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Abstract

In the context of rough paths theory, the signature is a fundamental object that
captures information about paths. Recent developments in this area has motivated
the use of signatures as a nonparametric feature set for machine learning.

With this thesis, we aim to provide an accessible introduction to signatures from
both a theoretical and applied point of view. On the theoretical side, we review
algebraic, analytic and geometric properties of the signature. This touches on many
different topics in pure mathematics, including differential equations, multilinear
algebra and Lie theory. On the applied side, we review how these properties
enable signatures to be effective feature sets in supervised learning problems. We
study general algorithms and implementations for computing signatures, as well as
specialized transformations for machine learning. Several classical problems such
as handwritten digit recognition are explored in detail. Our main contribution to
the existing literature is a benchmark of signatures for time series classification
problems from the UCR repository.
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1 Introduction

A notion that is encountered in virtually all branches of modern science is that of
paths. There are many examples of objects that can be considered paths. A path
could be a physical path in space to move from point A to B . A path could also
be a sequence of events that describes some change in an observed quantity, e.g.,
the price movement of a financial instrument. Even more abstract, a path could
represent a paragraph of text. In short, paths are ubiquitous and they seem to come
in all sizes and shapes.

When dealing with paths, one is often interested in finding features that describe
a path well. For instance, when a financial analyst is studying price movements of
an instrument, they tend to search for signals that indicate important activity, be that
a large order taking place or a sudden spike in volatility. Similarly, when a person
(or machine) is reading a text, they will find themselves looking for keywords and
sentences that contain more information than others. Likewise, a machine that is
able to successfully classify handwritten characters will certainly be trained to look
for spatial features and patterns that uniquely identify each character.

In all of these domains, specialized methods and routines are usually deployed
to solve the respective problems at hand. However, from a mathematical point of
view, there is not much difference between the paths. Whether the path represents
a piece of text, a physical path, or a price process, it can always be realized as a
function indexed by time. A natural question that arises is then: does there exist
a more universal method to achieve this goal of information extraction, regardless
of what the underlying application domain may be? Is there perhaps a general
mathematical object that is able to succinctly extract and summarize key features
of a path? While questions like these may sound vague and finding such object
may be overly ambitious, in recent years, research in the novel field of rough paths
has brought a fundamental object to light – one that has some of these desired
capabilities.

1.1 Rough paths

Rough path theory was originally developed by T. Lyons in the 1990s [1] to study
controlled differential equations of the form

dYt D f .Yt /dXt ; Y0 D y0: (1.1)

Here, f is a vector field and Xt is a known path, called the ‘driving signal’, and
Y is the path to solve for, known as the ‘response signal’. In the case that X and
Y are smooth, the above equation could be equivalently written in a more familiar
ordinary differential equation, obtained symbolically by ‘dividing’ both sides of the
equation by dt ,

PYt D f .Yt / PXt ; Y0 D y0:

For instance, a physical interpretation could be the following: Yt is the position of
a car at time t and Xt is the turning degree of the steering wheel at time t , while
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f is a function that dictates the dynamics of the interaction. Solving the equation
for Y given X would amount to finding how the position of the car changes in
response to rotation of the steering wheel. Assuming X and f to be smooth,
the classical Picard-Lindelöf theorem for ODEs tells us that not only does a unique
solution exists, for fixed f the solution Y depends continuously onX in the uniform
topology.

Rough path theory attempts to systematically extend (1.1) to the highly non-
smooth setting. Typically, nonsmooth driving signals would occur in stochastic
modelling. Readers familiar with the topic might view (1.1) as a stochastic differ-
ential equation (SDE), in whichX and Y are random processes. A typical example
of a process modelled in this framework is the price movement of a financial instru-
ment. For instance, one can think of Yt as the value of a financial derivative (e.g.,
an option), and Xt the price of the underlying instrument, both indexed by time.
The solution of equation (1.1) then answers the question: How does the value of an
option change when the value of the underlying stock changes?

Although sample paths of many stochastic processes are continuous, they are
almost never smooth. For instance, a common choice for a random driving signalX
is the Brownian motion Bt , whose sample paths are in fact nowhere differentiable.
It is therefore a nontrivial task to even define what equation (1.1) means for random
processes. This is precisely the content of the theory of Itô calculus. In essence,
(1.1) is made rigorous by using a stochastic version of integration, the Itô integral.
A random process solves the SDE (1.1) if and only if it solves the corresponding
Itô integral equation,

Yt D Y0 C

Z t

0

f .Ys/ dXs:

The important fact to note here is that Itô’s framework is probabilistic. There are
fundamental reasons why developing a deterministic framework of integration for
highly nonsmooth paths cannot work. Itô’s framework circumvents these limits
by exploiting certain probabilistic niceties (i.e., martingale and semi-martingale
properties) present in random processes. One drawback of the theory is that the
integral as a map .X; Y / 7!

R T
0 Ys dXs lacks any form of continuity; we cannot

equip the path space with a meaningful topology such that the integral is continuous
[2, Prop 1.1]. Even so, Itô calculus is hugely successful and has been a major
advancement in 20th century mathematics.

The theory of rough paths has been developed partly to address some of these
issues present in stochastic integration. Most notably, rough paths answer the
following main question that the stochastic framework cannot address: IfX andX 0
are driving signals of (1.1) that are ‘nearby’, what can we say about the respective
solutions Y and Y 0? In other words, do we have a meaningful topology or metric
on the space of paths such that the solution map If W X 7! Y of equation (1.1) is
uniformly continuous? The answer is positive, and we briefly outline the approach.

Rough path theory achieves continuity in the solution map by ‘enhancing’ the
paths with additional information. Given a path X , we include a special, higher-
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order process X and form the pair X D .X;X/. The enhanced object t 7! Xt
is a path taking values in a larger space, and is called the rough path obtained
by lifting X . Given this additional data, it is possible to define what it means to
integrate another path Y against the rough pathX. Furthermore, under the so-called
rough path metric, the integral is a continuous map [1, Thm 3.2.2], [2, Thm 4.10].
Once a suitable theory of integration is established, it is possible to consider rough
differential equations of the form

dYt D f .Yt /dXt ; Y0 D y0:

The universal limit theorem [1, Thm 4.1.1], [2, Thm 8.4] then guarantees that a
unique solution exists, and that the solution map (also known as the Itô-Lyons map)
QIf W X 7! .Y; Y 0/ is continuous in the rough path metric. Here, the second object
Y 0 could be interpreted as a ‘derivative’ of Y . The idea is summarized in the
following diagram.

.X;X/ .Y; Y 0/

X Y

QIf

projectlift
If

The map If can for instance represent the Itô map for the classical SDE, i.e., (1.1).
The dashed line emphasizes the fact that If is not continuous.

Clearly, many crucial details are omitted in this brief outline. However, the goal
of this discussion is not to motivate the theory of rough paths itself, instead, the
emphasis lies in the procedure of gaining stronger results by including additional
information. The question that begs for an answer is therefore: What is exactly this
additional information about a path that we need for this to work?

1.2 The signature

Let us consider a simplified version of the controlled differential equation (1.1). In
particular, suppose f D A is linear andX is smooth, then (1.1) becomes the linear
equation

dYt D AYtdXt ; Y0 D y0: (1.2)

A well-known method to approximate solutions to such classical ODEs is through
Picard iterations, which are defined recursively as follows:

Y 0t D y0; Y nt D Y0 C

Z t

0

AY n�1s dXs:

It is the content of the Picard-Lindelöf theorem that .Y n/n converges uniformly to
the solution Y . Since A is linear, we can in fact write explicitly

Yt D

 
1X
nD0

An
Z
f0<s1<���<sn<t g

dXs1 ˝ � � � ˝ dXsn

!
y0
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As a result, the solution to the linear equation is only dependent on A and this
collection of iterated integrals in X .

Let us call this collection the signature of the smooth path X , and denote it by
S.X/,

S.X/0;t D
�
1; x1; x2; : : : ; xn; : : :

�
with

xn D

Z
f0<s1<���<sn<t g

dXs1 ˝ � � � ˝ dXsn :

At first sight, this object may not seem very special. However, a stronger and
perhaps much more surprising result is true: for any fixed smooth function f , not
necessarily linear, the solution Y to (1.1) is completely determined by the signature
of X . This key observation by Chen [3] is in fact the foundation of the theory of
rough paths. Indeed, for the case of smooth paths, the object X mentioned in the
previous discussion is precisely the signature.

In this view, the signature is a powerful object that is able to fully determine the
response of a system given an input signal. This conclusion should serve as a first
indication as to why the signature fits the description of being a nonparametric way
to summarize a path, as alluded in the beginning of this introduction. In the rest of
this thesis, our goal will be to further expand and elaborate on this idea.

1.3 Outline of thesis

The current thesis is divided in two chapters, one that deals with the theoretical
aspect of signatures and the other that deals with applications. Our goal is to
provide a self-contained introduction to signatures that attempts to combine both
theoretical groundwork and the extension to practical applications, with particular
focus on machine learning.

The theoretical Chapter 2 builds the foundation of signatures. In this chapter,
we introduce the signature for Rd -valued paths of bounded variation. Section 2.1
introduces the space on which signatures live, known as the extended tensor algebra
over Rd , which is an associate algebra constructed from a direct sum of vector
spaces. In Section 2.2 and 2.3, we define the signature and introduce its main
algebraic properties, most notably that the signature is a special morphism between
the path space and the tensor algebra. Section 2.4 is concerned with functions on
the space of signatures. Here, we formulate and prove the remarkable property
that products of linear functionals acting on signatures are again linear functionals.
In Section 2.5 and 2.6, we explore analytic and geometric properties of the range
of the signature. We will show that the space of signatures has a rich geometric
structure, being a special type of Lie group.

One important topic we have omitted is the theory of rough paths, as described
in the first section of the introduction. Although signatures have traditionally been
a fundamental part of rough paths, we have settled for a treatment of signatures
independent from rough paths. As such, the paths we deal with are not ‘rough’
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paths, but ones that are rather smooth. Nevertheless, the theory of signatures for
these non-rough paths is rich and nontrivial. It touches on many different topics
of mathematics, notably including Lie theory, sub-Riemannian geometry and Hopf
algebras.1 For a thorough introduction to rough paths, we refer to the book [2].

On the practical side, we focus on recent applications of signatures in machine
learning. Our goal is to illustrate using several simple but meaningful examples
that signatures can be effective feature sets. In the introduction of Chapter 3 we
present main principles that make signatures effective from a theoretical viewpoint.
Here we introduce the general machine learning workflow and link key results from
the previous theoretical exposition to practical implications in machine learning.
Section 3.1 then treats various data preprocessing steps for the signature method.
Most methods here are a variant of turning discrete paths into continuous paths, for
which we can compute the signature. Section 3.2 focuses on the computation of
signatures. Through mostly examples, we illustrate a few algorithms for computing
signatures. In Section 3.3, we consider two concrete machine learning problems.
In the first example, we use a simple linear regression model on signature features
to predict the terminal value of a stochastic process driven by a Brownian motion.
The second example attempts to classify handwritten digits using signatures. Both
examples have been briefly discussed in different texts already, our discussion will
provide a different perspective by including techniques discussed in Section 3.1.

Finally, in Section 3.4, we perform an extensive benchmark of signature features
on 114 datasets of the UCR Time Series Classification repository [4]. With this
numerical experiment, we aim to better understand the effectiveness of signatures for
machine learning in a broader context. This aspect still seems lacking in the current
literature, asmost papers published so far tend to only consider one specificmachine
learning problem. We are not aware of any published work that attempts to survey
the performance of signatures across a range of different problems and datasets.
Fortunately, the UCR repository has been crafted for precisely this purpose in mind.
In our experiments, we will not only test signatures under different configurations,
but also compare them against the results of other state-of-the-art classification
algorithms.

1These advanced topics are out of the scope for this thesis, however, we provide references for
interested readers.
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2 Theory of Signatures

In this chapter we treat a key object in the study of paths: the signature. The goal
of this chapter is to provide an accessible introduction to the theory of signatures,
complete with proofs.

Let us introduce the notation we use in this chapter. We use capital letters X ,
Y and Z to denote paths. Most of the time, these are functions from a compact
interval Œ0; T � to d -dimensional Euclidean space Rd , i.e., X W Œ0; T � ! Rd . We
use the subscript notation Xt to denote the value of the path at time t . Paths will
always be assumed to be continuous and of bounded variation, see Definition A2.
The set of all such paths is denoted by V.Œ0; T �;Rd /.

