
Solving Stochastic Parallel Machine
Scheduling using a Metaheuristic

Approach with Efficient Robustness
Estimation.

M. S. Hessey
ICA-3496724

Supervisor: J. M. Van Den Akker
J. A. Hoogeveen

Department of Computing Science
Utrecht University

MSc Thesis
March 2019

Abstract

Although robustness is often discussed when solving stochastic problems, definitions
in the literature vary. We present five quantitative definitions of robustness that are
close to the intuitive qualitative meaning of robustness as used by other authors. Since
many scheduling problems are NP-hard, they are sometimes solved using Metaheuristic
approaches. In such a case, we need a way of estimating robustness efficiently. Using
Stochastic Parallel Machine Scheduling as a test problem, we analyze efficient measures
for estimating these definitions.

Our results show three things. First, there are some limitations to ’slack-based’ measured
proposed by other authors. Second, optimizing the deterministic variant of the problem
shows decent results on some problem instances, but can be a poor predictor of the
expected makespan in schedules with lots of inter machine precedence arcs and no slack.
In these cases, a statistical approximation approach showed good results. Third, in less
extreme instances with less precedence arcs and whose solutions have more slack, the
use of an efficient robustness estimator does not improve the robustness of the solutions
produced by our metaheuristic approach.

Taken together, our results show that in some cases deterministic makespan minimization
performed as well as any other measure, but that situations exist in which it is outper-
formed by a statistical approximation approach. We did not find any situations in which
the statistical approximation was outperformed by deterministic makespan pr any other
robustness estimation measure. It remains an open question which aspect of the schedule
or problem instance determines if uncertainty must be considered. Our hypothesis is that
as schedules approach the global optimum (for any robustness definition presented herein),
the quality of the robustness estimation method used in the metaheuristic approach
becomes more important.

Contents

1 Project Scope 7
1.1 Introduction . 7

1.1.1 Stochastic Parallel Machine Scheduling with precedence relations 8
1.1.2 Representation . 9
1.1.3 Deterministic scheduling problems related to parallel machine

scheduling . 9
1.1.4 Introduction to local search approaches 10

1.2 Thesis structure . 12
1.3 Research objectives . 12

2 Literature 15
2.1 Robustness . 15

2.1.1 Probability distribution dependent Definitions of Robustness . . . 16
2.1.2 The definition of slack . 17
2.1.3 Probability distribution independent definitions of Robustness

(Estimation Measures) . 20
2.1.4 Heuristic solutions to Robust problems related to Stochastic Paral-

lel Machine Scheduling. 22
2.2 Metaheuristics for problems related to Stochastic Parallel Machine Scheduling 24
2.3 Conclusion . 27

3 Robustness: Definitions and estimation Measures 29
3.1 Quantitative robustness definitions used. 29
3.2 Overview of Robustness Measures considered and Notation used 32

3.2.1 Desirable properties of Robustness Measures 32
3.2.2 Slack based measures . 33
3.2.3 Theoretical Analysis of RMs . 34
3.2.4 Statistical approximation in linear time. 35

6 Contents

4 Robustness Measure Evaluation 43
4.1 Aim of this experiment . 43
4.2 Experimental Setup . 44

4.2.1 Stochastic Parallel Machine Scheduling: A suitable test problem . 44
4.2.2 Problem Instances . 45
4.2.3 Schedule Generation . 48
4.2.4 Experiments performed . 52
4.2.5 Definitions and notation. 53

4.3 Results . 54
4.3.1 Expected Makespan . 55
4.3.2 Solution Robustness . 59
4.3.3 Quality Robustness . 64

4.4 Conclusion . 69

5 The effect of inter machine dependencies on robustness measures in
problem instances without any slack. 71
5.1 Experimental Setup . 71
5.2 Results . 74
5.3 Conclusions . 79

6 Comparing deterministic makespan and statistical approximation min-
imization SPMS solutions. 81
6.1 Setup . 81
6.2 Results . 82
6.3 Conclusion and Discussion . 85

7 Conclusion 87
7.1 Summary of Conclusions . 87
7.2 Comparison to similar work. 88
7.3 General Conclusion . 89
7.4 Further Research . 89

Appendix A Notation 95

Appendix B Other starting heuritics for the MLS procedure. 97

Chapter 1

Project Scope

1.1 Introduction

Scheduling1 is the process of optimally assigning tasks, often known as jobs, to scarce
resources (e.g. machines or personnel) over time. Recently, attention in scheduling theory
has been given to scheduling where the processing time of a job is stochastic. A common
objective is the minimization of the expected time at which the last job completes, which
is known as the expected makespan. However, in an application, one may prefer a solution
with a slightly higher expected makespan if certain guarantees about performance under
disturbance can be made. Such a solution is called robust. To the best of our knowledge,
no universal formal definition of robustness exists. One intuitive definition is given by
[GS08]: a schedule which does not significantly degrade in the face of disruption is called
robust.

Two things may be important in a practical setting. First, that the objective function
does not significantly degrade (e.g. a due date for a project is highly likely to be met,
even under disruptions). Following [HL04b] and [Von+05] we shall refer to such a solution
as quality robust (other names exist, such as objective protecting schedules). Second, one
may want to avoid reassigning personnel or machines during project execution. Again
following [HL04b] and [Von+05] we call a schedule that is likely to remain feasible under
disruptions solution robust (such solutions are also referred to as stable).

1An overview of scheduling terminology and notation can be found in the appendix under Notation.
A detailed introduction to scheduling theory can be found in [Pin12].

8 Project Scope

A lack of a universal definition is not due to a lack of interest in robustness. In fact, many
publications discuss ways for creating a schedule with worst case guarantees (see Chapter
2 for an overview). Methods to create schedules with worst case guarantees broadly fall
into one of two categories [HL04b][HL05][BKF12]: Proactive methods attempt to create
a robust schedule that is feasible even under fluctuations due to uncertainty. Reactive
methods attempt to update (fix) the schedule while it is being executed, known as fixing
the schedule online. In this work we will focus on proactive methods.

Many deterministic scheduling problems are NP-hard in the strong sense. Even when good
solutions exist for deterministic versions of a scheduling problem, the (realistic) problem
where the processing times are stochastic may be difficult to solve. Due to the complexity
of stochastic variants of NP-hard problems, these problems are often solved using local
search approaches. Local search approaches rely on exploring many potential solutions,
known as states. Consequently in order to consider robustness during the local search,
the need arises to estimate the robustness of a schedule efficiently. We will compare the
performance of several robustness estimation measures (RMs) and illustrate their use on
a scheduling problem known as stochastic parallel machine scheduling with precedence
relations. In Section 4.2.1) we argue that stochastic parallel machine scheduling with
precedence relations is, in a sense, one of the simplest examples of commonly studied
hard problems and is therefore an excellent problem to work on.

1.1.1 Stochastic Parallel Machine Scheduling with precedence
relations

In the Stochastic Parallel Machine Scheduling problem (spms) we are given n jobs2

(J1, · · · , Jn) to be processed on m identical machines. A job may require other jobs to
have been completed before it can be performed. For example, in a car manufacturing
process, we cannot attach the wheels to the chassis without first having assembled the
chassis. We call such a requirement a precedence relation. Processing job Jj requires pj

uninterrupted processing time on a machine, where pj is a random variable drawn from
some known distribution Dj. Processing of this job may start immediately at any time
after its release date rj, as long as all its predecessors are completed (known as 0-lag
finish-start precedence constraints). Using the 3-field notation3 due to Graham it is the
Pm|pj, prec, rj|Cmax problem.

2 When precedence relations exist, some authors refer to jobs as operations and call a set of operations
connected by precedence relations a job. We do not take that approach.

3See Section 1.1.3 for a brief introduction and appendix A for a complete overview of this notation

1.1 Introduction 9

Solutions are given in the form of a schedule: an assignment of a starting time sj and a
machine mj to each job. We restrict ourselves to offline scheduling: schedules may not
be updated during execution.

We refer to 4.2.1 for a detailed description of why spms is a relevant problem.

1.1.2 Representation

Machine Scheduling problems with precedence constraints can be represented as a graph,
consisting of nodes representing jobs and two types of arcs. Firstly, conjunctive directed
arcs between jobs define precedence relations. These are known as precedence arcs (PA).
Secondly, for a given assignment, disjunctive, undirected edges link jobs that are assigned
to the same machine. These are known as machine arcs (MA). The union of these arcs
we denote simply by A. Making the machine arcs directed is the same as determining an
order in which jobs will be performed on that machine. An order feasible assignment
is one in which the resulting graph is acyclic. The earliest reference we could find for
this representation is [RS64]. It has since been widely used, including among others
[HL04a; Von+05; BL09; MG10]. The earliest feasible start time (s(ESS)) is determined
by a parallel schedule generation (see [HK00]), specifically as described in [Pin12], in
algorithm 5.1.3, page 115: whenever a job finishes, we schedule all available jobs. The
latest feasible start time (s(LSS)) is similarly determined, working backwards from the
makespan. More detail and an example is given in Section 2.1.2. The same technique is
used to determine the critical jobs: The set of jobs in the graph which cannot be started
at a later or earlier time without moving another job. Similarly, we define a critical path:
a path in the graph consisting of critical jobs.

1.1.3 Deterministic scheduling problems related to parallel ma-
chine scheduling

Below we present a list of well known results in scheduling, building up towards the
problem we are considering. We will use the common three field notation by Graham.
The first field denotes what type of machines are available: 1 means a single machine, Pm

denotes m identical, parallel machines. The second field denotes which assumptions are
made on the jobs (rj means jobs have a release date, prec means precedence relations exist).
Finally the third field denotes the objective: Cmax represents makespan minimization.
See Appendix A for a complete overview of notation.

10 Project Scope

We begin by noting that 1||Cmax is trivial: any order of jobs will have the same result.
On two machines, the problem is no longer trivial: P2||Cmax is known to be NP-hard
in the weak sense (it is the Partition problem) [Pin12]. Next we introduce release
dates (denoted rj). Clearly Pm|rj|Cmax is equivalent to Pm|rj, dj = 0|Lmax, where
Lmax is minimizing the maximum lateness of a job. Pm|rj|Lmax has a polynomial time
approximation scheme [Mas03] and thus so has Pm|rj|Cmax. Pm|prec|Cmax is NP-hard in
the strong sense [Pin12]. However, some special cases are easily solvable: for 1|prec|Cmax

it is optimal to start any available job whenever the machine becomes available. In the
special case where all jobs have a processing time of 1 and Pm|prec, pj = 1, tree|Cmax,
optimal solutions are found using the Critical Path or Largest Number of Successor
rules. Because Pm|prec|Cmax is NP-hard in the strong sense, so is Pm|prec, rj|Cmax. This
problem can be solved by using column generation [AHK12].

1.1.4 Introduction to local search approaches

Local search approaches are often used when the solution space is too large to explore
fully, as is the case for NP-hard problems. The aim is to minimize or maximize an
objective function in the search space. This is done by taking steps through the search
space, moving from solution to solution. Solutions that are reachable from one-another
within a single step are called Neighbors. The neighborhood operator defines for any
solution a set of solutions that are reachable within a single step. The search space is
also commonly referred to as the landscape and depending on the objective function the
local searcher is called a Hill-Climbing algorithm (maximizing an objective function)
or a Vertex Decent (minimizing an objective function). Local search algorithms can
be either first-improvement or best-improvement. First-improvement algorithms will
explore neighboring solutions until any improvement is found. Best improvement will
exhaustively explore all neighbors, then move to the best neighbor.

A problem for local search algorithms is that they may get stuck in local optima, or on
plateaus - local optima in the weak sense. Various techniques exist to deal with this issue,
such as tabu-search, simulated annealing, Multi-Start Local Search, Iterated Local Search
and Genetic Local Search. A description of the last three is given by[Thi], summarized
below:

1.1 Introduction 11

Multi-Start Local Search (MLS)

A Multi-Start Local Search, abbreviated to MLS, repeatedly creates a random initial
solution and performs Hill Climbing (vertex decent) until a local optimum is reached. It
then outputs the best solution found. Although this technique is very basic, if the Hill
Climbing steps are fast enough, it can explore a great many solutions quickly, increasing
the chance that a good solution is found.

Iterated Local Search (ILS)

Iterated Local Search, abbreviated to ILS, start with a random solution and uses a local
searcher to find a local optimum. It then performs a random mutation and uses the
local searcher until it finds a (hopefully different) local optimum. If the new solution is
the best found so far, it is saved. If a worse local optimum is found, the new solution
is discarded. This way the ILS repeatedly uses the currently best encountered solution
to find a better solution. The size of the mutation is important: If it is too large, ILS
reverts to MLS. If it is too small, ILS may fail to escape a local optimum. ILS approaches
can work well when the search landscape is structured: i.e. if the value of local optima
approach that of the global optimum, as the solutions approach the optimal solution. If
this is not the case, they offer little benefit over MLS.

Genetic Local Search (GLS)

Genetic Local Searchers mimic the concept of ’survival of the fittest’ (and are therefore
sometimes known as Evolutionary Algorithms). The searcher keeps track a a list of
solutions, known as the population. In each ’generation’, the fittest solutions of the
population are combined to create new solutions (offspring). There is then some form
of selection (known as competition) to reduce the total population back to the original
number.

Genetic Local Searchers consist of 5 key components

• Information Structures: a way of representing a solution (often called an individual).

• A selection algorithm to determine which solutions are copied to population pool
of the next generation.

12 Project Scope

• A way of creating new solutions based on two solutions, called ’parents’. This is
known as recombination.

• A way of ensuring competition in the population pool.

• Some definition of what it means to be fit (a fitness function)

Recombination of two fit individuals (solutions with a high objective function value)
hopefully leads to an even fitter solution. The second, fourth and fifth of the above
components create selection pressure. A Genetic Algorithm may perform poorly if
selection pressure is too high (eliminating genetic diversity too quickly), or too low
(average fitness increase per generation is small). A Genetic Algorithm may also perform
poorly if there is no variation (in which case the best possible solution is simply the best
initial solution) or very low variation. Genetic algorithm approaches work well when
there is a natural way of representing a solution. It is important that the recombination
operator used fits with the problem structure (also noted in [AL03],p.15). Otherwise,
recombination may be too disruptive.

1.2 Thesis structure

Chapter 2 lists works that are pertinent to our research questions. In Chapter 3 we
discuss the experimental setup to answer our research questions. We quantify the research
objectives, introducing quantitative definitions of robustness and specific robustness
measures. Furthermore, we discuss practical aspects such as problem instances and
schedule generation. Chapter 4 contains the results on the problem instances used in
[PAH]. In Chapter 5 we expand on these results by considering the effect of inter machine
dependencies. Finally in Chapter 6 we compare the results of steering the local search
with deterministic makespan and with the best robustness measure identified in chapters
4 and 5.

1.3 Research objectives

The primary aim of this project is to find an efficient way of estimating the robustness of
a schedule, which is suitable for use in metaheuristic approaches to finding schedules.
Thereto we answer the following questions:

1.3 Research objectives 13

• What is a good quantitative definition of robustness? How does this depend on the
characteristics of the stochastic problem?

• What are practicable robustness estimation measures (RMs) for local search proce-
dures? Two questions here are key: How long does it take to calculate the RMs?
How well do the RMs discern between schedules?

Given a set of practicable RMs, these questions arise:

• What is the effect of using these RMs during the local search on solution quality?
We characterize this as the effect on three objectives:

– What is the effect on expected makespan?

– What is the effect on solution robustness?

– What is the effect on quality robustness?

Chapter 2

Literature

In this chapter we discuss relevant earlier work. We begin by discussing robustness
(Section 2.1): listing definitions of robustness (Sections 2.1.1 and 2.1.3) and works that
use heuristic approaches to solve robust problems (Section 2.1.4). In order to discuss the
definitions of robustness in Section 2.1.3, we first describe slack definitions in Section
2.1.2. We then discuss works that pertain to the choice of neighborhood operator and
other technical details of metaheuristic search approaches (Section 2.2). Finally we build
upon the presented works to argue that this thesis represents research that is interesting
but not yet performed (Section 2.3).

2.1 Robustness

In this section, we summarize works discussing robust scheduling. Although in the
introduction we have provided qualitative definitions of robustness, we have not yet
given a quantitative definition. This is because, as far as we are aware, no universal
quantitative definition of robustness exists. In the first two subsections we list (sometimes
implicit) quantitative definitions of robustness. We distinguish between definitions that
rely on the realization of a schedule1 (Section 2.1.1) and those that do not (Section 2.1.3).
Definitions that rely on the realization of a schedule tend to be closer to an intuitive,
qualitative definition of robustness (such as those by [HL04a] and [Von+05]), but are
impractical for use during a local search. Conversely, definitions that do not depend on

1By realization of a schedule, we mean that the schedule has been executed, so that things like
difference between predicted makespan and makespan of the executed schedule can be measured.

16 Literature

realization do not match an intuitive definition as well, but may be more useful during a
local search. We will label these definitions as Estimation Measures.

2.1.1 Probability distribution dependent Definitions of Robust-
ness

This sections lists quantitative definitions of robustness that are similar to the qualitative
definitions given in the introduction. Although these measures are close to the intuitive
definition of robustness, they rely on information about the realized performance of a
schedule.

[Von+05] Provides an explicit, quantitative definition of quality robustness: "Quality
robustness (makespan performance) is measured by the probability that a project ends
within the projected deadline." In fact, they report the increase in project deadline
required to ensure that a project meets a deadline with a certain probability as a means
to compare algorithms. They also provide an implicit quantitative definition of solution
robustness: "Stability cost [solution robustness]: weighted sum of absolute deviations
between the actually realized activity starting times and the starting times indicated in
the initial projected schedule as anticipated before project execution." They report this
as a means to compare algorithms.

Quantitative definitions of robustness are not always provided explicitly. Often they are
given implicitly as a performance measure. The following are measures used by authors
and as such form implicit definitions.

[Deb+07] Focus on the resource constraint side of srcpsp. Given baseline schedule, they
find resource allocation through flow techniques. Their objective function is to minimize
sum of weighted expected deviances in start time of a job in the actual schedule compared
to the baseline schedule.

Earlier, [HL04b] also use minimizing the sum of weighted expected deviances in start
time of a job.

[PAH] aim to minimize the expected makespan. They argue that this forms a good basis
for quality robustness.

