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1 Introduction

Obstacle problems are a special class of variational problems in the field of
the calculus of variations. This field is concerned with minimizing functionals

F : X → R

on some infinite-dimensional function space X. In other words, we need to
find an element u0 ∈ X, called a minimizer, such that F(u0) = minu∈X F(u).
Such problems often arise in physics, where the functional F represents some
physical quantity, like time or energy, which needs to be minimized. One of
the most famous variational problems is the Brachistochrone problem, posed
by Bernoulli in 1696, which aims to find a curve connecting two points (0, 0)
and (1,−a) for a > 0 such that the time it takes for an object to slide along
this curve by gravity is minimal among all curves connecting the two points.
This curve is called the Brachistochrone and can be found by minimizing
the functional

F(u) =

∫ 1

0

√
1 + u′(x)2

−u(x)
dx,

among the suitable u : [0, 1] → R that satisfy u(0) = 0 and u(1) = −a, see
[6, p.6]. Another example is the minimization of the Dirichlet functional

D(u) =

∫
Ω

|∇u(x)|2

2
dx

for a bounded domain Ω ⊂ R2. We can interpret this functional as the lin-
earized elastic energy of u, where we consider u to be an elastic membrane.
Indeed, the elastic energy is proportional to the stretching of the membrane
and hence proportional to the area of the membrane. By approximating
the integrand of the area integral via a Taylor approximation we obtain the
Dirichlet functional. The principle of least potential energy now tells us that
the minimizer of the Dirichlet functional among those suitable u : Ω → R
with u = g on ∂Ω can be used to model the equilibrium position of an elastic
membrane fixed at the boundary at height g, see Section 6. The Dirichlet
functional will play a central role in the classical obstacle problem, see (1.1).

Similarly to the above two examples most of the functionals that the
calculus of variations aims to minimize can be given by the following form

F(u) =

∫
Ω
f(x, u(x),∇u(x)) dx,

for a domain Ω ⊂ Rn and a function f : Ω × R × Rn → R. The set of
functions over which we minimize is usually given by suitable u : Ω → R
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which satisfy a boundary condition u = g on ∂Ω. The first systematic way
for solving these problems was developed by Euler and Lagrange around the
1750s. Lagrange showed that any minimizer must satisfy a certain (partial)
differential equation, now named the Euler-Lagrange equation, which can be
understood as setting the ’derivative’ of F to be zero. When Euler learned
about this idea from Lagrange he immediatly adopted it and later came up
with the name ’Calculus of variations’, see [22].

Obstacle problems are similar to the above minimization problems with
the addition of an obstacle function ψ : Ω → R. The idea is that we only
want to minimize the functional over those functions that lie above the given
obstacle ψ. The main example is the classical obstacle problem which reads

Minimize D(u) =

∫
Ω

|∇u(x)|2

2
dx over all u ∈ Kψ, (1.1)

where Ω ⊂ Rn is a bounded domain and Kψ is the set of admissible functions

Kψ = {u : Ω→ R ’suitable’ | u ≥ ψ and u = g on ∂Ω}.

For n = 2 we again have the interpretation of the Dirichlet functional as a lin-
earized elastic energy. Hence the solution of this problem can be interpreted
as an elastic membrane fixed at the boundary at height g and constrained to
lie above the obstacle. In this thesis we also consider more general obstacle
problems with different functionals than the Dirichlet functional.

A first question regarding obstacle problems is to ask whether there ex-
ists a unique minimizer. This can be positively answered by using the direct
method in the calculus of variations, which is based on the simple idea that
lower semicontinuous functions attain their minimum on compact sets. This
method was developed after Hilbert had posed his 23 problems around 1900
of which the 20th asks whether the minimization problems in the calcu-
lus of variations always have solutions. This seems like a natural question,
but Weierstrass was the first in 1870 to show an example of a variational
problem which has no minimizer [25]. Before this example by Weierstrass
it was assumed that variational problems always have minimizers. A sim-
ple example of a variational problem without a minimizer different from the
one by Weierstrass is given in [9, p.172]. The direct method in its current
form was mainly developed by Tonelli around 1920, where he proved im-
portant semicontinuity results about integral functionals [19]. To apply the
direct method we need to introduce Sobolev spaces, which generalize the
well-known Ck spaces. The reason for this is that the Ck spaces do not have
the compactness properties needed for the direct method unlike the Sobolev
spaces. Therefore we can show under certain conditions on the functional

2



that there exists a minimizer in a Sobolev space. Uniqueness of the mini-
mizer can simply be proven by requiring strict convexity of the functional.

