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Abstract

This research started as an attempt to implement a heap recycling optimization in the Helium
compiler. In the process, we identified various obstacles, which turned out to be bigger than we

expected. While the end goal of this research was not achieved, we have brought formerly
uncharted territory into view. Based upon this knowledge, we present a solid base upon which
future investigation can continue in order to reach the goal of a heap recycling optimization in
Helium. We focussed on improving the core representation. Therefore we measured and report

the code generation improvements that we obtained with this work.
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Chapter 1

Introduction

This research attempts to make Helium an optimizing compiler. We are going to optimize
Haskell, which is a functional language (see Section 1.1). We need a compiler to create a
program from source-code (see Section 1.2). We introduce the type system (see Section 1.3)
necessary for analyzing (see Section 1.4) the programs. Finally we discuss the research question
answered in this work (see Section 1.5). We present a solid base upon which future investigation
can continue.

1.1 Context: Functional Languages

Through a programming language a programmer instructs the computer to do a specific job.
Different programming paradigms (see Section 2.1) have different trade-offs. The advantage
of functional languages is that the programmer describes what they want instead of how they
want it. This results in high-level code that is readable in the context of the problem. The
disadvantage of functional programming is that the language concepts have a mismatch with
the underlying hardware. Because of this mismatch it is harder to write highly performant code.
When translating this high level language to machine code analyses (see Section 3.1) can regain
some of the performance lost due to the abstractions.

1.1.1 Haskell

Haskell is a lazy functional language (see Section 2.3) this means that is uses lazy-evaluation.
Lazy-evaluation is a strategy that can give performance improvements; this is because a value
that is never needed is never evaluated. On the other hand if a value is needed the expression is
evaluated and the thunk in which that computation was stored is updated with the answer; this
leads to sharing and will avoid repeating the calculation when it is needed in the future.

Lazy evaluation is only safe when the language is pure (see Section 2.2). If a language is pure,
a function called with a set of arguments always returns the same answer; this introduces another
possible optimization: memoization. Memoization is the caching of the result of a function call
based on the input parameters.

Memoization uses lookup tables a specialized form of caching that stores the previous function
calls with the resulting answers, which can be an unevaluated thunk which is then consequently
shared.

One of the harder problems with a lazy functional language is that it is hard to predict how
much time and memory a function will use at runtime (see Section 2.5). Under a strict evaluation
model it is more predictable how much is calculated at every point in the program. There are
of course always trade-offs between space and time consumption. Assigning more memory to
a Haskell program has a few effects: the memory can be used to memoize more, the pressure
on the garbage collector gets reduced and the garbage collection cycles take more time as more

13
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memory needs to be scanned and collected per cycle. When tuning Haskell programs there is an
optimum when choosing the amount of memory to assign.

1.2 Context: Compilers

When a language is compiled by a compiler it is effectively translated to an architecture. Most
compilers (see Section 2.5) target specific machine code, which can be either a virtual machine or
directly target the hardware with assembly. Other compilers, also called transpilers, target other
programming languages with possibly the same abstraction level as the original programming
language.

Compilers consist of three stages, these stages are front-end, middle-end and back-end. The
individual stages can consist of multiple phases. The front-end stage is responsible to get the
source-code into the Intermediate Representation, or IR, that can be used by the middle-end.
This is performed in the following steps: first, lexing the source-code to a stream of lexemes,
then the stream of lexemes is parsed into an Abstract Syntax Tree, or AST, that represents
the entire program. After the AST that contains all the language constructs is generated it is
desugared into the IR which has a simplified AST. The middle-end type checks and analyses the
IR. With this information the middle-end can perform machine independent optimizations on the
IR. The middle-end passes the optimized IR and the corresponding analysis, that can be used for
machine dependent optimizations, to the back-end. The back-end gets the optimized IR and the
information from the static analyses that were performed and can perform machine dependent
optimizations and then produce the machine- or byte-code that represents the program.

Some programming languages that give type error diagnosis only type check their intermediate
representation. This results in sub-optimal type error messages; compilers tend to give better
type error diagnosis if they perform type checking on the abstract syntax tree of the entire
language. The errors given can then refer to the actual constructs that the programmer used.
Helium, GHC and OCaml use the full language to type check in order to generate good error
messages. After type checking it is lowered into the intermediate representation.

1.2.1 Helium

Helium is an implementation of a Haskell compiler; Helium is focused on generating the best
error messages. It generates these error messages through the TOP framework. This framework
first generates constraints from the AST that contains all the language constructs and the actual
location where the parsed code came from: the file, line and column are known for each node in
the AST. These constraints are solved by a separate solver. There are multiple solvers to choose
from.

First there is a greedy solver that is optimistic in that it assumes that there are no type errors.
Because of its optimism it is very quick in solving type errorless constraints, when it runs into a
type error another solver is activated. This is the type graph solver which adds all the relevant
constraints for the type error to a type graph, which can be type inconsistent, and only when all
constraints are added starts to investigate the type error. In order to be able to provide the best
in class type error messages these type graphs are introduced [18, 15, 11, 14, 10].

This second solver can report multiple locations that contribute to the type error. The
heuristics choose the locations that are displayed and the explanation of the encountered error.

This ensures that the programmer gets a useful error message. More solvers can be build
and used to test different experimental solver implementations.

1.2.2 LVM Machine

Currently the Helium compiler uses the Lazy Value Machine, or LVM, as its back-end (see
Section 2.5.6). This back-end is capable of running LVM-assembly, which is a lazy functional
language. During execution the LVM machine checks for various runtime errors such as overflows
and unbounded recursion. When an exception is raised by a runtime check, such as a pattern
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match failure, the LVM machine shows a stack-trace. This is actually a trace of demands that
were executed and resulted in the error. Because the LVM-code is lazy the only way to start
executing code is when there is a demand for that execution. Programmers get better runtime
errors because of this trace, and the resulting messages are closely related to the code the
programmers actually wrote.

1.3 Context: Type System

Type-and-effect systems enhance the underlying type system with additional effects. The addi-
tional effects describe part of the runtime behavior of the program. In short they try to model the
dynamic behavior of the program. Counting analysis includes many effect analyses as a special
case (see Section 1.4). Strictness, absence, sharing and uniqueness analysis are special cases
of the counting analysis described by Verstoep and Hage [34]. The additional types describe
static behavior of the program. With these additional annotations more information about the
total behavior of the program is available to the compiler. These analyses results can be used
to inform the optimizer of possible optimizations.

1.4 Context: Analyses

Strictness, absence and sharing (see Subsections 1.4.1, 1.4.2 & 1.4.3) analysis can be used to
increase the performance of the runtime. A special application is reusing allocations on the heap,
therefore called Heap Recycling (see Section 1.4.4). This needs an annotation to be introduced
in the surface language. The annotation is used by the programmer and checked by the compiler.

Further explanation of these analyses are described in Section 3.1.

1.4.1 Strictness Analysis

Strictness analysis [19, 8, 36, 3], further described in Section 3.1.1, can determine whether
evaluating an expression strictly will change the runtime behavior. If strictly evaluating the value
does not change the behavior, the computed value can be passed to a function instead of creating
a thunk. Any closure could possibly refer to more thunks on the heap. These thunks are now
also evaluated on a call-by-need basis because of this analysis. They are either updated or no
longer referenced and can be collected by the garbage collector.

A thunk is a specialized closure that accepts no further arguments but only awaits execution.
If all references to the thunk are dropped without evaluating the computation it can be collected
by the garbage collector. Not calculating unnecessary values is one of the main advantages of a
lazy language (see Section 2.3).

1.4.2 Absence Analysis

Absence analysis [31, 37, 2], further described in Section 3.1.5, indicates whether an expression
is used at all. These analysis results exhibits similar optimization opportunities as dead or
unreachable code elimination would perform. The strength of absence analysis lies in analyzing
that only a part of an argument is used. Computing the length of a list only uses the spine of
the provided list for example but not the elements. There exist a lot of functions that only use
parts their arguments.

1.4.3 Sharing Analysis

Sharing analysis [13, 23, 9], further described in Section 3.1.2, tells us whether a thunk that
is evaluated needs to be updated to share the value with other computations that are done in
the program; this is only necessary if the computation is shared. If a value is not shared after
evaluation there is no need to update the thunk, indeed it would even be possible to reuse the
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1 reverse :: [a] -> [a]

2 reverse l = rev l []

3 where

4 rev :: [a] -> [a] -> [a]

5 rev [] acc = acc

6 rev r@(x:xs) acc = rev xs r@(x:acc) -- heap allocation of 'r' is reused

Figure 1.1: Reverse Function: with Recycling Annotations

memory that is taken up by this specific heap allocation. In the paper by Hage and Holdermans
[12] the programmer can make the decision whether his function would profit from a specialized
implementation with heap recycling semantics (see Section 1.4.4).

1.4.4 Heap Recycling Analysis

With the knowledge gained from sharing analysis the generated code can be optimized to use
heap recycling. By reusing memory for the return argument of a function for example. Normally
one would request a location to store the newly generated data on the heap and the garbage
collector would take care of cleaning up the previous allocation. When one knows that the
memory would become garbage the memory location could be reused in order to relieve pressure
on the garbage collector.

In the paper by Hage and Holdermans [12] there are some examples of code that can be
specialized in this manner. We introduce the @ symbol on the right-hand side, to indicate reuse
of that specific data constructor. The reverse function in Figure 1.1 can reuse the spine of the
list for example if the argument list is used uniquely.

1.5 Research Questions

In this thesis, the main research question we aim to answer is:
Does how we represent Helium programs in core affect the performance?

Normalizations and optimizations in the compiler restructure the core. We hope that the
updated representations increase the performance of our programs.

In order to confirm that any of our optimizations to core lead to a performance gain, in terms
of code size, memory use, or plain performance, we need to establish a ground truth. Therefore
our first research question refers to a baseline of the measurements we are going to take.
What is a good baseline measurement for the Helium compiler?

Our second research question refers to what we are going to measure. We need a testing
framework in order to get reliable results. We will look into benchmark suites used by other
haskell compilers.
What is a good benchmarking suite for the Helium compiler?

Our third research question refers to which normalizations can be created. For this we will
research different core representations from different Haskell compiler. This will give us an insight
into the possible normalizations that are performed on the core representations. We will also
look into the core representation of the Helium compiler. How this is used will probably present
other normalizations as well.
Which normalizations will compact the core representation?

Our last research question refers to typing core. The types that are reported by this type-
system can be compared to the types generated by the TOP typing framework. With this
new type-system we could discover type inconsistencies introduced in the code generation and
normalization phases.
How to ensure no type differences are introduced by normalizing core?

In the future more optimizations can be added to Helium compiler. Currently there is a
push to introduce a type-and-effect system for Helium-core. Creating an extendable constraint
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based type-system makes it possible to add the effect analysis later into the type-system. This
type-and-effect system may be used to do counting analysis. With the analysis results generated
by counting analysis Heap Recycling becomes a possibility.
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Chapter 2

Preliminaries

In programming languages a programmer can write programs. A programming language consists
of expressions, declarations and statements. Together these are the syntax of the language.
What these mean is defined by the semantics. The dynamic semantics describe what the runtime
behavior of the program is, whereas the static semantics describe an approximation of the runtime
behavior that can be made at compile-time. The type system is the most noteworthy part of
the static semantics. Another way that the static semantics show themselves is through error
messages returned by the compiler. As the static semantics may prohibit programs that would
result in runtime errors, the programmer can be given statically known runtime information
before even running the actual program. Type checking is a verifying analysis, based on the
static semantics, that results in fewer runtime errors for a program.

2.1 Functional and Imperative Languages

Imperative programming languages enforce that the programmer writes exactly how the com-
puter should perform the computation. With functional programming languages the programmer
describes what should be performed rather than how it should be performed. This can result in
highly reusable code. This way functional programming facilitates code-reuse. Haskell [20] and
Ocaml [38] are functional languages for example.

2.2 Pure and Impure Languages

Impure languages can have a global state that effects the runtime behavior of functions. In an
impure language we can write pure functions by restraining ourselves from changing global state
and side-effects and only relying on the input that is provided through the function call.

In pure languages, code lives in a world where there exist no uncontrolled side-effects. A
language that doesn’t exhibit side-effects is quite useless. The pure languages are extended with
restricted side-effects explained in Section 2.4. A pure language enforces us to separate changes
to the global state and side-effects from our functions.

2.3 Lazy and Strict Languages

Laziness in languages indicates that the program is waiting as long as possible before evaluation.
A closure represents an unevaluated function and the free variables from the enclosing scope
where it was created. A closure may be shared between multiple call sites. When a closure is
provided with all the needed arguments but the result is not yet demanded it is called a thunk.
A thunk contains either an unevaluated closure or the result after evaluation. If an expression
gets evaluated the result of the evaluation, the value, is written over the thunks memory. Future
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requests for the value can thus be answered instantly with this already computed answer; this is
called sharing.

Only evaluating expressions when their values are actually needed can result in a speedup
when executing code. This speedup can be achieved because the expression is not evaluated
at all when it is not needed. When choosing a branch where the result of an expression is not
needed at all, the closure is never evaluated.

In case the result of an expression is needed in multiple places, sharing comes to the rescue.
It distributes the computed value to all the locations where it is needed. Due to this sharing the
expression only needs to be evaluated once.

Lazy or non-strict languages evaluate expressions following a call-by-need evaluation strategy.
Strict languages evaluate on a call-by-value strategy: they first reduce the arguments to a function
to their normal forms before passing these values to the function call. The order of evaluation
during the execution is thereby inverted. A non-strict language executes because it needs the
outer value. There is a demand for that value, that can consequently need inner expressions
to be evaluated. However, sub-expressions that are not needed are not evaluated. Because a
strict language always evaluates function arguments the programs written in the strict language
can encounter infinite loops and errors that a non-strict language would not even evaluate. A
non-strict language would delay the computation of unused arguments until they are no longer
needed.

Laziness effectively increases the performance with sharing and non-strict evaluation. These
optimizations are diminished because there is an overhead due to creating thunks on the heap
for every unevaluated expression and updating them with their values after evaluation.

Strictness is a way to overcome this overhead while keeping the benefits of laziness. Strict
evaluation ensures that expressions, that are known to be needed, are evaluated to weak head
normal form. After being evaluated to whnf they are passed on, possibly even on the stack.
But not everything can be evaluated strictly. What can be evaluated strictly depends on the
semantics of the language.

2.4 Side-Effects

Most programming languages allow unrestricted side-effects to happen inside a function. Some
programming languages restrict side-effects. For example Haskell uses the IO Monad (see Section
2.4.1), Clean uses uniqueness typing (see Section 2.4.2) and Rust uses ownership (see Section
2.4.3). Whether or not the restrictions are made visible in the type system or during compile-time
errors depends on the approach. The following subsections describe of the different approaches.

2.4.1 IO Monad

Haskell, described by Jones [20], uses the IO Monad to abstract over I/O. Because Haskell is a
pure lazy language and the order of the calls is undefined in a lazy language the IO Monad is
used. The IO system is not allowed to break the purity, therefore the IO Monad sequentialises
the IO operations. Monads represent sequential computations, that are chained together.

Purity ensures that we can assume that results of functions called with the same arguments
can be cached. The result of the previous call can be returned without the computation. These
restrictions limit side-effects thereby introducing a greater possibility for optimizations and ver-
ifications. For side-effects these restrictions are limiting. When you write to a file you want
to ensure that x is written before y is. All this is encapsulated inside a Monad without losing
referential transparency.

2.4.2 Uniqueness Typing

Uniqueness typing is used by Clean, described by Plasmeijer and van Eekelen [29], to ensure
that a unique value has only one reference to it. The unique types are used to enforce single-
threadedness, therefore it makes side effects semantically unproblematic. With uniqueness typing
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the ability of destructive updating data-structures is brought into a pure functional language.
I/O is handled in the same way as doing a destructive update. When a destructive update is
executed on a specific file handle a new, or the same, unique handle is returned. Uniqueness
guarantees that no other references exist to the value.

Uniqueness typing can lead to an efficient interface between the functional language and
the non-functional world or the non-functional implementation details. An example of such an
implementation detail is in-place updates.

Heap recycling is going to use a uniqueness analysis to determine whether an in-place update
function can be called instead of the default allocating function.

2.4.3 Ownership

Rust’s ownership, described by Matsakis and Klock II [25], dictates that there exists only one
owner who is responsible for deallocating a particular piece of memory. This deallocation happens
when the owner falls out of scope. Mutable borrows exist but during the mutable borrow all
other references (the previous mutable borrow and the one held by the owner) are invalidated for
the lifetime of the mutual borrow. Having a single valid path to mutable data ensures that there
can only be one writer at any time. Shared immutable borrows also exist. Instead of having only
one active path to the immutable data there can exist multiple paths and there can be many
readers active on the same data at the same time. If there exist multiple active paths the data
must be immutable. Therefore no side effects are visible to the rest of the program.

Uniqueness can be seen as a restricted form of ownership. Where uniqueness ensures that
a variable is always used uniquely, ownership ensures that a variable is used uniquely when that
variable is mutable, however when a variable is immutable it can be freely shared. The lifetimes
of immutable borrows need to end before the variable can be mutated again.

2.5 Offline, Ahead-Of-Time or Just-In-Time

Compilers have different names depending on the moment the compilation is performed.
The standard way of compiling is offline compilation. If the code is compiled offline it is

distributed as a binary or as byte-code for a virtual machine.
An alternative is compiling on the machine that is going to run the code. Source-code

or byte-code distributions can be compiled on the machine that is actually going to run the
resulting code. Compiling after distribution but before execution is called Ahead-Of-Time, AOT,
compiling. Compiling during the program run is called Just-In-Time, JIT, compiling. Directly
running source-code can be done in an interpreter. Because of the moment and the information
available different compilers can use different analyses, an offline or ahead-of-time compiler must
use static analyses while a just-in-time compiler can also use dynamic analyses.

The time, resources and runtime information available for the compilation depend on when
and where it is performed. More time and resources for the compilation are available if this
happens before distribution in offline compilers (see Section 2.5.1). When performing AOT-
compiling (see Section 2.5.2) the system is statically known. When performing JIT-compilation
(see Section 2.5.3) the actual runtime characteristics of the code can be taken into account. An
interpreter (see Section 2.5.4) directly executes byte-code in an evaluation loop.

2.5.1 Offline Compiler

Offline compilers compile the source code and the generated binaries are distributed; these
compilers have more time to optimize the machine code but less runtime information, i.e. is this
new instruction set supported or how wide is the SIMD1 -bus.

1 SIMD stands for ”Single Instruction Multiple Data”. A single vector instruction operates on multiple data
elements at the same time. Currently the SIMD registers in consumer-grade hardware are 256 bits wide. Giving
the SIMD instruction the possibility for 8 ·32 bits operations or 4 ·64 bits operations. Double the width, 512 bits,
is available on server-grade hardware. This results in being able to execute 16 parallel data operations.
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Nuzman et al. [27] describe splitting the heavy lifting of auto vectorization to an offline
compiler. They leave the execution details to the JIT compiler which has more information
about the system on which the code is running an can thus decide on the width of the SIMD
instructions to generate.

Machine-agnostic optimization can be performed when generating the binaries or byte-code
before distribution. An offline compiler can spend much more time on machine-specific opti-
mizations if it knows what it is targeting. When machine-specific optimizations are performed
for a certain platform that binary cannot be run on another target anymore. For each supported
platform another binary distribution optimized for that platform can be provided. In order to
also incorporate runtime characteristics into the optimizations, that are performed by an offline
compiler, we can use profile-guided optimizations. There is just one caveat with profile-guided
optimizations, namely that used profile must be a statistical representation of the actual usage
of a program.

A well known language that uses an offline compiler is the C language.