[BL09] develop an online list scheduling policy for the rcpsp with 0 lag start-finish
relations using a Greedy Randomized Adaptive Search Procedure (GRASP). The tech-
nique is further discussed in Section 2.1.4. Here it is relevant to note their performance

2.1 Robustness 17

measure is the percentage distance between the expected Cmax and the critical path
length of a project with deterministic mean durations and that they also investigate
how expected makespan and the probability of meeting a due date are related. For this
they use results from the GA by [Bal07]. They argue that one should not investigate
the correlation between the expected makespan and the probability that a project is on
time (which the authors refer to as service level - a possible quality robustness measure)
because many problem instances may have 0 or 1 probability of being on time given
a policy. Rather, they argue that one should find for each problem instance the due
date δ required for the project to have a certain (fixed) probability of being on time.
Moreover, they explore the correlation between δ and the expected makespan, i.e. if we
require a certain quality robustness, what is the relation between project due date and
expected makespan? Their results show high correlation between expected makespan
and due date required to ensure a certain robustness. They conclude that solutions that
perform well for minimizing the expected makespan also perform well for minimizing
the due date required to ensure a certain probability of finishing on time. An exception
holds for the case where one required 99% robustness. The authors say this may be due
to the difficulty in estimating the required due date (because 99% requires many rare
events). They conclude: "While our observations may not amount to irrefutable proof,
they nevertheless provide considerable evidence ... that by searching for a scheduling
policy with lowest expected makespan, one usually simultaneously minimizes the expected
tardiness and maximizes the service level." They leave space for improvement however:
"Obviously, dedicated algorithms could perhaps obtain the same results in less time or
achieve higher-quality outcomes with the same computational effort".

2.1.2 The definition of slack

To quantify robustness, slack is often used. Thus we must discuss definitions of slack
used in various sources before turning to robustness measures that involve slack. Slack
has various similar definitions by different authors. Before we go into these different
definitions, we first repeat the definition the earliest and latest feasible starting schedules
from Section 1.1.2 and give an example.

Earliest and Latest start schedules

Given an assignment of jobs to machines and an order on each machine in which they
must be processed, the earliest start schedule (ESS) is the schedule in which each job is

18 Literature

Figure 2.1: A left active schedule for the example problem. There are five
jobs with processing times: 3, 1, 2, 7, 1 respectively. The precedence relations are
(J1, J3), (J1, J4), (J2, J4), (J3, J5). Note that J3 cannot be delayed without delaying J5,
but that both J3 and J5 can be delayed together without increasing the makespan.

started as early as possible, without changing the order in which the jobs are processed.
This can be calculated using the total order on the precedence graph. That is, let the set
of predecessors of job j be denoted by πj and the machine predecessor be denoted by
πM

j . Then the earliest start time of job j is given by:

sj(ESS) = max{rj, max
i∈(πj∪πM

j)
{si(ESS) + pi}}

Similarly, the latest start schedule (LSS) is the schedule in which each job is started as late
as possible, without changing the order in which the jobs are processed or delaying the
makespan. This can be calculated by first setting all latest start times to the makespan.
Then going in reverse order through the precedence graph, we can calculate the latest
starting time for each job. Let the set of successors of job j be denote σj and the machine
successor be denoted σM

j . Then the latest start time of job j is given by:

sj(LSS) = min{ min
i∈(σj∪σM

j)
{si(LSS)− pj}, Cmax − pj}

This follows the recursive method described in [Pin12].

As an example, consider the problem with two machines and five jobs, with processing
times: 3, 1, 2, 7, 1 respectively. The precedence relations are (J1, J3), (J1, J4), (J2, J4), (J3, J5).
Assume jobs J1, J3 and J5 are assigned to machine M1 and jobs J2 and J4 are assigned
to machine M2. The earliest starting date for jobs J1 and J2 is 0, because they have
no predecessors. The earliest start date for J3 is 3, because of the (J1, J3) precedence
relation. Similarly, the earliest start for J4 is 3. Finally the earliest start for J5 is
sJ3(ESS) + pJ3 = 5. The earliest start schedule is depicted in figure 2.1.

2.1 Robustness 19

Job id p s(ESS) s(LSS) s(LSS)− s(ESS)
1 3 0 0 0
2 1 0 0 2
3 2 3 7 4
4 7 3 3 0
5 1 5 9 4

Table 2.1: The earliest and latest starting times calculated for the example schedule
depicted in figure 2.1

The makespan is determined by job J4 and is 10. Working back from the makespan,
we can determine the latest feasible starting times. For jobs J4 and J5, that have
no successors, sJ4(LSS) = Cmax − pJ4 = 3 and sJ5(LSS) = Cmax − pJ5 = 9. Now
sJ3(LSS) = sJ5(LSS)− pJ3 = 7. Similarly we find latest starts for job 1 and job 2 to be
0 and 2 respectively.

The above is summarized in Table 2.1.

Slack Definitions

Slack often refers to how much the start time of a job can be delayed without influencing
some aspect of the schedule, such as the makespan. Examples of this definition include:

"The start of the processing of some jobs usually can be postponed without increasing
the makespan. These jobs are referred to as the slack jobs"[Pin12].

[HHE10] introduce a distinction between free slack and total slack. We will discuss the
definition of total slack after the definitions of free slack: "[Free slack is] the amount of time
an activity can slip without delaying the start of any of its immediate successors."[HHE10;
CH08] A similar formulation is: "Define the free slack as the amount of time that an
activity can slip without delaying the start of the very next activity"[AH05].

Some of these same authors also provide a quantitative definition: "The free slack is
LSi − ESi, where ESi(LSi) is the standard forward (backward) recursion procedure2

(Hartmann and Kolisch, 2000)"[CH08]. However, the procedure they refer to does not
match their qualitative description. Indeed, the procedure in [HK00] consists of assigning
each job at the "earliest possible precedence and resource feasible time". Doing the same
in a backward recursion fashion is the algorithm described in [Pin12]. In this method,

2This is the procedure described in the previous subsection.

20 Literature

the slack of a job is not how much it can slip without delaying the start of any of its
successors, but how much it can slip without delaying the makespan.

To make the distinction clear with a practical example, consider Job J3 in the example
from the previous subsection (figure 2.1). Note that J3 cannot slip at all without delaying
job J5. Thus according to the qualitative definitions in [AH05; CH08; HHE10] the free
slack is 0. However, we have that sJ3(LSS)− sJ3(ESS) = 4, thus by the quantitative
definition, the free slack is 4.

Turning now to total slack, the definition provided is: [Total slack] is the amount of
time by which the completion time of an activity can exceed its earliest completion
time without delaying the project completion time.[HHE10]. They do not provide a
quantitative definition of total slack.

In this work we will use (quantitative formulations of) the qualitative formulations
provided above. That is, we define:
Definition 1 (Free Slack). The free slack of job i (FSi) is the amount of time by which
it can slide without delaying any of its successors or increasing the makespan:

FSi = min{ min
j∈(σi∪σM

i)
{sj − (si + pi)}, Cmax − (si + pi)} (2.1)

Note this is always non negative in a feasible schedule.
Definition 2 (Total Slack). The total slack of a job i (TSi) is how much a job can slide
without increasing the makespan:

TSi = si(LSS)− si(ESS) (2.2)

2.1.3 Probability distribution independent definitions of Ro-
bustness (Estimation Measures)

The following definitions differ more from the qualitative definition of robustness than
those in the previous section. However, they do not require information about the distri-
bution of job processing times and thus may be more suited to local search approaches,
or problem instances in which the distribution is not known.

[AH05] qualitatively defines robustness as "We define the robustness of a schedule, as its
ability to cope with ’small’ increases in the time duration of some activities that may
result from uncontrollable factors (i.e. with a limited effect on the completion time of the

2.1 Robustness 21

project)." Their qualitative definition corresponds to the definition of quality robustness
in [HL04b],[Von+05]. Their quantitative definition however seems more a definition
of solution robustness. They consider what they call Free Slack (whose quantitative
definition matches our definition of Total Slack).

Chtourou et al.[CH08] introduce solution robustness measures based on what they call
Free Slack (but whose quantitative definition matches our definition of Total Slack). The
authors propose twelve measures based four different weightings of three measures. The
three measures are sums of:

• The slack TSi = si(LSS)− si(ESS)

• A binary indicator BTSi denoting if the free slack exceeds some fraction γ of the
job duration:

BTSi =

1, if TSi ≥ γpi

0, otherwise

• Slack with an upperbound given by a fraction of the job duration:

UTSi = min{TSi, γpi}

The sum of these measures without any further weighting form the first 3 measures.
The authors argue that if the processing time of a job with many successors increases,
it is more likely to influence Cmax. So a second set of 3 measures is obtained by using
the number of successor jobs as a weight. Other weightings are based on resource
requirements, which are out of scope for this paper. To utilize the Free Slack heuristics,
one first needs a baseline schedule. The authors therefore adapt a two stage approach:
First a schedule is created that minimizes Cmax (heuristically), then the heuristic is re-run
with the objective of maximizing the Robustness Measure subject to the constraint the
Cmax does not increase compared to the found optimum.

[HAH11] argue that a schedule in which successive jobs are frequently assigned to a single
machine are more likely to be robust. Thus they argue that a good robustness measure
is for a job set J and machine set M : ∑

j∈J

∑
m∈M γjm, where

γjm =

1, if ∃i ∈ σj that is scheduled on machine m

0, otherwise

22 Literature

[RAH] similarly aim to maximize the number of successive job pairs that are executed
on the same machine. That is, they measure robustness by ∑

(i,j)∈A f(i, j) where

f(i, j) =

1, if i and j are assigned to the same machine

0, otherwise

[HHE10] propose robustness measures for the discrete time/cost trade-off problem. They
refer to [CH08] and their measures are again based on slack, however now on Total Slack
(TS). Many measures involve the slack duration ratio (SDR), which is the ratio of the
total slack and the expected processing time of a job: SDRi = T Si

pi
. The intuition is that

jobs with longer processing times are likely to have larger disruptions in the absolute
sense. Thus these jobs require more buffer. New Robustness Measures include:

• Slack utility functions where the number of successors is weighted by ∑⌈SDRj⌉
j=1 e−j

• The dispersion of slacks, measured by the coefficient of variation of the SDR

• The percentage activities for which the SDR is less than some threshold (the authors
use 0.25), which they call potentially critical jobs.

• The project buffer size as percentage of the project deadline

• The coefficient of variation of makespan: E(Cmax)
V ar(Cmax) The coefficient of variation of

makespan also appears in [Pin12].

2.1.4 Heuristic solutions to Robust problems related to Stochas-
tic Parallel Machine Scheduling.

Techniques for solving deterministic problems often do not solve the corresponding
stochastic problem, however they frequently form a basis for a (heuristic) approach.
One such frequently used method due to Goldratt is the critical chain buffer managing
(CCBM) approach. This approach along with its advantages and drawbacks is considered
in [DH02], Chapter 10.

Another example where the deterministic approach is adapted to solve a stochastic
problem is [AH08]. They adapt the Moore-Hodgson algorithm for 1|dj|U to exactly solve
1|pj, dj|U using a chance constraint.

2.1 Robustness 23

We refer the reader to [Pin12], Chapter 12, for more solutions to stochastic problems
adaptations from deterministic problems. One noteworthy result they show is that for
scheduling on two parallel machines where the jobs are distributed exponentially with
rate λj, i.e. for P2|pj ∽ Exp(λj)|E(Cmax), optimal solutions are found using LEPT
(least expected processing time) rule, however examples are given that show LEPT is
not optimal for every distribution of processing times. A similar rule does not exist
for the deterministic variant. This shows that stochastic problems are not necessarily
harder than deterministic ones and that better solutions than attempting to modify the
deterministic approach may exist.

[HL04c] develop a heuristic for construction solution robust schedules for the srcpsp.
The 0 lag finish-start precedence relations are given by a set of arcs. The heuristic, called
the adapted float factor model, ADFF, works as follows. Given some project due date δ

each job Ji is scheduled some time after si(ESS). Let the time to finish be defined as
TFi(ESS) = δ − si(ESS). Each job is assumed to have a probability of being overdue
Pri and a cost per time unit that it is late ci. The weight on a precedence relation ((i, j)
is given by pici. Furthermore, let the float factor be αi = βi

βi+ϕi
, where βi (resp. ϕi) is

the sum all A-arcs before (resp. after) i in the network. The start time of Ji is scheduled
to be si = ESSi + αiTFi(ESS). This method shows good results for providing solution
robustness. It may therefore be interesting as (part of) a robustness measure.

[Von+05] consider the trade-off between quality and solution robustness for the srcpsp.
They compare traditional critical chain buffer managing (CCBM) with a modified version
of CCBM and with the adapted float factor (ADFF) method described above. They use
RanGen software by [DVH03] to generate problem instances and test their schedules
using simulation. They assume job processing times are drawn from a right-skewed beta
distribution with mean = pj, minimum = 0.5pj and maximum = 2.25pj. Their results
show that as making the final deadline becomes more important ADFF is preferable to
CCBM (the quality robustness difference becomes small, whereas the solution robustness
difference remains large). This is surprising as ADFF was developed to provide solution
robustness, whereas CCBM was developed to provide quality robustness, but clearly
ADFF can provide good quality robustness as well. The authors do note however, that
as the problem becomes harder (more jobs or more precedence relations), the makespan
increases, so even a small relative increase in necessary due date of ADFF over CCBM
may be too large to be deemed acceptable.

24 Literature

2.2 Metaheuristics for problems related to Stochas-
tic Parallel Machine Scheduling

We will be solving Stochastic Parallel Machine Scheduling using a metaheuristic3 approach.
The performance of any local search based procedure is highly dependent on solution
representation and the neighborhood operator. In the following we discuss in detail some
neighborhood operators used in literature for spms and similar problems.

A general overview of basic neighborhood operators for machine scheduling is provided
in [AL03]. They distinguish assignment and sequencing problems. For sequencing, they
list Transpose - swapping two sequential jobs -, Insert - moving a single job to a different
position in the sequence), Swap - swapping two non-adjacent jobs - and Block Insert -
moving a sub sequence of jobs to a different position in the sequence.

For assignment they list Reassign - Remove a job from one machine and reassign it to
another, Swap Take two jobs assigned to separate machines and reverse the assignment
and k-Reassign Remove up to k jobs and reassign them to new machines. They observe
it may be preferable to reduce neighborhood size by considering only critical jobs. Thus
defining Critical Reassign, Critical Swap and Critical k-Reassign in which at least one of
the jobs considered is critical.

They briefly note that for a problem such as P |rj|
∑

Cj the above operators may be
generalized appropriately. e.g. Insert takes a job from any machine and reinserts it in
any new position (either on the same machine or not).

Finally it is worth noting that they provide an overview of earlier work on heuristic
approaches to parallel machine problems.

[MG10] propose two closely related optimum connected neighborhood functions for the
Flexible Job Shop Problem based on inserting a critical operation in the best way. We
discuss this work in detail, as we use their operator as part of our local search procedure.

The authors consider operations where a job j is removed from a machine, then reinserted
in a feasible way on to a machine (this may be the same machine). Removal of a job
j from a machine induces a reduced graph by removing the corresponding machine
arcs. Note that j still exists in the graph and may still be connected to other nodes
via precedence arcs. In their Flexible Job Shop Problem, the processing time of a job
depends on the machine it is assigned to. The authors resolve this where needed by

3Section 1.1.4 provides a basic introduction to metaheuristics.

2.2 Metaheuristics for problems related to Stochastic Parallel Machine Scheduling 25

assuming that the processing time of the job is equal to the processing time of that job
on the last machine it was assigned to. This works nicely for parallel machine scheduling,
as the processing time is machine independent, so in particular is always equal to the
time on the last machine the job was assigned to.

Finally, the authors discuss two neighbourhood operators. Jobs considered for a move
are all those on a particular critical path: Starting with the first job j of any critical
path, take a successor job i ∈ σj if i is part of the critical path, otherwise take the next
job on the machine (σM

j).

In the first operator, for every such critical job j, for every machine m, the schedule
resulting from inserting j on m is calculated and the best improvement is added to the
neighborhood of the current solution. That is, the neighborhood of a schedule is all
makespan minimizing moves of a job from the particular critical path to a machine (this
may be the machine the job originally came from). The neighborhood can be determined
in O(N), where N is the number of jobs. This operator is not optimum connected, which
means that there are states from which the local searcher will never reach the optimum.

A second approach is that the neighborhood of a solution is all optimal moves of a job
to another machine, and all feasible moves on the same machine. The difference with
the first approach is that on the same machine, all feasible moves are considered instead
of only the locally optimal moves. This neighborhood is larger than that of the first
approach (it is a strict superset thereof), however finding the feasible solutions is faster
than finding the optimal ones. In this case the neighborhood can be determined in
O(lg(N)) (where again, N is the number of jobs). Note that the time taken to compute
the neighborhood is not the limiting factor. A large neighborhood will take much longer
to search than a small one. The reason to allow more states, is that this neighborhood
operator is optimum connected.

The authors use these in a Tabu-search and report that their best results were found
using the first (non-optimum connected) neighborhood operator, with the approximation
explained above.

[ABH13] find robust solutions for the stochastic job shop problem. They use simulation
to determine expected makespan, which they use as a fitness function for the local search
procedure. Their results show their approach outperforms classical methods (methods
based on using deterministic makespan as an expected makespan approximation).

[PAH] extend this idea by providing other efficient ways of estimating the makespan.
They use an Iterated Local Search approach to solve Robust Parallel Machine Scheduling.

26 Literature

Their aim is to minimize the expected makespan (quality robustness). The key to their
approach is an efficient estimation of the expected makespan, allowing expected makespan
to be part of the fitness function. Their approach is faster than that of [ABH13] and
finds better solutions than the result sampling approach when the number of samples
is less than 100. Their work illustrates that efficient estimation in a local search can
be very effective at solving robust scheduling problems. However, they only consider
minimizing the expected makespan as a robustness measure. Although this measure may
(or may not) be a good measure to determine quality robustness, it may not be a good
measure to provide solution robustness.

[BL09] use a Greedy Randomized Adaptive Search Procedure (GRASP) to solve srcpsp
with 0 lag finish-start precedence relations. They aim to find a scheduling policy
to minimize the expected makespan. They use the natural list representation for a
policy. During their search, they keep track of the best n solutions. These solutions are
recombined to a new list L′ in one of two ways. Firstly from the set of best solutions, a
random solution L is chosen. From L a set of jobs are added iteratively to L′ in order
of first precedence feasible job in L. The number of job addition iterations is uniform
random between two parameters. This is the most likely procedure. To increase diversity
there is also a small probability the next job added to L′ will be the first precedence
feasible job in latest feasible start schedule, or a random precedence feasible job, or the
last precedence feasible job in L. After the new schedule L′ is built, it is improved with a
local search. Finally its expected makespan is estimated using a simulation with a small
number of runs (which is inaccurate but fast). It is then compared to the worst schedule
in the population and if L′ is better it replaces the worst solution in the population.
Although the authors do not mention it, using only a small number of simulation runs
also increases diversity as it allows potentially worse solutions in to the population.
Two final results are relevant to this thesis. First the authors find the best performing
local search to be a two-point crossover for permutations by [Har98] that compares two
schedules before and after double justification (described in the following paragraph).
Second, the authors find a slight improvement when using descriptive4 over random
sampling, especially when the number of replications is low.

