced (generalized) homology theory on pointed spaces.
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Proof sketch. Of course, two homotopic maps of spectra f , g : X −→ Y induce the same map
f∗ = g∗ : πk(X) −→ πk(Y) as the maps fn, gn are homotopic for all n. On the other hand, the
suspension isomorphism follows from 3.3.3 as it implies E ∧ ΣT ∼= Σ(E ∧ T).

For a map of spectra f : X −→ Y, the mapping cone C f is defined levelwise, (C f )n = C fn,
and we have that the sequence

πk(X)
f∗−→ πk(Y)

i∗−→ πk(C f )

is exact: the composition is clearly trivial, thus if σ : Sk+n −→ Yn in the kernel of i∗, then
Sk+n −→ Yn −→ C fn is nullhomotopic (after possibly enlarging n), so we can extend it to a
map of pairs (Dk+n+1, Sk+n) −→ (C fn, Yn), which produced a map Dk+n+1/Sk+n ∼= Sn+k+1 −→
ΣXn ∼= C fn/Yn. The composite Sn+k+1 −→ ΣXn −→ ΣYn is the desired lift. Therefore, for our
particular case, we just apply this to a map of spectra E ∧ T −→ E ∧ T′.

Finally, for the additivity axiom, we note that for spectra X, Y we get a split sequence
πk(E) −→ πk(X ∨ Y) −→ πk(Y) (here the wedge sum of spectra is defined levelwise with
the obvious structure maps) as the mapping cone of X −→ X ∨ Y is levelwise homotopy
equivalent to Y. We obtain πk(E ∧ (∨iTi)) ∼= πk(∨i(E ∧ Ti)) by a transfinite argument. For a
complete proof, see [38, 8.33].

Examples 3.3.8 (a) The reduced homology theory that the sphere spectrum SN defines gives
the stable homotopy groups of spaces: indeed, SN = Σ∞S0 and

πk(SN ∧ T) = colim
n

πn+k(Sn ∧ T) = colim
n

πn+k(ΣnT) = πst
k (T)

for a based space T. In particular,

πst
k (
∨

i

Ti) ∼=
⊕

i

πst
k (Ti).

It is important to note that the usual homotopy groups are way too far from satisfying the
additivity axiom. See [27, 2.13] for a concrete example.

(b) For the Eilenberg-MacLane spectrum HA, the homology theory that it defines is naturally
isomorphic to singular homology,

πk(HA ∧−) ∼= H̃k(−; A).

Indeed, by 3.3.7 the functor πk(HA ∧ −) defines a reduced generalized homology theory.
But it also satisfies the dimension axiom, as HA ∧ S0 ∼= HA, so using 3.3.2.(b) we see that
πk(HA ∧ S0) ∼= 0 for k > 0 and π0(HA ∧ S0) ∼= A. We conclude by the uniqueness of the
Eilenberg-Steenrod axioms.

(c) For the K-theory spectrum, πk(K ∧ −) defines the so-called K-homology, used in index
theory.

3.4 The stable homotopy category

In this section, we finally construct the “stable homotopy category” SHC and describe its prop-
erties. This will arise as the homotopy category of spectra or orthogonal spectra, so we will
be dealing with model structures in the following. In this section, we mostly used [24] to con-
struct a model structure on spectra; and [22] to collect the properties of SHC. With exception
of 3.4.5, all proofs are due to the author.
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The first step is to endow the category of D-spaces with a model structure called the level
model structure, where D is a diagram. This will be, in particular, cofibrantly generated, just as
the category of spaces, although we will not insist on that.

Definition. Let f : X −→ Y be a map of D-spaces.

1. We say that f is a level equivalence if fD : XD −→ YD is a weak homotopy equivalence
for all D ∈ D.

2. We say that f is a level fibration if fD : XD −→ YD is a Serre fibration for all D ∈ D.

3. We say that f is a level trivial fibration if it is a level equivalence and a level fibration.

4. We say that f is a q-cofibration if it has the left lifting property with respect to level trivial
fibrations.

5. We say that f is a level trivial q-cofibration if it is a level equivalence and a q-cofibration.

We can use once again the Model Structure Lifting theorem A.4.3 and the family of adjunc-
tions

MD : Top∗ � TopD∗ : evD

from 3.1.8, for all D ∈ D, to give a model structure in D-spaces.

Theorem 3.4.1 The category TopD∗ of D-spaces has a model structure, called the level model struc-
ture, with respect to level equivalences, level fibrations and q-cofibrations.

The proof follows by a standard application of the small object argument A.4.2, and it is
formally similar to 1.3.1. As mentioned before, the categories of spectra and orthogonal spectra
are equivalent to some categories of D-spaces for some more complicated diagrams NSN and
ISI . This is still applicable, so we also obtain model structures on SpN and SpI. However,
these are not the ones we are looking for, as they do not contain information about the stable
phenomena. Anyway, the following observation will be useful.

Lemma 3.4.2 The following holds for maps of spectra or orthogonal spectra:

1. A homotopy equivalence is a level equivalence.

2. A level equivalence is a π∗-isomorphism.

3. For Ω-spectra, a π∗-isomorphism is a level equivalence.

Proof. Only the last one is not trivial. Suppose that f : X −→ Y is a π∗-isomorphism of Ω-
spectra (for the orthogonal case it is similar). By example 3.3.2.(b), πi(Xn) ∼= πi−n(X0) ∼=
πi−n(X), so f∗ : πi(Xn) −→ πi(Yn) is also an isomorphism for all i and all n.

We now strive to describe a more interesting model structure in spectra and orthogonal
spectra, called the stable model structure, which will reflect the stable phenomena:

Definition. Let f : X −→ Y be a map of spectra or orthogonal spectra.

1. We say that f is a stable equivalence if the map f ∗ : [Y, Z] −→ [X, Z] is a bijection for all
(orthogonal) Ω-spectra Z.

2. We say that f is a trivial q-cofibration if it is a stable equivalence and a q-cofibration.
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3. We say that f is a q-fibration if it has the right lifting property with respect to trivial
q-cofibrations.

4. We say that f is a trivial q-fibration if it is a stable equivalence and a q-fibration.

Here we introduced stable equivalences, but we could have just omitted them, because of
the following

Proposition 3.4.3 A map of spectra or ortogonal spectra is a stable equivalence if and only if it is a
π∗-isomorphism.

The proof of the previous proposition is quite elaborated and we refer to the interested
reader to [24, 8.7]. We finally arrive to the desired model structure in (orthogonal) spectra:

Theorem 3.4.4 There are model structures in SpN and SpI, called the stable model structures, with
respect to π∗-isomorphisms, q-fibrations and q-cofibrations.

Now recall from 3.2.10 that we have an adjunction between spectra and orthogonal spectra

SpN ⊥ SpI,

P

U

where U was simply forgetful. We want to show that this adjunction induces an equivalence
of categories, with the stable model structures on them.

Lemma 3.4.5 The previous adjunction is a Quillen adjunction.

Proof sketch. The functor U preserves q-fibrations and trivial q-fibrations (so it is right Quillen).
This follows immediately from [24, 9.5 and 9.9], which characterize trivial q-fibrations as level
trivial fibrations, and q-fibrations p : E −→ B as level fibrations with the extra property that
the diagram

En ΩEn+1

Bn ΩBn+1

pn

σ̃

Ωpn+1

σ̃

is a homotopy pullback for all n ≥ 0.

Lemma 3.4.6 The functor U : SpI −→ SpN creates π∗-isomorphisms.

Proof. The homotopy groups of ortogonal spectra are defined precisely using U, so in particular
this functor reflects π∗-isomorphisms, thus it also creates them.

We only need one more ingredient, whose proof can be found in [24, 10.3].

Lemma 3.4.7 The unit of the adjunction η : X −→ UPX is a π∗-isomorphism for all cofibrant
(orthogonal) spectra X.

Theorem 3.4.8 The adjunction P : SpN � SpI : U is a Quillen equivalence. Therefore, it induces an
adjoint equivalence of categories

Ho(SpN) ' Ho(SpI).
Proof. It follows from A.3.7, 3.4.6 and 3.4.7.

We finally arrive to the category we have been chasing after the whole chapter:

Definition. The stable homotopy category is the homotopy category of spectra (or equival-
ently, orthogonal spectra), and it is denoted by SHC.
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Properties of the stable homotopy category

We will spend the last part of this chapter outlining the properties of the stable homotopy
category. This category is desirable since, as we will see, it has properties which are far from
being true in spaces.

One of the motivations of stable homotopy theory was to find some analogues to spaces
which do not depend on taking suspensions. This holds in the stable homotopy category.
Recall that we set Σ := −∧ S1 and Ω := F(S1,−) for (orthogonal) spectra.

Proposition 3.4.9 The adjunction

SpN ⊥ SpN
Σ

Ω

is a Quillen equivalence, so it induces mutually inverse equivalences of categories

LΣ : SHC '−→ SHC , RΩ : SHC '−→ SHC.

Proof. We first show that it is a Quillen adjuntion: by 3.3.4, we have that Σ preserves
π∗-isomorphisms, so let us show that it preserves q-cofibrations: given a q-cofibration
f : X −→ Y, consider the lifting problem

X ∧ S1 E

Y ∧ S1 B

Σ f p

where p is a level trivial fibration. Termwise, this diagram is equivalent to

Xn ΩEn

Yn ΩBn.

fn Ωpn

The vertical right-hand arrow Ωpn is again a trivial fibration, as Ω preserves weak homotopy
equivalences and Serre fibrations. Therefore, there is a lift hn : Yn −→ ΩEn which induces the
desired lift in the first diagram.

We conclude that it is a Quillen equivalence by A.3.7, 3.3.5 and 3.3.6.

This explains the self-equivalence of the commutative diagram on page 39. Let us explain
the rest of the arrows in that diagram:

Proposition 3.4.10 There is a Quillen adjunction

Top∗ ⊥ SpN,

Σ∞

Ω∞

where Ω∞ is evaluation at 0 ∈ N. In particular, it induces adjoint functors

LΣ∞ : Ho(Top∗) −→ SHC , RΩ∞ : SHC −→ Ho(Top∗).
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Proof. In the first place, let us show that there is an adjunction. If T is a pointed space and X is
a spectrum, the desired bijection

HomSpN(Σ∞T, X)
∼=−→ Map(T, X0)

takes every map of spectra f : Σ∞T −→ X to f0 : T −→ X0. Its inverse is constructed as
follows: given g : T −→ X0, we set f0 := g and inductively define fn : ΣnT −→ Xn as the
adjoint map of the composite Σn−1T −→ Xn−1 −→ ΩXn, where the second map is the adjoint
of the structure map σn−1 : ΣXn−1 −→ Xn. It is easy to check that this defines a map of spectra
f : Σ∞T −→ X and that both assignments are inverses of each other.

On the other hand, the reduced suspension preserves weak homotopy equivalences in the
category Top∗ of well-pointed based (compactly generated) spaces [40, 6.7.10], so trivially Σ∞

preserves weak equivalences. Therefore, to see that this functor is left Quillen, we just have
to check that it preserves cofibrations. The argument is similar to 3.4.9: if g : A −→ T is a
cofibration of spaces, then consider the lifting problem

Σn A En

ΣnT Bn

Σng pn

where pn is a trivial fibration. By the suspension-loop adjunction, this diagram is equivalent to

A ΩnEn

T ΩnBn

g Ωn pn

where the dashed arrow exists since ΩnEn −→ ΩnBn is a trivial fibration.

The following result is obvious from the definitions:

Corollary 3.4.11 The following diagrams are commutative:

Top∗ Top∗

Ho(Top∗) Ho(Top∗)

SHC SHC

Σ ◦ cw

LΣ

LΣ∞ LΣ∞

LΣ

,

Top∗ Top∗

Ho(Top∗) Ho(Top∗)

SHC SHC

Ω

RΩ

RΩ∞

RΩ

RΩ∞

The last piece which remains to be explained from the diagram of page 39 is that π0(HA) ∼=
A. This follows immediately from 3.3.2.(b).

The stable homotopy category is neither complete nor cocomplete. However, it has ar-
bitrary products and coproducts (coming from SpN): given a family of spectra (Xi)i∈I , the
coproduct

∨
i Xi and the product ∏i Xi are defined levelwise,(∨

i

Xi

)
n

:=
∨

i

Xi
n ,

(
∏

i
Xi

)
n

:= ∏
i

Xi
n
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with the obvious structure maps in the first case, Σ(∨iXi
n)
∼= ∨iΣXi

n
∨iσ−→ ∨iXi

n+1; and the map
Σ ∏i Xi

n −→ ∏i Xi
n+1 which in the i-th factor is the composite

Σ

(
∏

i
Xi

n

)
Σpri−→ ΣXi

n
σi−→ Xi

n+1.