Because these Sobolev functions can be ill-behaved ([2, §5.2 Example 4])
a natural next step is to determine how regular the solution is, i.e. how
smooth it is. This is quite a delicate problem so we only carry this out for
the classical obstacle problem. By using the variational inequality for the
Dirichlet integral, which can be seen as an analogue of the Euler-Lagrange
equation for the classical obstacle problem, we show that the solution of the
classical obstacle problem is superharmonic on Ω and harmonic on the set
where it lies strictly above the obstacle. This enables us to establish the
optimal regularity result which was first proven by Jens Frehse in 1972 [20].
It states that the solution of the classical obstacle problem lies in C1,1

loc (Ω)
if the obstacle lies in C1,1(Ω). This is the most important theoretical result
in this thesis. The proof splits the domain up in the coincidence set, where
the solution and obstacle coincide, and the noncoincidence set, where the
solution lies above the obstacle. In both these sets individually the solution
is C1,1 and it remains to show that the same holds around the free boundary
(see next paragraph), which is the interface between the coincidence and
noncoincidence set. This is done by using estimates of harmonic, subhar-
monic and superharmonic functions.

Obstacle problems are also free boundary problems, which can roughly
be described as partial differential equations on a domain for which part of
the boundary is unknown. Knowledge about the free boundary can be very
useful for solving these problems and Caffarelli spurred the recent interest
in regularity of free boundaries by his 1998 paper ’The Obstacle Problem
Revisited’ [3], in which he describes the structure of the free boundary for
the classical obstacle problem. We mention some of the results about the
free boundary of the classical obstacle problem.

The classical obstacle problem arises in many applications. We discuss
three of them in this thesis. The first is that of modelling an elastic mem-
brane above an obstacle, which we already discussed. This is a very natural
interpretation of the obstacle problem. The second application is the dam
problem which aims to describe the fluid flow through a porous dam. In
this case there is no obstacle, but by using the Baiocchi transformation this
problem can be turned into the classical obstacle problem such that the free
boundary corresponds to the water level inside the dam. We implemented a
numerical method to solve the obstacle problem and have used this to carry
out simulations of the dam problem. Lastly, the classical obstacle problem
can be used in financial mathematics to design an optimal stopping time.
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An optimal stopping time maximizes the expected payoff of a stochastic
process. It turns out that by solving the classical obstacle problem with the
obstacle function chosen to be the payoff function, we can determine that
the optimal stopping time for an n-dimensional Brownian motion is the first
time at which the Brownian motion does not lie in the noncoincidence set.

The structure of the text is as follows. In Section 2 we discuss the neces-
sary prerequisites to start our study of variational obstacle problems. These
prerequisites consist of basic material on analysis, functional analysis and
measure theory which is presented for the sake of self-containment. Addi-
tionally, we state some more advanced results and introduce the notion of
Sobolev spaces which is essential in the direct method of the calculus of vari-
ations. In the next section we treat the problem of existence and uniqueness
using the direct method, which can be applied to minimization problems
with or without obstacles. In Section 4 we turn to regularity theory without
obstacles. We derive the Euler-Lagrange equation which is necessarily satis-
fied by the minimizer. Then we go in depth into the regularity of harmonic
functions, which are intimately related to the Dirichlet functional through
the Euler-Lagrange equation. We also discuss properties of sub- and su-
perharmonic functions which arise when considering the classical obstacle
problem. With the general theory from Section 3 and 4 we can in Section 5
effectively go into the study of obstacle problems. From Section 2 existence
and uniqueness immediately follows and we derive the variational inequal-
ities as an analogue to the Euler-Lagrange equation. In the specific case
of the classical obstacle problem the variational inequality and the results
about (sub/super)harmonic functions enable us to prove the remarkable C1,1

optimal regularity result. After this we briefly touch upon the regularity for
more general obstacle problems and considerations about the free boundary.
In the last section we discuss the three applications of the classical obstacle
problem elaborated in the above paragraph.
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2 Preliminaries

In this section we discuss the prerequisite results needed throughout this the-
sis. None of the proofs are necessary in order to understand the main part of
the thesis and they can safely be skipped. The section about Sobolev spaces
in particular contains more advanced results. Extra background information
on any of the topics can be found in the referred sources.