2.1 Tensor series

Before we define the signature of paths, we introduce the space they live in. Let V
be a finite dimensional vector space. Recall that for any nonnegative integer n, the
nth tensor power of V is defined to be the tensor product of V with itself n times,

V ˝n D V ˝ � � � ˝ V:

By convention, the zeroth tensor power V ˝0 is taken to be R. An introduction
to tensors can be found in any book on multilinear algebra, see for instance [5,
Chapter 12]; the exposition will be omitted here. However, it is beneficial to
state the notation we will use. Suppose fe1; : : : ; ed g is a basis of V , then the
corresponding basis of V ˝n is given by f ei1 ˝ � � � ˝ ein j 1 � i1; : : : ; in � d g.
Hence, any v 2 V ˝n can be written in coordinates as

v D
X

1�i1;:::;in�d

vi1;:::;inei1 ˝ � � � ˝ ein :

Definition 1. Consider a finite dimensional vector space V over R. The extended
tensor algebra T ..V // over V is defined as the space

T ..V // D
˚
a D .a0; a1; : : : /

ˇ̌
an 2 V

˝n; for all n � 0
	
:

It is equipped with the usual element-wise addition and scalar product: for � 2 R
and a D .a0; a1; : : : / and b D .b0; b1; : : : / in T ..V //,

aC b D .a0 C b0; a1 C b1; : : : / and �a D .�a0; �a1; : : : /:

Furthermore, T ..V // has a product operation, given by

a˝ b D .c0; c1; : : : /

where for each n � 0,

cn D

nX
kD0

ak ˝ bn�k : (2.1)

˛
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It is important to note that the multiplication defined above is noncommutative,
i.e., a ˝ b ¤ b ˝ a, because the tensor product is noncommutative. With respect
to˝, T ..V // has a unit element 1 D .1; 0; 0; : : : /. The space T ..V // therefore has
the structure of an associative algebra.

The product operation may remind the reader of products of power series.
Indeed, if we have two (formal) power series

P1
nD0 anz

n and
P1
nD0 bnz

n then
their product  

1X
nD0

anz
n

! 
1X
nD0

bnz
n

!
D

1X
nD0

cnz
n

will have coefficients cn given by

cn D

nX
kD0

akbn�k : (2.2)

As such, (2.1) is ‘the same’ as (2.2), but consists of a different product.
It is possible to make this correspondence between T ..V // and formal power

series more precise. Assuming a chosen basis f e1; : : : ; ed g of V , we can actually
viewT ..V // as a formal power series in the indeterminates ei1;:::in WD ei1˝� � �˝ein ,
for n � 0 and 1 � i1; : : : ; in � d . Any a 2 T ..V // can therefore be written in
coordinates as

a D
X
n�0

X
i1;:::;in

ai1;:::;inei1;:::;in :

If b is another element with coefficients bi1;:::;in , and c D a˝b, then the coefficients
of c are given by

ci1;:::;in D

nX
kD0

ai1;:::;ikbikC1;:::;in : (2.3)

Here, we adopt the convention that the empty index a0 (at k D 0) represents the
scalar a0 2 V ˝0 ' R.

2.2 Signature of paths

The signature of a path is defined as a sequence of iterated integrals over simplices
of increasing dimension. The type of paths we work with are functions of type
X W Œ0; T �! Rd . Furthermore, we assume that these paths are continuous and of
bounded variation. The space of such paths will be denoted by V.Œ0; T �;Rd / and
we will write kXk1-var for the total variation of X . The definitions can be found in
Appendix A.

Definition 2. Let X W Œ0; T �! Rd be a continuous path of bounded variation and
let fe1; : : : ; ed g be the standard basis of Rd , such that Xt D

Pd
iD1X

i
t ei . The

signature S.X/0;T of X is the element

S.X/0;T D
X
n�0

X
1�i1;:::;in�d

S.X/
i1;:::;in
0;T ei1 ˝ � � � ˝ ein 2 T ..Rd //
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in which the coefficients are defined recursively as follows:

S.X/00;T D 1; and S.X/
i1;:::;inC1
0;T D

Z T

0

S.X/
i1;:::;in
0;s dX

inC1
s : (2.4)

Here the zeroth level S.X/00;T D 1 (empty index) refers to the scalar component
of S.X/0;T in T ..Rd //. We also call the corresponding map S W V.Œ0; T �;Rd /!
T ..Rd // the signature map. ˛

A more direct way to write S .X/i1;:::;in0;T is by

S .X/
i1;:::;in
0;T D

Z
0<s1<���<sn<T

dX i1s1 � � � dX
in
sn
:

Of course, we can also break down the signature according to the grading of
T ..Rd //:

S .X/0;T D .1; x1; x2; : : : / 2 T ..Rd //;

where xn is the corresponding tensor in .Rd /˝n. For instance, one can readily see
from Definition 2 that x1 will be precisely the total displacement of the path X ,
x1 D XT � X0 2 .Rd /˝1 ' Rd . The term xn will be referred to as the nth level
of the signature. In the literature, a common way to write xn is

xn D

Z
0<s1<���<sn<T

dXs1 ˝ � � � ˝ dXsn

Example 3 (Constant path). Consider the constant path X W Œ0; T � ! Rd given
by Xt D v for all t 2 Œ0; T �. As noted before, the first level signature of a path
is always the total displacement of the path. Hence, the first level signature of the
restricted path X jŒ0;s� is clearly zero for all s 2 Œ0; T �. By induction, any higher
level signatures must also be zero. It follows that S .X/0;T D .1; 0; 0; : : : /, which
is the unit element of T ..Rd //. ˛

Example 4 (Linear path). Consider a linear planar path X W Œ0; 1�! Rd given by
Xt D tv for some nonzero vector v 2 Rd . We claim that the level n signature of
X is given by v˝n=nŠ, so that

S .X/0;1 D

�
1; v;

1

2
v˝2;

1

6
v˝3; : : :

�
:

A proof of this fact using coordinates is rather tedious, instead, we can argue as
follows due to smoothness of X . Let xn.s/ denote the level n signature of the
restricted path X jŒ0;s� for s 2 Œ0; 1�. It is clear that x1.s/ D sv 2 Rd , we show that
xn.s/ D s

nv˝n=nŠ for all s. Indeed, by smoothness of X , the Stieltjes integral for
higher level signatures can be written as

xnC1.t/ D

Z t

0

xn.s/˝ PXs ds D

Z t

0

snv˝n

nŠ
˝ v ds

D
v˝nC1

nŠ

Z t

0

sn ds D
tnC1v˝nC1

.nC 1/Š
: ˛
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Example 5 (Closed path). Let X W Œ0; 1� ! R2 be a closed, simple, piecewise
smooth path. Let A denote the area enclosed by X . By Green’s theorem,

A D

Z
Œ0;1�

X1dX2 D S1;2 .X/0;1 :

Hence, the second level of the signature contains information about the area enclosed
by a path. ˛

Example 6 (Translated path). Consider a path X W Œ0; T �! Rd and its translation
X C v by a vector v. Since the first level of the signature is the total displacement
of the path and is independent of the starting point, a simple induction argument
similar to Example 3 shows that S .X C v/0;T D S .X/0;T . ˛

2.3 Main Properties

We summarize the key properties of signatures in this subsection. The proofs we
give here are elementary and are all based on induction. The first result tells us that
the signature is invariant under reparametrizations.

Proposition 7. Let X W ŒT 0; T 00�! Rd be a continuous path of bounded variation
and let � W Œ0; T �! ŒT 0; T 00� be a nondecreasing surjection. Then

S.X B �/s;t D S.X/�.s/;�.t/ for all s; t 2 Œ0; T �:

Proof. This follows immediately from the substitution theoremofRiemann-Stieltjes
integrals, see Proposition B3.

As a result of this proposition, it does not matter what type of interval we use
for the domain of paths, we can always reparametrize to obtain the interval Œ0; T �
or Œ0; 1�.

Next, we show that if we have two paths X and Y and we concatenate them,
then the signature of the concatenation is simply the product of the signatures.

Definition 8 (Concatenation). Let X W Œ0; T � ! Rd and Y W ŒT; 2T � ! Rd be
paths. The concatenation ofX and Y is defined to be the pathX�Y W Œ0; 2T �! Rd
given by

.X � Y /t D

(
Xt 0 � t � T;

XT C Yt � YT T < t � 2T:
˛

Proposition 9 (Chen). Let X W Œ0; T � ! Rd and Y W ŒT; 2T � ! Rd be paths of
bounded variation. Then the signature satisfies Chen’s identity,

S.X � Y /0;2T D S.X/0;T ˝ S.Y /T;2T :

9



Proof. Write Z D X � Y , we prove the stronger result

S.Z/0;r D S.Z/0;T ˝ S.Z/T;r

for any r 2 ŒT; 2T �. In coordinates, this means

S.Z/
i1;:::;in
0;r D

nX
kD0

S.Z/
i1;:::;ik
0;T S.Z/

ikC1;:::;in
T;r ; (*)

for any multi-index .i1; : : : ; in/, see (2.3).
We proceed by induction to n. If n D 0, both sides of (*) are equal to 1

regardless of r . Suppose the statement holds for n � 0. For nC 1, we have

S.Z/
i1;:::;inC1
0;r D

Z r

0

S.Z/
i1;:::;in
0;u dZ

inC1
u

D

Z T

0

S.Z/
i1;:::;in
0;u dZ

inC1
u C

Z r

T

S.Z/
i1;:::;in
0;u dZ

inC1
u

D S.Z/
i1;:::;inC1
0;T C

Z r

T

S.Z/
i1;:::;in
0;u dZ

inC1
u

D S.Z/
i1;:::;inC1
0;T C

Z r

T

nX
kD0

S.Z/
i1;:::;ik
0;T S.Z/

ikC1;:::;in
T;u dZ

inC1
u

D S.Z/
i1;:::;inC1
0;T C

nX
kD0

S.Z/
i1;:::;ik
0;T

Z r

T

S.Z/
ikC1;:::;in
T;u dZ

inC1
u

D S.Z/
i1;:::;inC1
0;T C

nX
kD0

S.Z/
i1;:::;ik
0;T S.Z/

ikC1;:::;inC1
T;r

D

nC1X
kD0

S.Z/
i1;:::;ik
0;T S.Z/

ikC1;:::;inC1
T;r :

In the fourth line, we used the induction hypothesis on S.Z/i1;:::;in0;u , as u 2 ŒT; r� �
ŒT; 2T �. This concludes the proof.

Example 10 (Piecewise-linear path). Recall that in Example 4, we showed that
a linear path X with total displacement v 2 Rd has a signature given by the
exponential series,

S.X/ D

�
1; v;

1

2
v˝2; : : : ;

1

n
v˝nŠ; : : :

�
:

Let us define exp.v/ to be the series on the right.
Consider now the piecewise-linear pathY that goes through the pointsp0; : : : ; pm

in Rd . Chen’s identity gives us an useful recipe to compute the signature of Y :
break down the path into its m linear segments, compute the signature of each

10



linear segment, and then take the product of all these signatures. We know that the
signature of the linear segment from pk to pkC1 is simply exp.pkC1�pk/, hence,
the signature of Y is

S.Y / D exp.p1 � p0/˝ � � � ˝ exp.pm � pm�1/: ˛

The next proposition tells us that the signature of a path run backwards is the
same as the inverse of the signature.

Proposition 11. Let X W Œ0; T � ! Rd be a path of finite variation and let X�1
be X run backwards, that is, X�1 is the path given by X�1t D XT�t . Then
S.X�1/ D S.X/�1.

Proof. Using Chen’s identity, it is equivalent to show that

S.X �X�1/0;2T D 1:

Write Z D X � X�1 W Œ0; 2T � ! Rd . We prove the slightly stronger result
S.Z/0;t D S.Z/0;2T�t for all t 2 Œ0; 2T �, which in coordinates means

S.Z/
i1;:::;in
0;t D S.Z/

i1;:::;in
0;2T�t : (*)

We proceed by induction to n. The base case n D 0 is trivial, assume the statement
holds for some n � 0. If t 2 Œ0; T �, we have for nC 1,

S.Z/
i1;:::;inC1
0;2T�t D

Z 2T�t

0

S.Z/
i1;:::;in
0;s dZ

inC1
s

D

Z t

0

S.Z/
i1;:::;in
0;s dZ

inC1
s

C

Z T

t

S.Z/
i1;:::;in
0;s dZ

inC1
s C

Z 2T�t

T

S.Z/
i1;:::;in
0;s dZ

inC1
s :

However, we know that Zs D Z2T�s and by the induction hypothesis,Z 2T�t

T

S.Z/
i1;:::;in
0;s dZ

inC1
s D

Z 2T�t

T

S.Z/
i1;:::;in
0;2T�s dZ

inC1
2T�s

D

Z t

T

S.Z/
i1;:::;in
0;u dZ

inC1
u

D �

Z T

t

S.Z/
i1;:::;in
0;u dZ

inC1
u :

To obtain the second line, we used the substitution u D 2T � s, see Proposition B3.
It follows that the last two terms in the equation for S.Z/i1;:::;inC10;2T�t cancel, so (*)
holds for nC 1 and t 2 Œ0; T �. If on the other hand t 2 ŒT; 2T � then we can use the
same formula for 2T � t 2 Œ0; T � to obtain the same result.