The stable homotopy category also has the following desirable property:

Proposition 3.4.12 SHC is an additive category, that is,

1. HomSHC(X, Y) is an abelian group and composition is bilinear.

2. Finite products coincide with finite coproducts, in other words, the canonical map
n∨

i=1

Xi −→
n

∏
i=1

Xi

is an isomorphism in SHC.

See [34, II.1.10] for a proof. We can also have a look at the hom-groups of the stable homo-
topy category:

Proposition 3.4.13 Let T, T′ be finite CW-complexes, let X be a spectrum and let Y be an Ω-spectrum.
Then we have the following group isomorphisms:

1. HomSHC(Σ∞T, X) ∼= colimn[ΣnT, Xn]∗

2. HomSHC(Σ∞T, Σ∞T′) ∼= colimn[ΣnT, ΣnT′]∗

3. HomSHC(Σ∞T, Y) ∼= [T, Y0]∗

4. πk(X) ∼= HomSHC(ΣkSN, X) ∼= HomSHC(Σ∞Sk, X).

5. πst
k (T)

∼= HomSHC(Σ∞Sk, Σ∞T).

Proof. The observation that ignites the proof is that the fibrant objects in SpN are precisely
the Ω-spectra, and that if T is a CW-complex, then Σ∞T is cofibrant. In particular, a fibrant
replacement of a spectrum X can be obtained as

(RX)k := hocolimn ΩnXn+k

where the structure maps are inherited from the ones of X (see [27, 4.9]).
For 1. we have

HomSHC(Σ∞T, X)
A.2.8∼= [Σ∞T, RX]

3.4.10∼= [T, (RX)0]∗ = [T, hocolimnΩnXn]∗

∼= colim
n

[T, ΩnXn]∗ ∼= colim
n

[ΣnT, Xn]∗

where we use the compactness of T. Here the first [−,−] denotes homotopy classes of maps
of spectra.

2. is a direct consequence of 1., and 3. follows also from 1. since [Σn, Yn]∗ ∼= [T, ΩYn]∗ ∼=
[T, Y0]∗. For 4. we compute

πn(X) ∼= colim
n

[Sn+k, Xn]∗
1.∼= HomSHC(Σ∞Sk, X) ∼= HomSHC(Σ∞ΣkS0, X)

∼= HomSHC(ΣkΣ∞S0, X) ∼= HomSHC(ΣkSN, X)

and 5. follows directly from 2.
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Next, recall that the category (SpI,∧I,SI) is closed symmetric monoidal. We would like to
pass this extra-structure to its homotopy category, SHC. This is a formal consequence of the
interaction between model categories and symmetric monoidal categories. In what is left we
follow [16].

Definition. Let C,D, E be model categories. We say that an adjunction of two variables
⊗ : C ×D −→ E is Quillen if given cofibrations f : C −→ C′ in C and g : D −→ D′ in D,
the induced map

C′ ⊗ D ∪C⊗D C⊗ D′ −→ C′ ⊗ D′

is a cofibration on E which is trivial if either f or g is.
The left adjoint ⊗ : C ×D −→ E is called a Quillen bifunctor.

Definition. A symmetric monoidal model category is a closed symmetric monoidal category
(V ,⊗, ∗) endowed with a model structure such that both are compatible in the following way:

(i) The monoidal product ⊗ : V × V −→ V is a Quillen bifunctor.

(ii) If q : Q(∗) −→ ∗ is a cofibrant replacement for the unit ∗, then the natural map q⊗ Id :
Q(∗)⊗ X −→ ∗⊗ X is a weak equivalence for all X cofibrant.

Example 3.4.14 The categories (Top,×, ∗), (Top∗,∧, S0), (sSet,×, ∆0), (ChR,⊗, R), (SpI,∧I,SI)
are symmetric monoidal model categories (see [16, §4.2]).

The following theorem formally gives the desired structure in SHC (see [16, 4.3.2]):

Theorem 3.4.15 Let (V ,⊗, ∗) be a symmetric monoidal model category. Then the homotopy category
inherits a structure of closed symmetric monoidal category

(Ho(V),⊗L, ∗),

where the monoidal product ⊗L is the total left derived functor of ⊗. In particular,

j : (V ,⊗, ∗) −→ (Ho(V),⊗L, ∗)

is lax symmetric monoidal.

Corollary 3.4.16 The stable homotopy category inherits a closed symmetric monoidal structure

(SHC,∧LI ,SI).

This extra-structure allows us to define additional objects in the stable homotopy category.
For instance, a ring spectrum is a monoid object in (SHC,∧LI ,SI). Obviously, any orthogonal
ring spectrum gives rise to a ring spectrum (though both notions are not equivalent). We will
talk more about this in the equivariant case.

We finish off the list of properties of SHC by stating an important additional structure that
it has: the stable homotopy category carries a structure of triangulated category. This will be
certainly useful for our main goal in §4.3.

Theorem 3.4.17 The stable homotopy category SHC is a triangulated category, equipped with the
suspension self-equivalence LΣ : SHC '−→ SHC and taking as class of distinguished triangles the
closure under isomorphisms of the images under j : SpI −→ SHC of the canonical cofibre sequences

X
f−→ Y −→ Z −→ ΣX,

where f is a cofibration of cofibrant objects and Z is the pushout of the diagram ∗ ← X
f→ Y.
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The proof is a formal consequence of A.5.3.(4). For the reader interested in a explicit proof,
see [34, II.2.9].

Remark 3.4.18 We would like to wrap up this chapter with an important observation. We have
induced the stable homotopy category SHC from spectra SpN or equivalently, orthogonal spec-
tra SpI, since in 3.4.8 we saw that they were Quillen equivalent. If one considers the symmetric
spectra that we discussed in 3.2.1, or W -spaces [24, 4.6], then they have model structures such
that their homotopy categories are equivalent to SHC. One can show that, actually, symme-
tric spectra and W -spaces are Quillen equivalent to orthogonal spectra [24, 10.5]. With this in
mind, one may ask whether given two categories inducing SHC, they must be Quillen equiva-
lent. The answer turns out to be positive (see [33]):

Theorem 3.4.19 (Rigity, Schwede 2007) Let C be a stable model category. If Ho(C) and SHC are
equivalent as triangulated categories, then C and SpI are Quillen equivalent.



Chapter 4

Equivariant stable homotopy theory

In the last chapter we defined spectra and constructed the stable homotopy category, and we
said that its objects are some analogues to spaces. The goal of this chapter is to construct objects
which are analogue, in the same way, to G-spaces. We will define them in a very similar way
and will see that we adapt the stable homotopy theory developed in §3.3 to the equivariant
setup, in a similar fashion as we adapted homotopy theory of spaces to G-spaces in chapter 1.
We will also see how we can lift K-theory with Reality to this stable setup, and at the end we
will generalize the notion of G-fixed points and relate KR-theory with KO-theory at the level
of spectra, with an original proof of the author.

4.1 G-spectra

This first section runs parallel to §3.1 – §3.3 altogether, so we will try to be a little bit more
direct to avoid repeating ourselves. In this section we have mostly used [23] and [35], but we
present G-spectra and orthogonal G-spectra differently, as a category of modules, by analogy
with chapter 3. The description of KR-theory as a Z/2-spectrum is also due to the author.

Remark 4.1.1 Before starting, we would like to do the following observation: to define spectra
in the nonequivariant setup, we always considered enriched categories and enriched functors
over (Top∗,∧, S0). For a Top∗-category C, the internal hom-space HomC(X, Y) has as underly-
ing set the hom-set HomC(X, Y) of its underlying category C. If we want to run the equivariant
analogous version, we will have to replace Top∗ by (GTop∗,∧, S0). This seems inoffensive but
there is a subtle point: in a similar fashion as 3.1.6, for a category C enriched over GTop∗, the
hom-set of C is not anymore the underlying set of the internal hom of C, but rather the under-
lying set of its G-fixed points space HomC(X, Y)G. By ease of notation, we will keep dropping
the underline for enriched categories, but the reader should be aware of the difference between
a GTop∗-category and its underlying category, as well as of the difference between the internal
hom-G-space of the enriched category and the hom set of its underlying category.

Diagram G-spaces

Definition. A G-diagram D is a small symmetric monoidal category (D,⊗, 0) enriched over
(GTop∗,∧, S0).

The category of D-G-spaces is the category of enriched functors GTopD∗ (which is also en-
riched over GTop∗).

65
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As in the chapter 3, we can make the category of D-G-spaces symmetric monoidal: given
D-G-spaces X, Y, the naive “external” product

X∧̃Y : D ×D D
(D, D′) (X∧̃Y)(D,D′) := XD ∧YD′ .

can be promoted to an “internal” product using Day convolution, that is, the left Kan extension
of X∧̃Y along the monoidal product ⊗ : D ×D −→ D,

D ×D GTop∗

D

⊗

X∧̃Y

X∧Y:=Lan⊗X∧̃Y

The equivalence relation that defines the coend of the left Kan extension is G-invariant, which
ensures that it produces a well-defined D-G-space X ∧Y (see [23, page 34]. Day convolution is
determined by the universal property of the left Kan extension, that in this context states that
there is an homeomorphism of based G-spaces

HomGTopD∗
(X ∧Y, Z) ∼= HomGTopD×D∗

(X∧̃Y, Z ◦ ⊗).

Similarly to the nonequivariant case, the unit of the symmetric monoidal structure is given
by the left adjoint of the evaluation at 0 ∈ D, coming from the adjunction (analogous to 3.1.8)

GTop∗ ⊥ GTopD∗

MD

evD

for any D ∈ D. Explicitly this is

MDT(D′) := HomD(D, D′) ∧ T

for a based G-space T and D′ ∈ D. The internal hom-G-space that will give us an adjoint for
Day convolution is defined as in chapter 3: if X is a D-G-space and Z is a (D×D)-space, there
is a naive version of function space,

F̃(X, Z)D := HomGTopD∗
(X, Z(D,−)),

and the internal function D-G-space F(X, Y) is defined as

F(X, Y) := F̃(X, Y ◦ ⊗).

This provides an homeomorphism of based G-spaces

HomGTopD∗
(X ∧Y, Z) ∼= HomGTopD∗

(X, F(Y, Z)).

In summary, we have the following

Proposition 4.1.2 The category ofD-G-spaces (GTopD∗ ,∧, M0S0) is closed symmetric monoidal under
Day convolution and unit M0S0.



4.1. G-SPECTRA 67

We will take advantage of this structure to define G-spectra and orthogonal G-spectra
simply as modules over some monoid object, as usual. However, an important observation
when we want to mimic spectra in the equivariant case is that we can no longer index over
natural numbers: if we want to deal with spheres with G-actions, we are forced to take repre-
sentation spheres in any case. What we can control is the representations we want to include.
This will be called the universe.

Warning. From now on all representations of the group G will be considered real, finite-
dimensional and orthogonal (that is, through isometries).

Definition. A universe U is a sum of countably many copies of each G-inner product space
in some set of irreducible representations of G that includes the trivial representations.

We say that U is complete if it contains, up to isomorphism, all irreducible representations
of G, and trivial if it only contains the trivial ones.

From now on we fix a universe U . Let us describe the analogous versions of spectra and
orthogonal spectra for the equivariant case, although this time it will be a bit trickier. Since
we assume that G is a finite group, G has finitely many irreducible representations in our
universe, say V1, . . . , Vr (in particular, all of them are contained in the left regular representation
ρG = R[G]). We now define JG as the discrete category whose objects are ordered sequences

V⊕k1
1 ⊕ · · · ⊕V⊕kr

r ,

where k1, . . . , kr ≥ 0. We can also think of its objects as r-tuples of natural numbers (k1, . . . , kr).
This is also enriched over GTop∗, just by considering the trivial G-action on the internal hom-
spaces, where we have attached a disjoint point. This category turns out to be symmetric
monoidal under sum of integers termwise, with the trivial representation as unit, here repres-
ented by the r-tuple (0, . . . , 0).

We also consider the enriched category IG, with objects finite-dimensional G-inner product
subspaces V ⊂ U , and arrows G-linear isometric isomorphisms. It is enriched over GTop∗
with G acting by conjugation in the hom-spaces (we have implicitly attached a disjoint point
to the hom-spaces). Moreover, this category is symmetric monoidal under direct sum and the
trivial 0-dimensional representation as unit.

Remark 4.1.3 There is a canonical functor JG −→ IG which is an embedding (faithful functor
injective on objects), since different decompositions give rise to non-isomorphic representa-
tions. Therefore, the category JG can be viewed as a subcategory of IG.