2.1 Analysis

We are working on Rn and denote the Euclidean norm for x ∈ Rn by

|x| =

(
n∑
i=1

x2
i

)1/2

.

We do not make a distinction between the (total) derivative of a function and
its gradient or Jacobian matrix. Thus let Ω ⊂ Rn be open and u : Ω → R
differentiable then the gradient of u is defined as the vector

∇u(x) = (Dx1u(x), . . . , Dxnu(x))T ,

where Dxi denotes the partial derivative with respect to xi. Similarly if u is
twice differentiable then we define its second derivative as the matrix

D2u(x) = (Dxixju(x))1≤i,j≤n.

For more about differentiation and submanifolds of Rn see the book [14].
Next is the Gauss-Green theorem which we use frequently. We assume that
Ω is now also bounded and has a C1-boundary, i.e. its boundary is a C1-
manifold.

Theorem 2.1 (Gauss-Green, [15, Theorem 7.6.1]). Let u ∈ C1(Ω) then we
have for i = 1, . . . n ∫

Ω
Dxiu dx =

∫
∂Ω
uνi dS,

where ν = (ν1, . . . , νn) is an outward unit normal to ∂Ω.

From this theorem we can obtain a generalized integration by parts for-
mula.

Theorem 2.2 (Integration by parts, [15, Corollary 7.6.2]). Let u, v ∈ C1(Ω)
then we have for i = 1, . . . n that∫

Ω
Dxiuv dx = −

∫
Ω
uDxiv dx+

∫
∂Ω
uvνi dS.

For more about integration over manifolds see [15].

5



2.2 Functional Analysis

Most of the results in this section can be found in [17]. We use the notationX
for a normed vector space. Recall that a Banach space is a complete normed
vector space and a Hilbert space is a complete inner product space. An
important notion in functional analysis is that of a bounded linear functional,
which are elements of the dual space.

Definition 2.3. The dual space X ′ of a normed vector space X is the set of
continuous linear functionals on X. Explicitly, these are linear maps f from
X to R which are continuous or equivalently satisfy

sup
x∈X,‖x‖≤1

|f(x)| <∞.

The space X ′ becomes a normed vector space when equipped with the norm

‖f‖′ = sup
x∈X,‖x‖≤1

|f(x)|.

Since X ′ is again a normed vector space we can subsequently take its
dual as well. We then get the bidual X ′′. As the name dual suggests we
expect the bidual to be related to X itself. This relation is exhibited by the
canonical map.

Definition 2.4. The canonical map IX : X → X ′′ is defined for x ∈ X as

(IXx) : X ′ → R, f 7→ f(x).

It turns out that IX is a linear isometry, [17, Lemma 5.37]. However,
it need not be surjective, which makes X and X ′′ canonically isometrically
isomorphic. Therefore we have a special name for spaces that do have this
property.

Definition 2.5. A normed space X is called reflexive if the canonical map
IX : X → X ′′ is surjective.

Apart from functionals we also have linear maps between vector spaces.
We can define the following which is used to prove that Lp is reflexive.

Definition 2.6 (Dual of a map). Let T : X → Y be a (bounded) linear
map between normed vector spaces. Then its dual is given by

T ′ : Y ′ → X ′, T ′(g)(x) = g(Tx), for g ∈ Y ′ and x ∈ X.

Furthermore, if T is an isomorphism then (T−1)′ = (T ′)−1.
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In our proof of existence of minimizers we need some kind of compact-
ness on an infinite-dimensional vector space X. However, for every infinite-
dimensional vector space the unit ballB = {x ∈ X | ‖x‖ ≤ 1} is not compact.
Thus we cannot say that bounded sequences have convergent subsequences.
We therefore need to introduce a weaker notion of convergence.

Definition 2.7. A sequence {xi} in X is said to converge weakly to x ∈ X,
denoted as xi ⇀ x, if for every f ∈ X ′ we have

lim
i→∞

f(xi) = f(x),

as a limit in R.

