
Parallel Implementations on the GPU of
Algorithms for the Minimum Dominating Set

Problem Using Dynamic Programming on Tree
Decompositions.

T.A. Jimkes

Abstract

Two different algorithms that solve the Minimum Dominating Set problem are implemented
in both a sequential, and parallel fashion. The first on the CPU, and the latter using GPU
programming. The aim of this work is to find out to what extent these algorithms can be
implemented on the GPU, and how these four different implementations compare on different
instances. The experimental results show that when the tree width k grows, parallelization of
these algorithms provides reductions in run time that can reach multiple orders of magnitude.
The sequential implementations do outperform their parallel counterparts for very small bag
sizes, due to the overhead associated with the GPU implementations.

A thesis presented for the degree of
Master of Science

Department of information and computing sciences
Utrecht University

Netherlands
July 11, 2019



Contents

1 Introduction 3
1.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 5
2.1 Minimum dominating set problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Parallel programming on the GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 CUDA programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Tree decompositions and nice tree decompositions . . . . . . . . . . . . . . . . . . . 7

2.3.1 Nice tree decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Minimum Dominating Set and tree decompositions 8
3.1 A basic approach using dynamic programming and tree decompositions . . . . . . . 9

3.1.1 The leaf procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 The introduce procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 The forget procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 The join procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.5 Resulting complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Reducing complexity by altering the state set . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 The leaf procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 The introduce procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 The forget procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.4 The join procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.5 Resulting complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 An optimal approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Consistently storing κ-values . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 The vanRooij2 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Interpretation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4 Resulting complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Additional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 A parallel implementation on the GPU 17
4.1 Base-3 configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 The introduce and forget procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 A parallel implementation of the Alber join procedure . . . . . . . . . . . . . . . . . 19

4.3.1 Splitting the table into q-based segments . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Deriving the correct configuration . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.3 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.4 Expected effect on complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 A parallel implementation of van Rooij’s join procedure . . . . . . . . . . . . . . . . 21
4.4.1 Memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Expected effect on complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Experimental setup 22
5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 PACE data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Obtaining nice tree decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



6 Experimental results 25
6.1 Parallel vs sequential implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Parallel implementations: P3k vs P4k . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Sequential implementations: S3k vs S4k . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Varying block size of the parallel implementations . . . . . . . . . . . . . . . . . . . 28
6.5 Comparing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.6 A hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Conclusion 32

8 Discussion 33

9 Further research 34

Appendices 38

A Tables 38

2



1 Introduction

The minimum dominating set problem is part of a complexity class that is called NP-Complete.
These problems have the property that they are relatively computationally hard, as there is no
algorithm that can solve them in polynomial time (assuming that NP is not equal to P). Because
of this, many different approaches have been formulated to tackle problems like these in an attempt
to reduce computational complexity. One of these approaches, that applies to graph problems, is
using tree decompositions. These decompositions are created using such a graph and have a width
as a property. A general tree width k can be derived from a graph, which represents a certain lower
bound on the complexity of tree decompositions that can be created from the graph. In most cases,
there is more than one possible tree decomposition possible for a given graph. This tree width can
be used in representing the computational complexity of algorithms that solve graph problems using
tree decompositions.

Due to the structure of tree decompositions (each node in the tree holds a subset of vertices of
the graph), dynamic programming is often applied when these decompositions are used. A partial
solution in the context of dynamic programming is a solution to only a part of the problem. Tables
that hold these partial solutions called memoization tables, are used during execution to reduce the
number of required computations, as it eliminates the need for calculating the value of a partial
solution more than once. When there are many different partial solutions possible, these tables can
grow in size rapidly. Though these tables might grow in size, the effective work that has to be done
to calculate a single value for a partial solution for these algorithms is relatively little. When many
small, comparable calculations have to be performed, parallelization using the GPU often is a fitting
way to optimize, as the hardware is specifically made for this type of workload.

The GPU, or Graphical Processing Unit, has the property that it can perform very many simple
calculations in parallel. Where the use of this piece of hardware was limited to graphics processing
for a long time, in the past years there has been a surge in other applications. This, due to the recent
availability of programming interfaces which are relatively easy to use. This increase in scientific
and other practical usages other than graphics processing has also been due to the rapid increase in
parallel processing power. When the GPU is used in a more general context, it is often referred to
as GPGPU, or General Purpose Graphical Processing Unit (though in this work we will refer to it
as GPU).

In this work, two different algorithms that apply dynamic programming on tree decompositions
are implemented in the usual, sequential fashion. These implementations use the CPU to execute.
Both algorithms are also implemented to run on the GPU, introducing parallelization. We will
examine both algorithms in detail in order to find out what components of these algorithms can be
implemented on the GPU and to what extent paralellization affects performance for these algorithms.

1.1 Previous work

Tree decompositions have been the source of much research in the past few decades. The work of
Bodleander [3] discusses many applications of tree decompositions, as well as methods that use path
decompositions. The work of Ton Kloks [14] provides an extensive exploration of what tree width is,
and what some applications are. Solving some NP-hard problems on graphs can be done efficiently
by using dynamic programming on tree decompositions. In [7], applications of dynamic program-
ming in combination with tree decompositions are surveyed looking at applicability, algorithms that
determine (approximate) tree width, algorithms that exploit tree decompositions and algorithms
that find optimal, or approximate tree width.

Approximating tree width can be a useful approach when determining bounds for certain tree

3



decomposition based algorithms. Several approaches for finding an estimation are discussed in
[6, 8]. One of these approaches is an O(log k) approximation algorithm, where k is the tree width.
Algorithms for finding the exact tree width have exponential time complexity [5], though a linear
time algorithm is discussed in [2] that finds whether a tree decomposition exists of tree width at
most k.

Applications of these types of algorithms can be in many domains of graph problems, including
connectivity problems [9, 4, 10, 19] and domination problems [18, 1].

Lower bounds for different algorithms that use tree decompositions have been found in [15].
Among the algorithms presented is also the Dominating Set problem. The writers show that a lower
bound on the time complexity of (3 − ε)kV O(1) exists for the Dominating Set problem, where V is
the number of vertices in the input graph and k is the corresponding tree width. These results are
based on the Strong Exponential Time Hypothesis of Impagliazzo and Paturi.

Alber et al. use an approach of altering the state set that is used for dynamic programming
on tree decompositions for solving the Minimum Dominating Set problem. They show that when
a type of state is used that expresses indifference of being dominated, an O∗(5k) algorithm can be
improved by reducing this complexity to O∗(4k). Two alternative approaches are discussed in [18].
Both introduce a state that is similar to the state expressing indifference in the work of Alber et al.,
but by using a different implementation, time complexity for the Minimum Dominating Set problem
can be reduced to O(n33k) and O(nk23k) for these algorithms, respectively.

A Cut and Count approach is discussed in [9], which is used for reducing the complexity of
certain graph problems. This approach is applied to problems that have a global requirement (like
connectivity), which often results in kO(k)V O(1) time complexity for naive approaches, where k is
the tree width. The approach discussed reduces this to a complexity of cO(k)V O(1), where c is a
constant. This idea is expanded upon in [4] by using approaches based on linear algebra. The result
is the same reduction in complexity as in [9], but with an approach that also works for weighted
and counting versions of the problems, using a rank-based approach. The writers of [12] provide an
extensive comparison between a straight forward dynamic programming approach, and the method
used in [9], showing significant improvements when examining the latter algorithm.

A well known connectivity problem is the Hamiltonicity problem. In [10], these cycles are ob-
tained from creating a Matching Connectivity matrix. By analyzing this data structure, the writers
of the paper have found two Monte Carlo algorithms, one for directed graphs and one for undirected
graphs, which solve the Hamiltonicity problem. The presented algorithms have a run time complex-
ity of 1.888nnO(1) for the directed variant, and a complexity of (2 +

√
2)pwnO(1) (where pw is the

path width) for the undirected variant. Using tree decompositions, the algorithm of [10] is improved
upon in [19], in which an O∗((2ω + 2)k-time algorithm is presented for counting Hamiltonian cycles.
In addition, a O∗((2ω + 1)k-time algorithm is described that counts Steiner trees. These results are
obtained by using Clifford algebras, which are mainly used in the field of quantum mechanics, in
combination with Non-commutative Subset Convolution, which is method that is useful when work-
ing with determinant-based algorithms. An extensive look on different tree decomposition based
approaches for solving the Hamiltonian Cycle problem is provided in [20].

There has already been research towards the effectiveness of GPU implementations of dynamic
programming algorithms. In [13], different approaches are explored for creating an implementation
the SAT problem that can be run on the GPU. Several of these approaches are implemented and
examined, after which it is shown that these implementations can lead to a speed up of an order of
magnitude. In [11], parallel implementations of the Counting SAT and Weighted Model Counting
algorithms are discussed. The approaches again use dynamic programming on tree decompositions.
The writers show that rather complex reasoning problems can be solved by solving instances with a
tree width of up to 30.

4



1.2 Our contribution

The main objective of this thesis is to explore how parallel implementations on the GPU of the
Minimum Dominating Set algorithms as discussed in [1] and [18] perform, and how they compare
to their sequential counterparts. This is done by answering the following research questions:

1. Which components of the provided algorithms can be implemented on the GPU, and how?

2. What effect does this parallelization have on the run times of the introduce, forget and join
procedures and how does this relate to bag size?

3. What effect does this parallelization have on the global run times and how does this relate to
tree width k?

Section 2 will introduce preleminaries. Here we define the Minimum Dominating Set problem,
provide a brief overview on how parallel programming on the GPU works, and introduce the concept
of tree decompositions and nice tree decompositions. After this, an overview of both algorithms is
provided in Section 3, along with an important correction to one of the two algorithms, as described
in the literature [18]. When the reader has become familiar with the problem domain and the
algorithms, we will discuss what components of the algorithms can be, and are, implemented on the
GPU in Section 4. Section 5 will discuss the experimental method, the tree decompositions that
were used and how these tree decompositions were transformed to fit the algorithms. In Section 6,
the experimental results will be discussed. Our conclusion and a small discussion are provided in
Sections 7 and 8, respectively. Finally, some ideas and suggestions for further research can be found
in Section 9.

The results of this work show that, for the right values tree width k, parallelization using the
GPU can result in a speed up in the multiple orders of magnitude for the provided algorithms. For
individual nodes, when bag size exceeds a certain threshold, be it for a join, introduce, or forget
nodes, all instances prefer a parallel implementation. Only for very small instances do the sequential
implementations outperform their parallel counterpart. This is the result of overhead that comes
with the GPU implementations.

2 Preliminaries

This section will cover the central concepts that are used in this work: the minimum dominating set
problem, parallel programming using CUDA, tree decompositions and nice tree decompositions.

2.1 Minimum dominating set problem

A dominating set D on the graph G is a set of vertices such that, for all vertices v ∈ V either of the
following two statements holds:

1. The vertex v is part of the dominating set D, or

2. The vertex v is not part of D, but is adjacent to at least one vertex in D

The Minimum Dominating Set problem is centered around finding a dominating set that is of
minimum size.

This work focuses on the variant of the problem, where the solution is the size of the smallest
dominating set that can be found in the graph G. We fix this problem variant because of memory

5



constraints. It should be mentioned however, that a minimum dominating set can be found by
performing n runs of a slightly adjusted variant of the algorithm through a method called self-
reduction (e.g. see [3]). Here, the input is a graph and two sets of vertices, where one set contains
vertices that are fixed in the dominating set, and the other set contains the rest of the nodes:

1. Find the size of the smallest dominating set D using the original algorithm.

2. For each vertex v, fix its inclusion in the dominating set D and execute a variant of the
algorithm that allows for this. If the result of the algorithm changes, the node is not part of
the minimum dominating set.

2.2 Parallel programming on the GPU

The main difference between the Graphical Processing Unit, or GPU, and the Central Processing
Unit, or CPU, is that a GPU consists of many individual processing units, each with a limited
amount of processing power, caching memory, and instructions available. The CPU on the other
hand, consists of one, or few processing units. Each CPU processing unit has plenty of processing
power, and is optimized for more complex sequential tasks.

Each individual process that is executed on the GPU is called a thread [16]. Each thread is
part of a bundle of 32 threads called a warp. This bundling and executing of threads is done by a
streaming multiprocessor, or SM, of which a GPU has many. Warps are executed simultaneously and
perform the same operation. This way of executing is called SIMT, or Single Instruction Multiple
Threads. Since warps are executed as a unit, all threads start at the same time and have to wait for
each other to finish. If threads within a warp have different paths of execution, for example due to
clauses in an if-statement, branching occurs. The streaming multiprocessor solves this by executing
all different paths in sequence. This is why it is recommended to avoid such branching structures.