Now we can look, as usual, at the categories GTopJG
∗ and GTopIG

∗ . There are monoid objects
SJG and SIG defined as

SJG(W) := SW , SIG(V) := SV

for every W = V⊕k1
1 ⊕ · · · ⊕ V⊕kr

r and V ⊂ U . In particular, the latter is a commutative
monoid object, by the same diagram as in the nonequivariant case (see page 49). Notice that
these representation spheres have an (O(V)× G)-action.

Definition. The category of G-spectra is the category GSpJ := ModSJG
of SJG -modules over

GTopJG
∗ ; and the category of orthogonal G-spectra is the category GSpI := ModSIG of SIG -

modules over GTopIG
∗ .

Observe that JG and IG depend on the choice of the universe U . If U is the trivial universe,
then we will use the name of naive (orthogonal) G-spectra. If U is a complete universe, then
we will use the name of genuine (orthogonal) G-spectra.
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Moreover, just as in the previous chapter, there is a forgetful functor

U : GSpI −→ GSpJ

induced by JG −→ IG.

Remark 4.1.4 The categories GSpJ and GSpI are tensored and cotensored over GTop∗, just as in
the nonequivariant case. The only changes to make to the same claim that we made for spectra
and Top∗ are that for a based G-space T and an orthogonal G-spectrum X, the space XV ∧ T
has the diagonal G-action, and the space F(T, XV) = GMap(T, XV) has a G-action given by
conjugation, (g · f )(t) := g f (g−1t). If we let ΣV := − ∧ SV and ΩV := F(SV ,−), then the
former is left adjoint to the latter.

Let us spell out the definitions of G-spectra and orthogonal G-spectra: a G-spectrum is a
collection of pointed G-spaces X = (XV) for every V ∈ JG, together with based G-maps

σV,W : SV ∧ XW −→ XV⊕W

called structure maps, satisfying the evident associativity condition (see page 49). A map of
G-spectra f : X −→ Y is a collection of based G-maps fV : XV −→ YV that commute with the
structure maps. Using this description, we can define

Definition. An Ω-G-spectrum is a G-spectrum X such that the adjoints of the structure maps

XW −→ ΩV XV⊕W

are weak homotopy equivalences.

Similarly, we see that an orthogonal G-spectrum consists of a collection of (O(V) × G)-
based spaces X = (XV) for every V ∈ IG, together with based maps

σV,W : SV ∧ XW −→ XV⊕W

which are G-equivariant and (O(V) × O(W))-equivariant, satisfying the same associativity
condition as before. A map of orthogonal G-spectra f : X −→ Y is a collection of based
(O(V)× G)-maps fV : XV −→ YV which commute with the structure maps.

Since SIG is a commutative monoid object, the evident equivariant version of 3.1.15 gives

Theorem 4.1.5 There is a product of orthogonal G-spectra ∧I, called smash product, such that

(GSpI,∧I,SIG)

is a closed symmetric monoidal category.

Example 4.1.6 (K-theory with Reality) We highlight now the main example of equivariant
spectrum for us: the Z/2-spectrum KR of (reduced) K-theory with Reality. Recall from 2.3.17
that reduced KR-theory is represented by BU × Z,

K̃R(X) ∼= Z/2[X, BU × Z]∗

where BU has the Z/2-action induced by complex conjugation and Z has the trivial action.
Moreover, we also have the equivariant version of Bott periodicity (theorem 2.3.18), stating
that there is a Z/2-equivariant weak homotopy equivalence

Ω1,1(BU × Z) ' BU × Z.
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We will make use of this to define a Z/2-spectrum KR: to begin with, observe that the only
real (orthogonal) irreducible representations of Z/2 are R with the trivial action and iR with
complex conjugation (the latter is usually called the sign representation, and it appears in the
literature as σ). Indeed, every real irreducible representation of a finite abelian group has
dimension one, and being orthogonal these are the only possibilities. Therefore, every real
representation of Z/2 is isomorphic to one of the form

Vp,q = Rp ⊕ iRq.

Now observe that

K̃R
p,q
(X) = K̃R(Sn−p,n−q ∧ X) ∼= Z/2[Sn−p,n−q ∧ X, BU × Z]∗ ∼= Z/2[X, Ωn−p,n−q(BU × Z)]∗

where p, q ≥ 0 and n ≥ p, q. Trying to mimic the complex K-theory spectrum, this motivates
us to define the Z/2-spectrum KR as

KR(Rp ⊕ iRq) := Ωn−p,n−q(BU × Z)

for n := max(p, q). The structure maps are fully determined, by associativity, by the case
S1,1 ∧ KR(Rp ⊕ iRq) −→ KR(Rp+1 ⊕ iRq+1), which is the map whose adjoint is the weak equi-
valence

BU × Z '−→ Ω1,1(BU × Z)

given by Bott periodicity (theorem 2.3.18).

Of course, we also have the standard examples, the equivariant versions of the ones given
in chapter 3. This time we will only discuss the ortogonal case, since for G-spectra they are
obtained by neglect of structure.

Examples 4.1.7 (a) The object SIG , viewed as a SIG -module, is called the sphere orthogonal G-
spectrum. It has the identifications SV ∧ SW ∼=−→ SV⊕W as structure maps. The space SV has
a (O(V)× G)-action inherited from V, and the previous structure maps are G-equivariant
and (O(V)×O(W))-equivariant.

(b) Let T be a pointed G-space. The suspension orthogonal G-spectrum Σ∞T of T is given by

(Σ∞T)V := SV ∧ T,

endowed with the standard (O(V)× G)-action on SV and the trivial action of O(V) on T.
It has the obvious structure maps SV ∧ SW ∧ T

∼=−→ SV⊕W ∧ T.

In particular, SIG = Σ∞S0, and with more generality, ΣVSIG
∼= Σ∞SV , for a G-

representation V.

(c) Let us describe the equivariant orthogonal version of the Eilenberg-MacLane spectrum
HA. In 3.2.7.(c) we already saw how to obtain concrete models of Eilenberg-MacLane
spaces endowed with actions of orthogonal groups. The question now is: how to endow
these with an action of the group G? The answer turns out to be: we simply impose an
(additive) G-action on A. Formally, this means that instead of taking an abelian group, we
must take a Z[G]-module A, where Z[G] denotes the group ring1 of G over Z. Then A can

1Given a ring R and a group G, the free R-module R[G] has an additional structure of ring with multiplication
given by (∑i aigi)(∑j bjhj) := ∑i,j(aibj)(gihj), and it is called the group ring of G over R.
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be viewed as an abelian group with an action of G which is additive, that is, in the sense
that (ng)a = n(ga).

This is enough to mimic the nonequivariant case: the reduced A-linearlization of a sphere
representation Ã[SV ] inherits an O(V)-action, ϕ · (ax) = a(ϕx), as in the nonequivariant
case; but also a G-action, where the group acts diagonally on the reduced A-linearlization,
that is, g · (ax) := (ga)(gx) (cf. [35, 2.13]). In particular, the underlying nonequivariant
space of Ã[SV ] is a K(A, dim V). Setting

(HA)V := Ã[SV ]

gives the the Eilenberg-MacLane orthogonal G-spectrum HA, where the structure maps

SV ∧ Ã[SW ] Ã[SV⊕W ]

(v, ∑ aiwi) ∑ ai(v, wi)

are (O(V)×O(W))-equivariant and G-equivariant. One can further show that this is an
orthogonal Ω-G-spectrum.

Remark 4.1.8 There is a simplified notion of orthogonal G-spectra which produces an equi-
valent category, although this time the equivalence is not trivial. This is Schwede’s preferred
notion of orthogonal G-spectra, and it is fully explained in [35]. This is similar to the equival-
ence of categories SpO ' SpI, but less evident.

Consider the category O from chapter 3, whose objects are non-negative integers and it
has arrows HomO(n, n) := O(n) and no morphisms n −→ m if n 6= m. This is symmetric
monoidal and also enriched over GTop∗, where the internal homs have the trivial G-action. If
SO(n) := Sn with the trivial G-action, then the category of SO-modules on GTopO∗ is denoted
as GSpO. Explicitly, an object X of GSpO is a sequence of based (O(n)× G)-spaces and based
structure maps Sn ∧ Xm −→ Xn+m which are (O(n)×O(m))-equivariant and G-equivariant,
where G acts trivially on Sn.

Then the claim is that there is a non-trivial equivalence of categories

GSpI ' GSpO.

An orthogonal G-spectrum X ∈ GSpI maps to the object which takes the values Xn := X(Rn),
where Rn is the trivial G-representation. Its inverse is given by mapping an object X = (Xn)
to the orthogonal G-spectrum that for a G-orthogonal representation V takes the value

X(V) := HomIG(R
n, V)+ ∧O(n) Xn.

For a proof of the equivalence, see [35, 2.7].

Homotopy theory of G-spectra

Let us discuss briefly some highlights of the homotopy theory of G-spectra, focusing on the
equivariant phenomena. The first question one may ask is how to define homotopy groups
of G-spectra. In chapter 1 we already saw that we should consider homotopy groups indexed
also by subgroups of G in order to keep track the action of the group. Let us face now the
stable version of what we did there.

Observe that for a spectrum X, its n-th homotopy group is

πk(X) = colim
n

πn+k(Xn) = colim
n

[ΣnSk, Xn]∗ = colim
n

[Sk, ΩnXn]∗

This motivates the following
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Definition. Let X be a G-spectrum, let H be a subgroup of G and let n ∈ Z. The H-n-th
homotopy group of X is

πH
n (X) := colim

V
πH

n (ΩV XV) , n ≥ 0,

πH
−n(X) := colim

V⊃Rn
πH

0 (ΩV−Rn
XV) , n > 0,

where Rn stands for the trivial representation of dimension n, and V−Rn stands for the ortho-
gonal complement of Rn in V.

For an orthogonal G-spectrum X, we define πH
n (X) := πH

n (UX).

A map of G-spectra f:X −→ Y induces compatible maps ΩV XV −→ ΩVYV , so there is an
induced map in colimits

f∗ : πH
n (X) −→ πH

n (Y).

Definition. A map of G-spectra is a π∗-isomorphism if it induces isomorphisms in all homo-
topy groups.

A map f : X −→ Y of orthogonal G-spectra is a π∗-isomorphism if U f is a π∗-isomorphism.

Most of the results that we presented in §3.3 can be reformulated for G-spectra (compare
with 3.3.5):

Lemma 4.1.9 Let V ∈ JG and let X be a G-spectrum. Then the unit η : X −→ ΩVΣV X and counit
ε : ΣVΩV X −→ X of the adjunction ΣV : GSpJ � GSpJ : ΩV are π∗-isomorphisms.

Proof. We only treat the case of the unit (see [32, 9.15] for the counit). Write V j := ⊕j
k=1V, for

j ∈ N ∪ {∞}. We can write the universe U , up to isomorphism, as U ′ ⊕ V∞. If we choose an
expanding sequence of G-representations U′i with colimit U ′, then we can rewrite

πH
n (X) = colim

W
πH

n (ΩW XW) ∼= colim
i,j

πH
n (ΩU′i⊕V j

XU′i⊕V j),

πH
n (ΩVΣV X) = colim

W
πH

n (ΩWΩVΣV XW) ∼= colim
i,j

πH
n (ΩU′i⊕V j

ΩVΣV XU′i⊕V j).

The unit η : X −→ ΩVΣV X induces a map from the first colimit to the second; and the structure
maps ΣV XU′i⊕V j −→ XU′i⊕V j+1 induce a map from the second to the first. These maps are
inverse of each other. For negative indexes the argument is similar.

Theorem 4.1.10 Let f : X −→ Y be a π∗-isomorphism of G-spectra, let A be a G-CW-complex and B
a finite G-CW-complex. Then

1. f ∧ Id : X ∧ A −→ Y ∧ A is a π∗-isomorphism.

2. f∗ : F(B, X) −→ F(B, Y) is a π∗-isomorphism.

The proof is quite involved and we refer to [23, §III.3]. But it allows us to show (compare
with 3.3.4)

Corollary 4.1.11 Let V ∈ JG. A map f : X −→ Y of G-spectra is a π∗-isomorphism if and only if
ΣV f : ΣV X −→ ΣVY is a π∗-isomorphism.

Proof. The direct implication follows from 4.1.10.(1). For the converse, taking A = SV in
4.1.10.(2), we have that ΩVΣV X −→ ΩVΣVY is a π∗-isomorphism. Now the result follows
from 4.1.9 by the naturality of the unit.
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Remark 4.1.12 It is possible to extend the Z-graded homotopy groups of G-spectra to groups
indexed by G-representations. Indeed, in nonequivariant spectra we have that πn(X) ∼=
π0(ΩnX). If spheres in equivariant spectra are given by representation spheres, then we can
define

πH
V (X) := πH

0 (ΩV X).