Note that this definition is weaker than converging in the norm as any f ∈
X ′ is continuous by definition. Now we have a nice analogue to compactness
in infinite-dimensional spaces as well.

Theorem 2.8 ([17, Theorem 5.73]). If X is a reflexive Banach space then
any bounded sequence {xi} in X has a weakly convergent subsequence con-
verging to some x ∈ X.

We also have the following which states that closed and convex sets are
weakly sequentially closed.

Theorem 2.9 ([17, Lemma 5.70 (d)]). Let X be a Banach space and M ⊂ X
a closed and convex subset. If a sequence {xi} in M converges weakly to some
x ∈ X then x must lie in M .

A simple consequence of this is the following statement which allows us
to go from weak to strong convergence.

Theorem 2.10 (Mazur’s Lemma). Let {xi} be a sequence in a Banach space
X converging weakly to x ∈ X. Then there exists a function K : N→ N and
scalars λ(i)k ∈ [0, 1] for k = i, . . . ,K(i) such that the convex combinations

yi =

K(i)∑
k=i

λ(i)kxk with

K(i)∑
k=i

λ(i)k = 1

converge to x strongly, i.e. in the norm.

Proof. We denote by coA the convex hull of a set A, which is the smallest
convex set containing A. By continuity of scalar multiplication and addition
in a normed vector space we find that the closure of a convex set is still
convex. In particular the sets

Ci = co{xj | j ≥ i}
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are closed and convex. We conclude by Theorem 2.9 above that the sets Ci
are weakly sequentially closed and hence x ∈ Ci for all i ∈ N. From this we
see that

0 = d(x, co{xj | i ≤ j ≤ ∞}) = lim
K→∞

d(x, co{xj | i ≤ j ≤ K}).

For any i we can now choose K = K(i) large enough and a yi ∈ co{xj | i ≤
j ≤ K(i)} with ‖x− yi‖ ≤ 1/i. This proves that yi is a convex combination
as stated and that the sequence {yi} converges to x in the norm.

2.3 Measure Theory

For an introduction on measure theory and Lebesgue integration see [16].
First we discuss two theorems about interchanging limits with the integral
which are exclusive to Lebesgue integration. We restrict ourselves to inte-
gration over subsets of Rn for simplicity. Thus we set Ω to be an open subset
of Rn. By almost everywhere or a.e. we mean that something holds up to a
set of measure zero.

Theorem 2.11 (Fatou’s Lemma, [16, Theorem 2.4.4]). Let {fi} a be a
sequence of nonnegative valued Borel measurable functions on Ω. Then∫

Ω
lim inf
i→∞

fi dx ≤ lim inf
i→∞

∫
Ω
fi dx.

More important is the following theorem which is extremely useful and
knows no analogue in Riemann integration.

Theorem 2.12 (Lebesgue’s Dominated Convergence, [16, Theorem 2.4.5]).
Let {fi} be a sequence of Borel measurable functions on Ω converging point-
wise (a.e.) to f . Assume furthermore that there exists an integrable function
g on Ω such that |fi| ≤ g (a.e.) for all i ∈ N. Then

lim
i→∞

∫
Ω
fi dx =

∫
Ω
f dx.

Our next aim is to describe Lp spaces which are the basis of the function
spaces that we use. To formally define Lp spaces we first introduce for an
open set Ω ⊂ Rn the following.

Definition 2.13. For p ∈ [0, 1] the vector space of p-integrable functions is
defined as

Lp(Ω) = {f : Ω→ R, Borel measurable | |f |p <∞},
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where |.|p is the seminorm given by

|f |p =


∫

Ω
|f |p dx if p <∞,

inf{C ∈ R | |f | ≤ C a.e. in Ω} if p =∞.

To get a normed space from a seminormed space we can take the quotient
by those elements whose seminorm is zero. These are exactly the functions
which are zero almost everywhere and hence we obtain that elements of the
quotient space are equivalence classes of functions which are equal almost
everywhere. From this construction we obtain the well-known Lp spaces.

Definition 2.14. For p ∈ [0, 1] we define Lp(Ω) as

Lp(Ω) = Lp(Ω)/{f = 0 a.e. in Ω}.

It comes equipped with the norm ‖f̄‖p = |f |p, where f is any representative

of f̄ .