An immediate consequence of the last two propositions is that the range S B
V.Œ0; T �;Rd / forms a group under ˝. Furthermore, the signature is a structure-
preserving map between V.Œ0; T �;Rd / and T ..Rd //.

11



2.3.1 One-to-one correspondence

So far we have shown that the signature maps satisfies a few useful algebraic
properties. An important question that the reader might consider is to what extent
does the signature determine the path? The paper [6] gives a full answer to this
question for paths of bounded variation. In this paper, it is proven that the signature
of a path is trivial (i.e., S.X/ D .1; 0; 0; : : : /) if and only if the path is tree-like.
The definition follows.

Definition 12. A path X 2 V.Œ0; T �;Rd / is said to be tree-like if there exists
a nonnegative continuous function h W Œ0; T � ! R of bounded variation with
h0 D hT , such that

kXt �XskRd � h.s/C h.t/ � 2 inf
u2Œs;t�

h.u/

Two paths X; Y 2 V.Œ0; T �;Rd / are said to be tree-like equivalent if X � Y �1 is
tree-like. ˛

This definition for a tree-like path may be hard to interpret geometrically. Recall
from Proposition 11 that the signature of X � X�1 is trivial, for any path X 2
V.Œ0; T �;Rd /. Essentially, the above definition attempts to analytically describe
just those paths that look likeX �X�1, i.e., paths that ‘reset themselves’. However,
not all such paths are of the formX�X�1, for instance,X�Y �Y �1�Z�Z�1�X�1
is not. There is a very intuitive geometric characterization of tree-like equivalence
due to [7, Thm 5.15]: A loop (i.e., a path with same starting and end point) is tree-
like if and only if it is contractible within its own range. Here being contractible is
in the sense of homotopy: a path is contractible if it can be continuously ‘deformed’
into a constant path. This equivalence makes it easy to check whether a path is
tree-like or not.

We now formulate the main uniqueness result.

Theorem 13 (Uniqueness of signature, [6]). The signature of a path of bounded
variation is trivial if and only if the path is tree-like. Hence, two paths have the
same signature if and only if they are tree-like equivalent.

2.4 Dual space and linear functionals

In this section, we study the range of the signature map and linear functionals on
this space. As it turns out, there is a natural product on the dual space of the range
of the signature map, which gives it the structure of an algebra. The exposition
follows that of [8].

Recall that the algebraic dual space of a vector space V , denoted by V �, is the
set of all linear functions from V to R. If V is finite dimensional, then V and V �
have the same dimension. Assume this to be the case, given a basis fe1; : : : ed g for

12



V , we write fe1; : : : ; ed g for the corresponding dual basis of V �. We know that
the set

f eI WD ei1 ˝ � � � ˝ ein j 1 � i1; : : : ; in � d g

forms a basis of V ˝n, and similarly,n
eI WD ei1 ˝ � � � ˝ ein

ˇ̌̌
1 � i1; : : : ; in � d

o
forms a basis of .V �/˝n. We can now identify

�
V ˝n

�� with .V �/˝n through the
pairing D

eI ; eJ

E
D eI .eJ / D ı

I
J ;

that is, we identify eI 2 .V �/˝n with the dual element of eI in
�
V ˝n

��.
Let us now extend the action of eI 2 .V �/˝n on V ˝n to T ..V // as follows:

for a D .a0; a1; : : : / 2 T ..V //,

eI .a/ D eI .an/ 2 R:

This gives a linear map .V �/˝n ! T ..V //�. Evaluating eI on a is essentially
picking up the I coefficient of a. For example, using our notation for the signature
coefficients, if I D .i1; : : : ; in/ then

eI
�
S .X/0;T

�
D S .X/I0;T D S .X/

i1;:::;in
0;T :

The next step is to take finite linear combinations of such linear functionals
across tensor products of any length.

Definition 14. Let V be a finite dimensional vector space. We define T .V �/ to be
the direct sum

T .V �/ WD

1M
nD0

�
V �
�˝n

:

By the above identifications, T .V �/ can be viewed as a strict subspace of the set of
all linear functionals T ..V //� of T ..V //. ˛

It is important to emphasize that an element of T .V �/ seen as a sequence, only
has finitely many terms that are nonzero. This allows elements of T .V �/ to act on
T ..V // without any issues of convergence.

Next, we introduce a product operation on T .V �/. For this, we recall a special
type of permutation.

Definition 15. A permutation � on the set f1; : : : ; nCkg is called an .n; k/-shuffle
if the internal order of the first n and last k elements is preserved:

�.1/ < � � � < �.n/ and �.nC 1/ < � � � < �.nC k/:

The set of all .n; k/-shuffles is denoted by Sh.n; k/.

13



If we have two indices I D .i1; : : : ; in/ and J D .j1; : : : ; jn/ and write
.r1; : : : ; rnCk/ D .i1; : : : ; in; j1; : : : ; jk/, we define I t J as the set of all shuffles
of indices in I and J

I t J D
˚ �
r�.1/; : : : ; r�.nCk/

� ˇ̌
� 2 Sh.n; k/

	
: ˛

Definition 16. Let I; J be indices and let eI ; eJ 2 T .V �/. We define the shuffle
product between these two elements as

eI t eJ D
X

K2ItJ

eK :

The product t is then defined on all elements of T .V �/ by linear extension. ˛

By construction, t W T .V �/ � T .V �/! T .V �/ is bilinear and commutative.

Theorem 17. Let a 2 T ..Rd // be the signature of some path X 2 V.Œ0; T �;Rd /.
Then for any e�; f � 2 T .V �/,

e�.a/f �.a/ D .e� t f �/.a/:

Proof. By linearity of t, it is sufficient to prove this for e� D eI and f � D eJ

where I D .i1; : : : ; in/ and J D .j1; : : : ; jk/. That is, we show that

S .X/I0;T S .X/
J
0;T D

X
K2ItJ

S.X/K0;T :

We proceed by induction to the combined number of indices N D jI j C jJ j.
Clearly, the statement holds if n D 0 or k D 0, which covers the case N D 1.
Suppose the statement is true for N � 1 � 1, we verify the case for N , assuming
that n � 1 and k � 1. By the integration by parts formula (Proposition B4),

S .X/I0;T S .X/
J
0;T D

Z T

0

S.X/I0;sdS.X/
J
0;s C

Z T

0

S.X/J0;sdS.X/
I
0;s: (*)

Since S.X/J0;s is an integral defined by equation (2.4), we can apply the associative
property of the Riemann-Stieltjes integral (Proposition B5) to the first term of (*),Z T

0

S.X/I0;sdS.X/
J
0;s D

Z T

0

S.X/
i1;:::;in
0;s S.X/

j1;:::;jk�1
0;s dXjks

D

Z T

0

X
�2Sh.n;k�1/

S.X/
r�.1/;:::;r�.nCk�1/
0;s dXjks

D

X
�2Sh.n;k�1/

S.X/
r�.1/;:::;r�.nCk�1/;rnCk
0;s : (**)

The second line is obtained by applying the induction hypothesis to .r1; : : : ; rnCk�1; rnCk/ D
.i1; : : : ; in; j1; : : : ; jk�1; jk/. The third line is then a consequence of swapping in-
tegration with summation and equation (2.4).

14



X0

XT

S.X/1

S.X/2

S.X/1;2

S.X/2;1

Figure 1: Geometric interpretation of Example 18.

By the same arguments, the second term of (*) is given by:Z T

0

S.X/J0;sdS.X/
I
0;s D

Z T

0

S.X/
i1;:::;in�1
0;s S.X/

j1;:::;jk
0;s dX ins

D

Z T

0

X
�2Sh.n�1;k/

S.X/
l�.1/;:::;l�.nCk�1/
0;s dX ins

D

X
�2Sh.n�1;k/

S.X/
l�.1/;:::;l�.nCk�1/;lnCk
0;s ; (***)

in which .l1; : : : ; lnCk�1; lnCk/ D .i1; : : : ; in�1; j1; : : : ; jk; in/. Finally, for
.q1; : : : ; qnCk/ D .i1; : : : ; in; j1; : : : ; jk/ the sum of (**) and (***) is in fact

S .X/I0;T S .X/
J
0;T D

X
�2Sh.n;k/

S.X/
q�.1/;:::;q�.nCk/
0;T D

X
K2ItJ

S.X/K0;T :

This follows from the observation that the set of shuffles I t J between indices I
and J can be partitioned in two sets: one that contains all shuffle permutations in
which jk is in the last position, i.e., (**), and another that contains all shuffles in
which in is in the last position, (***). This proves that eI eJ D .eI t eJ / on the
space of signatures.

Example 18. For any X 2 V.Œ0; T �;Rd /, we have

S .X/i0;T S .X/
j
0;T D S .X/

i;j
0;T C S .X/

j;i
0;T

for all i; j 2 f1; : : : ; dg. The geometric interpretation of this in the case d D 2 is
illustrated in Figure 1. ˛
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2.5 Truncated signatures

In applications, it is usually not possible to work with full signatures as elements
of the infinite dimensional T ..V // – machines can only support finite precision.
A simple way to avoid this problem is to truncate the signature to some level N .
This is similar to taking a truncated Taylor series when working with polynomials.
Another benefit of working with the truncated signatures is that they live in a finite
dimensional space. As a result, there is a canonical norm and we can speak of
topological notions such as limits and convergence.

Definition 19. Let V be a finite dimensional vector space. Consider the ideal
IN D f a 2 T ..V // j a0 D a1 D � � � D aN D 0 g of T ..V //. The truncated tensor
algebra of level N � 1 is defined to be the quotient algebra

TN .V / D T ..V //=IN :

˛

Remark 20. One can straightforwardly show thatTN .V / is canonically isomorphic
to
LN
nD0 V

˝n along with truncated multiplication

.a0; : : : ; aN /˝ .b0; : : : ; bN / D .c0; : : : ; cN /

where

cn D

nX
kD0

ak ˝ bn�k :

The multiplication operation simply ignores all terms of order larger than N . With
this view, it is clear that the main properties of full signatures (invariance under
reparametrization, Chen’s identity, and preservation of inverses) hold for truncated
signatures, as these were proven by induction. ˛

By truncating T ..V //, we obtain TN .V / which is a finite dimensional vector
space isomorphic toR1CdC���CdN . This makes it easier to make sense of analytical
properties such as convergence. Although we do not need to specify a specific norm
to speak of convergence, as all norms are equivalent in finite dimensional vector
spaces, in some cases an explicit norm allows for a specific bound.

Our aim next is to relate convergence in the path space V.Œ0; T �;Rd / with
convergence in the truncated tensor algebra T ..Rd //.

Theorem 21. Let .Xn/n2N be a sequence of paths in V.Œ0; T �;Rd / that satisfies
the following conditions:

(i) there exists X 2 V.Œ0; T �;Rd / such that Xn ! X uniformly;
(ii) supn2NkXnk1-var <1.

Then we have
lim
n!1

SN .Xn/0;T D S
N .X/0;T :
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Proof. This is a consequence of the general result Proposition B6 for Riemann-
Stieltjes integration. Using the proposition, we can show that all individual coeffi-
cients converge,

S.Xn/
i1;:::;ik
0;T �! S.X/

i1;:::;ik
0;T :

This can be done by an induction to k. The theorem then follows by the fact that
TN .Rd / ' R1CdC���CdN is finite dimensional.

Corollary 22. Let X 2 V.Œ0; T �;Rd /. Then there exists a sequence of piecewise-
linear paths .Xn/n2N such thatXn ! X uniformly andSN .Xn/0;T ! SN .X/0;T .

Proof. It is known that any continuous function on a compact interval can be
approximated by piecewise-linear functions. To do this, first pick a sequence of
partitions Pn D f0 D tn0 < � � � < tnpn D T g with shrinking mesh size, jPnj ! 0.
Then define each Xn to be the path that is linear on the segments Œtni ; t

n
iC1� and

for which Xn.tni / WD X.tni /. It then follows that Xn converges to X uniformly.
Furthermore, we have per definition of the total variation (i.e., the supremum over
all partitions) that kXnk1-var � kXk1-var <1 for all n. The result SN .Xn/0;T !
SN .X/0;T now follows from the previous theorem.

2.6 Log signatures

The truncated tensor algebra can still be a rather large space for large values of N .
Indeed, as a vector space, TN .V / is isomorphic to R1CdC���CdN . Therefore, for
practical purposes, a high truncation level comes with the cost of an explosion of the
number of coefficients. Even so, one may note certain symmetries in the definition
of the signature. For instance, for linear planar paths, S12 .X/0;1 D �S21 .X/0;1.
Our goal in this section is to present the method to compress the signature to the
so-called log signature.

