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Abstract

Cryo-Electron Tomography (Cryo-ET) gives structural biologists the tools to
inspect biological samples in situ at a near atomic resolution is 3D. The three di-
mensional volumes called ‘tomograms’ that this process produces suffer from
a very low signal-to-noise ratio, and therefore need denoising. This thesis ex-
plores 5 neural networks in increasing complexity for their ability to denoise the
3D tomograms. The performance of the network was measured by using multi-
plemetrics including the Structural Similarity (SSIM) score, where 0 is worst and
1 is best. All networks are able to transform noisy tomogramswith amean SSIM
score of 0.258 to denoised volumeswith amean SSIM score of 0.937 for theworst
network and 0.993 for the best network. The networks show that they generalize
very well to unfamiliar particles, moderately well to different noise models, and
poorly to multiple particles in a volume. Further research must conclude if the
poor performance for the multiple particles is due to the change in scale.
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1 Introduction

“In natural science the principles of truth ought to be confirmed by observation.”
—Carl Linneaus, Philosophia Botanica (1751)

Observations from the living world around us form the foundation of biology, and
better instruments allow for better observations.

The invention of optical microscopes in the 17th century lead to the discovery of
livingmicro-organisms and cells. Nowhowever, because the relatively largewave-
length of visible light, objects smaller than 200 nanometer, around the length of
the measles virus, cannot be resolved.

The smaller wavelengths of X-ray allowed for the discovery of the double-helix
structure of DNA in the first half of the 20th century using X-ray crystallography
[1]. X-ray crystallography can be used to reveal three dimensional spatial struc-
ture of specificmacromolecules. While it produces high-quality images, it requires
that a sample be crystallised, which is not possible for every macromolecule and
requires that the sample is extracted and isolated from their environment.

For imagingmacromolecules, Cryo-Electron Tomography(CET) is an alternative to
X-ray crystallography. The advantage of CET over X-ray crystallography is that it
allows for in-situ (in place) viewing of the sample, although it suffers from a low
signal-to-noise ratio. Instead of using crystals, CET uses plunge-freezing to rapidly
fixate samples as large as entire cells. The sample is then put in an ultra-high vac-
uum chamber between an electron gun and a detector to obtain high resolution
projections of the sample. By making projections at sequentially changing angles
we obtain tilt-series images. These tilt-series images can be reconstructed into a
three dimensional volume called a tomogram (figure 1).

Various tomographic reconstruction algorithms can be used to solve an inverse
problem and estimate the volumetric structure of the sample. This reconstruction
requires a Contrast transfer function (CTF) correction to reverse-engineer the orig-
inal three dimensional shape from the recorded images.

Finding the optimal correction is made more difficult because the tilt-series does
not cover a full rotation and therefore has a missing wedge. This missing wedge
is a major source of noise and counteracting it is an ill-posed problem called the
missing wedge problem.

Apart from the systematic reconstruction artifacts mentioned above, the tomo-
gram also contains noise. The major source of noise comes from the stochastic
nature of electron scattering off the sample and onto a detector. The electron
bombardment causes structural damage to the sample, so the electron dose of
the samplemust be limited when acquiring the tilt-series. However, less electrons
hitting the detector means less spatial information, manifesting as noise in the to-
mogram.

After obtaining the tomogram from the tilt-series, edge-detection convolution is
applied to make structures in the noisy tomogrammore visible. Template match-
ing is Next, template matching is used to match particles in a database with the
particles in the tomogram. Finally, a diagram with the position and orientation of
the matched particles is generated for structural biologists to interpret.

This way of working is time consuming and requires a lot of skilled labor. Innova-
tion in CET is required to overcome these issues. This thesis will investigate the
application of deep learning to denoise tomograms to help in the analysis of the
tomograms.
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Figure 1: left: tilt-series images are acquired by putting the sample at various an-
gles between an electron beamand a detector. right: the 2D tilt-series images can
be reconstructed into a 3D tomogram.

2 Background

Machine learning is an umbrella term for all algorithms and techniques that allow
the program to figure out how to solve a problem instead of the programmer. For
the purpose of denoising tomograms, we are interested in the subset of machine
learning called supervised learning. With supervised learning, we know what the
correct answer should be, but we don’t know how to compute the answer. For ex-
ample, we have a noisy and noise-free image, andwewant to turn the noisy image
into a noise-free image, we knowwhat the correct result should be, but not how to
get there.

Supervised learning, where training set contains the correct answers, stands in
contrast to unsupervised learning, where there is no training set with correct an-
swers available. An example of unsupervised learning would be a machine that
looks through a database that describes which user account watched which video
and learns to predict which videos specific users are interested in.

Specifically, we are interested in deep learning, the branch of machine learning
that uses neural networks.

2.1 Neural Networks

Neuralnetworksareuniversal functionapproximators, asprovenbyCsáji[2] in2001.
This means that a sufficiently large and well-configured neural network can ap-
proximate any continuous function.

Neural networks are a network of neurons organized into layers. Each neuron re-
ceives signals from the previous layer, takes a weighted sum, and runs it through
a fixed activation function (figure 2). By tweaking the weights of each neuron, dif-
ferent functions can be approximated.

Inpractice, networkshavemany layerswithmanyneurons, eachwithmanyweighted
connections. The number of weights in a network is typically very large: around
62.3 million in the case of AlexNet (section 2.3).

To solve the problem of tweaking all the weights, Rumelhart et al.[3] popularized
backpropagation in 1988 . Backpropagation is a technique that automatically ad-
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Figure 2: Each neuron sum their weighted inputs and apply an activation function
to produce their output.