A successful technique for improving Local Search for the deterministic rcpsp is double
justification described in [VBQ05]. To explain the technique, we first list some standard
terminology: Schedules are divided into four classes [TB06] (although the first two
definitions below are due to [RCL17]). From small to large, these are:

4A form of sampling where the sampled values are chosen purposefully and are thus not random. See
e.g. [Sal]. We do not use this approach.

2.3 Conclusion 27

• The set of Non-delay schedules : Any schedule in which an activity cannot start
earlier without delaying another activity (even if preemption is allowed).

• Active schedules: Any schedule in which, without activity preemption, no activity
can start earlier without delaying another activity.

• Semi Active schedules: Any schedule for which, without changing the assignment
of jobs to machines, no activity can start earlier without delaying another activity.

• Finally, schedules with insertion of machine idle time are those in which idle time
is voluntarily inserted.

For Cmax, Lmax and other regular optimization criteria, Baker showed that the set of
active schedules is dominant [TB06]. However, this is not the case for stochastic problems
[RCL17]. We return now to [VBQ05]. Given a schedule S, they defines right (resp.
left) justification of an activity j as finding a schedule S ′ where the start times of all
other jobs are unchanged (i.e. ∀i, (i ̸= j → si = s′

i)) and job j is started as late (resp.
early) as possible. Justifying activities in decreasing (increasing) order of finishing time
provides a right active (left active) schedule. Double justification is the act of first right
justifying then left justifying a schedule (which is therefore left active). They show
that many algorithms for deterministic rcpsp benefit from this approach. Note that as
active schedules are not dominant for stochastic problems, it is an open question as to
whether these results are transferable to techniques for stochastic problems. However
in an approach such as that by [BL09] where the Local Search is on the deterministic
problem, one should probably include this technique.

2.3 Conclusion

The need for robustness is apparent to many authors. However, they may differ on
their interpretations and definitions thereof. The qualitative definitions we have given
in the introduction seem to be the most widespread. Several authors (such as [Bal07;
BL09; MG10; ABH13; PAH]) have had good results for robust problems using local
search approaches. Building upon work by [AH05; CH08; GS08; PAH] we will attempt
to determine good robustness estimators for use in a local search approach. Of particular
interest is [PAH], who solve Stochastic Parallel Machine Scheduling using iterated local
search with good results. Their approach however considers robustness only in the sense
of minimizing expected makespan. This differs from many definitions of robustness,
although the results in [BL09] support this approach. We will attempt to solve Stochastic

28 Literature

Parallel Machine Scheduling while taking into account other common definitions of
robustness. By comparing our results to those of [PAH] we will be able to determine the
trade-offs involved between considering robustness and focusing on expected makespan
minimization.

Chapter 3

Robustness: Definitions and
estimation Measures

This chapter discusses the robustness definitions and robustness measures we use. These
are all based on the literature in the previous chapter.

3.1 Quantitative robustness definitions used.

Intuitively, a robustness measure is a way of determining how robust a schedule is. This
simple intuition is surprisingly hard to formalize. Indeed, robustness does not have a
unique formal definition in literature. Based on other works, we present five quantitative
ways to measure robustness. These five measures have been chosen in such a way that
they:

1. Match or resemble a qualitative definition from the literature.

2. Can be calculated for any schedule, given enough simulations run on a single set of
input parameters.

These measures are not required to be quick to calculate. Because we will use these
measures to analyze the performance of our schedule creating algorithm, we will call
them performance measures where ever possible. We do so to distinguish them from the
robustness measures presented in Section 3.2, which we will be using during the local
search.

30 Robustness: Definitions and estimation Measures

Quality Robustness Definitions used

First we present two definitions of quality robustness. Recall that one definition of
quality robustness is "Quality robustness (makespan performance) is measured by the
probability that a project ends within the projected deadline."[Von+05]. That is, quality
robustness is related to whether the entire schedule finishes on time. It does not matter
what individual jobs do during the process, as long as all jobs are finished by some date.

One measure could be the percentage of simulation runs that complete before the deadline.
Mathematically, let H be the Heaviside step function:

H : R→ {0, 1}, H(x) =

1 for x > 0

0 for x ≤ 0
(3.1)

Let Cmax(S)i be the makespan in the i-th simulation of schedule S. Then the percentage
of simulations out of nsim runs with deadline δ, that are completed on time (denoted
QR′

1(S, δ)) would be given by:

QR′
1(S, δ) =

∑nsim
i=1 H(δ − Cmax(S)i)

nsim

However this is not entirely satisfactory, as the due date is not a parameter of the spms
problem, as [BL09] point out. They solve this by finding the due date for which in
expectation a certain fraction of solutions are on time. This leads to our first quality
robustness measure, the date such that the fraction of on time runs is at least π:

QR1(S, π) = min{δ|QR′
1(S, δ) ≥ π} (3.2)

Note that this is simply an elaborate way of saying we take the 100π-th percentile of
the simulated makespans. In particular, we will use π = 0.95 in our experiments. For
brevity, we will use the notation C0.95 as shorthand for QR1(S, 0.95).

A second measure for quality robustness that does not rely on deadlines is the variation
coefficient, defined as the standard deviation (σ̂) over the sample mean (µ̂) of the
makespan (denoted VarCo):

QR2(S) = ˆσCmax

ˆµCmax

= VarCo (3.3)

3.1 Quantitative robustness definitions used. 31

This indicates how certain one is about an expected completion time and thus fits the
intuitive definition of quality robustness. Furthermore, if the expected makespan is
known and with additional information about the shape of the makespan distribution,
this value allows one to determine (or estimate), for any probability π, QR1(S, π).

Solution Robustness Definitions used

To measure solution robustness, we will use two definitions. Recall that solution robustness
describes the likelihood of jobs starting on time, that is, that a schedule can be used
without having to change the time in which resources are used. The first is again a
definition similar to [BL09], namely the unweighted sum of absolute deviations between
the actually realized activity starting times and the starting times indicated in the initial
projected schedule as anticipated before project execution. We call this measure the sum
of linear start delays LSD. Let sj be the planned start time of job j in schedule S. And
let sij be the realized time of job j in the i-th simulation run.

QR3(S) =
nsim∑
i=1

∑
j∈J

|sij − sj| = LSD (3.4)

We choose this measure because it may be argued that in a practical setting, a job
starting early provides as much planning difficulty as a job starting late (i.e., it is sensible
that the function is symmetric). However it should be noted that in our setup, early
starting is not allowed, so sij−sj ≥ 0,∀i, j (so taking the absolute value is not necessary).

We also use the average percentage of jobs that start on time in a run. We will call this
the percentage of on time jobs or start punctuality (SP). Again, if H is the Heaviside
step function (eqn. 3.1) and n is the number of jobs, we have:

QR4(S) =
∑nsim

i=1
∑

j∈J H(sij − sj)
nsim · n

= SP (3.5)

Expected Makespan

Finally, we will also consider the sample mean of the makespans, in order to determine
the expected makespan. Although not intuitively a definition of robustness, there are
some reasons to include this measure. First, if costs for delays are linear, a practitioner
may not care what the makespan distributions of two different solutions look like. In

32 Robustness: Definitions and estimation Measures

this case he may wish to use the solution with the lowest expected makespan. By doing
so, the practitioner is using some information about the uncertainty of the plans and
thus could be said to have chosen the more robust schedule. Second, this measure is
often used in literature so it is useful if one wishes to compare results of their algorithm.
Finally, the results in [BL09] show a strong correlation between the expected makespan
and quality robustness measures. So perhaps the expected makespan functions as a
quality robustness measure.

We take the sample mean of the makespans to estimate the expected makespan:

QR5(S) =
∑nsim

i=1 Cmax(S)i

nsim
= ˆµCmax (3.6)

In the next section, we turn to robustness measures that are not dependent on sampling
and thus can be used in a local search approach.

3.2 Overview of Robustness Measures considered and
Notation used

3.2.1 Desirable properties of Robustness Measures

We wish to determine which Robustness Measures perform well. This section will first
discuss what is desired of a robustness measure.

Recall that the idea is to use a Robustness Measure during a subroutine to select the better
of two different schedules. We assume that both the problem instance and optimization
objective1 are known. It is important that this decision can happen quickly whatever the
problem size. Therefore, we say that:
Definition 3. A robustness measure performs well if, for a given problem instance and
for a given objective, the robustness measure can distinguish schedules with a higher and
lower objective value in linear time with relation to the number of jobs and precedence
relations.

1In this work, the optimization objective is one of the five robustness measures presented in the
previous section (C0.95, VarCo, SP, LSD, ˆµCmax)

3.2 Overview of Robustness Measures considered and Notation used 33

Note that it is not a requirement that the robustness measure be highly correlated with
the objective. The rank based correlation matters more, as illustrated by the following
example.

Consider three solutions with objective value 1,2 and 3 respectively. Consider further
robustness measures RM1 with values 1, 2.5 and 2.4 or RM2, with values −1, π and
210 respectively. RM1 is closer to the actual objective values than RM2, however the
ordering is wrong. Thus RM2 allows us to better distinguish solutions, and is the better
robustness measure.

Common properties or robustness measures in literature

A general formula to create a robustness measure is to choose some property of a job in
a schedule (e.g. the processing time or free slack of that job), some weighting for this
property (e.g. the number of predecessors that job has) and some way of combining
these properties (e.g. summing them). For example, the makespan assuming jobs have
deterministic processing times is a common robustness measure2 for estimating expected
makespan. The job property used is the deterministic processing time. The weighting is
multiplying by one (unweighted). The combination is the maximum over all paths of the
sum of properties along that path.

In the following sections we discuss slack properties, weightings and ways to combine
properties to create robustness measures.

3.2.2 Slack based measures

Slack based robustness measures are some combination of some type of slack for each job.
To distinguish between the robustness measure of a schedule, and the slack measurement
on a single job, we call the latter the slack property of a job.

For a given job j we can calculate the slack properties listed in Table 3.1.

Each property can be weighted. This work only considers two weightings, namely not
using a weighting, or weighting by the number of successors.

That is for any slack property Xj, we consider Xj and |σj| ·Xj

2I am stretching the intuitive definition here, but it fits the formal definition in the previous section

34 Robustness: Definitions and estimation Measures

Notation Definition Description
FSj min{mini∈σj{si−(sj+pj)}, Cmax−(sj+pj) Free slack of job j.

BFSγ
j

1 if ≥ γ · pj

FSj , 0 otherwise.
Binary value indicating if the free slack ex-
ceeds a percentage of the processing time.

UFSγ
j min{γ · pj , FSj} Free Slack with upperbound.

TSj sj(LSS)− sj(ESS) The Total slack of job j is the difference in
starting times of j in the earliest / latest
start schedules.

BTSjγ

1 if TSj ≥ γ · pj

0 otherwise
Binary value indicating if the total slack ex-
ceeds a percentage of the processing time.

UFSγ
j min{γ · pj , TSj} Total Slack with upperbound.

SDRj TSj/pj Slack Duration Ratio

Table 3.1: Robustness measure list. For symbols, refer to A.1

Slack based robustness measures are some way of combining slack properties. In particular,
we consider for any slack property Xj:

• The sum of all slack properties: ∑
j Xj

• The average of all slack properties:
∑

j
Xj

n
, where n is the number of jobs in the

problem instance.

• The minimum of all slack properties minj{Xj}

• The minimum of the sum of slack properties along any path: min(0,∗)∈P{
∑

j∈(0,∗) Xj},
where P is the set of paths from the start job 0 to the completion job ∗.

3.2.3 Theoretical Analysis of RMs

Some drawbacks of robustness measures can be illustrated with thought experiments.

For example, consider a problem instance with six jobs with processing times 1, release
dates 0, without precedence relations and on two machines. Let us compare the schedule
S1 with four jobs on one machine and two on the other, with the schedule S2 where the
jobs are evenly balanced between both machines. Note that the unweighted sum of free
slack and total slack both have value 2 and 4 respectively in S1 and value 0 in S2. An
approach that maximized free or total slack would thus favor S1. However, this is clearly
a poor approach when attempting to minimize the average makespan.

3.2 Overview of Robustness Measures considered and Notation used 35

Second, note that if the critical path has no slack, the minimum total slack and minimum
free slack both of a job and along a path are 0. The exception is if release dates force
the critical path to have slack somewhere, or if slack is inserted into the critical path.
Our problem instances do not force slack on the critical path and we do not consider
inserting slack into the critical path. Thus the minimum properties mentioned above are
no use for this work.

3.2.4 Statistical approximation in linear time.

Another estimation procedure, based on statistical rules, is presented in [PAH]. The
approach works both for known and unknown job completion time distributions. In the
latter case it relies upon an approximation.

It is important to note that [PAH] consider non-zero start-start precedence relations,
whereas in this work we assume zero, finish-start precedence relations. This allows us to
simplify their process.

When a job has two or more predecessors, its starting time is dependent on the maximum
completion time of these predecessors. Given a method of calculating or estimating the
maximum of two distributions, it is possible to estimate all job starting times using a
dynamic programming approach. For now let us assume we have a method of calculating
the maximum of two distributions3.

Algorithmic approach

We will first describe our algorithm and argue that it is correct. Our algorithm processes
the jobs in precedence order. Recall that any feasible schedule admits a complete order.
We determine the approximated start time distribution of the current job j, denoted Sj.
We use capital Sj to distinguish from the planned start time sj . Similarly, in the following
Cj is the estimated completion time distribution. For our problem, with 0-finish-start
lag relations, we have:

Sj = max{rj, Cπ
M
j , max

i∈πj

{Ci}}

I.e., the start time of job j is the maximum of its release date, the completion time of its
machine predecessor and all its precedence graph predecessors.

3This method is presented in the subsection "Calculating the Maximum of two random Normal
variables".

36 Robustness: Definitions and estimation Measures

The key is to estimate the maximum of the distributions as well as possible. The maximum
increases due to uncertainty in the jobs. A mathematical formulation is given in Section
30. For now, the following intuition suffices. Given random variables X1, X2, X3 sampled
from distribution D, it must hold that E(max(X1, X2)) < E(max(X1, X2, X3)). Thus
we must be careful not to account for the uncertainty in a job twice. To determine which
jobs should influence the approximated start time, we consider the following four cases
for precedence relation (i, j):

1. i and j are assigned to the same machine, i is the machine predecessor of j.

2. i and j are assigned to the same machine, i is assigned before j, but is not its
machine predecessor.

3. i and j are assigned to different machines. There is another predecessor of j, that
is assigned to the same machine as i, some time after i.

4. i and j are assigned to different machines. There is no other predecessor of j, that
is assigned to the same machine as i, some time after i.

An example of these cases is also given in Figure 3.1.

J1 J2 J3

J4

Case 1

Case 2

Case 3 Case 4

Figure 3.1: An example of the cases we distinguish in the statistical approximation
approach.
Case 1: J1 and J2 are on the same machine. J2 is the successor of J1.
Case 2: J1 and J3 are on the same machine. J3 is not the successor of J1.
Case 3: J1 is a predecessor of J4 and on a different machine. There is another predecessor
of J4 (J3) scheduled on the same machine as J1, sometime after J1.
Case 4: J3 is a predecessor of J4 and on a different machine. There no other predecessor
of J4 scheduled on the same machine as J3, anytime after J3.

3.2 Overview of Robustness Measures considered and Notation used 37

In the first case and in the fourth case, it is clear that j can be delayed by i and that
there is no other way this information can be carried. So our algorithm should use Si

when determining Sj.

In the second and the third case, although it is clear that i influences j, it does so through
an intermediate job k. Potentially even through more than one job. Note that in any
total order, Sk will be determined before Sj (as k is a machine predecessor of j). Thus
we should not use Si directly when determining Sj. Note that Si does affect Sj: Si will
be used to determine Sk, which will in turn affect Sj. If we were to use Si, we would be
considering its uncertainty twice. Thus in the second and third case we do not update
Sj.

Algorithmic implementation

Now we turn to the implementation of the algorithm (given in algorithm 1. We assume
that the distribution of the job processing times is unknown. Without any information on
the distribution, we work with an implementation that assumes job processing times are
Gaussian. In the case that the distribution is known, this approach is easily adaptable
to other distributions if a way of estimating the maximum of two distributions exists
(such as for the Exponential distribution). To modify the approach we discuss here, one
simply has to replace the function that determines the maximum of two distributions
(algorithm 2) with an appropriate function.

There is some abuse of notation involved in the algorithm. In some cases, the start time
of a job is known exactly (e.g. when it can start at time 0 or at its release date rj). In
such a case, we will use the notation Sj = N(sj, 0), by which we mean that ’distribution’
of the start time has zero variance. We do so because we can then take the distribution
maximum between Sj and some other distribution (that may have some variance). This
notation is true to the way in which the algorithm is implemented: it does not distinguish
between constants and ’distributions’ with zero variance. This happens in line 3 of
algorithm 1.

For now, assume we can calculate the maximum of two Gaussian distributions (see Section
30). We assume (with some error) that the resulting distribution is again Normally
distributed. The approach is to repeatedly use this maximum approximation to calculate
all the starting times using a Dynamic Programming approach. We first present the
algorithm, then discuss the assumptions made therein.

38 Robustness: Definitions and estimation Measures

Algorithm 1: N(µNA
Cmax , σNA

Cmax)(S): For a given schedule S, calculate for each job Cj , the
approximated distribution of completion times for job j, for 0 lag finish-start precedence
relations under the assumption that processing time of jobs are normally distributed.
Data: A feasible schedule.
Result: For every job j, the distribution Cj = N(µCj

, σ2
Cj

) approximating the
completion times of each job.

1 for Each job j in precedence order do
2 if j is the first job on the machine then
3 Sj ← N(0, 0) // Set the start time to 0.;
4 else
5 i← πM

j ;
6 Sj ← Ci // Case 1 ;
7 end
8 // Find the last predecessor of j on each machine;
9 for Jk ∈ πj do

10 µ← Machine that Jk is ;
11 LMPµ

j ← null // Initialize the last predecessor of j on machine µ ;
12 if SJk

> SLMPµ
j

then
13 LMPµ

j ← Jk ;
14 else
15 end
16 for Each machine µ do
17 if j is on machine µ then
18 //Case 1 (handeled above, so ignore), or Case 2 (ignore) ;
19 else
20 //Different machine, update Sj ;
21 if LMPµ

j exists then
22 //Case 4 ;
23 Sj ← DistrMax(Sj, SLMPµ

j
, independent);

24 else
25 end
26 end
27 Sj ← DistrMax(Sj, rj, independent);
28 Cj ← Sj + N(pj, 0.3pj) //Given the start time, we calculate the completion time

distribution;
29 end
30 Cmax ← DistrMaxj{Cj};

The algorithm runs in O(n + R) where n is the number of jobs and R is the number of
precedence relations and machine arcs. Intuitively this is clear: each job is considered
once by each of its successors and its machine successor.