2.5.2 Ahead-Of-Time Compiler

Ahead-Of-Time, AOT, compilers [28] have more information about the system that the code
will be run on, but less time and resources are available to perform optimizations. They compile
(an intermediate representation of) the code down to machine instructions and do not interact
with the running code. They have a restricted amount of time for optimizations due to the
startup lag it would incur. Another option is to use persistent storage where the compiled
code is cached. With the update of the AOT compiler on the users platform the cache is
invalidated and recompiled. Recompilation can happen directly when the compiler is updated or
before running the code for the next time. With this recompilation new optimizations will take
effect without redistribution of the program code. An AOT-compiler can use machine specific
optimizations because it is performed on the device where the actual code will be run.

One of the most widely spread uses of an AOT compiler is ART, the Android RunTime, it
precedes the Dalvik runtime (see Section 2.5.3). This runtime decreased power usage on mobile
devices by compiling the byte-code only once.

2.5.3 Just-In-Time Compiler

Just-In-Time, JIT, compilers [22] have the most information about the system and can aggres-
sively optimize the code based on its runtime characteristics, when optimizing and/or reoptimiz-
ing the actual code. A JIT compiler is sharing time and resources with the actual application,
thus even less time and resources are available to perform the actual optimizations. All informa-
tion is destroyed on exit of the program, and needs to be recollected, recompiled and reoptimized
once the application is rerun the next time. A JIT-compiler can use machine and runtime specific
optimizations as it is performed during the runtime of the actual program.

Before Android received its AOT compiler it used Dalvik2 with a trace-based JIT. A trace
that was executed frequently was compiled into native machine-code. The remaining byte-code
was interpreted.

2.5.4 Interpreter

An interpreter is a program that directly evaluates the program that is provided. A program
can refer to the source-code or to the byte-code that was created from the source-code by an
offline compiler. An interpreter has an evaluation loop that executes the instructions directly.
The instructions are not compiled to machine-code but run in this virtual machine.

Lua3 is an example of a fast interpreted language. It has a small runtime, which is designed
to be embedded in larger applications. Lua is the most used embedded scripting language for
games.

2https://source.android.com/devices/tech/dalvik/
3https://www.lua.org/

https://source.android.com/devices/tech/dalvik/
https://www.lua.org/
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2.5.5 Runtime

When offline compilers generate byte-code, there are more steps needed in order to actually run
the code. When the byte-code arrives on the machine it is going to run on, it needs to be
compiled to machine-code. This compiler that compiles byte-code is referred to as runtime for
these languages.

We take C# as an example pipeline. In the C# pipeline there exist multiple ways to generate
machine-code. The first step is always the Roslyn4 compiler, which compiles the surface language
into CIL, the Common Intermediate Language.

Now there exist two options to compile CIL into native machine instructions. Namely the
.NET runtime named CLR, which stands for Common Language Runtime5, and NGen, which is
the Native Image Generator6.

CLR is an JIT compiler and is the default way to run CIL byte-code. There are some cases
where the CLR is faster than the NGen. Namely the trust level is known when the JIT compiler
is run, while the AOT compiler is unable to assume the level of trust that is granted. For this
reason not all programs that are compiled Ahead-Of-Time result in a faster runtime. One of the
solutions for the AOT compiler is to assume the highest trust level and otherwise resort to the
JIT compiler.

NGen is an AOT compiler and runs when someone installs software on his or her computer.
NGen generates a native image from the CIL. This native image is stored in the NIC, this is the
Native Image Cache. Storing the generated assembly exchanges runtime overhead with storage
costs.

2.5.6 Helium

We are researching how we can create an optimizing compiler from Helium, a Haskell compiler.
It is important to realise where in the chain of compilers and compiler phases we are working.
Which information is available at which moment can clearly influence the design a lot.

The Haskell compiler is an offline compiler that produces lvm-byte-code. There is the core
generation phase which generates the core representation from the source-code. This phase does
the expansion of the different language constructs. After the core is generated the next phase
generates lvm-assembly. On the assembly there is a peephole7 optimization pass.

The Haskell compiler has an accompanying lvm-byte-code interpreter, called LVM Runtime
(see Section 1.2.2). This byte-code interpreter is invoked by “runhelium”. It has some low
level optimizations such as a look-ahead strategy where heap allocation is prevented if the value
is instantly destructed, i.e. by a match. Generating machine-code from the byte-code would
upgrade the interpreter to a just-in-time compiler with possible speed benefits.

Counting analysis is a complex analysis and will therefore cost a lot of time. Due to the time
constraints in an interpreter it is better to perform this analysis in the offline compiler. The exact
location chosen for this optimization is on the core representation directly after core generation.

4https://www.github.com/dotnet/roslyn
5https://docs.microsoft.com/en-us/dotnet/standard/clr
6https://docs.microsoft.com/en-us/dotnet/framework/tools/ngen-exe-native-image-generator
7 A peephole is a window into the stream of assembly-code. Common patterns are matched in the stream and

replaced by faster assembly instructions. This preserves the result of the functions.

https://www.github.com/dotnet/roslyn
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/framework/tools/ngen-exe-native-image-generator
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Chapter 3

Related Work

The related work chapter has two main sections the analyses in Section 3.1 and Intermediate
languages in Section 3.2.

3.1 Analyses

3.1.1 Strictness Analysis

There are multiple ways of adding strictness, see Section 2.3, to a language: either to allow the
programmer to add strictness annotations to the language, or by analyzing the code, letting the
compiler figure out what can be executed strictly without changing the semantics.

When the programmer is required to annotate his entire program with strictness annotations
he is effectively required to analyse the entire source code and decide what parts of the program
are always used. This analysis is repetitive work where it is easy to make a mistake by placing too
many annotations. Annotations placed by the programmer can not be checked for correctness
as the semantics of the written code changes when these annotations are placed.

Placing too many annotations could result in decreased performance, because something
that is not used does not need to be evaluated. Evaluating something that does not need to be
evaluated can even lead to non-termination. It would therefore be better to let a static analyser
do the lion’s share of the work. The analyser has to be conservative with respect to the unboxing
of values, unboxing an undefined value will result in a runtime error where this error would be
absent without this added strictness. To overcome the conservativeness of the analyser for the
programmer it is still possible to add a few annotations.

By analyzing the code the compiler makes expressions strict if their values are guaranteed
to be used. When the encapsulating expression is not strictly used in all code paths the normal
non-strict behavior is exhibited. This way the dynamic behavior of the code is not changed.

If the programmer annotates their programs there is a chance that dynamic behavior of the
program gets changed. Holdermans and Hage [19] take the annotations made by the programmer
into account when analyzing the code. In their research they made sure to include the different
semantics that are introduced when programmers selectively make their functions stricter. The
authors introduce the principle of Applicativeness as “functions that are guaranteed to be applied
to arguments”. This means that if an argument is relevant to the body of a function and the
function is guaranteed to be applied to all its arguments then the argument is guaranteed to be
evaluated.

3.1.2 Sharing Analysis

Gustavsson [9] describes sharing analysis for update avoidance and optimizations. Because of
the dynamic semantics of sharing, the runtime is required to overwrite a thunk with the value
after evaluation of the expression. This behavior is needed because the runtime doesn’t know
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1 map :: (a -> b) -> [a] -> [b]

2 map _ [] = []

3 map f (x:xs) = f x : map f xs

Figure 3.1: Map Function

when this value is shared. With sharing analysis it can be proved that this is the only reference
to the thunk with possible speed and memory benefits. The thunk is not overwritten with the
value as this would be an unnecessary step.

There are a few things that could speed up the running characteristics of the code. It
is possible to reuse the memory if the same amount of space is needed on the heap. This
can happen when a constructor gets matched and a function is executed on the element. For
example in map in Figure 3.1 the same constructor, the Cons (:) or the Nil ([]), gets destroyed
and created. The memory allocator is required to find the same amount of unused memory and
allocate it. Later the old constructors memory, that now has become garbage, would be found
lying around and will be collected by the garbage collector. By reusing the matched constructor’s
memory this allocation and consequently garbage generation can be combined.

Reusing the memory of the constructor for the newly created constructor ensures that there
is no interaction with the heap management. When reusing memory is not possible, the memory
will still become garbage but no allocation of the same size has been made.

Updating memory that is no longer referenced is unnecessary, because it can never be accessed
again. The memory has become garbage so it can be collected. This is normally done by the
garbage collector during a garbage collection cycle. The garbage collector could exhibit an API
to let the code inform it of the memory that can be freed. Then that memory could be freed
without a collection cycle. The signal will consequently result in fewer garbage collection cycles
during the execution of the code because the garbage collector will have less memory pressure
that initiates the garbage collection cycles.

3.1.3 Usage Analysis

Hage et al. [13] developed a generic usage analysis. This analysis, based on qualified types, can
be instantiated to either sharing or uniqueness typing. Both of these analyses count the number
of times values are used. Partial application needs to be analysed as well. To handle this case
containment is introduced. Containment is stated as follows: “if a value is contained within a
structure, we must assume that it is used at least as often as the containing structure.”

Sergey et al. [30] implemented a usage analysis for the GHC compiler. Gill [7] introduced a
compiler hack to make short-cut deforestation work, the implemented usage analysis supersedes
this compiler hack and resulted in an overall increase in performance. Call demands are newly
introduced in this paper. The optimizations that are made possible with the analysis include
one-shot lambdas, removing the update frame for one-shot thunks and removing unused thunks
completely. Missed optimization opportunities are due to thunks being saved inside constructors
(e.g. tuples, lists and arrays). This is specifically for constructors that are returned from function
calls when the demand for the result is not known.

3.1.4 Uniqueness Analysis

Hage and Holdermans [12] enabled the programmer to recycle allocated memory. This is done by
adding a “destructive assignment operator” which is only applicable if the allocated memory is
no longer in use. The programmer gains the ability to performance tune code without having to
sacrifice a functional style of programming. This is a form of “compile-time garbage collection”.
Heap cells that are allocated but no longer in use can be repurposed through explicit control.
With the marker it is possible to write in-place algorithms while staying close to the idiomatic
functional style. When adding such a marker, a language designer has to ensure that referential
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π = 0 | 1 | ∞

Figure 3.2: Annotation Primitives

transparency is not affected. This is done with uniqueness analysis of the program. To ensure
that the available memory is of exactly the same form as the needed memory, the constructors
are required to match.

Uniqueness typing ensures that a value that is required to be used uniquely is in effect used
uniquely. Uniqueness analysis doesn’t unlock speed improvements for the compiler but instead
restricts the number of compiling programs further; this applies for instance also to file handles.
File handles are supposed not to be duplicated. To guarantee that they are used only once we
could run a uniqueness analysis.

When creating functions with the “destructive assignment operator” the compiler has a few
options. It could produce error messages when it finds out that the programmer tries to reuse
the memory multiple times. Or it could generate a unspecialized function for these cases.

3.1.5 Absence Analysis

Absence analysis or dead code analysis can benefit the runtime of a program by removing any
unused code from the binary. It is not often that the result of a computation isn’t used. Nearly
always the answer of a computation is at least partially used. Helper functions for a tree data
structures could for example calculate the depth of a tree, when this happens only the spine of
the data structure is used. Values that are stored in these data structures could remain unused
for the rest of the program and thus subsequently removed from the binary. Especially generated
code can benefit a lot from such an analysis. Generated code contains a lot of dead code that
can be analysed away.

3.1.6 Counting Analysis

Verstoep [35] and Sergey et al. [30] combine different analyses into one analysis, what they
called a counting analysis. The analysis tracks the never used for the absence analysis, at most
used once for sharing and uniqueness analyses and at least used once for strictness analysis.
Combining the different analyses in a single analysis has certain benefits. The performance
of running a single analysis is higher than running a multitude and the analyses can support
each other. Maintenance of a single analysis is easier and similarities are made explicit. The
analysis described uses a type-and-effect system with constraints. There are two phases, one
constraint generation phase and a constraint solving phase. The analyses that are captured by the
described method can be used to accept and or reject programs the so called verifying analyses
or derive more information which the compiler can use for optimizations and transformations of
the program.

Annotation primitives used by the counting analyses describe how often something is used
or demanded. Instead of choosing the infinite range of natural numbers the lattice is chosen in
Figure 3.2. The counting analyses do not require a larger precision. 0 indicates that it is not
used at all while 1 indicates exactly one use whereas ∞ indicates at least two usages. By using
sets of annotation primitives it is possible to indicate ranges like unused ({0}), used exactly once
({1}), used at most once ({0, 1}), at least once ({1,∞}) or no information ({0, 1,∞}) also
known as Top (>).

3.1.7 Exception Analysis

In functional languages it is often allowed to create partial functions. Applying a partial function
to a value on which it is not defined results in a runtime exception. Because of this well-
typed programs can still go wrong. Many modern day functional compilers are able to warn
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for partial functions purely based on syntactic checks that all the possible case statements need
to be defined. These syntactic checks result in too many false positives. Programmers who
are for example writing a compiler create one AST on which they define functions. This AST
contains syntactic constructs that are needed for the parser. In a later stage in the compiler
these constructs are desugared into a subset of the original AST, on this subset analysis and
optimizations are performed with the invariant that certain constructors are not used anymore.
When these stages are accidentally executed before the desugar stage runtime errors will occur
that could not be caught by the compiler. With their constraint-based analysis Koot and Hage
[21] try to formalize the informal reasoning used by the programmer. The programmer has
certain invariants on the data and reasons with a subtype of inferred or given type where certain
cases are impossible and possibly meaningless.

3.2 Intermediate Languages

3.2.1 Calling Conventions

Bolingbroke and Jones [1] designed a new intermediate language for faster function-calls. In
this intermediate language calling conventions are directly encoded into the type system, they
dubbed it StrictCore. In functional languages the use of extensive currying results in multiple
functions, each accepting one argument and returning a function that accepts yet another argu-
ment, creating a lot of unevaluated thunks on the heap before the function-call is complete. In
the new strict core functions can take multiple arguments and return multiple arguments without
wrapping them in a tuple on the heap. Fast function-calls are especially important for functional
languages because there are a lot of small functions that are passed as an argument and called
repeatedly on different arguments. StrictCore is a call-by-value language with explicit laziness
annotations. By only using laziness where applicable a lot of thunks are “for free”, i.e. by the use
of n-ary functions. As they say: “A function may take multiple arguments simultaneously, and
(symmetrically) return multiple results.” Thunks, called multi-valued thunks, are able to return
multiple values at once just as the strict functions. Multi-valued thunks enable deep unboxing
as a possible optimization. Deep unboxing is an advanced form of unboxing in that when the
components that are contained in a structure are definitely used, when the containing structure
is used, they can be unboxed within the containing structure. Deep unboxing is only possible
when thunks can return multiple arguments instead of tuples that are allocated on the heap.
Two other optimization that are discussed in the paper raise the arity of the functions. Arity
raising is important to reduce the number of function calls and thunks that are needed. This is
done by combining the calling and returning arguments without the need for function calls or
heap allocations.

3.2.2 Control Flow

Maurer et al. [26] focus on extending Administrative Normal Form, ANF for short, to include
the best of Continuation Passing Style, CPS for short, without the complicated implementation of
CPS. They mainly look at join points, places in the control flow graph where different executions
paths can converge. In the paper the authors use the following example code in Figure 3.3 to
clarify what a join point is on which many compilers perform a commuting conversion. Naively
applying these conversions lead to the code in Figure 3.4. During the conversion e4 and e5 are
duplicated. In practice commuting conversions are very important. Commuting conversions are
so important because of the cascade effect that they have on further optimizations. Commuting
conversions also have downsides, namely, that the outer code often gets duplicated. This is a

if (if e1 then e2 else e3) then e4 else e5

Figure 3.3: Nested If
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if e1 then (if e2 then e4 else e5)

else (if e3 then e4 else e5)

Figure 3.4: Nested If: Näıve Commuting Conversion

let { j4 () = e4; j5 () = e5 }

in if e1 then (if e2 then j4 () else j5 ())

else (if e3 then j4 () else j5 ())

Figure 3.5: Nested If: Commuting Conversion with Join Points

problem as it can result in a code size explosion. The resulting machine code is bloated because
it is not shared across the different branches anymore. By naming the expressions and referencing
the expressions by these names this problem can be countered (see Figure 3.5). Effectively this
creates two join points j4 and j5. The executions of the outer branch joins together again at these
two points. There is now a new problem namely that the compiler can choose to allocate the
closures, for these two functions, on the heap; this results in more allocations. The authors tried
to express that the control flow needed to jump to the code that continued the computation,
without the need for any allocations.

An extended λ-calculus style intermediate language is demonstrated in the paper by adding
join points and jumps. Because the join points are preserved through subsequent transformations
they can be better exploited to be more effective. The authors describes how to infer that
ordinary bindings are in fact join points in their λ-calculus. In CPS the analysis to find join
points is called contification. Let-bound functions can be converted to join points and jumps.
All calls to these let bindings must be saturated tail calls. Join points can be recursive; these
recursive join points result in unexpected opportunities for optimizations while also resolving
tension between competing approaches to fusion. This is achieved during the optimization of
case-of-case statements where the code can now be floated in without duplicating the code. This
results, together with scrutinizing the cases, in no longer needing to generate the intermediate
results. This makes it possible to fuse stepper functions when encountering a loop. Filter for
example loops over elements and returns the next element that satisfies the predicate every step.
These loops break the fusion of the stepper functions, with the join points and jumps these kinds
of loops don’t break the fusion.

Downen et al. [5] investigated if the sequent calculus is as good an intermediate language
as λ-calculus is. A typed sequent core is developed and implemented in GHC. Optimization
passes are reimplemented to work with the new sequent core. Optimizations that are normally
implemented in a Continuation Passing Style compiler are easier without sacrificing direct-style
optimizations that are ever present in the current core of GHC. In order to compare the results
of the different cores the authors rewrote the simplifier “the central piece of GHC’s optimization
pipeline”. The simplifier didn’t get the reductions in code size they had hoped. The sequent core
did qualitatively better with regard to join points. This fact was exploited by the same authors
to extend ANF to get the best of CPS in the paper by Maurer et al. [26]. In sequent core they
already implemented the idea that once a join point is found it should stay a joint point.

3.2.3 Intermediate Representation

Heeren et al. [17] introduced Helium a compiler designed for learning Haskell. The main purpose
of the Helium compiler is to increase the quality of type error diagnosis. Heeren [18] added
type-graphs to deliver better type errors. Error messages help programmers to digest a type
inconsistency, this is especially true when a student is still learning the language.

In the back-end the currently used runtime is the Lazy Value Machine, or LVM, which
interprets the LVM-byte-code. This machine is developed by Leijen [24]. For learning functional
programming languages it is important to have a good understanding of what happens during
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the runtime of the code. In order to provide this knowledge the LVM machinery uses a tracing
mechanism that shows the demand trace of the code. The user has an overview of what was
demanded during execution, with this demand trace the user can better understand the runtime
error that occurred.

An important part of the runtime is the garbage collector. The garbage collector in the LVM
runtime originates from the OCAML project. Because of the functionality that is provided by the
garbage collector a lot of the runtime performance for Helium depends on the garbage collectors
implementation. On every evaluation loop the garbage collector is asked whether or not it wants
to perform an garbage collection cycle. The algorithms that decide whether or not a cycle is
necessary take into account how fast the memory usage is growing and how high the memory
pressure is.



Chapter 4

Helium Compiler

The Helium compiler chapter first explains the pipeline (see Section 4.1) and the available
library files (see Section 4.2). Then we explain how data-types can be annotated in the core
representation (see Section 4.3). And lastly the constraints that are generated (see Section 4.4)
and solved (see Section 4.5). We present the constraint based type system with an example (see
Section 4.6).