These fundamental differences in the CPU and GPU, have as a result that the CPU is optimized
for complex sequential processes, and the GPU is more viable for many, small, similar calculations
that can be computed in parallel.

2.2.1 CUDA programming

For this research, the CUDA toolkit v10 was used [17]. This toolkit provides a framework and
debugging methods for writing GPU code in C++, or C. When this approach is used, the GPU is
accessed through an abstraction, which means that the developer no longer has to take into account
individual warps and SM’s, but thinks in threads, blocks, grids, and logical CUDA cores. For a
developer, the GPU consists of many CUDA cores, cache associated with such a core and shared
memory. Where local cache (consisting of several kilobtyes) is accessible for only a single thread,
shared memory is accessible for all threads during execution. The latter is slower to write to and
to access, but it is vastly larger than the local cache. In a CUDA project, there is the distinction
between the host and the device. The former is the system, including the CPU and internal memory,
the latter is the individual NVidia GPU, which has its own memory. Executing code on the device
is done through kernels 1. These are methods that are compiled to run on the device.

When a kernel is launched from the host, it is launched very many times at once. Kernel
executions are distributed over processing units and they are queued if none are available. These
executions are performed using a set structure of grids, blocks, and threads. Each kernel execution
has an associated grid, block and thread id, which is used for determining what data is associated

1Not to be mistaken by the kernels in the FPT theory about preprocessing.

6



with this specific execution. By defining dimensions for these blocks and grids relative to the data
that is used, one can optimize processing unit usage and memory usage.

When many kernels are launched on the device, all of these do not communicate directly with
the host. Executions occur locally on the device, which means that results also have to be stored
on the device until they can be copied back to the host. Because of this, kernel executions often are
performed using the following sequence of operations:

1. First, allocate memory for possible preliminary data and an array that will hold the results of
all kernel executions.

2. Then, copy the preliminary data to the device, this is called a memcopy and it is a relatively
slow operation.

3. After that, all kernels are executed and the result of each individual kernel is stored in the
array. The index in the array that is associated with a certain kernel execution is derived from
the combination of the grid, block and thread id.

4. Lastly, as all kernels have finished executing, the array containing the results is copied back to
host, and the memory that was allocated in step one is deallocated.

CUDA provides one more dimension of parallelization that does not strictly follow the concept
of SIMT processing. Multiple streams allow for execution of different commands in sequence, or in
parallel. As a block is executed by a certain CUDA core, multiple streams allow for more optimal
use of these cores when the device is not fully ocupied. As will be shown in section 4.3, this extra
method of parallelization can be very useful.

2.3 Tree decompositions and nice tree decompositions

A tree-decomposition of a graph G = {V,E}, consists of a pair ({Xi|i ∈ I}, T = {I, F}) having
{Xi|i ∈ I} a family of subsets, or bags, of the vertices in V , one for each node in T , such that:

1. The union over all bags is the set V .

2. For all edges (v, w) ∈ E, There exists an i ∈ I with v ∈ Xi and w ∈ Xi.

3. For all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊂ Xj .

The treewidth of a graph is a measure of how ’tree-like’ the graph is. The width of a tree
decomposition is the size of the largest bag, minus one. The tree width of the corresponding graph
is the smallest width over all possible tree decompositions for that graph. One is subtracted from
this specific bag size, because the result of this is that the tree width of a tree is exactly one.

2.3.1 Nice tree decompositions

A tree decomposition can be transformed in linear time to a nice tree decomposition [14]. This form
of tree decompositions is called ’nice’, because it allows simple formulations of dynamic programming
algorithms over these decompositions. For a tree decomposition to be nice, the following conditions
must hold [14]:

1. The number of children for a node is at most two.

2. If a node i has two children j, and k, then Xi = Xj = Xk, i.e. their bags are equal.

7



3. If a node i has a single child j, then either

• |Xi| = |Xj |+ 1 and Xi ⊂ Xj , or

• |Xi| = |Xj | − 1 and Xj ⊂ Xi.

In addition to the above conditions, we introduce two additional conditions for practical purposes:

1. The root bag must be of size exactly one.

2. All leaf bags must be of size exactly one.

When these extra constraints are applied, the resulting nice tree decomposition has five different
types of nodes:

1. A root node. This node has a bag size of exactly one.

2. Leaf nodes also have bag size one.

3. Introduce nodes. The bag size of these nodes is exactly one more than that of their children.

4. Forget nodes are the opposite of introduce nodes, as they contain one fewer vertex than their
child.

5. Join nodes have exeactly two children. Both of those children have the exact same bag as their
parent.

Since all nodes in the nice tree decomposition are one of these five types, we can implement
algorithms that have a set procedure per type. This makes it a lot easier to use dynamic programming
in combination with such tree decompositions. The root node stores the solution to the problem and
often does not require a separate procedure. The different procedures in the dynamic programming
algorithm are as follows:

1. Leaf nodes are instantiated using static values.

2. Introduce nodes introduce a single vertex to the bag.

3. Forget nodes remove one vertex from the bag.

4. Join nodes have the same bags as their children and as a result, each partial solution in the
join node is associated with a partial solution in each child. The join procedure will have to
reduce these multiple partial solutions to a single partial solution.

3 Minimum Dominating Set and tree decompositions

As discussed in Section 2, the algorithms that are used in this project use four different main
operations which are associated with their respective nodes: leaf, introduce, forget, and join.

A configuration c is a state assignment for each vertex in the bag of a certain node. The
memoization table in each node consists of all possible configurations for the vertices present in the
bag. The value that is associated with a certain configuration in a node x, Ax(c), is a partial solution.
What this value represents differs from algorithm to algorithm. Nodes that are in-between nodes
that have been evaluated, and nodes that have yet to be evaluated are on the so called boundary. A
partial solution that is on the boundary represents a solution for the set of vertices that are present

8



in the current node and in the sub-tree of the node. Vertices that have not yet been introduced are
not part of that partial solution. As a result, two partial solutions for the same sets of vertices can
often be interchanged.

In this work, we make the distinction between nodes and vertices. Vertices are part of the input
graph. Nodes are part of the tree decomposition and contain bags of vertices.

3.1 A basic approach using dynamic programming and tree decomposi-
tions

In this section, we will discuss an approach that is based on the discussion in [18]. It has a compu-
tational complexity of O∗(5k) and it uses the following set of states: {1, 01, 00}. A vertex has state
1 if it is included in the partial solution. A vertex has state 01, or 00 if it is not included in the
partial solution, and it is dominated, or not dominated, respectively.

3.1.1 The leaf procedure

We know that the bag of a leaf node contains only a single vertex. This is why we can set the table
values for all of the possible states by just setting three values.

Ax({1}) = 1

Ax({01}) =∞
Ax({00}) = 0

A state assignment of 1 results in a dominating set that includes the only vertex in the partial
solution. The size of this set is, of course, one. The configurations that exclude the single vertex
from the dominating set result in a size of zero, for state 00, and infinity for state 01, which repre-
sents infeasibility (the vertex cannot be dominated, since there are no other vertices in this partial
solution).

3.1.2 The introduce procedure

The introduce node is more complex. The algorithm uses the values from the child nodes’s table.
Here, v is the newly introduced vertex and the node y is the single child of node x in the tree
decomposition.

Ax(c× {01}) =

{
Ay(c) if v has a neighbour with state 1 in c

∞ otherwise

Ax(c× {00}) =

{
Ay(c) if v does not have a neighbour with state 1 in c

∞ otherwise

Adding a vertex with state 01 requires that the vertex has a neighbour in the bag with state 1. If
this is not true, the state assignment is impossible and we assign value ∞. If the vertex does have
a neighbour with state 1, the new configuration is assigned value Ay(c). We don’t have to change
this value, since we have added no new vertex to the dominating set. The same is true for adding a

9



vertex with state 00, though in this case it is required that the newly added vertex has no neighbour
in the current bag (as the state assignment indicates).

Introducing a vertex with state 1 is more complicated. When a vertex is introduced with state
1, we can make a selection of the configuration with the lowest value for Ay(c′) that matches the
configuration c, where a matching configuration c′ is defined as follows:

For all u ∈ Xy\N(v) : cx(u) = cy(u)

For all u ∈ Xy ∩N(v) : either cx(u) = cy(u) = 1, or cx(u) = 01 and cy(u) ∈ {01, 00}

In words, if a neighbour of v in node x is dominated, we can choose to do the same for another
neighbour that has state assignment 00 in the child node y. This results in the following equation:

Ax(c× {1}) =

{
∞ if v has a neighbour that has state 00

1 + min{Ay(c′)|c′ matches c} otherwise

When the vertex has a neighbour with state 00, we cannot set the state for the current vertex to
1. If this is not the case, we explore all different configurations in the child node that adhere to the
match condition and take the minimum value.

3.1.3 The forget procedure

In a forget node, we choose between two feasible state assignments (thus excluding 00, as every
vertex must be dominated, or be part of the dominating set) for the forgotten vertex v:

Ax(c) = min{Ay(c× {1}), Ay(c× {01})}

We take the minimum because we are calculating the minimum size of the dominating set.

3.1.4 The join procedure

The join node, which is the main focus of this work, has the most complex procedure and because of
that, dominates the computational complexity of the entire algorithm. We say that configurations
cx, cl, and cr match, if for each vertex v in the nodes’ bags the following holds:

Either cx(v) = cl(v) = cr(v) = 1,

or cx(v) = cl(v) = cr(v) = 00,

or cx(v) = 01 and cl(v), cr(v) ∈ {00, 01}, but not both 00.

When a vertex is dominated and has state 01, there are several options for choosing what states are
assigned in the child nodes by definition of the match condition. If at least one of the two vertices
is dominated in the child, we make sure that it is also the case in the parent. Since this is true, we
can then choose either of the 01 or 00 states, as long as we select the minimum value.

10



Using this new definition of a match, we can calculate the values in the table Ax. The function
#1(c) is used to indicate the number of one assignments in the configuration c.

Ax(cx) = min
cx,cr,cl match

Al(cl) +Ar(cr)−#1(cx)

The number of ones included in the configuration has to be subtracted from the sum, since otherwise
they would be counted twice. Due to the match condition, we find the minimum combination of
partial solutions in the children.

3.1.5 Resulting complexity

The asymptotic complexity of the entire algorithm is the dominated by the complexity of the join
procedure. The complexity of this procedure is the result of match condition. There is a total of
five different combinations of states that can occur at a single position in the configuration of a
parent and both its children {cx(v), cl(v), cr(v)}: {1, 1, 1}, {00, 00, 00}, {01, 01, 00}, {01, 00, 01}, and
{01, 01, 01}. Since these five different combinations have to be explored for each vertex in the bag
in the join procedure, we get a complexity of O∗(5k). All other types of nodes are straightforwardly
computed in O∗(3k).

3.2 Reducing complexity by altering the state set

The algorithm presented in [1], which we will call Alber for simplicity, improves on the O∗(5k)
run-time of the previous algorithm, by introducing a new type of state, namely: 0?. This state is
assigned to a vertex in the configuration and it indicates that a vertex is not part of the dominating
set D, but it is not known whether the vertex is dominated or not. This algorithm replaces state 00
with the new 0? state. Effectively, we can express the new type of memoization table AAlber(c) as
follows:

AAlber(c) = min{A(c′)} (1)

c′ subject to:

c(v) = c′(v) = 1, or

c(v) = c′(v) = 01, or

c(v) = 0? and c′(v) ∈ {01, 00}

This definition is true coordinate-wise: for each position in the configuration that we have a 0?, we
take the minimum of the two partial solutions that have a 01, or a 00 at that same position.

Since the new state does not indicate whether the vertex is already dominated or not, and we
are trying to find the minimum dominating set, we can select the minimum value of either state
assignment. For simplicity, we will denote the memoization tables with the new states as A(c),
instead of AAlber(c).

From this definition of 0? follows the concept of monotonicity for the 0? and 01 states:

11



A(c× {0?}) ≤ A(c× {01}) (2)

Since we select the minimum value over both states 01 and 00, we know by definition that the value
for the 0? state is smaller than, or equal to the value for the 01 state.

3.2.1 The leaf procedure

The leaf procedure is almost the same as that of the previous algorithm:

Ax({1}) = 1

Ax({01}) =∞
Ax({0?}) = 0

The only change here is that the 00 state of the previous algorithm is replaced with a 0? state. The
value 0? follows from Equation 1.

3.2.2 The introduce procedure

The table in the introduce node is calculated as follows:

Ax(c× {01}) =

{
Ay(c) if v has a neighbour that has state 1

∞ otherwise

Ax(c× {0?}) = Ay(c)

Ax(c× {1}) = 1 +Ay(φN(v)(c))

Here, the φ function replaces the states for the vertices that neighbour v to state 0? if they have
state 01. This change is made, since we know by definition of monotonicity that a configuration
containing 0? will always have a solution smaller than, or equal to a configuration having a 01 at
the same position.