Figure 3: Auto-Encoder architecture

justs the weights from the last layer back to the first layer to minimize the error
betweenwhat the network predicted andwhat the correct answer was. Repeating
this procedure will lead the network minimise the error function, leading to more
correct results.

A disadvantageof neural networks is the large computational cost of training. This,
together with the availability of large datasets, is why machine learning has only
become popular in the last decade. A big advantage of neural networks is their
scalability and parallelism. This allows for efficient implementations on graphics
cards, which makes it practical for real word applications.

2.2 Auto-Encoders

Auto-encoders were introduced in 1985 by Rumelhart et al.[4] and are a network
architecture where the input is narrowed to a smaller resolution before being ex-
panded again (figure 3). Narrowing to a smaller resolution helps keep the number
of weights down and it forces the network to create a compressed encoding of the
input data, discarding redundant information.

Using auto-encoders for denoising was first done by Vincent et al.[5] in 2008, by
adding noise to images and training the network to recover the original image.
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Figure 4: Three layers of a convolutional neural network with a receptive field of
32.

2.3 Convolutional neural networks

As the amount of neurons per layer increases, fully connected neural networks en-
counter a problem. The amount of weighted connections between layers grows
quadratically with the amount of neurons per layer. For large data such as 2D im-
ages or as in our case 3D tomograms, this quadratic growth causes large network
to quickly become intractable. As a solution to this problem, we can exploit the
spatial nature of our data using convolutional neural networks.

Convolutional were introduced by Fukushima[6] in 1980 and are networks where
instead of each neuron being connected to each of the previous layer’s neurons,
each neuron is only connected to its previous layer’s neighbouring neurons (figure
5). This area is called a neuron’s receptive field and is typically the square or cube
with side length of 3, 5, 7 or 9 (figure 4).

In 2006, Chellapilla et al.[7] were the first to accelerate their convolutional neural
network on the GPU. Convolutional networks have a relatively small amount of
weights, but a large computation cost. The parallel nature of convolutional neural
networksmeans that it is verywell suited to be computedon graphics cards, which
in general have a small amount memory compared to the CPU’s RAM, but large,
parallel computation throughput.

Convolutional networks were popularised in 2012 by Krizhevsky et al.[8]’s AlexNet
that won the ImageNet LSVRC-2012 competition with an error rate of 15.3%, com-
pared to the 26.2% of the runner-up.

Edeetal.[9]useconvolutional auto-encoders fordenoising twodimensional electron-
microscope images in 2019, showing both increases in denoising quality and train-
ing speed compared to the non-convolutional denoisers.

2.4 U-Nets

As an alternative to conventional auto-encoders, U-Netswere developed. A known
problemwith Auto-encoders is that they lose details through the bottleneck. Ron-
neberger et al.[11] solved this problem in 2015 with U-Net. It was developed for
biomedical image segmentation, a field where the loss of detail is a large issue. U-
Nets are networks where the early layers get a shortcut to the later layers (figure
7) The first layer is connected to the last layer, the second to the second to last
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Figure 5: left: fully connected network, right: convolutional network

Figure 6: The result of Isola et al.[10]’s Pix2Pix network, comparing U-Nets with
auto-encoders and the L1 loss function with GANs (section 2.5)
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Figure 7: The original U-Net architecture[11]. Note the skip connections along the
top.

et cetera. This allows details from earlier layers to bypass the bottleneck. Isola
et al.[10] found that U-Nets produced images of higher quality than conventional
auto-encoders (figure 6).

2.5 Generative Adversarial Networks (GANs)

Neural networks need manually selected loss functions to tell them how different
their answer is to the correct answer. The gradient of the loss function can then
instructs the network in which direction it needs to modify itself to get closer to
the correct answer.

Creating loss functions is anopenproblem requiring expert knowledge. In the case
where a good loss function is not known, it is possible to discover a loss function
by using a second neural network in an architecture called Generative Adversarial
Networks (GANs)

GANs consists of two networks: a generator and a discriminator. The generator
produces images, and the discriminator either gets a ‘real’ image from the dataset,
or a ‘fake’ image from the generator. The discriminator’s task is to distinguish real
from fake images. As training goes on, the generator will produce better images to
fool the discriminator, and the discriminator will get better in discerning real from
fake images.

In the original GAN formulation in 2014 by Goodfellow et al.[12], the generator gets
random noise as input and has to generate any believable image. Equation 1 de-
scribes the original GAN formulation withG is the generator,D the discriminator,
pdata the dataset and pz random noise.

min
G

max
D

Ex∼pdata
[logD(x)] + Ez∼pz

[log(1−D(G(z))] (1)

In 2014, Mirza et al.[13] introduced Conditional GANs (CGANs) by adding a label to
the input of the generator, which instructs the generator to generate an image of
a specific class. The discriminator also gets the label and then gets either a real
image with that label from the dataset, or the generated one.
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Figure 8: GalaxyGAN is an archetypal modern CGAN for denoising.

This ideaof giving the generator input has sincebeengeneralized to giving the gen-
erator any formof input instead of noise. The generator then applies a transforma-
tion to the input data, instead of generating the data. Such an archetypal modern
CGAN was exemplified by GalaxyGAN in 2017 by Schawinski et al.[14] (figure 8).

In GalaxyGAN, an original image from the dataset is degraded. The generator re-
construct the degraded image, and the discriminator gets the degraded image and
either the ‘real’ original image or the ‘fake’ reconstructed image. Like other GANs,
the discriminator then has to tell whether it got the degraded image together with
either the ‘real’ or ‘fake’ image.