4.1 Pipeline

In the file helium/src/Helium/Main/Compile.hs the pipeline is described. All the differ-
ent phases in the pipeline are detailed in helium/src/Helium/Main/Phase{phase}.hs. The
pipeline consists of multiple phases:

Lexer lexes the file and returns tokens

Parser parses the tokens and returns a module

Import adds implicit imports for the ‘Prelude.hs‘ and ‘HeliumLang.core‘. Expands all imports to
their exported functions and returns two things; First the declarations for these imported
functions which are added to the desugared module and second the import environment
which maps these functions to their respective types.

ResolvingOperators resolves operators based on their infix specification in lists of expressions.

StaticChecks collects three things; first the local environment of the module. Second the user
defined type signatures. And the last warning and errors discovered in the module.

There are four kinds of warning:

• Scope warnings including unused and shadowed variables.

• Function bindings with similar names but only one type signature.

• Type variables that resembles type constants.

• Instance declarations, that have no default definition, with missing functions.

There are five categories of errors;

• Export errors which check whether exported functions and modules are in scope.

• Scope errors check for duplicate variables.

• There exist many errors that are described to the misc category.

• Kind errors check that type constructors are applied to the right number of type
arguments and that type variables do not have any type arguments.
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• Top-level errors include duplicated type and value constructors and fixity declarations,
fixity declarations without a definition, incorrect overloading, mutual recursive type
synonyms and if the filename doesn’t coincide with the module-name.

KindInferencer this phase is by default turned off.

TypingStrategies loads typing strategies from the {module}.type file. These strategies are
used by the type inferencer to give better type error messages, i.e. sibling functions like
show and read.

TypeInferencer collects type constraints on the AST that represents the entire front-end lan-
guage. These constraints are solved by a greedy solver and if a type error occurs a type
graph is used to give the user the best possible type error.

Desugarer desugars the surface language-AST to the core-AST. It also does a quick very con-
servative pass of dead code removal for unused private declarations.

CodeGenerator desugars the core-AST to core-assembly. Before this conversion happens a few
normalization steps happen, namely coreRename, coreSaturate, coreNormalize, coreLetSort
and coreLift.

A syntactic occurrence analyser is performed. With the occurrence analysis information
it starts to inline certain expressions. The algorithm removes let bindings that are never
used. The inliner inlines let bindings that are used only once. Trivial cases are possibly
duplicated and get inlined everywhere. Flattening is performed on the applications. A
special case where the Eval, the assembly representation of a strict let, is directly applied
to its arguments.

The core-assembly further compiled to LVM-instructions. For certain schemes there are
optimized instructions generated. When a variable is already in weak-head-normal-form it
is not evaluated again but instead replaced by an ATOM . An EV AL that is only used
once by a MATCH is passed on the stack instead of on the heap. The special case where
the variable is used by a match and already in weak-head-normal-form is special cased to
an ATOM on the stack and directly applying the MATCH.

A rewrite phase takes care of optimizing the stream of instructions. Functions like id x = x
with up to three arguments are completely removed. The return statement is often used
to return values on the stack instead of on the heap. More efficient instructions are used
in order to push multiple elements around at once.

Finally it writes lvm-byte-code to the target file.

4.2 Library Files

The Helium compiler starts at helium/src/commands/helium/Helium/Main.hs. As a first
step the core libraries are compiled with coreasm. The core to lvm assembly compiler can be
found in lvm/src/lib/Lvm/Core/Main.hs. In the core libraries the low level primitives are
defined. The core libraries, available in helium/lib/{lib}.core, are compiled:

LvmLang which describes the primitive instructions available to the runtime. It also explicitly
forces the needed values, see Figure 4.1.

LvmIO which describes the low level IO operations based around file handles and channels.

LvmException which describes all possible exceptions and signals in the LVM runtime. This
includes user thrown errors and pattern failures.

HeliumLang which describes how to show primitives including a lot of edge cases like adding
‘.0‘ after a float and primitives like $primPackedToString :: PackedString → String.
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instruction primAddInt "addint" :: Int! -> Int! -> Int!

(+) :: Int -> Int -> Int!

(+) x y = let! y = y in let! x = x in primAddInt x y

Figure 4.1: LvmLang

PreludePrim which describes the handling of dictionaries used for type classes.

After the core files are compiled the helium/lib/Prelude.hs is compiled. Now the module
that was requested is handled. First load the imports of the module to check if a module is
imported that was already compiled; this indicates a circular import and is not allowed. All
imported modules are now handled first. After all imports of a certain module are resolved this
module can be compiled.

4.3 Annotating Data Types

4.3.1 Data Type Representation

Before describing how data types are annotated we will first describe how they are represented
in Helium core, Figure 4.2.

The data constructors have a function type and a data link. The data link indicates to which
data type the constructor belongs. The function type directly shows the type of the constructor.
The constructors are appointed an identifying number and the number of arguments they require.

The data type has a number indicating the kindness of the data type.

4.3.2 Annotation Algorithm

During the first step we collect the different constructor declarations and sort them under their
respective data declarations. Any type synonyms present are used to unfold types to their most
basic type.

The next step is to sort the data types topologically. This topological sort is to reduce the
number of recursions during the annotation phase. The first step of the sorting phase is building
a dependency graph. Once the dependency graph is built it is then used to sort the data types.
Sets of mutually dependent data types are bundled together for internal recursion. Sets of data
types that have no other sets of data types on which they are dependent are considered at the
beginning. All sets of data types on which a set of data types is dependent are sorted to be
solved first. This ensures that all dependencies are already solved.

The final step is the annotation algorithm. The algorithm starts with an empty data environ-
ment. On every next step it takes the previously calculated environment and adds the next set
of mutually dependent data types to it. In order to add a mutually dependent set of data types
to the existing environment local recursion is necessary to achieve the correct annotations.

In order to annotate the data types the corresponding constructors need to be typed. There
are two environments: the main environment can only be added to once the fix-point iteration is
finished, the current environment is the part of the environment that is updated with each run
of the fix point algorithm. Annotations are used from the main and the current environment to
indicate the number of fresh annotations necessary. By annotating the individual constructors,
while ignoring previous annotations on this specific constructor, this process can be repeated
until a fix point is reached.

After this process all the data types are annotated with annotation variables. These can be
used in the constraint generation phase to state the constraints on the data types.
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con Nothing : public [custom ''type'' ["Maybe a"]

,custom ''data'' Maybe]

= (@0,0);

con Just : public [custom ''type'' ["a -> Maybe a"]

,custom ''data'' Maybe]

= (@1,1);

custom ''data'' Maybe : public [1];

con Left : public [custom ''type'' ["a -> Either a b"]

,custom ''data'' Either]

= (@0,1);

con Right : public [custom ''type'' ["a -> Either b a"]

,custom ''data'' Either]

= (@1,1);

custom ''data'' Either : public [2];

Figure 4.2: Helium-Core: Data Type Representation

4.4 Generating Constraints

There are two type synonyms added that are not included in the modules, namely String =
[Char] and PackedString = Bytes. Functions that unpack PackedString to bytes are used
abundantly for runtime errors and string constants which are efficiently packed as bytes.

Before constraints can be generated, the types that are available in the core module are con-
verted into types that support type annotations. During this conversion all types are completely
expanded. We use type synonyms to construct the most basic types.

Dictionaries are expanded to the types they represent. The data-kind-dictionary is retrieved
from the data-kinds collected from the module. In the case that it is not in the data-kind-
dictionary it is either a List or a Tuple, for which the kinds can be calculated from the dictionary
name. Respectively the list has a kind of 1 and the tuple has its kind available as a number in
the name.

A global environment is built for the converted types. The global environment is passed
down to be used in the functions declared in the module. A unique id is threaded through the
constraint generator in order to provide the constraints with fresh variables.

4.5 Constraint Solver

Solving constraints works recursively. In order to reduce the number of recursions necessary we
order the constraints so that the constraints that can be solved without further information are
the first to be inspected.

A first round of the solver is run. Thereafter the type-schemes in the substitutions are
simplified. The remaining and newly generated constraints are ordered. The newly ordered
constraint set has another round in the solver. If the substitutions are empty and there are no
remaining constraints or these are the same constraints as the previous run, the algorithm exits.
Otherwise it runs again with the remaining constraints.

The rounds inside the solver solve one constraint and propagate the substitutions to the rest
of the constraints. It returns additional constraints generated during the solving phase of the
single constraint and the substitution that was produced is applied to the substitution returned
by the rest of the constraints.
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A single constraint is solved by trying to solve the equality. For types and type-schemes this
means trying to unify these. Hereby future constraints need to be generated for the annotations.
In order to solve generalizations the constraints first need to be solved. The substitution that
is generated is applied to the type and the environment. The free variables are calculated and
finally the type-scheme equality constraint is generated. The instantiation requires that the
type-scheme is available before it can be processed. We instantiate this type-scheme into a fresh
type and generate a type equality constraint.

Other constraints, that solve the equalities for the annotations, will need to be solved.

4.6 Type System Example

A solved example is shown for the Combine module (see Figure 4.3). We generate constraints
for the core representation (see Figure 4.4). The constraints are solved and the types are shown
inline with the core (see Figure 4.5). The framework also shows the types synthesized by the
TOP framework.

Type literals don’t have any constraints that need to be solved, therefore there are no con-
straints generated and the type is instantly known for constant. Type variables are stored in
and recovered from an environment. Therefore only the lambda equality has to be solved for id′

and cons. Almost all constraints that are visible are used to create a type for swap.

1 module Combine where

2

3 constant :: Int

4 constant = 42

5

6 id' :: a -> a

7 id' x = x

8

9 cons :: a -> b -> a

10 cons x y = x

11

12 swap :: (a,b) -> (b,a)

13 swap (x,y) = (y,x)

Figure 4.3: Combine: Source
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1 Lam forall{}. C. 0 == forall{}. C. 12

2 Let"nextClause$.0" forall(6) == forall{}. C. 33

3 Bind forall(6) == forall{}. C. 5

4 Bind 5 == 7

5 Ap Bytes -> 8 == Bytes -> 7

6 Let"u$0.1" forall(11) == forall{}. C. 14

7 Bind forall(11) == forall{}. C. 10

8 Bind 10 == 12

9 Match 34 == 14 -> 13

10 Alts Cons 34 == 15

11 Pat"x" forall{}. C. 20 == forall{}. C. 30

12 Pat"y" forall{}. C. 21 == forall{}. C. 29

13 Alt 15 == 16 -> 22

14 Pat ConTag 16 == ((,) 17) 18

15 Pat ConTag 20 == 17

16 Pat ConTag 21 == 18

17 Ap 23 == 30 -> 22

18 Ap 25 -> (26 -> (((,) 25) 26)) == 29 -> 23

19 Alts Cons 34 == 31

20 Alt 31 == 32 -> 33

21 -- Constraints for `cons`

22 Lam forall{}. C. 35 == forall{}. C. 45

23 -- Constraints for `id'`

24 Lam forall{}. C. 46 == forall{}. C. 51

25 -- Error message constraints

26 Ap (IO 54) -> 54 == 55 -> 53

27 Ap ([Char]) -> (IO ()) == 57 -> 55

28 Ap Bytes -> ([Char]) == Bytes -> 57

Figure 4.4: Combine: Constraints
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1 module Combine where

2

3 -- Imported functions and data-types:

4 $primPutStrLn :: forall{}. C. ([Char]) -> (IO ())

5 $primPatternFailPacked :: forall{0}. C. Bytes -> 0

6 $primUnsafePerformIO :: forall{0}. C. (IO 0) -> 0

7 $primPackedToString :: forall{}. C. Bytes -> ([Char])

8 Data: () TypeKind: 0

9 Data: [] TypeKind: 1

10 Data: Bool TypeKind: 0

11 Data: Maybe TypeKind: 1

12 Data: Either TypeKind: 2

13 Data: IOMode TypeKind: 0

14 Data: Handle TypeKind: 0

15 Data: Ordering TypeKind: 0

16

17 -- Local function definitions:

18 -- type from the TOP-framework

19 constant :: forall{}. C. Int

20 -- type synthesized from constraints

21 constant :: forall{}. C. Int

22 constant = 42

23

24 -- type from the TOP-framework

25 id' :: forall{0}. C. 0 -> 0

26 -- type synthesized from constraints

27 id' :: forall{51}. C. 51 -> 51

28 id' = \u$0 -> (:: 51 -> 51) u$0 (:: 51)

29

30 -- type from the TOP-framework

31 cons :: forall{0 1}. C. 0 -> (1 -> 0)

32 -- type synthesized from constraints

33 cons :: forall{40 45}. C. 45 -> (40 -> 45)

34 cons = \u$0 u$1 -> (:: 45 -> (40 -> 45)) u$0 (:: 45)

35

36 -- type from the TOP-framework

37 swap :: forall{0 1}. C. (((,) 0) 1) -> (((,) 1) 0)

38 -- type synthesized from constraints

39 swap :: forall{29 30}. C. (((,) 30) 29) -> (((,) 29) 30)

40 swap = \u$0 -> (:: (((,) 30) 29) -> (((,) 29) 30))

41 let nextClause$.0 :: forall{}. C. ((,) 29) 30

42 nextClause$.0 = $primPatternFailPacked (:: Bytes -> (((,) 29) 30))

43 "function bindings ranging from (13,1) to (13,19) in module Combine.hs"

44 in let! u$0.1 :: forall{}. C. ((,) 30) 29

45 u$0.1 = u$0 (:: ((,) 30) 29)

46 in match u$0.1 with (:: (((,) 30) 29) -> (((,) 29) 30))

47 [(@0,2) x y -> ((@0,2) (:: 29 -> (30 -> (((,) 29) 30))) y (:: 29)) x (:: 30)

48 ,_ -> nextClause$.0 (:: ((,) 29) 30)]

49

50 -- Error message when this library is run with `runhelium`

51 -- type synthesized from constraints

52 main$ :: forall{}. C. ()

53 main$ = $primUnsafePerformIO (:: (IO ()) ->

54 ()) ($primPutStrLn (:: ([Char]) ->

55 (IO ())) ($primPackedToString (:: Bytes ->

56 ([Char])) "No 'main' function defined in this module"))

Figure 4.5: Combine: Core with Types
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Chapter 5

Normalization

The normalization chapter first explains why normalization needs to happen (see Section 5.1)
and what the advantages are by reducing the number of constraints (see Section 5.2). Then
we explain how the normalization is set up in the simplify routine (see Section 5.3). Different
sub routines are removing renames (see Section 5.4), normalizing match statements (see Section
5.5) with a more elaborate example (see Section 5.8). The final routine removes dead code (see
Section 5.6).

5.1 Normalized Core Representation

Normalizing core reduces the complexity of the representation. By reducing the complexity the
rest of the pipeline and the runtime will have an easier job to respectively optimize and execute
the program.

Before the core normalization the representation incurred a lot of unnecessary allocations.
Quite a few of these unnecessary let bindings did a simple rename of the variables to the names
selected by the programmer, these where removed, see Section 5.4.

5.2 Constraint Reduction

Normalizing and simplifying core reduces the number of constraints that are generated during
constraint generation phase of the constraint based type checker for core.

While we were working on the constraint generator we noticed that more constraints where
generated than we expected. Therefore the constraint solver took longer to solve these con-
straints. We viewed the core representation in search of an explanation for these additional
constraints. We realized that the core representation of match statements was threaded. In-
stead of a single match statement, for each level of constructors matched, there was an entire
smear of next-clauses that each matched just one constructor. We saw that when a constructor
was previously matched it wasn’t excluded from the next-clauses. This was done in order to
match different nested patterns.

Type-checking would be a lot easier if all case-arms would be represented inside the same
match statements. We analysed the core further and decided that it would be possible to combine
(see Section 5.5) the case arms that were smeared out over multiple match statements inside
next-clauses.

Other let bindings became unnecessary as well after the normalization of the match state-
ments (see Section 5.6). A single pattern match failed expression would be enough to catch the
cases when a fall through case is necessary.
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5.3 Simplify

The simplifications described in Sections 5.4, 5.5 and 5.6 are performed on the expressions of the
declarations inside the module. The simplify step is the last of the normalization steps performed
on the core. The normalizations that already existed in the LVM module are performed first.
These are the existing normalizations:

Rename resolves any shadowing with fresh names from the name-supply.

Saturate fully applies calls to external and internal functions as well as constructors.

Normalize ensures that there are no lambda’s except directly at let bindings and applications
are only performed on atomics, where atomics are variables, literals, constructors, other
normalized applications and normalized let bindings.

Let-sort transforms recursive let bindings. A graph of the let bindings is constructed and
dependencies are represented by edges. This ensures that the smallest recursive let bindings
remain and the other let bindings are non recursive.

Lift does Johnsen style lambda lifting. After lifting each binding either has no free variables or
no arguments left.

5.4 Remove Renames

In the core there are a lot of let bindings dedicated to the renaming of variables. In order to
reduce the number of let bindings that are present in the generated core we opted for a pass that
removes any renames and inlines the names that were given to the variables at a higher level in
the Expr.

This pass preserves any strict binding in order not to lose strictness either necessary for the
core to function or introduced by the programmer. For example the match statement needs its
arguments in WHNF and the strictness introduces a new variable for this purpose (see Figure
5.1).

This pass removes any unnecessary renames. Take the max function (see Figure 5.2) for
example. It consists of binding x and y corresponding to the first and respectively second
parameter of this function (see Figure 5.3). For the core representation this is unnecessary and
can be freely removed by this pass (see Figure 5.4). Thereby two let bindings are removed and
the remaining code is a lot more compact.

1 let nextclause = exprNextclause

2 in let! x.1 = x

3 in match x.1 of {

4 Constructor => exprConstructorMatched,

5 _ => nextclause,

6 }

Figure 5.1: Match Introduces Strictness
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1 max :: Int -> Int -> Int

2 max x y = if x < y then y else x

Figure 5.2: Max Function: Real World Example

1 \''u$0'' ''u$1'' ->

2 let ''x.515'' = ''u$0'';

3 in let ''y.516'' = ''u$1'';

4 in let! ''guard$.517'' =

5 ''<'' ''x.515'' ''y.516'';

6 in match ''guard$.517'' with {

7 True -> ''y.516'';

8 _ -> ''x.515'';}

Figure 5.3: Max Function: Before Rename

1 \''u$0'' ''u$1'' ->

2 let! ''guard$.517'' =

3 ''<'' ''u$0'' ''u$1'';

4 in match ''guard$.517'' with {

5 True -> ''u$1'';

6 _ -> ''u$0'';}

Figure 5.4: Max Function: After Rename
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5.5 Normalize Matches

5.5.1 Pseudo Haskell

The normalization of matches starts off with a depth-first-search of the matches that can be
normalized, see lines 14-23 in Figure 5.5. Then for the deepest match, first the alternatives
for that match are collected, see Figure 5.6. These alternatives are combined with the already
existing alternatives, see Figure 5.7. Deeper patterns in the alternatives need to combine their
expressions, see Figure 5.8.

The rest of the code can be found in Figures A.1, A.2, A.2, A.4, A.5 and A.6 in Appendix
Normalize: Pseudo Haskell.

5.5.2 Normalization Rule

We are going to discuss an example where an hypothetical if statement is represented. The
intermediate representation (see Figure 5.9) would be generated by the code generation phase.
The if statement is rewritten as two independent match statements which both first force the
argument to be in weak head normal form. It is even possible to fall through to a pattern match
failure. We can see that this is unreachable but the compiler doesn’t, therefore it is not removed.

After rewriting the expression the normalized core (see Figure 5.10) is what remains. The
consolidated match statement contains all possible branches on x. Here, True and False are
covered and the fall through still points at the pattern match failure. Another pass could be
made to check that a match statement covers all possible branches completely and remove the
final case, i.e. all constructors have a corresponding arm.

A real world normalization is performed on the function unwords (see Figure 5.11) from the
prelude. Unwords takes a list of words and concatenates these words together with spaces in
between. In the source code that is written by the programmer, we can distinguish 3 patterns;
namely the empty list, the singleton list and the list pattern.