Although elements of Lp are not functions we will regard them as such
by implicitly taking a representative. From now on we therefore just write
f for an element of Lp(Ω). We have the following slight adaptation to Lp

spaces.

Definition 2.15. For an open set Ω we define Lploc(Ω) as the space of mea-
surable function on Ω, which lie in Lp(U) for every open and bounded set U
such that U ⊂ Ω.

A useful fact about Lp is that it is complete.

Theorem 2.16 (Lp Banach space, [16, Theorem 3.4.1]). For any p ∈ [0, 1]
the space Lp(Ω) is a Banach space.

A ubiquitous inequality for Lp spaces is Hölder’s inequality which involves
the conjugate exponent p′ of p. This is given by p′ = p/(p − 1) with the
convention that 1/0 =∞ and ∞/∞ = 1.

Theorem 2.17 (Hölder’s inequality, [16, Proposition 3.3.2]). Let f ∈ Lp(Ω)
and g ∈ Lp′(Ω) then we have that their product fg is an element of L1(Ω)
and we have the inequality

‖fg‖1 ≤ ‖f‖p‖g‖p′ .

The above theorem already displays the duality between Lp and Lp
′
, but

this goes further for 1 < p <∞.
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Theorem 2.18 (Dual of Lp for 1 < p <∞, [16, Theorem 4.5.1]). The map
Tp′ : Lp

′
(Ω)→ (Lp(Ω))′ defined by

Tp′(g)(f) =

∫
Ω
fg dx, for f ∈ Lp(Ω) and g ∈ Lp′(Ω),

is an isometric isomorphism.

Note that the continuity of Tp′ relies on Hölder’s inequality. We can now
state the result which turns out to be crucial for our existence result.

Theorem 2.19 (Lp reflexive for 1 < p < ∞). The Banach space Lp(Ω) is
reflexive for 1 < p <∞.

Proof. This follows quickly from Theorem 2.18. We have that the map
Tp′ goes from Lp

′
(Ω) to (Lp(Ω))′ and hence its dual goes from (Lp(Ω))′′ to

(Lp
′
(Ω))′. Therefore the inverse of this map, which is given by (T−1

p′ )′ goes

from (Lp
′
(Ω))′ to (Lp(Ω))′′. It is now a convoluted but straightforward check

to show that the canonical map ILp(Ω) is given by the composition (T−1
p′ )′◦Tp.

This is a composition of bijective maps by Theorem 2.18 and hence ILp(Ω)

is surjective as desired.

Since we use the convergence in Lp it is useful to see how it relates to
pointwise convergence. This is the following result.

Theorem 2.20 ([16, Proposition 3.1.3 and 3.1.5]). Let {fi} be a sequence
of functions converging to f in Lp(Ω). Then there is a subsequence {fik}
which converges to f pointwise almost everywhere.

We often need a way to approximate functions by smooth functions. This
can be done with mollifiers, which are smooth functions close to the Dirac
delta distribution. As convolution with the Dirac delta does not change
the function we expect that convolution with a mollifier yields a smooth
approximation of the function. Firstly, we need a bump function.

Definition 2.21. The bump function δ ∈ C∞c (Rn) is defined as

δ(x) =

{
ce

1

|x|2−1 , if |x| < 1,

0 if |x| ≥ 1,

where c is a suitably chosen constant to obtain
∫
Rn δ dx = 1.

We have that this bump function is radially symmetric, nonnegative and
has support inside B1(0). Now we can use scaling to let δ approximate the
Dirac delta. We do this by defining for ε > 0 the standard mollifier as
δε(x) := 1

εn δ(x/ε). We see that δε still is nonnegative, radially symmetric,

has support inside Bε(0) and satisfies
∫
Rn δε dx = 1. We can now define the

following.
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Definition 2.22. Let u ∈ L1
loc(Ω) then we define for ε > 0 the mollification

fε(x) =

∫
Ω
δε(x− y)u(y) dy or uε = δε ∗ u

which is well-defined for x ∈ Ωε := {x ∈ Ω | d(x, ∂Ω) > ε}.

We can now state the following extremely practical properties about
mollification.

Theorem 2.23 ([5, Theorem 4.1]).