In 2017, Wolterink et al.[15]made tomograms at 20%of the routine-dose passable
as routine-dose tomograms using a CGAN architecture, showing that denoising
low-dose tomograms is feasible. An interesting difference with GalaxyGAN is that
instead of teaching the generator network to generate the clean imagedirectly, the
generator tries to generate the noise component from the low-dose CT input, and
then subtracts that from the image to get the denoised CT.

2.6 Wasserstein GANs

The feedback that the discriminator gives to generator is a continuous value be-
tween 0 (the image is ‘fake’) and 1 (the image is ‘real’). In practice, this value is
always near either extremes. This makes the difference between ‘almost real’ and
‘very fake’ disappear, and that in turn makes it difficult for the generator to know
how it should change to better fool the discriminator.

To make the training process of GANs more stable, Arjovsky et al.[16] introduced
Wasserstein GANs (WGANs) in 2017. Instead of telling generator how sure it is that
an image is real or fake, it uses the wasserstein distance to tell the generator how
far off it was to what it considers real images (figure 9). Because of this change in
behaviour, the discriminator is renamed to a critic.

Wassersteindistance, alsoknownasearthmover’sdistance, is thedifferenceof two
distributions or ’piles of dirt’. The metric is calculated by minimizing the amount
of dirt times the distance the earth has to be moved to turn one distribution into
the other. The Wasserstein distance has a closed form solution the case the distri-
butions are represented by a point-set.
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Figure 9: The cyan WGAN critic is more linear and gradual, while the red GAN dis-
criminator is a steep cliff with a gradient of zero for most values. The x-axis repre-
sents the axis along which the two point sets differ, and the y-axis represents the
output of the discriminator or critic.

The advantage of Wasserstein distance is that the smooth gradient makes train-
ing more consistent. It is worth noting however, that a smooth gradient does not
necessarily mean that WGANs converge to a better result than GANs[16].

In 2018, Yang et al.[17] improved on Wolterink et al.[15]’s low-dose tomogram re-
constructions by using the Wasserstein distance metric and a perceptual loss cal-
culator.

Theperceptual loss calculatorwas introduced tocombat theblurriness that thede-
noising GAN produced. The loss calculator uses Simonyan et al.[18]’s pre-trained
“VGG” network as an additional image similaritymetric, completely separate from
theGAN.During training, theoutput fromthediscriminator and theperceptual loss
calculator are combined to form the loss function of the generator.

Later in 2018, Yi et al.[19] introduced “SAGAN”, which combated the blurriness by
combinedWGANswith U-Nets. They show that their generator preservesmore de-
tail than using a perceptual loss calculator proposed by Yang et al.[17].

2.7 WGANswith Gradient Penalty (WGAN-GPs)

WGANs have a constraint on the critic which must hold in order for the WGAN to
remain stable. This constraint is called the Lipschitz constraint, and it specifies
that the gradient of the critic cannot exceed a chosen constant steepness.

In Arjovsky et al.[16]’s original WGAN paper, this was done by clipping the gradient
if it exceeds the constant. However, clipping the gradient is a crudemethod to en-
force this constraint and tuning the precise clipping threshold has a huge effect on
howwell the WGAN performs.

A more robust way to enforce the Libschitz constrained was introduced later the
sameyear in 2017byGulrajani et al.[20] calledaGradientPenalty. GradientPenalty
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penalizes steepgradientsproportionally such that theywill neverbecometoosteep.
As a result WGAN-GPs aremore stable than their WGAN counterpart while keeping
the smooth gradient of the WGAN.

The gradient penalty is calculates the gradient norm of the discriminator and is an
additional term to the WGAN’s loss function as shown in equation 2, where λ is a
chosen constant,D is the discriminator, and P is the dataset.

LWGAN−GP = LWGAN + λEx̂∼Px̂
[(||∇x̂D(x̂)||2 − 1)2] (2)

3 Methodology

Instead of a single experiment with a single result, this research consisted of an
iterative process with many experiments.

Todenoise tomogramsusingmachine learning,we requireda largeamountof data
to train. We used a database of biological molecules and produced pairs of de-
graded and reference tomograms (section 3.1).

In order to start as simple as possible, the first network was a small auto-encoder
(section 3.2). After viewing the generated tomograms (figure 10), two observations
stood out. The first was a checkerboard pattern, which remained unsolved until
UpsampleUnet48 (section 3.7). The second observation was that the particle re-
construction had a simpler, blob-like shape than the reference particle. A known
weakness of simple auto-encoders is that the input details get lost in the bottle-
neck, which would explain the blob-like reconstruction. To combat this, the net-
work was changed to a bigger, U-Net style network.

The first U-Net network that was attempted was a faithful adaption of the original
U-Net by Ronneberger et al.[11] (section 3.4). However, because our network oper-
ated on three dimensional tomograms instead of the two dimensional images that
the original U-Net operated on, the intermediate results of the network grew too
large to fit into the6GiBof available graphicsmemory. This resulted in thenetwork
only being able to run on the main processor, which hindered the progress.

The first U-Net network was therefore redesigned so that a batch of 8 tomograms
could fit into the graphics memory (section 3.5). The channels were limited to 48,
leading to thenameUnet48. Unet48performedwithmoreaccurateparticle shapes
than the simple auto-encoder, although it still had a checkerboard pattern on the
particle (figure 12).

According toOdena et al.[21], the checkerboardpatternwas an artifact of the strid-
ing in the decoder part of the network. To remedy this, the striding in the decoder
of Unet48 was replaced with nearest-neighbor upsampling (section 3.6). The new
UpsampleUnet48 had no checkerboard patterns and approximated the reference
particle more accurately than Unet48.

Next, we used UpsampleUnet48 together with a discriminator to form a GAN (sec-
tion 3.7). This yielded the most accurate particle reconstructions yet (figure 15).