3.2.3 The forget procedure

The forget procedure is equal to the corresponding procedure in the original algorithm:

Ax(c) = min{Ay(c× {1}), Ay(c× {01})}

We again exclude the last state, since forgetting a vertex means that it has to have a certain, feasible
state and as was mentioned, a configuration containing state assignment 00 is not feasible, since all
vertices have to be dominated or have to be part of the dominating set.

12



3.2.4 The join procedure

The most significant change is the new join procedure. By using the 0? state, the total number of
combinations of states that have to be reviewed in the join procedure is reduced from five to four.

We introduce the notion of two configurations cl and cr from child nodes l and r dividing the
configuration c if either one of the following conditions hold for each position vertex v in the config-
uration:

1. c(v) = {1, 0?} =⇒ cl(v) = cr(v) = c(v)

2. c(v) = 01 =⇒ cl(v), cr(v) ∈ {0?, 01} and cl(v) 6= cr(v)

In words, if a vertex is assigned configuration 0?, or 1, this should also be true in the configurations
of the children. If a vertex is assigned state 01, then the configurations of the children should have
state 01, or state 0? assigned to that vertex, but they cannot have the same state assigned. This
limitation is the key to the reduction in complexity. The table values Ax are calculated as follows
from the children l and r:

Ax(c) = min{Al(cl) +Ar(cr)−#1(c) | cl and cr divide c} (3)

To avoid counting 1-assignments twice, the term #1(c) is subtracted from the sum of the two values.
If a vertex is assigned state 01 in c, then it is sufficient that either one of the two states in the
children have the same state. If we can ensure that the vertex with state 01 is dominated in one
of the two children, we can choose to use the 0? state assignment in the other child, since we have
ensured that the vertex is dominated. By choosing the 0? state assignment in the other child, we
get the minimum size of D for the partial solution.

3.2.5 Resulting complexity

In Section 3.1.5 it was shown that the complexity of the respective algorithm has its origin in
the different combinations of states that have to be explored in the join procedure. Since in this
algorithm we reduce this number from five to four, the complexity changes with it.

The time complexity of O∗(4k) can be derived by looking at the divide condition in the join. As
will be discussed more extensively in Section 4.3, There are

(
b
q

)
2b−q different configurations for a

given bag size b and number of 01 states in the configuration q. This means that we have a total
of
∑b
q=0

(
b
q

)
2b−q different configurations for a given bag size. For a given q, the divide condition

generates another 2q configurations, which means that the total complexity comes to
∑b
q=0

(
b
q

)
2b−q2q,

which is equal to 4k by Newtons Binomium.

3.3 An optimal approach

Further improvements are made by van Rooij et al. [18], who give two algorithms. The first of the
two has a computational complexity of O(n33k) which already is a significant improvement over the
previous algorithm. The second algorithm in the work of [18] reduces this complexity even further
to O(nk23k). This is an improvement, since by definition k ≤ n.

The forget, introduce, and leaf procedures of the latter approach are the same as those of the
Alber algorithm discussed in Section 3.2. These procedures are combined with the join procedure of
the introduced O(n33k) algorithm, which results in the need for table transformations to and from
a compatible format.

13



3.3.1 Consistently storing κ-values

The first of the two mentioned algorithms, which we will call vanRooij1 for simplicity, differs from the
second algorithm, which we will call vanRooij2, in that the tables store more extensive information.
A value in a table of the vanRooij1 algorithm AvanRooij(c, κ) describes the number of solutions that
are associated with that configuration, and a dominating set size of κ, where κ can range from 0 to
n. This algorithm uses the following state set: {1, 00, 0+}. With the new state 0+, we again have to
define the value for this state assignment in the memoization table AvanRooij(c, κ):

AvanRooij(c, κ) =
∑

A(c′, κ) (4)

c′ subject to:

c(v) = c′(v) = 1, or

c(v) = c′(v) = 01, or

c(v) = 0? and c′(v) ∈ {01, 00}

As was the case for the 0? state in the Alber algorithm, this definition is true coordinate-wise:
for each position in the configuration that we have a 0+, we take the sum of the two partial solutions
that have a 01, or a 00 at that same position.

For simplicity, we will refer the the AvanRooij(c, κ) algorithm as just A(c, κ). Here, we are
counting solutions of a certain size κ for a given configuration c, by using the 0+ state as the sum
of the 01 and 00 states.

From this definition, we can derive monotonicity in the following form:

A(c× {00}, κ) ≤ A(c× {0+}, κ) (5)

The join procedure for vanRooij1 is fairly simple. The reason why this is possible, is that we do not
have to consider multiple matching state assignments when calculating new partial solutions:

Ax(c, κ) =
∑

κl+κr=κ+#1(c)

Al(c, κl)×Ar(c, κr) (6)

The positions in the configuration that have a 1, or a 00 require to be the same for the configurations
for the children. Since we are indifferent about whether vertices with a 0+ state are dominated, we
only have to consider 0+ states for those positions in the respective configurations of the children.
This indifference means that we do not have to consider multiple configurations, since all three of
the states in the configurations in the parent table need to match all three of the states in the
configurations in the tables of the children.

3.3.2 The vanRooij2 algorithm

The vanRooij2 algorithm combines the join operation from the vanRooij1 algorithm that is discussed
in Section 3.3.1, with the leaf, introduce and forget procedures from the Alber algorithm discussed

14



in Section 3.2. A key difference between these algorithms is that the Alber algorithm only stores the
size of the smallest dominating set for a configuration in a partial solution, whereas the vanRooij1
algorithm stores the number of solutions for a given size of the dominating set. This means that
there is a major difference between the vanRooij1 algorithm and the vanRooij2 algorithm: the
vanRooij2 requires that the tables are transformed to and from different state domains.

The algorithm in [18] describes the following method for performing the join procedure. First,
the memoization tables are expanded to contain κ-values. For children y ∈ {l, r}, we expand the
table with b + 1 values, where b is the size of the bag, for each configuration and fill it with the
following formula:

A′y(c, κ) =

{
1 if Ay(c) = κ

0 otherwise

Note that here we are not counting partial solutions, but partial solutions stored in the original
table. Where the tables in vanRooij1 have a κ ranging from 0 to n, here we only expand the table
to hold b+ 1 additional values per configuration. This is done using the parameter ξy, which holds
the lowest value in the table Ay. Since we know that we don’t have to store lower values than this
in the expanded tables (since they simply do not exist by definition of ξy) and because we do not
have to store values higher than ξy + b + 1 (since these would never occur in an optimal solution),
we can limit the range for κ, which becomes ξy ≤ κ ≤ ξy + bagSize + 1.

After expansion, the tables need to be transformed to use the right set of states. We do this by
using the following formula:

Ax(c1 × {0+} × c2, κ) = Ax(c1 × {00} × c2, κ) +Ax(c1 × {01} × c2, κ) (7)

We plug in the 0? state from the Alber algorithm to create the following equation to perform the
translation and to introduce the 0+ state:

Ax(c1 × {0+} × c2, κ) = Ax(c1 × {0?} × c2, κ) +Ax(c1 × {01} × c2, κ) (8)

The formula is applied coordinate-wise. This means that for each position in the configuration, all
O(k23k) table entries are passed. As we saw in Equation 4, the 0+ state is defined as the addition
of the 00 and 01 states. In this instance, we need to transform to the 0+ state by using the 0? state
and the 01 state. This means that we effectively interpret the 0? state as being the 00 state. To
see why this is correct, we look at Equations 2 and 5. By combining these definitions we can derive
that:

A(c× {0?}) ≤ A(c× {0+})

After expansion and transformation of the child tables, the join procedure from Equation 6 is
performed for the following range for κ: ξl + ξr − (b+ 1) ≤ κ ≤ ξl + ξr + b+ 1. After this procedure
is executed, the tables have to be transformed and reduced in order to be compatible with the
introduce and forget procedures. The transformation occurs using Equation 9:

15



Ax(c1 × {01} × c2, κ) = Ax(c1 × {0+} × c2, κ)−Ax(c1 × {00} × c2, κ) (9)

The reason that we transform back using Equation 9, instead of translating back to the 00 state
directly (which would then again be interpreted as state 0?), is that in the latter process, we would
lose monotonicity (see Equation 2). This monotonicity was lost during the join as described in
Equation 6, as this was not taken into consideration when combining the values of the two child
nodes. If we were to translate back directly to state 00, we could no longer interpret the 00 state as
the 0? state, as monotonicity no longer holds. We can, however, translate back to the 01 state.

After the transformation, the table A′x is reduced by using the following method:

Ax(c) = min{κ |A′x(c, κ) ≥ 1 ξl + ξr − (b+ 1) ≤ κ ≤ ξl + ξr + b+ 1} (10)

From the κ-values that are larger than zero, we choose the smallest, since this is the smallest size of
the dominating set D for which solutions are possible (for the given configuration). Since we have
chosen for a more compact representation of the expanded tables by storing a min value ξy, we have
to add both of these values to the optimal value of κ.

3.3.3 Interpretation of state

The join procedure for the vanRooij2 algorithm as described in Section 3.3.2 is not the same as
the one that is given in [18]. In Section 3.3.2 we perform an asymmetrical transformation, first
performing a transformation that introduces the 0+ state, but then transforming back to the 01
state, instead of transforming back to the 0? state. The original implementation in vanRooij2 uses
a different implementation. Here, the transformation of the child tables is performed using the
following Equation:

Ax(c1 × {00} × c2, κ) = Ax(c1 × {0?} × c2, κ)−Ax(c1 × {01} × c2, κ) (11)

And transforming the parent table back is done using Equation 9.
The 0? state and the 0+ state are incorrectly assumed to be equal, since the 0+ state is funda-

mentally different from the 0? state. The 0? state is the effect of minimizing over the possibilities of
being dominated, and remaining undominated (as defined in Equation 1). The 0+ state is the result
of taking the sum over these possible values (see Equation 4).

3.3.4 Resulting complexity

The discussed indifference in the join procedure is the reason that the computational complexity
of this algorithm is less than that of the Alber algorithm. The tables in the join procedure of the
vanRooij2 algorithm have size O(k3k). Since, for each configuration, at most O(k) multiplications
have to be performed during evaluation, we get a complexity of O(k23k). The state transformations
also have complexity O(k23k), since O(k3k) calculations have to be performed in O(k) coordinate-
wise steps. In total, n nodes in the tree decomposition have to be evaluated, which means that the
total time complexity adds up to O(nk23k).

16



3.4 Additional changes

Aside from the correction discussed in Section 3.3.3, several small adjustments to the original al-
gorithms were made in order to make them slightly easier to implement. These changes had no
significant impact on run time what so ever and they did not change the outcome of any of the al-
gorithms. In practice, we count the number of vertices that are part of the solution (the dominating
set) at a different moment in the algorithm. By counting a vertex as part of the dominating set as
it is forgotten, rather than when it is introduced, some of the other methods used can be slightly
simplified.

The introduce procedure is slightly altered, by replacing the function for the addition of a vertex
with state 1 to the following:

Ax(c× {1}) = Ay(φN(v)(c)) (12)

Since we now have to count a vertex as it is forgotten, the forget procedure is also changed:

Ax(c) = min{Ay(c× {1}) + 1, Ay(c× {01})} (13)

The effect that this has on the join procedure of the vanRooij algorithm, is that we no longer have
to take into account the number of ones that are in a configuration:

Ax(c, κ) =
∑

κl+κr=κ

Al(c, κl)×Ar(c, κr) (14)

This also has an effect on the transformations that are part of the vanRooij2 algorithm. If we create
the the A′(c, κ) tables starting at index zero, we can simplify the reduction in the last step of the
join. In practice, we alter the expansion method as follows:

A′y(c, κ) =

{
1 if Ay(c) = κ+ ξy

0 otherwise
Having κ ranging from 0 to bagSize + 1 (15)

By changing the range of the second parameter of the A′(c, κ) function, we can simplify the reduction
step as follows:

Ax(c) = min{κ |A′x(c, κ) ≥ 1}+ ξl + ξr (16)

4 A parallel implementation on the GPU

Copying memory to device and then copying memory back for the leaf procedure would cause far
too much overhead for such a simple procedure (merely instantiating 3 values in an array). This is

17



why the leaf procedure is shared among all implementations discussed in this work (sequential, as
well as parallel). Our implementations perform each procedure sequentially, by copying memory to
the device and copying the solutions of the kernel executions back to the host.

It should be noted here, that we could also have chosen the approach of performing the full
algorithms on the GPU, thus eliminating overhead. We have chosen not to do this, opting for the
approach of executing each procedure on the GPU individually using memcopies, for several reasons:

1. We were not necessarily very interested in GPU versus CPU implementations for small problem
instances, as we do not expect parallelization to have a significant effect on run time (as these
instances have relatively few partial solutions that can be found in parallel).