3.2 Overview of Robustness Measures considered and Notation used 39

Calculating the Maximum of two random Normal variables.

The maximum of two random Normal variables D1 ∽ N(µ1, σ2
1), D2 ∽ N(µ2, σ2

2) may
be calculated as described in algorithm 2. The independent case is due to [NK08]. Let
θ =

√
σ2

1 + σ2
2, ϕ be the standard normal probability density function and Φ be the

standard normal cumulative probability function. The mean of the maximum of D1 and
D2 is given by:

µ3 = µ1 · Φ(µ1 − µ2

θ
) + µ2 · Φ(µ2 − µ1

θ
) + θ · ϕ(µ1 − µ2

θ
)

The standard deviation of the maximum of D1 and D2 is given by:

σ2
3 = (σ2

1 + µ2
1 − µ1) · Φ(µ1 − µ2

θ
)

+ (σ2
2 + µ2

2 − µ2) · Φ(µ2 − µ1

θ
)

+ (µ1 + µ2 − 1)θ · ϕ(µ1 − µ2

θ
)

For the dependent case, we follow the work described in [PAH]: Let X = max{D1, D2}.
For notation, let ∆ = D2 −D1 be the difference between the random variables. Second,
let E(∆|∆ > 0) be the average difference between D2 and D1 when D2 is larger than D1.
Finally, let µ∆ = E(max{0, ∆}).

From probability theory, we have that:

µ∆ = Pr(∆ ≤ 0) · 0
+ Pr(∆ > 0) · E(∆|∆ > 0)
= Pr(∆ > 0) · E(∆|∆ > 0)

We will show how to calculate Pr(∆ > 0) and E(∆|∆ > 0) later. Once we know these,
we can calculate µ(X):

µ(X) = µ1 + µ∆

The variation of X, if the distributions are unknown, is hard to calculate. [PAH]
approximate by saying that the contribution to the variance of X by D1 and D2 is

40 Robustness: Definitions and estimation Measures

directly proportional to the probability that the respective random variable is larger than
the other. That is:

σ2(X) ≈ Pr(∆ ≤ 0) · σ2
1 + (1− Pr(∆ ≤ 0)) · σ2

2

Note that as D1 and D2 are normally distributed, so too is ∆, with µ∆ = µ1 − µ2 and
σ2

∆ = σ2
1 + σ2

2. Let α = −µ∆
σ∆

be the transformation required to change ∆ into a standard
normal distribution. Then, Pr(∆ ≤ 0) = Φ(α), where Φ is the cumulative probability
density function of the standard normal distribution.

Finally, from [Gre03], we have:

E(∆|∆ > 0) = µ∆ + σ∆ ·
ϕ(α)

1− Φ(α)

Here ϕ is the probability density function of the standard normal distribution.

3.2 Overview of Robustness Measures considered and Notation used 41

The above allows us to create a function DistrMax(N1, N2)→ N3 that creates a new
normal distribution based on the approximated maximum of two normal distributions:

Algorithm 2: DistrMax(N1, N2): A function that returns the normal distribution
resulting from approximating the maximum of two normal distributions.
Data: Two normal distributions N1 = N(µ1, σ2

1) and N2 = N(µ2, σ2
2)

Result: A normal distribution N3, which is an approximation for the distribution of
max D1, D2 for two random variables D1 ∽ N1, D2 ∽ N2.

1 if N1, N2 are independent then
2 θ ←

√
σ2

1 + σ2
2 ;

3 µ3 ← µ1 · Φ(µ1−µ2
θ

) + µ2 · Φ(µ2−µ1
θ

) + θ · ϕ(µ1−µ2
θ

);
4 σ2

3 ← (σ2
1 + µ2

1 − µ1) ·Φ(µ1−µ2
θ

) + (σ2
2 + µ2

2 − µ2) ·Φ(µ2−µ1
θ

) + (µ1 + µ2 − 1)θ · ϕ(µ1−µ2
θ

)
5 else
6 µ∆ ← µ1 − µ2;
7 σ∆ ←

√
σ2

1 + σ2
2;

8 α← (−µ∆/σ∆);
9 Pr(∆ > 0)← 1− Φ(α);

10 E(∆|∆ > 0)← µ∆ + σ∆ · ϕ(α)
(1−Φ(α)) ;

11 µ∆ ← Pr(∆ > 0) · E(∆|∆ > 0);
12 µ3 ← µ1 + µ∆;
13 σ2

3 ← Pr(∆ > 0) · σ2
2 + (1− Pr(∆ > 0)) · σ2

1

14 end
15 return <µ3, σ2

3>;

Chapter 4

Robustness Measure Evaluation

In this chapter we evaluate the robustness measures presented in the previous chapter.
We will first discuss our objective in Section 4.1. Then in Section 4.2 we discuss how the
experiments were set up and why. In Section 4.3 we present the results. Conclusions are
presented in Section 4.4.

4.1 Aim of this experiment

The goal in this thesis is to determine if it is possible to use robustness measures to steer
a local search approach, in order to solve a stochastic problem in a robust way. To this
end, in the previous chapter we identified five quantitative definitions of robustness as
objective functions one may wish to optimize. Recall that we refer to these as performance
measures. Furthermore, we have summarized quantitative robustness measures that can
be calculated in time linear with the number of jobs and precedence relations. Finally,
we determined what it means for a robustness measure to perform well:

A robustness measure performs well if, for a given problem instance and for a given
objective, the robustness measure can distinguish schedules with a higher and lower
objective value in linear time with relation to the number of jobs and precedence relations.

In this chapter, our aim is to answer the following questions:

• Which, if any, robustness measures perform well, for several different problem
instances?

44 Robustness Measure Evaluation

• Which, if any, robustness measures perform well, for several different performance
measures?

That is, we attempt to find robustness measures that can be used to steer a local search
approach. In the next section, we will discuss the experimental setup to answer these
questions.

4.2 Experimental Setup

In order to answer the research questions, we need to have a variety of problem instances
and performance measures. Ideally, we would also test our measures on a variety of
problems. However, this would expand the scope of this work too much. So we restrict
ourselves to stochastic parallel machine scheduling. Section 4.2.1 discusses why we select
this problem. Section 4.2.2 discusses which problem instances we use. For each problem
instance, we want a collection schedules ranging from ’good’ to ’bad’. We emphasize
that at this stage we do not attempt to create good schedules, only determine which
robustness measures may be useful when attempting to create good schedules. How these
are created is discussed in section 4.2.3. Finally, we discuss what we measure and why in
section 4.2.4.

We will now go over which problem we will use and why, how we selected problem
instances and how we generate schedules.

4.2.1 Stochastic Parallel Machine Scheduling: A suitable test
problem

We wish to analyze the influence of using robustness measures in a local search approach.
Therefore any problem we consider should be NP-hard in the strong sense as this type
of problem is frequently solved using local search approaches. A commonly discussed
problem in the literature is the stochastic resource constrained project scheduling problem
(srcpsp). A description of the deterministic version of this problem due to [HK00] is
as follows: There are n activities together with two fictitious activities 0 and n + 1
(the project start, respectively project end dates). Activity j takes time pj to complete.
Performing an activity requires up to K types of resources and requires a known amount
ρjk of each type of resource per time unit (e.g. digging a hole may require several
personnel and a machine). For each resource type, the amount of resources available

4.2 Experimental Setup 45

for the entire project may be bounded (e.g. the amount of money for a project may
be limited) or unbounded (e.g. diggers are not used-up when used). Preemption is not
allowed. Precedence constraints exist between activities. For each type of resource, there
is a limit to the number of resources that can be used at any given time. The objective
of the rcpsp is to minimize the makespan. Heuristics for this problem are given by by
the same authors.

For the stochastic variant, the objective is often minimizing the expected makespan.
Examples include [CH08],[BL09] and [Von+05].

A special case of rcpsp is P |prec|Cmax. There are n jobs to be performed. Job j requires
pj uninterupted processing time to complete on any of the m identical machines. There
are 0-lag finish-start precedence relations between jobs. One can see this is a special case
of rcpsp as follows: Activities are now called jobs. There is one resource type (K = 1)
called a machine. This resource is unbounded over the entire project (machines are not
used up when they are used). However, a bound on the number of resources available at
any given time does exist: at most all m machines can be active. Every job uses exactly
one resource unit per time unit (a job occupies a single machine while it is processed). As
in the rcpsp, preemption is not allowed, jobs have precedence relations and processing
times.

P |prec|Cmax is still NP-hard in the strong sense [Pin12]. Nevertheless, methods exist to
solve the problem exactly. The slightly harder Pm|prec, rj|Cmax can be solved effectively
using column generation [AHK12]. We will denote the variant of this problem with
stochastic processing times (represented as pj) as Pm|pj, prec, rj|Cmax and refer to it as
Stochastic Parallel Machine Scheduling (spms). [PAH] provides a metaheuristic approach
to solve this problem. In a sense the spms problem is one of the simplest examples of
commonly studied hard problems and is therefore an excellent problem to work on.

4.2.2 Problem Instances

In considering the design of the experiment, it is important to emphasize that robustness
measures should not be used to compare the optimality of solutions for different problem
instances. As a trivial example, compare two problems with two jobs of unary processing
time and a single machine. There are no precedence arcs. In the first problem, let all the
release dates be set to 0. In the second, let one job have a release date of 2. This job is
processed last. In a left activated schedule, the expected makespan is 1 and 3 respectively
and the free slack will be 0 and 1 respectively for the two problem instances. Note both

46 Robustness Measure Evaluation

these schedules have the smallest possible expected makespan for their respective problem
instances (i.e. they are both optimal). Thus a difference in free slack does not mean one
schedule is better than the other.

This leads to some difficulty when designing experiments. On the one hand a catch-all
approach is desired, so many problem instances should be compared. On the other hand,
results on different problem instances may not be directly comparable.

We adopt a practical approach. We select several test problem instances. For each of these,
we attempt to determine for each of the five performance measures presented in Section
3.1 the rank based discriminatory ability of the robustness measure, by determining the
Spearman correlation. We determine this based on a set of schedules including ’good’
and ’bad’ schedules (presented in 4.2.3).

In order to be able to compare our work, we use the same problem instances used in
[PAH]. These are titled nJ-rR-mM where n is the number of jobs, r the number of
relations and m the number of machines. For each job, the processing time is a natural
number between 1 and 20 and the release date is a natural number between 0 and
⌊n/2⌋. All released jobs are assumed to be able to start as soon as all predecessors are
completed. That is, we have 0-lag finish start precedence relations. Precedence relations
are semi-randomly selected, such that no cycles occur. Furthermore, release dates form
a partial order in the precedence graph. That is, if job j is a successor of job i, then
rj > ri.

As an example, a graphical representation of 30J-75R-8M is shown in figure 4.1. It is
worth noting that the maximum depth of 30J-75R-8M is 5, which is more than n/m. As
the maximum depth increases, the maximum depth path is more likely to determine the
makespan. Therefore, solutions become more likely to be interchangeable. This makes
local search difficult in such cases. However, in this case, processing times along the
maximum depth path are short.

In addition to these problem instances, we will study the effect of inter machine depen-
dencies in artificial problem instances that are chosen such that any left active schedule
has no slack. These are discussed in Chapter 5.

4.2 Experimental Setup 47

Figure 4.1: The precedence graph in the 30J-75R-8M data file. Each node represents a
job j and gives its processing time, release date and due date as: j|pj, rj, dj. Note all
due dates are set so high that they do not influence the problem. This is the case for all
problem instances we consider.

48 Robustness Measure Evaluation

4.2.3 Schedule Generation

As discussed, we require a range of schedules to test our robustness measures on. Ideally,
these would include schedules with both high and low values, for each of the five
performance measures. However, generating such schedules is not trivial. Indeed, the
main goal of this work is to determine how to create schedules with good performance
measures. If we already knew how to create schedules with high performance measures,
this work need not exist.

Again we adopt a pragmatic approach. To create schedules to test robustness measures
on, we assume that there is no uncertainty: all jobs take exactly their mean processing
time to complete. Thus the problem is deterministic. The local search procedure then
attempts to minimize the makespan. We call this approach deterministic makespan
minimization.

In fact, from the results presented in Section 4.3 it appears that only two out of five
objectives do in fact correlate with the deterministic makespan.

Schedules are generated using a multi-start local search (MLS)1 approach. MLS should
effectively perform a random walk in the space of local optima. In brief, the MLS
approach is as follows:

1. Create a random, feasible schedule using an assignment heuristic (algorithm 3).

2. Improve it until no further local improvements are possible using a variable neigh-
borhood hill climb approach (algorithm 4).

3. Repeat this 1000 times and remember the best 100 found solutions.

We will now discuss each of these steps in more detail.

Assignment Heuristic

Three assignment heuristics were tested: Random Assignment (RA), Greedy Load
Balancing (GLB) and Round Robin Assignment (RR). In each approach the lowest
indexed job without unassigned predecessors is selected and then assigned. The indexation
of jobs is arbitrary but fixed for each problem instance. This means that the order
we assign the jobs in is an arbitrary (but not random) total ordering of the jobs. By
assigning jobs in this order, we guarantee a feasible initial solution.

1see algorithm 5

4.2 Experimental Setup 49

The way the job gets assigned differs for each of the three heuristics. In Random
Assignment, this assignment is random. In GLB, the job is assigned to the machine
with the smallest load. In RR assignment, jobs are assigned to machines in turn. The
first job to machine 0, the second to machine 1 etc. I.e. for m machines, the nth job is
assigned to machine n− 1 mod m. Note that RA is random, whereas GLB and RR are
deterministic.

The assignment heuristic is also presented as an algorithm below:

Algorithm 3: Random Assignment
Data: A problem instance
Result: A feasible assignment of jobs to machines

1 while Unassigned jobs exist do
2 Select the lowest indexed job without unassigned predecessors;
3 Assign it to a random machine;
4 Update list of unassigned jobs;
5 end

In practice the choice of assignment heuristic had little effect on the quality of the
solutions. All results presented use the random machine assignment heuristic (algorithm
3). The other algorithms are presented in the appendix.

Fitness Function

Local search approaches attempt to optimize some fitness function. To create schedules
to test RMs on, we assume that there is no uncertainty: all jobs take exactly their
mean processing time to complete. Thus the problem is deterministic. The local search
procedure then attempts to minimize the makespan. We call this approach deterministic
makespan minimization.

Neighborhood operators

Two neighborhood operators are used, neighborhood swaps and machine reassignments.

Given a schedule S, the neighborhood swap set NOns(S) is the set of schedules resulting
from any single feasible swap of jobs that are immediately adjacent on the same machine.
Formally, for a job j, let µ(j, S) be the machine j is assigned to in S and ι(j, S) be the
position on that machine. The schedule resulting from swapping job j′ with its machine

50 Robustness Measure Evaluation

predecessor (if that exists) is NOns(S, j′)2:

NOns(S, j′) = {S ′|ι(j′, S ′) = ι(j′′, S) = ι(j′, S)− 1
∧ ι(j′′, S ′) = ι(j′, S) = ι(j′′, S) + 1
∧ ∀j, µ(j, S) = µ(j, S ′)
∧ ∀j, j ̸∈ {j′, j′′} → ι(j, S ′) = ι(j, S)
∧ S ′ is a feasible schedule}

Then NOns(S) = ⋃
j′∈J NOns(S, j′).

Similarly, given a schedule S, the machine reassignment neighborhood NOmr(S, j′) is the
set of schedules resulting from reassigning a job j′ to a different machine at a feasible
position. NOmr(S) is the set of all schedules resulting from such a reassignment. Note
that this is not a swapping of two jobs, but the removal and then reinsertion of a single
job to a new position.

Both neighborhoods are explored in a semi random order: First a random job Jj is selected
and the neighborhood operations involving this job are attempted. If no improvement
exists, the next job is selected by simply taking the next job in the problem instance
(Jj+1 mod n). If no improvements at all exist for that neighborhood operator, the next
neighborhood operator is attempted. We continue performing Hill Climb on alternating
operators until a solution is found that forms a local optimum for both operators.

2Although this is always a set with at most one element, we chose this notation to be compatible
with later neighborhood operators that may generate more than one schedule

4.2 Experimental Setup 51

As peusdocode, the variable neighborhood hill-climb algorithm is presented in algorithm
4.

Algorithm 4: Variable Neighborhood Hill Climb: VNHC(S). Returns a local optimum
for both NS and MR.
Data: A set of jobs J, the neighborhood swap operator NS, the machine reassignment

operator MR, a starting schedule S.
1 A local optimum for both NS and MR NSoptimum ← false;
2 MRoptimum ← false;
3 j <- random job from J;
4 while not (NSoptimum = true and MRoptimum = true) do
5 if NOns(S) contains an improvement then
6 S’ ← the first improvement from NOns(S);
7 S ← S’;
8 MRoptimum ← false ;
9 j ← random job from J;

10 else
11 // A localy NS optimal solution has been found ;
12 NSoptimum ← true;
13 j <- random job from J;
14 while MRoptimum = false do
15 if NOmr(S) contains an improvement then
16 S’ ← the first improvement from NOmr(S);
17 S ← S’;
18 j ← random job from J;
19 NSoptimum ← false;
20 else
21 MRoptimum ← true;
22 end
23 end
24 end
25 end
26 return S;

52 Robustness Measure Evaluation

MLS approach

Now we are ready to present the entire MLS algorithm. In pseudocode, where SNbest is
the ordered array of the Nbest best solutions found so far:

Algorithm 5: MLSNbest(PI,Ntries,AH,VNHC,OF): Return the best Nbest schedules out
of Ntries local optima.
Data: A problem instance PI, a number of tries Ntries, a starting assignment heuristic

AH, an objective function OF, a variable neighborhood hill climb VNHC
Result: The best local optimum schedule found after Ntries

1 trycount ← 0;
2 SNbest ← AH(PI);
3 while trycount < Ntries do
4 S ← AH(PI);
5 S ← VNHC(S);
6 if S better than a solution in SNbest then
7 Insert S in the correct position;
8 Shift all other solutions right by one position;
9 Forget a solution if it gets shifted out of the list;

10 end
11 trycount ++ ;
12 end
13 return S*;

We use the first-improvement method as this allows for a less structured exploration of
the search space.