To improve accuracy further, we switched to using Wasserstein distance to turn
our GAN into a WGAN. However, we did not manage to get the Wasserstein GAN
with original weight clipping stable. Because these stability issueswere addressed
by Gulrajani et al.[20]’s WGAN-GP, we decided to skip WGAN and move directly to
WGAN-GP (section 3.8) Counter to expectations, the WGAN-GP did not perform as
well as the GAN.

Not only the networks were changed during these experiments. The optimizers,
hyper-parameters, trainingmethods and loss functions were also changed. In sec-
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Figure 10: results of the simple auto-encoder at epoch 100. top right: the gener-
ated image, bottom left: the noisy input, bottom right: the ground truth.

tion 4, wemeasured all the networks with a variety of metrics and with everything
else being equal.

3.1 Dataset

We used the following proteins from the Protein Data Bank: 1u6g, 3cf3, 4b4t, 1qvr,
3h84, 2cg9, 3qml, 3gl1, 3d2f and 4d8q. They were chosen for their variety in shape
and size.

These particles are isolated particles that are centered in a 643 voxel volume with
a resolution of 6Å per voxel. We then augment the data by copying each particle
several times and rotating them into a random orientations. Finally, each particle
gets bundled with its degraded version that has a combination of missing-wedge
noise and Gaussian noise applied. The data is then split 80/20 into a training and
a testing dataset.

3.2 Simple Auto-Encoder

The first networkwas a simple auto-encoderwithMeanSquaredError between the
generated and the reference tomogram as loss function.

The auto-encoder consisted of eight sequential layers. The first four layers convo-
luted the643×1 tomogramtoa83×256 representation, halving the resolutionof the
x, y and z axes of the tomogram while quadrupling the amount of channels each
layer. The last four layers mirror the first four, and convolute the 83×256 represen-
tation back to a 643×1 tomogram.

The method used for halving the resolution was by using striding, skipping every
other input neuron, and the method used for doubling the resolution was trans-
posing, or skipping every other output neuron.
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Figure 11: Schematic representation of Unet48. Intermediate results shown in
boxes with their dimensions.

3.3 U-Net Auto-Encoder

A weakness of simple auto-encoders is that the details of the input tomogram get
lost during the later layers, leading to blobby, unsharp shapes. U-net architectures
arewell suited to remedy this in away that still keeps connectivity down. U-Net are
networks where the early layers get a shortcut to the later layers (figure 7) The first
layer is connected to the last layer, the second to the second to last etc. U-Nets
are commonly used in image segmentation, with the goal of pixel-perfect object
classification.

Our implementation of Unet48 is a direct evolution of the simple auto-encoder,
adjusted to accomodate the skip connections (figure 11).

The errormetricwas also changed frommean squared error to absolute error, also
called L1 error. This is a linear errormetric instead of a logarithmic error one, mak-
ing it better at penalising large errors.

3.4 Original U-Net Adaptation

The first attemptatmakingaU-net style architecturewasanadaptationof theorig-
inal U-Net as described by Ronneberger et al.[11].

A downside of U-Nets compared to the usual auto-encoders is that U-Nets are re-
quired to store all intermediate results from the first half of the network for use
in the second half of the network. This means that the image size dominates the
memory requirements of the network, far more than the amount of weights in the
network.

The original U-netwas designed towork on two-dimensional images. Because our
dataset contains larger 3D volumes, the sum of all intermediate results did not fit
in the 6GB of available graphics memory, and could only be run on the CPU. This
was unacceptably slow, so a network with fewer layers needed to be built in order
to keep the number intermediate results low.

3.5 Unet48

The second attempt was Unet48, a network with the constraint that it should be
able to run with a batch size of 8 tomograms in graphics card memory.
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Figure 12: Unet48 results at epoch 100. top right: the generated image, bottom
left: the noisy input, bottom right: the ground truth.

Batchingmultiple tomograms together improves the speedand stability of thenet-
work at the cost of extra memory consumption. The gradient of each element in
the batch is averaged across the batch, leading to a more stable and less erratic
gradient descent. The speed is improved because all elements in the batch can be
processed in parallel on the graphics card.

Unet48 was limited to 48 channels and only required three intermediate results to
be stored. As a result, it fit in the budgeted 6GBwith a batch size of 8 and produced
better results than the Simple Auto-Encoder, although a checkerboard patternwas
still visible (figure 12).

3.6 UpsampleUnet48 Auto-Encoder

TheUnet48still generatedcheckerboardartifacts, andaccording toOdenaetal.[21],
these patterns are inherent to using striding. They measured convolutional net-
workperformancewithmultiplewaysupsamplingand foundthatnearest-neighbor
upsampling worked best. UpsampleUnet48 therefore uses nearest-neighbor up-
sampling instead of striding in it’s decoder half (figure 13). The results in figure 14
show that it was effective and that the checkerboard pattern is gone.

3.7 UpsampleUnet48 GAN

As UpsampleUnet48 was producing decent results and the current state of the art
was using GANs (section 2.5) we decided to extend the auto-encoder to a GAN. The
advantage of GANs is that it discovers its own similarity function, instead of relying
on non-optimal expert knowledge for similarity functions.

The most challenging aspect of GANs is balancing the discriminator with the gen-
erator. A GAN that balances this well is called ‘stable’. If the discriminator becomes
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better at its job than the generator at its job, the gradients vanish, as the generator
never gets the chance to fool the discriminator. Inversely, if the generator becomes
better at its job than the discriminator, the gradients also vanish, as the discrimi-
nator never detects a difference between the real and fake images.