The outline of this section is as follows. First, we apply the theory of Lie groups
and Lie algebras to connect two subsets of the truncated tensor algebra. Here we
formulate the well-known Campell-Baker-Hausdorff formula, Theorem 26. Then,
we construct a special Lie algebra gN .Rd / and discuss its properties. The main
result here is Theorem 30, which states that gN .Rd / is a special Lie algebra, the
free N -step nilpotent Lie algebra over Rd . Finally, we define the log signature
and show that it takes value in gN .Rd / (Theorem 32). This allows us to use the
properties of gN .Rd / to give a powerful representation of the log signature.

Throughout this section, wemake use of many results about Lie algebras. These
results are summarized in Appendix C.

2.6.1 Preliminary spaces

Briefly recall the definitions:

� a Lie group G is a group that is also a manifold and for which the group
multiplication and inverse are smooth;
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� a Lie algebra g is a vector space endowed with a bracket operation .v; w/ 7!
Œv; w� that is bilinear and satisfies the Jacobi identity,

Œa; Œb; c��C Œb; Œc; a��C Œc; Œa; b�� D 0:

Using the Lie bracket operation on vector fields on G, the tangent space TeG of G
at the identity can be turned into a canonical Lie algebra associated with G. More
details can be found in Appendix C.

Now fix a truncation level N � 1 and consider the following affine-linear
subspaces of TN .Rd /:

TNc .Rd / WD
n
.a0; : : : ; aN / 2 T

N .Rd /
ˇ̌̌
a0 D c 2 R

o
:

We are only concerned with the two spaces TN0 .Rd / and TN1 .Rd /.

Proposition 23. The following properties hold for TN0 .Rd / and TN1 .Rd /:

(i) TN1 .Rd / is a Lie group with multiplication˝ and unit 1 D .1; 0; : : : ; 0/;

(ii) TN0 .Rd / equipped with the bracket operation Œa; b� WD a ˝ b � b ˝ a is a
Lie algebra;

(iii) TN0 .Rd / is the canonical Lie algebra of the Lie group TN1 .Rd /.

Proof. (i). First, we show that
�
TN1 .Rd /;˝

�
is a group. It is clear that TN1 .Rd /

is closed under ˝. Furthermore, for an element 1 C a 2 TN1 .Rd /, a simple
computation shows that

.1C a/�1 D

NX
nD0

.�1/na˝n

is the left and right inverse of 1C a with respect to˝. Hence, TN1 .Rd / is a group.
To see that TN1 .Rd / is a smooth manifold, simply note that TN1 .Rd / is an affine-
linear subspace of TN .Rd / ' R1CdC���CdN ; hence, TN1 .Rd / is a submanifold
that is diffeomorphic with RdC���CdN . The charts are induced by a choice of basis
on TN .Rd / and are global. Moreover, the multiplication map ˝ and inverse map
1 C a 7! .1 C a/�1 are both polynomial functions when written in coordinates,
hence they are smooth. This makes TN1 .Rd / a Lie group.

(ii). Since 0 2 TN0 .Rd /, it is a vector space. It is also clear that if a; b 2
TN0 .Rd /, then Œa; b� D a˝ b � b ˝ a is again an element of TN0 .Rd /. Finally, it
is straightforward to verify that the bracket operation satisfies the Jacobi equation,
this follows from the associativity and distributivity of˝.

(iii). First, note that TN1 .Rd / is affine-linear and its tangent space at any point
can be identified with TN0 .Rd / ' RdC���CdN . Hence, we only need to show that
our custom-defined bracket Œa; b� D a ˝ b � b ˝ a is the same as the bracket
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obtained from the Lie bracket of the Lie group TN1 .Rd /. Denote left translation
by g by Lg W h 7! g ˝ h. For a; b 2 TN0 .Rd /, the left-invariant vector field
Ea WD g 7! .dLg/e.v/ is simply given by

Eag D g ˝ a 2 T
N
0 .Rd / ' Tg

�
TN1 .Rd /

�
; for all g 2 TN1 .Rd /:

This follows from linearity of the map Lg . Since this vector field is linear, the
derivative of Ea is simply itself. Hence, we can easily compute the Lie bracket
between the vector fields Ea and Eb,

ŒEa; Eb�1 D
�
D Eb.Ea/ �DEa.Eb/

�
j1

D D Eb.a/ �DEa.b/

D a˝ b � b ˝ a D Œa; b�:

This concludes the proof.

There are two very natural maps between TN0 .Rd / and TN1 .Rd /, the exponen-
tial and logarithmic map:

exp W TN0 .Rd /! TN1 .Rd /; a 7!

NX
nD0

a˝n

nŠ
;

log W TN1 .Rd /! TN0 .Rd /; 1C a 7!

NX
nD0

.�1/nC1
a˝n

n
:

Lemma 24. The maps exp and log are bijective and each other’s inverses. Fur-
thermore, both maps are smooth.

Proof. It is straightforward algebra to verify that exp B log and log B exp are the
identity maps in their corresponding spaces. If written in coordinates, both maps
are polynomial functions, thus smooth.

Example 25. Set N D 2 and let a; b 2 TN0 .Rd /. Then

exp.a/˝ exp.b/ D
�
1C aC

1

2
a˝2

�
˝

�
1C b C

1

2
b˝2

�
D 1C aC b C a˝ b C

1

2
a˝2 C

1

2
b˝2

D 1C aC b C
1

2
Œa; b�C

1

2
.aC b/˝2

D exp
�
aC b C

1

2
Œa; b�

�
: ˛

The above example shows in particular that exp.a/ ˝ exp.b/ ¤ exp.a C b/.
In general, the expansion of log.eaeb/ is given by the Campell-Baker-Hausdorff
formula.

19



Theorem 26 (Campell-Baker-Hausdorff). For any a; b 2 TN0 .Rd /, logŒexp.a/˝
exp.b/� can be written as a finite linear combination of nested right-brackets of a
and b.

Proof. This is a consequence of the general Campell-Baker-Hausdorff theorem for
Lie algebras, see Theorem C5. This theorem only establishes the result for a; b in a
neighborhood U of the zero element 0 2 TN0 .Rd /. Careful inspection of the proof
shows that U is chosen as a neighborhood of 0 for which the exponential map exp
is a diffeomorphism. Since we already know that exp is a global diffeomorphism
(Lemma 24) the statement holds globally for a; b 2 U D TN0 .Rd /.

2.6.2 The free nilpotent Lie algebra gN .Rd /

Next, we introduce one of the main spaces of interest. As we will see below, this is
the space in which the log signature lives.

Definition 27. Define gN .Rd / � TN0 .Rd / to be the smallest Lie subalgebra that
contains Rd . ˛

The following lemma gives an useful expression for gN .Rd /.

Lemma 28. Consider the lower central series of vector spaces

L1 WD Rd and LnC1 WD ŒRd ; Ln�;

in which ŒV;W � means the vector span of the set fŒv; w� j v 2 V; w 2 W g. Then
gN .Rd / is the direct sum of vector subspaces Ln,

gN .Rd / D
NM
nD0

Ln:

Proof. This is a direct consequence of Proposition C10 for general Lie algebras. In
our case, each Ln only has the zero element in common with Lk if n ¤ k, due to
the tensor grading and the bracket being defined in terms of tensor products, so the
right-hand side is indeed a direct sum of vector subspaces of TN0 .Rd /.

The following important corollary of the Campell-Baker-Hausdorff formula
shows that gN .Rd / is closed under exp and log.

Corollary 29. If a; b 2 gN .Rd /, then logŒexp.a/˝ exp.b/� 2 gN .Rd /.

Proof. Theorem 26 tells us that c D logŒexp.a/ ˝ exp.b/� is a finite linear com-
bination of nested right-brackets in a and b. The previous lemma then shows that
c 2 gN .Rd /.
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The following theorem establishes that gN .Rd / is not just any Lie algebra,
but in fact a type of ‘universal’ Lie algebra. Such Lie algebra is called a free
Lie algebra, which can be interpreted as the ‘freest’ Lie algebra, in the sense
that besides the Jacobi identity, no further restrictions have been imposed on the
bracket. We refer to Definition C7 for the definition. Many algebraic structures
have a similar notion of a universal free object, e.g., free groups, free vector spaces
or free associative algebras. In many cases, such free objects are unique up to
their respective morphisms. This is also true for Lie algebras: up to Lie algebra
homomorphisms, the free Lie algebra over a fixed set is unique.

Theorem 30. The Lie algebra gN .Rd / is the free, N -step nilpotent Lie algebra
over V .

Proof. Consider the tensor algebra

T .V / WD

1M
nD0

V ˝n;

endowed with the product˝ and bracket Œa; b� D a˝ b � b˝ a. Let L.V / be the
smallest Lie subalgebra of T .V / that contains V . By Theorem C8, L.V / is the free
Lie algebra over V . Similar to the previous lemma, we have by Proposition C10
the expression

L.V / D

1M
nD0

Ln:

Thus, for the ideal IN WD f.l1; l2; : : : / 2 L.V / j l1 D � � � D lN D 0g, we have that
the quotient L.V /=INC1 is per definition the free N -step nilpotent Lie algebra.
The proof is complete by noting that L.V /=INC1 is the same as gN .Rd /.

2.6.3 Connection to signatures

Next, we establish the connection between gN .Rd / and the range of the truncated
signature map SN .

Theorem 31 (Chow-Rashevskii). For all g 2 expgN .Rd /, there exists vectors
v1; : : : ; vm in Rd , such that

g D exp.v1/˝ � � � ˝ exp.vm/:

In view of Chen’s identity, any g 2 expgN .Rd / is the signature of some piecewise-
linear path.

Proof. We begin with the claim that a nested bracket of a certain degree can be
achieved.
Claim 1. Let 1 � n � N . For all ln 2 Ln, there exists someRnC1 2

LN
kDnC1Lk

such that exp.ln CRnC1/ can be written as a product of exponentials of vectors in
Rd .
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Proof. Let ln D Œv1; : : : ; vn� 2 Ln for vectors v1; : : : ; vn 2 Rd . Define for
1 � k � n and t 2 f�1;C1g,

g1t D exp.tv1/; gkC1t D gkt exp.tvk/g
k
�t exp.�tvk/:

A straightforward induction argument shows that

gn1 D exp.Œv1; : : : ; vn�CRnC1/;

with RnC1 consisting of higher order terms.

Next, for 1 � n � N , we prove that the exponential of any a 2
LN
kDnLk �

gN .Rd / can be written as a product of exponentials. The idea is to use the claim
to iteratively ‘correct’ brackets of increasing orders. We proceed by backwards
induction on n. The base case n D N follows immediately by the claim due to
nilpotency: RNC1 must be zero. Suppose the statement is true for any 2 � n � N .
We show that the result extends to n � 1.

Decompose a D ln�1 C Rn with ln�1 2 Ln�1 and Rn 2
LN
kDnLk . By the

claim, there is R0n 2
LN
kDnLk such that exp.�ln�1 C R0n/ can be written as a

product of exponentials. Applying the CBH formula, we find

exp
�
R00n
�
WD exp.ln�1 CRn/˝ exp.�ln�1 CR0n/

D exp
�
Rn CR

0
n C

1

2
Œln�1 CRn;�ln�1 CR

0
n�C : : :

�
Note that Œln�1;�ln�1� D 0 so the bracketed terms in the above expression are at
least of order 2n � 1 � nC 1. Therefore, by the induction hypothesis, exp

�
R00n
�

can be written as a product of exponentials. Thus, by right multiplying the previous
equation with exp.�ln�1 CR0n/�1 D exp.ln�1 �R0n/, we find

exp.a/ D exp.ln�1 CRn/ D exp.R00n/˝ exp.ln�1 �R0n/;

which is a product of exponentials. This finishes the induction step and the theorem
follows by the case n D 1.

Let us denote the range of the truncated signature by GN .Rd /, GN .Rd / D
SN B V.Œ0; T �;Rd /. The previous theorem asserts that expgN .Rd / � GN .Rd /.
In the next theorem, we prove that this is an equality.

Theorem 32 ([9, Thm 7.30]). We have the equality expgN .Rd / D GN .Rd /.

Proof. For the inclusion �, let g 2 expgN .Rd /. By Theorem 31, there exists
vectors v1; : : : ; vm 2 Rd such that g D exp.v1/˝� � �˝ exp.vm/. TakeX to be the
piecewise-linear path that goes from 0 to v1 to v1C v2 and so on to v1C � � � C vm.
Then in view of Example 10, SN .X/0;T D g. This proves that g 2 GN .Rd /.