2. Memory constraints. Host memory is often (and also in this case) more abundant than device
memory. As tables can become quite large, and many tables might have to be stored for later
use, we could be severely limiting the instances that can be used by only using the device
memory.

3. Ease of implementation. The modularity of the implemented algorithms allowed for selecting
a procedure during execution. This allowed us to isolate newly implemented procedures and
test them.

4.1 Base-3 configurations

The problems discussed in this work all use a state set containing three states. A configuration
of vertices that is associated with a certain partial solution should be able to represent all three
of these states for each vertex, resulting in the need for a base-3 configuration. Recall that each
configuration c is associated with a single partial solution in the memoization table: A(c).

In order to reduce storage requirements and complexity, standard 32-bit integers are used as
configurations. Using these integers makes it so that a positional index in a memoization table can
be used as a configuration. One problem arises from this approach, which is the fact that integers
are encoded in bits, and not trits, which is what we need for the base-3 configurations. We use
the concept of Binary Coded Ternary, or BCT. This encoding uses two bits in the bit string to
represent one trit. Conversion from and to BCT makes it so that this encoding can be used. The
functions used for configuration permutations, translations, etc., have been implemented using bit
shifts wherever possible, in order to reduce overhead.

Since these conversions are very frequent, one might consider other solutions to this problem.
The most straightforward optimization would be to use a conversion table, which would result in
a constant-time array lookup, which is of course very fast. The downside of this approach is the
memory requirement. It would introduce another table of size 3k, that would have to reside in the
host memory, as well as the device memory. The former would not be such a big problem, since it
is relatively easy to expand host memory. The latter would cause problems however, since memory
is embedded in the device and it should be used optimally and sparingly. In addition, it is possible
that the few calculations for a small value of k will outperform the approach of creating a lookup
table in memory.

Another approach would be to use an array that could be directly accessed with the BCT
formatted configurations. This would eliminate the overhead of conversions, it would however,
introduce sparsity in tables. Since only three quarters of the BCT string is used, the resulting tables
would also have values for only three quarters of the indices.

As the mentioned alternatives come with some unwanted caveats, which are the result of memory
constraints, we have chosen to use the conversions as mentioned in the beginning of this section.

18



4.2 The introduce and forget procedures

The parallel introduce procedure distributes the workload over an array of threads. Since each
configuration in the child node is associated with three new configurations in the parent, we launch
a total of 3bc threads, where bc is the bag size of the child node. The implemented kernel performs
the same operation as a single iteration in the sequential implementation does.

The forget procedure, simple as it is in itself, is parallelized similarly to the introduce. A thread is
launched for each configuration in the parent node, which means that a total of 3bp kernel executions
will occur, where bp is the bag size of the parent node. The method used in the kernel itself is the
same as is used in iterations of the sequential approach.

4.3 A parallel implementation of the Alber join procedure

As was discussed in Section 3.2, the join procedure contains a divide condition. This condition
creates the need for exploring pairs of configurations from the children that contain either a 01, or
0? state at the positions where the parent’s configuration has a 01 state.

Let q, be the number of 01 states in a configuration c: qc = #01(c). We use this property qc
to divide the configurations in comparable segments, which are consequentially more manageable
by the GPU. This, because the workload that has to be performed per configuration (exploring
different combinations of configurations from the children) is dependent of the number of 01 states
in the configuration. The set of configurations that we need from both children to perform the join
operation for a single configuration for the Alber algorithm is 2qc , and will grow exponentially with
q. This introduces the problem that configurations with more 01 states require significantly more
computations to determine the minimal value for A(c).

4.3.1 Splitting the table into q-based segments

For each qc, we split the
(
b
q

)
2b−q corresponding configurations, where b is the bag size of the join

node, into segments that are manageable for the GPU, as different values of q require different
amounts of work. Note that the total of O(3k) configurations is the result of summing over all of

these segments:
∑b

0

(
b
q

)
2b−q = 3b.

As was mentioned in Section 2.2, we can distribute work over multiple streams in order to
optimize GPU usage, due to the possibility of executing multiple streams in parallel. For a given q,
the respective number of kernels are launched and assigned to a stream. This happens for all values
of q, in an decrementing fashion, thus starting out with the stream that has to perform the most
work, and gradually working towards smaller workloads. As multiple streams are launched, their
workloads are queued if there is no capacity on the GPU available at that point. Since we start out
with the largest workload, we can queue the other, smaller workloads, thus reducing idle time and
optimizing GPU usage.

Recall that each thread has a unique identifier, which is derived from the respective combination
of a grid id, block id, and thread id. This unique combination, which we will call m, ranges from
0 to

(
b
q

)
2b−q, which is the size of the set of configurations associated with a given q. Each kernel is

also given the corresponding value for q as a parameter at execution. We can split the value of m
into two factors α, and β, where α is the index of the positioning of the q 01 states in the ordered
set, and β is the index of the rest of the configuration in the ordered set (consisting of only 0? and 1
states). One can see that α ranges from 1 to

(
b
q

)
, and β ranges from 1 to 2b−q. As the 2b−q different

possible sub-configurations of the remainder of the configuration can only consist of two states, we
can infer this part of the configuration directly from the BCT string β.

19



Since we are working with the BCT format, each m can be viewed as a BCT string that is the
concatenation of the two BCT strings represented by α and β. Since β ranges from 1 to 2b−q, one
can see that we can easily determine the value of β by looking at the first b− q positions of the BCT
string m, which also means that we can obtain the value for α by looking at the rest of the BCT
string.

4.3.2 Deriving the correct configuration

We define pα as a set of integers pα = {p0, ..., pq−1}, where each integer is strictly larger than the
preceding index and each integer describes the position of one of the q 01 states. We can view the
set of possible combinations for pα as a combinatorial number system. Such a system consists of
combinations of numbers from a given ground set, where the combinations have a strict ordering
and no combination occurs twice. This ordering of combinations is derived from the ordering of the
set of numbers in the ground set. This means that for each value of α we have a single corresponding
combination of positions pα. With this knowledge, we can find the correct value of pα by using the
following algorithm, which uses α, q, and bag size b:

Algorithm 1 Find combination

1: procedure FindCombination(α, b, q)
2: A← [ ]
3: r ← α
4: cs← b
5: for s in descending values in the range q do
6: while r −

(
cs
s

)
< 0 do

7: cs = cs− 1

8: r = r −
(
cs
s

)
9: A.append(cs)

return A

The algorithm determines for each of the q 01 states what their respective position is in the
configuration, given a value α. Going from right to left in the configuration, we check if the current
position has a 01 state. If this is not the case, we move over one position. This is done until a set
of q positions is found.

The for-loop on line 5 executes exactly q times. The inner while-loop executes O(b) times, since
the value for cs reduces in each iteration. The binomial coefficient has time complexity O(b), which
means that the execution of this algorithm has a time complexity of O(b2). Now that we have found
the correct combination of positions of the 01 states using α, and the correct composition of the rest
of the configuration using β, we can easily translate this information to a configuration in constant
time.

4.3.3 Considerations

Recall that a total of 2q computations have to be performed per configuration, followed by a re-
duction (see Equation 3). Since we segment the configurations by q, we know that the workload
per configuration for a given segment is equal. The first, more straight-forward approach to a GPU
implementation is to assign all of the 2q workload to a single thread. The reduction over all these
values will then also be performed in the same kernel, which means that all of these executions can
be done fully in parallel using streams.

20



A more complex approach would be to assign each of the 2q operations in the min-term of the
join of the Alber algorithm it’s own thread. Each thread will perform the corresponding operation
and will then wait until all threads corresponding to a single configuration are synchronized. After
synchronisation, a block reduction step of complexity O(log 2q) = O(q) is performed over all threads
that correspond to a single configuration and the resulting value is stored. The implementation used
for this research however, uses the first of the two approaches. This, due to a time constraint. Other
suggestions that might improve run time will also be discussed in Section 9

4.3.4 Expected effect on complexity

As was explained in Section 3.2, the complexity of this algorithm is dominated by the O(4k) com-
plexity term. The total work that has to be done is divided into q loads, where each load requires(
k
q

)
2k−q2q work. Theoretically, if there was no restriction on hardware, we could perform these q

work loads fully in parallel using streams. In practice however, this is of course not the case and we
are limited by the capacity of the GPU.

4.4 A parallel implementation of van Rooij’s join procedure

The implementation of the vanRooij2 algorithm is more complex than that of the Alber algorithm.
This is due to the fact that the algorithm requires that tables are transformed to and from certain
state set domains. Where we could perform the operations in the q sequential steps in the Alber
algorithm fully in parallel, it is not quite as easy for the vanRooij2 algorithm.

As was discussed in Section 3.3, the state transformations of the tables are not symmetrical: the
tables of the two child nodes are transformed using Equation 8, and the transformation of the table
in the parent node is performed using Equation 9. In a BCT string, we use three different values
to indicate a certain state assignment: 0, 1, and 2. In the code, each state is associated with one of
these values in the BCT string: a 0+ state, or 0? is a 2, a 1 state is a 1, and a 0 can be either a 00,
or a 01 state. After transformation of the child tables, these associations are still true, though state
00 is used instead of state 01 and a 0+ state has replaced the 0? state. When we transform back, we
replace the 0+ state with a 01 state. Now, a 0 in the BCT string indicates state assignment 0?, and a
2 indicates a 01 state assignment. This is corrected by swapping 0 and 2 in the configuration, which
means that we need an additional O(3k) swap operation in order to correct all the configurations.

4.4.1 Memory management

The join procedure of the vanRooij2 algorithm involves transformations of tables to different state
domains in order to be able to use a lower complexity join procedure. Since copying memory from
host to device causes overhead, these memcopies are to be limited as much as possible. In order to
do this, device memory has to be used sparingly and creatively, by overwriting tables that are no
longer used with newly created tables. The process used is described in the following steps. For
simplicity, we use the notation of memory blocks A, B, and C. The size of these memory blocks
is determined by the size of the tables expanded with κ-values. We make a distinction between
blocks, which are used in CUDA programming, and memory blocks, which are used here for efficient
memory use.

The tables for the children and the parent are represented by Al, Ar and Ax, respectively. The
tables that have been expanded with κ values are denoted by A′l, A

′
r and A′x. The process is as

follows:

21



1. Allocate memory blocks A and B for tables Al and A′l, respectively. Also allocate memory
block C for table A′r.

2. Copy Al from host to device.

3. Fill table A′l by expanding Al using Equation 15.

4. Perform a state transformation on table A′l and overwrite table Al in memory block B using
Equation 8.

5. Overwrite A′l in memory block A with Ar, by copying the table from host to device.

6. Fill table A′r by expanding Ar, again using Equation 15.

7. Perform a state transformation on table A′r, by overwriting table A′r, which is in memory block
C, again by using Equation 8.

8. Use tables A′l, and A′r, located in memory blocks B and C, respectively to fill table A′x located
in memory block A using Equation 14.

9. Perform another state transformation on table A′x, by overwriting data in memory block A
and by using Equation 9.

10. We now have a table where states 01 and 0? are swapped. This is corrected by swapping the
states and overwriting memory block B

11. Reduce the newly transformed table A′x in memory block B by overwriting the data in memory
block C and by using Equation 16.

12. Memory block C now holds the final table, this table is copied back to host and all memory
blocks are freed.

This method ensures that we limit the number of memcopies between host and device, and it
makes sure that we use as little memory as possible on device. As one can see, state transformations
do not require the data to be written to a different memory block, since these operations can be
performed in place.

4.4.2 Expected effect on complexity

As was explained in Section 3.3, the transformations from one state set to another has to be done in b
sequential steps, where b is the bag size. This is a strong limitation when it comes to parallelization.
As a result, we not only have to perform the transformations and join procedure one sequentially
after the other, but we also have to perform the transformations in sequential steps. It is expected
that this difference in viability for parallelization will become apparent during experimentation.

5 Experimental setup

Experiments were run on a consumer-grade system. The parallel algorithms ran on an Nvidia GTX
1050 Ti, which has a total of 768 CUDA cores. The card is clocked at 1290 MHz and has 4 GB of
DDR5 memory. The system also includes a Ryzen 2700X CPU, which has 8 cores and 16 virtual
threads (though the sequential algorithms ran on a single core), which has a base clock of 3.7 GHz.
A total of 8 GB of DDR4 memory clocked at 3200 MHz was used on the host.

22



5.1 Method

Each of the four algorithms were run for all of the tree decompositions from our dataset (see Section
5.2). For each individual run, the following data was collected:

1. Global run time of the algorithm

2. Run time for each individual node

3. Bag sizes and node types

The collected data was processed to provide an overview of minimum, maximum and average
run times for each type of node and for each occurring bag size. The graphics card that was used
for the parallel implementations requires some time to start up. This is due to the driver having to
connect to the device before any interaction can take place. This is why for each tree decomposition,
a preliminary dummy run was executed using one of the two parallel algorithms. This ensures that
the run times are accurate. Of course, these dummy runs were not taken into account when data
was collected.