1. We have uε ∈ C∞(Ωε) for all ε > 0.

2. If u is continuous then uε converges uniformly to u as ε goes to zero
on compact subsets of Ω.

3. If u ∈ Lploc(Ω) for 1 ≤ p <∞ then uε → u in Lploc(Ω) as ε goes to zero.

4. If u ∈ C1(Ω) then Dxiuε = δε ∗Dxiu on Ωε.

Lastly, there is a slightly more nontrivial theorem that we require. In
some sense it is a generalization of the fundamental theorem of calculus for
Lebesgue integration in Rn. However, we only need a certain part of it which
we can actually prove ourselves. To state this result we first define

−
∫
Br(x)

u(y) dy :=
1

|Br|

∫
Br(x)

u(y) dy,

which represents an average integral. If we let r go to zero then we are taking
the average over smaller and smaller balls which we expect to converge to
u(x). Indeed, it is easy to see that this is the case for continuous functions.
However, the result also holds almost everywhere for just integrable func-
tions. Those points x ∈ Ω for which the average converges to u(x) are called
the Lebesgue points of u. Hence the theorem states that almost every point
in the domain is a Lebesgue point for a locally integrable function.

Theorem 2.24. Let u ∈ L1
loc(Ω) and suppose that

lim
r→0
−
∫
Br(x)

u(y) dy

exists for all x ∈ Ω (possibly ±∞). Then it holds for almost every x ∈ Ω
that

u(x) = lim
r→0

∫
Br(x)

u(y) dy.

11



Proof. Since this is local we assume for simplicity that u ∈ L1(Ω) and by
extending it to zero outside Ω we find u ∈ L1(Rn). Define the function

vr(x) = −
∫
Br(x)

u(y) dy.

We show that vr converges to u in L1 as r goes to zero. Hence a subsequence
of vr converges pointwise a.e. to u, but as the pointwise limit of vr already
exists we find that vr converges to u a.e. as desired. Because vr can be
seen as a convolution of u with the characteristic function 1

|Br|χBr(0) the L1-

convergence follows from the general case [23, Theorem 3.22]. In our case
we have∫

Rn
|u(x)− vr(x)| dx =

∫
Rn
|u(x)−−

∫
Br(x)

u(y) dy| dx

≤ 1

|Br|

∫
Rn

∫
Br(x)

|u(x)− u(y)| dy dx

=
1

|Br|

∫
Br(0)

∫
Rn
|u(x)− u(x− z)| dx dz

=
1

|Br|

∫
Br(0)

‖u− τzu‖1 dz

≤ sup
|z|≤r
‖u− τzu‖1,

where τzu(x) := u(x − z) is the function u translated by the vector z. The
third line follows by interchanging the order of integration (Fubini’s theorem)
and setting z = x − y. As translation is a continuous operator on L1, [23,
Theorem 3.6], we find that

lim
z→0
‖u− τzu‖1 = 0.

This shows that vr converges to u in L1 thereby proving the result.

The above theorem is a variant of Lebesgue’s differentiation theorem,
which can be found in [5, Theorem 1.32]. The reason why Lebesgue’s dif-
ferentiation theorem is stronger is the fact that it does not assume a priori
that the pointwise limit of the averages exists.

2.4 Sobolev Spaces

In this section we introduce Sobolev spaces, which generalize Ck spaces by
utilizing the notion of Lp. The reason we do this is because Ck is not re-
flexive and therefore we do not have the nice compactness properties from
Theorem 2.8 needed to establish existence of minimizers. In the end it is of
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course our goal to show that the minimizer lies in some Ck space, but this
first requires the knowledge of existence in the more general Sobolev space.
To make sure that the Sobolev space is reflexive we use that this is true for
Lp for 1 < p <∞ and try to cleverly combine this space with differentiabil-
ity. Most of the theory can be found in [2, Chapter 5].

Let Ω be an open set in Rn then we first want to describe the Sobolev
space which generalizes C1(Ω). A natural norm inspired by Lp for a u ∈
C1(Ω) is the sum of the Lp norms of u and ∇u. Of course this norm might
not be finite for all u ∈ C1(Ω) so we only consider those for which this norm is
finite. To make it into a Banach space we need to take its completion. Hence,
all limits with respect to this norm must be included. However, it turns out
that under the limit the differentiability might not be preserved. This can
be resolved by introducing a generalized or weak sense of differentiability
which is preserved under these limits. We first note that for any u ∈ C1(Ω)
we have by integration by parts (Theorem 2.2) that∫

Ω
uDxiϕdx = −

∫
Ω
Dxiuϕdx for all ϕ ∈ C∞c (Ω).