Factors that enhance GAN stability have been compiled into a list by Chintala et
al.[22] for their presentation “How to Train a GAN?” at the Neural Information Pro-
cessing Systems 2016 (NIPS2016) conference. When our GAN exhibited stability
issues we implemented some of the recommendations such as using the ADAM
optimizer and replacing ReLU with LeakyReLU. Among the recommendations was
switching from stochastic gradient descent to the Adam optimizer by Kingma et
al.[23]. This improved stability and reduced artifacts and noise.

Thediscriminator thatwasdeveloped for theGANwasUnet48Discriminator, which
was essentially the first half (the encoder) of Unet48 with four fully connected lay-
ers at the end. The results were visually the most accurate yet (figure 15).

3.8 UpsampleUnet48WGAN-GP

After the succesful GAN results, wewanted to try upgrading it to aWGAN. However,
theWGANwasnot stable during training, leading to degenerate results. To address
this stability issue, wemoved toward WGAN-GPs.

Wecycled throughseveral discriminators asWGAN-GP is extra sensitive tohowwell
thediscriminatorperforms. Westartedwith theUnet48Discriminator fromourpre-
vious GAN, but got worse results than our GAN. We then modified it to be bigger
which did not improve it’s performance. Then we adapted an existing discrimi-
nator from Isola et al.[10]’s pix2pix from its original use-case to 3D tomograms,
which produced good results. We also adapted Kodali et al.[24]’s DRAGAN critic
and found that the adapted pix2pix discriminator worked better.

The results are found in figure 15.

4 Evaluation

During theexperimentationprocess,wedidnotonly change thenetworks, but also
the trainingmethodsandoptimizers. To seewhichnetworks reconstructs particles
most accurately, we tested all networks with the exact same optimizer, learning
rates, training method, metrics, and dataset in the control evaluation.

Figure 13: left: Unet48, right: UpsampleUnet48
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Figure 14: UpsampleUnet48 AE results at epoch 100. top right: the generated im-
age, bottom left: the noisy input, bottom right: the ground truth.

Figure 15: GAN results of four particles at epoch 20. top row: degraded tomogram,
middle row: reconstructed tomogram, bottom row: ground truth.
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Figure 16: WGAN-GP results of four particles at epoch 20. Note that the reconstruc-
tion is less accurate than the previous GAN reconstruction in figure 15. top row:
degraded tomogram,middle row: reconstructed tomogram,bottomrow: ground
truth.

GPU Nvidia GeForce GTX 1060 6GB
CPU Intel Core i7-8750H@ 2.20GHz

Python 3.7.3
PyTorch 1.0.1
Linux 5.1.5
Cuda 10.1
Nvidia Driver 430.14

Table 1: The hardware and software used for the evaluation.

In order to understand how well the networks generalises, the control evaluation
section is followed by three experiments. The first experiment changed the type of
noise, to see if the network only learned the noise. The second experiment intro-
duced a particle that was never seen before by the networks to see if the network
learned the shapes of the particles in the dataset. The third experiment gave the
networks multiple particles in a single tomogram.

The hardware and software used for all evaluations can be found in table 1.

4.1 Control Evaluation

The results of the control evaluation can be found in table 2, and are visualized in
figure 17.

The four metrics are used are: MSE, NRMSE, SSIM and PSNR.

MSE or the mean of the squared error between the pixels in the generated and ref-
erence image.

NRMSE or normalised root-mean-square error, is the root-mean-square error di-
vided by the range of the data.

PSNR or peak signal-to-noise is a metric often used in signal processing to express
the ratio between the maximum possible signal power and the noise power. It is
conventionally expressed logarithmically in decibels (dB).
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SSIM or structural similarity is an index developed as an image quality metric for
use by lossy image compression. It is a metric with hand picked weights designed
to mimic human perception.

From these four metrics, other metrics like the L1 loss can be extrapolated.

According to the metrics (table 2, figure 17), the best method for denoising our
dataset is either the UpsampleUnet48 GAN when looking at SSIM, or Unet48 auto-
encoder when looking at PSNR or (NR)MSE.

Method P SSIM PSNR MSE NRMSE
% dB ×1000

(input) 5 0.1615 18.57 1.368 0.7787
50 0.2581 24.09 3.900 0.8949
95 0.4638 28.64 13.890 1.0960

Simple auto-encoder 5 0.8440 20.51 0.271 0.3657
50 0.9783 29.89 1.027 0.4319
95 0.9914 35.68 8.893 0.6285

Unet48 auto-encoder 5 0.9386 25.53 0.058 0.1734
50 0.9931 35.72 0.268 0.2143
95 0.9985 42.33 2.809 0.4169

UpscaleUnet48 auto-encoder 5 0.8295 16.65 1.655 0.9740
50 0.9366 23.73 4.238 0.9794
95 0.9727 27.81 21.637 0.9848

UpsampleUnet48 GAN 5 0.9846 29.56 0.070 0.2010
with SimpleDiscriminator 50 0.9934 34.64 0.343 0.2475

95 0.9981 41.56 1.107 0.3030

UpsampleUnet48 WGAN-GP 5 0.8471 20.67 0.544 0.4548
with Pix2PixDiscriminator 50 0.9750 28.54 1.400 0.5308

95 0.9899 32.64 8.607 0.6923

Table 2: The 5th, 50th and 95th percentile of four metrics for eachmethod, as well
as for their input (thedegraded tomogram). Best scores in bold: higest for SSIM and
PSNR, lowest for MSE and NRMSE.

4.2 Evaluation with Different Noise

For the first experiment after the control evaluation, the noise that is used to pro-
duce the degraded tomogramwas changed.