Moreover, since ΩV and ΣV are π∗-inverses of each other by 4.1.9, we can go further and define
also homotopy groups indexed by “negative” representations,

πH
−V(X) := πH

0 (ΣV X).

The equivariant stable homotopy category

To finish the analogy of G-spectra with the nonequivariant case, we will discuss how to induce
the homotopy category of G-spectra. As in the last chapter, we will also use the general ma-
chinery of model categories. All of the statements and most of the proofs are identical in the
equivariant case, so we will make this subsection shorter and refer to [23, III.4] for the extra
arguments necessary to generalize our proofs of §3.4.

Definition. Let f : X −→ Y be a map of G-spectra or orthogonal G-spectra.

1. We say that f is a level trivial fibration if each map fV : XV −→ YV is a trivial fibration in
GTop∗, that is, if f H

V : XH
V −→ YH

V is a weak homotopy equivalence and a Serre fibration
for all H ⊂ G and any G-representation V.

2. We say that f is a q-cofibration if it has the left lifting property with respect to level trivial
fibrations.

3. We say that f is a trivial q-cofibration if it is a π∗-isomorphism and a q-cofibration.

4. We say that f is a q-fibration if it has the right lifting property with respect to trivial
q-cofibrations.

5. We say that f is a trivial q-fibration if it is a π∗-isomorphism and a q-fibration.

With these definitions, we obtain a similar result as in nonequivariant spectra (see [23,
III.4.2]):

Theorem 4.1.13 There are model structures on GSpJ and GSpI, called the stable model structures,
with respect to π∗-isomorphisms, q-fibrations and q-cofibrations.

Example 4.1.14 Let T be a G-CW-complex. Then it is easy to see that the tensor and cotensor
of GTop∗ with orthogonal G-spectra gives an adjunction

GSpI ⊥ GSpI,

−∧T

F(T,−)

which is Quillen.
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Moreover, by a similar argument to that of 3.2.10, the forgetful U : GSpI −→ GSpJ admits a
left-adjoint,

GSpJ ⊥ GSpI,

P

U

which is given by a left Kan extension. This adjunction induces an equivalence of categories,
with the stable model structures on them, just as in the nonequivariant case (cf. [23, III.4.16]).

Theorem 4.1.15 The previous adjunction P : GSpJ � GSpI : U is a Quillen equivalence. Therefore,
it induces an adjoint equivalence of categories

Ho(GSpJ) ' Ho(GSpI).

Definition. The equivariant stable homotopy category is the homotopy category of G-spectra
(or equivalently, orthogonal G-spectra), and it is denoted by GSHC.

This category has exactly the same properties as the nonequivariant stable homotopy ca-
tegory SHC. Substituting Top by GTop, and suspension Σ by ΣV for a finite-dimensional G-
representation V, we obtain a commutative diagram

GTop GTop∗ GSpI Ab

Ho(GTop) Ho(GTop∗) GSHC grAb

(−)+ Σ∞ ◦ cw H

0-th deg

(−)+ LΣ∞

LΣV

π∗

where LΣV : GSHC '−→ GSHC is an equivalence of categories and cw is a G-CW-
approximation functor. The homotopy category GSHC turns out to be triangulated, as it fol-
lows formally from A.5.3.(4). Moreover, since (GSpI,∧I,SIG) is closed symmetric monoidal,
applying 3.4.15 we get

Corollary 4.1.16 The equivariant stable homotopy category inherits a closed symmetric monoidal
structure

(GSHC,∧LI ,SIG).

This allows us to define a concept that will be key for our further purpose of relating the
Z/2-spectrum KR with the (nonequivariant) spectrum KO.

Definition. A (commutative) ring G-spectrum is a (commutative) monoid object in the
equivariant stable homotopy category (GSHC,∧LI ,SIG).

We reserve the name of orthogonal ring G-spectrum for monoids objects in (GSpI,∧I,SIG),
although they also appear in the literature as strict ring G-spectra. Of course, every orthogonal
ring G-spectrum gives rise to a orthogonal G-spectrum (but the converse is not true). For
instance, the orthogonal sphere G-spectrum SIG is a (orthogonal) ring G-spectrum, and if A
is a Z[G]-algebra (so A is itself a ring), then the orthogonal Eilenberg-MacLane G-spectrum is
also an (orthogonal) ring G-spectrum.

It is also worth mentioning that, with similar arguments to 3.4.13 one shows
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Proposition 4.1.17 Let X be a G-spectrum, let T, T′ be finite G-CW-complexes and let H ⊂ G. Then

1. HomGSHC(Σ∞T, X) ∼= colimV G[ΣV T, XV ]∗

2. HomGSHC(Σ∞T, Σ∞T′) ∼= colimV G[ΣV T, ΣV T′]∗

3. πG
k (X) ∼= HomGSHC(ΣkSIG , X) ∼= HomGSHC(Σ∞Sk, X).

4. πG
V(X) ∼= HomSHC(ΣVSIG , X) ∼= HomGSHC(Σ∞SV , X).

5. πH
k (X) ∼= HomGSHC(Σ∞Σk(G/H)+, X), and similar for any G-representation V.

4.2 RO(G)-graded cohomology theories

We now continue the question that we deferred at the end of §2.3. What should be the pre-
ferred cohomology theories for G-spaces? If we understand G-spheres as the representation
spheres SV , then the Z-graduation of a usual cohomology theory does not encode the equivari-
ant phenomena, since the suspension isomorphism h̃n(X) ∼= h̃n+k(Sk ∧X) only uses trivial rep-
resentations. Therefore, using representation spheres forces us to grade on G-representations.
Moreover, one can be a bit more flexible and allow formal differences of representations. In
the literature, this has the technical misnomer2 of RO(G)-graded cohomology theories.

This section is based in [3, §3.3] and [25, ch. XIII]. Example 4.2.4 lifting KR-theory to a
RO(Z/2)-graded cohomology theory is original work of the author.

Let (ReprR(G),⊗, 0,⊗,R) be the semiring of real, finite-dimensional and orthogonal rep-
resentations of a finite group G, with the direct sum and tensor product of representations.

Definition. The real representation ring of G is the Grothendieck construction of ReprR(G),

RO(G) := K(ReprR(G)).

Remark 4.2.1 Roughly speaking, a RO(G)-graded cohomology theory should be a collection
of functors Eα : Ho(GTop∗) −→ Ab indexed by α ∈ RO(G) with a suspension isomorphism of
the form Eα(X) ∼= Eα+V(ΣV X) for any G-representation V, such that for fixed α ∈ RO(G), the
functor Eα satisfies the rest of axioms of a cohomology theory. However, defining this in terms
of isomorphism classes of representations is too imprecise.

Let us fix a universe U and consider the category IG subject to the chosen universe. We call
a pair of maps f , g : V −→ W on IG homotopic if they induce the same map Σ∞SV −→ Σ∞SW

in GSHC. We write Ho(IG) for the naive homotopy category, with same objects as IG and
morphisms homotopy classes of maps.

For every G-representation W, define the functor

ΣW : Ho(IG)×Ho(GTop∗) Ho(IG)×Ho(GTop∗)

(V, X) (V ⊕W, ΣW X).

2In words of Peter May [25], there are several ways to be precise about RO(G)-graded cohomology theories, and there
are several ways to be imprecise. The latter are better presented in the literature than the former.
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Definition. A RO(G, U )-graded cohomology theory is a functor

E∗ : Ho(IG)×Ho(GTop∗)op −→ Ab,

where we will usually write E∗(V, X) = EV(X), together with a collection of natural isomor-
phisms σW : E∗

∼=
=⇒ E∗ ◦ ΣW , written

EV(X)
∼=−→ EV⊕W(ΣW X)

for every G-representation W, satisfying the following axioms:

(i) Given a map f : X −→ Y of based G-spaces, the sequence

EV(C f ) −→ EV(Y) −→ EV(X)

is exact for every V ∈ IG.

(ii) Given a collection of based G-spaces (Xi)i∈I , the canonical map

EV(
∨
i∈I

Xi)
∼=−→∏

i∈I
EV(Xi)

is an isomorphism for every V ∈ IG.

(iii) We have σ0 = Id and the family {σW} is transitive, σW ′ ◦ σW = σW⊕W ′ .

(iv) Given a map α : W −→W ′ in IG, then the following diagram commutes:

EV(X) EV⊕W(ΣW X)

EV⊕W ′(ΣW ′X) EV⊕W ′(ΣW X)

σW

σW′ EId⊕α(Id)

(ᾱ∧Id)∗

for any V, where ᾱ : SW −→ SW ′ is the induced map on the one-point compactifications.

For a complete universe U , we will usually drop it from the notation, so we will write
RO(G, U ) = RO(G).

Remark 4.2.2 We now explain the reason of the name of RO(G, U )-graded cohomology theory.
If E∗ is such a theory, we can extend it to formal differences V 	W: given homotopy classes
of G-representations V, W, set

EV	W(X) := EV(ΣW X).

Now the observation is that this definition is compatible with the usual equivalence relation
of formal differences (which identifies V 	W with V ′ 	W ′ if there is a G-linear isometric
isomorphism α : V ⊕W ′

∼=−→ V ′ ⊕W), in the sense that such an α determines an explicit
isomorphism

EV	W(X)
∼=−→ EV′	W ′(X)

defined as the left vertical arrow in the following diagram of isomorphisms,

EV(ΣW X) EV⊕W ′(ΣW⊕W ′X)

EV′(ΣW ′X) EV′⊕W(ΣW ′⊕W X)

σW′

Eα(ΣtwId)

σW

where tw : W ⊕W ′ −→W ′ ⊕W is the twist isomorphism.



76 CHAPTER 4. EQUIVARIANT STABLE HOMOTOPY THEORY

Remark 4.2.3 Given a RO(G, U )-graded cohomology theory E∗, we can obtain a Z-graded
cohomology theory by restricting to the trivial representations, setting En := ERn

, where now
the suspension isomorphism is determined by σR.

Example 4.2.4 Let us explain now how to make (reduced) KR-theory into a RO(Z/2)-graded
cohomology theory. Recall that any Z/2-equivariant representation of Z/2 is, up to isomor-
phism, of the form Vp,q = Rp ⊕ iRq. Then we define

K̃R : Ho(IZ/2)×Ho((Z/2)Top∗)op Ab

(Vp,q, X) K̃R
p,q
(X).

This assignment is clearly functorial on X, but some words must be said with respect to
p, q. In the first place, note that any Z/2-equivariant isometric isomorphism α : Vp,q −→ Vp′,q′

must satisfy p = p′, q = q′. Therefore, given an isometric isomorphism α : Vp,q −→ Vp,q, the
induced map α∗ : K̃R

p,q
(X) −→ K̃R

p,q
(X) is defined by the composite displayed in the below

diagram, where n > 2p, 2q:

K̃R
p,q
(X) K̃R

p,q
(X)

K̃R(Sn−2p,n−2q ∧ Sp,q ∧ X) K̃R(Sn−2p,n−2q ∧ Sp,q ∧ X)

α∗

∼= ∼=

(Id∧ᾱ∧Id)∗

(4.1)

The suspension isomorphism is given by the composite of isomorphisms

K̃R
p+p′,q+q′

(Sp′,q′ ∧ X) ∼= K̃R(Sn−p−p′,n−q−q′ ∧ Sp′,q′ ∧ X) ∼= K̃R(Sn−p,n−q ∧ X) ∼= K̃R
p,q
(X).

The properties (i) and (ii) follow from the theory developed in chapter 2 for KR-theory, (iii)
follows by the definition of the suspension isomorphism and the commutativity of the diagram

K̃R
r,s
(X) K̃R

r+p,s+q
(Σp,qX)

K̃R
r+p+p′,s+q+q′

(Σp+p′,q+q′X)

σp+p′ ,q+q′

σp,q

σp′ ,q′

and for (iv) it sufficies to observe that for every Z/2-equivariant isometric isomorphism
α : Vp,q −→ Vp,q, the map

(Id∧ α)∗ : K̃R
r+p,s+q

(Σp,qX) −→ K̃R
r+p,s+q

(Σp,qX)

is exactly the inverse of the map

(ᾱ ∧ Id)∗ : K̃R
r+p,s+q

(Σp,qX) −→ K̃R
r+p,s+q

(Σp,qX)

under the isomorphisms displayed in the diagram (4.1).