The generated core (see Figure 5.12) has a lot of match statements. When we look at the
match statements there is something pronounced about them: there are many next-clauses.

line number 22 The first executed match statement only matches on an empty list, namely [].
If this matches this arm returns the empty string.

line number 14 The second match statement matches the list constructor, namely :. If this
matches there is a nested match:

line number 17 Matches on the second part of the list. If this is empty it returns the
first part of the list.

line number 10 Matches the list constructor again. If this is a match it recursively calls
unwords on the second part of the list, pushes a space unto the returned value and
propends the first part of the match. This is subsequently returned.

line number 5 The fall through case, this is a run-time error, gives information about the
location in the source file where the pattern(s) originated that didn’t match the value.

There are a few things that are noticeable: there are more matches than necessary, there
are matches that match the same constructor(s), and when falling through to the next clause
the constructor that was already matched isn’t taken into account. This is the result of directly
generating core for each individual patterns in the source-code. The patterns are written top-
down in the source code are respectively visible on lines 22-24, 14-20 and 10-12.

The normalization of the core (see Figure 5.13) counteracts these direct influences from the
number of patterns in the source code.

line number 8 The first executed match statement matches on one let and decides whether it
is an empty list or a list constructor. If this matches the empty list the empty string is
returned. If it matches the list constructor there is a nested match:
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1 normalizeMatches :: Expr -> Expr

2 normalizeMatches expr = case expr of

3 -- Otherwise is always true

4 Let (Strict (Bind nameBind exprBind))

5 (Match nameMatch (Alt (PatCon (ConId trueId) []) exprAlt:_))

6 | nameBind == nameMatch

7 && trueId == "True"

8 && exprBind == "otherwise" -> exprAlt

9 -- Found a match to be normalized

10 Let (NonRec (Bind nameNB exprNB))

11 exprN@(Let bindS@(Strict (Bind nameSB exprSB)) (Match nameM alts))

12 | leadingNextClause (show nameNB)

13 && nameSB == nameM ->

14 let -- Depth first normalization

15 exprNB' = normalizeMatches exprNB

16 exprN' = normalizeMatches exprN

17 expr' = Let (NonRec (Bind nameNB exprNB')) exprN'

18

19 exprSB' = normalizeMatches exprSB

20 alts' = map (\(Alt pat exprA) ->

21 let exprA' = normalizeMatches exprA

22 in Alt pat exprA') alts

23 -- Collect alternatives for the same variable

24 expr'' = case normalize exprSB' exprNB' of

25 Just (alts'',bindss) ->

26 let -- Combine alternatives for the same variable

27 combAlts = combineAlts nameNB alts' alts''

28 in foldr Let (Let bindS (Match nameM combAlts)) bindss

29 Nothing -> expr'

30 in expr''

31 -- Propagate search for matches to be normalized

32 Let (Strict (Bind nameB exprB)) exprL ->

33 let exprB' = normalizeMatches exprB

34 exprL' = normalizeMatches exprL

35 in Let (Strict (Bind nameB exprB')) exprL'

36 Let (NonRec (Bind nameB exprB)) exprL ->

37 let exprB' = normalizeMatches exprB

38 exprL' = normalizeMatches exprL

39 in Let (NonRec (Bind nameB exprB')) exprL'

40 Let (Rec binds) exprL ->

41 let binds' = map (\(Bind nameB exprB) ->

42 let exprB' = normalizeMatches exprB

43 in Bind nameB exprB') binds

44 exprL' = normalizeMatches exprL

45 in Let (Rec binds') exprL'

46 Match name alts ->

47 let alts' = map (\(Alt pat exprA) ->

48 let exprA' = normalizeMatches exprA

49 in Alt pat exprA') alts

50 in Match name alts'

51 Ap expr1 expr2 -> Ap (normalizeMatches expr1) (normalizeMatches expr2)

52 Lam name expr1 -> Lam name (normalizeMatches expr1)

53 Con _ -> expr

54 Var _ -> expr

55 Lit _ -> expr

Figure 5.5: Pseudo Haskell: Normalize Matches
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56 normalize :: Expr -> Expr -> Maybe (Alts,[Binds])

57 normalize exprName expr = case expr of

58 Let (Strict (Bind nameSB exprSB)) (Match nameM alts)

59 | nameSB == nameM

60 && exprName == exprSB -> Just (alts,[])

61 Let binds exprL -> case normalize exprName exprL of

62 Just (alts,bindss) -> Just (alts,binds:bindss)

63 Nothing -> Nothing

64 Lam name exprL -> normalize exprName exprL

65 _ -> Nothing

Figure 5.6: Pseudo Haskell: Normalize

66 combineAlts :: Id -> Alts -> Alts -> Alts

67 combineAlts nextClause altsP altsN = case (altsP,altsN) of

68 ([],altsN) -> altsN

69 (altsP,[]) -> altsP

70 ((Alt PatDefault _:altsP),altsN) ->

71 combineAlts nextClause altsP altsN

72 ((altP@(Alt patP exprP):altsP),altsN) ->

73 replaceDefaults nextClause $ case findPat patP altsN of

74 (altsN', Just (Nothing, exprN)) ->

75 Alt patP (combineExpr nextClause exprP exprN):

76 combineAlts nextClause altsP altsN'

77 (altsN', Just (Just idsN, exprN)) ->

78 let PatCon contagP idsN = patP

79 idsR = idsRFromList (zip idsP idsN)

80 idsN' = map (\n -> Map.findWithDefault n n idsR) idsN

81 in Alt (PatCon contagP idsN')

82 (combineExpr nextClause (updateIds idsR exprP) exprN):

83 combineAlts nextClause altsP altsN'

84 (altsN', Nothing) -> altP:combineAlts nextClause altsP altsN'

85 where

86 findPat :: Pat -> Alts -> (Alts, Maybe (Maybe [Id], Expr))

87 findPat (PatLit litP) ((Alt (PatLit litN) exprN):altsN')

88 | litP == litN = (altsN', Just (Nothing, exprN))

89 findPat (PatCon contagP _) ((Alt (PatCon contagN idsN) exprN):altsN')

90 | contagP == contagN = (altsN', Just (Just idsN, exprN))

91 findPat patP (altN':altsN') =

92 let (altsN'', mAlt) = findPat patP altsN'

93 in (altN':altsN'', mAlt)

94 findPat _ [] = ([],Nothing)

Figure 5.7: Pseudo Haskell: Combine Alternatives
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95 combineExpr :: Id -> Expr -> Expr -> Expr

96 combineExpr nextClause exprP exprN = case (exprP, exprN) of

97 (Let (Strict (Bind namePB _)) _, Let (Strict (Bind nameNB exprNB)) exprNL) ->

98 let (Let (Strict (Bind _ exprPB)) exprPL) =

99 updateIds (idsRSingleton namePB nameNB) exprP

100 in Let (Strict (Bind nameNB (combine exprPB exprNB))) (combine exprPL exprNL)

101 (Let (NonRec (Bind namePB _)) _, Let (NonRec (Bind nameNB exprNB)) exprNL) ->

102 let (Let (NonRec (Bind _ exprPB)) exprPL) =

103 updateIds (idsRSingleton namePB nameNB) exprP

104 in Let (NonRec (Bind nameNB (combine exprPB exprNB))) (combine exprPL exprNL)

105 (Let (Rec bindsP) exprPL, Let (Rec bindsN) exprNL) ->

106 let binds' = map (\(Bind _ exprPB,Bind nameNB exprNB) ->

107 Bind nameNB (combine exprPB exprNB)) (zip bindsP bindsN)

108 in Let (Rec binds') (combine exprPL exprNL)

109 (Match namePM altsP, Match nameNM altsN)

110 | namePM == nameNM ->

111 let alts' = combineAlts nextClause altsP altsN

112 in Match nameNM alts'

113 (Ap exprP1 exprP2, Ap exprN1 exprN2) ->

114 Ap (combine exprP1 exprN1) (combine exprP2 exprN2)

115 (Lam namePL exprPL, Lam nameNL exprNL)

116 | namePL == nameNL -> Lam nameNL (combine exprPL exprNL)

117 (Con conP, Con conN)

118 | conP == conN -> exprN

119 (Var namePV, Var nameNV)

120 | namePV == nameNV -> exprN

121 (Lit litP, Lit litN) | litP == litN -> exprN

122 -- If there is a nextClause in exprP place exprN there

123 _ | Maybe.isJust (getOcc nextClause (exprOcc exprP)) ->

124 replaceNextClause nextClause exprN exprP

125 _ -> internalError "PhaseNormalize" "combineExpr" "{error message}"

126 where combine = combineExpr nextClause

Figure 5.8: Pseudo Haskell: Combine Expression

1 let nextclause1 =

2 let nextclause2 = error "pattern match failure"

3 in let! x = x

4 in match x of {

5 False => exprFalse,

6 _ => nextclause2,

7 }

8 in let! x = x

9 in match x of {

10 True => exprTrue,

11 _ => nextclause1,

12 }

Figure 5.9: Example If: Before Normalization
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1 let nextclause2 = error "pattern match failure"

2 in let! x = x

3 in match x of {

4 True => exprTrue,

5 False => exprFalse,

6 _ => nextclause2}

Figure 5.10: Example If: After Normalization (Normalized Core)

1 unwords :: [String] -> String

2 unwords [] = ""

3 unwords [w] = w

4 unwords (w:ws) = w ++ ' ' : unwords ws

Figure 5.11: Unwords Function: Real World Example

1 \''u$0'' ->

2 let ''nextClause$.98'' ''u$0'' =

3 let ''nextClause$.99'' ''u$0'' =

4 let ''nextClause$.103'' =

5 ''$primPatternFailPacked''

6 "function bindings ranging

7 from (482,1) to (484,39)

8 in module Prelude.hs";

9 in let! ''u$0.104'' = ''u$0'' ;

10 in match ''u$0.104'' with {

11 ''::'' w ws -> ''++'' w (''::'' (primChr 32) (unwords ws));

12 _ -> ''nextClause$.103'' ; };

13 in let! ''u$0.100'' = ''u$0'' ;

14 in match ''u$0.100'' with {

15 ''::'' ''l$0'' ''l$1'' ->

16 let! ''l$1.102'' = ''l$1'' ;

17 in match ''l$1.102'' with {

18 '':[]'' -> ''l$0'' ;

19 _ -> ''nextClause$.99'' ''u$0'' ; };

20 _ -> ''nextClause$.99'' ''u$0'' ; };

21 in let! ''u$0.105'' = ''u$0'' ;

22 in match ''u$0.105'' with {

23 '':[]'' -> ''$primPackedToString'' "";

24 _ -> ''nextClause$.98'' ''u$0'' ; }

Figure 5.12: Unwords Function: Before Normalization
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1 \''u$0'' ->

2 let ''nextClause$.103'' =

3 ''$primPatternFailPacked''

4 "function bindings ranging

5 from (482,1) to (484,39)

6 in module Prelude.hs";

7 in let! ''u$0.105'' = ''u$0'' ;

8 in match ''u$0.105'' with {

9 '':[]'' -> ''$primPackedToString'' "";

10 ''::'' w ws ->

11 let! ''l$1.102'' = ws;

12 in match ''l$1.102'' with {

13 '':[]'' -> w;

14 _ -> ''++'' w (''::'' (primChr 32) (unwords ws)); };

15 _ -> ''nextClause$.103'' ; }

Figure 5.13: Unwords Function: After Normalization (Normalized Core)

line number 12 Matches on the second part of the list. If this is empty it returns the
first part of the list. Otherwise it recursively calls unwords on the second part of
the list, it pushes a space unto the returned value and propends the first part of the
match. This is subsequently returned.

line number 3 The fall through case, this is a run-time error, gives information about the
location in the source file where the pattern(s) originated that didn’t match the value.

5.6 Dead Code Elimination

After normalizing the match statements a few next-clauses have become unnecessary. These
are eliminated with an occurrence analysis when the entire binding group does not occur in the
subsequent expression. Because the let-bindings are already split on mutual recursion by let-sort
(see Section 5.3) they are guaranteed to be used recursively.

We use the zip function (see Figure 5.14) from the prelude to demonstrate the dead code
removal pass. The generated core (see Figure 5.15) contains two next-clauses for non-existing
pattern matches. In the resulting core (see Figure 5.16) the unnecessary let-bindings are removed
by the dead code elimination pass.

1 zip :: [a] -> [b] -> [(a,b)]

2 zip = zipWith (\a b -> (a,b))

Figure 5.14: Zip Function: Real World Example



48 CHAPTER 5. NORMALIZATION

1 let ''nextClause$.395'' =

2 ''$primPatternFailPacked''

3 "function bindings ranging

4 from (257,1) to (257,31)

5 in module Prelude.hs";

6 in let ''nextClause$.396'' =

7 ''$primPatternFailPacked''

8 "function bindings ranging

9 from (257,17) to (257,30)

10 in module Prelude.hs";

11 in let ''.397'' ''u$0'' ''u$1'' =

12 (@0,2) ''u$0'' ''u$1'' ;

13 in zipWith ''.397''

Figure 5.15: Zip Function: Before Dead Code Elimination

1 let ''.397'' ''u$0'' ''u$1'' =

2 (@0,2) ''u$0'' ''u$1'' ;

3 in zipWith ''.397''

Figure 5.16: Zip Function: After Dead Code Elimination (Normalized Core)

5.7 Optimized Prelude Functions

We analyzed the generated core and deduced that the normalization was effective on the following
functions (see Figure 5.17) in the prelude. These functions are widely used and a lot of code
actually depends on the Helium compiler to create an efficient implementation for these functions.



5.8. LARGER NORMALIZATION 49

readInt• unwords• unlines•

span• dropWhile• takeWhile•

splitAt• drop• take•

scanr1• scanr• foldr1•

foldr• scanl1• foldl1•

foldl’• foldl• (!!)•

filter• map• (++)•

init• last• either•

maybe• signumFloat• (ˆ)•

signum• lookup• elem•

Figure 5.17: Optimized Prelude Functions

5.8 Larger Normalization

In the Appendix Normalize: Rewrite we provide a complete normalization for the lookup function
(see Figure B.1). The remove renames and match normalization phases have had an effect that
is visible in the core that remains. The dead code elimination phase didn’t have an effect on the
core.
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Chapter 6

Measurements

The this chapter we first explain the ported benchmark suite (see Section 6.1), functions from the
prelude (see Section 6.2) and generated match statements (see Section 6.3) used to benchmark
the runtime. We then give some information about the different measured virtual memory
statistics (see Section 6.4). We discuss how we deal with the warmup phase of the runtime (see
Section 6.5). Finally it presents the results that we found while benchmarking (see Section 6.6).

6.1 Nofib Benchmark

The Nofib benchmark is ported from the GHC Nofib benchmark. For these measurements the
imaginary directory was used.

We want to know the speed of the standard in and standard out pipelines of the LVM-
runtime. Because the runtime doesn’t have an exact timing library we needed to use an external
framework to benchmark the Helium programs. Therefore we added the following tests as a
baseline to measure the speed of parsing an integer or a float and echo the value back to the
framework:

EchoInt receives a single 0 as input over stdin. The function reads this line. Subsequently
parses the input string to an integer. And finally returns this integer converted back to
a string over stdout. The measurements indicate the total delay when working with an
integer.

EchoFloat works in much the same way as EchoInt. It receives a single 0 as input, reads this
line, parses the line to a floating point number and finally converts it back to an string
over stdout. The measurements indicate the total delay when working with an floating
point number.

These test are directly ported to Helium:

Bernoulli is executed with inputs ranging from 0 up to and including 15.

DigitsOfE1 is executed with inputs ranging from 0 up to and including 10. Calculating the
digits of Euler’s number version 1.

DigitsOfE2 is executed with inputs ranging from 0 up to and including 10. Calculating the
digits of Euler’s number version 2.

Exp3 8 is executed with inputs ranging from 0 up to and including 10. In order to run the bench-
marks without the simplify optimization we had to limit the range to 6. At 7 the runtime
throws a segfault indicating that it has run out of memory. It calculates 3 to the power of its
input by using a data-type representation of natural numbers (data Nat = Z | S Nat).

51
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Integrate is executed with inputs ranging from 0 up to and including 5. These values are
relatively small compared to the expected input, we therefore multiply these values by
1000, we get a range from 0 to 5000.

Nfib is executed with inputs ranging from 0 up to and including 25.

Paraffins is executed with inputs ranging from 0 up to and including 14.

Primes is executed with inputs ranging from 0 up to and including 15. These values are relatively
small compared to the expected input, we therefore multiply these values by 100, we get
a range from 0 to 1500.

Queens is executed with inputs ranging from 0 up to and including 9. This solves the generalized
eight queens puzzle. The input is used for the number of queens and the size of the
chessboard. The result is the number of solutions for the puzzle. It is possible to run
Queens with larger inputs but this will take approximately 9 hours or more, for this single
data-point.

WheelSieve1 is executed with inputs ranging from 0 up to and including 5. These values are
relatively small compared to the expected input, we therefore multiply these values by
1000, we get a range from 0 to 5000.

WheelSieve2 is executed with inputs ranging from 0 up to and including 5. These values are
relatively small compared to the expected input, we therefore multiply these values by
1000, we get a range from 0 to 5000.

X2n1 is executed with inputs ranging from 0 up to and including 5. These values are relatively
small compared to the expected input, we therefore multiply these values by 1000, we get
a range from 0 to 5000.

These tests were ported not included during the benchmarking because they required multiple
inputs and don’t scale based on the inputs but vary randomly:

Tak uses 3 numbers 27 16 8 per line as input. Then it recursively calls itself 4 times, 3 times
mixing the numbers and once with the results of the previous calls.

GenRegexps generate all the expansions of a generalised regular expression. An input of [a-j][a-
j][a-j]abcdefghijklmnopqrstuvwxyz for example results in 29000 which indicate the number
of characters in the output string.

6.2 Prelude Function

From the functions that were normalized (see Figure 5.17) the program (see Figure 6.1) was
composed. The functions from the prelude that were used are: (!!), lines and unlines, unwords
and words and map. The program first reads the text containing paragraphs of “lorum ipsum”
through the collect function. The function execute reads stdin and returns the character at the
index that is passed in. The three different arguments that are used are: 0 the start of the text,
13847 the middle of the text, and 27693 end of the text. With these different inputs a different
amount of work is necessary because the text is first passed through the lorum expensive
function before the character at the index is returned.
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1 main :: IO ()

2 main = do

3 line <- getLine -- Number of lines text

4 let n = readInt line

5 lorum <- collect n -- Lorum Ipsum text

6 print $ length lorum -- Number of chars in text

7 execute lorum

8

9 collect :: Int -> IO String

10 collect 0 = return ""

11 collect n = do

12 l <- getLine

13 ls <- collect (n-1)

14 return $ l ++ '\n' : ls

15

16 -- This is measured

17 execute :: String -> IO ()

18 execute lorum = do

19 line <- getLine

20 if line == ""

21 then return ()

22 else do

23 let n = readInt line -- Get the index which the character to return

24 print $ (lorum_expensive lorum) !! n

25 execute lorum

26

27 lorum_expensive :: String -> String

28 lorum_expensive lorum = unlines $ map unwords $ map words $ lines $ lorum

Figure 6.1: Prelude Functions Benchmark
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6.3 Match Statements

The normalization phase specifically focussed on normalizing match statements; therefore it
is necessary to include measurements focussing on certain match constructs that are tackled.
Different match functions are generated. These match functions are called with a single input
parameter (see Figure 6.2) and return a boolean. Three of the four match functions generate a
list from this input parameter.

Linear Width (see Figure 6.3) already has an optimized representation of the match statements.
Normalizing generated minimal changes to the core representation The code generated al-
ready follows certain aspects that are introduced by normalizing the next match expression,
i.e. these match statements are already inlined. There are no overlapping case arms that
can be combined.