5.2 PACE data

We used graphs and tree decompositions from the PACE challenge data set. The PACE challenge
is an annual competition that invites computer scientists to compete against each other to find the
fastest possible algorithms to solve a given problem in the field of FPT-algorithms. The competition
held in 2017 provided competitors with a repository with graphs and corresponding tree decompo-
sitions. These tree decompositions however, are not nice (in the sense that they are not structured
as is defined by the definition of a nice tree decomposition). We had to implement the make-nice
algorithm from [14]. This implementation is discussed in Section 5.3.

The tree decompositions included in the PACE set have varying tree widths. The tables in the
nodes have size O∗(3k). If the memoization table for a node is calculated, it has to be stored in
memory when its parents memoziation table is be calculated. This means that, depending on the
structure of the tree and the bag size, memory might be heavily used. Depending on the type of node,
several tables have to be available for the respective procedure. For a leaf node, this is negligible,
as the table will always (at least in the context of this research) exist of only three integer values.
The introduce and forget nodes require 3b + 3b+1 space, where b is the bag size of the smallest node.
This is the case because we need the table of the child to calculate the table of the parent. The join
requires space for one more table; one for the parent, and one for each child. That means that, in
the case of the Alber algorithm, the join node requires 3 ∗ 3b space, where b is the bag size, which
is equal for all three nodes. This space requirement is even more (a factor O(k)) for the join node
of the vanRooij2 algorithm. The following example provides insight for on limiting this restriction
might be. If we have a tree width of 20, we have at least one bag of size 21. The space required in
bytes will then be:

321 × 32

8
= 41841412812

We multiply by 32, since 32-bit integers are used. This is a total of more than 40 gigabytes of
memory that is required for a single introduce, or forget type node memoization table. One can

23



image that, when multiple memoization tables are needed for a procedure, and when multiple nodes
have to be stored for later use, this space requirement will be too vast for our hardware.

Due to this very strict limitation, all trees that had a tree width higher than 18 were filtered out.
This, because our system is able to handle tables of bag size 19 (which are around 4.5 gigabytes in
size). After filtering the tree decompositions, preliminary runs revealed which of the resulting tree
decompositions were suited for experimentation. After these runs, several more trees were discarded.
This, because during their runs, the required memory would exceed system memory, which would
result in a very significant and unfair drop in performance. What remained was a total of 116 tree
decompositions.

Table 1: For each tree width k the number of tree decompositions is given that has at least one join
node of size k + 1. The last column shows the percentage of tree decompositions of tree width k
which have at least one join node of size k + 1

k none at least one %
6 0 2 100
7 0 11 100
8 0 9 100
9 0 34 100
10 0 31 100
11 0 14 100
12 0 12 100
13 0 2 100
14 0 1 100

Table 1 provides an overview of the presence of join nodes of size k + 1 for trees that have
tree width k. As was explained in Section 3, the join procedure determines the computational
complexity of both the Alber algorithm and the vanRooij2 algorithm. As we can now see, all tree
decompositions that have a join node also have a join node of size k + 1. This means that for all of
the tree decompositions that have a join node (only one single tree decomposition in our set does
not have single join node) the global run time (the execution time for the algorithm on the entire
tree decomposition) should be at least heavily impacted by the join procedure.

5.3 Obtaining nice tree decompositions

In order to obtain nice tree decompositions (our version, see section 2.3), several modifications had
to be performed to the tree decompositions in the PACE data set.

The implemented method passes all the nodes in a given tree decomposition twice. The fact
that the algorithm takes slightly longer is irrelevant, since its running time is not included in the
benchmarks. During the first pass, all nodes that have more than two children are transformed. For
such a node, we remove children until the node has only two children left. Then, we append the
removed children to one of the two remaining children. This operation is performed recursively, until
we no longer have to remove any children. The result is a skewing in the tree, which is preferred over
the other option: distributing nodes evenly over children to create a symmetric branching structure.
This is true, since in a more breadth-oriented structure, more evaluated memoization tables have
to be stored in memory for later use. After this first pass, the second pass will reduce the leaves
and the root to a bag size of one. This pass will also insert paths of successive forget nodes and

24



introduce nodes between nodes in the graph that have bags that differ more than one vertex. The
result is a nice tree decomposition.

6 Experimental results

The sequential and parallel implementations of the Alber, and vanRooij2 algorithms are denoted
as follows: S4k is the sequential implementation of the Alber algorithm. P4k is the parallel im-
plementation of the Alber algorithm. We use an S, or P to denote whether the implementation is
sequential or parallel, respectively. The 4k is derived from the O∗(4k) time complexity of the Alber
algorithm. Using the same logic, we have P3k and S3k for the vanRooij2 algorithm.

6.1 Parallel vs sequential implementations

When looking at Figure 1, one can see that the sequential algorithms have run times much lower than
their parallel counterparts when bag size of the join nodes is very small, and as bag size increases,
the run times increase exponentially. This consistent exponential increase contrasts with the parallel
algorithms. One can see that there is a difference of multiple orders of magnitude between the run
times for lower bag sizes for the sequential algorithms, while the run times are fairly consistent for
these bag sizes for the parallel algorithms. The is the result of the copying of memory from and to
device causing a bottleneck. As run time increases, one can see that also the parallel implementations
increase in run time exponentially. This is due to the limited capacity of the used hardware: as the
workload increases, not all blocks can be processed concurrently. When there is too much work to
handle in parallel, blocks are queued until CUDA cores become available.

0 2 4 6 8 10 12 14 16

0

50

100

150

200

Bag Size

R
u

n
ti

m
e

in
se

co
n

d
s

s3k
s4k
p3k
p4k

(a) The run times in seconds for the join nodes for all
four algorithms.

0 2 4 6 8 10 12 14 16

10−6

10−4

10−2

100

102

Bag Size

R
u

n
ti

m
e

in
se

co
n

d
s

s3k
s4k
p3k
p4k

(b) The results plotted against a logarithmically scaled
y-axis.

Figure 1: For each bag size, the run times for the join procedures are plotted for all four algorithms.
Figure 1a shows the results with a linearly scaled y-axis, and Figure 1b uses a logarithmically scaled
y-axis. The values are presented in Table 4.

At bag size ten, the difference in run time is already a factor of 36 between the sequential, and
parallel implementation of the Alber algorithm. When the bag size is increased to 15, this becomes
a factor of 130.

25



The trends that can be found in the join node between the sequential and parallel algorithms,
can also be found in the introduce and forget nodes. Figures 2 and 3 show the average run times
per bag size for the introduce, and forget nodes, respectively.

The run times for the introduce, and forget nodes stay fairly low when compared to those of
the join node. The result of this, is that the parallel implementations overtake the sequential
implementations at a later point, i.e. at a larger bag size. For both the introduce and forget
procedure, this happens at bag size nine. One can also see that for both the introduce procedure
and the forget procedure, run times associated with smaller bags are dominated by overhead, which
was also the case for the join nodes. Only when the bag size increases to such an extent that the
work exceeds the capacity of the GPU do we see an exponential increase in run time.

When bag size 15 is reached for the introduce node, the difference between the parallel and
sequential algorithms is a factor of 29. The factor for the forget node becomes 13 at bag size 14.
These numbers, along with the average run times, are a lot lower for the introduce, and forget node
than they are for the join node. This is due to the relative simplicity of the introduce, and forget
node. These nodes have a computational complexity of O(3k), whereas the P3k join has complexity
O(k23k) and the P4k algorithm has complexity O(4k).

2 4 6 8 10 12 14 16

0

0.5

1

1.5

Bag Size

R
u

n
ti

m
e

in
se

co
n

d
s

sequential
parallel

(a) The run times in seconds for the introduce nodes
for the sequential and parallel algorithms.

2 4 6 8 10 12 14 16

10−6

10−5

10−4

10−3

10−2

10−1

100

Bag Size

R
u

n
ti

m
e

in
se

co
n

d
s

sequential
parallel

(b) The results plotted against a logarithmic y-axis.

Figure 2: The average run times in seconds for the introduce nodes in the sequential, and parallel
algorithms. Figure 2b shows the results using a logarithmically scaled y-axis. The values are
presented in Table 2.

Tables 2, 3, 5, and 6 in Appendix A also show the minimum, and maximum run times for each
bag size and each node type. One can see that these values differ only marginally. This is due to
the fact that the dynamic programming algorithm performs exactly the same operations for each
run for a given tree decomposition. Because of this, the differences between the minimum and
maximum run times can be credited to outside factors, like other processes running on the system.
Table 2 shows are more significant difference between the minimum and maximum run times for
the introduce procedure. This is due to the φ function discussed in Section 3.2.2. The amount of
work that has to be done per configuration when this φ function is executed, is dependent on the
number of neighbours that the introduced vertex v has in the current bag. This dependence of the
run time of the algorithm on the structure of the graph is a property that is unique to the introduce
procedure and is the reason why there is more variation in run time.

26



0 2 4 6 8 10 12 14

0

0.1

0.2

0.3

0.4

0.5

Bag Size

R
u

n
ti

m
e

in
se

co
n

d
s

sequential
parallel

(a) The run times in seconds for the forget nodes for
the sequential and parallel algorithms.

0 2 4 6 8 10 12 14

10−6

10−5

10−4

10−3

10−2

10−1

100

Bag Size

R
u

n
ti

m
e

in
se

co
n

d
s

sequential
parallel

(b) The results plotted against a logarithmic y-axis.

Figure 3: The average run times in seconds for the forget nodes in the sequential, and parallel
algorithms. Figure 3b shows the results using a logarithmically scaled y-axis. The values are
presented in Table 3.

6.2 Parallel implementations: P3k vs P4k

Since the parallel implementations of the Alber and vanRooij2 algorithms use the same imple-
mentations for the introduce and forget procedure, we only have to look at the results of the join
procedure when comparing the two. Figure 4a shows the difference in run times for the two parallel
implementations. As one can see, the P4k algorithm outperforms the P3k algorithm for larger bag
sizes. One can see that the algorithms have fairly equal run times up to a bag size of 10, after which
P4k is the clear winner. From this we conclude that the Alber algorithm is more viable for parallel
implementation for these bag sizes. This is mainly due to the state transformations that have to be
performed on the memoization tables during the join of the P3k algorithm. These transformations
cannot occur fully in parallel, but have to be performed in O(k) sequential steps. What is more, is
that the operation of combining the two transformed child tables has to be performed in sequence of
the transformations for the P3k algorithm. This is in contrast with the P4k algorithm, for which all
threads could theoretically be executed fully in parallel using streams. A more in depth discussion
on the relation between hardware and these parallel algorithms can be found in Section 8.

27



0 2 4 6 8 10 12 14 16

0

1

2

3

Bag Size

R
u

n
ti

m
e

in
se

co
n

d
s

p3k
p4k

(a) The results presented using a linear time scale.

0 2 4 6 8 10 12 14 16

10−3

10−2

10−1

100

Bag Size

R
u

n
ti

m
e

in
se

co
n

d
s

p3k
p4k

(b) The results presented using a logarithmic time
scale.

Figure 4: Comparisons for the run times of join nodes of the P4k and P3k algorithm. Figure 4a
shows the results for the parallel algorithms. Figure 4b shows these results using a logarithmic scale
on the y-axis. The values are presented in Table 4.

6.3 Sequential implementations: S3k vs S4k

For this comparison we also only have to look at the join procedure. Figure 1 shows the run times
for the two sequential implementations. In contrast to what was discussed in Section 6.2, here the
sequential implementation of the vanRooij2 algorithm outperforms the sequential Alber algorithm.
As can be seen in figure 1, the S3k algorithm overtakes the S4k algorithm at a bag size of nine.
This is a surprising result, as we would expect something different when we look at the complexity
of the two different operations. The complexity of the S4k join is O(4k). This is O(k23k) for the
S3k join. Theoretically, the S3k algorithm should outperform the S4k algorithm in run time at
bag size 21 and up. When analyzing details of the implementations of both sequential algorithms,
it becomes clear why this occurs.

As was explained in Section 3.3.4, the vanRooij2 algorithm performs O(k) multiplications for the
O(k3k) configurations in the table of a join node. The O(4k) operations that have to be performed
in the join of the Alber algorithm are in practice not of constant time. We need to perform several
operations (see the divide condition in Section 3.2) for every configuration during the execution of
the Alber algorithm; we need to find combinations that adhere to the divide condition. As the
configurations have length O(k), we add this term to the complexity of the Alber algorithm. If we
now take the equation: k23k = k4k and solve for k, we get a value of around 6.5, which is a lot
closer to the turn-over point of nine that we find empirically.