In the equivariant case, G-spectra have a relation with RO(G, U )-graded cohomology the-
ories similar to the one that, in the nonequivariant case, spectra have with Z-graded cohomo-
logy theories.
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Proposition 4.2.5 Any Ω-G-spectrum E gives rise to a RO(G)-graded cohomology theory on based
G-spaces, defined by

EV(X) := G[X, EV ]∗

See [25, XIII.2.2]. The surprising result is that, just as in the nonequivariant case, any
RO(G)-graded cohomology theory arises in this way:

Theorem 4.2.6 (Brown representability) The functor

{ Ω-G-spectra }


RO(G)-graded

cohomology theories on
pointed G-CW-complexes


is essentially surjective.

The proof of this can be found in [25, XIII.3.2].

Remark 4.2.7 (Mackey functors) One sensible question at this point is whether any Z-graded
cohomology theory on based G-spaces extends to a RO(G)-graded cohomology theory. One
particular example of Z-graded cohomology we studied in chapter 1 was Bredon cohomology
Hn

G(−; M), where M is a coefficient system, that is, a functor Oop
G −→ Ab. We can easily define

the “stable” analogue of this functor. In the first place, define the Burnside category of G as
the full subcategory BG of GSHC on the objects Σ∞G/H+. Then a Mackey functor is a functor

B
op
G −→ Ab.

There is an obvious functor OG −→ BG, so every Mackey functor gives rise to a coefficient
system. The converse is not always true, and more concretely, one can show that Bredon
cohomology with coefficients in M extends to a RO(G)-graded cohomology theory if and only
if M extends to a Mackey functor [25, IX.5.2].

4.3 The homotopy fixed points of the KR-spectrum

In this last section, we aim to develop some extra tools to present one remarkable result, which
relates the Z/2-spectrum KR of K-theory with Reality with the nonequivariant spectrum KO
of real K-theory.

Fixed points of G-spectra

In chapter 1, given a (based) G-space, we defined its fixed points XG := lim X and its homotopy
fixed points XhG := holim X. One may ask if we can mimic this and also have fixed points
functors from (orthogonal) G-spectra to (orthogonal) spectra. For this part we mostly look at
[23, §V.3–4] and [3, §3.5].

We showed in 1.1.5 and 1.1.6 that (homotopy) fixed points can be expressed as

XH ∼= MapG(G/H+, X) , XhG ∼= MapG(EG+, X),

where H ⊆ G is a subgroup. Since the category of G-spectra is cotensored over G-spaces, this
motivates the following definitions:
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Definition. The categorical fixed points is the functor

(−)G : GSpI −→ SpI

given by taking G-fixed points termwise,

(XG)V := (XV)
G

(we can evaluate in any real inner-product space V viewed as a trivial G-representation, since
the universe U contains all trivial representations). The structure maps are given by the fixed
point maps of the structure maps of X,

SV ∧ (XW)G −→ (XV⊕W)G.

For a subgroup H ⊆ G, we define

XH := F(G/H+, X)G,

where we use that the category of G-spectra is cotensored over G-spaces.

The following important result is immediate from the definitions:

Proposition 4.3.1 Let X be an orthogonal Ω-G-spectrum. Then

πH
n (X) ∼= πn(XH)

for all n ∈ Z.

Recall that, given a based space, we can always view it as a based G-space with the trivial
action, and it is left adjoint to taking fixed points (see 1.1.3). We would like to do the same for
spectra, but we have to be a little bit careful.

For the choice of a trivial universe U , write GSpInaive for the category of naive orthogonal
G-spectra. There is a functor

triv : SpI −→ GSpInaive

which maps every spectrum X to a G-spectrum with the property that triv(X)Rn = XRn viewed
with the trivial G-action. For any other trivial G-representation V, it takes the value

triv(X)V = HomIG(R
n, V)+ ∧O(n) XRn .

Then the categorical fixed points functor plays the role of the fixed points for G-spaces:

Lemma 4.3.2 Fix a trivial universe U . There is a (Quillen) adjunction

GSpInaive ⊥ SpI
triv

(−)G

Furthermore, for any choice of universe U , (−)G : GSpI −→ SpI is also right Quillen, so we have
a right derived functor

R(−)G notation
= (−)G : GSHC −→ SHC.
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One can find this in [23, V.3.4]. We also state some properties of the categorical fixed points,
which can be found in the [23, V.3.7 and V.3.8]:

Proposition 4.3.3 The categorical fixed points functor satisfies the following properties:

1. (Σ∞ A)G ∼= Σ∞(AG), for a based G-space A.

2. XG ∧I YG ∼= (X ∧I Y)G, for Ω-G-spectra X, Y.

We will also make use of two more fixed points functors. By convenience, we will treat
them directly at the level of the homotopy categories. Recall that for a finite group G, the G-
space EG can be realized as a G-CW-complex, so by 4.1.14 the functors−∧ EG+ and F(EG+,−)
are left and right Quillen, respectively. We again abuse of notation and we will write −∧ EG+

for L(−∧ EG+) and F(EG+,−) for RF(EG+,−), so we get

−∧ EG+ : GSHC −→ GSHC
F(EG+,−) : GSHC −→ GSHC

Definition. The homotopy fixed points functor (−)hG is the composite

GSHC GSHC SHC,
F(EG+,−) (−)G

so we will write XhG := F(EG+, X)G for a G-spectrum X ∈ GSHC.

The main theorem

We will spend the rest of the chapter showing the main result of this Master’s thesis, which
was its goal. Here we relate the equivariant spectrum KR with KO.

Theorem 4.3.4 In the stable homotopy category SHC, the homotopy fixed points of the Z/2-spectrum
KR is isomorphic to the spectrum KO,

KRhZ/2 ∼= KO.

To the author’s knowledge, the proof we present of 4.3.4 has not appeared before. The
strategy of the proof was outlined to the author by Lennart Meier. We will split the proof of
the theorem in several steps. To start with, recall that the categories that we are dealing with,
namely Top∗, GTop∗, SpI and GSpI, are pointed model categories (meaning that they are model
categories with the property that the unique map between the initial and terminal object is an
isomorphism). In particular, there are fibre and cofibre sequences, as discussed at the end of
§A.5.

In the first place, observe that there is a pair of Quillen adjunctions (see 3.4.10)

GTop∗ ⊥ GSpI ⊥ GSpI
Σ∞ X∧I−

Ω∞ F(X,−)

whose composite is therefore a Quillen adjunction. The left adjoint of this new adjunction is
precisely the functor X ∧ − : GTop∗ −→ GSpI obtained by the tensor of GSpI over GTop∗. As
usual, we will also denote L(X ∧−) by X ∧−.
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Proposition 4.3.5 Let X be a G-spectrum.

1. The functor X ∧− : Ho(GTop∗) −→ GSHC preserves cofibre sequences.

2. The categorical fixed point functor (−)G : GSHC −→ SHC preserves cofibre sequences.

Proof. The functor of 1. is precisely the left derived functor of a left Quillen, so the result
follows formally from A.5.3.(1). For 2., one has that the functor from the statement is the right
derived functor of a right Quillen, so by A.5.3.(1) it preserves fibre sequences. However, by
A.5.3.(5), fibre sequences and cofibre sequences are the same, so the result follows.

Now, fixed a finite group G, consider the universal space EG, and consider the collapse
map EG+ −→ S0 in Ho(GTop∗). By A.5.3.(1), this map can be extended to a cofibre sequence
in Ho(GTop∗)

EG+ −→ S0 −→ ẼG. (4.2)

Given X a G-spectrum, let ε be the composite

X
∼=−→ F(S0, X) −→ F(EG+, X),

where the first map is the canonical identification and the second map is induced by the col-
lapse map EG+ −→ S0. If we smash the G-spectra X and F(EG+, X) with (4.2), we get a
commutative diagram in GSHC

X ∧ EG+ X X ∧ ẼG

F(EG+, X) ∧ EG+ F(EG+, X) F(EG+, X) ∧ ẼG

ε∧Id ε ε∧Id (4.3)

where both rows are cofibre sequences by 4.3.5.(1).

Proposition 4.3.6 Let U : GSHC −→ SHC be the forgetful functor and let f : X −→ Y be a map of
G-spectra such that U f : UX −→ UY is an isomorphism of nonequivariant spectra. Then

f ∧ Id : X ∧ EG+ −→ Y ∧ EG+

is an isomorphism of G-spectra.

The previous result can be found in [12, I.1.1]. For us this has the following important
consequence:

Corollary 4.3.7 The map ε ∧ Id : X ∧ EG+ −→ F(EG+, X) ∧ EG+ is an isomorphism.

Now we want to take categorical fixed points to the diagram (4.3). We will introduce some
terminology first.

Definition. Let X be a G-spectrum. The homotopy orbits of X is the spectrum

XhG := (X ∧ EG+)
G.

Since the left vertical map is an isomorphism by 4.3.7, we will abuse of notation and we
will also denote (F(EG+, X) ∧ EG+)G by XhG. Therefore, after taking fixed points in (4.3), the
lower left horizontal map becomes N : XhG −→ XhG, which reminds to the norm map that
defines Tate cohomology. Together with 4.3.5.(2), this motivates the following
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Definition. Let X be a G-spectrum. The Tate construction of X is the cofibre of the map
N : XhG −→ XhG,

XtG := (F(EG+, X) ∧ ẼG)G.

We need one last ingredient, for which we specialize to the case G = Z/2:

Definition. The geometric fixed points functor (−)ΦZ/2 is the composite

GSHC GSHC SHC−∧ẼZ/2 (−)Z/2

Note that by 4.1.10.(1), the functor −∧ ẼZ/2 : GSpI −→ GSpI preserves π∗-isomorphisms,

so its left derived functor GSHC −→ GSHC is just smashing with ẼZ/2. The geometric fixed
points can be defined with way more generality, but for our purpose we will just restrict to this
case. A very detailed exposition of this can be found in [35, §7].

Under these considerations, taking categorical fixed points to the diagram (4.3), we obtain

Theorem 4.3.8 Let X be a Z/2-spectrum. Then there is a commutative diagram in SHC

XhZ/2 XZ/2 XΦZ/2

XhZ/2 XhZ/2 XtZ/2N

called the Tate diagram, where rows are cofibre sequences.

The existence of this Tate diagram appears in [4] and [6]. Until now, we constructed the
Tate diagram for any Z/2-spectrum. In order to show 4.3.4, we now specialize to X = KR, so
we get a commutative diagram in SHC

KRhZ/2 KRZ/2 KRΦZ/2

KRhZ/2 KRhZ/2 KRtZ/2

(4.4)

where rows are cofibre sequences. This means that the rows of this diagram are distinguished
triangles in the triangulated structure of SHC.

Proposition 4.3.9 KRZ/2 ∼= KO (in SHC).

Proof. We simply compute that termwise the spaces are weak homotopy equivalent. For n ≥ 0,
0 ≤ j, p < 8 and p + j ≡ 0 mod 8 we get

KRZ/2(R8n+j) = KR(R8n+j)Z/2 = Ω0,8n+j(BU × Z)Z/2 2.3.19' Ω8n+8,8n+j(BU × Z)Z/2

2.3.18' Ωp,0(BU × Z)Z/2 = GMap(Sp,0, BU × Z)Z/2
1.1.2∼= MapG(S

p,0, BU × Z)
(1.5)∼= Map(Sp, BO× Z) = Ωp(BO× Z) = KO(R8n+j).

Here we used that BU(n)Z/2 = BO(n), which can be checked using Grassmannians; and
that taking fixed points commutes with filtered colimits of closed inclusions [21, 1.2], so
BUZ/2 = BO. Therefore, if we choose the weak equivalence BO× Z '−→ Ω8(BO× Z) as the
underlying nonequivariant weak equivalence of 2.3.19, it is readily verified that the structure
maps coincide.
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The last step of the proof is to show that the right vertical map of (4.4) is an isomorphism.

Proposition 4.3.10 KR is a ring Z/2-spectrum (in (Z/2)SHC).

The last proposition is a known result, but found really rarely in the literature (it ap-
pears stated in [10, 5.2] and [6, 2.2.4]). Roughly, the tensor product of Real vector bundles
makes KR into a multiplicative RO(Z/2)-graded cohomology theory, which induces a map
KR ∧LI KR −→ KR. However, with the tools that we have developed, we are still far from
giving a precise argument, so we will just blackbox the proof.

The following general result of the Tate diagram is key for our argument:

Proposition 4.3.11 If X is a ring Z/2-spectrum, then so are XZ/2, XhZ/2, XΦZ/2 and XtZ/2.
Moreover, the right-hand square of the Tate diagram

XZ/2 XΦZ/2

XhZ/2 XtZ/2

is a commutative diagram of ring Z/2-spectra.

The proof can be found in [12, I.3.5]. For us, it has the consequence that KRΦZ/2 −→ KRtZ/2

is a map of ring Z/2-spectra.

In the following, we denote by 0 the zero object of the triangulated category SHC.