Conversely, let X 2 V.Œ0; T �;Rd /. Then in view of Corollary 22, there ex-
ists a sequence of piecewise-linear paths .Xn/n such that Xn ! X uniformly and
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SN .Xn/0;T ! SN .X/0;T . BecauseXn is piecewise-linear, we haveSN .Xn/0;T 2
expgN .Rd /; hence, the convergence SN .Xn/0;T ! SN .X/0;T implies that
SN .X/0;T is in the closure of expgN .Rd / in TN .Rd /. If we can show that
expgN .Rd / is closed in TN .Rd /, then we are done. For this, note that gN .Rd /
is a linear subspace of TN .Rd / which is finite dimensional, so it is closed.
Therefore, expgN .Rd / being the image of gN .Rd / under the smooth embedding
exp W TN0 .Rd /! TN .Rd / is also closed. This concludes the proof.

We are now able to give the proper definition of the log signature.

Definition 33 (Log signature). The level N log signature is defined as the compo-
sition map log BSN W V.Œ0; T �;Rd /! gN .Rd /. ˛

Example 34. Consider for N D 2 the linear path X W Œ0; 1�! Rd t 7! tv. Then
the signature S .X/0;1 D exp.v/ so logS .X/0;1 D v. ˛

The power of this definition lies in the space gN .Rd /. As we have shown,
gN .Rd / is theN -step nilpotent free Lie algebra overRd . While Lemma 28 tells us
that the set of all nested right-brackets up to degree N span gN .Rd /, this set is not
linearly independent so it does not form a basis. This is because the Jacobi identity
introduces dependencies between the brackets. In fact, there is no canonical basis
for gN .Rd /, however, there are procedures to construct one. A common choice is
the Hall basis, see [10, p. 907].

Example 35 (Hall basis). Let N D 4 and d D 2, and suppose f e1; e2 g is a basis
for R2. Then the following elements form a basis for gN .Rd /:

e1; e2

Œe1; e2�

Œe1; Œe1; e2��; Œe2; Œe1; e2��

Œe1; Œe1; Œe1; e2���; Œe2; Œe1; Œe1; e2���; Œe2; Œe2; Œe1; e2���

These have been computed by the web application on the webpage of [11]. ˛

The dimension of gN .Rd / can be calculated using Witt’s formula,

dimgN .Rd / D
1

N

X
qjN

�.q/dN=q

Here, the sum is over all divisors q of N and � is the Möbius function. A proof of
this can be found in [12]. Several values of dimgN .Rd / are listed in Table 1, see
also [13].

2.7 Further reading and comments

Section 2.1 We defined the formal series of tensors T ..V // for finite dimensional
vector spaces V , similar to [8, 2.2.1]. In [8], the approach is slightly more general,
only requiring V to be a Banach space.
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Table 1: Computed dimensions of gN .Rd / for several d and N .

d D 2 d D 3 d D 4

N D 1 2 3 4
N D 2 3 6 10
N D 3 5 14 30
N D 4 8 32 90
N D 5 14 80 294
N D 6 23 196 964
N D 7 41 508 3304
N D 8 71 1318 11464
N D 9 127 3502 40584
N D 10 226 9382 145338

Section 2.2 The signature map is defined for continuous paths X W Œ0; T �! Rd
of bounded variation. We did this by defining the signature in coordinates; that is,
we chose a basis for Rd and defined each component S .X/i1;:::;in0;T as an iterated
1-dimensional Riemann-Stieltjes integral.

There are two possible generalizations here.

(i) One can define signatures for Banach space valued paths X W Œ0; T � ! V

by generalizing Riemann-Stieltjes integral to linear maps. By giving a more
general definition of Riemann-Stieltjes integration, it is possible to describe
multidimensional integrals in a basis independent manner.

(ii) Instead of only considering continuous paths of finite 1-variation, a gener-
alization of the Riemann-Stieltjes integral called the Young integral allows
one to make sense of integrals

R T
0 Ys dXs in which X and Y respectively

have finite p and q-variation, such that 1=p C 1=q > 1. Using this type of
integral, it is possible to extend the definition of signatures for paths of finite
p-variation with p 2 Œ1; 2/.

Both these generalizations are implemented in [8], which rests on the the existence
of the Young integral, see [8, Thm 1.16].

Section 2.3 Proofs in this section (notably Chen’s identity and Proposition 11)
were simple arguments based on induction, which appear in the original paper by
Chen, [3]. Analytical proofs are available through the theory controlled ODEs, see
[8, Cor 2.13] and [8, Prop 2.14].

The nontrivial uniqueness result (Theorem 13) for signatures is proven in [6] for
continuous paths of bounded variation. More recently, this result has been extended
to the setting of weakly geometric rough paths on Banach spaces in [14].
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Section 2.4 This section showed that the space of linear functionals on the range
of the signature map is an algebra of functions, following the exposition of [8]. The
proof of the main result Theorem 17 is found in [15, Lemma 1.7]. The notes [15]
also provide an insightful unified view of the range of the signature and its dual in
the framework of Hopf algebras.

Section 2.5 The truncated tensor algebra TN .V / is defined as a quotient of the
extended tensor algebra T ..V //. A more comprehensive overview of analytical
properties such as convergence is further elaborated in [9, Chapter 1].

Section 2.6 In this section the log signature was defined on the free nilpotent Lie
algebra gN .Rd /. The exposition is mainly based on that of [9, Chapter 7], however,
we have tried to include more precise reference material on free Lie algebras. We
also gave an alternative proof of Theorem 31 based on an induction argument, rather
than an ODE argument. A rough sketch of this can be found in [15, Thm 5.5].

A natural extension of the theory we have left out is its connection to sub-
Riemannian geometry. Due to GN .Rd / D expgN .Rd / being the range of the
signature map, one can define a so-called Carnot-Carathéodory metric on the man-
ifold GN .Rd /. Hence, Theorem 31 is a special case of the more general Chow-
Rashevskii theorem for sub-Riemannian manifolds. Rich results from this point of
view are further explored in [9, Chapter 7].
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3 Signatures in Machine Learning

In machine learning, one is typically interested in the modelling of an unknown
function based on various known input-output pairs. In supervised learning, the
goal is to build a mathematical model using training data: we give the algorithm a
set of inputs (also known as features) with corresponding desired outputs and let it
‘learn’ how inputs should match with outputs. Once the training stage is finished,
the model can be used on out-of-sample data. A typical example of this is training
a model to classify the object in an image. The training data in this case consists
of a set of images (input) and the corresponding labels of the image (output), e.g.,
dog or cat. The training data is usually crafted by hand or for certain problems,
historical data can be used.

Within supervised learning, there are two types of tasks, classification and
regression. The difference is simple: classification tasks are problems in which the
output variables only take a discrete number of values, while regression tasks have
output values that can span an entire interval. For instance, a typical regression
problem would be to predict the value of a house given several known features,
e.g., living space, age, neighborhood popularity etc.. Problems like these have been
well-studied in a statistical context. As such, machine learning algorithms typically
employ statistical techniques such as ordinary least squares, Bayesian methods, as
well as nonparametric methods.

The focus of the current section is to present how signatures can be applied in
supervised learning problems. The main idea is that the signature is able to give
a powerful representation of data. The workflow is simple: in a typical machine
learning problem, the aim is to find a function L that maps each input X to the
correct output y,

X y
L

With the signaturemethod, we first transform the inputs into paths, thenwe compute
the (truncated) signatures, and finally we do learning on the space of signatures. In
other words, we learn the function QL in the following diagram:

X y

S.X/

L

QL

The reason that this approach is effective is due to the following properties of the
signature:

(i) (almost) one-to-one correspondence between paths and signatures;
(ii) uniform approximation;
(iii) insensitivity to sampling rate.
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The first property is the result of Theorem 13. The theorem asserts that up to
certain null paths, a path will be uniquely determined by its signature. This means
that if we find a suitable model QL on the signature space S BV.Œ0; T �;Rd /, then this
should be a good substitute for the original model L. Most paths one deals with in
practice are not tree-like, and therefore have unique signatures. If uniqueness must
be guaranteed, one can simply embed the path in a higher dimension by including
the time parameter. Other embeddings are discussed in the next section below.

The second property is derived from Theorem 17, which states that the product
of two linear functions on the range of the full signature is again a linear function.
Hence, if we were to take the truncation level sufficiently high, any polynomial
function on SN B V.Œ0; T �;Rd / becomes linear. The intuitive implication of this
result for machine learning is as follows: if there is a nonlinear relationship between
the input X and the output y, that is, y D L.X/ for some nonlinear function L,
then we expect that the corresponding map QL that sends S.X/ to y to be a linear
map. Theoretically, this would mean that when doing regression on the signature
space, it is sufficient to consider only linear algorithms.

The third property is the result of Theorem 21 and Corollary 22, which state that
the (truncated) signature of piecewise-linear approximations of a path will converge
to the signature of the path when decreasing themesh size. Therefore, if our discrete
data stream is obtained by sampling some path, then the sampling frequency will
not have a large impact on the signature we compute. For instance, if we are doing
character recognition and our data stream is a handwritten digit represented as a
path in R2 indexed by time which is obtained by recording the location of the pen
every n seconds, then the signature should be (to a certain degree) insensitive to n.
This enables the signature to be used for dimension reduction, since the number of
coefficients in the signature is only dependent on the dimension of the path and the
truncation level, and not on the number of points or length of a path.

3.1 Paths from discrete data

In applications, the sequential data one obtains is often discrete. For instance,
in financial applications, the price of a stock or bond is often sampled on a fixed
interval, say daily or everyminute. We discuss three commonways [16] to construct
a continuous path from discrete data, with particular consideration for the signature.

Piecewise-linear interpolation

The easiest method to obtain continuous paths from discrete data points is through
piecewise-linear interpolation. Let .Xti /miD0 with 0 D t0 < t1 < � � � < tm D T be
a stream of data in Rd . Then the the continuous path QX W Œ0; T � ! Rd obtained
by piecewise-linear interpolation is simply the path that is linear on the segments
Œti ; tiC1� and satisfies QXti D Xti , see Figure 2. Piecewise-linear interpolation
serves as the basis to convert discrete paths into continuous paths. The next two
methods we discuss both rely on piecewise-linear interpolation as a final step to
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X0

X1

X2

X3

X4

X5
X6

X7

Figure 2: Piecewise-linear interpolation of 7 (sequentially ordered) data points in
R2.

obtain a continuous path. Therefore, whenever we speak of the signature of a
discrete path, we mean the signature of its piecewise-linear interpolation.

Time-based transformations

Recall that the signature of R-valued paths is simply a countable sequence of real
numbers, because any tensor power of R is isomorphic to R itself. Furthermore,
since anR-valued path can only go in two directions, Proposition 11 tells us that the
signature only depends on the total displacement of the path. As such, signatures of
R-valued paths are trivial objects that do not carry much information. Hence, when
dealing with univariate discrete data, it is beneficial to consider transformations
that embed the data in a second dimension.

The easiest way to embed a path in a higher dimension is to include the time
parametrization, which we will call the time-embedded or time-indexed transforma-
tion. For a continuous pathX , this simplymeans the path t 7! .t; Xt /. Similarly, for
discrete .Xti /miD0 series, the time-indexed version is the path .ti ; Xti /miD0. Some-
times there is no information about the time parametrization, for instance if we
have an ordered array of numbers. In such cases we use the index as time, i.e.,
.i; Xi /

m
iD0.

A similar transformation is the time-joined transformation, which adds extra
intermediate points.

Definition 36. Let .Xti /miD0 be a discrete univariate series in R. We define the

time-joined transformation of X as the stream
�
X

time-joined
j

�2mC1
jD0

by

X
time-joined
j D

8̂<̂
:
.t0; 0/ if j D 0;
.ti ; Xti�1/ if j D 2i;
.ti ; Xti / if j D 2i C 1:
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t

X time-joined

1 2 3 4

1

2

3

4

Figure 3: Time-joined transformation of f .ti ; Xti / g
3
iD0 D

f.1; 1/; .2; 4/; .3; 2/; .4; 3/g. The closed circles are points in the original
path; the open circles indicate added points.

By the signature of X time-joined, we mean the signature of the piecewise-linear
interpolation of X time-joined. ˛

Example 37. Suppose X D .Xt0 ; : : : ; Xt4/, then

X time-joined
D f.t0; 0/; .t0; Xt0/; .t1; Xt0/; .t1; Xt1/; : : : ; .t4; Xt4/g:

This is illustrated in Figure 3. ˛

The time-joined transformation has been proposed in [17] for studying classical
time series. This is due to twomain properties of the signature of the transformation:

� the signature of a time-joined path uniquely determines the original (discrete)
time series;

� the values .Xti /miD0 can be represented as a linear functional on the signature
of X time-joined.

Lead-lag transformation

The lead-lag transformation is a method to embed an Rd -valued path into an R2d -
valued path. We give the following definition for discrete paths.