6.4 Varying block size of the parallel implementations

The results from the previous section were all from runs that used block size 1024. This is the
maximum size of a block for the specific hardware that was used [17]. If a block is launched, it might
be the case that redundant threads are used because not all threads are assigned an index that is
within the range of the memoization table. If a single block is launched for all of the configurations
(in the case of a small memoization table), then we lose the efficiency of the parallel execution. This,
among other reasons, is why it might be beneficial to introduce a dynamic block size, which depends

28



on the type of node and the size of the memoization table. The parallel algorithms were run with
varying static block sizes. As execution of threads is based on warps of size 32, it is recommended
to use block sizes that are a multiple of 32. The chosen block sizes are 64, 128, 256, and 512. These
runs are compared with the data that is already present, which was the result of runs that use a
block size of 1024. The resulting data is presented in Tables 7, 8, 9, and 10, for the introduce and
forget procedures, the P3k and P4k join procedures, respectively. A surprising result, is that these
values do not differ significantly.

Since in theory the worst case run time of the procedures is equal to the average run time, one
can assume that the differences between the minimum and maximum values in Tables 6, 2, and
3 are due to circumstantial factors (i.e. other processes that are running on the system), as was
discussed in Section 6.1. If we take this difference as an error and compare this to the differences
in the results for the varying block sizes, we can see that these differences never exceed the error.
With this knowledge we conclude that using a variable block size does not significantly improve run
times for the given bag sizes and the used hardware.

6.5 Comparing algorithms

The global run times (we use the word ’global’ to indicate that the time measurement was performed
over the entire algorithm, not just individual nodes) for all tree decompositions are depicted in Figure
5. Figure 5a shows all runs that have a maximum run time of 10 seconds for the S4k algorithm,
and Figure 5b shows the result for a maximum run time of 10 seconds and up (again for the S4k
algorithm). Both figures show that the parallel algorithms outperform the sequential ones in most
cases. In Figure 5a one can see that for a run time higher than around three seconds, no sequential
runs are faster than the parallel ones. For lower run times, the results vary.

This variation is due to the differences in tree decompositions. As was shown in Section 6.1,
sequential algorithms outperform their parallel counterparts when nodes have small bags. When a
tree decomposition has very many nodes with small bags, these differences in run time start to add
up. As was explained in Section 6.1 the run times for the parallel algorithms for nodes that have
relatively small bags are dominated by the overhead caused by memcopies. When the global run
time is not dominated by a (join) node with a large bag size, the global run time of the parallel
algorithms will then also be dominated by the overhead caused by memcopies and the effective
accumulation of differences in run times between them and their sequential counterparts.

From these figures, it becomes clear that the S3k algorithm will outperform the S4k algorithm
when the global run times get higher. This is especially clear in Figure 5b. The parallel algorithms
appear to perform comparably, as their markers are very close at every point. The difference between
the two parallel implementations is depicted in Figure 6. Again, the graph is split into two figures
to more clearly show the differences. Figure 6a shows maximum run times of one second for the
P4k algorithm, and Figure 6b shows the maximum run times of one second and up (again for the
P4k algorithm). With a maximum run time that is smaller than one second, the algorithms appear
to perform comparably. When looking at Figure 6b however, a trend appears. The P4k algorithm
outperforms the P3k algorithm for longer maximum run times. As was mentioned before, this is
the result of nodes with large bag sizes dominating the global run time.

29



10−1

100

101

R
u

n
ti

m
e

in
se

co
n

d
s

S3k
S4k
P3k
P4k

(a) Results for the tree decompositions that resulted
in a run time smaller than ten seconds for the S4k
algorithm.

100

101

102

103

R
u

n
ti

m
e

in
se

co
n

d
s

S3k
S4k
P3k
P4k

(b) Results for the tree decompositions that resulted
in a run time larger than ten seconds for the S4k
algorithm.

Figure 5: A comparison of the global run times for each algorithm. The run times are sorted based
on the run time of the S4k algorithm. Figure 5a shows a comparison of the run times up to a max
run time of 10 seconds. Figure 5b shows the run times for a max run time of 10 seconds and higher.
Both graphs use a logarithmic scale on the y-axis.

0.5

1

1.5

R
u

n
ti

m
e

in
se

co
n

d
s

P3k
P4k

(a) Results for the tree decompositions that resulted
in a run time smaller than one second for the P4k
algorithm.

0

5

10

15

R
u

n
ti

m
e

in
se

co
n

d
s

P3k
P4k

(b) Results for the tree decompositions that resulted
in a run time larger than one second for the P4k
algorithm.

Figure 6: A comparison of the global run times for both parallel algorithms. The run times are
sorted based on the run times of the P4k algorithm. Figure 5a shows a comparison of the run times
up to a max run time of 1 seconds. Figure 5b shows the run times for a max run time of 1 seconds
and higher.

The distribution that describes what algorithms performed the best for the tree decompositions
can be found in Figure 7. Again, a clear trend appears from the data. Instances with smaller tree
width are solved more quickly by the sequential algorithms, whereas instances with a larger tree
width work better with the parallel algorithms. Tree width six and seven are almost exclusively
dominated by the S4k algorithm. As we increase tree width to eight or nine, the results are more
divided, but from that point and up, P4k is the clear winner. These results align with Figures 5
and 6. These results confirm very clearly how run times of algorithms on tree decompositions are
largely determined by their largest bags, or in other words, their respective widths.

30



6 8 10 12 14

0

20

40

60

80

100

%
b

es
t

ru
n
s

S3k S4k P3k P4k

Figure 7: A bar plot of the distributions of optimal algorithms. The comparison was performed over
the global run times.

6.6 A hybrid approach

The results in Sections 6.1, 6.2, and 6.3 show that for certain types of nodes, and certain bag
sizes, given algorithms perform better than the others. As was mentioned, for smaller bag sizes the
sequential algorithms perform better in general due to the absence of the overhead that is present for
the parallel algorithms. With this information, we can introduce a hybrid algorithm, which decides
what implementation of the given procedure to use during execution. This should, in theory, result
in the most optimal global run times. Table 11 in Appendix A shows the optimal selection for each
node type and bag size. These selections are based on the run times of the different implementations
per procedure and bag size as discussed in Section 6.1. For both the introduce and forget nodes, the
parallel algorithms start to outperform their sequential counterparts from a bag size of nine and up.
For the join, we saw that this point was reached at bag size seven. The P3k algorithm outperforms
the P4k algorithm for the join procedure for bag up to nine. From bag size ten and up, the P4k
algorithm performs best. In Section 6.4, we determined that using a specified block size for a given
node type and bag size does not significantly improve performance. This is why we exclude this
factor from a hybrid approach, and why we stick to the original block size of 1024.

Figure 8 depicts the performance of the original four algorithms and the performance of the
discussed hybrid implementation. For each run, the minimum run time of all four original algorithms
are compared to the hybrid run time. For all of the tree decompositions, the hybrid implementation
outperforms all of the other four. One can see that for very low run times, and especially very high
run times, performance is comparable. As was mentioned, tree decompositions that have run times
that are in these extremes are decisively solved more quickly by either the parallel, or the sequential
implementations. For the tree decompositions that have run times that lie somewhere in the middle
of Figure 8, it can go either way. Because of this, the run times of these tree decompositions might
consist of relatively much overhead when parallel implementations are used. It might also be the

31



10−1

100

101

R
u

n
ti

m
e

in
se

co
n

d
s

hybrid
min

Figure 8: Minimum run time per tree decomposition for the original algorithms compared to the
run times of the hybrid approach. The run times are ordered from lowest to highest, based on the
run time of the hybrid algorithm. The time in seconds on the y-axis uses a logarithmic scale.

case that there are several (though relatively few) nodes that have a large bag size, which results in
longer run times when sequential algorithms are used. When we select a procedure during execution,
we can eliminate these factors.

7 Conclusion

This work is centered around four different implementations of algorithms for the Minimum Domi-
nating Set problem using tree decompositions and dynamic programming. Two different algorithms
are implemented, namely the Alber algorithm [1] and the vanRooij2 algorithm [18]. Both are imple-
mented as a sequential, and a parallel algorithm, the latter using the CUDA toolkit on a GPU. We
have shown that the Alber and vanRooij2 algorithms are very viable for parallel implementations.
Depending on the bag size, speed ups of multiple orders of magnitude can be seen when comparing
parallel and sequential implementations of the join procedures. These patterns do not only also
strongly correlate with global run times, but also with tree width k.

The sequential implementations S3k and S4k prove to be more suited for nodes that have small
bag size. This, because our parallel implementations P3k and P4k have the caveat of overhead
(moving around memory, launching threads, etc.), which only becomes negligible with larger bag
sizes. This overhead is very apparent in the results, where the run times per node for lower bag sizes
all are very comparable. We conclude that, for the introduce and forget nodes, our parallel imple-
mentations outperform our sequential implementations from bag size nine. For the join procedure
this point is at bag size seven, as this procedure is computationally much more complex.

While the complexity of the vanRooij2 and the Alber algorithms predict otherwise, the S3k
algorithm outperforms the S4k algorithm from a bag size of around nine for the join nodes. This
was the result of an extra factor k that we had to add to the complexity of the Alber algorithm.
The extra factor k comes from computations that have to be performed on configurations.

For the parallel algorithms, we see the exact opposite pattern occur. The P4k algorithm out-
performs the P3k algorithm from a bag size of 10 and up. While the more complex work per
configuration causes slower run times for the sequential join of the Alber algorithm, it proves to

32



be easier to create a parallel implementation which eliminates this factor (for the given bag sizes).
This, in contrast with the join of the vanRooij2 algorithm, which requires more sequential steps.
The differences were less significant, though apparent and in line with the join procedure, for the
introduce and forget procedures. This is the result of these processes being less complex, which
means that differences in run times become more apparent with larger bag sizes.

By combining the individual procedures from the four implementations, we have created a hy-
brid algorithm. This algorithm selects the optimal implementation of the respective procedure, by
looking at the bag size. This approach proves very effective, as it outperforms all four original
implementations every run. This is the result of either eliminating overhead for small bag sizes,
by selecting a sequential procedure, or by taking advantage of parallelization for large bag sizes by
selecting a parallel procedure. We have found that varying the block size does not yield a significant
effect on run times, at least not for these instances.

The trends as they are found for the different types of nodes, also appear for the global run times.
This is an indication of how the global run times are dominated by the join procedures. We see that
again, tree decompositions that resulted in shorter run times were consistently dominated by the
sequential algorithms, while the tree decompositions that result in longer run times are all dominated
by the parallel implementations. Not only for individual nodes and global run times do we see a
clear pattern, a strong correlation between tree width k and best suited algorithm also continues in
this trend. Again we see that small tree width works well with sequential algorithms, and large tree
width prefers parallel implementations. The patterns between the parallel implementations, as well
as the sequential implementations are again found when correlating with tree width, where the S4k
algorithm is more suited for the very smallest tree widths compared to the S3k algorithm, and the
P4k algorithm outperforms the P3k algorithm when tree width grows.

8 Discussion

Though this work provided some promising results, we were only able to experiment with tree
decompositions that had a maximum tree width of 15. This limitation prevents us from exploring
the potential of the parallel algorithms for higher tree width. As was mentioned, a tree width of
20 already causes the memory requirements to be exceedingly high, which makes the algorithm
impractical if the tree width exceeds that point. It would be very interesting to see, however, how
the results shown in this work would compare to results of graphs with tree width between 15 and
20. These runs would of course require more powerful hardware.

The run times of the parallel implementations are very dependent of the available hardware.
If infinite cores were available, all threads in the q blocks that have to be executed during the
P4k algorithm could be processed fully in parallel. The limitation here would be the capacity per
thread. When q becomes large, the 2q work that has to be performed per thread will become a
bottleneck. A solution to this would be to use a block reduction procedure. Several approaches
to this are discussed in [17]. The reduction over the 2q individual calculations (see Equation 3)
introduces logarithmic complexity term (as these approaches are of a divide-and-conquer nature):
O(log(2q)) = O(q). This is an operation that cannot be eliminated through parallelization. Since q
ranges from 0 to O(k), we can say that, for an implementation of P4k that uses block reduction, we
have a non-parallelizable complexity term of O(k). If we compare this to the P3k algorithm, we get
a similar result. Since a transformation has to be performed in O(k) sequential steps, this algorithm
also has a nonparallelizable complexity term of O(k). From this we conclude that, when k becomes
sufficiently large, both algorithms will have comparable performance. An additional requirement
is of course that we have enough memory. When k is within the range discussed in this work, we

33



conclude that the per-thread capacity does not bottleneck the algorithm to such an extend that it
cannot outperform the P3k algorithm.