Thenoise added to thedegraded tomograms in themain results consistedofGaus-
sian noise and a simulated missing wedge. In order to measure how well the net-
works can generalize across different kinds of noise, the simulatedmissing wedge
was replaced with salt-and-pepper noise.

Salt-and-pepper noise involves randomly setting voxels to the minimum or max-
imum value. In our implementation, every voxel had a 90% chance of being un-
changed. Of the 10%, every voxel had a 50/50 chance of either being set to either
the maximum or minimum value of the dataset.

Salt-and-pepper noise was chosen as it introduces many places with large con-
trasts in the image, which is different to the localised missing-wedge noise.

The results in table 3 show that all networks are still able to denoise the tomo-
grams, although the results have a higher variance.
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Figure 17: results of table 2 visualized. Error bars are 5th and 95th percentile,
meaning 90% of samples fall within the error bars. The Identity in the input to the
networks (the degraded tomogram).
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Figure 18: The training characteristics of all networks. Note the axis scaling.
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Method P SSIM PSNR MSE NRMSE
% dB ×1000

(input) 5 0.021390 12.547260 0.906 0.643978
50 0.234836 20.417239 9.084 0.714106
95 0.564355 30.427395 55.626 4.936448

Unet48 AE 5 0.122044 17.013821 0.417 0.320498
50 0.589574 22.754101 7.579 0.654959
95 0.984291 33.826001 19.895 1.941162

UpsampleUnet48 AE 5 0.736181 16.553573 1.446 0.873749
50 0.939127 24.092397 3.897 0.911100
95 0.973684 28.397099 22.113 0.948704

UpsampleUnet48 GAN 5 0.344218 18.435151 0.532 0.400451
50 0.909915 23.730463 4.236 0.749309
95 0.987981 32.743983 14.338 1.675199

UpsampleUnet48 WGAN-GP 5 0.496877 12.298138 0.946 0.433812
50 0.948350 22.714686 5.352 0.918864
95 0.990838 30.239707 58.910 2.339938

Table 3: Results of replacing the missing wedge noise with salt-and-pepper noise.

An interesting observation is that the WGAN-GP performed best when looking at
SSIM. This implies thatwhile theWGAN-GP did not performaswell as the GANwith
the original dataset, it learned to generalize noise better. Similarly, Unet48 out
performed UpsampleUnet48 on the original dataset, but it does not do well with a
different noise.

In conclusion, while there is a slight decrease in performance, the networks were
still able to denoise with a different type of noise.

4.3 Evaluation with Unseen Particle

The second experiment after the control evaluation was denoising a particle that
was unknown to the networks.

While the training and testing data is separated, both the training and testing data
is generated from the same particle set. This means that while the testing data
and training data do not share tomograms and are all unique, the tomograms do
contain randomly oriented versions of the same particles.

The particle used was 1bxn from the Protein Data Bank (PDB), and prepared the
same way as the particles described in section 3.1.

Thegoal of this experiment is todetermineff thenetworks just learned to recognize
particles and reproduce them, or if the networks learned a general rule that even
works on particles that the networks have not seen before. If the networks per-
forms well in this experiment, it would indicate that it learned a general rule, and
conversely if it performs poorly it indicates that it memorized the particle shapes.

The results in table 4 show results that are very similar to that of to the control eval-
uation (table 2). This supports the hypothesis that the network learned to gener-
alize across particles.
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Method P SSIM PSNR MSE NRMSE
% dB ×1000

(input) 5 0.472539 28.878986 1.038 0.875278
50 0.513856 29.373947 1.155 0.934461
95 0.553102 29.836429 1.294 1.015726

Unet48 AE 5 0.988111 35.957500 0.179 0.381121
50 0.988857 36.741990 0.212 0.397486
95 0.989270 37.475165 0.254 0.418359

UpsampleUnet48 AE 5 0.980214 28.817467 1.050 0.937350
50 0.980797 29.229374 1.194 0.939507
95 0.980942 29.789756 1.313 0.944049

UpsampleUnet48 GAN 5 0.995277 36.797838 0.139 0.328697
50 0.995858 37.561350 0.175 0.363230
95 0.996468 38.575766 0.209 0.412114

UpsampleUnet48 WGAN-GP 5 0.991085 32.648985 0.292 0.481257
50 0.992536 34.423190 0.361 0.516713
95 0.993144 35.345065 0.544 0.646941

Table 4: new particle, same scale, same noise

4.4 Evaluation withMultiple Particles

All previous evaluations have had a single centered particle to denoise. In order to
measure how important this is, a 643 tomogram5 from the SHRECdataset [shrec].
According to the results in table 5, none of the networks performed well, and the
auto-encoders produced results that had a lower SSIM score than their inputs.

The tomograms from the SHREC dataset had a resolution of 10Å per voxel, com-
pared to the 6Å per voxel for the training set. Further research is required to mea-
sure the influence of the change in scale on the result.

5 Discussion

Several interesting observations can bemade from the graphs of the performance
of themethodswhile training (figure 18). Interesting to note here is that theWGAN-
GP is an outlier by being significantly slower to converge than the other methods.
On the other side of the spectrum, the UpsampleUnet48 auto-encoder instantly
converges to a good solution and stays there.

Also interesting to note is that SSIM smoothly improves for the GANs, this would
mean that the similarity function that the GANs have independently discovered
correlate closely with the SSIM.

5.1 Conclusion

In this thesis, we have shown thatmachine learning can be applied to the problem
of low signal-to-noise in cryo-electron tomograms. We have found that amore ad-
vanced network architecture does not necessarily improve the denoising perfor-
mance, and that the loss function that the GANs discover closely correlates with
SSIM.