Definition 38. For a stream of data .Xti /miD0 in Rd , we define the streams�
X lead
j

�2m
jD0

and
�
X

lag
j

�2m
jD0

in Rd by

X lead
j D

(
Xti if j D 2i;
Xti if j D 2i � 1;

and X
lag
j D

(
Xti if j D 2i;
Xti if j D 2i C 1:
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The lead-lag transformation of X is the 2d -dimensional stream�
X

lead-lag
j

�2m
jD0
D

�
X lead
j ; X

lag
j

�2m
jD0

:

The signature of X lead-lag is defined as the signature of the piecewise-linear inter-
polation of X lead-lag. ˛

Remark 39. The information about the time parametrization of the discrete path
.Xti /

m
iD0 is lost after taking the lead-lag transformation, as X lead-lag is generically

indexed by j from 0 to 2m. Only the ordering of the data is preserved. If the time
parametrization is important for the analysis at hand, a different transformation such
as the time-joined transformation can be used. ˛

Example 40. Consider a univariate series X D fa; b; c; dg (time parametrization
does not matter per the above remark). Then

X lead
D fa; b; b; c; c; d; dg and X lag

D fa; a; b; b; c; c; dg;

so
X lead-lag

D f.a; a/; .b; a/; .b; b/; .c; b/; .c; c/; .d; c/; .d; d/g:

In Figure 4 the piecewise-linear interpolation of a lead-lag transformation is plotted.
˛

The lead-lag transformation was originally proposed in [18] for analyzing time
series obtained by sampling from continuous semi-martingales. This is due to
the following key property: the signature of the lead-lag transformation of a path
contains direct information about the quadratic variation of the path.

Proposition 41. We have

S
�
X lead-lag�Œ1;2�

0;T
D S

�
X lead-lag�1;2

0;T
� S

�
X lead-lag�2;1

0;T
D

m�1X
iD0

�
XtiC1 �Xti

�2
:

Proof. This can be proven by induction to m, the length of the data stream. For
m D 0 both sides are zero. Assuming the statement holds for m � 0, the result for
mC1 can be obtained by applying the induction step toX without the last element,
and appealing to Chen’s identity. Indeed, if X D Y � fXtmC1g, then

X lead-lag
D Y lead-lag

� f.XtmC1 ; Xtm/; .XtmC1 ; XtmC1/g:

Applying Chen’s identity to the piecewise-linear path X lead-lag yields

S
�
X lead-lag�

0;T
D S

�
Y lead-lag�

0;T
˝ exp..x; 0//˝ exp..0; x//;

with x D XtmC1 �Xtm . Working this out we find

S
�
X lead-lag�Œ1;2�

0;T
D S

�
Y lead-lag�Œ1;2�

0;T
C x2;

which completes the induction step.
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Figure 4: Lead-lag transformation of .Xi /4iD1 D f1; 4; 2; 3g.
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Although it is possible to use the lead-lag transformation for all components
in a multidimensional time series, it is in practice more efficient to only perform
lead-lag transformations for those individual components for which the quadratic
variation is relevant. For instance, [19] studied high-frequency order book data
which included univariate series for trade volume, bid-ask prices, trade prices, and
a few other derived quantities. Since the quadratic variation of the price process is
an important notion for models in mathematical finance, the authors only performed
a lead-lag transformation on the price component of the multivariate series.2 A
partial lead-lag transformation therefore avoids unnecessary ‘blowups’ of features
when computing signatures, as the number of components in signatures scales
exponentially with the dimension of the path.

Summary of various transformations

We briefly summarize the advantages of each transformation with respect to the
signature.

� The (vanilla) piecewise-linear interpolation is applicable when dealing with
discrete data of dimension 2 or higher and when the time parametrization of
the path is irrelevant.

� For univariate discrete data, it is necessary to embed the path in a higher
dimension before using piecewise-linear interpolation – the signature is trivial
for R-valued paths that are piecewise-linear (see Proposition 11). The time-
joined, time-embedded and lead-lag transformations can be used for this
purpose.

� The time-joined and time-embedded transformations are suitablewhen preser-
vation of the time parametrization is required. Time-joined has been used
for analysis of classical time series due to a (linear) relationship between the
signature and the lagged values of the time series [17].

� The lead-lag transformation does not preserve the time parametrization. Sig-
natures of lead-lag transformed paths contain direct information about the
quadratic variation of the path. This transformation has been studied in the
context of discrete approximations to continuous processes [18].

3.2 Computational aspects

In this section we give brief sketches on the algorithms to compute truncated
signatures and log signatures of piecewise-linear interpolations of discrete paths.

2To be more precise, the authors used the ‘lead’ part of each component of the time series and
only included the ‘lag’ part for the price process; this is done in order to ensure that all series are of
the same length.
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3.2.1 Signatures

Let .Xti /miD0 be a discrete path in Rd . In Example 10, we computed the full
signature of such path. Under the current notation, the formula reads,

S .X/0;T D

m�1O
iD0

exp
�
XtiC1 �Xti

�
: (3.1)

The number of operations required to compute the truncated signature of level N
using the above formula is around the order O.mdN /. Of course, there are certain
symmetries in the signature that allows one to reduce this. For instance, computing
the signature of a line segment involves computing tensor powers of vectors in
succession for the exponential. One could reduce the number of multiplications
required by noting that v˝n is symmetric and only has

�
dCn�1
n

�
distinct values.

There are currently two open-source software libraries that supply signature
computations. The first one is part of the CoRoPa (Computational Rough Paths)
[11] research program, which contains the Python package ESig. A newer im-
plementation is the iisignature Python package [20]. Both libraries provide
functions for computing log signatures and regular signatures and are implemented
in C++. For our numerical experiments in Section 3.3, we use the iisignature
package due to its superior benchmarks reported in [20].

It should be noted that the only two available open-source implementations
are for the Python programming language. If one is constrained to use a different
language, a custom solution must be supplied. However, the algorithm to compute
signatures from linearly interpolated paths is quite straightforward to implement
using formula (3.1). Many programming languages already have high-performance
linear algebra libraries that contain functions for tensor manipulation. Specifically,
most libraries include a routine that allows one to compute the tensor product of
two arbitrary rank k and l tensors, i.e., v ˝ w for v 2 .Rd /˝k and w 2 .Rd /˝l .
As such, the task of implementing the signature mainly consists of

� designing a data structure to represent elements of the truncated tensor algebra
TN .Rd /;

� writing a routine that extends the usual tensor product to the tensor product
of the truncated tensor algebra TN .Rd /;

� writing a routine that implements the (truncated) exponential function.

Our experience with this process comes from building a novel interactive
JavaScript web application to visualize the signature of a drawn path.3 The ap-
proach taken here is to simply represent the truncated tensor algebra as a list of
tensors, e.g.,

[1, [1,2], [[3,4],[5,6]], [[[7,8],[9,10]],[[11,12],[13,14]]]]

3https://zhy0.com/signature-visualizer
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Figure 5: Screenshot of the signature-visualizer web app.

Sometimes having the signature as a flat one-dimensional array is more con-
venient to work with, in which case we can easily flatten the list of tensors.
Since JavaScript does not not have a full-featured tensor manipulation library,
we use the popular mathjs library [21] and supply some of the tensor manip-
ulation functionality. Our implementation does not attempt to optimize perfor-
mance in any way. The function that computes the signature in the web app
uses a naive, nonvectorized implementation of (3.1). Nevertheless, this imple-
mentation is fast enough to serve the purposes of visualization in most modern
web browsers. The source code of the web application is publicly available at
https://github.com/zhy0/signature-visualizer.

3.2.2 Log signatures

The log signature is a compressed representation of the signature and lives in the
special space gN .Rd /. We present brief sketches of two methods of computing log
signatures. For full details, we refer to [20].
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Projection of signatures Recall from Section 2.6 that the logarithm of an element
of the truncated tensor algebra TN .Rd / whose scalar component is 1 is defined as

log.1C a/ D
NX
nD0

.�1/nC1

n
a˝n: (3.2)

The result is an element in the tensor space TN .Rd / and it therefore has the same
number of coefficients as 1C a. In Section 2.6, we showed that signatures of paths
can be embedded in the lower-dimensional vector space gN .Rd /, which is the
free N -step nilpotent Lie algebra over d elements. Therefore, after computing the
logarithm via the above formula, one can obtain the log signature (as an element of
gN .Rd /) by projecting/rewriting the result in a basis of gN .Rd /. In other words,
a possible procedure to computing the log signature is as follows:

1. compute the regular signature of the path as described in the previous sub-
section;

2. calculate the logarithm of the signature in the tensor space TN .Rd /, using
(3.2);

3. project the result in a basis ofgN .Rd / (this is always possible byTheorem32).

The core of this procedure is the third point. Essentially, this comes down to
solving a linear equation. If we have an element a 2 gN .Rd / under a particular
basis, we can find the corresponding representation of a by expanding the brackets.
Let us illustrate this by the following example.

Example 42. Consider d D 2 and N D 2 and let fe1; e2g be the standard basis of
R2. Then B WD fe1; e2; e11; e12; e21; e22g is a basis of TN0 .Rd / ' TN1 .Rd /, with
eij WD ei˝ej , andA WD fe1; e2; Œe1; e2�g is a basis for gN .Rd /. If under this latter
basis a D .0; 0; 1/ 2 gN .Rd /, then we find that since Œe1; e2� D e12 � e21, it is
given by .0; 0; 0; 1;�1; 0/ in the former basis. We therefore have the identifications
of basis elements,

.1; 0; 0/! .1; 0; 0; 0; 0; 0/;

.0; 1; 0/! .0; 1; 0; 0; 0; 0/;

.0; 0; 1/! .0; 0; 0; 1;�1; 0/:

Therefore, the transformation matrix from the basis A of gN .Rd / to the basis B of
TN .Rd / is given by

L D

0BBBBBB@

1 0 0

0 1 0

0 0 0

0 0 1

0 0 �1

0 0 0

1CCCCCCA ;
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such that a D .a1; a2; a3/ under basis A has representation La under B .
To go the opposite direction is slightly more difficult. Suppose we have b 2

TN .Rd / under basisB . Then to find its representation under basisA, we must find
a D .a1; a2; a3/ such that La D b. In general, this system is overdetermined and
it may or may not have a solution. However, by Theorem 32, if b is the signature
of some path, then we know that it has a unique representation in gN .Rd /; as
such, La D b must have a unique solution in this case. Thus, computing the
log signature given the regular signature boils down to solving an overdetermined
system of linear equations. This is a classical problem in linear algebra; one can
for instance use methods such as ordinary least squares. ˛

To apply this method, we must know what the basis elements of gN .Rd / are,
see for instance [10, p. 907]. Since these are only dependent on d and N (as
gN .Rd / is a universal object), it is possible compute these in advance. Further
optimizations are possible, for these we refer to [20].

Direct computation of log signatures Instead of first computing the signature,
there is a method to directly compute the log signature. This method is analogous
to computing the regular signature, which uses Chen’s identity to combine the
signatures of individual line segments; here, instead of using Chen’s identity, we
use the Campell-Baker-Hausdorff formula given in Theorem C5.

Suppose a; b 2 gN .Rd / are the respective log signatures of the paths X and
Y . The log signature of the concatenation X � Y is then given by

logS.X � Y / D logŒS.X/˝ S.Y /� D logŒexp.a/˝ exp.b/�;

which is precisely the Campell-Baker-Hausdorff ‘product’ of a and b. Furthermore,
recall that the log signature of a line segment is simply its total displacement, i.e., if
X W t 7! tv on Œ0; 1�, then logS.X/ D v 2 gN .Rd /. Hence, we can compute the
log signature of piecewise-linear paths by iteratively applying the CBH formula to
each linear segment of the path. This method is summarized in the following steps:

1. determine and fix a basis of gN .Rd /;
2. compute the log signature of each linear segment of the path (this is trivial);
3. use the CBH formula to ‘patch together’ the log signatures to find the total

log signature of the path.

We illustrate this procedure in the following example.

Example 43. Let d D 2 and N D 2 and let fe1; e2g be the standard basis of R2,
we fix the basis fe1; e2; Œe1; e2�g for gN .Rd /. Now consider the piecewise-linear
path X that goes from 0 to v to vCw in R2. We compute the log signature of this
path.

The log signature of the linear segment 0 to v is simply v D .v1; v2; 0/ in the
basis of gN .Rd /, and similarly, the log signature of the segment from v to v C w
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is w D .w1; w2; 0/ 2 gN .Rd /. The CBH formula for the truncation level N D 2

is given by

cbh.a; b/ WD logŒexp.a/˝ exp.b/� D aC b C
1

2
Œa; b�:

We have that in the given basis of gN .Rd /,

Œv; w� D Œv1e1 C v2e2; w1e1 C w2e2� D .v1w2 � v2w1/Œe1; e2�:

Hence, the log signature of X is given by

cbh.v; w/ D .v1 C w1/e1 C .v2 C w2/e2 C
1

2
.v1w2 � v2w1/Œe1; e2�

D

�
v1 C w1; v2 C w2;

1

2
.v1w2 � v2w1/

�
: ˛

To implement the above procedure for truncation level N , one needs to know
all the coefficients and terms of the CBH formula up to order N . These can be
computed in advance and stored in a look-up table. See [20] for details.