4.2.4 Experiments performed

We start by mentioning again that the aim of this section is to discover which robustness
measures from Section 3.2 are able to predict the five performance measures from Section
3.1. We attempt to determine this as follows.

We consider two job processing time distributions. Either jobs processing times are
distributed normally (i.e. pj ∽ N(pj, 0.3pj) or job processing times are distributed
exponentially with mean pj (i.e. pj ∽ Exp(pj)). For each of the instances PI discussed
in 4.2.2 we:

4.2 Experimental Setup 53

1. Apply MLS100(PI, 1000, RA, V NHC, Deterministic Makespan Minimization) (al-
gorithm 5). That is, we Generate 1000 schedules that are locally optimal with
respect to the deterministic makespan and the neighborhood operators in Section
4.2.3. Of these we select the 100 best schedules (those with the shortest makespan).
The assignment heuristic used is Random Machine Assignment (algorithm 3) and
the hill climb is VNHC (algorithm 4).

2. Do the following once for each job processing time distribution used:

(a) For each of the 100 schedules in MLS100(PI, 1000, RA, VNHC, Deterministic
Makespan Minimization):

i. Calculate the robustness measures of the schedule.

ii. Perform 300 simulations for each job processing time distribution.

iii. For each simulation, we save the realized makespan, the sum of linear
start delays and the percentage of on time jobs in that simulation.

iv. Calculate the performance measures (equations 3.2 to 3.6) of the schedule.

3. Calculate the Spearmann correlation between all performance measure, robustness
measure pairings. Note that as we have 100 schedules, each Spearmann correlation
is based on 100 data points.

A robustness measure with an extreme (approaching 1 or -1) Spearman correlation with
a performance measure may be useful to estimate the performance measure.

In total we perform 600 simulations on 1200 schedules (720,000 simulation in total). The
results of these experiments are presented in the next section.

4.2.5 Definitions and notation.

Below we present an exhaustive list of all robustness measures considered in our experi-
ments and their notation. We refer to Chapter 2 for an overview of relevant references
in literature and Chapter 3 for a theoretical discussing of robustness measures. Let J

denote the set of jobs to be performed. The slack property abbreviations are given in
Table 3.1.

• Deterministic makespan (CDet
max): The makespan of a schedule under the assumption

that all jobs take exactly their mean processing time to process. That is, let Cj be

54 Robustness Measure Evaluation

the completion time of job j, pj the realized processing time of job j and pj the
mean processing time of job j. Then we have:

CDet
max = max

j∈J
{Cj|pj = pj}

• Normal approximation based makespan (µNA
Cmax): The result of Algorithm 1.

• Unweighted average of each of the slack properties from Table 3.1. To distinguish
between the slack property and the slack based robustness measure, we drop the
index.

For example: FSj is the free slack of job j as defined in Table 3.1. FS is the
unweighted average of free slacks:

FS = 1
|J |

∑
j∈J

FSj

The chosen value of γ in given as a superscript for binary and upperbound slacks.
For example BFS0.3 is the unweighted sum of binary free slacks with γ = 0.3.

• Average of slack properties from Table 3.1 weighted by the number of successors.
To indicate a weighting is used, we add the prefix ’w’ for ’weighted’ and subscript
’succ’ for ’successor’.

For example: wFSsucc is the average of the free slacks weighted by number of
successors. Let |σj| be the number of successors (including the machine successor
if it exists) of job j.

wFSsucc = 1
|J |

∑
j∈J

FSj · |σj|

4.3 Results

All robustness definition3, robustness measure4 combinations were measured. We have
selected meaningful results to present in this section. We will discuss the results in 3
parts. First we discuss robustness measures for expected makespan, second RMs for
solution robustness definitions and finally RMs for quality robustness definitions.

3see 3.1
4See end of previous section.

4.3 Results 55

Experiments were performed on N(p, 0.3p) and Exp(p) distributions. The graphs pre-
sented in this section are all from the N(p, 0.3p) runs. Exp(p) runs give much the same
images but with larger variations.

4.3.1 Expected Makespan

CDet
max and the µNA

Cmax show strong rank correlation with ˆµCmax , as can be seen in tables 4.1
and 4.2. µNA

Cmax shows the best correlation for both the N(p, 0.3p) and the Exp(p) job
processing times. It outperforms all other measures in every instance. FS also shows
some correlation. For both FS and TS weighting by number of successors does not
increase correlation. All RMs not presented in this table (BFS0.3, UFS0.3, BTS0.3, UTS0.3,
wBFS0.3

succ, wUFS0.3
succ, wBTS0.3

succ , wUTS0.3
succ) had a small rank based correlation between

−0.25 and 0.25.

It is not clear why the correlation of TS is lower than that of FS. One explanation may
be that as a measure total slack is overly sensitive to the number of jobs on the same
machine: If free slack exists on some non critical subpath, then this is total slack for all
jobs along that subpath. This means that there are multipliers involved that are not
involved in the free slack case.

Another possibility is that the higher FS correlation is due to there being large differences
in machine load. In this case, there is some correlation between FS and CDet

max, which is
in turn correlated with ˆµCmax . Giving an upperbound to FSj removes this artefact. This
corresponds to the drop in rank based correlation between BTS0.3 and ˆµCmax to 0.04 on
average.

We think it unlikely that the difference between FS and TS is due to random fluctuation
because for every problem instance the correlation of FS is greater than that of TS.

Figures 4.2, 4.3 show that CDet
max and µNA

Cmax are highly correlated with the realized makespan,
both given a problem instance and independent of problem instance. However, it should
be noted that the schedules with highest and lowest ˆµCmax are within one standard
deviation for most problem instances. These figures also show that both measures
underestimate the realized makespan by a small margin when the job processing times
are N(p, 0.3p).

From Figure 4.4 it is hard to see that FS has some correlation with ˆµCmax . The observed
values of ˆµCmax are generally within one standard error of each other for any given problem
instance.

56 Robustness Measure Evaluation

Problem Instance CDet
max µNA

Cmax FS wFSsucc TS wTSsucc SDR
30j-15r-4m.ms 0.93 0.95 0.52 0.53 0.42 0.40 0.43
30j-15r-8m.ms 0.88 0.93 0.28 0.32 0.20 0.19 0.14
30j-30r-4m.ms 0.93 0.97 0.51 0.46 0.28 0.28 0.28
30j-30r-8m.ms 0.85 0.93 0.32 0.30 0.23 0.22 0.17
30j-75r-4m.ms 0.93 0.97 0.18 0.25 0.03 0.03 0.12
30j-75r-4m.ms 0.93 0.97 0.18 0.25 0.03 0.03 0.12
100j-50r-6m.ms 0.88 0.91 0.48 0.46 0.26 0.27 0.25
100j-50r-12m.ms 0.85 0.92 0.53 0.32 0.38 0.31 0.38
100j-100r-6m.ms 0.91 0.96 0.67 0.66 0.46 0.41 0.48
100j-100r-12m.ms 0.96 0.97 0.49 0.26 0.30 0.25 0.33
100j-250r-6m.ms 0.94 0.97 0.53 0.50 0.18 0.18 0.20
100j-250r-12m.ms 0.92 0.95 0.34 0.29 0.08 0.09 0.10
Mean 0.91 0.95 0.42 0.38 0.24 0.22 0.25

Table 4.1: Spearman Correlation between ˆµCmax and deterministic makespan, normal
approximation based mean makespan, mean Free Slack, mean weighted Free Slack, mean
Total Slack, mean weighted Total Slack, Total Slack duration ratio. Using N(p, 0.3p)
jobs, 100 Schedules and 300 simulations per schedule.

Problem Instance CDet
max µNA

Cmax FS wFSsucc TS wTSsucc SDR
30j-15r-4m.ms 0.58 0.62 0.21 0.33 0.06 0.03 0.19
30j-15r-8m.ms 0.58 0.63 0.05 0.13 -0.18 -0.14 -0.14
30j-30r-4m.ms 0.60 0.67 0.21 0.26 -0.13 -0.11 -0.10
30j-30r-8m.ms 0.58 0.67 0.16 0.18 -0.01 0.01 -0.00
30j-75r-4m.ms 0.75 0.81 0.00 0.11 -0.21 -0.19 -0.09
30j-75r-4m.ms 0.75 0.81 0.00 0.11 -0.21 -0.19 -0.09
100j-50r-6m.ms 0.60 0.64 0.36 0.37 -0.02 -0.02 0.05
100j-50r-12m.ms 0.44 0.53 0.24 0.18 -0.07 -0.10 0.06
100j-100r-6m.ms 0.54 0.63 0.36 0.49 -0.02 -0.06 0.05
100j-100r-12m.ms 0.66 0.70 0.22 0.06 -0.15 -0.16 -0.07
100j-250r-6m.ms 0.71 0.75 0.36 0.40 -0.09 -0.06 -0.01
100j-250r-12m.ms 0.49 0.56 0.01 0.24 -0.42 -0.35 -0.27
Mean 0.61 0.67 0.18 0.24 -0.12 -0.11 -0.04

Table 4.2: Spearman Correlation between ˆµCmax and deterministic makespan, normal
approximation based mean makespan, mean Free Slack, mean weighted Free Slack, mean
Total Slack, mean weighted Total Slack, Total Slack duration ratio. Using Exp(p) jobs,
100 Schedules and 300 simulations per schedule.

4.3 Results 57

0

100

200

300

0 100 200
DetCmax

Cm
ax

Instance.Name
100j−100r−12m.ms
100j−100r−6m.ms
100j−250r−12m.ms
100j−250r−6m.ms
100j−50r−12m.ms
100j−50r−6m.ms
30j−15r−4m.ms
30j−15r−8m.ms
30j−30r−4m.ms
30j−30r−8m.ms
30j−75r−4m.ms
30j−75r−8m.ms

DetCmax vs Cmax Normal30 jobs

Figure 4.2: CDet
max vs simulated makespan. The black line is the x = y line. Vertical

bars are the standard deviation of mean. N(p, 0.3p) jobs. Top 100 MLS schedules. 300
Simulation runs per schedule.

0

100

200

300

0 100 200
NormalApproxCmax

Cm
ax

Instance.Name
100j−100r−12m.ms
100j−100r−6m.ms
100j−250r−12m.ms
100j−250r−6m.ms
100j−50r−12m.ms
100j−50r−6m.ms
30j−15r−4m.ms
30j−15r−8m.ms
30j−30r−4m.ms
30j−30r−8m.ms
30j−75r−4m.ms
30j−75r−8m.ms

NormalApproxCmax vs Cmax Normal30 jobs

Figure 4.3: µNA
Cmax vs simulated makespan. The black line is the x = y line. Vertical

bars are the standard deviation of mean. N(p, 0.3p) jobs. Top 100 MLS schedules. 300
Simulation runs per schedule.

58 Robustness Measure Evaluation

0

100

200

0 3 6 9
FS

C
m

ax

Instance.Name
100j−100r−12m.ms
100j−100r−6m.ms
100j−250r−12m.ms
100j−250r−6m.ms
100j−50r−12m.ms
100j−50r−6m.ms
30j−15r−4m.ms
30j−15r−8m.ms
30j−30r−4m.ms
30j−30r−8m.ms
30j−75r−4m.ms
30j−75r−8m.ms

FS vs Cmax Normal30 jobs

Figure 4.4: FS vs simulated makespan. Vertical bars are the standard deviation of mean.
N(p, 0.3p) jobs. Top 100 MLS schedules. 300 Simulation runs per schedule.

4.3 Results 59

4.3.2 Solution Robustness

This section compares measures to estimate solution robustness definitions. The defini-
tions considered are the percentage of jobs that start on time SP and the sum of linear
start delays LSD. See Section 3.1 for the quantitative definition.

Linear Start Delay

Tables 4.3 and 4.4 show the Spearman correlations between the average linear start
delay and the robustness measures for N(p, 0.30p) and Exp(p) jobs respectively. They
show that there is no strong correlation between any robustness measure and LSD.
The best measure would appear to be wTSsucc with a mean correlation of −0.33 in
the Normal and −0.41 in the Exponential case. As before, all omited measures (i.e.
µNA

Cmax , wFSsucc, wBFS0.3
succ, wUFS0.3

succ, BTS0.3
, UTS0.3) have values between −0.25 and 0.25.

Problem Instance CDet
max FS BFS0.3 UFS0.3 TS wTSsucc SDR

30j-15r-4m.ms 0.04 0.05 -0.10 -0.07 -0.19 -0.25 -0.07
30j-15r-8m.ms 0.31 -0.21 -0.27 -0.12 -0.33 -0.33 -0.26
30j-30r-4m.ms 0.10 -0.21 -0.20 -0.20 -0.35 -0.35 -0.37
30j-30r-8m.ms 0.30 0.06 -0.22 -0.29 -0.14 -0.18 -0.22
30j-75r-4m.ms 0.22 -0.19 -0.36 -0.46 -0.54 -0.56 -0.34
30j-75r-4m.ms 0.22 -0.19 -0.36 -0.46 -0.54 -0.56 -0.34
100j-50r-6m.ms 0.20 -0.08 -0.14 -0.26 -0.17 -0.20 -0.13
100j-50r-12m.ms 0.11 -0.07 -0.09 -0.25 -0.18 -0.25 -0.11
100j-100r-6m.ms 0.00 -0.12 0.07 0.08 -0.20 -0.21 -0.17
100j-100r-12m.ms 0.05 -0.06 -0.02 -0.22 -0.37 -0.36 -0.29
100j-250r-6m.ms 0.08 -0.05 -0.26 -0.20 -0.27 -0.26 -0.21
100j-250r-12m.ms 0.10 -0.08 -0.16 -0.12 -0.41 -0.42 -0.31
Mean 0.14 -0.10 -0.18 -0.21 -0.31 -0.33 -0.23

Table 4.3: Spearman Correlation between LSD and deterministic makespan, mean Free
Slack, mean Binary Free Slack (0,30 cutoff), mean Upperbound Free Slack (0,30 cutoff),
mean Total Slack, mean weighted Total Slack, Total Slack duration ratio. Using N(p, 0.3p)
jobs, 100 Schedules and 300 simulations per schedule.

Figures 4.6 and 4.5) show that the variation on LSD is large. This may mean that the
observed correlation is only statistical fluctuation.

60 Robustness Measure Evaluation

Problem Instance CDet
max FS BFS0.3 UFS0.3 TS wTSsucc SDR

30j-15r-4m.ms -0.08 -0.13 -0.14 -0.09 -0.30 -0.35 -0.18
30j-15r-8m.ms 0.22 -0.26 -0.28 -0.09 -0.37 -0.40 -0.33
30j-30r-4m.ms -0.12 -0.35 -0.11 -0.16 -0.46 -0.45 -0.45
30j-30r-8m.ms 0.26 -0.00 -0.10 -0.11 -0.12 -0.12 -0.24
30j-75r-4m.ms 0.17 -0.34 -0.47 -0.47 -0.63 -0.63 -0.44
30j-75r-4m.ms 0.17 -0.34 -0.47 -0.47 -0.63 -0.63 -0.44
100j-50r-6m.ms 0.08 -0.14 -0.02 -0.12 -0.19 -0.20 -0.14
100j-50r-12m.ms 0.04 -0.06 0.01 -0.06 -0.27 -0.32 -0.23
100j-100r-6m.ms -0.14 -0.30 0.07 0.01 -0.40 -0.45 -0.36
100j-100r-12m.ms 0.03 -0.02 0.04 -0.04 -0.38 -0.42 -0.31
100j-250r-6m.ms -0.10 -0.09 -0.11 0.04 -0.32 -0.36 -0.30
100j-250r-12m.ms -0.06 -0.29 -0.33 -0.26 -0.57 -0.58 -0.45
Mean 0.04 -0.19 -0.16 -0.15 -0.39 -0.41 -0.32

Table 4.4: Spearman Correlation between LSD and deterministic makespan, mean Free
Slack, mean Binary Free Slack (0,30 cutoff), mean Upperbound Free Slack (0,30 cutoff),
mean Total Slack, mean weighted Total Slack, Total Slack duration ratio. Using Exp(p)
jobs, 100 Schedules and 300 simulations per schedule.

However, the fact that wTSsucc and TS perform similarly, and both perform reasonably in
both the N(p, 0.3p) and Exp(p) case indicates that there is some pattern here. Another
reason to suspect a pattern is that the results make sense: As slack decreases, one expects
delays to increase. Since the Exponential case has larger disturbances, slack is more
important. Thus the correlation is larger in the Exp(p) case.

Nevertheless, it is clear that LSD varies greatly in each simulation run. So it is not
surprising that any robustness measure struggles to predict it well.

Finally, Figure ?? highlights a problem with BFS0.3 an BTS0.3. In both these measures,
many schedules have the same robustness measure value. This makes it impossible to
distinguish between schedules.