Lemma 4.3.12 Let X be a ring spectrum. If there is a ring map 0 −→ X, then X = 0.

Proof. Let SI be the unit of SHC, as in 3.4.16. Given a map of ring spectra 0 −→ X, the com-
mutativity of the diagram

SI

0 X

0 η

implies that the unit map η : SI −→ X must be the zero map. But this means that the identity
of X must be the zero map, by the unit condition of the multiplication map

X SI ∧LI X X ∧LI X

X

∼=

Id

η∧Id

µ

so X = 0.

The last ingredient is the following key fact about the KR spectrum:

Proposition 4.3.13 KRΦZ/2 ∼= 0 (in SHC).

Proof. Let aσ : S0 ↪−→ S0,1 be the Z/2-equivariant inclusion from S0 (with the trivial action) to
S0,1 = Sσ. It is readily verified that this map is not Z/2-nullhomotopic: any Z/2-equivariant
map H : S0 ∧ I+ ∼= I −→ S0,1 must be the constant map. We can smash this map with the
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sphere Z/2-spectrum SIZ/2 = S , which yields a map aσ : S ∧ S0 ∼= S −→ S ∧ S0,1. By 4.1.17.(4)
it corresponds with a nonzero element

aσ ∈ πZ/2
0,0 (S ∧ S0,1) = πZ/2

0,−1(S),

where πZ/2
p,q = πZ/2

Rp⊕iRq and πZ/2
−p,−q = πZ/2

−Rp⊕iRq (see 4.1.12).
Now we make the following observation: since S is a Z/2-ring spectrum, its homotopy

groups πZ/2
•,• (S) :=

⊕
p,q πZ/2

p,q (S) form a graded ring. Moreover, as any Z/2-spectrum X is a
S-module, πZ/2

•,• (X) :=
⊕

p,q πZ/2
p,q (X) has a structure of graded πZ/2

•,• (S)-module, and if X is a
ring Z/2-spectrum, then πZ/2

•,• (X) is a graded πZ/2
•,• (S)-algebra.

The first claim now is that

πZ/2
p,q (KR ∧ ẼZ/2) ∼= colim(πZ/2

p,q (KR) ·aσ−→ πZ/2
p,q−1(KR) ·aσ−→ · · · ). (4.5)

Indeed, there is a explicit description of ẼZ/2, namely S∞i := colimn S0,n. Since homotopy
groups commute with filtered colimits, we compute

πZ/2
p,q (KR ∧ ẼZ/2) ∼= colim

n
πZ/2

p,q (KR ∧ S0,n) = colim
n

πZ/2
p,q−n(KR),

where the maps in the last colimit are precisely multiplication by aσ, since they are induced
by the inclusions S0,n ↪−→ S0,n+1, that can be seen as aσ ∧ Id : S0 ∧ S0,n −→ S0,1 ∧ S0,n. This
concludes the first claim.

Our second claim is that the colimit in (4.5) is zero precisely because the 3-fold composite
of the map aσ is the zero map, that is, multiplication by a3

σ is zero. For let v̄ be the composite

S −→ KR
∼=−→ Ω1,1KR

of the unit map given by the Z/2-ring spectrum structure of KR (see 4.3.10) and the obvious
isomorphism given by Bott Periodicity (theorem 2.3.18). As before, this map corresponds with
an element v̄ ∈ πZ/2

1,1 (KR). In particular, this element is invertible in the graded ring πZ/2
•,• (KR),

with inverse v̄−1 ∈ πZ/2
−1,−1(KR) given by the composite

Ω1,1S −→ Ω1,1KR
∼=−→ KR.

Multiplying aσ with v̄ we get an element

aσv̄ ∈ πZ/2
1,0 (KR) ∼= π1(KRZ/2)

4.3.9∼= π1(KO) ∼= K̃O(S1) ∼= Z/2,

where Z/2 is generated by η, which is represented by the Möbius bundle in K̃O(S1). If η3

denotes its 3-fold reduced external product, then η3 ∈ K̃O(S3), but this group is trivial (see
[38, 11]), so η3 = 0. The upshot is that, anycase, (aσv̄)3 = 0, and since v̄ is invertible, a3

σ must
act as zero in πZ/2

•,• (KR). This finishes the second claim.
Therefore, we see that the colimit (4.5) must be trivial, so in particular we get that

πn(KRΦZ/2) ∼= πn((KR ∧ ẼZ/2)Z/2) ∼= πZ/2
n,0 (KR ∧ ẼZ/2) ∼= 0,

what implies that KRΦZ/2 ∼= 0 in SHC.

We are finally ready to show the main theorem:

Proof of 4.3.4. By 4.3.12 and 4.3.13, we get that the map KRΦZ/2 −→ KRtZ/2 is the zero map
between the zero spectra, thus in particular isomorphism. Since KRZ/2 ∼= KO by 4.3.9, apply-
ing the two-out-of-three property A.5.2 for triangulated categories to the Tate diagram (4.4)
yields the result.
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Appendix A

Model categories

Here we will review one useful tool of Algebraic Topology, namely model categories. They
were first introduced in 1967 by Quillen [29] as a generalization of a well-known situation in
topological spaces: there are three distinguished classes of arrows: weak homotopy equiva-
lences, Serre fibrations and (retracts of) inclusions of relative cell complexes, satisfying some
relations between them, for example

• If two out of three arrows of a composite are weak equivalences, so is the third.

• A map is a Serre fibration if and only if it has the right lifting property with respect any
(retract) of a inclusion of a cell complex which is also a weak equivalence.

• A map is a inclusion of a relative cell complex if and only if it has the left lifting property
with respect to Serre fibrations which are also weak equivalences.

These are properties of spaces which are stated only in terms of their arrows. The purpose
of the theory of model categories is to axiomatize these properties and to be able to extrapolate
formal consequences to other categories.

For the elaboration of the appendix, we mostly follow Hovey’s excellent expository piece
Model Categories [16]. Besides, we also make use of [9] and [28] in §A.1 – §A.3 (for instance, our
definition of the homotopy category is different than Hovey’s). In §A.4 we also follow [7] and
[37], and in §A.5 [11] and [34].

A.1 Model structures

Definition. Let C be a category, and let Map C be the category with objects arrows of C and
morphisms commutative squares.

1. A map f : A −→ B is a retract of a map g : C −→ D if f is a retract of g in Map C; in
other words, if there is a commutative diagram

A C A

B D B

f

Id

g f

Id

85
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2. A functorial factorization in C is a pair (α, β) of functors such that β ◦ α = IdMap C

3. Given maps i : A −→ B and p : X −→ Y, we say that i has the left lifting property with
respect to p, or that p has the right lifting property with respect to i, if for every solid
commutative square

A X

B Y

i p

there is a dashed arrow making the triangles commute.

Definition. A model category is a category C with three distinguished subcategories called

• weak equivalences,

• fibrations,

• cofibrations,

together with two functorial factorizations (α, β), (γ, δ) satisfying the following properties (call
a map an acyclic or trivial (co)fibration of it is a (co)fibration and a weak equivalence):

(i) (2-out-of-3) If two out of three of maps f , g, g f are weak equivalences, so is the third.

(ii) (Retracts) If f is a retract of g, and g is in one of the preferred subcategories, so is f .

(iii) (Lifting) Trivial cofibrations have the left lifting property with respect to fibrations, and
cofibrations have the left lifting property with respect to trivial fibrations.

(iv) (Factorization) Any morphism f factors in two different ways: as a cofibration α( f ) and a
trivial fibration β( f ); or as a trivial cofibration γ( f ) and a fibration δ( f ).

(v) ((Co)limits) The category C is complete and cocomplete.

Examples A.1.1 All examples here require long proofs, but we include them here for the re-
cord.

(a) The category Top of all topological spaces with the classical or Quillen model structure:

• weak equivalences: weak homotopy equivalences

• fibrations: Serre fibrations,

• cofibrations: retracts of relative cell complexes inclusions A ↪−→ X.

(b) The category Top of all topological spaces with the Strøm model structure:

• weak equivalences: homotopy equivalences,

• fibrations: Hurewicz fibrations,

• cofibrations: Hurewicz cofibrations.

(c) The category ChR of chain complexes over a ring R, with

• weak equivalences: quasi-isomorphisms,

• fibrations: maps levelwise surjective,
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• cofibrations: maps levelwise injective with projective cokernel.

(d) The category sSet of simplicial sets with

• weak equivalences: maps whose geometric realization is a weak homotopy equiva-
lence,

• fibrations: Kan fibrations,

• cofibrations: maps levelwise injective.

(e) The category cdga of commutative differential graded algebras with

• weak equivalences: quasi-isomorphisms,

• fibrations: surjective maps,

• cofibrations: retracts of relative Sullivan algebra inclusions.

(f) If C is a model category and ∗ is the terminal object, then C∗ := ∗/C the category under ∗,
called the pointed category, inherits a model structure.

As any model category is complete and cocomplete, it has an initial object ∅ and a terminal
object ∗.

Definition. We say that an object X ∈ C is cofibrant if ∅ −→ X is a cofibration; and that X is
fibrant if X −→ ∗ is a fibration.

Remark A.1.2 If X ∈ C, applying the functorial factorization (α, β) to the unique map ∅ −→ X
we get a factorization

∅ −→ QX
qX−→ X

for some cofibrant object QX. Similarly applying (γ, δ) to the unique map X −→ ∗ we get a
factorization

X rX−→ RX −→ ∗

for some fibrant object RX. This defines functors

Q, R : C −→ C

called the cofibrant and fibrant replacement functors; and natural transformations q : Q⇒ Id
and r : Id⇒ R.

Lemma A.1.3 (Retract Argument) If f = p ◦ i is a factorization of a map f and it has the left lifting
property with respect to p, then f is a retract of i.

Similarly, if f has the right lifting property with respect to i, then f is a retract of p

In the definition of a model category we have pointed three distinguished classes of maps.
However, it is redundant: the class of cofibrations is determined by the other two; and the
same happens with the class of fibrations. This is the content of the following

Proposition A.1.4 Let C be a model category.

1. A map is a cofibration (trivial cofibration) if and only if it has the left lifting property with respect
all trivial fibrations (fibrations).

2. A map is a fibration (trivial fibration) if and only if it has the right lifting property with respect
all trivial cofibrations (cofibrations).
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Corollary A.1.5 Fibrations and trivial fibrations are stable under base change.
Dually, cofibrations and trivial cofibrations are stable under cobase change

Lemma A.1.6 (Ken Brown) Let F : C −→ D be a functor between model categories. If F takes
trivial (co)fibrations between (co)fibrant objects to weak equivalences, then it preserves weak equiva-
lences between (co)fibrant objects.

A.2 The homotopy category

Given a model category C, we want to make weak equivalences into isomorphisms. For that,
we can formally invert those morphisms, in a similar way as in commutative algebra: given
a ring R and a multiplicative system S ⊂ R, we can construct the localization R[S−1] (ring of
fractions), where now the elements of S, under the morphism of localization j : R −→ R[S−1], are
invertible. We can mimic this constructions for categories:

Definition. Let C be a category and let W be a subcategory of C. The localization of C with
respect toW (if it exists) is a category C[W−1] together with a functor j : C −→ C[W−1], called
functor of localization, satisfying

(i) j(w) is an isomorphism for all arrow w inW .

(ii) If D is another category and F : C −→ D is a functor with the property that F(w) is an
isomorphism for all arrow w inW , then there exists a unique functor F : C[W−1] −→ D
such that F ◦ j = F,

C D

C[W−1]

F

j
F

Theorem A.2.1 The localization of a category with respect to any subcategory exists and it is unique
up to isomorphism.

Concretely, the localization C[W−1] has the same objects as C and morphisms equivalence
classes of finite strings of composable arrows ( f1, . . . , fr), where fi is either an arrow of C or
the reversal w−1

i of an arrow wi inW , subject to the relations

IdC = (IdC) , ( f , g) = ( f ◦ g) , (w, w−1) = Iddom w , (w−1, w) = Idcodom w.

Definition. Let C be a model category and let W be the subcategory of weak equivalences.
The homotopy category Ho C of C is the localization of C with respectW ,

Ho C := C[W−1].

Let us denote by Cc, C f , Cc f the full subcategories of cofibrant, fibrant and cofibrant fibrant
objects of C, respectively.

Proposition A.2.2 The inclusions Cc f ↪−→ Cc ↪−→ C and Cc f ↪−→ C f ↪−→ C induce equivalences of
categories

Ho Cc f
'−→ Ho Cc

'−→ Ho C , Ho Cc f
'−→ Ho C f

'−→ Ho C.

This definition of the homotopy category is formally very desirable but quite inexplicit.
We aim now to give a more down-to-Earth description of this category (and in particular of its
arrows).
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Definition. Let C be a model category.