3.3 Machine learning examples

3.3.1 Regression of stochastic differential equation

In this first example, we attempt to predict the value of a diffusion process driven
by a Brownian motion. This example is borrowed from [17]. Let .Bt /t�0 be a
one-dimensional standard Brownianmotion with initial valueB0 D 0. We consider
a process .Yt /t�0 given by the Stratonovich SDE

dYt D a.1 � Yt /dt C bY
2
t B dBt ; Y0 D 0; (3.3)

where a D 1 and b D 2 and T D 0:25 are fixed. Our goal is to estimate the
terminal value YT using the driving signal .Bt /t2Œ0;T �.

We generate 800 samples of discrete Brownian motion paths with uniform step
size, that is, each sample is of the form .BiT=K/KiD0, withK the sampling frequency.
The generated 800 samples are split 50-50 for training and testing. For each sample
Brownian motion path, we use a stochastic Runge-Kutta method [22] implemented
by the sdeint Python package [23] to approximate its corresponding solution
.YiT=K/

K
iD0 of (3.3), see Figure 6. The terminal value YT of each sample will then

be the output variable for the machine learning problem. For the input variable,
we will use the signature of either the lead-lag, time-joined or time-embedded
transformation of the discrete driving signal

�
BiT=K

�K
iD0

.
In [17], the authors compared the performance of the signature feature set

against the raw increment feature set for different sampling frequencies K. Our
approach is to compare the performance of the signature and log signature feature set
and the different embedding methods (lead-lag, time-joined and time-embedded).
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Figure 6: Sample paths of B and corresponding sample paths for Y generated with
K D 250.
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Figure 7: Linear regression results using regular signatures and log signatures for
various transformations and truncation levels.

We therefore only consider a fixed sampling frequency of K D 250. Furthermore,
we use a simple ordinary least squares (OLS) linear regression algorithm without
any regularization. As a simple benchmark, theR2 statistic of the trained model on
the testing set is used. The results for different truncation levels and transformations
are shown in Figure 7.

We see in the results that signatures and log signatures perform roughly the
same. This can be explained by the fact that coefficients in the signature are linear
combinations of the coefficients in the log signature. Also, the results for the
time-joined and time-embedded transformations are almost indistinguishable and
happen to be better than the results for the lead-lag transformation.
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3.3.2 Classification of PenDigits

In this classical example, we consider the classification of PenDigits from the paper
[24] and the UCI repository [25]. The data set has a total of 10992 samples of
handwritten digits which are split into 7494 samples for training and 3498 for
testing. Each handwritten digit is encoded as a piecewise-linear path in R2 with 16
points (Figure 8), this allows us to easily compute the signature without additional
transformations.

Figure 8: Handwritten digits corresponding to 8, 6 and 1 respectively.

In our numerical experiment, we compare the use of signature features of
different truncation levels. For classification, we use logistic regression with L2
regularization. The percentage of correctly classified digits in the testing set will
be used as a simple benchmark. These scores are shown graphically in Figure 9
for several signature truncation levels. Table 2 contains this data along with the
training times.

One can observe a peculiar spike in training time for the sixth truncation level.
This is likely due to specific implementation details (e.g., cache misses) of the
logistic regression algorithm we used.

The results show that we are able to achieve an error rate of less than 5%
by using truncation levels above 7. To put this into context, if the same logistic
regression algorithm is used without signatures, an error rate of 10% is achieved,
similar to level 5 signatures. While signatures with high truncation levels perform
better, it should be noted that the training time for vanilla logistic regression is
about ten times shorter than its level 5 signature counterpart. Nevertheless, we see
that signatures are effective features for this data set.
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Figure 9: Plot of pendigits classification scores by signature truncation level.

Table 2: Pendigits classification scores and training times.

Truncation level Score Training time (s) Coefficients in signature

2 0.7727 0.6492 3
3 0.7887 1.6003 7
4 0.8431 16.3615 15
5 0.8954 59.3687 31
6 0.9340 130.4544 63
7 0.9354 90.2182 127
8 0.9637 92.2106 255
9 0.9623 149.5867 511

10 0.9688 267.1747 1023
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In the literature of signatures, the same pendigits data set has appeared before
in [26] and [27]. In the latter text, the same numerical experiment is conducted with
a different classification algorithm (random forest ensemble method) and achieves
slightly lower scores than logistic regression, but with faster training times. In [26],
the authors considered kernel learning using signatures. In their benchmarks on the
pendigits data set, an error rate of 3% has been achieved at level 4 truncation using
support vector machine classification with a signature-modified Gaussian kernel.
The most successful application of signatures in character recognition is perhaps
[28]. This paper tackled (online) classification of handwritten Chinese characters.
Using a combination of convolutional neural networks and signature features, the
author was able to improve the state-of-the-art by a significant 2% in reduced error
rate. For a general overview of signatures in machine learning, we refer to [16].

3.4 Benchmarks on UCR TSC archive

In this section, we present several benchmarks of the signature method on the (uni-
variate) UCR Time Series Classification repository [4]. This repository currently
contains 128 classification datasets. The problems span many different domains,
including chemistry, astronomy and anthropology.

For our numerical experiment, we selected the 114 datasets for which the time
series do not have any missing values. The approach is similar to the two previous
examples. For each data set, we train a classifier on signature features using the
supplied training set. These features are computed by taking the signature of either
the lead-lag, time-joined or time-indexed transformation of the univariate series.
(We cannot use signatures on the untransformed univariate series, because the sig-
nature for one-dimensional paths is trivial, see Section 3.1.) Before classification,
the signature features are normalized by subtracting the mean and dividing the stan-
dard deviation column-wise. This prevents numerical issues during classification.
We then compute the accuracy score (i.e., percentage correctly classified labels) on
the supplied testing set. This is repeated for all signature truncation levels between
2 and 10. Three different classifiers have been used:

� logistic regression with L2 regularization,

� support vector machine classifier (SVC) with linear kernel and L2 regular-
ization,

� k-nearest neighbors classifier with k D 5 and Euclidean distance.

The classifications have been done using Python’s scikit-learn library [29].

Difference in classifiers We compare the results between the classifiers using
their respective maximum scores. That is, for each dataset, we take the maximum
achieved score on the testing set over all truncation levels and all transformations.
With this data, we can compare classifiers pairwise using a scatter plot, see Fig-
ure 10. For instance, if we have a point .x; y/ in the left figure, then x is the highest

42



Figure 10: Comparison between max scores for the three classifiers.

achieved score on this dataset using logistic regression and y is the highest achieved
score using linear SVC.

From this figure we see that SVC and logistic regression perform on par (with
the latter slightly better), while k-neighbors generally performs worse than both.

Difference in transformations In Figure 11, we compare the difference in per-
formance between the three transformations for the linear support vector classifier.
Similar to the previous figure, each point in the scatter plot corresponds to the score
on a single dataset. This number for a particular transformation is the maximum
score over all truncation levels.

In the figure we see that the time-indexed and time-joined transformation per-
form roughly equally well and outperform the lead-lag transformation most of the
time. For the other two classifiers, the results are similar.

Comparison between truncation levels Generally, when the truncation level is
increased, there are more coefficients, so the classifier has more available informa-
tion to work with. In practice, when there are too many features, classifiers can
be prone to overfitting. Although regularization partly addresses this problem by
introducing a penalty, it is not the case that a higher truncation level always leads
to better results.

In Figure 12, the frequency for which a particular truncation level achieves the
maximum score is plotted. (If two the maximum is achieved at two different levels,
it will count for the lowest level.) We see the results for the lead-lag transformation
are fairly uniform, which seems to imply that increasing the truncation level for this
transformation does not improve the performance. However, as shown in Figure 11,
the lead-lag transformation is a poor choice for most datasets, so the uniformity we
observe in the histogram could be caused by this incompatibility in the first place.
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Figure 11: Comparison of max scores between different transformations.

Figure 12: This histogram shows how often the highest score is achieved at a certain
truncation level.
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For the time-joined and time-indexed transformations, the pattern seems that
higher truncation levels lead to better performance, as the trend is generally increas-
ing and the highest level contains the most maximum observed scores. Even so, the
‘optimal’ truncation level still highly depends on the problem set at hand, and is
best uncovered by experimentally verifying multiple truncation levels. Of course,
a higher truncation level also comes at an (often significant) increase in training
time. In our benchmarks, the higher levels consume the substantial majority of the
total training time. For most datasets, the progression of training times does not
look different from those in Table 2 for the digit classification problem.

Comparison with other known benchmarks Our results are compared against
existing benchmarks supplied with the datasets. Currently, benchmarks are avail-
able for 85 datasets (a subset of our 114 selected datasets), and contain results for
37 different classification algorithms. Among these 37 classifiers are basic and
well-known algorithms such as vanilla k-nearest neighbors, as well as algorithms
specifically designed for time series classification, e.g., shapelet transforms [31];
but also ensembles of classifiers, such as Flat-COTE [30]. These ensembles train a
collection of classifiers and then select which classifier to use based on a pre-defined
voting scheme. The best-performing classifier in the dataset is the HIVE-COTE
ensemble [32]. It achieves the highest score in 21 of the 85 datasets.

In Figure 13, we compare the best results for signatures against the best results
in the benchmarks. That is, for each dataset, we take the maximum achieved
score over all transformation and truncation levels, and compare this against the
maximum score over all 37 classifiers in the benchmarks. We see that the existing
benchmark maximum outperforms signatures on almost every dataset. There are 6
datasets in which the signature achieves a higher score than the benchmarks, and 5
more in which the signature performs on par with the benchmarks. The 6 datasets
for which the signature performs better are highlighted in the table of full results in
Appendix D.

In Figure 14, logistic regression is compared against two of the best-performing
classifiers. The results seem to be in favor of the other two classifiers, although
there are a handful of datasets in which the signature performs better. This may
possibly suggest that there is an opportunity for signatures to improve current
ensemble classifiers. An interesting future project would therefore be to investigate
whether integrating signature features in the COTE ensemble would enhance its
performance.

Conclusion and future work In our numerical experiments on the UCR repos-
itory, we have attempted to shed light on a few questions regarding the use of
signatures in classification problems. Among other things, we have

� tested the use of different classifiers on signature features;
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Figure 13: Comparison of signatures against the top benchmark.

Figure 14: Comparison of signatures with logistic regression against HIVE-COTE
[32] and ST [31].
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� compared the effectiveness of the various transformation steps introduced in
Section 3.1, and

� analyzed the performance of different truncation levels.

Furthermore, a simple comparison with existing benchmarks is provided. These
show that signatures generally do not perform better than the current best classifiers.
Nevertheless, there are plenty datasets on which signatures achieve good results.

The analysis we presented here is far from comprehensive, however. There are
many aspects that can be improved. First, we note that we have only performed
each classification experiment once. For more robust results, each classification
should be done multiple times with different random seed values, so that we can
give a confidence interval for the scores we obtain. Using multiple runs also allows
us to use statistical tests to compare the effectiveness between different classifiers
and transformations, which is recommended by the creators of the UCR archive
[4].

Besides methodological issues, there are also a few practical omissions in our
current analysis. For instance, we have completely omitted the log signature in
our numerical experiments. Part of our reasoning for this lies in our previous
(mostly undocumented) experience with log signatures, which showed that the
performance of log signatures is often identical to that of regular signatures. The
first problem in Section 3.3 is an example of this, see Figure 7. Nevertheless, an
experimental verification of this is needed in a future work. Another omission
is that we have not performed any analysis on multivariate datasets. We have
disregarded the multivariate UEA archive [33] in our experiments partly due to a
lack of computational resources. By investing more in computational resources
in a future project, we hope to address these two shortcomings together with the
robustness issue described in the first point.

Finally, there are a few fundamental questions which we have not explored
in the current work. For instance, we have not attempted to investigate what
types of problems are best suited for signature features. It would be beneficial
for practitioners to have a set of heuristics that could describe which problems
or patterns would be compatible with signatures. A more careful analysis of the
individual datasets in a future project would help improve our understanding in this
area.
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A Paths of Bounded Variation

An important class of functions Œ0; T � ! Rd is the set of continuous functions
of bounded variation. Roughly speaking, these functions are paths that have finite
length. We devote this appendix section to summarize themost important properties
of these functions.