4.3 Results 61

●

●
●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●●

●●

●

●

●
●

●

●

●
●
●●

●

●

●

● ●
●

●●
●

●
●●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●
●

●

●

● ●

●

●
●

●

●

●●

●

●●
●

●

●

●●

●

●●

● ●●

●

●

●

●
●

●

●●

●

●

●

●● ●
●

●

●

●
●

●●

●
●●

● ●

●

●
●

●

●

●
●

●●
●

●●●●

●
●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●● ●●

●

●
●

●

●

●●●

●●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●
●●

● ●●

●

●

● ●
●

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●●
● ●●
●●

●

●
●●

●●
●

●●

●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●●

●
●●

●

●
●●

●

●
●

●●
●

● ●
●

●

●

●

●
●

●
● ●

● ●●
●●●

●
●

●
●

●

●

●
●

●●
● ●

●
●

● ●●

●
●

●●
●

●
●

●
●

●

●

●
●

●●●

●●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●
●

● ●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●●
●
●

●

●● ●●
●

● ●

● ●

●

●
●

●

●

●
● ● ●

●
●

●
●● ●●●
● ●●●

● ● ●● ●● ●● ●● ●●
●

● ●● ● ●●
●● ●●

●
● ●● ●●
● ●

●
●

●●●● ●●
●

●
● ●●● ● ●●●●

● ●● ●●●
●
●●●●

●● ●●● ●● ●●
●● ●● ● ●● ● ●

● ●●
● ●

●● ●●

●● ● ●
●

●
●● ● ●

●●
●● ●

●●
●● ●●
●●●

●
●

●
●

●
●●

●
● ●

● ●● ● ●●●
●●●

●
●
● ●● ●●●● ●●●● ●● ●●

●
● ●

●
●

●
●
●

●● ●●
●●

● ● ●● ●
●
●

●●
●

●
● ●●●

●
●

●●●
●
●●
●●

●● ● ●
●

●●
●●● ●●
●

●
● ●

● ● ●●●
●
●
●● ●

● ●●●
●

●
●● ●

●● ●● ●●
●

●●●● ●
●

●
●
●

●

● ● ●
●

●● ●
●
●● ●● ●●
●

●
●●
●

● ●●●
●● ●

●
●

●

●●
●●● ●●● ● ● ●●

●
●

● ●
●

●●

●● ●●● ●● ●● ●● ●● ● ●●
● ●●●

●
●●● ●

● ●● ●●
●

●
●●●

●●● ●●● ●●●● ●●●● ●● ●● ●● ●●
●

●● ●●● ●●● ●● ●●
●

●● ●●●● ● ●● ●
● ●●●●

● ●● ●●●●
● ● ●●● ●●

●
●

●
●

●
●●

●

●●
●

● ●
● ●●

●
● ● ●

●
●

●
●

●
●
●●

●●●
●

● ●
●

●
●●●●
●

●
● ●

●

●
●●

●
●● ●

●

●

●

● ●

●

●
● ●●

●●
●

●● ●● ●
●●

●
●
● ●

●

●

●●

●
●
●●
●●

●
● ●● ●

●
●●

●
●

●

●● ●

●●●
●

●●
●

●
●

● ●● ●
●● ●
●
●

● ●●

●
●●
●
● ●●

●

●

●

●●
●
● ●

●
● ●●● ●●

●●●● ●●●● ●● ●
●

●● ●● ●●● ●●

●

● ●●●
●●

●
●●

● ●

●

●

●●
● ●

●
●● ● ●●

●●
●

● ●●●● ●●
●●

0

300

600

900

1200

0.00 0.25 0.50 0.75 1.00
BFS

Li
ne

ar
St

ar
tD

el
ay

Instance.Name
●

●

●

●

●

●

●

●

●

●

●

●

100j−100r−12m.ms
100j−100r−6m.ms
100j−250r−12m.ms
100j−250r−6m.ms
100j−50r−12m.ms
100j−50r−6m.ms
30j−15r−4m.ms
30j−15r−8m.ms
30j−30r−4m.ms
30j−30r−8m.ms
30j−75r−4m.ms
30j−75r−8m.ms

BFS vs LinearStartDelay Normal30 jobs

Figure 4.5: Binary free slack (0.30 cutoff) vs average start delay in schedule. N(p, 0.3p)
jobs. 300 Simulation runs per schedule.

0

300

600

900

1200

0 50 100
wTS

Li
ne

ar
S

ta
rt

D
el

ay

Instance.Name
100j−100r−12m.ms
100j−100r−6m.ms
100j−250r−12m.ms
100j−250r−6m.ms
100j−50r−12m.ms
100j−50r−6m.ms
30j−15r−4m.ms
30j−15r−8m.ms
30j−30r−4m.ms
30j−30r−8m.ms
30j−75r−4m.ms
30j−75r−8m.ms

wTS vs LinearStartDelay Normal30 jobs

Figure 4.6: wTSsucc vs LSD. N(p, 0.3p) jobs. 300 Simulation runs per schedule. Vertical
bars are the standard deviation of the LSD for each schedule.

62 Robustness Measure Evaluation

Start Punctuality

Tables 4.5 and 4.6 show the Spearman correlations between the average percentage of on
time jobs and the robustness measures for N(p, 0.30p) and Exp(p) jobs respectively. As
with the case of LSD, SP appears to be a difficult measure to predict. The best measure
now appears to be BFS0.3, with a correlation of 0.41 for the Normal and 0.33 for the
Exponential case. Both the free slack and total slack based measures presented perform
around the 0.3 region. That is, no measure predicts particularly well. Nevertheless, that
may be an improvement over using CDet

max.

The low correlation values are unsurprising given the large variance in SP. Figure 4.7
shows the large variance in SP and the lack of distinct values of BFS0.3 for the generated
schedules.

Problem Instance CDet
max FS BFS0.3 wFSsucc TS wTSsucc SDR

30j-15r-4m.ms -0.08 -0.13 0.48 -0.06 0.07 0.12 0.09
30j-15r-8m.ms -0.17 0.36 0.40 0.36 0.39 0.40 0.44
30j-30r-4m.ms -0.09 0.14 0.47 0.31 0.23 0.26 0.29
30j-30r-8m.ms -0.17 0.30 0.55 0.37 0.28 0.30 0.32
30j-75r-4m.ms -0.10 0.33 0.50 0.44 0.62 0.65 0.48
30j-75r-4m.ms -0.10 0.33 0.50 0.44 0.62 0.65 0.48
100j-50r-6m.ms -0.09 0.28 0.47 0.28 0.12 0.14 0.14
100j-50r-12m.ms 0.04 0.18 0.32 0.30 0.14 0.17 0.15
100j-100r-6m.ms 0.07 0.24 0.22 0.31 0.07 0.10 0.11
100j-100r-12m.ms 0.04 0.29 0.48 0.42 0.27 0.26 0.32
100j-250r-6m.ms -0.04 0.21 0.30 0.07 0.24 0.19 0.30
100j-250r-12m.ms -0.08 0.17 0.27 0.25 0.32 0.35 0.31
Mean -0.06 0.22 0.41 0.29 0.28 0.30 0.29

Table 4.5: Spearman Correlation between SP and deterministic makespan, mean Free
Slack, mean Binary Free Slack (0,30 cutoff), mean weighted Free Slack, mean Total
Slack, mean weighted Total Slack, Total Slack duration ratio. Using N(p, 0.3p) jobs, 100
Schedules and 300 simulations per schedule.

4.3 Results 63

Problem Instance CDet
max FS BFS0.3 wFSsucc TS wTSsucc SDR

30j-15r-4m.ms 0.08 0.13 0.37 0.11 0.30 0.30 0.30
30j-15r-8m.ms -0.15 0.39 0.38 0.41 0.41 0.43 0.48
30j-30r-4m.ms 0.07 0.32 0.32 0.33 0.45 0.46 0.47
30j-30r-8m.ms -0.05 0.41 0.50 0.46 0.30 0.30 0.35
30j-75r-4m.ms -0.14 0.37 0.56 0.48 0.57 0.58 0.43
30j-75r-4m.ms -0.14 0.37 0.56 0.48 0.57 0.58 0.43
100j-50r-6m.ms 0.04 0.26 0.22 0.23 0.06 0.05 0.06
100j-50r-12m.ms -0.02 0.20 0.23 0.39 0.16 0.22 0.20
100j-100r-6m.ms 0.13 0.30 0.03 0.38 0.23 0.26 0.22
100j-100r-12m.ms 0.02 0.14 0.29 0.36 0.26 0.30 0.30
100j-250r-6m.ms 0.10 0.20 0.13 0.16 0.26 0.26 0.34
100j-250r-12m.ms 0.05 0.26 0.33 0.35 0.36 0.38 0.34
Mean -0.00 0.28 0.33 0.34 0.33 0.34 0.33

Table 4.6: Spearman Correlation between SP and deterministic makespan, mean Free
Slack, mean Binary Free Slack (0,30 cutoff), mean weighted Free Slack, mean Total Slack,
mean weighted Total Slack, Total Slack duration ratio. Using Exp(p) jobs, 100 Schedules
and 300 simulations per schedule.

0.0

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00
BFS

St
ar

t.P
un

ctu
ali

ty

Instance.Name
100j−100r−12m.ms
100j−100r−6m.ms
100j−250r−12m.ms
100j−250r−6m.ms
100j−50r−12m.ms
100j−50r−6m.ms
30j−15r−4m.ms
30j−15r−8m.ms
30j−30r−4m.ms
30j−30r−8m.ms
30j−75r−4m.ms
30j−75r−8m.ms

BFS vs Start.Punctuality Normal30 jobs

Figure 4.7: Binary free slack vs start punctuality. N(p, 0.3p) jobs. 300 Simulation runs
per schedule.

64 Robustness Measure Evaluation

4.3.3 Quality Robustness

In this section theh quality robustness measures, i.e. the 95th percentile (C0.95) and the
standard deviation over mean (VarCo), are used. See Section 3.1 for more information
on C0.95 and VarCo. First we discuss the C0.95, then VarCo.

95th percentile makespan

CDet
max and µNA

Cmax both show strong correlation with C0.95. µNA
Cmax is most highly correlated

(see tables 4.7 and 4.8). In the same tables, we see a much lower correlation for slack
based measures. The quality of all robustness measures is worse when using Exp(p)
jobs. The unreported robustness measures (BTS0.3

, UTS0.3
, wTSsucc, BFS0.3, UFS0.3) have

rank based correlation coefficients between −0.25 and 0.25 with C0.95. In the Normal
distribution case, FS performs better than TS for every problem instance.

Problem Instance CDet
max µNA

Cmax TS SDR FS wFSsucc

30j-15r-4m.ms 0.89 0.91 0.44 0.46 0.51 0.51
30j-15r-8m.ms 0.83 0.87 0.22 0.15 0.27 0.28
30j-30r-4m.ms 0.88 0.92 0.30 0.30 0.46 0.39
30j-30r-8m.ms 0.79 0.84 0.30 0.18 0.37 0.36
30j-75r-4m.ms 0.90 0.94 0.03 0.12 0.21 0.24
30j-75r-4m.ms 0.90 0.94 0.03 0.12 0.21 0.24
100j-50r-6m.ms 0.85 0.87 0.27 0.26 0.45 0.42
100j-50r-12m.ms 0.83 0.85 0.41 0.42 0.48 0.26
100j-100r-6m.ms 0.90 0.93 0.50 0.51 0.69 0.66
100j-100r-12m.ms 0.93 0.94 0.28 0.31 0.53 0.29
100j-250r-6m.ms 0.93 0.94 0.23 0.23 0.56 0.52
100j-250r-12m.ms 0.89 0.93 0.09 0.09 0.34 0.29
Mean 0.88 0.91 0.26 0.26 0.42 0.37

Table 4.7: Spearman Correlation between C0.95 and deterministic makespan, normal
approximation based mean makespan, mean Total Slack, Total Slack duration ratio,
mean Free Slack, mean weighted Free Slack. Using N(p, 0.3p) jobs, 100 Schedules and
300 simulations per schedule.

Figure 4.8 shows the high correlation between C0.95 and CDet
max in the N(p, 0.3p) case. The

figure for µNA
Cmax looks very similar.

Figure 4.9 shows that in the Exponential case the values of C0.95 are more scattered.

4.3 Results 65

Problem Instance CDet
max µNA

Cmax TS SDR FS wFSsucc

30j-15r-4m.ms 0.34 0.40 0.08 0.19 0.12 0.12
30j-15r-8m.ms 0.38 0.43 -0.15 -0.06 0.02 0.09
30j-30r-4m.ms 0.37 0.44 -0.18 -0.14 0.12 0.22
30j-30r-8m.ms 0.50 0.53 0.13 0.08 0.14 0.13
30j-75r-4m.ms 0.45 0.52 -0.25 -0.13 -0.03 -0.05
30j-75r-4m.ms 0.45 0.52 -0.25 -0.13 -0.03 -0.05
100j-50r-6m.ms 0.39 0.42 0.05 0.12 0.26 0.29
100j-50r-12m.ms 0.32 0.38 -0.02 0.00 0.19 0.11
100j-100r-6m.ms 0.35 0.41 -0.04 0.03 0.23 0.30
100j-100r-12m.ms 0.51 0.55 -0.06 -0.02 0.15 -0.09
100j-250r-6m.ms 0.48 0.50 -0.04 0.01 0.42 0.35
100j-250r-12m.ms 0.39 0.44 -0.30 -0.19 0.01 0.24
Mean 0.41 0.46 -0.09 -0.02 0.13 0.14

Table 4.8: Spearman Correlation between C0.95 and deterministic makespan, normal
approximation based mean makespan, mean Total Slack, Total Slack duration ratio,
mean Free Slack, mean weighted Free Slack. Using Exp(p) jobs, 100 Schedules and 300
simulations per schedule.

There are no error bars on these figures because to provide these would require repeated
sets of simulations.

66 Robustness Measure Evaluation

0

100

200

300

0 100 200
DetCmax

Cm
ax

 9
5t

h
qu

an
tile

Instance.Name
100j−100r−12m.ms
100j−100r−6m.ms
100j−250r−12m.ms
100j−250r−6m.ms
100j−50r−12m.ms
100j−50r−6m.ms
30j−15r−4m.ms
30j−15r−8m.ms
30j−30r−4m.ms
30j−30r−8m.ms
30j−75r−4m.ms
30j−75r−8m.ms

DetCmax vs Cmax 95th q. Normal30 jobs

Figure 4.8: CDet
max makespan vs C0.95. N(p, 0.3p) jobs. 300 Simulation runs per schedule.

0

100

200

300

400

0 100 200
DetCmax

C
m

ax
 9

5t
h

qu
an

til
e

Instance.Name
100j−100r−12m.ms
100j−100r−6m.ms
100j−250r−12m.ms
100j−250r−6m.ms
100j−50r−12m.ms
100j−50r−6m.ms
30j−15r−4m.ms
30j−15r−8m.ms
30j−30r−4m.ms
30j−30r−8m.ms
30j−75r−4m.ms
30j−75r−8m.ms

DetCmax vs Cmax 95th q. Exponential jobs

Figure 4.9: CDet
max makespan vs C0.95. Exp(p) jobs. 300 Simulation runs per schedule.

4.3 Results 67

Coefficient of Variation

As we can see from Tables 4.9 and 4.10 none of the robustness measures are good
predictors for the coefficient of variation of the makespan. With the sole execp-
tion of wFSsucc in the case of N(p, 0.3p) jobs every robustness measure (including
BTS0.3

, UTS0.3
, wTSsucc, wBTS0.3

succ,wUTS0.3
succ

and SDR not shown in the table) has a correla-
tion of between −0.25 and 0.25.

Figure 4.10 illustrates the lack of correlation. No error bars are included because doing
so would require multiple repeated sets of simulation runs.

Problem Instance CDet
max µNA

Cmax FS BFS0.3 UFS0.3 wFSsucc TS
30j-15r-4m.ms -0.15 -0.15 -0.11 0.10 0.03 0.51 -0.05
30j-15r-8m.ms -0.14 -0.17 -0.08 -0.16 -0.09 0.28 -0.00
30j-30r-4m.ms -0.08 -0.08 -0.13 0.18 0.16 0.39 0.02
30j-30r-8m.ms 0.06 0.05 0.09 -0.01 -0.06 0.36 0.08
30j-75r-4m.ms -0.25 -0.21 -0.04 -0.02 -0.09 0.24 -0.17
30j-75r-4m.ms -0.25 -0.21 -0.04 -0.02 -0.09 0.24 -0.17
100j-50r-6m.ms 0.12 0.11 -0.03 0.19 -0.01 0.42 -0.04
100j-50r-12m.ms 0.03 -0.07 0.01 0.20 0.05 0.26 0.15
100j-100r-6m.ms 0.02 0.01 0.02 0.33 0.22 0.66 -0.03
100j-100r-12m.ms -0.06 -0.04 0.01 0.19 0.07 0.29 -0.17
100j-250r-6m.ms -0.08 -0.12 0.03 0.18 -0.01 0.52 -0.08
100j-250r-12m.ms -0.34 -0.27 -0.17 0.18 0.20 0.29 -0.41
Mean -0.09 -0.10 -0.04 0.11 0.03 0.37 -0.07

Table 4.9: Spearman Correlation between VarCo and deterministic makespan, normal
approximation based mean makespan, mean Free Slack, mean Binary Free Slack (0,30
cutoff), mean Upperbound Free Slack (0,30 cutoff), mean weighted Free Slack, mean
Total Slack. Using N(p, 0.3p) jobs, 100 Schedules and 300 simulations per schedule.

68 Robustness Measure Evaluation

Problem Instance CDet
max µNA

Cmax FS BFS0.3 UFS0.3 wFSsucc TS
30j-15r-4m.ms -0.08 -0.04 -0.10 -0.05 -0.09 0.12 -0.02
30j-15r-8m.ms -0.26 -0.28 -0.12 -0.22 -0.10 0.09 -0.05
30j-30r-4m.ms -0.24 -0.22 -0.20 0.06 -0.11 0.22 -0.11
30j-30r-8m.ms -0.02 -0.07 0.03 -0.04 -0.13 0.13 0.16
30j-75r-4m.ms -0.19 -0.17 -0.11 -0.19 -0.25 -0.05 -0.10
30j-75r-4m.ms -0.19 -0.17 -0.11 -0.19 -0.25 -0.05 -0.10
100j-50r-6m.ms -0.07 -0.06 0.04 0.21 0.05 0.29 0.12
100j-50r-12m.ms 0.06 0.06 -0.01 0.07 -0.01 0.11 0.04
100j-100r-6m.ms -0.37 -0.37 -0.23 0.21 0.07 0.30 -0.27
100j-100r-12m.ms -0.02 -0.00 -0.05 -0.03 -0.08 -0.09 -0.06
100j-250r-6m.ms -0.17 -0.18 0.12 0.15 0.04 0.35 -0.05
100j-250r-12m.ms -0.09 -0.07 -0.05 0.05 0.06 0.24 -0.03
Mean -0.14 -0.13 -0.07 0.00 -0.07 0.14 -0.04

Table 4.10: Spearman Correlation between VarCo and deterministic makespan, normal
approximation based mean makespan, mean Free Slack, mean Binary Free Slack (0,30
cutoff), mean Upperbound Free Slack (0,30 cutoff), mean weighted Free Slack, mean
Total Slack. Using Exp(p) jobs, 100 Schedules and 300 simulations per schedule.

0.000

0.025

0.050

0.075

0 100 200
NormalApproxCmax

Cm
ax

 s
d/

m
ea

n

Instance.Name
100j−100r−12m.ms
100j−100r−6m.ms
100j−250r−12m.ms
100j−250r−6m.ms
100j−50r−12m.ms
100j−50r−6m.ms
30j−15r−4m.ms
30j−15r−8m.ms
30j−30r−4m.ms
30j−30r−8m.ms
30j−75r−4m.ms
30j−75r−8m.ms

NormalApproxCmax vs Cmax VarCo Normal30 jobs

Figure 4.10: µNA
Cmax vs coefficient of variation of makespan. 100 schedules per problem

instance. N(p, 0.3p) jobs. 300 Simulation runs per schedule.

4.4 Conclusion 69

4.4 Conclusion

We present the conclusions we draw from our results below.