Linear Height (see Figure 6.4) has more substantial changes, there exist a next-clause binding
for every pattern in the source. The non-normalized code is thus folded in such a way
by the match statement normalization phase that the case arms are combined in a single
match statement.

Quadratic Up (see Figure 6.5) also has the generated next clause for every pattern in the source
code. The size of the individual patterns goes up as we go to the next pattern. Every
pattern is generated as a series of stand-alone matches. For every following pattern the
previous pattern has discarded the match only on the empty list element at the end of the
pattern. In order to match the last pattern in this statement all previous patterns have
been complete matches except for the last element. The normalization folds these patterns
together and this results in a linear match time with the length of the pattern that was to
be matched.

Quadratic Down (see Figure 6.6) also has the generated next-clause for every pattern in the
source code. The size of the individual patterns goes down as we go to the next pattern.
Every pattern is still generated as a series of stand-alone matches. For every following
pattern the previous pattern has discarded the match only after the entire list is matched
but the empty list element at the end of the list. In order to match the pattern in the
centre this match statement has executed a quadratic amount of matches. All previous
patterns have matched the list except for the last element, the nil element, of the list. The
normalization folds these patterns together and this results in a linear match time in the
length of the pattern that was to be matched.

1 main :: IO ()

2 main = do

3 line <- getLine

4 if line == ""

5 then return ()

6 else do

7 let n = readInt line

8 print $ match_test n

9 main

Figure 6.2: Calling Match Function
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10 match_test :: Int -> Bool

11 match_test n = case [0..n] of

12 [0, · · · ,size] -> (is_even size)

13 _ -> False

Figure 6.3: Match Function: Linear Width

10 match_test :: Int -> Bool

11 match_test n = case n of

12 0 -> True

13

...
14 size -> (is_even size)

15 _ -> False

Figure 6.4: Match Function: Linear Height

10 match_test :: Int -> Bool

11 match_test n = case [0..n] of

12 [0] -> True

13

...
. . .

14 [0, · · · ,size] -> (is_even size)

15 _ -> False

Figure 6.5: Match Function: Quadratic Up

10 match_test :: Int -> Bool

11 match_test n = case [0..n] of

12 [0, · · · ,size] -> (is_even size)

13

...
...

14 [0] -> True

15 _ -> False

Figure 6.6: Match Function: Quadratic Down
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6.4 Virtual Memory

Just before benchmarking the generated code the Helium runtime is spun up, the Helium runtime
process is started with the benchmark program as its argument. A new process is spun up for
each individual input that is benchmarked. When the process is settled the memory consumption
of the runtime is recorded. After benchmark is completed the memory measurements are taken
again. Because we want the process to start in the same state for all the inputs we teared the
process down after a single input is tested.

The measurements are taken from the OS proc{process id}status, all the measurements
which relate to virtual memory are recorded Vm∗, as described in the manpage1 and in this
blog post2.

VmPeak this marks the peak virtual memory usage.

VmSize this marks the current virtual memory usage.

VmLck the locked memory size, pages that can’t be swapped out of memory but are allowed
to move.

VmPin the pinned memory size, pages that can’t be moved because of direct access to physical
memory location.

VmHWM this marks the maximum resident memory usage. HWM is the acronym for High
Water Mark.

VmRSS this marks the current resident memory usage. RSS is the acronym for Resident Set
Size.

VmData this marks the size of the data segment.

VmStk this marks the size of the stack segment.

VmExe this marks the size of the text segment.

VmLib this marks the size of shared libraries.

VmPTE this marks the size of page table entries. PTE is the acronym for Page Table Entries.

VmSwap this marks the swapped-out memory.

6.5 Benchmarking

6.5.1 Hardware

The system on which the test are run is a Dell XPS 9550 (see Table 6.1). Before running a
benchmark we rebooted the system and let it settle with no additional processes started and
approximately 15GiB3 of free memory available.

6.5.2 Imaginary

Criterion4 is used to run the benchmark. There is a warmup phase of at least 3 seconds.
During the warmup phase it is estimated how many iterations should be performed. During the
benchmark there is a minimum runtime for each individual test of at least 5 seconds. There also
exists a minimum number of iterations, namely 5050 iterations need to be executed. Criterion
handles the measurements and the averaging of the execution times taken with each iteration.

1http://man7.org/linux/man-pages/man5/proc.5.html
2https://ewx.livejournal.com/579283.html
3GiB equals 10243 bytes, GB equals 10003 bytes
4https://github.com/bheisler/criterion.rs

http://man7.org/linux/man-pages/man5/proc.5.html
https://ewx.livejournal.com/579283.html
https://github.com/bheisler/criterion.rs
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Spec Value
System Dell XPS 9550
CPU Core i7-6700HQ (2.6GHz x 8)
RAM 16GB DDR4 2133MHz
OS Ubuntu 18.04.2 LTS

Table 6.1: Hardware

6.5.3 Prelude

For measurements of the prelude functions we executed the test program with and without the
normalization 120 times. Each time we did 16 iterations for warmup and 16 iterations that
measured the time it took. The total times per execution are divided by 16 and there are 120
measurements for both the normalization enabled and disabled.

6.5.4 Match Statements

For measuring the match statements we generated the necessary test programs. We generated
the quadratically increasing test programs for each match test. We did this until we hit the
limit of either the runtime or the compiler. For the linear width test we generated until 1024
items were matched in succession. For the linear height test we generated 4096 different literal
patterns. For the quadratic test cases we reached 256 items ordered by increasing width, up,
and by decreasing width, down.

For measuring the match statements we executed the generated test program with and
without the normalization 120 times. Each time we did a warmup, walking all possible match
arms, we measured how long it took to take every match arm specifically.

6.6 Results

6.6.1 Execution Times: Imaginary

The imaginary part of the nofib benchmark was ported in order to review performance differences
before and after the normalization changes. A short overview of the timing data is in Table 6.2.
All the functions are displayed with their highest input values. The higher the input value the
longer the average runtime is. For the complete set of timing data we refer to the appendix (see
Table C.1).

The first thing that jumps out is that Exp3 8 ran into a stack overflow, 4 inputs lower than
was tested with the normalizations, this resulted in a segmentation fault (see Section 6.6.4).
Running into a segmentation fault can indicate that the memory usage was out of control,
therefore we measured the memory consumption (see Section 6.6.5).

In the overview about the collected timing data (see Table 6.2) we displayed some basic
stats. The total number of invocations is 142, of those 138 didn’t segfault. A generous set of
124 programs had their speed increased, with a maximum improvement of 21% and an average
improvement of 3.66%. Only a subset of 4 invocations were slower than the baseline, with a worst
degradation of 8% and an average degradation of 4.50%. A total of 10 functions performed the
same as the baseline, the average improvement measured 3.16% better than the baseline. This of
course excludes the 4 segfaults that have an infinitely better performance with the normalization.

6.6.2 Execution Times: Prelude Functions

We want to be able to state that our implementation did improve the performance. We have
the following hypothesis:

Hnull There is no performance difference.
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invocation disabled simplify enabled simplify
function input relative actual relative actual

EchoInt 0 1.03 13.1± 6.85µs 1.00 12.7± 6.46µs
EchoFloat 0 1.02 36.6± 16.88µs 1.00 35.8± 16.03µs
Bernoulli 15 1.07 41.4± 22.04µs 1.00 38.6± 17.76µs
DigitsOfE1 10 1.04 71.5± 33.75µs 1.00 68.9± 30.20µs
DigitsOfE2 10 1.03 44.8± 20.36µs 1.00 43.5± 19.05µs
Exp3 8 10 stack overflow 1.00 57.5± 4.74ms
Integrate 5 1.05 21.4± 10.38µs 1.00 20.3± 8.58µs
Nfib 25 1.00 45.7± 1.08ms 1.00 45.7± 1.29ms
Paraffins 14 1.01 149.5± 1.42ms 1.00 147.5± 1.63ms
Primes 15 1.01 17.3± 38.26ms 1.00 17.2± 37.99ms
Queens 9 1.02 124.1± 1.18ms 1.00 121.7± 0.99ms
WheelSieve1 5 1.00 16.9± 7.92µs 1.00 16.9± 8.73µs
WheelSieve2 5 1.00 16.8± 8.33µs 1.00 16.8± 8.42µs
X2n1 5 1.00 36.7± 0.74ms 1.00 36.6± 1.06ms

. . . 128 more invocations

Invocations Highest Mean
Improvement 124 21% 3.66%
Degradation 4 8% 4.50%
Average Improvement 138 3.16%
Stack overflow prevented 4

Table 6.2: Overview Of Timing Data

invocation disabled simplify enabled simplify
function input relative actual relative actual
Prelude 0 1.00 13.6± 0.27µs 1.00 13.6± 0.35µs
Prelude 13847 1.02 38.7± 0.41ms 1.00 37.9± 2.10ms
Prelude 27693 1.04 79.1± 3.95ms 1.00 76.0± 0.75ms

Table 6.3: Prelude Function Stats
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H1 There is a performance gain.

Here the performance is specified as the time it takes to execute the program.
We need to perform T-Tests to give accurate answers to the hypothesis. We taken an alpha

of 0.05 to be able to state the following facts with 95% certainty. The p-value is a value between
0 and 1. If the p-value is lower than our alpha we have a significant difference. In order to select
the T-Test we are allowed to use on our data we have to know whether or not the variances are
significantly different between the two runtimes.

F-Test

F-Test indicate whether the variances are significantly different from each other, therefore we
perform F-Tests on our data. We assume that there exist no difference between the run with
the normalization enabled and the normalization disabled. We have the following hypothesis:

Hnull The variance remains the same with the simplification enabled and disabled.

Using the F-Test for input 0, Table D.1, we have determined that simplify enabled (mu =
13608, variance = 120168) is significantly different from simplify disabled (mu = 13554, variance
= 71388), p = 2.4111E-3. Therefore we reject the null hypothesis for input 0.

Using the F-Test for input 13847, Table D.2, we have determined that simplify enabled (mu
= 37874645, variance = 4.4093E+12) is significantly different from simplify disabled (mu =
38696236, variance = 1.6657E+11), p = 7.0025E-53. Therefore we reject the null hypothesis
for input 13847.

Using the F-Test for input 27693, Table D.3, we have determined that simplify enabled (mu
= 75952407, variance = 5.6222E+11) is significantly different from simplify disabled (mu =
79139739, variance = 1.5587E+13), p = 5.4286E-54. Therefore we reject the null hypothesis
for input 27693.

The variances of the two implementations differ across all the tested inputs. Therefore we
need to execute the two sample T-Test assuming unequal variances. We also note that the
variance of the run with the simplification disabled is only higher than the simplification enabled
at Table D.3.

T-Test Assuming Unequal Variance.

The T-Test indicates whether the means of the two executions are significantly different from
each other. We can therefore make statements about whether or not an implementation is faster
or slower.

First we need to reject the Hnull hypothesis for the inputs to be able to state that there is
indeed a difference. Then we can test our alternative hypothesis H1.

Using the T-Test for input 0, Table 6.4, we have determined that simplify enabled (mu =
13608, variance = 120168) is not significantly different from simplify disabled (mu = 13554,
variance = 71388), p = 1.7908E-1. Therefore we cannot reject the null hypothesis for input 0.

Using the T-Test for input 13847, Table 6.5, we have determined that simplify enabled (mu
= 37874645, variance = 4.4093E+12) is significantly different from simplify disabled (mu =
38696236, variance = 1.6657E+11), p = 4.8238E-5. Therefore we reject the null hypothesis for
input 13847.

Using the T-Test for input 27693, Table 6.6, we have determined that simplify enabled (mu
= 75952407, variance = 5.6222E+11) is significantly different from simplify disabled (mu =
79139739, variance = 1.5587E+13), p = 1.4859E-14. Therefore we reject the null hypothesis
for input 27693.

Both cases that use a higher input number 13847 and 27693 had means that significantly
differed from the baseline test.
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T-Test Two-Sample Assuming Unequal Variance enabled simplify disabled simplify
Mean 13608 13554
Variance 120168 71388
Observations 120 120
df 224
Tstat 1.3478
P (F ≤ f) one-tail 8.9541E-2
Tcrit one-tail 1.6517
P (F ≤ f) two-tail 1.7908E-1
Tcrit two-tail 1.9706

Table 6.4: T-Test Input: 0

T-Test Two-Sample Assuming Unequal Variance enabled simplify disabled simplify
Mean 37874645 38696236
Variance 4.4093E+12 1.6657E+11
Observations 120 120
df 128
Tstat -4.2073
P (F ≤ f) one-tail 2.4119E-5
Tcrit one-tail 1.6568
P (F ≤ f) two-tail 4.8238E-5
Tcrit two-tail 1.9787

Table 6.5: T-Test Input: 13847

Secondly finding out whether the performance has indeed improved. We can test our hy-
pothesis H1 for the program with inputs 13847 and 27693. If the test show that Tstat < −Tcrit
one-tail, we accept hypothesis H1. If the hypothesis is accepted we can state that we have
gained performance!

Using the T-Test for input 13847, Table 6.5, we have determined that simplify enabled
(mu = 37874645, variance = 4.4093E+12) is significantly faster then simplify disabled (mu =
38696236, variance = 1.6657E+11), Tstat = −4.2073 < −Tcrit = −1.6568. Therefore we
accept hypothesis H1 for input 13847.

Using the T-Test for input 27693, Table 6.6, we have determined that simplify enabled (mu
= 75952407, variance = 5.6222E+11) is significantly different from simplify disabled (mu =
79139739, variance = 1.5587E+13), Tstat = −8.6885 < −Tcrit = 1.6568. Therefore we accept
hypothesis H1 for input 27693.

The observed difference between the sample means is in both cases significant. Therefore we
can state that the performance has increased.

What does this tell us about the case where the input is 0? In that case there are a fewer
fall through match statements than there were in the hot path without the simplification. The
increased speed comes from the deeply nested match branches that get inlined into higher match
clauses. If these deeply nested matches are not used the speed increase will be negligible.

6.6.3 Execution Times: Match Statements

The Figures 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 use a logarithmic scale to display the differences
between the runtimes in nanoseconds. The graphs start around 1·104ns or 10µs and ends around
1 · 106ns or 1000µs or 1ms. The color soft red is used when the normalization is disabled, while
cyan is used for the data-points where the normalization is enabled. The vertical lines indicate
the maximum and minimum runtime of the program, where the dot indicates the median of these
values. We fitted a smooth blue line through the data-points, the line is dotted when used for
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T-Test Two-Sample Assuming Unequal Variance enabled simplify disabled simplify
Mean 75952407 79139739
Variance 5.6222E+11 1.5587E+13
Observations 120 120
df 128
Tstat -8.6885
P (F ≤ f) one-tail 7.4294E-15
Tcrit one-tail 1.6568
P (F ≤ f) two-tail 1.4859E-14
Tcrit two-tail 1.9787

Table 6.6: T-Test Input: 27693

Figure 6.7: Linear Width: Code in Figure 6.3

the normalized data-points. For the quadratic functions we split the data-points on the different
program sizes. The dots are replaced by symbols for the respective sizes. The lines are fitted on
each subset of data-points.

From Figure 6.7 it is clear that there where no changes in the execution times. The nor-
malization pass did not have anything that could be put in the same match under different case
statements. Therefore we did not expect to see any difference between the two runtimes.

From Figure 6.8 it is clear that the runtimes diverge. The tight loop created by combining
the case arms into one match statement clearly resulted in an increase in speed.

In Figure 6.9 we split the different tested match sizes out. The left corner is not entirely
visible therefore we zoomed in to produce Figure 6.10. It is clear that after an input of around 10
the difference between the two implementations becomes increasingly visible. Where the extra
time for lower inputs is coming from is unclear but is visible in both implementations and thus
not caused by the normalization.

In Figure 6.11 we split the different tested match sizes out. This time the different sizes clearly
show different effects. The left corner is again a bit cramped therefore the zoomed in to produce
Figure 6.12. The input 0 has to traverse all the next clauses in the original implementation. It
is visible that this has an effect on even the smallest of inputs.
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Figure 6.8: Linear Height: Code in Figure 6.4

Figure 6.9: Quadratic Up: Code in Figure 6.5
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Figure 6.10: Quadratic Up: Zoom 0-32

Figure 6.11: Quadratic Down: Code in Figure 6.6
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Figure 6.12: Quadratic Down: Zoom 0-16

The main difference with enabling normalization is that all matches that are executed now
result in progress towards the actual pattern that is to be matched. For nested patterns, that
have overlap with other patterns, progress can now be shared. Shorter sub-patterns can now be
implemented as an early-out if the longer pattern is not matched.

6.6.4 Segmentation Faults

While building the benchmarking harness we encountered multiple segmentation faults. These
segmentation faults were happening when the test input was reached the higher numbers from
the range for certain programs under benchmarking pressure. The generated byte code of these
programs strained the runtime more than it was able to cope with. This result led us to be-
lieve that the runtime would use the most memory for these kinds of programs. Therefore the
benchmarking harness was extended to include memory usage measurements. In order to run
the benchmarks without the simplification the test input had to be reduced.

6.6.5 Memory Consumption

We analysed the data for memory and it indicated something peculiar; the memory consumption
did not depend on either the program we were running nor on the input we were using. The
program Exp3 8, which segfaults from certain inputs onwards without our simplification step,
does not increase its memory usage before the segfault is encountered. This indicates that the
runtime reserves a predetermined amount of memory and doesn’t request more memory from
the OS while running.

In the data we have found one outlier in the Virtual memory High Water Mark, VmHWM,
this is decreased by 75400kB during benching. As this is a high water mark it should always be
increasing. Therefore this is an unexpected result and can only originate from a previous process
with the same process id. We can thus assume that we read the memory usage of a previous
process with the same process id that used 75400kB more memory than we ended up using.
This was the reason to search for other outliers that had a higher value for VmHWM when they
started than when they stopped. We found out that all Helium runtime processes start with 8kB
of memory. There exist two data points where the value is different from 8kB before running,
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starting with a high water mark of 79576kB and 428kB. We have excluded these data-points
from our memory-data.

We have recorded all the statistics that refer to virtual memory usage. From the different
statistics a lot are just 0, e.g. we do not lock our pages to physical memory which is indicated
by VmLck and we do not pin our memory to a single physical memory location VmPin. Other
statistics have a single value independent from the program that is loaded. These depend on
the runhelium executable, e.g. VmData, VmStk, VmExe and VmLib. We do not end up in
swap memory therefore VmSwap stays 0. The VmPeak and VmSize are always the same value,
1073768576kB, this is the virtual memory that is requested by the runhelium executable.

There are a few statistics available that show some variance: those are VmHWM, VmRSS
and VmPTE. At the start of the runtime VmHWM and VmRSS are 8kB. We calculated the
mean and the variance after running. The mean and the variance are very close to each other
indicating that we probably are not measuring what we were hoping for.

We executed a t-test on the invocation with the largest difference in runtime (DigitsOfE2
with input 5). Our null hypothesis was that there was a observable difference in the maximum
memory usage, VmHWM, between enabling and disabling the normalization. The result was
that even the execution with the largest timing increase didn’t have any significant difference in
memory consumption. The calculated Tstat is 0.8817 and the two-tailed p-value is 0.3789, with
a threshold of 5%, a p-value was larger than 0.05, we must reject the hypothesis. There was no
significant difference between the two samples.

The memory usage of the program did not depend on the input.

6.6.6 Storage Use

We have measured the file size of the prelude file, its source and with and without the normal-
ization. We have chosen the prelude as it is an example of a larger library. Libraries are shared
either as source code or as lvm-byte-code file, when the programmer doesn’t want to share his
source code.

We also measured the sizes of the different lvm files for the generated match statements.
We colored the first and last place in file size green and red. For an overview of the files see
Table 6.7.