Definition A1. Consider the interval Œ0; T �. A partition P of Œ0; T � is a set of
points

f 0 D t0 < t1 < � � � < tn�1 < tn D T g :

The mesh size of P , denoted by jP j, is the largest difference between subsequent
points in the partition:

jP j WD max
0�i�n�1

jtiC1 � ti j:

The set of all partitions of Œ0; T � is denoted by P .Œ0; T �/. ˛

Definition A2. Let X W Œ0; T � ! Rd be a function. The total variation or 1-
variation of X is defined as the following supremum over all partitions of Œ0; T �:

kXk1-var WD sup
P2P .Œ0;T �/

pn�1X
iD0

ˇ̌
XtiC1 �Xti

ˇ̌
:

We say that X is of bounded variation if X has finite total variation. The space of
all continuous functions Œ0; T � ! Rd with bounded variation will be denoted by
V.Œ0; T �;Rd /. ˛

One can easily show that the total variation is nonnegative, subadditive and
homogeneous; hence a semi-norm on V.Œ0; T �;Rd /.

ExampleA3. SupposeX W Œ0; T �! Rd is piecewise-linear, then the total variation
of X is the sum of the length of each linear piece. ˛

Proposition A4. Suppose X 2 V.Œ0; T �;Rd / is also continuously differentiable.
Then

kXk1-var D

Z T

0

j PXsj ds;

in which j � j is the Euclidean norm on Rd .
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B Riemann-Stieltjes Integral

In Riemann integration, one integrates a function f W R ! R with respect to the
the independent variable, Z b

a

f .t/ dt:

The Riemann-Stieltjes integral is a generalization of the Riemann integral. It allows
one to integrate functions with respect to other functions,Z b

a

f .t/ d˛.t/:

Riemann integration corresponds to the special case when ˛ is the identity map.
In this section we present a brief overview of this type of integration. We

aim to highlight the important properties that are needed in our main exposition.
As such, proofs of these results are omitted. The approach taken here is for
one-dimensional integrands and integrators. The formulations are similar to [9,
Chapter 2]. Additionally, we have included references to proofs that may be hard
to find in the literature.

Definition B1. LetX; Y W Œ0; T �! R be two one-dimensional paths. Let .Pn/n2N
be a sequence of partitions

Pn D
˚
0 D tn0 < � � � < t

n
pn
D T

	
with the property that the mesh size jPnj ! 0 as n ! 1. We say that the
Riemann-Stieltjes integral of Y against X exists if there is some I 2 R such that

I D lim
n!1

pn�1X
iD0

Y�n
i

�
XtiC1 �Xti

�
;

for any choice of �ni 2
�
tni ; t

n
iC1

�
. We call I the Riemann-Stieltjes integral of Y

against X and write Z T

0

YsdXs WD I: ˛

Theorem B2 ([9, Prop 2.2]). For any two elements of X; Y 2 V.Œ0; T �;R/ and
t 2 Œ0; T �, the Riemann-Stieltjes integralZ t

0

Ys dXs

exists. Moreover, we have the following properties,

(i) Z T

0

Ys dXs D

Z t

0

Ys dXs C

Z T

t

Ys dXsI
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(ii) the integral pairing V.Œ0; T �;R/ � V.Œ0; T �;R/! R

.X; Y / 7!

Z t

0

Ys dXs

is bilinear;

(iii) if X is continuously differentiable, thenZ t

0

Ys dXs D

Z t

0

Ys PXs ds:

It is not strictly necessary for the integrand Y to be in V.Œ0; T �;R/, being only
continuous is sufficient. For the sake of simplicity, we formulate these results for
Y 2 V.Œ0; T �;R/ since this covers all cases we need.

Proposition B3 (Substitution, [34, Thm 12.11]). Let X; Y W Œa; b�! R be contin-
uous paths of bounded variation and let � W Œc; d �! Œa; b� be a nondecreasing or
nonincreasing surjection. ThenZ b

a

Y�.s/ dX�.s/ D

Z d

c

Ys dXs:

Proposition B4 (Integration by parts, [34, Thm 12.12]). Let X; Y W Œ0; T �! R be
continuous paths of bounded variation. Then

XtYt D X0Y0 C

Z t

0

Xs dYs C

Z t

0

Ys dXs:

Proposition B5 (Associativity, [34, p. 328]). Let X; Y;Z 2 V.Œ0; T �;R/, then the
integral map Œ0; T �! R Z �

0

Ys dXs WD t 7!

Z t

0

Ys dXs

is again continuous and of bounded variation, hence an element of V.Œ0; T �;R/.
Furthermore, Z t

0

Zs d

�Z s

0

Yu dXu

�
D

Z t

0

YsZs dXs:

Proposition B6 (Uniform convergence, [9, Prop 2.7]). Let .Xn/n2N and .Yn/n2N
be two sequences inV.Œ0; T �;Rd /. Assume that both sequences converge uniformly
to X; Y 2 V.Œ0; T �;Rd / respectively, and that supn2NkXnk1-var <1. ThenZ �

0

Yn.s/ dXn.s/ �!

Z �
0

Ys dXs uniformly on Œ0; T � as n!1:
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C Lie Groups and Lie Algebras

The theory of Lie groups and Lie algebras is heavily used in Section 2.6 to study a
compact representation of signatures. Although most of this theory is elementary
and widely known, we found that most of the relevant pieces are rather scattered
across the literature. The goal of this section is therefore to present a concise
overview of the theory that is needed for Section 2.6.

Definition C1 (Lie group). A Lie group .G; �/ is a smooth manifold that is also a
group (in the algebraic sense), for which the multiplication � and inversion �1 are
smooth maps. ˛

Definition C2 (Lie algebra). A Lie algebra g is a vector space equipped with a
bracket operation Œ�; �� W g � g! g that is bilinear, antisymmetric and satisfies the
Jacobi identity:

Œa; Œb; c��C Œb; Œc; a��C Œc; Œa; b�� D 0;

for all a; b; c 2 g. ˛

Let X.G/ be the set of all smooth vector fields on G. On this space there is a
natural bracket operation that associates to any two vector fields X; Y 2 X.G/ a
third vector field ŒX; Y � 2 X.G/, called the Lie bracket of X and Y .

Any element g 2 G defines a map

Lg W G ! G; h 7! gh;

which is called left translation. Using the left translation, one can turn any vector
v in the tangent space at the identity TeG into a vector field on G,

TeG ! X.G/; v 7! Ev; Evg D .dLg/e.v/ 2 TgG:

There is the following relationship between Lie groups and Lie algebras.

Proposition C3. Let G be a Lie group and let g be the tangent space of G at the
identity. Then g endowed with the bracket operation

Œv; w� WD ŒEv; Ew�

becomes a finite dimensional Lie algebra, called the canonical Lie algebra of the
Lie group G.

An important map from the Lie algebra to the Lie group is the exponential map.

Definition C4. Let G be a Lie group and let g be its Lie algebra. The exponential
map is defined as

exp W g! G; v 7! 
.1/

where 
 W R! G is the unique integral curve that satisfies

P
.t/ D Ev
.t/; 
.0/ D e:

˛
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Theorem C5 (Campell-Baker-Hausdorff, [35, Prop 9.2.32]). Let G be a Lie group
and g its canonical Lie algebra. Then there is a neighborhood U � g of the
identity element e, such that for any a; b 2 U , there exists an element c 2 g such
that exp.a/ exp.b/ D exp.c/. Furthermore, c is given by the following converging
series of right-brackets:

c D

1X
nD1

.�1/n�1

n

X
piCqi>0

Œap1 ; bq1 ; : : : ; apn ; bqn ��Pn
iD1 pi C qi

�Qn
iD1 pi Šqi Š

;

in whichap means havinga appearp times in succession, e.g., Œa2; b� D Œa; a; b� D
Œa; Œa; b��, see (C.1).

C.1 Structure theory of Lie algebras

We turn to an algebraic view of Lie algebras.

Definition C6. A Lie algebra homomorphism f between two Lie algebras g and
h is a linear map that preserves brackets,

f .Œa; b�/ D Œf .a/; f .b/�;

for all a; b 2 g. ˛

An important object is the free Lie algebra, which one can think of as a Lie
algebra that has not been imposed any restrictions, besides for its bracket to satisfy
the Jacobi identity.

Definition C7. Let X be a set. A Lie algebra g is said to be free over X if

(i) there is an inclusion map � W X ! g; and
(ii) for every Lie algebra h and �0 W X ! h, there exists exactly one Lie algebra

homomorphism � W g! h such that the diagram below commutes.

X g

h
�0

�

� ˛

One can quickly verify that, up to Lie algebra homomorphisms, there can only
be at most one free Lie algebra over a certain set X .

The free Lie algebra can also be viewed as the set of all formal brackets between
elements of X . For instance, if X D fa; bg, then the free Lie algebra over X is the
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linear span of elements

a; b

Œa; b�

Œa; Œa; b��; Œb; Œa; b��

Œa; Œa; Œa; b���; Œa; Œb; Œa; b���; ŒŒa; b�; Œa; b��; : : :

:::

The list continues indefinitely, spanning nested brackets of all degrees. One can
show that free Lie algebras are necessarily infinite dimensional vector spaces. Note
also the appearance of ‘mixed’ brackets such as ŒŒa; b�; Œa; b��. In Proposition C10
below, it is shown that it is sufficient to only consider ‘right brackets’ such as
Œa; Œa; b�� and Œa; Œa; Œa; b���.

The following theorem gives a concrete construction of a free Lie algebra over
a set.

Theorem C8 (Construction free Lie algebra). Let X be a set and let V be the free
vector space over X (i.e., V is a vector space which has basis X ). Let T .V / be the
tensor algebra over V ,

T .V / D

1M
nD0

V ˝n;

endowed with bracket
Œa; b� WD a˝ b � b ˝ a:

Then the smallest Lie subalgebra L.V / of T .V / that contains V is a free Lie
algebra over X .

Proof. The theorem is usually derived from the Poincaré-Birkhoff-Witt theorem,
see [36].

RemarkC9. The reader may note the similarity between the definition of the tensor
algebra T .V / and T ..V //, the extended tensor algebra over V (Definition 1). The
difference is the following: if a D .a0; a1; : : : / 2 T .V / then only finitely many an
are nonzero; while T ..V // does not impose this condition. In a certain sense, one
can view T ..V // as a completion of T .V / under a suitable metric. Analogously,
T .V / is to T ..V // as the polynomial ring RŒX� is to the formal power series
RŒŒX��. ˛

The next proposition gives a useful expression for the smallest Lie subalge-
bra that contains a set. Before this, we introduce additional notation. We will
write Œx1; : : : ; xn�, for the iterated right-bracketing of n elements, i.e., we define
recursively

Œx1� WD x1; Œx1; : : : ; xnC1� WD Œx1; Œx2; : : : ; xn�� (C.1)
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If V and W are subsets of g, then ŒV;W � denotes the linear subspace

ŒV;W � D span f Œv; w� j v 2 V; w 2 W g :

Proposition C10. Let g be a Lie algebra and V � g a linear subspace. Then the
smallest Lie subalgebra h of g that contains V can be written as the sum of vector
subspaces

h D V C ŒV; V �C ŒV; V; V �C � � � D L1 C L2 C : : : :

Proof. The inclusion � is clear. Indeed, any element on the right is a finite linear
combination of nested brackets of vectors in V , which must lie in h because this is
a Lie algebra that contains V .

For the reverse inclusion�, we show that the right-hand side is a Lie subalgebra
of g that contains V . Then h, being the smallest such Lie subalgebra, must be
contained in the right-hand side. We only need to show that the right-hand side is
closed under the the bracket operation. For this, it is sufficient to prove that

ŒLn; Lk� � LnCk; for all n; k � 0:

We prove by induction to n with fixed k. The base case n D 0 is immediate by
definition, for all k. Suppose that the statement holds for all k and a particular n,
then for nC 1 we have

ŒLnC1; Lk� D ŒŒL1; Ln�; Lk� D ŒLk; ŒL1; Ln��

D �ŒL1; ŒLn; Lk�� � ŒLn; ŒLk; L1��

� ŒL1; LnCk�C ŒLn; LkC1�

� LnCkC1:

The second line follows from Jacobi’s identity and the induction step is applied in
the third. This completes the proof.

Definition C11 (Nilpotency). A Lie algebra g is called nilpotent if there exists an
integer n � 1 such that the nth iterated right brackets of g is zero:

Œg;g; : : : ;g�„ ƒ‚ …
nC1 times

D 0:

The smallest integer n such that this holds is called the nilpotency degree of g. ˛

Definition C12. Let L.V / be the free Lie algebra over a vector space V . For any
n � 1, we define the ideal In D f l D .l1; l2; : : : / 2 L.V / j l1 D � � � D ln D 0 g.
The quotient Ln.V / D L.V /=In is called the free n-step nilpotent Lie algebra
over V . ˛
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D Full Benchmark Results

The following table contains the results of our numerical experiments in Section 3.4.
In the experiments, we performed classifcation on nine different truncation levels
for each of the transformations introduced in Section 3.1. In this table we do not
show these results, but instead show the maximum over the truncation levels for
each transformation.
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