Linear Start Delay and Start Punctuality are hard to predict

Our results show that the solution robustness measures we consider (LSD and SP) have
a large coefficient of variation. This means that they are hard to predict even using
multiple simulation runs. Although does not mean they cannot be used as definitions,
which can take a long time (many simulation runs), it does make them hard to estimate.

One problem with these definitions may the following. Consider a simple schedule
containing two jobs J1, J2 on one machine without any slack between them. Then the
start punctuality distribution of J2 is of the same shape as pJ1 , which may be quite
volatile. To some extent a problem instance with a large number of jobs reduces this
effect.

Perhaps a measure such as the number of precedence arcs (i, j) in which job i and job j

are both delayed might of more practical use as a definition. The hope being that it is
large only if there is some knocking on of delay and small due to random effect, thus
making it less sensitive to noise.

Coefficient of Variation of Makespan may also be hard to predict

The variance in VarCo observed between different schedules might be mostly statistical
fluctuation. To check that this is indeed what is behind the results in the previous section,
one could use a single schedule. Then perform 100 separate sets of 300 simulations. Each
simulation run gives a coefficient of variation value, 100 values in total. The distribution
of these VarCo values can then be compared with the distribution of the values of the
100 different schedules. If they are similar, then it cannot be ruled out that the variation
in VarCo values is purely random.

In that case, one needs to come up with a different method of generating schedules.

After this part of the research was concluded we noted the following: If a way of generating
schedules with different coefficients of variation is found, then one additional robustness
measure worth considering may be to apply Algorithm 1, which gives both an estimate

70 Robustness Measure Evaluation

for the mean µ and standard deviation σ. Using both these, σ
µ

may be a good robustness
measure for VarCo.

Slack based measures may be usefull in a local search only with additional
requirements.

Slack based measures perform poorly in this setup, in the sense that CDet
max has a higher

rank based correlation for both ˆµCmax and C0.95. One possible explanation is that our
problem does not have a deadline. Therefore, we are not considering ways of delaying
jobs along the critical path: All our schedules are earliest start schedules.

In these schedules, free slack along the critical path is always due to release dates of
jobs. Therefore, in most cases, the free slack along the critical path is zero (so there is
no useful free slack). Similarly, excluding release dates, total slack along the critical path
is zero. If a deadline is given, and one is considering different methods of distributing
jobs given a machine assignment, then slack based measures may be more effective.

Furthermore, note that in any setup without a deadline, we can optimize slack by delaying
the final job indefinitely. Binary and upperbound variants can also be optimized trivially
be delaying each job by at least the cutoff. That is, we can always create a schedule with
very large slack. However, clearly in most instances such a schedule is undesirable. This
means that without bounds on the makespan (such as a deadline), slack based measures
should not be used by themselves to optimize on.

Nevertheless, the results on SP and LSD indicate that given a set of schedules with
a similar CDet

max, using slack based measures to guide the local search might improve
the solution robustness. This supports their use as the second phase of a (repeated)
two-phase approach.

Best Robustness Estimation Measure to guide a local search.

Based on the results of this chapter, the best robustness estimation measure is the
normal approximation approach for both ˆµCmax and C0.95 and for both the N(p, 0.3p) and
Exp(p) distributions. It outperforms all other robustness measures considered, not just
on average, but for each problem instance. It is interesting to see that it still outperforms
the deterministic approach, even when the job distribution is exponential rather than
Normal. We emphasize that our results do not show it can be used to improve SP, LSD
or VarCo.

Chapter 5

The effect of inter machine
dependencies on robustness
measures in problem instances
without any slack.

The previous chapter would seem to indicate that when the objective is expected makespan
(ˆµCmax) minimization or 95th percentile makespan (C0.95) minimization the deterministic
makespan is a reasonable measure to optimize on, although the normal approximation
based approach (µNA

Cmax) is better. The results also imply that robustness measures that
correlate with µNA

Cmax also correlate with ˆµCmax .

In this chapter we explore the effects of inter machine precedence arcs on these robustness
measures in an extreme case: schedules in which there is no slack.

5.1 Experimental Setup

We have created a set of problem instances with the following characteristics. Each
problem instance has an optimal deterministic makespan of 40 and four machines. All
release dates are 0. Half the problem instances consist of 16 jobs of processing time 10,
and the other half of 160 jobs of processing time 1.

72
The effect of inter machine dependencies on robustness measures in problem instances

without any slack.

The precedence relations consist of repeating patterns of 16 jobs (4 per machine), which
we will call blocks. In each such block we compare what we expect to be good and bad
ways of assigning a schedule. We have the following block patterns (see figure 5.1).

(a) No inter machine precedence relations. This represents a schedule in which jobs
between which precedence relations exist were all assigned to the same machine.
Therefore the precedence relations can be forgotten as they are imposed by the
machine.

(b) A single cycle, in which there is a dependency path from the top left to the bottom
right. This represents a schedule of intermediate quality.

(c) Cyclic precedence relations, in which each job is a successor of the job in the
previous column on the previous machine. This represents very bad scheduling.
Indeed, clearly it is possible to assign each job along a path to the same machine,
resulting in no inter machine dependencies.

(d) Dependencies in a diamond pattern, where each job on the first machine in an odd
column is dependent on all jobs in the even column.

(e) Dependencies in a rolling diamond pattern, where each job on the k(mod4)th
machine in an odd (2k + 1th) column is dependent on all jobs in the even column.
That is, this is the same pattern as the diamond pattern, but the job that forms
the ’bottleneck’ rotates between each of the four machines.

(f) Full dependency, where each job is dependent on all jobs in the previous column.

The schedules consist of either one of 16 jobs with processing time 10 (16 jobs in total),
or of 10 blocks of 16 jobs with processing time 1 (160 jobs total). So we have six patterns,
with jobs of time 10 and jobs of time 1. That makes 12 schedules in total.

For each of these 12 schedules, we perform simulations for the following job processing
time distributions: N(p, 0.1p), N(p, 0.3p), LN(p, 0.1p), LN(p, 0.3p), Exp(p). Note that
the second argument is the standard deviation (not the variance). Simulations are run
300 times.

We measure the absolute difference between the simulated makespan and the deterministic
makespan. In contrast to the previous chapter, we do not measure the rank correlation.
This is because in this case each problem instance has only a single schedule (compared
to the 100 schedules in the previous chapter).

5.1 Experimental Setup 73

(a) No inter machine dependencies (b) Single Cycle

(c) Four cyclic precedence relations (d) Diamond pattern

(e) Rolling Diamond pattern (f) Full Dependency

Figure 5.1: The different block patterns. Jobs are represented as nodes, inter machine
dependencies as arcs. Jobs on the same row are assigned to the same machine.

74
The effect of inter machine dependencies on robustness measures in problem instances

without any slack.

5.2 Results

Deterministic Makespan and the Normal Distribution

We start by discussing the results on the N(p, 0.3p) distribution (figures 5.2 and 5.3).

0

5

10

15

20

25

N(p,0.3p)
Distribution.Type

C
m

ax
 −

 D
et

C
m

ax

Instance.Name

Blok_4_JobsPerMachine_Diamond

Blok_4_JobsPerMachine_FourCycles

Blok_4_JobsPerMachine_FullDependency

Blok_4_JobsPerMachine_NoInterMachine

Blok_4_JobsPerMachine_RollingDiamond

Blok_4_JobsPerMachine_SingleCycle

Blok_40_JobsPerMachine_Diamond

Blok_40_JobsPerMachine_FourCycles

Blok_40_JobsPerMachine_FullDependency

Blok_40_JobsPerMachine_NoInterMachine

Blok_40_JobsPerMachine_RollingDiamond

Blok_40_JobsPerMachine_SingleCycle

Figure 5.2: Absolute difference between the simulated makespan and the deterministic
makespan, for each block pattern and distribution. Box and whisker chart: The box
represents the 25th,50th and 75th percentile. The black line (whisker) represents all
other values except the outliers, which are shown as black dots.

First, note that the difference between simulated and CDet
max is frequently more than 4

(10% of CDet
max), for all but one problem instance.

Second, more inter machine arcs results in a higher makespan (and thus a greater
difference between the makespan and CDet

max). This is because every time there is an inter
machine arc, we must take a maximum between the completion times of the incoming
paths. Deterministic makespan in no way accounts for taking the maximum of two

5.2 Results 75

distributions. More inter machine arcs therefore imply that the deterministic makespan
is a worse estimate.

Furthermore, for the 160 job instances, the diamond pattern has a larger makespan than
the rolling diamond pattern. This is likely because the diamond pattern creates a delay
on the first machine, whereas the rolling diamond pattern spreads the delay more evenly.
Both patterns have the same number of inter machine arcs, they differ only in how the
inter machine arcs are distributed. Thus it is not only the number of inter-machine arcs,
but also the position in which they occur that is important. Note that to distinguish
between these schedules using a number of predecessor based weighting requires including
at least two levels of predecessors (i.e. the number of nodes that can be reached following
two arcs in the reverse direction - including the not drawn machine arcs).

Third, many small jobs results in both smaller expected makespan and smaller variance
in makespan than a few large jobs. This is due to the law of large numbers: significant
outliers in the completion time of a single machine are less likely with more jobs per
machine. The makespan is determined by the maximum of the completion times of each
machine. This maximum is likely to be less extreme when the completion times are
nearer their expected values.

Fourth, the pattern of the schedule has a greater effect on the makespan for the 160 job
than the 16 job instances. The instances with more jobs repeat the patterns more often,
so their effects are more readily observable.

Normal approximation and Normal Distribution

Now we compare the realized makespan with the normal approximation for the block
instances (Figure 5.3).

For the single block instances, the normal approximation provides results similar to
those from the deterministic makespan. One important difference is that the pattern
has a smaller influence on the size of the approximation error when using the normal
approximation compared to when using the deterministic makespan.

Interestingly, the normal approximation underestimates the makespan in the single
block instances and overestimates the makespan in almost all the instances consisting
of 10 blocks. This indicates that the approximation overestimates the uncertainty in
the maximum of two distributions. This is to be expected, as the approach only uses
information about a jobs direct predecessors. Consider a schedule with four jobs, and

76
The effect of inter machine dependencies on robustness measures in problem instances

without any slack.

precedence arcs (1, 2), (1, 3), (2, 4), (3, 4). The start time of job 4 is the maximum of the
completion times of jobs 2 and 3. We assume these are independent, but the completion
times of jobs 2 and 3 both depend on the completion time of job 1, so this assumption is
clearly false.

−10

0

10

20

N(p,0.3p)
Distribution

R
ea

liz
ed

 M
ak

es
pa

n
−

 N
or

m
al

A
pp

ro
x

PI

B4_Diamond

B4_FourCycles

B4_FullDependency

B4_NoInterMachine

B4_RollingDiamond

B4_SingleCycle

B40_Diamond

B40_FourCycles

B40_FullDependency

B40_NoInterMachine

B40_RollingDiamond

B40_SingleCycle

Realized Makespan − Normal Approximation for N(p,0.3p).

Figure 5.3: Absolute difference between the simulated makespan and the normal approx-
imation, for each block pattern for the N(p, 0.3p) distribution.

Other distributions

Now we consider the effect of different distributions on the makespan. Figures 5.4 and 5.5
show that the observations made above also hold for the other simulated distributions.
Other than that, we can see that as expected, a larger variance has a larger impact on
the difference between expected makespan and deterministic makespan. The exponential
distribution has the largest differences of all. This is because the Exponential distribution
has the largest variance.

5.2 Results 77

0

50

100

Exp(p) LN(p,0.1p) LN(p,0.3p) N(p,0.1p) N(p,0.3p)
Distribution.Type

C
m

ax
 −

 D
et

C
m

ax

Instance.Name

Blok_4_JobsPerMachine_Diamond

Blok_4_JobsPerMachine_FourCycles

Blok_4_JobsPerMachine_FullDependency

Blok_4_JobsPerMachine_NoInterMachine

Blok_4_JobsPerMachine_RollingDiamond

Blok_4_JobsPerMachine_SingleCycle

Blok_40_JobsPerMachine_Diamond

Blok_40_JobsPerMachine_FourCycles

Blok_40_JobsPerMachine_FullDependency

Blok_40_JobsPerMachine_NoInterMachine

Blok_40_JobsPerMachine_RollingDiamond

Blok_40_JobsPerMachine_SingleCycle

Figure 5.4: Absolute difference between the simulated makespan and the deterministic
makespan, for each of the block patterns and distributions.

78
The effect of inter machine dependencies on robustness measures in problem instances

without any slack.

0

50

100

150

Exp(p) LN(p,0.1p) LN(p,0.3p) N(p,0.1p) N(p,0.3p)
Distribution

R
ea

liz
ed

 M
ak

es
pa

n
−

 N
or

m
al

A
pp

ro
x

PI

B4_Diamond

B4_FourCycles

B4_FullDependency

B4_NoInterMachine

B4_RollingDiamond

B4_SingleCycle

B40_Diamond

B40_FourCycles

B40_FullDependency

B40_NoInterMachine

B40_RollingDiamond

B40_SingleCycle

Realized Makespan − Normal Approximation for five distributions.

Figure 5.5: Absolute difference between the simulated makespan and the normal approx-
imation, for each of the block patterns and distributions.

5.3 Conclusions 79

5.3 Conclusions

The results from Section 4.3 indicate that the normal approximation based approach
(µNA

Cmax) has the best rank correlation with expected makespan (ˆµCmax) and 95th percentile
makespan (C0.95). However, since deterministic makespan (CDet

max) also has a good rank
correlation with these measures, one may wonder in a practical setting if it is necessary
to consider uncertainty in job processing times.

The results form this section provide two arguments for using robustness measures that
consider problem structure and uncertainty in job processing times.

First, the problem structure has a significant effect on the realized makespan (Cmax).
Thus robustness measures that attempt to predict ˆµCmax or C0.95 should consider problem
structure.

Second, the normal approximation uses more information about the schedule structure
than the deterministic approach, by considering extra uncertainty in the start time of a
job with several predecessors. Indeed, deterministic makespan cannot distinguish any of
the schedules presented in this chapter. As a result, we see that the µNA

Cmax is closer to
the realized makespan than CDet

max. Furthermore, the difference between µNA
Cmax and Cmax

is less dependent on inter machine precedence relations than the difference between CDet
max

and Cmax.

Thus we conclude robustness measures should consider problem structure. We hypothesize
that this becomes more important as the amount of slack in a schedule decreases and as
the number of precedence relations increases.

As a consequence, we also conclude that although there is some merit to creating
a schedule based on deterministic makespan minimization, given two schedules with
(almost) equal deterministic makespan these should not be considered equal. Further
distinction based on schedule structure is desirable. In particular, since both the normal
approximation and the deterministic makespan run in time and memory linear with
the number of precedence relations and jobs, we think it preferable to use the normal
approximation over the deterministic makespan approach.

Figure 5.5 shows that there is still some considerable difference between the µNA
Cmax and

the realized makespan. Perhaps robustness measures exist that better consider problem
structure and therefore better predict the realized makespan. If so, these measures may
also have a better rank correlation with ˆµCmax or C0.95.

80
The effect of inter machine dependencies on robustness measures in problem instances

without any slack.

The instances considered here are a special case: There is no slack at all in them. To
further our understanding of robustness measures and the effect of inter machine relations,
it may be interesting to study similarly structured schedules with fixed CDet

max where slack
is introduced.

Chapter 6

Comparing deterministic makespan
and statistical approximation
minimization SPMS solutions.

The results in Chapters 4 and 5 indicate that the normal approximation method 1 may
be useful as a fitness function, outperforming the deterministic makespan approach, in a
local search when the objective is to minimize the expected makespan or the ninety fifth
percentile of the makespan.

In this chapter we compare the schedules generated by a multi-start local search (MLS)
algorithm2 that uses deterministic makespan as a fitness function and an MLS algorithm
that uses the normal approximation as a fitness function.

6.1 Setup

For the problem instances discussed in 4.2.2 we run our MLS algorithm twice. Once
in which the fitness function is deterministic makespan and once in which the fitness
function is the normal approximation. Recall that each MLS application gives us the 100
best schedules out of 1000 locally optimal schedules. So for each problem instance we
have 100 schedules based on deterministic makespan minimization and 100 schedules
based on normal approximation minimization. Every schedule is simulated 300 times

1see Section 3.2 for a full description
2Algorithm 5 from Section 4.2

82
Comparing deterministic makespan and statistical approximation minimization SPMS

solutions.

with N(p, 0.3p) job processing times and 300 times with Exp(p) job processing times.
For each schedule we calculate the sample mean (Equation 3.6) and the ninety fifth
makespan percentile (Equation 3.2). We use these quantitative definitions of robustness
because the results in Section 4.3 indicate that the other suggested definitions are not
predicted by any of the robustness measures we have considered.

6.2 Results

We present the results in two parts. First we discuss the expected makespan results and
then the ninety-fifth makespan percentile results.

Expected makespan minimization

Figures 6.1 and 6.2 show very little difference between the mean makespan of schedules
created by minimizing CDet

max and created by minimizing µNA
Cmax . Indeed a two sided

Kolmogorov-Smirnov test for any given problem instance and job distribution fails to
reject the possibility that the CDet

max and µNA
Cmax results are drawn from the same underlying

distribution.

40

80

120

160

30
j−

15
r−

4m
.m

s

30
j−

15
r−

8m
.m

s

30
j−

30
r−

4m
.m

s

30
j−

30
r−

8m
.m

s

30
j−

75
r−

4m
.m

s

30
j−

75
r−

8m
.m

s

Problem Instance

M
ea

n
m

ak
es

pa
n

Objective Function

DET
NA

Mean makespan for different fitness functions. N(p,0.3p)

Figure 6.1: For each problem instance, a comparison of the mean makespan of schedules
found by the MLS algorithm when minimizing deterministic makespan (DET) and when
minimizing the normal approximation (NA). N(p, 0.3p) jobs. 300 simulation runs per
schedule.

6.2 Results 83

100

200

300

400

500

600

30
j−

15
r−

4m
.m

s

30
j−

15
r−

8m
.m

s

30
j−

30
r−

4m
.m

s

30
j−

30
r−

8m
.m

s

30
j−

75
r−

4m
.m

s

30
j−

75
r−

8m
.m

s

Problem Instance

M
ea

n
m

ak
es

pa
n

Objective Function

DET
NA

Mean makespan for different fitness functions. Exp(p)

Figure 6.2: For each problem instance, a comparison of the mean makespan of schedules
found by the MLS algorithm when minimizing deterministic makespan (DET) and when
minimizing the normal approximation (NA). Exp(p) jobs. 300 simulation runs per
schedule.