When we view these results we can clearly see that we made great strides towards reducing
the byte-code files. The lvm-byte-code file will be faster to send over the internet as well as
faster to run in the LVM runtime. Especially when patterns in the match statement overlap the
generated files are much smaller. The maximum difference is a whopping 140 times reduction
in file size!
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File Source Enabled Disabled Improvement
Prelude 14.8 kB 62.4 kB 68.2 kB 0.1 X
Complex 1.8 kB 7.4 kB 7.4 kB 0 X
Debug 148 bytes 2.9 kB 2.9 kB 0 X
Ratio 791 bytes 7.7 kB 7.7 kB 0 X

EchoInt 153 bytes 3.3 kB 3.3 kB 0 X
EchoFloat 154 bytes 3.3 kB 3.3 kB 0 X
Bernoulli 1.7 kB 9.2 kB 9.2 kB 0 X
DigitsOfE1 716 bytes 7.5 kB 7.5 kB 0 X
DigitsOfE2 842 bytes 6.8 kB 6.8 kB 0 X
Exp3 8 2.5 kB 7.1 kB 7.1 kB 0 X
Integrate 1.3 kB 8.6 kB 8.6 kB 0 X
Nfib 338 bytes 4.2 kB 4.2 kB 0 X
Paraffins 3.3 kB 19.0 kB 19.0 kB 0 X
Primes 473 bytes 5.6 kB 5.6 kB 0 X
Queens 598 bytes 6.0 kB 6.0 kB 0 X
WheelSieve1 1.1 kB 10.1 kB 10.1 kB 0 X
WheelSieve2 1.4 kB 10.8 kB 10.8 kB 0 X
X2n1 1.2 kB 6.8 kB 6.8 kB 0 X

linear width 1024 4.3 kB 78.0 kB 110.8 kB 0.4 X
linear width 512 2.2 kB 41.1 kB 57.5 kB 0.4 X
linear width 256 1.2 kB 22.7 kB 30.9 kB 0.4 X
linear width 128 658 bytes 13.5 kB 17.6 kB 0.3 X
linear width 64 437 bytes 8.8 kB 10.9 kB 0.2 X
linear width 32 341 bytes 6.5 kB 7.6 kB 0.2 X
linear width 16 293 bytes 5.4 kB 5.9 kB 0.1 X
linear width 8 270 bytes 4.8 kB 5.1 kB 0.1 X

linear height 4096 70.8 kB 69.2 kB 575.1 kB 8.3 X
linear height 2048 35.0 kB 36.5 kB 288.4 kB 7.9 X
linear height 1024 17.1 kB 20.1 kB 145.1 kB 7.2 X
linear height 512 8.6 kB 11.9 kB 73.4 kB 6.2 X
linear height 256 4.4 kB 7.8 kB 38.5 kB 4.9 X
linear height 128 2.3 kB 5.7 kB 21.1 kB 3.7 X
linear height 64 1.2 kB 4.7 kB 12.4 kB 2.6 X
linear height 32 734 bytes 4.2 kB 8.0 kB 1.9 X
linear height 16 486 bytes 3.9 kB 5.9 kB 1.5 X

quadratic down 256 113.3 kB 26.8 kB 3.8 MB 141.8 X
quadratic down 128 26.5 kB 15.5 kB 960.2 kB 62.0 X
quadratic down 64 7.0 kB 9.9 kB 252.8 kB 25.5 X
quadratic down 32 2.1 kB 7.1 kB 71.1 kB 10.0 X
quadratic down 16 818 bytes 5.6 kB 23.3 kB 4.2 X
quadratic down 8 458 bytes 4.9 kB 10.2 kB 2.1 X
quadratic down 4 340 bytes 4.6 kB 6.4 kB 1.4 X
quadratic down 2 293 bytes 4.4 kB 5.1 kB 1.2 X
quadratic down 1 273 bytes 4.3 kB 4.6 kB 1.1 X

quadratic up 256 113.3 kB 26.8 kB 3.7 MB 138.1 X
quadratic up 128 26.5 kB 15.5 kB 959.0 kB 61.9 X
quadratic up 64 7.0 kB 9.9 kB 252.2 kB 25.5 X
quadratic up 32 2.1 kB 7.1 kB 70.8 kB 10.0 X
quadratic up 16 818 bytes 5.6 kB 23.2 kB 4.1 X
quadratic up 8 458 bytes 4.9 kB 10.2 kB 2.1 X
quadratic up 4 340 bytes 4.6 kB 6.3 kB 1.4 X
quadratic up 2 293 bytes 4.4 kB 5.1 kB 1.2 X
quadratic up 1 273 bytes 4.3 kB 4.6 kB 1.1 X

Table 6.7: File Sizes



Chapter 7

Reflection And Discussion

We ran into some problems while trying to execute all the different subtasks we took on. The
original research questions that we asked ourselves is described in Section 7.1.

We started with working on using the GHC compiler as the backend for the Helium compiler.
This way interoperability between Haskell code compiled with the different compilers could be
achieved. For this we researched the differences between the core representations of different
compilers, namely Helium, UHC and GHC, see Section 7.2. It turned out that this was not
possible any longer, see Section 7.3.

After this we started working on Heap Recycling, see Section 7.4. Heap Recycling was a
bigger task then anticipated and contained a lot of subtasks. One of the subtasks was parsing
the heap recycling annotation the programmer wrote, which is implemented.

The next step was to implement a constraint based type-and-effect system. Annotated data-
types are necessary to generate annotation constraints. The data-type annotation algorithm
can be found in Section 4.3. For the type-and-effect system we needed a constraint generation
and constraint solving to be implemented, see Sections 4.4 and 4.5. The constraint based type
checker is now able to type-check the prelude. While working on the type checker we had some
programs that could not be typed by our type checker. The Top framework returned a type for
these programs otherwise the compiler would have thrown error messages and our type checker
for core would not even have run. These type-bugs were introduced by the code generation
phase, see Section 4.1. The problem was that Chars would be equal to Int. This resulted in a
String being equal to an [Int]. We solved this by using the correct transform functions available
in the LVM.core files during code generation. Other more general types where introduced with
the code generation stripping the match statements of their context. The context for a match
statement is completely gone when all the case arms are hidden in different let bindings. In order
to overcome this hurdle we implemented a normalizing phase for core, see Chapter 5.

7.1 Original Research Questions

What we originally wanted to know is how much effect analysis (see Section 1.4) can have on
the performance of programs written in Haskell. In order to understand the advantages these
optimizations are able to unleash, we would have needed a infrastructure within the Helium
compiler to test our hypothesis: Can we turn the Helium compiler into an optimizing compiler?.
The following sub-questions needed to be answered accordingly:

• Can we implement a type-and-effect infrastructure in Helium?

• Can we instantiate the type-and-effect system for cardinality analysis?

• Can we use our analysis to generate better performing code compared to the current
Helium compiler?

67
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We overextended because in addition to this infrastructure for code analysis we including the
hypothesis: Can we use GHC-Core as the intermediate representation and GHC as our back-end?
The following sub-questions arose:

• Can we generate a GHC-Core file from Helium an compile this with GHC?

• How can we represent analysis results in GHC-Core?

• What if we can not use our analysis result in the typed part of GHC-Core?

Interoperability between code compiled with Helium and code compiled with GHC is possible
because GHC can process GHC-Core files. The first step would be to compile the GHC-Core
generated with Helium with the GHC compiler. It turns out that interoperability is not possible
because the part of GHC that read the GHC-Core files is not available anymore, see Section 7.3.

We found out that we could add notes to GHC-Core. Analysis results that can not be
represented in GHC-Core would have been represented with annotations. Strictness for example
can be represented with unpacked types in the core representation. Uniqueness on the other
hand can not be shown in the types of the core and would be represented as notes. This limits
the usefulness of analyzing core at this level because a lot of the analysis we wanted to do would
not be compatible with what GHC-Core can represent.

Then finally we stated that we wanted to use an analysis for testing our framework that
didn’t have many implementations. We wanted to test the framework with the sharing analysis.
The reason for doing so was because a lot of research has been done with the implementation
of strictness analysis in functional languages.

7.2 Compare Cores

This section compares different cores from different compilers. The interoperability between
Helium and GHC is evaluated. The interoperability between Helium and GHC is needed to use
Haskell files precompiled with GHC.

In order to understand and compare the internal representation of different compilers the
different core representations used are GHC1, Helium2 [16] and UHC3 [4]. The individual core
languages are described in the following subsections.

7.2.1 UHC-Core

UHC uses multiple intermediate representations, core is one of a number of intermediate repre-
sentations; the others are Grin and Silly. Silly is the lowest representation, it is imperative and
is eventually translated into C or LLVM. C or LLVM are compiled to native executables. Grin
is a small and strict functional language; it is at a lower level than core. Core is an untyped
simplification of Haskell. Core effectively represents the untyped λ-calculus where GHC would
use the typed λ-calculus described by Dijkstra et al. [4].

A quick overview of the internals is given in Figure 7.1 of the compiler. In the paper that
provided this quick overview they updated the runtime garbage collector for LLVM from Boehm
GC to an accurate garbage collector which compiles with the help of a shadow-stack described
by van der Ende [33].

UHC-Core in Figure 7.2 is represented in memory using the data-structure given. All types
are erased in this representation; that is the main difference with GHC-Core.

1https://www.haskell.org/ghc
2http://foswiki.cs.uu.nl/foswiki/Helium
3http://foswiki.cs.uu.nl/foswiki/UHC

https://www.haskell.org/ghc
http://foswiki.cs.uu.nl/foswiki/Helium
http://foswiki.cs.uu.nl/foswiki/UHC
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Figure 7.1: UHC internals

data CModule

= Mod nm :: Name expr :: CExpr

data CExpr

= Int int :: Int

| Char char :: Char

| String str :: String

| Var name :: Name

| Tup tag :: Tag

| Lam arg :: Name body :: CExpr

| App func :: CExpr arg :: CExpr

| Case expr :: CExpr alts :: [CAlt] dflt :: CExpr

| Let categ :: Categ binds :: [CBind] body :: CExpr

data CAlt

= Alt pat : CPat expr :: CExpr

data CBind

= Bind name : Name expr :: CExpr

| FFI name : Name imp :: String ty :: Ty

data CPat

= Var name :: Name

| Con name :: Name tag :: Tag binds :: [CPatBind]

| BoolExpr name :: Name cexpr :: CExpr

data CPatBind

= Bind offset :: Int pat :: CPat

Figure 7.2: UHC-Core
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type Program = [Bind Var]

data Bind b

= NonRec b (Expr b)

| Rec [(b, (Expr b))]

data Expr b

= Var Id

| Lit Literal

| App (Expr b) (Arg b)

| Lam b (Expr b)

| Let (Bind b) (Expr b)

| Case (Expr b) b Type [Alt b]

| Cast (Expr b) Coercion

| Tick (Tickish Id) (Expr b)

| Type Type

| Coercion Coercion

type Arg b = Expr b

type Alt b = (AltCon, [b], Expr b)

data AltCon

= DataAlt DataCon

| LitAlt Literal

| DEFAULT

Figure 7.3: GHC-Core

7.2.2 GHC

GHC compiles Haskell to assembly code and links this with the precompiled runtime, that was
written in C, which generates an executable. Haskell code is parsed and desugared into core.
After the desugar phase the core is optimized with multiple optimization phases that are run
on the core representation and it is translated into STG -language a language for the Spineless
Tagless G-machine. The third intermediate representation is Cmm. This language is closely
related to C, which has been used as portable assembly in the past. There are numerous C-
compilers available so this way GHC could easily be ported to new platforms. From Cmm they
generated a subset of C that is cross compiler compatible. These days the GHC-compiler can
output assembly code directly without a C-compiler. Another option to generate an executable
is with the LLVM-back-end. The LLVM-back-end compiles much slower and the generated code
runs on average just as fast, but if the code depends on numeric and array heavy code the result
might be much faster.

GHC-Core in Figure 7.3 is a form of typed λ-calculus called System F which they extended
to System FC in Figure 7.4. System F allows universal quantifications over types. System FC
extended that with type equality constraints and coercions. Type equalities are a proof that
types can be coerced, thus casts are type safe between the types for which these proofs can be
constructed. GHC-Core is used for the optimization passes that happen inside GHC described
by Tolmach and Chevalier [32] and Eisenberg [6].

7.2.3 Helium

Helium uses its own runtime, the LVM, the Lazy Virtual Machine, which executes the LVM-
assembly. The LVM-runtime looks a lot like the JVM-runtime, the Java Virtual Machine. You
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Figure 7.4: System FC

need the JVM on your system to run Java code. LVM is a general back-end for (lazy) functional
languages. LVM-byte-code is generated from Helium-Core (see Figure 7.5) which is an untyped
λ-calculus, just like UHC-Core. The λ-calculus used by Helium is closely related to the internals
of GHC-Core. GHC-Core is a typed λ-calculus, so in order to interoperate with GHC-Core we
have to have type information in our Helium-Core. Communicating with GHC would give a huge
benefit on multiple fronts. Libraries that can not be compiled with Helium yet could be compiled
with GHC and integrated in projects built in Helium. In a best case scenario the optimizations
that are performed by GHC can be incorporated into Helium.

7.2.4 Conclusion

We can either generate GHC-Core directly as the intermediate representation in Helium or we
can define a pass from Helium-Core, which is untyped, to GHC-Core, which is typed. The second
option has the downside that the type inference has to happen again.
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----------------------------------------------------------------

-- Modules

----------------------------------------------------------------

type CoreModule = Module Expr

type CoreDecl = Decl Expr

----------------------------------------------------------------

-- Core expressions:

----------------------------------------------------------------

data Expr = Let !Binds Expr

| Match !Id Alts

| Ap Expr Expr

| Lam !Id Expr

| Con !(Con Expr)

| Var !Id

| Lit !Literal

data Binds = Rec ![Bind]

| Strict !Bind

| NonRec !Bind

data Bind = Bind !Id Expr

type Alts = [Alt]

data Alt = Alt !Pat Expr

data Pat = PatCon !(Con Tag) ![Id]

| PatLit !Literal

| PatDefault

data Literal = LitInt !Int

| LitDouble !Double

| LitBytes !Bytes

data Con tag = ConId !Id

| ConTag tag !Arity

Figure 7.5: Helium-Core
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7.3 Interoperability With GHC

The GHC-Compiler was able to write GHC-Core to external files. We were not able to reproduce
the functionality described by Tolmach and Chevalier [32]. The interoperability code to emit and
read external core was removed from the git repository4 5 years ago. This was the main reason
that the interoperability part stranded even though we thought it to be possible because of the
paper by Tolmach and Chevalier [32]. In that paper they also describe applications inside the
GHC repository that can check the GHC-Core language for type errors.

The functionality is described in Generating and compiling External Core Files5. The suffix
.hcr was used as the file extension of external-core. The ability to read external-core files is
disabled since GHC 6.8.2 and was later removed.

It was possible to add notes6 to external-core. This could have been used by Helium to write
additional information into this representation.

7.4 Heap Recycling

Helium is a high level core representation that makes it possible to analyse functions. During
our work we did a normalization phase on the the core representation. Normalization resulted in
some speed improvements, but most importantly the core representation became smaller. The
smaller representation of the functions that we want to analyse results in fewer constraint being
generated and solved, with a shorter runtime for our analysis as a result. The core representation
has not yet an optimization phase. When a heap recycling analysis is implemented, Helium will
have a real optimization phase for core in the compiler.

In order to limit the scope of Heap Recycling Analysis we wanted the programmer to annotate
locations where Heap Recycling would be possible. In order to achieve this we needed a way for
the programmer to annotate the programs. Therefore it was decided that the Heap Recycling
Annotation needed to be added to the Helium compiler.

The outset of this research was to implement Heap Recycling in Helium. This requires a few
things adding the heap recycling annotation to the syntax of the Helium compiler. It was the first
milestone in the project to get heap recycling working. The annotation made by the programmer
can be used when future work progresses and the analysis is implemented. The second part
would be adding a type and effects system to annotate programs. These annotations would
indicate how many times a certain element would be used. Lastly these usage annotations would
be queried for the functions that request specialization through the annotation that are made by
the programmer. If there exists a case where the function is used with non-shared argument(s)
then the memory of those arguments can be reused. This can also result in partial specialization
of these functions.

We want to explain which optimizations should happen after a heap recycling analysis is
used to specialize the function. This can be seen as the gold standard for the heap recycling
optimization phase. We will note the expected outcome of the specialization. By writing test
functions and note what we expect to happen we can track that the specializations happen when
expected.

In the related work in Chapter 3 the map function is already shown in Figure 3.1. Now we
annotate the map function with heap recycling annotations and name it mapr as the map-recycle
function in Figure 7.6. If the annotated mapr function is called with an argument that is shared,
Figure 7.7, then we expect the code that would be be generated for the mapr function to be the
same as for the normal map function. Whereas if the passed argument is not shared, as in Figure
7.8, then we expect that the generated code is a specialized version that reuses the memory that
is provided as its second argument. This reuse of memory that would otherwise be freed results
in the expected performance gain.

4https://gitlab.haskell.org/ghc/ghc/commit/5bf22f06ef71f61094de7564dee770f136d5481a
5https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/ext-core.html
6https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/rewrite-rules.html

https://gitlab.haskell.org/ghc/ghc/commit/5bf22f06ef71f61094de7564dee770f136d5481a
https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/ext-core.html
https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/rewrite-rules.html
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mapr :: (a -> b) -> [a] -> [b]

mapr _ r@[] = r@[]

mapr f r@(x:xs) = r@(f x : mapr f xs)

Figure 7.6: Map Function: with Recycling Annotations

main = do

let xs = [1..10]

let ys = mapr (1+) xs

print xs

print ys

Figure 7.7: Use Case: map with reuse annotation, no specialization possible

Other functions that are described in the Heap Recycling paper will also be tested in much
the same way. Reverse in Figure 1.1 was already shown in the Introduction. Other examples are
filter in Figure 7.9 and quicksort in Figure 7.12.

Filter can reuse elements when the predicate returns true, and the spine of the data is not
used again as shown in Figure 7.11. It cannot reuse the data if that data is shared, this is visible
in Figure 7.10. When the predicate returns false the element becomes garbage as would have
been the case without the heap recycling optimization.

Quicksort in Figure 7.12 has an additional function the ## operator, it is much the same
as the ++ operator in the prelude. Implementing annotated functions in the prelude that can
reuse the provided memory would result in an overall speed increase for compiled programs. Use
cases for reverse are in Figures 7.15 and 7.16 and for quicksort in Figures 7.13 and 7.14.

Swap2 demonstrates how there can be multiple heap recycling annotations, see Figure 7.17.
This nested recycling may not be possible in the first prototypes of the optimization.

An open research question is: “What to do when a function is used with unique arguments
from one location and with shared values from a second locations?” Cascading specialization
could result in enormous bloat of the final binary. The worst case bloat would result in a two
times increase in number of functions a specialized and non specialized version for every function.
Maybe this bloat will be worth the speed and memory usage improved by the specializations.
However if partial specialization is implemented any combination of reusable arguments can
become its own specialized function. Maybe a limit will be necessary if this is the case, i.e. if
the level is 2 then one additional function will be allowed: the non specialized implementation
and the most specialized or the most used specialization will be generated.