If infinite memory were available to us, we would not have to take into account table size. The
result of this would be that we could run the implementations for all possible values of k. If we
were to have limited computational power, i.e. a restricted amount of cores, we would observe
a different result than what would be the case if we would have infinite cores. Recall that the
computational complexity of the join procedures of theAlber and vanRooij2 algorithms is O(4k)
and O(k23k), respectively. As was discussed in Section 6.5, theoretically, the vanRooij2 algorithm
should outperform that Alber algorithm, starting at a value for k of around 21. As k grows and the
amount of cores stays the same, the practical benefit of performing calculations in parallel diminishes.
The result of this, is that the run times of the parallel algorithms start to resemble those of the
sequential ones. From this we conclude that, if memory is not a constraint, but the amount of cores
is restricted, as k becomes very large, the vanRooij2 algorithm will outperform the Alber algorithm.

For both the sequential and parallel algorithms optimizations are still possible. A lookup table
for translating between integer and BCT formatted numbers would possibly introduce a significant
speed up for the sequential algorithms. Though, even if run time for these algorithms would be cut
in half, the parallel implementations would still be orders of magnitudes faster for high enough tree
width.

The fact that varying block sizes did not affect the run times for the specific bag sizes (as discussed
in Section 6.4) was surprising. One would expect that, especially for larger bag sizes, using the
maximum block size of 1024 versus using a block size of 64 would yield significant improvements.
Further research that uses more high-grade hardware could possibly show different results. This,
because tests could be performed for larger bag sizes, and more individual processing units would
be available, which introduces more capacity for parallelization.

9 Further research

We were unable to realize some optimizations for the algorithms. This section will discuss several
of those optimizatons, as well as some suggestions for further research on the subject.

The P4k implementation that was used in this work assigns a thread to each configuration during
the join procedure. The result is that each thread has to perform 2q work, where q is the number of
01 states in the configuration. When q gets sufficiently large, this would result in a lot of sequential
work performed by each thread. A solution to this would be to distribute the work that has to
performed for those 2q configurations over individual threads. Since the minimum value has to be
determined, a block-reduce operation could be performed. Several techniques for this are available
and presented in [17]. Experimentation would have to indicate what the point of diminishing return
would be for this approach, as this would possibly introduce significant overhead for small values of
q.

As the bag size of a node grows, the corresponding memoization table grows exponentially with
it. This could possibly result in the memoization table not being able to fit in device memory. An
adaptation of the approach in [11] could be used, where tables are split into chunks that are processed
sequentially. Though this would introduce additional overhead from the additional memcopies, if
the chunks are sufficiently large, this overhead becomes negligible in comparison to the calculations
that have to be performed.

Tree decompositions could be optimized for the algorithms. We could focus more on keeping bag
sizes of join nodes low. Since the join nodes are the most computationally expensive procedures of
both the Alber and vanRooij2 algorithms, decreasing these bag sizes would have significant impact

34



on the over all run times of the algorithms.
There are many problems that can be solved using dynamic programming on tree decompositions

(as was mentioned in Section 1.1). One problem that could be used for further research on this sub-
ject would be the Counting Perfect Matches algorithm from [18]. This algorithm uses a comparable
method for state transformations as the vanRooij2 algorithm does. An interesting property of this
algorithm is that the configurations are base-2. This would eliminate overhead from configuration
transformations, and would allow for experimentation with much higher tree width. It would be
interesting to see a comparison between a more optimized sequential algorithm (since no configura-
tion transformations are necessary) and a parallel algorithm that allows for experimentation with
more different values for k. Aside from the algorithms discussed in [18], many algorithms that use
tree decompositions and dynamic programming could be implemented on the GPU and evaluated.
The rank-based approach for solving the Steiner Tree problem and the Hamiltonian Cycle problem,
as discussed in [9] is an example of such algorithms.

The run times of the introduce and forget procedures of the parallel implementations show a clear
trend that is discussed in this work. One result stand out, however. Figures 2b and 3b show a small
dip in run time for bag sizes ten and nine, respectively. What is more, is that these small dips are
at the exact point where the run times go from staying fairly consistent, to growing exponentially.
The results from the varying block sizes experiment show these same dips for all of the tested block
sizes. Due to limited time, we were not able to explore this anomaly and provide an explanation.
It would be interesting to see future work explain this property of the algorithms, as it might allow
us to gain a better understanding of the practical implications of parallelization of these types of
algorithms.

35



References

[1] Jochen Alber and Rolf Niedermeier. Improved tree decomposition based algorithms for
domination-like problems. In Sergio Rajsbaum, editor, LATIN 2002: Theoretical Informat-
ics, pages 613–627, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[2] H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996.

[3] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23, 1993.

[4] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic sin-
gle exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243(C):86–111, 2015.

[5] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M.
Thilikos. On exact algorithms for treewidth. In Algorithms – ESA 2006, pages 672–683, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[6] Hans L. Bodlaender, John R. Gilbert, Hjálmtýr Hafsteinsson, and Ton Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238–255,
1995.

[7] Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal, 51(3):255–269, 2008.

[8] V Bouchitté, D Kratsch, H Müller, and I Todinca. On treewidth approximations. Discrete
Applied Mathematics, 136(2):183 – 196, 2004. The 1st Cologne-Twente Workshop on Graphs
and Combinatorial Optimization.

[9] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. v. Rooij, and J. O. Wojtaszczyk.
Solving connectivity problems parameterized by treewidth in single exponential time. In 2011
IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 150–159, 2011.

[10] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’13, pages 301–310, New York, NY, USA, 2013. ACM.

[11] Alessandro Dal Palù, Agostino Dovier, Andrea Formisano, and Enrico Pontelli. CUDASAT:
SAT solving on GPUs. Journal of Experimental and Theoretical Artificial Intelligence, 27:1–24,
2014.

[12] Stefan Fafianie, Hans L. Bodlaender, and Jesper Nederlof. Speeding up dynamic programming
with representative sets. In Gregory Gutin and Stefan Szeider, editors, Parameterized and Exact
Computation, pages 321–334, Cham, 2013. Springer International Publishing.

[13] Johannes K. Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser. Weighted Model
Counting on the GPU by Exploiting Small Treewidth. In Yossi Azar, Hannah Bast, and Grze-
gorz Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018), volume
112 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:16, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

36



[14] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer-Verlag Berlin Heidelberg, 1994.

[15] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. In Twenty-second annual ACM-SIAM symposium on Discrete
algorithms, pages 777–789. Society for Industrial and Applied Mathematics, 2011.

[16] NVIDIA Corporation. Nvidia’s next generation CUDA Compute Architecture: Fermi. NVIDIA
Corporation, 2009.

[17] NVIDIA Corporation. CUDA Toolkit Documentation v10.1.168. NVIDIA Corporation, 2019.

[18] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter
Sanders, editors, Algorithms - ESA 2009, pages 566–577, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[19] Michal Wlodarczyk. Clifford Algebras Meet Tree Decompositions. In 11th International Sym-
posium on Parameterized and Exact Computation (IPEC 2016), volume 63 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 29:1–29:18, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[20] Michal Ziobro and Marcin Pilipczuk. Finding Hamiltonian Cycle in Graphs of Bounded
Treewidth: Experimental Evaluation. In Gianlorenzo D’Angelo, editor, 17th International Sym-
posium on Experimental Algorithms (SEA 2018), volume 103 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 29:1–29:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

37



Appendices

A Tables

Table 2: The average (Avg), max (Max), and min (Min) run times in seconds for the introduce
nodes for both the sequential (Seq) and parallel (Par) implementations.

Bag Size Seq Avg Par Avg Seq Max Seq Min Par Max Par Min
2 1.37 · 10−6 5.62 · 10−4 1.01 · 10−4 5.53 · 10−7 1.22 · 10−3 4.46 · 10−4

3 3.05 · 10−6 5.61 · 10−4 3.85 · 10−5 1.94 · 10−6 2.82 · 10−3 4.52 · 10−4

4 8.26 · 10−6 5.54 · 10−4 6.01 · 10−5 5.54 · 10−6 8.8 · 10−4 4.52 · 10−4

5 2.3 · 10−5 5.41 · 10−4 1.28 · 10−4 1.66 · 10−5 8.49 · 10−4 4.46 · 10−4

6 6.87 · 10−5 8.91 · 10−4 2.03 · 10−3 4.98 · 10−5 1.29 · 10−3 7.86 · 10−4

7 1.88 · 10−4 1.07 · 10−3 4.61 · 10−4 1.51 · 10−4 1.57 · 10−3 8.01 · 10−4

8 5.49 · 10−4 1.08 · 10−3 2.61 · 10−3 4.52 · 10−4 3.73 · 10−3 8.01 · 10−4

9 1.68 · 10−3 1.12 · 10−3 3.47 · 10−3 1.37 · 10−3 1.59 · 10−3 8.38 · 10−4

10 5.14 · 10−3 8.8 · 10−4 1.11 · 10−2 4.15 · 10−3 1.35 · 10−3 5.57 · 10−4

11 1.59 · 10−2 1.54 · 10−3 3.14 · 10−2 1.26 · 10−2 2.2 · 10−3 1.1 · 10−3

12 5 · 10−2 2.86 · 10−3 9.28 · 10−2 3.84 · 10−2 4.32 · 10−3 2.3 · 10−3

13 0.16 6.77 · 10−3 0.31 0.12 8.89 · 10−3 5.65 · 10−3

14 0.51 1.92 · 10−2 0.8 0.36 2.12 · 10−2 1.71 · 10−2

15 1.64 5.62 · 10−2 1.94 1.47 5.88 · 10−2 5.45 · 10−2

Table 3: The average (Avg), max (Max), and min (Min) run times in seconds for the forget nodes
for both the sequential (Seq) and parallel (Par) implementations.

Bag Size Seq Avg Par Avg Seq Max Seq Min Par Max Par Min
1 5.08 · 10−7 4.72 · 10−4 5.26 · 10−6 2.76 · 10−7 7.33 · 10−4 4.44 · 10−4

2 1.14 · 10−6 4.71 · 10−4 6.64 · 10−6 8.3 · 10−7 3.1 · 10−3 4.39 · 10−4

3 3.02 · 10−6 4.72 · 10−4 7.47 · 10−6 2.49 · 10−6 4.47 · 10−3 4.43 · 10−4

4 8.57 · 10−6 4.72 · 10−4 1.99 · 10−5 7.75 · 10−6 6.52 · 10−4 4.4 · 10−4

5 2.46 · 10−5 8.32 · 10−4 5.67 · 10−5 2.3 · 10−5 1.12 · 10−3 7.84 · 10−4

6 7.53 · 10−5 8.33 · 10−4 1.29 · 10−3 6.89 · 10−5 1.11 · 10−3 7.88 · 10−4

7 2.2 · 10−4 8.5 · 10−4 1.24 · 10−3 2.07 · 10−4 1.2 · 10−3 8.01 · 10−4

8 6.58 · 10−4 8.63 · 10−4 1.9 · 10−3 6.15 · 10−4 1.23 · 10−3 8.11 · 10−4

9 1.98 · 10−3 5.85 · 10−4 2.34 · 10−3 1.88 · 10−3 1.17 · 10−3 5.32 · 10−4

10 5.92 · 10−3 1.15 · 10−3 6.39 · 10−3 5.68 · 10−3 1.72 · 10−3 1.04 · 10−3

11 1.79 · 10−2 2.02 · 10−3 1.94 · 10−2 1.73 · 10−2 2.66 · 10−3 1.75 · 10−3

12 5.39 · 10−2 5.03 · 10−3 5.66 · 10−2 5.25 · 10−2 6.22 · 10−3 4.58 · 10−3

13 0.16 1.37 · 10−2 0.17 0.16 1.58 · 10−2 1.28 · 10−2

14 0.49 3.76 · 10−2 0.5 0.49 3.77 · 10−2 3.75 · 10−2

38



Table 4: The average run times in seconds for the join nodes.

Bag Size S3k S4k P3k P4k
1 3.78 · 10−6 1.29 · 10−6 5.77 · 10−4 6.04 · 10−4

2 8.49 · 10−6 3.25 · 10−6 5.91 · 10−4 6.25 · 10−4

3 2.49 · 10−5 1.16 · 10−5 6.17 · 10−4 6.51 · 10−4

4 8.37 · 10−5 4.47 · 10−5 6.46 · 10−4 6.88 · 10−4

5 2.87 · 10−4 1.75 · 10−4 6.85 · 10−4 7.55 · 10−4

6 9.77 · 10−4 6.92 · 10−4 7.6 · 10−4 8.77 · 10−4

7 3.29 · 10−3 2.77 · 10−3 8.29 · 10−4 1.08 · 10−3

8 1.12 · 10−2 1.11 · 10−2 1.03 · 10−3 1.48 · 10−3

9 3.76 · 10−2 4.45 · 10−2 2.24 · 10−3 2.51 · 10−3

10 0.15 0.18 6.31 · 10−3 4.94 · 10−3

11 0.55 0.72 2 · 10−2 1.18 · 10−2

12 1.8 2.94 7.64 · 10−2 3.3 · 10−2

13 5.78 11.86 0.26 0.11
14 20.17 48.14 0.95 0.38
15 65.99 195.36 2.96 1.5

Table 5: The average (Avg), minimum (Min), and maximum (Max) run times in seconds for the
join nodes. These results are for the S3k and S4k algorithms.