1. A cylinder object for B ∈ C is a factorization of the fold map Id ä Id : B ä B −→ B as a
cofibration i0 ä i1 : B ä B −→ B′ and a weak equivalence s : B′ −→ B.

2. A path object for X ∈ C is a factorization of the diagonal map (Id, Id) : X −→ X × X as
a weak equivalence r : X −→ X′ and a fibration (p0, p1) : X′ −→ X× X.

By the factorization axiom, there is always a cylinder object B × I for B with the extra
property that s : B× I −→ B is a trivial fibration. Similarly, there is always a path object X I for
X with the propety that X −→ X I is a trivial cofibration.

Definition. Let f , g : B −→ X be maps in C.

1. A left homotopy from f to g is a map H : B′ −→ X from some cylinder object B′ for B,
such that H ◦ i0 = f , H ◦ i1 = g.

2. A right homotopy from f to g is a map K : B −→ X′ from some path object X′ for X,
such that p0 ◦ K = f , p1 ◦ K = g.

3. We say that f and g are homotopic when they are left and right homotopic.

4. We say that f is a homotopy equivalence when there is h : X −→ B such that f ◦ h and
h ◦ f are homotopic to the identity.

Proposition A.2.3 Let C be a model category and let f , g : B −→ X be maps in C.

1. Left (right) homotopies are always preserved under composition by the left (right).

2. If X is fibrant (B cofibrant), then left (right) homotopies are also preserved under composition by
the right (left).

3. If B is cofibrant (X fibrant), then left (right) homotopy is an equivalence relation in HomC(B, X).

We write [B, X]` and [B, X]r for the sets of left (right) homotopy classes of maps B −→ X.

4. If B is cofibrant and h : X −→ Y is a trivial fibration or a weak equivalence of fibrant objects,
then h induces a bijection

h∗ : [B, X]`
∼=−→ [B, Y]`.

Corollary A.2.4 If B is cofibrant and X is fibrant, then the left and right homotopy relations coincide
and they are equivalence relations on HomC(B, X).

We write [B, X] for the set of homotopy classes of maps B −→ X.

Corollary A.2.5 In Cc f , the homotopy relation on morphisms is an equivalence relation compatible
with composition, thus the quotient category Cc f / ∼ exists.

The natural functor Cc f −→ Cc f / ∼ sends homotopy equivalences to isomorphisms, but
we care about weak equivalences! We are lucky since

Proposition A.2.6 In Cc f , a map is a weak equivalence if and only if it is a homotopy equivalence.

Corollary A.2.7 Let j : Cc f −→ Ho Cc f and π : Cc f −→ Cc f / ∼ be the canonical functors. Then the
unique functor

j : Cc f / ∼
∼=−→ Ho Cc f

such that j ◦ π = j is an isomorphism of categories.
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We gather all these results in the

Theorem A.2.8 (Fundamental of model categories) Let C be a model category, let j : C −→ Ho C
be the morphism of localization and let Q, R be the cofibrant and fibrant replacement functors. Then

1. The inclusion Cc f ↪−→ C induces an equivalence of categories

Cc f / ∼ '−→ Ho C.

2. There are natural bijections

HomHo C(X, Y) ∼= [QRX, QRY] , HomHo C(X, Y) ∼= [RQX, RQY],

HomHo C(X, Y) ∼= [QX, RY],

and in particular, if X is cofibrant and Y is fibrant, then

HomHo C(X, Y) ∼= [X, Y].

3. The functor j : C −→ Ho C identifies left or right homotopic maps.

4. Given a map f in C, it holds that f is a weak equivalence if and only if j( f ) is an isomorphism.

A.3 Quillen functors and derived functors

As usual in mathematics, given some objects with a structure, we want to study the morphisms
which preserve the structure. In our particular case, we are also interested for functors between
model categories which induce functors between the homotopy categories.

Definition. Let C,D be model categories.

1. A functor F : C −→ D is left Quillen if it is left adjoint and preserves cofibrations and
trivial cofibrations.

2. A functor U : D −→ C is right Quillen if it is right adjoint and preserves fibrations and
trivial fibrations.

Lemma A.3.1 Every left (right) Quillen functor preserves weak equivalences between cofibrant
(fibrant) objects.

Proposition A.3.2 Let F : C � D : U be an adjunction between model categories. Then F is left
Quillen if and only if U is right Quillen.

Definition. An adjunction F : C � D : U between model categories is Quillen if F is left
Quillen (or equivalently, if U is right Quillen).

Examples A.3.3 (a) The adjunction | · | : sSet� Top : S is Quillen.

(b) The adjunction (−)+ : C � C∗ : U is Quillen.

(c) If F : C � D : U is a Quillen adjunction, so is F∗ : C∗ � D∗ : U∗.
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Now we face the following question: given a left Quillen functor F : C −→ D, how can we
come up with an induced functor LF : Ho C −→ Ho D between the homotopy categories? One

could think: consider the composite C F−→ D j−→ HoD and then appeal to the universal prop-
erty of the localization. But there is a problem: for this we need that the functor preserves weak
equivalences, but a left Quillen functor only preserves weak equivalences between cofibrant
objects! We cannot apply this argument directly, but there is an easy solution: by the 2-out-of-3

property, Q : C −→ Cc preserves weak equivalences, so the composite C Q−→ Cc
j−→ Ho Cc

sends weak equivalences to isomorphisms, hence by the universal property of the localization
we get a functor Ho Q : Ho C −→ Ho Cc. Similarly, let F|Cc : Cc −→ D be the restriction of F to
Cc. Now this morphism preserves weak equivalences (since all objects are cofibrant), thus by
the universal property of the localization we get a functor Ho F|Cc : Ho Cc −→ Ho D.

Definition. Let C,D be model categories.

1. Given a left Quillen functor F : C −→ D, the total left derived functor of F is the functor
LF : Ho C −→ Ho D defined as the composite

Ho C Ho Q−→ Ho Cc
Ho F|Cc−→ Ho D,

and given a natural transformation α : F ⇒ F′ of left Quillen functors, the total derived
natural transformation Lα is given by (Lα)X := αQX.

2. Given a right Quillen functor U : D −→ C, the total right derived functor of U is the
functor RU : Ho D −→ Ho C defined as the composite

Ho D Ho R−→ Ho D f

Ho U|D f−→ Ho C,

and given a natural transformation α : U ⇒ U′ of right Quillen functors, the total de-
rived natural transformation Rα is given by (Rα)X := αRX.

Remark A.3.4 The total derived natural transformation is functorial, that is, if α : F ⇒ F′ and
β : F′ ⇒ F′′ are natural transformations between left Quillen functors, then L(β ◦ α) = Lβ ◦Lα
and LIdF = IdLF; and similarly for right Quillen functors.

However, taking the left or right derived functors is not a functorial assignment, for in-
stance LIdC = Ho Q. However, one can show that it is functorial up to natural isomorphism.

Theorem A.3.5 Let F : C � D : U be a Quillen adjunction. Then the left and right derived functors
define an adjunction between the homotopy categories,

Ho C ⊥ Ho D

LF

RU

called the derived adjunction.

One of the key properties of Quillen adjunctions is that, for some of them, they will induce
an equivalence of categories at the level of the homotopy categories:

Definition. A Quillen equivalence is a Quillen adjunction F : C � D : U with the extra
property that for every X ∈ C cofibrant and Y ∈ D fibrant, the bijection

HomD(FX, Y)
∼=−→ HomC(X, UY)

makes weak equivalences correspond with weak equivalences.
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Theorem A.3.6 Let F : C � D : U be a Quillen adjunction. Then the following are equivalent:

1. F : C � D : U is a Quillen equivalence.

2. LF : Ho C � Ho D : RU is an adjoint equivalence of categories.

3. The composites

X
η−→ UFX UrFX−→ URFX , X cofibrant,

FQUX
FqUX−→ FQX ε−→ X , X fibrant,

are weak equivalences.

Another useful criterion that we will use is

Corollary A.3.7 Let F : C � D : U be a Quillen adjunction. If U creates1 the weak equivalences of
D, and η : B −→ UFB is a weak equivalence for all cofibrant objects B in C, then F : C � D : U is a
Quillen equivalence.

A.4 The model structure of topological spaces

We will describe some relevant facts of the Quillen model structure of Top, where

• weak equivalences are weak homotopy equivalences,

• fibrations are Serre fibrations

• cofibrations are retracts of inclusions of relative cell complexes A ↪−→ X.

For every space, obviously every map X −→ ∗ is a Serre fibration, so every object is fibrant
in Top. Moreover, from the third item one gets that CW-complexes are cofibrant, so from A.2.8
we obtain

Corollary A.4.1 If X is a CW-complex and Y is any space, then maps X −→ Y in Ho(Top) correspond
bijectively to the usual set of homotopy classes of maps,

HomHo(Top)(X, Y) ∼= [X, Y].

The small object argument

Another remarkable issue that we will briefly explain is the factorization of every map in two
possible ways (axiom (iv)). This is due to a general statement called the small object argument.

Definition. Let C be a cocomplete category and let

X0 −→ X1 −→ X2 −→ · · ·

be a sequential diagram with X := colimn Xn. An object A of C is called small relatively to X
if the natural map

colim
n

HomC(A, Xn) −→ HomC(A, X)

is an isomorphism.
1A functor U : D −→ C creates weak equivalences if given objects D, D′ ∈ D such that FD, FD′ are weak

equivalent, then D, D′ are also weak equivalent.
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Definition. Let C be a category and let I be a set of morphisms of C. The class of morphisms
of C with the right lifting property with respect to all morphisms in I is called the class of
I-injectives, and denoted as I-inj.

Let I = { fi : Ai −→ Bi} be a set of morphisms, and fix f : X −→ Y a morphism
in C. Set G0(I , f ) := X and p0 := f . We will construct objects Gk(I , f ) and morphisms
pk : Gk(I , f ) −→ Y and ik : Gk(I , f ) −→ Gk+1(I , f ).

For every k ∈ N, let Sk(i) be the set of pairs of arrows (g, h) in C such that the diagram

Ai Gk(I , f )

Bi Y

g

fi pk

h

commute. Inductively, we define Gk+1(I , f ) as the pushout of the diagram

ä
i

ä
(g,h)∈Sk(i)

Ai Gk(I , f )

ä
i

ä
(g,h)∈Sk(i)

Bi Gk+1(I , f )

ä g

ä fi
ik

We get maps ik : Gk(I , f ) −→ Gk+1(I , f ), and using the universal property of the pushout,
maps pk : Gk(I , f ) −→ Y.

Definition. The infinite gluing construction of f with respect to I is the space

G∞(I , f ) := colim
k

Gk(I , f ).

Let us denote by i∞ : G0(I , f ) −→ G∞(I , f ) the natural projection to the colimit, and let
p∞ : G∞(I , f ) −→ Y be the map induced from the colimit out of the morphisms pk.

Theorem A.4.2 (Small object argument) In the previous situation, f factors as f = p∞ ◦ i∞, where
i∞ has the left lifting property with respect to every map in I-inj. Moreover, if for all i, Ai is small
relatively to G∞(I , f ), then p∞ is in I-inj.

Under this construction, it is not hard to show that we can factorize every continuous map
f : X −→ Y between topological spaces as a cofibration followed by a trivial fibration using
the inclusions

I = {Sn ↪−→ Dn : n ≥ 0},

and as a trivial cofibration followed by a fibration using the inclusions at 0

J = {i0 : Dn ↪−→ Dn × I : n ≥ 0}.

The infinite gluing construction has an important application for us: it allows to state a
criterion to lift the model structure of Top to another category using a family of adjunctions.
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Theorem A.4.3 (Model Structure Lifting) Let D be a complete and cocomplete category, let

{
Top ⊥ D

}
k∈F

Fk

Gk

be a family of adjunctions, and write

FI := {Fk(i) : k ∈ F , i ∈ I} , FJ := {Fk(j) : k ∈ F , j ∈ J }.

Suppose that for all f : D −→ D′ in D and k ∈ F ,

1. The object Fk(Sn−1) is small relative to the Infinite Gluing Construction G∞(FI , f ).

2. The object Fk(Dn) is small relative to the Infinite Gluing Construction G∞(FJ , f ).

3. The factor Gk(i∞) : Gk(D) −→ Gk(G∞(FJ , f )) is a weak equivalence in Top for all k ∈ F .

Then the choices

• Weak equivalences: Maps f in D such that Gk( f ) is a weak equivalence in Top for all k ∈ F .

• Fibrations: Maps f in D such that Gk( f ) is a fibration in Top for all k ∈ F .

• Cofibrations: Maps with the LLP with respect to maps in FI-inj.

make D into a model category.