In the control evaluation we saw that the GAN and auto-encoder were tied in first
place. The GAN performed best according to the SSIM score. SSIM correlates best
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Method P SSIM PSNR MSE NRMSE
% dB ×1000

(input) 5 0.272971 18.265276 6.816 0.768397
50 0.398185 20.007546 9.983 0.922379
95 0.495846 21.664652 14.910 1.171134

Unet48 AE 5 0.327585 19.323848 9.238 0.958179
50 0.352040 19.673591 10.781 0.961710
95 0.388073 20.344218 11.685 0.968931

UpsampleUnet48 AE 5 0.328848 19.266815 9.241 0.958684
50 0.350522 19.658857 10.817 0.962829
95 0.370920 20.342693 11.856 0.968777

UpsampleUnet48 GAN 5 0.426113 20.787865 4.597 0.645596
50 0.556883 22.423775 5.723 0.712523
95 0.638112 23.375956 8.341 0.825840

UpsampleUnet48 WGAN-GP 5 0.376663 20.235483 5.858 0.744691
50 0.447510 21.453568 7.156 0.794043
95 0.526778 22.322621 9.472 0.869376

Table 5: multiple particles, different scale, same noise. With best performing auto-
encoder and the GAN andWGAN.

with visual quality among the metrics. It also had a lower variance than the auto-
encoder.

The auto-encoder produced some of the best individual images, but the variance
is higher. Also in favor of the auto-encoder is that GANs are more difficult to train
and to keep stable.

The three experiments that followed the control evaluation showed that the net-
works generalize verywell to different particles,moderatelywell to different noise,
and poorly to multiple particles in a single tomogram.

The additional experiment in the appendix indicates that the GAN generalizes wel
to realistic data, although it is only a single datapoint.

5.2 FutureWork

There are interesting leads that are worth investigating, given the results obtained
so far.

First pieceof future research is to test theperformanceofdifferent templatematch-
ing programs with the denoised and degraded particles.

Second piece of future research might be to try to train an auto-encoder on SSIM
instead of L1. As we found that the GANs discover SSIM, and that our best auto-
encoder ties with our best GAN, it stands to reason that combining the best of both
could yield great results.

Third piece of research would be to investigate the relatively poor performance
of the WGAN-GP compared to the GAN. A reasonable step forward would be pre-
training the WGAN-GP critic for better performance, as WGAN-GP’s performance is
extra sensitive to howwell the critic does.

Another leadwould be to investigatewhy the networks performpoorly onmultiple
particles in a single tomogram, and find alternative approaches that improve it.
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Using more metrics like the Fourier shell correlation (FSC) for network evaluation
could also extend this research.
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A Additional realistic data experiment

As a quick test of howwell our best network generalizes tomore realistic noise, we
tested our best network with a single particle from SHREC dataset, but this time
used their degraded tomograms instead of generating our own.

This experiment is put in theappendixbecause it onlymeasures a singledatapoint,
and therefore does not have the statistical weight of the other experiments in sec-
tion 4.

The results in table 6 show that the network is able to denoise the tomogram, as
the SSIM score improves by 20×, and the PSNR improves by 3×. This implies that
the networks generalize well to realistic data.

Additionally, FSC plots of the noisy tomogram (figure 19) and the generated tomo-
gram (figure 20) were made.

Method P SSIM PSNR MSE NRMSE
% dB ×1000

(input) 50 0.0164 7.064 398.14 21.154

UpsampleUnet48 GAN 50 0.3300 22.182 0.086 0.310

Table 6: Results from the realistic data experiment
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Figure 19: FSC graph of the noisy tomogram.

Figure 20: FSC graph of the denoised tomogram.
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B PytorchModels

import torch
from torch import nn

class Unet(nn.Module):
def __init__(self, ch):

super(Unet, self).__init__()
self.e0 = nn.Sequential(

nn.Conv3d( 1, ch, (5,5,5), stride=2, padding=2), nn.ReLU(True), nn.BatchNorm3d(ch))
self.e1 = nn.Sequential(

nn.Conv3d( ch, ch, (5,5,5), stride=2, padding=2), nn.ReLU(True), nn.BatchNorm3d(ch),
)

self.bot= nn.Sequential(
nn.Conv3d( ch, ch, (5,5,5), stride=2, padding=2), nn.ReLU(True), nn.BatchNorm3d(ch),
nn.ConvTranspose3d(ch, ch, (5,5,5), padding=2, output_padding=1, stride=2), nn.ReLU(True), nn.BatchNorm3d(ch))

self.d0 = nn.Sequential(
nn.Conv3d(2*ch, ch, (3,3,3), stride=1, padding=1), nn.ReLU(True), nn.BatchNorm3d(ch),
nn.ConvTranspose3d(ch, ch, (5,5,5), padding=2, output_padding=1, stride=2), nn.ReLU(True), nn.BatchNorm3d(ch))

self.d3 = nn.Sequential(
nn.Conv3d( ch+1, ch, (3,3,3), stride=1, padding=1), nn.ReLU(True), nn.BatchNorm3d(ch),
nn.Conv3d( ch, 1, (3,3,3), stride=1, padding=1), nn.Softplus())

def forward(self, x64):
x32 = self.e0(x64)
x16 = self.e1(x32)
x8 = self.e1(x16)
xout = self.bot(x8)
xout = self.d0(torch.cat((xout,x8), 1))
xout = self.d0(torch.cat((xout,x16), 1))
xout = self.d0(torch.cat((xout,x32), 1))
xout = self.d3(torch.cat((xout,x64), 1))
return xout

class UpsampleUnet(nn.Module):
def __init__(self, ch):