When only one implementation per function is allowed all call sites need to be able to recycle
their arguments. In Figure 7.18 internal cannot be specialized to accept reusable arguments.

main = do

let xs = [1..10]

let ys = mapr (1+) xs

print ys

Figure 7.8: Use Case: map with reuse annotation, specialization possible
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filter :: (a -> Bool) -> [a] -> [a]

filter p r@[] = r

filter p r@(x:xs)

| p x = r@(x:filter p xs)

| otherwise = filter p xs

Figure 7.9: Filter Function: with Recycling Annotations

main = do

let xs = [1..10]

let ys = filter odd xs

print xs

print ys

Figure 7.10: Use Case: filter with reuse annotation, no specialization possible

main = do

let xs = [1..10]

let ys = filter odd xs

print ys

Figure 7.11: Use Case: filter with reuse annotation, specialization possible

qsort :: Ord a => [a] -> [a]

qsort r@[] = r

qsort r@(x:xs) = (qsort left) ## r@(x:qsort right)

where

(left,right) = split x xs

split :: Ord a => a -> [a] -> ([a],[a])

split k l = pivot l [] []

where

pivot :: [a] -> [a] -> [a] -> ([a],[a])

pivot [] accl accr = (accl,accr)

pivot r@(x:xs) accl accr

| x < k = pivot xs r@(x:accl) accr

| otherwise = pivot xs accl r@(x:accr)

(##) :: [a] -> [a] -> [a]

(##) [] rs = rs

(##) r@(l:ls) rs = r@(l:ls ## rs)

Figure 7.12: Quicksort Function: with Recycling Annotations

main = do

let xs = [6,24,36,39,66,88,53,54,31,87] -- randomly generated sequence

let ys = quicksort xs

print xs

print ys

Figure 7.13: Use Case: quicksort with reuse annotation, no specialization possible
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main = do

let xs = [6,24,36,39,66,88,53,54,31,87] -- randomly generated sequence

let ys = quicksort xs

print ys

Figure 7.14: Use Case: quicksort with reuse annotation, specialization possible

main = do

let xs = [1..10]

let ys = reverse xs

print xs

print ys

Figure 7.15: Use Case: reverse with reuse annotation, no specialization possible

main = do

let xs = [1..10]

let ys = reverse xs

print ys

Figure 7.16: Use Case: reverse with reuse annotation, specialization possible

swap2 :: [a] -> [a]

swap2 r1@(x1:r2@(x2:xs)) = r1@(x2:r2@(x1:xs)) -- first two elements swapped in place

swap2 xs = xs -- empty and singleton list

Figure 7.17: Swap2 Function: with Multiple Reuse Annotations

main = do

let xs = [1..10]

let ls = internal xs -- reuse possible if internal becomes specialized

print ls

let ys = [1..10]

let zs = internal ys -- reuse not possible, internal not specialized

print ys

print zs

internal :: [a] -> [a]

internal = mapr id

Figure 7.18: internal wraps a function that can reuse its arguments
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7.5 Discussion

For the future we advise against taking on two quite different projects in one thesis. Instead
focus on one project and keep everything else as plain as possible. When it turns out that the
project is ready for some more variance you can expand on the foundation that has been set.

For this project that would have been limit the scope to the type-and-effect system. Imple-
menting Counting Analysis in a real world compiler would have been enough, there have not been
many studies on the subject and using the analysis result to perform a strictness optimization,
which has had a lot of research already.

If it turns out that we had a working analysis we could have extended the number of op-
timization based on the results that were returned. Now we could be doing a fancy analysis
such as Heap Recycling to increase the depth of the work. For the heap recycling the backend
would have needed some modification namely the option to overwrite memory. The compiled
code must know for sure when these byte code instructions are generated that there are no other
references as this can not be checked by the runtime. The performance testing foundation would
have been made earlier and results are generated over night.

We ran into unforeseen problems with the core of Helium. There were type inconsistencies
because the code generator did not produce type correct code. Because the core was untyped
before, the type incorrect core was accepted. It was untyped which is now resolved, thereby
also updating the code generation. Another function of code generation is generating core from
the patterns. The generated core was highly distorted with many let bindings for even the
simplest patterns. The core after normalization is much easier to work with. The types of
match statements can now be collected because the different cases for the same variable are now
solidified. A benchmarking framework was built to benchmark programs written in Helium. The
Imaginary directory of the Nofib benchmark suite has been ported to Helium.

Interoperability with GHC was based on dated research results even though they were only a
few years old, maybe we could have caught this earlier.
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Chapter 8

Conclusion

This research attempted to improve the Helium core by adding a normalizing phase to create an
optimizing compiler. In this conclusion will quickly recap what was discussed and look at the
research questions (see Section 8.1) and summarize the results (see Section 8.2).

In Chapter 4 we first explain the pipeline (see Section 4.1) and the available library files (see
Section 4.2). Then we explain how the data-type annotation algorithm work (see Section 4.3).
And lastly we discuss the constraints that are generated (see Section 4.4) and solved (see Section
4.5)

In Chapter 5 we explain why normalization needs to happen (see Section 5.1) and what the
advantages are of reducing the number of constraints (see Section 5.2). The normalization is
set up in the simplify routine (see Section 5.3). There are three different sub-routines; First
removing renames (see Section 5.4), second normalizing match statements (see Section 5.5)
with a complete example (see Section 5.8), and finally how to removes dead code (see Section
5.6).

In Chapter 6 we explain which benchmark suite we ported (see Section 6.1), the functions we
selected to be executed from the prelude (see Section 6.2) and the generated match statements
(see Section 6.3). It presents information about the measured virtual memory statistics (see
Section 6.4). We discuss how we warm the runtime up and do the measurements (see Section
6.5). Finally it presents and disects the results that where found (see Section 6.6).

8.1 Answering Research Questions

In order to answer the main hypothesis we will first answer all the research questions. After these
answers we will look at the main hypothesis and see if this is answered.
What is a good baseline measurement for the Helium compiler?

During further research into the Helium compilers internals we noticed that the Helium
compiler already is an optimizing compiler. It has quite a few tricks up its sleave (see Section
4.1). The code that was compiled by Helium with the already existing optimizations is used as
the baseline to measure further improvements.
What is a good benchmarking suite for the Helium compiler?

In this work we provide three ways to test the performance of Helium compiled programs.
First, we ported the Imaginary directory of the Nofib benchmark suite from GHC(see Section
6.1). Second, we created a program that stresses Prelude functions that were affected by our
normalization (see Section 6.2). Last, we generated match statements (see Section 6.3). These
match statements were used to observe the effects of different match pattern combinations.
Which normalizations will compact the core representation?

We researched different core representations (see Section 7.2) and how the core represen-
tation of Helium is used in the compiler. First, we found that the representation of match
statements wasn’t used to its full potential, namely the case arms are split over different let-
bound next-clauses. Second, the variable names introduced by the programmer are represented
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as renaming let-bindings in the core representation. Last, there are let-binding groups that are
not used. In order to note the improvements that were possible with these normalizations we
wrote normalization phases that takes these representations into account (see Chapter 5).

How to ensure no type differences are introduced by normalizing core?

We have introduced a constraint based type-system (see Sections 4.4 and 4.5) for the Helium-
core. The types that are reported by this type-system can be compared to the types generated by
the TOP typing framework. With this type-system we discovered type inconsistencies introduced
in the code generation.

Does how we represent Helium programs in core affect the performance?
Yes we can confirm that the core representation of programs can largely effect the performance
of these programs. The performance results from Section 6.6 are summarized in Section 8.2.

8.2 Summary of Results

We have measured performance differences on a wide variety of different benchmarks. From
memory usage on disk, memory usage in RAM and the time it took to execute the test programs.

Let’s start with storage: to be able to quickly start an application we have to ensure that the
byte-code files are as small as possible. The normalizations help in reducing the code size that
needs to be loaded, see Section 6.7. The size of the byte-code after normalization is almost the
same as the size of the byte-code before normalization. An entirely different ratio is seen when
the patterns in the match clauses become larger and longer. Here a size explosions up to 3.8
MB is seen that can be represented in just 26.8kB. Especially when doing a lot of matching the
code size exploded. We observed this now because it was never stress-tested in the past.

Second up is the memory consumption, here no differences are visible. We are measuring the
memory consumption of the runtime. The LVM runtime start off with a fixed amount of memory
and never changes the allocated memory. The memory that is used internally can greatly differ,
this could not be measured. When we were testing the Nofib benchmark which has a function
that creates very deep recursive structures, namely Exp3 8, we had a segmentation fault. This
segmentation fault only appeared in the non-normalized code. This could indicate that the
preallocated memory was enough for our implementation but resulted in an out of memory error
for the non normalized code. Therefore we point out that the non-normalized code stresses the
runtime more than the normalized code.

Lastly the execution times here we measured 3 different test sets. Improvements are seen
across the three test sets.

The first set of test programs are from the Nofib benchmark suite. The average improvement
for the Nofib benchmark suite is 3.16%. The worst case is averted, namely the stack overflow
exception. The worst degradation that didn’t turn in a stack overflow was 4.50% slower. The
best improvement was 21% faster.

The second test tests some function that are optimized from the prelude. Here we wanted to
test that we created a significant improvement in the prelude. The prelude is used in all programs
that are written in Haskell. We have proved that there is no degradation in the performance
with the changed core. As soon as the program executes deeper pattern matches there is an
improvement.

The last test generates extreme match statement cases and views how these hold up with
the new analysis. We see no difference when the pattern becomes wider. As there are more
patterns in a match statement the implementation starts to increase the performance of the
code. However when we reach really complicated overlapping patterns in the match statement
we see the real difference. Our implementation reduces the complexity of the resulting case
statements.
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8.3 Future Work

We have made a solid core for future research in the Helium compiler. Future work on the
normalization pass could still yield valuable performance. Removing the catch all clause of the
match statements that match all possible constructors would allow the dead code removal phase
to remove more code, namely pattern match failure cases.

On the solidified core and the constraint based type system research can continue. Adding
an optimization phase to the Helium compiler would increase the performance. From the per-
formance benchmark suite Nofib the Imaginary directory has been ported and this can be used
to test the optimization. Open research questions related to this research are:

• Can we implement a type-and-effect infrastructure in Helium?

• Can we instantiate the type-and-effect system for cardinality analysis?

• Can we use our analysis to generate better performing code compared to the current
Helium compiler?

After this research has been done different optimizations that can be based on the analysis
result. The most notable being the Heap Recycling Optimization. We would love to see heap
recycling being used in the wild. It can be used to generate highly optimized in-place algorithms
without resorting to an imperative style of programming.

Another direction that could be taken is inlining of code; this is especially important when
an actual application is compiled. The compilation of an application could be indicated to the
compiler. All imports are known at this moment and there are no further exports. The program
can load all library functions used into its own module. Now a full inline phase for the entire
program could happen.

Of all functions their complete usage can now be seen. A least general type can be used to
have more type information available while generating byte-code.

Functions can be specialized with respect to their predicates. This in combination with
an inliner could result in inlining the addInt or addF loat instructions for example. These
instructions are now hidden in a function that is dynamically dispatched through a dictionary.
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Appendix A

Normalize: Pseudo Haskell

127 altsRemovePatDefault :: Alts -> Alts

128 altsRemovePatDefault [] = []

129 altsRemovePatDefault (Alt PatDefault _:alts) = alts

130 altsRemovePatDefault (alt:alts) = alt:altsRemovePatDefault alts

Figure A.1: Pseudo Haskell: Remove Default Pattern From Alternatives
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131 idsRSingleton :: Id -> Id -> Map Id Id

132 idsRSingleton x y

133 | "\"_\"" == show y = Map.singleton y x

134 | otherwise = Map.singleton x y

Figure A.2: Pseudo Haskell: Ids Singleton

135 idsRFromList :: [(Id,Id)] -> Map Id Id

136 idsRFromList [] = Map.empty

137 idsRFromList ((x,y):xys) = Map.union (idsRSingleton x y) (idsRFromList xys)

Figure A.3: Pseudo Haskell: Ids From List

138 updateIds :: Map Id Id -> Expr -> Expr

139 updateIds idsR expr = case expr of

140 Let (Strict (Bind nameB exprB)) exprL ->

141 Let (Strict (Bind (replace nameB) (update exprB))) (update exprL)

142 Let (NonRec (Bind nameB exprB)) exprL ->

143 Let (NonRec (Bind (replace nameB) (update exprB))) (update exprL)

144 Let (Rec binds) exprL ->

145 let binds' = map (\(Bind nameB exprB) ->

146 Bind (replace nameB) (update exprB)) binds

147 in Let (Rec binds') (update exprL)

148 Match nameM alts ->

149 let alts' = map (\(Alt pat exprA) -> Alt pat (update exprA)) alts

150 in Match (replace nameM) alts'

151 Ap expr1 expr2 -> Ap (update expr1) (update expr2)

152 Lam nameL exprL -> Lam (replace nameL) (update exprL)

153 Con _ -> expr

154 Var nameV -> Var (replace nameV)

155 Lit _ -> expr

156 where update expr' = updateIds idsR expr'

157 replace name = Map.findWithDefault name name idsR

Figure A.4: Pseudo Haskell: Ids Update

158 replaceDefaults :: Id -> Alts -> Alts

159 replaceDefaults nextClause alts =

160 if Maybe.isJust findDefault

161 then map (\(Alt pat exprP) -> Alt pat $

162 replaceNextClause nextClause defaultExpr exprP) alts

163 else alts

164 where defaultExpr = Maybe.fromJust findDefault

165 findDefault = findDefault' alts

166 findDefault' [] = Nothing

167 findDefault' (Alt PatDefault exprA:_) = Just exprA

168 findDefault' (_:alts') = findDefault' alts'

Figure A.5: Pseudo Haskell: Replace Default Pattern In Alternatives
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169 replaceNextClause :: Id -> Expr -> Expr -> Expr

170 replaceNextClause nextClause exprN exprP = case exprP of

171 Let (Strict (Bind nameB exprB)) exprL ->

172 Let (Strict (Bind nameB (replace exprB))) (replace exprL)

173 Let (NonRec (Bind nameB exprB)) exprL ->

174 Let (NonRec (Bind nameB (replace exprB))) (replace exprL)

175 Let (Rec binds) exprL ->

176 let binds' = map (\(Bind nameB exprB) -> Bind nameB (replace exprB)) binds

177 in Let (Rec binds') (replace exprL)

178 Match nameM alts ->

179 let alts' = map (\(Alt pat exprA) -> Alt pat (replace exprA)) alts

180 in Match nameM alts'

181 Ap expr1 _ | leftMostAp expr1 == Var nextClause -> exprN

182 Ap expr1 expr2 -> Ap (replace expr1) (replace expr2)

183 Lam nameL exprL -> Lam nameL (replace exprL)

184 Con _ -> exprP

185 Var nameV | nameV == nextClause -> exprN

186 Var _ -> exprP

187 Lit _ -> exprP

188 where replace = replaceNextClause nextClause exprN

189 leftMostAp (Ap expr1 _) = leftMostAp expr1

190 leftMostAp expr1 = expr1

Figure A.6: Pseudo Haskell: Replace NextClause In Expression
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Appendix B

Normalize: Rewrite

1 lookup :: Eq a => a -> [(a,b)] -> Maybe b

2 lookup _ [] = Nothing

3 lookup k ((x,y):xys)

4 | k == x = Just y

5 | otherwise = lookup k xys

Figure B.1: Lookup Function: Real World Example
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1 \''$dictEqv87'' ''u$0'' ''u$1'' ->

2 let ''nextClause$.518'' ''u$0'' ''u$1'' ''$dictEqv87'' =

3 let ''nextClause$.519'' =

4 ''$primPatternFailPacked''

5 "function bindings ranging

6 from (58,1) to (61,33)

7 in module Prelude.hs";

8 in let ''k.520'' = ''u$0'';

9 in let! ''u$1.521'' = ''u$1'';

10 in match ''u$1.521'' with {

11 ''::'' ''l$0'' ''l$1'' ->

12 let! ''l$0.522'' = ''l$0'';

13 in match ''l$0.522'' with {

14 (@0,2) x y ->

15 let ''xys.523'' = ''l$1'';

16 in let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''k.520'';

17 in match ''guard$.524'' with {

18 True -> Just y;

19 _ ->

20 let! ''guard$.525'' = otherwise;

21 in match ''guard$.525'' with {

22 True ->

23 lookup ''$dictEqv87'' ''k.520'' ''xys.523'';

24 _ -> ''nextClause$.519'';};};

25 _ -> ''nextClause$.519'';};

26 _ -> ''nextClause$.519'';};

27 in let! ''u$1.526'' = ''u$1'';

28 in match ''u$1.526'' with {

29 '':[]'' -> Nothing;

30 _ -> ''nextClause$.518'' ''u$0'' ''u$1'' ''$dictEqv87'';}

Figure B.2: Lookup Function: Generated Core
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B.1 Remove Renames
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1 let ''k.520'' = ''u$0'';

2 in let! ''u$1.521'' = ''u$1'';

3 in match ''u$1.521'' with {

4 ''::'' ''l$0'' ''l$1'' ->

5 let! ''l$0.522'' = ''l$0'';

6 in match ''l$0.522'' with {

7 (@0,2) x y ->

8 let ''xys.523'' = ''l$1'';

9 in let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''k.520'';

10 in match ''guard$.524'' with {

11 True -> Just y;

12 _ ->

13 let! ''guard$.525'' = otherwise;

14 in match ''guard$.525'' with {

15 True ->

16 lookup ''$dictEqv87'' ''k.520'' ''xys.523'';

17 _ -> ''nextClause$.519'';};};

18 _ -> ''nextClause$.519'';};

19 _ -> ''nextClause$.519'';}

Figure B.3: Lookup Function: Before Renaming k.520

1 let ''xys.523'' = ''l$1'';

2 in let! ''guard$.524'' =

3 ''=='' ''$dictEqv87'' ''k.520'';

4 in match ''guard$.524'' with {

5 True -> Just y;

6 _ ->

7 let! ''guard$.525'' = otherwise;

8 in match ''guard$.525'' with {

9 True -> lookup ''$dictEqv87'' ''k.520'' ''xys.523'';

10 _ -> ''nextClause$.519'';};}

Figure B.4: Lookup Function: Before Renaming xys.523

1 lookup ''$dictEqv87'' ''k.520'' ''xys.523'';

2 --------------------------------------------------------------------------------

3 lookup ''$dictEqv87'' ''u$0'' ''l$1'';

Figure B.5: Lookup Function: First Renaming

1 ''=='' ''$dictEqv87'' ''k.520'';

2 --------------------------------------------------------------------------------

3 ''=='' ''$dictEqv87'' ''u$0'';

Figure B.6: Lookup Function: Second Renaming
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1 let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''u$0'';

2 in match ''guard$.524'' with {

3 True -> Just y;

4 _ ->

5 let! ''guard$.525'' = otherwise;

6 in match ''guard$.525'' with {

7 True -> lookup ''$dictEqv87'' ''u$0'' ''l$1'';

8 _ -> ''nextClause$.519'';};}

Figure B.7: Lookup Function: After Renaming xys.523

1 let! ''u$1.521'' = ''u$1'';

2 in match ''u$1.521'' with {

3 ''::'' ''l$0'' ''l$1'' ->

4 let! ''l$0.522'' = ''l$0'';

5 in match ''l$0.522'' with {

6 (@0,2) x y ->

7 let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''u$0'';

8 in match ''guard$.524'' with {

9 True -> Just y;

10 _ ->

11 let! ''guard$.525'' = otherwise;

12 in match ''guard$.525'' with {

13 True -> lookup ''$dictEqv87'' ''u$0'' ''l$1'';

14 _ -> ''nextClause$.519'';};};

15 _ -> ''nextClause$.519'';};

16 _ -> ''nextClause$.519'';}

Figure B.8: Lookup Function: After Renaming k.520
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1 \''$dictEqv87'' ''u$0'' ''u$1'' ->

2 let ''nextClause$.518'' ''u$0'' ''u$1'' ''$dictEqv87'' =

3 let ''nextClause$.519'' =

4 ''$primPatternFailPacked''

5 "function bindings ranging

6 from (58,1) to (61,33)

7 in module Prelude.hs";

8 in let! ''u$1.521'' = ''u$1'';

9 in match ''u$1.521'' with {

10 ''::'' ''l$0'' ''l$1'' ->

11 let! ''l$0.522'' = ''l$0'';