Bag Size S3k Avg S4k Avg S3k Max S3k Min S4k Max S4k Min
1 3.78 · 10−6 1.29 · 10−6 4.15 · 10−6 3.6 · 10−6 1.66 · 10−6 1.11 · 10−6

2 8.49 · 10−6 3.25 · 10−6 3.16 · 10−4 5.81 · 10−6 4.43 · 10−6 2.77 · 10−6

3 2.49 · 10−5 1.16 · 10−5 2.04 · 10−3 2.1 · 10−5 2.55 · 10−5 1.05 · 10−5

4 8.37 · 10−5 4.47 · 10−5 5.19 · 10−4 7.64 · 10−5 7.06 · 10−5 4.15 · 10−5

5 2.87 · 10−4 1.75 · 10−4 3.35 · 10−3 2.69 · 10−4 2.21 · 10−4 1.62 · 10−4

6 9.77 · 10−4 6.92 · 10−4 2.62 · 10−3 9.19 · 10−4 7.5 · 10−4 6.41 · 10−4

7 3.29 · 10−3 2.77 · 10−3 3.65 · 10−3 3.14 · 10−3 2.97 · 10−3 2.58 · 10−3

8 1.12 · 10−2 1.11 · 10−2 1.24 · 10−2 1.07 · 10−2 1.15 · 10−2 1.06 · 10−2

9 3.76 · 10−2 4.45 · 10−2 4.11 · 10−2 3.6 · 10−2 4.63 · 10−2 4.26 · 10−2

10 0.15 0.18 0.17 0.14 0.19 0.17
11 0.55 0.72 0.58 0.53 0.75 0.71
12 1.8 2.94 2.17 1.75 3.01 2.88
13 5.78 11.86 5.95 5.63 12.11 11.68
14 20.17 48.14 20.56 19.78 48.73 47.58
15 65.99 195.36 66.28 65.79 196.36 194.2

39



Table 6: The average (Avg), minimum (Min), and maximum (Max) run times in seconds for the
join nodes. These results are for the P3k and P4k algorithms.

Bag Size P3k Avg P4k Avg P3k Max P3k Min P4k Max P4k Min
1 5.77 · 10−4 6.04 · 10−4 5.83 · 10−4 5.72 · 10−4 6.09 · 10−4 5.96 · 10−4

2 5.91 · 10−4 6.25 · 10−4 6.9 · 10−4 5.6 · 10−4 8.43 · 10−4 5.95 · 10−4

3 6.17 · 10−4 6.51 · 10−4 8.08 · 10−4 5.89 · 10−4 2.85 · 10−3 6.14 · 10−4

4 6.46 · 10−4 6.88 · 10−4 8.22 · 10−4 6.13 · 10−4 9.12 · 10−4 6.52 · 10−4

5 6.85 · 10−4 7.55 · 10−4 9.72 · 10−4 6.48 · 10−4 1.25 · 10−3 7.13 · 10−4

6 7.6 · 10−4 8.77 · 10−4 9.81 · 10−4 7.33 · 10−4 1.16 · 10−3 8.37 · 10−4

7 8.29 · 10−4 1.08 · 10−3 2.89 · 10−3 8 · 10−4 1.43 · 10−3 1.03 · 10−3

8 1.03 · 10−3 1.48 · 10−3 1.44 · 10−3 9.88 · 10−4 1.89 · 10−3 1.39 · 10−3

9 2.24 · 10−3 2.51 · 10−3 2.42 · 10−3 2.17 · 10−3 3.06 · 10−3 2.26 · 10−3

10 6.31 · 10−3 4.94 · 10−3 6.9 · 10−3 6 · 10−3 6.89 · 10−3 4.38 · 10−3

11 2 · 10−2 1.18 · 10−2 2.08 · 10−2 1.87 · 10−2 1.61 · 10−2 1.04 · 10−2

12 7.64 · 10−2 3.3 · 10−2 7.96 · 10−2 7.38 · 10−2 4.04 · 10−2 2.85 · 10−2

13 0.26 0.11 0.27 0.24 0.13 8.95 · 10−2

14 0.95 0.38 0.98 0.92 0.42 0.35
15 2.96 1.5 3.12 2.88 1.52 1.47

Table 7: The average run times in seconds per bag size for a given block size. These results are for
the introduce procedure.

Bag Size 64 128 256 512 1024
2 5.64 · 10−4 5.75 · 10−4 5.65 · 10−4 5.76 · 10−4 5.62 · 10−4

3 5.65 · 10−4 5.74 · 10−4 5.65 · 10−4 5.71 · 10−4 5.61 · 10−4

4 5.59 · 10−4 5.66 · 10−4 5.59 · 10−4 5.63 · 10−4 5.54 · 10−4

5 5.46 · 10−4 5.54 · 10−4 5.46 · 10−4 5.52 · 10−4 5.41 · 10−4

6 8.79 · 10−4 9.1 · 10−4 8.8 · 10−4 9.07 · 10−4 8.91 · 10−4

7 1.04 · 10−3 1.09 · 10−3 1.04 · 10−3 1.1 · 10−3 1.07 · 10−3

8 1.04 · 10−3 1.1 · 10−3 1.05 · 10−3 1.1 · 10−3 1.08 · 10−3

9 1.08 · 10−3 1.14 · 10−3 1.09 · 10−3 1.14 · 10−3 1.12 · 10−3

10 8.56 · 10−4 8.89 · 10−4 8.55 · 10−4 8.87 · 10−4 8.8 · 10−4

11 1.49 · 10−3 1.57 · 10−3 1.48 · 10−3 1.57 · 10−3 1.54 · 10−3

12 2.85 · 10−3 2.86 · 10−3 2.86 · 10−3 2.86 · 10−3 2.86 · 10−3

13 7.02 · 10−3 6.82 · 10−3 7.05 · 10−3 6.84 · 10−3 6.77 · 10−3

14 1.94 · 10−2 1.93 · 10−2 1.94 · 10−2 1.91 · 10−2 1.92 · 10−2

15 5.65 · 10−2 5.65 · 10−2 5.74 · 10−2 5.6 · 10−2 5.62 · 10−2

40



Table 8: The average run times in seconds per bag size for a given block size. These results are for
the forget procedure.

Bag Size 64 128 256 512 1024
1 4.69 · 10−4 4.8 · 10−4 4.69 · 10−4 4.85 · 10−4 4.72 · 10−4

2 4.71 · 10−4 4.8 · 10−4 4.7 · 10−4 4.73 · 10−4 4.71 · 10−4

3 4.71 · 10−4 4.81 · 10−4 4.71 · 10−4 4.74 · 10−4 4.72 · 10−4

4 4.71 · 10−4 4.81 · 10−4 4.71 · 10−4 4.75 · 10−4 4.72 · 10−4

5 8.1 · 10−4 8.48 · 10−4 8.1 · 10−4 8.53 · 10−4 8.32 · 10−4

6 8.11 · 10−4 8.46 · 10−4 8.1 · 10−4 8.48 · 10−4 8.33 · 10−4

7 8.28 · 10−4 8.62 · 10−4 8.31 · 10−4 8.63 · 10−4 8.5 · 10−4

8 8.45 · 10−4 8.76 · 10−4 8.46 · 10−4 8.71 · 10−4 8.63 · 10−4

9 5.7 · 10−4 5.96 · 10−4 5.69 · 10−4 5.94 · 10−4 5.85 · 10−4

10 1.13 · 10−3 1.16 · 10−3 1.12 · 10−3 1.16 · 10−3 1.15 · 10−3

11 2.01 · 10−3 2.01 · 10−3 1.99 · 10−3 2.01 · 10−3 2.02 · 10−3

12 5.26 · 10−3 5.08 · 10−3 5.24 · 10−3 5.07 · 10−3 5.03 · 10−3

13 1.41 · 10−2 1.35 · 10−2 1.43 · 10−2 1.34 · 10−2 1.37 · 10−2

14 4 · 10−2 3.89 · 10−2 4.15 · 10−2 3.76 · 10−2 3.76 · 10−2

Table 9: The average run times in seconds per bag size for a given block size. These results are for
the join procedure of the P3k algorithm.

Bag Size 64 128 256 512 1024
1 5.6 · 10−4 5.71 · 10−4 5.61 · 10−4 5.78 · 10−4 5.77 · 10−4

2 5.94 · 10−4 6.01 · 10−4 5.93 · 10−4 5.99 · 10−4 5.91 · 10−4

3 6.24 · 10−4 6.29 · 10−4 6.23 · 10−4 6.22 · 10−4 6.17 · 10−4

4 6.57 · 10−4 6.59 · 10−4 6.52 · 10−4 6.52 · 10−4 6.46 · 10−4

5 6.91 · 10−4 6.95 · 10−4 6.88 · 10−4 6.92 · 10−4 6.85 · 10−4

6 7.29 · 10−4 7.41 · 10−4 7.31 · 10−4 7.65 · 10−4 7.6 · 10−4

7 7.68 · 10−4 7.85 · 10−4 7.7 · 10−4 7.95 · 10−4 8.29 · 10−4

8 9.75 · 10−4 9.96 · 10−4 9.95 · 10−4 1.03 · 10−3 1.03 · 10−3

9 2.1 · 10−3 2.12 · 10−3 2.11 · 10−3 2.18 · 10−3 2.24 · 10−3

10 6.12 · 10−3 6.17 · 10−3 6.15 · 10−3 6.24 · 10−3 6.31 · 10−3

11 1.96 · 10−2 1.98 · 10−2 1.94 · 10−2 1.95 · 10−2 2 · 10−2

12 7.71 · 10−2 7.72 · 10−2 7.6 · 10−2 7.51 · 10−2 7.64 · 10−2

13 0.26 0.26 0.26 0.25 0.26
14 0.97 0.98 0.98 0.94 0.95
15 3.04 3.21 3.1 2.89 2.96

41



Table 10: The average run times in seconds per bag size for a given block size. These results are for
the join procedure of the P4k algorithm.

Bag Size 64 128 256 512 1024
1 5.94 · 10−4 6.08 · 10−4 6.01 · 10−4 6.38 · 10−4 6.04 · 10−4

2 6.24 · 10−4 6.36 · 10−4 6.26 · 10−4 6.31 · 10−4 6.25 · 10−4

3 6.53 · 10−4 6.61 · 10−4 6.54 · 10−4 6.5 · 10−4 6.51 · 10−4

4 6.9 · 10−4 6.98 · 10−4 6.91 · 10−4 6.92 · 10−4 6.88 · 10−4

5 7.57 · 10−4 7.65 · 10−4 7.56 · 10−4 7.62 · 10−4 7.55 · 10−4

6 8.73 · 10−4 8.82 · 10−4 8.69 · 10−4 8.92 · 10−4 8.77 · 10−4

7 1.08 · 10−3 1.09 · 10−3 1.07 · 10−3 1.09 · 10−3 1.08 · 10−3

8 1.48 · 10−3 1.49 · 10−3 1.48 · 10−3 1.5 · 10−3 1.48 · 10−3

9 2.52 · 10−3 2.52 · 10−3 2.48 · 10−3 2.52 · 10−3 2.51 · 10−3

10 5.05 · 10−3 5.03 · 10−3 4.97 · 10−3 5 · 10−3 4.94 · 10−3

11 1.24 · 10−2 1.22 · 10−2 1.21 · 10−2 1.2 · 10−2 1.18 · 10−2

12 3.48 · 10−2 3.49 · 10−2 3.47 · 10−2 3.39 · 10−2 3.3 · 10−2

13 0.12 0.12 0.11 0.11 0.11
14 0.41 0.41 0.41 0.4 0.38
15 1.6 1.59 1.56 1.56 1.5

Table 11: The optimal selection for each bag size, and node type. The forget procedure has no
instances of bag size 15.

Bag Size Introduce Forget Join
1 sequential sequential S4k
2 sequential sequential S4k
3 sequential sequential S4k
4 sequential sequential S4k
5 sequential sequential S4k
6 sequential sequential S4k
7 sequential sequential P3k
8 sequential sequential P3k
9 parallel parallel P3k
10 parallel parallel P4k
11 parallel parallel P4k
12 parallel parallel P4k
13 parallel parallel P4k
14 parallel parallel P4k
15 parallel n.a. P4k

42