The proof is not very hard and can be found in [37, 5.1].

Homotopy limits and colimits

We now briefly discuss homotopy limits and colimits. Let J be a small category. One can
endow the functor category TopJ with the projective model structure, where a map X −→ Y in
TopJ is a weak equivalence or a fibration if and only if so is every Xj −→ Yj. In particular, the
adjunction

colim : TopJ � Top : const

turns out to be Quillen, so the left derived functor L colim exists. In general, let C be a
cofibrantly generated model category, so we endow CJ with the projective model structure;
and let D be a combinatorial model category, so we endow DJ with the injective model struc-
ture (weak equivalences and cofibrations are defined objectwise). Denote by j all localization
functors.

Definition. The homotopy colimit is a functor hocolim : CJ −→ C which is a model for
L colim, that is, which has the property that for any F : J −→ C,

j(hocolim F) = (L colim)jF.

The homotopy limit is a functor holim : DJ −→ D which is a model for R lim,

j(holim F) = (R lim)jF.
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By definition, it is clear that it is unique up to weak equivalence. For the existence, it is
enough to compose the functors colim or lim with the cofibrant or fibrant replacement functors
Q, R, respectively.

Whereas Top is cofibrantly generated (so hocolim always exists), it is not combinatorial.
However, one can always define the homotopy limit of a functor F : J −→ Top as the
totalization of the cosimplicial replacement of F (see [7, 5.7] for details), which still has the
property of being weak homotopy invariant. The following proposition will provide us a for-
mula to compute homotopy limits in Top. Recall that for a category J , its nerve NJ is the
simplicial set which in dimension n consists of all possible strings of n composable arrows
(j0 −→ j1 −→ · · · −→ jn). The face and degeneracy maps consist of considering the composite
of two maps, or including the identity of an object, respectively. In the following proposition
we use YX = Map(X, Y) for spaces X, Y (see [7, 5.7]).

Proposition A.4.4 If X : J −→ Top , then

holimJ X ∼= eq

(
∏

k
X|N(J /k)|

k ⇒∏
i→j

X|N(J /i)|
j

)

where the first arrow maps ( fk : |N(J /k)| −→ Xk)k∈J to the composite

|N(J /i)| fi−→ Xi
X(i→j)−→ Xj

in the factor indexed by i −→ j; and the second arrow maps ( fk) to the composite

|N(J /i)| −→ |N(J /j)|
f j−→ Xj

in the factor indexed by i −→ j, where |N(J /i)| −→ |N(J /j)| is induced by the functor J /i −→
J /j induced by i −→ j.

A.5 Triangulated categories

We briefly recall the definition and basic properties of a triangulated category. This is a topic
at first independent of model categories, but we explain their relation at the end of the section.

Definition. A category C is semiadditive if it has finite products and coproducts and such that
the canonical map

n

ä
i=1

Ci −→
n

∏
i=1

Ci

is an isomorphism. In particular, this implies the existence of a zero object.

Every semiadditive category is naturally enriched over the category CMon of commutative
monoids: given maps f , g : C −→ D, there is a binary operation f + g defined as the composite

C C× C ∼= C ä C D× D ∼= D ä D D,
(Id,Id) ( f ,0)ä(0,g) Id ä Id

where 0 : C −→ D denotes the unique morphism which factors through the zero object.
Moreover, this zero morphism is the neutral element.
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Definition. A semiadditive category C is additive if the previous enrichment over CMon takes
values in Ab, that is, if every morphism has an additive inverse.

Now let C be a category and Σ : C −→ C a self-functor. A triangle with respect to Σ is a
sequence of maps

X Y Z ΣX,
f g h

and we will refer to it as a triple ( f , g, h). A morphism of triangles ( f , g, h), ( f ′, g′, h′) is a
commutative diagram

X Y Z ΣX

X′ Y′ Z′ ΣX′.

f

a

g

b

h

c Σa
f ′ g′ h′

Definition. A triangulated category is an additive category C together with a self-equivalence
Σ : C −→ C and a collection of triangles, called the class of distinguished triangles, satisfying
the following axioms:

(i) The class of distinguished triangles is closed under isomorphism.

(ii) For every object X, the triangle 0 −→ X Id−→ X −→ 0 is distinguished.

(iii) If the triangle ( f , g, h) is distinguished, so is (g, h,−Σ f ).

(iv) If the rows of the following solid diagram are distinguished and the left-hand square
commutes, then the dashed arrow exists and the entire diagram commutes

X Y Z ΣX

X′ Y′ Z′ ΣX′.

f

a

g

b

h

c Σa
f ′ g′ h′

(v) For every pair of composable morphisms f : X −→ Y, f ′ : Y −→ D, there is a commuta-
tive diagram

A B C ΣA

A D E ΣA

F F ΣB

ΣB ΣC

f

Id

g

f ′

h

x Id
f ′ f g′′

g′

h′′

y Σ f

Id

h′

h′

(Σg)◦h′

Σg

such that the triangles ( f , g, h), ( f ′, g′, h′), ( f ′ f , g′′, h′′) and (x, y, (Σg) ◦ h′) are distin-
guished.

In particular, every morphism f is part of a distinguished triangle.

From axioms (ii) and (iv) it follows that the composite of two consecutive maps in a distin-
guished triangle is the 0 map.
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Proposition A.5.1 Let C be triangulated and let A ∈ C. Then the functor

HomC(A,−) : C −→ Ab

takes distinguished triangles to exact sequences.

Proof. By axiom (iii), it is enough to see that given a distinguished triangle

X Y Z ΣX,
f g h

then

HomC(A, X) HomC(A, Y) HomC(A, Z)
f∗ g∗

is exact. By the previous observation, the composite g∗ ◦ f∗ = 0. Conversely, if ϕ : A −→ Y is
a morphism such that g ◦ ϕ = 0, then we have the following diagram

A 0 ΣA ΣA

Y Z ΣX ΣY

ϕ

−Id

Σa
f g −Σ f

where the rows are distinguished by the axioms. Moreover, (iii) produces the dashed arrow,
which must be Σα for a unique α : A −→ X provided that Σ is fully faithful.

Corollary A.5.2 (2-out-of-3 property) Given a commutative diagram with distinguished rows

X Y Z ΣX

X′ Y′ Z′ ΣX′,

f

a

g

b

h

c Σa
f ′ g′ h′

if two out of three of the vertical maps a, b, c are isomorphisms, so is the third.

Proof. Without loss of generality assume that a, b are isomorphisms. Applying the functor
HomC(A,−) for any A, we have a commutative diagram of abelian groups

HomC(A, X) HomC(A, Y) HomC(A, Z) HomC(A, ΣX) HomC(A, ΣY)

HomC(A, X′) HomC(A, Y′) HomC(A, Z′) HomC(A, ΣX′) HomC(A, ΣY′)

f∗

a∗

g∗

b∗

h∗

c∗

(Σ f )∗

(Σa)∗ (Σb)∗
f ′∗ g′∗ h′∗ (Σ f ′)∗

By the previous proposition, rows are exact, so we conclude by the five lemma for abelian
groups.

Pointed model categories

To finish this appendix, we want to describe how we can get a triangulated category from
a pointed model category. Giving precise definitions and the exact statements of theorems
would take us quite a lot of pages, so we will only overview the most important aspects. Recall
that a category with initial and terminal objects is pointed if the unique map between them is
an isomorphism, and it is called the zero object.

From now on we fix C a pointed model category, with zero object ∗.
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Definition. Let f : X −→ Y be a map in C. The cofibre of f is the pushout of the diagram

X Y

∗ Z.

f

g

Similarly, the fibre of f is the pullback of the diagram

W ∗

X Y.

e
f

In a pointed model category, one can show that there is always an adjunction

Ho(C) ⊥ Ho(C)

Σ

Ω

with the property that HomHo(C)(ΣnX, Y) and HomHo(C)(X, ΩnY) are groups, which are
abelian if n ≥ 2.

Definition. A cofibre sequence in Ho(C) is a diagram

X −→ Y −→ Z

in Ho(C) together with a right coaction of ΣX on Z which is isomorphic in Ho(C) to a diagram

of the form A
f−→ B

g−→ C where f is a cofibration of cofibrant objects in C with cofibre g and
where C has a particular right coaction of ΣA (described in [16, 6.2.1]).

Similarly, a fibre sequence in Ho(C) is a diagram

X −→ Y −→ Z

in Ho(C) together with a right action of ΩZ on X which is isomorphic to a diagram of the form

F i−→ E
p−→ B where p is a fibration of fibrant objects with fibre i and where F has a particular

right action of ΩB (also described in [16, 6.2.1]).

We now collect the main properties of pointed model categories, that we use in §4.3. These
can be found in [16, §6.3, §6.4 and §7.1].

Theorem A.5.3 Let C be a pointed model category.

1. Any map X −→ Y in Ho(C) is part of a cofibre sequence X −→ Y −→ Z and a fibre sequence
W −→ X −→ Y.

2. Given a cofibre sequence X −→ Y −→ Z, there is a boundary map ∂ : Z −→ ΣX such that
Y −→ Z −→ ΣX is a cofibre sequence.

3. If F : C � D : U is a Quillen adjunction between pointed model categories, then LF preserves
cofibre sequences, and RU preserves fibre sequences.

4. If Σ : Ho(C) −→ Ho(C) is an equivalence of categories, then Ho(C) is a triangulated category.
In this case, one says that C is a stable model category.

5. If C is a stable model category, then fibre sequences and cofibre sequences are the same thing.
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Vectn
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Sp,q One-point compactification of Rp ⊕ iRq, page 30

Vp,q Rp ⊕ iRq, page 30

XG Categorical fixed points, page 78
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XtG Tate construction, page 81

X+ Attaching a disjoint basepoint, page 1

G[−,−] G-homotopy classes of G-maps, page 7

G[−,−]∗ Basepoint preserving G-homotopy classes of based G-maps, page 7
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G-diagram, 65
G-homotopy, 5
G-space, 1
G-spectrum, 67

Eilenberg-MacLane, 70
genuine, 67
naive, 67
orthogonal, 67
sphere, 69
suspension, 69

K-theory
complex, 20
equivariant, 27
real, 20
reduced, 20
with Reality, 28
with Reality reduced, 28

R-module, 45
RO(G, U )-graded cohomology theory, 75
S-category, 38
D-G-space, 65
D-space, 42
Ω-G-spectrum, 68
Ω-spectrum, 24, 47, 53
π∗-isomorphism, 54, 71
θ-connected, 8
θ-dimensional, 8

balanced product, 3
bar construction, 4
Borel cohomology, 15
Bredon

cohomology, 15
homology, 15

category
additive, 62, 96
Burnside, 77
closed, 41

enriched, 40
model, 86
model symmetric monoidal, 63
semiadditive, 95
symmetric monoidal, 39
triangulated, 96

coefficient system, 14
cohomology theory, 23
coinduction, 3

Day convolution, 43
diagram, 42

equivariant
map, 2

external product, 21, 30
reduced, 22

family of subgroups, 9
fixed points, 2

categorical, 78

Grothendieck construction, 20
group ring, 70

homotopy
colimit, 94
limit, 94

homotopy category, 88
homotopy fixed points, 79

of a space, 4
homotopy groups

of G-spectra, 71
equivariant, 7
of spectra, 54
stable, 38

homotopy orbits, 80

induction, 3
infinite gluing construction, 93
internal

function D-G-space, 66
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function D-space, 44
hom, 41

isotropy group, 2

lax (symmetric) monoidal, 40
level equivalence, 58
level fibration, 58
level trivial fibration, 58, 72
level trivial q-cofibration, 58
localization, 88

Mackey functor, 77
model structure

level, 58
stable, 59, 72

monoid object, 44

orbit, 2
space, 2

orbit category, 4, 12

q-cofibration, 58, 72
q-fibration, 59, 72
Quillen

adjunction, 90
equivalence, 91
functor, 90

Real
vector bundle, 27
space, 30

reduced A-linearlization, 51
representation ring, 74
restriction of scalars, 3
ring G-spectrum, 73

orthogonal, 73
ring spectrum, 51, 63

shift desuspension functor, 43
smash product, 50, 68
Spanier-Whitehead category, 39
spectrum, 39, 46

Eilenberg-MacLane, 48, 52
orthogonal, 49
sphere, 48, 51
suspension, 48, 51
symmetric, 47

stable equivalence, 58
stable homotopy category, 59

equivariant, 73

stably isomorphic, 20
strong (symmetric) monoidal, 40

Tate
construction, 81
diagram, 81

translation groupoid, 2
trivial q-cofibration, 58, 72
trivial q-fibration, 59, 72

universe, 67
complete, 67
trivial, 67

weak equivalence, 7, 54
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