Ninety-fifth makespan percentile minimization

As was the case for expected makespan, both Figure 6.3 and Figure 6.4 show very little
difference between the ninety-fifth percentile of the makespan of schedules created by
minimizing CDet

max and by minimizing µNA
Cmax . Again, a two sided Kolmogorov-Smirnov fails

to reject the possiblity that for any given problem instance and job distribution the CDet
max

and µNA
Cmax results are drawn from the same underlying distribution.

84
Comparing deterministic makespan and statistical approximation minimization SPMS

solutions.

100

150

200

250

300

350
30

j−
15

r−
4m

.m
s

30
j−

15
r−

8m
.m

s

30
j−

30
r−

4m
.m

s

30
j−

30
r−

8m
.m

s

30
j−

75
r−

4m
.m

s

30
j−

75
r−

8m
.m

s

Problem Instance

95
th

 m
ak

es
pa

n
pe

rc
en

tile

Objective Function

DET
NA

95th makespan percentile for different fitness functions. N(p,0.3p)

Figure 6.3: For each problem instance, a comparison of the 95th makespan percentile of
schedules found by the MLS algorithm when minimizing deterministic makespan (DET)
and when minimizing the normal approximation (NA). N(p, 0.3p) jobs. 300 simulation
runs per schedule.

400

800

1200

1600

30
j−

15
r−

4m
.m

s

30
j−

15
r−

8m
.m

s

30
j−

30
r−

4m
.m

s

30
j−

30
r−

8m
.m

s

30
j−

75
r−

4m
.m

s

30
j−

75
r−

8m
.m

s

Problem Instance

95
th

 m
ak

es
pa

n
pe

rc
en

tile

Objective Function

DET
NA

95th makespan percentile for different fitness functions. Exp(p)

Figure 6.4: For each problem instance, a comparison of the 95th makespan percentile of
schedules found by the MLS algorithm when minimizing deterministic makespan (DET)
and when minimizing the normal approximation (NA). Exp(p) jobs. 300 simulation runs
per schedule.

6.3 Conclusion and Discussion 85

6.3 Conclusion and Discussion

The results in this chapter show no improvement to either ˆµCmax or C0.95 by using
the normal approximation approach over the deterministic makespan approach. This
contradicts the expectation based on the results from the previous two chapters.

One possible explanation for this combination of results may be that the quality of
schedules produced by the MLS algorithm is generally far from the optimum and thus
have a lot of slack. That means that the conclusions from Chapter 5 do not apply to these
schedules. Furthermore, if the MLS algorithm is indeed the bottleneck on solution quality,
then the slight difference in correlation observed in Chapter 4 may not be exploited.
That is, if the quality of the MLS solutions remains in a region where the difference
between the quality of locally optimal schedules is still large, then given two schedules
both CDet

max and µNA
Cmax can predict which is better. In such a region of the solution space

there is no real advantage to using either method.

It would be interesting further research to see if this is indeed the underlying cause and
if so, if there is some predictable relation between difference in solution quality between
metaheuristics guided by different robustness measures with comparable global optima
and these global optima.

Chapter 7

Conclusion

7.1 Summary of Conclusions

In this section we will summarize the conclusions drawn at the end of Chapters 4,5 and
6.

In Chapter 4 we conclude that Linear Start Delay (LSD) and Start Punctuality (SP)
are hard to predict because of their large variation. Slack based measures may help to
predict them. No robustness measure considered predicts the variation of coefficient
(VarCo) well. Because LSD, SP and VarCo have high variation, we focus on ˆµCmax and
C0.95. ˆµCmax and C0.95 have the highest rank based correlation with µNA

Cmax and a high rank
based correlation with CDet

max. Slack based measures have low rank based correlations with
ˆµCmax and C0.95. We thus expect µNA

Cmax to be the best robustness measure to guide a local
search when the aim is to minimize ˆµCmax or C0.95.

In Chapter 5 we conclude that the number and position of inter machine dependencies
influences the realized makespan Cmax. Thus robustness measures that attempt to predict

ˆµCmax or C0.95 should consider problem structure. Again, this suggests µNA
Cmax is a better

robustness measure than CDet
max.

In Chapter 6 we conclude that there is no significant difference in ˆµCmax or C0.95 between
schedules resulting from Algorithm 5 using CDet

max as a robustness measure and the same
algorithm using µNA

Cmax as a robustness measure.

88 Conclusion

7.2 Comparison to similar work.

[PAH] use a statistical approximation approach similar to Algorithm 1. They find that
using this approach does help to minimize ˆµCmax . In this section we list similarities and
differences between this work and [PAH]. Our aim is to shed light on why the Normal
Approximation approach improves their solutions but does not help to improve ours.

First, both works consider the problem, where uncertainty is due to job processing times.
The distributions of job processing times considered are the same. So are the number of
machines and the pairs of jobs between which we introduce precedence relations. The
problem instances differ in only one respect: They use start-start precedence relations that
may include lag, whereas we use 0-lag finish-start precedence relations. This difference
means that some jobs that must be performed one at a time in our instances can be
performed simultaneously on different machines in theirs. This would mean that in their
instances the expected makespan of schedules may be lower (effecting ˆµCmax). Conversely,
the introduction of lag in precedence relations may introduce slack in a schedule that is
not required in our schedules (increasing ˆµCmax). The observed values of ˆµCmax are smaller
in [PAH] than in this work. This may be due to the fact that they use and iterated
local search approach or as stated earlier, simultaneous performance of jobs. Finally and
importantly, although Algorithm 1 is based on their statistical approach, it differs due
the different precedence relation types used. This has no effect on ˆµCmax , but may clearly
influence the correlation between ˆµCmax and the robustness measure.

This gives us several hypotheses as to the difference in conclusions drawn. First, it may be
that the schedules generated in their work are closer to the possible optimum, i.e. slack is
minimized, in which case considering robustness becomes more important. The results in
Chapter 5 support this hypothesis. Second, it may be that robustness is more important
in start-start precedence relation problems if they are somehow ’harder’ to solve robustly.
The fact that the adaptation of their statistical approach involved a simplification step
supports this hypothesis. Finally, it may simply be that the adaptation to the statistical
approach makes it less accurate in some undetermined way. We have no indication that
this is the case.

7.3 General Conclusion 89

7.3 General Conclusion

In addition to the conclusions drawn in Chapters 4,5 and 6 we can draw the following
general conclusion: The choice of problem instance and definition of robustness may
have a large effect on the conclusions drawn. This highlights the need for clear and
universal definitions of robustness, so that works can be more readily compared and
patterns recognized.

7.4 Further Research

We propose further research to determine what factors in a problem make it so that
robustness needs to be considered. In Chapter 5 we considered the effect of inter machine
dependencies. It would be interesting to perform a similar study with artificial schedules,
where the amount of slack is varied ceteris paribus. In such a project one may also
consider the effect of allowing or disallowing jobs to start before their planned start date.

Bibliography

[ABH13] J.M. van den Akker, Kevin van Blokland, and J.A. Hoogeveen. “Finding
robust solutions for the stochastic job shop scheduling problem by including
simulation in local search”. In: Experimental Algorithms - SEA 7933 (2013),
pp. 402–413.

[AH05] M. Al-Fazwan and M. Haouari. “A bi-objective model for robust resource-
constrained project scheduling”. In: Int. J. Production Economics 96 (2005),
pp. 175–187.

[AH08] J.M. van den Akker and J.A. Hoogeveen. “Minimizing the number of late jobs
in a stochastic setting using a chance constraint”. In: Journal of Scheduling
11 (2008), pp. 59–69.

[AHK12] J.M. van den Akker, J.A. Hoogeveen, and J.W. van Kempen. “Using col-
umn generation to solve parallel machine scheduling problems with minmax
objective functions”. In: Journal of Scheduling 15 (Aug. 2012), pp. 801–810.

[AL03] E.H.L. Aarts and J.K. Lenstra. Local Search in Combinatorial Optimization.
Princeton University Press, 2003.

[Bal07] Francisco Ballestin. “When it is worthwile to work with the stochastic RCPSP”.
In: Journal of Scheduling 10.10 (2007), pp. 153–166.

[BKF12] M. Brcić, D. Kalpić, and K. Fertalj. Resource Constrained Project Scheduling
under Uncertainty: A Survey. Tech. rep. University of Zagreb, 2012.

[BL09] Francisco Ballestín and Roel Leus. “Resource-Constrained Project Schedul-
ing for Timely Project Completion with Stochastic Activity Durations”. In:
Production and operations management. 18.4 (July 2009), pp. 459–474.

[CH08] H. Chtourou and M. Haouari. “A two-stage-priority-rule-based algorithm for
robust resource-constrained project scheduling”. In: Computers Industrial
Engineering 55.55 (Jan. 2008), pp. 183–194.

92 Bibliography

[Deb+07] Filip Deblaere et al. “A two-stage-priority-rule-based algorithm for robust
resource-constrained project scheduling”. In: Decision Sciences 38.1 (Feb.
2007).

[DH02] Eric Demeulenmeester and Willy Herroelen. Project Scheduling: A research
handbook. Kluver Academic Publishers, 2002.

[DVH03] Erik Demeulenmeester, Mario Vanhoucke, and Willy Herroelen. “RanGen: A
random network generator for activity-on-the-node networks”. In: Journal
of Scheduling 6 (Jan. 2003), pp. 17–38. url: https://doi.org/10.1023/A:
1022283403119.

[Gre03] W.H. Greene. Econometric analysis. Pearson Education India., 2003.
[GS08] Seluk Goren and Ihsan Sabuncuoglu. “Robustness and stability measures for

scheduling: single-machine enviroment”. In: IIE Transactions 40.1 (2008),
pp. 66–83.

[HAH11] D.J. Hoppenbrouwer, Marjan van den Akker, and Han Hoogeveen. “Robust
parallel machine scheduling with relations between jobs”. MSc thesis. Utrecht
University, Nov. 2011.

[Har98] S Hartmann. “A competitive genetic algorithm for resorce-constrained project
scheduling.” In: Naval Research Logistics 45.7 (1998), pp. 733–750.

[HHE10] O. Hazir, M. Haouari, and E. Erel. “Robust Scheduling and robustness
measures for the discrete time/cost trade-off problem.” In: European Journal
of Operational Research (2010).

[HK00] S. Hartmann and R. Kolisch. “Experimental evaluation of state-of-the-art
heuristics for the resource-constrained project scheduling problem”. In: Euro-
pean Journal of Operational Research 127 (2000), pp. 394–407.

[HL04a] W. Herroelen and R. Leus. “Robust and reactive project scheduling: a review
and classification of procedures”. In: International Journal of Production
Research 42.8 (2004), pp. 1599–1620.

[HL04b] W. Herroelen and R. Leus. “Robust and reactive project scheduling: a review
and classification of procedures”. In: European Journal of Operational Research
156.3 (Aug. 2004), pp. 550–565.

[HL04c] W. Herroelen and R. Leus. “The construction of stable project baseline
schedules”. In: European Journal of Operational Research 156 (2004), pp. 550–
565.

[HL05] W. Herroelen and R. Leus. “Project scheduling under uncertainty: Survey
and research potentials”. In: European Journal of Operational Research 165
(2005), pp. 289–306.

https://doi.org/10.1023/A:1022283403119
https://doi.org/10.1023/A:1022283403119

Bibliography 93

[Mas03] M Mastrolilli. “The use of buffers in project management: The trade-off
between stability and makespan”. In: Journal of Scheduling 6 (2003), pp. 521–
531.

[MG10] M. Mastrolilli and L. Gambardella. Effective Neighborhood Functions for the
Flexible Job Shop Problem. Tech. rep. IDSIA - Istituto Dalle Molle di Studi
sull´Intelligenza Artificiale, Sept. 2010.

[NK08] S. Nadarajah and S. Kotz. “Exact Distribution of the Max/Min of Two
Gaussian Random Variables”. In: IEEE transactions on very large scale
integration (VLSI) systems. 16.2 (2008), pp. 521–531.

[PAH] Guido Passage, Marjan van den Akker, and Han Hoogeveen. “Improving
the performance of local search for stochastic parallel machine scheduling by
estimating the makespan”. MA thesis.

[Pin12] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Fourth Edition.
Springer, 2012.

[RAH] D.J. Roermund, Marjan van den Akker, and Han Hoogeveen. “Robustness in
parallel machine scheduling”. MA thesis.

[RCL17] S. Rostami, S. Creemers, and R. Leus. “New strategies for stochastic resource-
constrained project scheduling”. In: Journal of Scheduling (2017). url: https:
//doi.org/10.1007/s10951-016-0505-x.

[RS64] B. Roy and B. Sussmann. Les problemes d´ordonnancement avec contraintes
disjonctives. Tech. rep. SEMA, 1964.

[Sal] E. Saliby. “Descriptive Sampling: A Better Approach to Monte Carlo Simula-
tion”. In: J. Opl Res. Soc. 41.12 (), pp. 1133–1142.

[TB06] Vincent T’Kindt and Jean-Charles Billaut. Multicriteria Scheduling: Theory
Models and Algorithms. Springer, 2006.

[Thi] D.A. Thierens. Metaheuristic Search for Combinatorial Optimization. url:
http://www.cs.uu.nl/docs/vakken/ea/slides/MetaHeuristic.pdf.

[VBQ05] Vincente Valls, Francisco Ballestín, and Sacramento Quintanilla. “Justification
and RCPSP: A technique that pays”. In: European Journal of Operational
Research 165 (Nov. 2005), pp. 375–386.

[Von+05] S. van de Vonder et al. “The use of buffers in project management: The
trade-off between stability and makespan”. In: Int. J. Production Economics
97 (2005), pp. 227–240.

https://doi.org/10.1007/s10951-016-0505-x
https://doi.org/10.1007/s10951-016-0505-x
http://www.cs.uu.nl/docs/vakken/ea/slides/MetaHeuristic.pdf

Appendix A

Notation

An overview of the symbols used in the 3 field notation:

• Pm Parallel machine scheduling on m machines

• C(σ)j The completion time of job j in schedule σ

• rj The release date of job j: the time at which it becomes available for processing

• dj The due date of job j: the time by which we would prefer to have job j finished
(a soft constraint).

• d̄j The deadline of job j: the time by which job j must be finished (a hard
constraint).

• Cmax(σ) The maximum completion time in schedule σ: The smallest time by which
all jobs are finished. Also known as the makespan Cmax(σ) = maxj{C(σ)j}

• Lmax(σ) The maximum lateness in schedule σ: The largest difference between due
date and completion time of a job. Lmax(σ) = maxj{C(σ)jdj}

• prec Denotes that precedence relations between jobs exist. This work discusses
only precedence constraints where a job may start as soon as all it’s predecessors
are completed, known as 0-lag finish-start precedence contraints.

• pj Denotes that the processing times are stochastic.

An overview of abbreviations used:

• RM: Robustness measure

• PMS: Parallel machine scheduling

96 Notation

Symbol Meaning
Job properties

pj Mean processing time of job
pj Realised processing time of job j

rj Release date of job
Problem instance properties

σj Direct successors of job j

πj Direct predecessors of job j

σj
∗ Transitive successors of job j

πj
∗ Transitive predecessors of job j

Schedule Properties Sometimes followed by (S) to indicate the schedule.
πM

j Machine Predecessor of job j in a schedule.
σM

j Machine Successor of job j in a schedule.
sj Planned start time of job j in a schedule.

sj(ESS) Start time of job j in the earliest start schedule
sj(LSS) Start time of job j in the latest start schedule

sj Realised start time of job j in a schedule.

Table A.1: List of symbols frequently used in formulae.

• SPMS: Stochastic parallel machine scheduling

• rcpsp: Resource constrained project scheduling problem

• SRCPSP: Stochastic resource constrained project scheduling problem

• LS: Local Search

98 Other starting heuritics for the MLS procedure.

Appendix B

Other starting heuritics for the
MLS procedure.

Algorithm 6: Greedy Load Balancing
Data: A problem instance
Result: A feasible assignment of jobs to machines

1 Set the load of each machine to 0. ;
2 while Unassigned jobs exist do
3 Select the next job without unassigned predecessors;
4 Assign it to the lowest indexed machine of minimum load;
5 Update the load;
6 Update list of unassigned jobs;
7 end

Algorithm 7: Round Robin Assignment
Data: A problem instance
Result: A feasible assignment of jobs to machines

1 M ← the number of machines;
2 CurrentMachineID ← Random Integer between 0 and M ;
3 while Unassigned jobs exist do
4 Select the next job without unassigned predecessors;
5 Assign it to the machine with ID CurrentMachineID;
6 CurrentMachineID ← CurrentMachineID +1 mod M ;
7 Update list of unassigned jobs;
8 end

	Contents
	1 Project Scope
	1.1 Introduction
	1.1.1 Stochastic Parallel Machine Scheduling with precedence relations
	1.1.2 Representation
	1.1.3 Deterministic scheduling problems related to parallel machine scheduling
	1.1.4 Introduction to local search approaches

	1.2 Thesis structure
	1.3 Research objectives

	2 Literature
	2.1 Robustness
	2.1.1 Probability distribution dependent Definitions of Robustness
	2.1.2 The definition of slack
	2.1.3 Probability distribution independent definitions of Robustness (Estimation Measures)
	2.1.4 Heuristic solutions to Robust problems related to Stochastic Parallel Machine Scheduling.

	2.2 Metaheuristics for problems related to Stochastic Parallel Machine Scheduling
	2.3 Conclusion

	3 Robustness: Definitions and estimation Measures
	3.1 Quantitative robustness definitions used.
	3.2 Overview of Robustness Measures considered and Notation used
	3.2.1 Desirable properties of Robustness Measures
	3.2.2 Slack based measures
	3.2.3 Theoretical Analysis of RMs
	3.2.4 Statistical approximation in linear time.

	4 Robustness Measure Evaluation
	4.1 Aim of this experiment
	4.2 Experimental Setup
	4.2.1 Stochastic Parallel Machine Scheduling: A suitable test problem
	4.2.2 Problem Instances
	4.2.3 Schedule Generation
	4.2.4 Experiments performed
	4.2.5 Definitions and notation.

	4.3 Results
	4.3.1 Expected Makespan
	4.3.2 Solution Robustness
	4.3.3 Quality Robustness

	4.4 Conclusion

	5 The effect of inter machine dependencies on robustness measures in problem instances without any slack.
	5.1 Experimental Setup
	5.2 Results
	5.3 Conclusions

	6 Comparing deterministic makespan and statistical approximation minimization SPMS solutions.
	6.1 Setup
	6.2 Results
	6.3 Conclusion and Discussion

	7 Conclusion
	7.1 Summary of Conclusions
	7.2 Comparison to similar work.
	7.3 General Conclusion
	7.4 Further Research

	Appendix A Notation
	Appendix B Other starting heuritics for the MLS procedure.