super(UpsampleUnet, self).__init__()
self.input = nn.Sequential(

nn.Conv3d( 1, ch, (3,3,3), padding=1),
nn.ReLU(True),
nn.BatchNorm3d(ch) )

self.narrow = nn.Sequential(
nn.Conv3d( ch, ch, (5,5,5), stride=2, padding=2),
nn.ReLU(True),
nn.BatchNorm3d(ch) )

self.convolve = nn.Sequential(
nn.Conv3d(2*ch, ch, (3,3,3), padding=1),
nn.ReLU(True),
nn.BatchNorm3d(ch) )

self.output = nn.Sequential(
nn.Conv3d(ch, 1, (3,3,3), padding=1),
nn.Softplus())

def forward(self, input):
x64 = self.input(input)
x32 = self.narrow(x64)
x16 = self.narrow(x32)
xout = self.narrow(x16)
xout = self.convolve(torch.cat((nn.functional.interpolate(xout,scale_factor=2,mode=’nearest’),x16),1))
xout = self.convolve(torch.cat((nn.functional.interpolate(xout,scale_factor=2,mode=’nearest’),x32),1))
xout = self.convolve(torch.cat((nn.functional.interpolate(xout,scale_factor=2,mode=’nearest’),x64),1))
return self.output(xout)

class SimpleAutoEncoder(nn.Module):
def __init__(self):

super(SimpleAutoEncoder, self).__init__()

# reduction rule: half the neccesairy channels to keep total voxel count the same
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# (64³ = 32³*8, so instead of 8, use 8/2=4 channels)

a, b, c, d = 4, 16, 64, 256
self.network = nn.Sequential( # weights = 8.3 MiB

# nn.BatchNorm3d(1),
nn.Conv3d(1, a, (5,5,5), stride=2, padding=2), nn.ReLU(True), nn.BatchNorm3d(a), # 64³x1 −−> 32³x4
nn.Conv3d(a, b, (5,5,5), stride=2, padding=2), nn.ReLU(True), nn.BatchNorm3d(b), # 32³x4 −−> 16³x16
nn.Conv3d(b, c, (5,5,5), stride=2, padding=2), nn.ReLU(True), nn.BatchNorm3d(c), # 16³x32 −−> 8³x64
nn.Conv3d(c, d, (5,5,5), stride=2, padding=2), nn.ReLU(True), nn.BatchNorm3d(d), # 8³x64 −−> 4³x256
nn.ConvTranspose3d(d, c, (5,5,5), padding=2, output_padding=1, stride=2), nn.ReLU(True), nn.BatchNorm3d(c),
nn.ConvTranspose3d(c, b, (5,5,5), padding=2, output_padding=1, stride=2), nn.ReLU(True), nn.BatchNorm3d(b),
nn.ConvTranspose3d(b, a, (5,5,5), padding=2, output_padding=1, stride=2), nn.ReLU(True), nn.BatchNorm3d(a),
nn.ConvTranspose3d(a, 1, (5,5,5), padding=2, output_padding=1, stride=2), nn.Sigmoid())

def forward(self, x):
return self.network(x)

class Flatten(nn.Module):
def forward(self, input):

return torch.flatten(input, 1, −1)

class SimpleDiscriminator(nn.Module):
def __init__(self):

super(SimpleDiscriminator, self).__init__()

a, b, c, d = 48,48,48,64 # channel size in narrowing phases
e = d*4**3 # flat layer size
f,g,h = e//8**1, e//8**2, e//8**3 # fully connected phase layer size
self.network = nn.Sequential(

nn.Conv3d(2, a, (5,5,5), stride=2, padding=2), nn.LeakyReLU(0.2,True), nn.BatchNorm3d(a), # 64³ −−> 32³
nn.Conv3d(a, b, (5,5,5), stride=2, padding=2), nn.LeakyReLU(0.2,True), nn.BatchNorm3d(b), # 32³ −−> 16³
nn.Conv3d(b, c, (5,5,5), stride=2, padding=2), nn.LeakyReLU(0.2,True), nn.BatchNorm3d(c), # 16³ −−> 8³
nn.Conv3d(c, d, (5,5,5), stride=2, padding=2), nn.LeakyReLU(0.2,True), nn.BatchNorm3d(d), # 8³ −−> 4³
Flatten(),
nn.Linear(e, f), nn.LeakyReLU(0.2,True), nn.BatchNorm1d(f),
nn.Linear(f, g), nn.LeakyReLU(0.2,True), nn.BatchNorm1d(g),
nn.Linear(g, h), nn.LeakyReLU(0.2,True), nn.BatchNorm1d(h),
nn.Linear(h, 1)#, nn.Sigmoid()

)

def forward(self, input):
return self.network(input)

class ZeroPad3d(nn.Module):
def forward(self, input):

return torch.nn.functional.pad(input,(1,0,1,0,1,0))

class Pix2PixDiscriminator(nn.Module):
def __init__(self):

super(Pix2PixDiscriminator, self).__init__()
def block(cin,cout,norm=False):

ret = [ nn.Conv3d(cin, cout, 4, stride=2, padding=1), nn.LeakyReLU(0.2,True) ]
if norm: ret.append(nn.BatchNorm3d(cout))
return ret

self.model = nn.Sequential(
*block(2,64,norm=False),
*block(64,128),
*block(128,256),
*block(256,512),
ZeroPad3d(),
nn.Conv3d(512,1,4,padding=1, bias=False),
nn.Sigmoid() # manual edit

)
def forward(self, noisy, fake_or_real):

pack = torch.cat((noisy,fake_or_real),dim=1)
return self.model(pack)
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