There is no boundary term because of the compact support of ϕ. This
property is nice to have and combines well with integration so we take this
property as the definition of the weak derivative.

Definition 2.25. Let u ∈ L1
loc(Ω). We say that u is weakly differentiable if

there are locally integrable functions v1, . . . , vn such that∫
Ω
uDxiϕdx = −

∫
Ω
viϕdx for all ϕ ∈ C∞c (Ω).

If this holds we denote Dxiu := vi and ∇u := (Dx1u, . . .Dxnu)T .

In the above we already use the normal notation of the derivative for
the weak derivative. This is justified because the weak derivative is unique
(a.e.) if it exists and coincides with the classical derivative for continuously
differentiable functions. These facts rely on the following result, which lies
at the foundation of the theory of Sobolev spaces and distributions.

Theorem 2.26 (Fundamental lemma of the calculus of variations). Let
v ∈ L1

loc(Ω) such that∫
Ω
vϕ dx = 0 for all ϕ ∈ C∞c (Ω).

Then v = 0 almost everywhere.
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Proof. We provide a sketch of the proof, which can be found in [6, Lemma
3.10]. Since this is a local result we may assume that Ω is bounded and
v ∈ L1(Ω). Informally, if we take ϕ to be the sign of v, i.e. +1 when v is
positive, -1 when v is negative and 0 else, then we find∫

Ω
vϕ dx =

∫
Ω
|v| dx = ‖v‖1.

Hence if the above is zero then v must be zero almost everywhere. This of
course does not work as ϕ would not lie in C∞c (Ω). Therefore we use mollifi-
cation to first approximate v by a smooth function f and then approximate
the sign of f by another smooth function g. Then we can use estimates to
get

‖v‖1 ≤ ε

for any ε > 0 from which the result follows.

It is now clear to see that the weak derivative is unique almost everywhere
since if there are two vi, ṽi then we have∫

Ω
(vi − ṽi)ϕdx = 0 for all ϕ ∈ C∞c (Ω)

from which we conclude vi = ṽi almost everywhere. Similarly, we can see
that the classical derivative for continuously differentiable functions satisfies
the integration by parts and hence must be equal to the weak derivative
almost everywhere.

Having settled this we can easily generalize to higher order weak deriva-
tives. Let α = (α1, . . . αn) ∈ Nn be a multi-index and Dα denote taking the
partial derivative with respect to the ith variable αi times for i = 1, . . . n.
Furthermore, denote the order of α by |α| =

∑n
i=1 αi. The weak partial

derivative Dαu (if it exists) is defined as the function that is locally inte-
grable and satisfies∫

Ω
uDαϕdx = −1|α|

∫
Ω
Dαuϕdx, for all ϕ ∈ C∞c (Ω).

Note that the left hand side does not depend on the order in which we
carry out the partial derivatives since ϕ is smooth. Hence the same applies
to the right hand side. From this we see that the order of taking partial
derivatives does not matter for weak derivatives, which justifies the multi-
index notation. We also use the convention D0u := u. We are now ready to
define the Sobolev spaces, which provide alternatives for Ck spaces.
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Definition 2.27 (Sobolev space). The Sobolev space W k,p(Ω) for p ∈ [1,∞]
consists of the functions u ∈ Lp(Ω) for which all weak partial derivatives up
to order k exists and lie in Lp(Ω). Explicitly, for |α| ≤ k the weak derivative
Dαu exists and Dαu ∈ Lp(Ω). The space is equipped with the norm

‖u‖k,p = ‖u‖Wk,p(Ω) :=

∑
|α|≤k

‖Dαu‖pLp(Ω)

1/p

,

when p <∞ and else

‖u‖k,∞ = ‖u‖Wk,∞(Ω) :=
∑
|α|≤k

‖Dαu‖L∞(Ω).