12 in match ''l$0.522'' with {

13 (@0,2) x y ->

14 let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''u$0'';

15 in match ''guard$.524'' with {

16 True -> Just y;

17 _ ->

18 let! ''guard$.525'' = otherwise;

19 in match ''guard$.525'' with {

20 True -> lookup ''$dictEqv87'' ''u$0'' ''l$1'';

21 _ -> ''nextClause$.519'';};};

22 _ -> ''nextClause$.519'';};

23 _ -> ''nextClause$.519'';};

24 in let! ''u$1.526'' = ''u$1'';

25 in match ''u$1.526'' with {

26 '':[]'' -> Nothing;

27 _ -> ''nextClause$.518'' ''u$0'' ''u$1'' ''$dictEqv87'';}

Figure B.9: Lookup Function: Renames Removed
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1 \''$dictEqv87'' ''u$0'' ''u$1'' ->

2 let ''nextClause$.518'' ''u$0'' ''u$1'' ''$dictEqv87'' =

3 let ''nextClause$.519'' =

4 ''$primPatternFailPacked'=

5 "function bindings ranging

6 from (58,1) to (61,33)

7 in module Prelude.hs";

8 in let! ''u$1.521'' = ''u$1'';

9 in match ''u$1.521'' with {

10 ''::'' ''l$0'' ''l$1'' ->

11 let! ''l$0.522'' = ''l$0'';

12 in match ''l$0.522'' with {

13 (@0,2) x y ->

14 let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''u$0'';

15 in match ''guard$.524'' with {

16 True -> Just y;

17 _ ->

18 let! ''guard$.525'' = otherwise;

19 in match ''guard$.525'' with {

20 True -> lookup ''$dictEqv87'' ''u$0'' ''l$1'';

21 _ -> ''nextClause$.519'';};};

22 _ -> ''nextClause$.519'';};

23 _ -> ''nextClause$.519'';};

24 in let! ''u$1.526'' = ''u$1'';

25 in match ''u$1.526'' with {

26 '':[]'' -> Nothing;

27 _ -> ''nextClause$.518'' ''u$0'' ''u$1'' ''$dictEqv87'';}

Figure B.10: Lookup Function: Before Rewrite

1 let ''nextClause$.519'' =

2 ''$primPatternFailPacked'=

3 "function bindings ranging

4 from (58,1) to (61,33)

5 in module Prelude.hs";

6 in let! ''u$1.521'' = ''u$1'';

7 in match ''u$1.521'' with {

8 ''::'' ''l$0'' ''l$1'' ->

9 let! ''l$0.522'' = ''l$0'';

10 in match ''l$0.522'' with {

11 (@0,2) x y ->

12 let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''u$0'';

13 in match ''guard$.524'' with {

14 True -> Just y;

15 _ -> lookup ''$dictEqv87'' ''u$0'' ''l$1'';};

16 _ -> ''nextClause$.519'';};

17 _ -> ''nextClause$.519'';}

Figure B.11: Lookup Function: Otherwise Removed
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1 '':[]'' -> Nothing;

2 _ -> ''nextClause$.518'' ''u$0'' ''u$1'' ''$dictEqv87'';

3 --------------------------------------------------------------------------------

4 ''::'' ''l$0'' ''l$1'' ->

5 let! ''l$0.522'' = ''l$0'';

6 in match ''l$0.522'' with {

7 (@0,2) x y ->

8 let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''u$0'';

9 in match ''guard$.524'' with {

10 True -> Just y;

11 _ -> lookup ''$dictEqv87'' ''u$0'' ''l$1'';};

12 _ -> ''nextClause$.519'';};

13 _ -> ''nextClause$.519'';

14 --------------------------------------------------------------------------------

15 '':[]'' -> Nothing;

16 ''::'' ''l$0'' ''l$1'' ->

17 let! ''l$0.522'' = ''l$0'';

18 in match ''l$0.522'' with {

19 (@0,2) x y ->

20 let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''u$0'';

21 in match ''guard$.524'' with {

22 True -> Just y;

23 _ -> lookup ''$dictEqv87'' ''u$0'' ''l$1'';};

24 _ -> ''nextClause$.519'';};

25 _ -> ''nextClause$.519'';

Figure B.12: Lookup Function: Combining Alternatives

1 \''$dictEqv87'' ''u$0'' ''u$1'' ->

2 let ''nextClause$.519'' =

3 ''$primPatternFailPacked''

4 "function bindings ranging

5 from (58,1) to (61,33)

6 in module Prelude.hs";

7 in let! ''u$1.526'' = ''u$1'';

8 in match ''u$1.526'' with {

9 '':[]'' -> Nothing;

10 ''::'' ''l$0'' ''l$1'' ->

11 let! ''l$0.522'' = ''l$0'';

12 in match ''l$0.522'' with {

13 (@0,2) x y ->

14 let! ''guard$.524'' = ''=='' ''$dictEqv87'' ''u$0'';

15 in match ''guard$.524'' with {

16 True -> Just y;

17 _ -> lookup ''$dictEqv87'' ''u$0'' ''l$1'';};

18 _ -> ''nextClause$.519'';};

19 _ -> ''nextClause$.519'';}

Figure B.13: Lookup Function: After Rewrite
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B.3 Dead Code Elimination

There is no dead code to be eliminated for the lookup function.



Appendix C

Timing

Table C.1: All Timing Data

invocations disabled simplify enabled simplify
function input relative actual relative actual

EchoInt 0 1.03 13.1± 6.85µs 1.00 12.7± 6.46µs
EchoFloat 0 1.02 36.6± 16.88µs 1.00 35.8± 16.03µs
Bernoulli 0 1.06 38.9± 20.28µs 1.00 36.7± 17.17µs
Bernoulli 1 1.04 47.5± 24.22µs 1.00 45.9± 21.29µs
Bernoulli 2 1.03 51.7± 27.50µs 1.00 50.2± 24.91µs
Bernoulli 3 1.05 38.7± 18.58µs 1.00 36.9± 16.70µs
Bernoulli 4 1.07 74.2± 38.16µs 1.00 69.3± 32.84µs
Bernoulli 5 1.03 38.9± 19.89µs 1.00 37.6± 18.38µs
Bernoulli 6 1.08 78.0± 43.16µs 1.00 72.2± 32.82µs
Bernoulli 7 1.04 38.9± 19.97µs 1.00 37.2± 17.28µs
Bernoulli 8 1.06 99.7± 51.74µs 1.00 94.0± 45.12µs
Bernoulli 9 1.06 38.8± 20.36µs 1.00 36.7± 16.93µs
Bernoulli 10 1.08 109.8± 57.11µs 1.00 101.5± 46.36µs
Bernoulli 11 1.07 41.4± 21.68µs 1.00 38.9± 17.16µs
Bernoulli 12 1.07 149.1± 76.14µs 1.00 139.2± 61.61µs
Bernoulli 13 1.04 41.5± 20.82µs 1.00 39.8± 19.84µs
Bernoulli 14 1.06 137.2± 68.49µs 1.00 129.1± 63.02µs
Bernoulli 15 1.07 41.4± 22.04µs 1.00 38.6± 17.76µs
DigitsOfE1 0 1.03 16.2± 8.23µs 1.00 15.7± 7.50µs
DigitsOfE1 1 1.05 19.5± 9.63µs 1.00 18.6± 7.99µs
DigitsOfE1 2 1.04 24.6± 11.07µs 1.00 23.8± 10.72µs
DigitsOfE1 3 1.05 30.6± 14.06µs 1.00 29.1± 11.66µs
DigitsOfE1 4 1.03 35.7± 16.85µs 1.00 34.6± 15.16µs
DigitsOfE1 5 1.03 40.5± 17.69µs 1.00 39.3± 16.83µs
DigitsOfE1 6 1.03 46.5± 20.58µs 1.00 45.4± 19.82µs
DigitsOfE1 7 1.03 52.0± 24.15µs 1.00 50.6± 20.95µs
DigitsOfE1 8 1.01 57.0± 26.21µs 1.00 56.4± 26.24µs
DigitsOfE1 9 1.04 63.9± 30.17µs 1.00 61.6± 27.28µs
DigitsOfE1 10 1.04 71.5± 33.75µs 1.00 68.9± 30.20µs
DigitsOfE2 0 1.04 16.0± 8.22µs 1.00 15.5± 7.07µs
DigitsOfE2 1 1.05 18.0± 8.86µs 1.00 17.2± 7.32µs
DigitsOfE2 2 1.03 22.7± 11.03µs 1.00 22.1± 9.56µs

continued. . .
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. . . continued

invocations disabled simplify enabled simplify
function input relative actual relative actual

DigitsOfE2 3 1.05 23.9± 11.01µs 1.00 22.7± 9.39µs
DigitsOfE2 4 1.04 26.9± 11.60µs 1.00 25.7± 10.78µs
DigitsOfE2 5 1.21 35.0± 12.96µs 1.00 28.8± 13.49µs
DigitsOfE2 6 1.02 32.1± 15.91µs 1.00 31.4± 13.74µs
DigitsOfE2 7 1.00 33.8± 14.89µs 1.02 34.3± 14.90µs
DigitsOfE2 8 1.00 36.9± 15.76µs 1.00 36.8± 15.76µs
DigitsOfE2 9 1.02 39.2± 17.53µs 1.00 38.4± 15.84µs
DigitsOfE2 10 1.03 44.8± 20.36µs 1.00 43.5± 19.05µs
Exp3 8 0 1.01 13.3± 6.54µs 1.00 13.2± 7.09µs
Exp3 8 1 1.05 16.6± 8.42µs 1.00 15.8± 7.30µs
Exp3 8 2 1.05 19.0± 8.77µs 1.00 18.0± 9.04µs
Exp3 8 3 1.06 28.7± 13.49µs 1.00 27.1± 11.43µs
Exp3 8 4 1.04 49.5± 23.85µs 1.00 47.5± 20.02µs
Exp3 8 5 1.08 122.7± 53.39µs 1.00 113.8± 51.24µs
Exp3 8 6 1.05 337.2± 123.31µs 1.00 321.3± 116.85µs
Exp3 8 7 stack overflow 1.00 1034.6± 222.90µs
Exp3 8 8 stack overflow 1.00 3.3± 0.56ms
Exp3 8 9 stack overflow 1.00 12.4± 0.76ms
Exp3 8 10 stack overflow 1.00 57.5± 4.74ms
Integrate 0 1.03 18.2± 8.75µs 1.00 17.6± 8.43µs
Integrate 1 1.01 19.2± 8.56µs 1.00 19.1± 8.88µs
Integrate 2 1.03 19.9± 10.36µs 1.00 19.3± 8.22µs
Integrate 3 1.03 20.4± 9.30µs 1.00 19.8± 8.71µs
Integrate 4 1.04 20.9± 10.41µs 1.00 20.1± 10.02µs
Integrate 5 1.05 21.4± 10.38µs 1.00 20.3± 8.58µs
Nfib 0 1.10 14.1± 12.77µs 1.00 12.8± 5.94µs
Nfib 1 1.02 13.0± 6.46µs 1.00 12.7± 6.13µs
Nfib 2 1.04 13.7± 7.40µs 1.00 13.2± 6.03µs
Nfib 3 1.03 14.5± 7.08µs 1.00 14.1± 6.81µs
Nfib 4 1.02 16.2± 7.95µs 1.00 15.8± 8.51µs
Nfib 5 1.02 19.0± 8.49µs 1.00 18.7± 7.99µs
Nfib 6 1.02 23.4± 11.85µs 1.00 22.9± 11.43µs
Nfib 7 1.02 25.0± 11.44µs 1.00 24.4± 10.33µs
Nfib 8 1.02 33.9± 16.29µs 1.00 33.1± 13.85µs
Nfib 9 1.02 48.3± 22.58µs 1.00 47.4± 20.11µs
Nfib 10 1.02 66.5± 33.10µs 1.00 65.1± 26.82µs
Nfib 11 1.01 95.6± 42.50µs 1.00 94.9± 40.48µs
Nfib 12 1.01 139.2± 56.19µs 1.00 138.3± 53.24µs
Nfib 13 1.02 216.9± 94.63µs 1.00 212.3± 77.86µs
Nfib 14 1.01 336.1± 133.35µs 1.00 331.3± 124.42µs
Nfib 15 1.01 506.5± 168.67µs 1.00 501.2± 160.56µs
Nfib 16 1.01 791.4± 258.84µs 1.00 783.8± 245.57µs
Nfib 17 1.00 1271.2± 484.60µs 1.00 1265.1± 476.56µs
Nfib 18 1.00 1874.9± 517.05µs 1.00 1867.5± 468.65µs
Nfib 19 1.01 2.9± 0.49ms 1.00 2.8± 0.48ms
Nfib 20 1.00 4.4± 0.50ms 1.00 4.4± 0.50ms
Nfib 21 1.00 7.0± 0.57ms 1.00 6.9± 0.52ms
Nfib 22 1.01 11.1± 0.64ms 1.00 11.0± 0.53ms
Nfib 23 1.00 17.6± 0.68ms 1.00 17.6± 0.63ms
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. . . continued

invocations disabled simplify enabled simplify
function input relative actual relative actual

Nfib 24 1.01 28.5± 0.90ms 1.00 28.4± 0.90ms
Nfib 25 1.00 45.7± 1.08ms 1.00 45.7± 1.29ms
Paraffins 0 1.05 24.8± 13.41µs 1.00 23.7± 11.46µs
Paraffins 1 1.07 58.3± 30.22µs 1.00 54.5± 25.81µs
Paraffins 2 1.05 94.6± 49.04µs 1.00 90.3± 40.35µs
Paraffins 3 1.03 143.1± 65.46µs 1.00 139.3± 62.42µs
Paraffins 4 1.06 248.1± 119.03µs 1.00 234.7± 86.77µs
Paraffins 5 1.10 426.6± 189.56µs 1.00 388.7± 130.19µs
Paraffins 6 1.03 727.2± 280.84µs 1.00 707.0± 251.68µs
Paraffins 7 1.03 1330.5± 567.63µs 1.00 1290.2± 507.59µs
Paraffins 8 1.01 2.2± 0.54ms 1.00 2.2± 0.51ms
Paraffins 9 1.02 4.1± 0.53ms 1.00 4.0± 0.51ms
Paraffins 10 1.03 8.0± 0.60ms 1.00 7.8± 0.56ms
Paraffins 11 1.01 16.6± 0.63ms 1.00 16.4± 0.51ms
Paraffins 12 1.01 35.7± 0.67ms 1.00 35.5± 0.81ms
Paraffins 13 1.01 80.3± 0.99ms 1.00 79.4± 1.08ms
Paraffins 14 1.01 149.5± 1.42ms 1.00 147.5± 1.63ms
Primes 0 1.01 13.2± 6.00µs 1.00 13.1± 5.68µs
Primes 1 1.06 50.2± 27.77µs 1.00 47.6± 24.41µs
Primes 2 1.06 89.6± 73.54µs 1.00 84.8± 68.76µs
Primes 3 1.12 171.6± 202.03µs 1.00 152.9± 171.18µs
Primes 4 1.02 272.2± 378.73µs 1.00 266.1± 374.00µs
Primes 5 1.15 441.9± 718.38µs 1.00 385.7± 610.49µs
Primes 6 1.19 723.1± 1307.21µs 1.00 609.8± 1061.36µs
Primes 7 1.02 901.8± 1661.60µs 1.00 886.9± 1643.72µs
Primes 8 1.01 1368.3± 2650.09µs 1.00 1351.9± 2645.40µs
Primes 9 1.00 2.2± 4.37ms 1.00 2.2± 4.40ms
Primes 10 1.01 2.7± 5.59ms 1.00 2.6± 5.54ms
Primes 11 1.01 4.7± 10.08ms 1.00 4.6± 9.88ms
Primes 12 1.00 10.9± 23.96ms 1.01 11.1± 24.55ms
Primes 13 1.01 13.0± 28.74ms 1.00 12.9± 28.41ms
Primes 14 1.00 15.0± 33.13ms 1.00 15.0± 33.63ms
Primes 15 1.01 17.3± 38.26ms 1.00 17.2± 37.99ms
Queens 0 1.03 13.3± 6.39µs 1.00 13.0± 5.81µs
Queens 1 1.06 15.6± 8.76µs 1.00 14.7± 6.91µs
Queens 2 1.01 19.3± 9.32µs 1.00 19.1± 9.12µs
Queens 3 1.04 33.1± 16.79µs 1.00 31.9± 14.16µs
Queens 4 1.02 80.6± 34.51µs 1.00 79.0± 34.12µs
Queens 5 1.02 331.2± 130.23µs 1.00 324.0± 122.30µs
Queens 6 1.02 1392.6± 509.77µs 1.00 1370.1± 502.53µs
Queens 7 1.01 5.3± 0.52ms 1.00 5.2± 0.50ms
Queens 8 1.02 24.9± 0.63ms 1.00 24.4± 0.61ms
Queens 9 1.02 124.1± 1.18ms 1.00 121.7± 0.99ms
WheelSieve1 0 1.01 13.1± 6.97µs 1.00 12.9± 5.93µs
WheelSieve1 1 1.02 13.6± 7.13µs 1.00 13.3± 6.23µs
WheelSieve1 2 1.04 14.0± 7.64µs 1.00 13.5± 6.56µs
WheelSieve1 3 1.04 14.6± 7.06µs 1.00 14.1± 7.46µs
WheelSieve1 4 1.03 17.0± 8.30µs 1.00 16.6± 8.13µs
WheelSieve1 5 1.00 16.9± 7.92µs 1.00 16.9± 8.73µs
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. . . continued

invocations disabled simplify enabled simplify
function input relative actual relative actual

WheelSieve2 0 1.02 13.3± 7.32µs 1.00 13.0± 5.74µs
WheelSieve2 1 1.02 13.5± 6.41µs 1.00 13.3± 6.34µs
WheelSieve2 2 1.02 13.8± 6.41µs 1.00 13.5± 7.14µs
WheelSieve2 3 1.05 14.5± 7.41µs 1.00 13.8± 6.23µs
WheelSieve2 4 1.01 16.9± 8.01µs 1.00 16.7± 8.14µs
WheelSieve2 5 1.00 16.8± 8.33µs 1.00 16.8± 8.42µs
X2n1 0 1.04 14.1± 7.83µs 1.00 13.5± 6.32µs
X2n1 1 1.00 5.5± 0.66ms 1.07 5.9± 1.05ms
X2n1 2 1.00 12.2± 0.59ms 1.08 13.2± 4.00ms
X2n1 3 1.00 19.9± 0.69ms 1.00 19.8± 0.86ms
X2n1 4 1.00 27.4± 0.93ms 1.00 27.3± 1.34ms
X2n1 5 1.00 36.7± 0.74ms 1.00 36.6± 1.06ms



Appendix D

F-Tests

F-Test Two-Sample for variance enabled simplify disabled simplify
Mean 13608 13554
Variance 120168 71388
Observations 120 120
df 119 119
Fstat 1.6833
P (F ≤ f) one-tail 2.4111E-3
Fcrit one-tail 1.3536

Table D.1: F-Test Input: 0
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F-Test Two-Sample for variance enabled simplify disabled simplify
Mean 37874645 38696236
Variance 4.4093E+12 1.6657E+11
Observations 120 120
df 119 119
Fstat 26.472
P (F ≤ f) one-tail 7.0025E-53
Fcrit one-tail 1.3536

Table D.2: F-Test Input: 13847

F-Test Two-Sample for variance enabled simplify disabled simplify
Mean 75952407 79139739
Variance 5.6222E+11 1.5587E+13
Observations 120 120
df 119 119
Fstat 27.724
P (F ≤ f) one-tail 5.4286E-54
Fcrit one-tail 1.3536

Table D.3: F-Test Input: 27693
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