The summation
∑
|α|≤k means taking the sum over all multi-indices of

order less than or equal to k including α = 0. Checking that the Sobolev
norm indeed satisfies the triangle-inequality follows by using the same fact
for the Lp-norm and the norm on Rn given by

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

When p = 2 it is convention to write Hk(Ω) = W 1,2(Ω) since Hk(Ω) is
actually an inner product space with inner product

〈u, v〉Hk(Ω) =
∑
|α|≤k

∫
Ω
DαuDαv dx.

Like usual we define the following local Sobolev spaces.

Definition 2.28. The space W k,p
loc (Ω) consists of all functions u : Ω → R

such that u ∈W k,p(U) for any bounded open set U with U ⊂ Ω.

By utilizing the weak derivatives we obtain that the Sobolev spaces in-
herit the nice functional analytic properties from Lp.

Theorem 2.29 (Banach space, [2, §5.2 Theorem 2]). For p ∈ [1,∞] the
Sobolev space W k,p(Ω) is a Banach space. In particular Hk(Ω) is a Hilbert
space.

Proof. We need to show that W k,p(Ω) is complete. Hence we consider a
Cauchy sequence {ui} in W k,p(Ω) and need to show that it has a limit in
W k,p(Ω). From the definition of the Sobolev norm we see that each sequence
{Dαui} is a Cauchy sequence in Lp(Ω) for |α| ≤ k. By completeness of Lp(Ω)
we conclude that each of these sequences {Dαui} converges to some function
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vα ∈ Lp(Ω). We denote the limit of the sequence {ui} in Lp by u. Now, if we
show that vα is equal to the weak αth partial derivative of u then it follows
that u ∈ W k,p(Ω) and ui → u in W k,p(Ω) thus establishing completeness.
To show this we note that for any ϕ ∈ C∞c (Ω) the map

Tϕ : Lp(Ω)→ R, Tϕ(f) =

∫
Ω
fϕ dx,

is continuous by Hölder’s inequality. Thus we find that∫
Ω
uDαϕdx = TDαϕ(u)

= lim
i→∞

TDαϕ(ui)

= −1|α| lim
i→∞

Tϕ(Dαui)

= −1|α|Tϕ(vα)

= −1|α|
∫

Ω
vαϕdx,

where the third equality follows by definition of the weak derivative Dαui.
We conclude that indeed Dαu = vα thereby proving the theorem.

Not only completeness but also reflexivity is inherited from Lp.

Theorem 2.30 (Reflexivity W k,p(Ω) for 1 < p < ∞). The space W k,p(Ω)
is reflexive for 1 < p <∞.

Proof. We can embed W k,p(Ω) into the Cartesian product of Lp spaces.
Indeed, let N be the number of multi-indices of order less than or equal to
k then we find that

E : W k,p(Ω)→ (LP (Ω))N , u 7→ (Dαu)|α|≤k

is a linear isometry (if we choose the p-product norm on (Lp(Ω))N , which
is one of the choices). By the previous theorem we find that E(W k,p(Ω)) is
closed inside (LP (Ω))N . Since Lp(Ω) is reflexive for 1 < p < ∞ (Theorem
2.19) the same holds for (LP (Ω))N and therefore also for any closed subspace
of (LP (Ω))N . From this we conclude that E(W k,p(Ω)) is reflexive and hence
the same applies to W k,p(Ω).

Now that we have discussed the functional analytic properties of Sobolev
spaces we can consider approximations by smooth functions. This can be
very useful as this allows us to work with the functions we are used to. It is
all based on the properties of mollifiers and we have an extra property for
Sobolev functions.
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Proposition 2.31 ([5, Theorem 4.1]). If u ∈ W k,p
loc (Ω) for p ∈ [1,∞) and

we set uε := δε ∗ u then uε converges to u in W k,p
loc (Ω) as ε goes to zero.

Furthermore, we have in terms of weak derivatives that Dxiuε = δε ∗ (Dxiu)
holds on Ωε = {x ∈ Ω | d(x, ∂Ω) > ε}.

In particular this result can be used for the following.

Theorem 2.32 (Density of smooth functions, [2, §5.3 Theorem 3]). Let Ω
be open, bounded and with C1 boundary. Then the space C∞(Ω) is dense in
W 1,p(Ω) for p <∞.

When considering minimization problems we are dealing with boundary
conditions. This is why we want to be able to assign a value to Sobolev
functions at the boundary. However, some Sobolev functions are not even
continuous ([2, §5.2 Example 4]) so there is no obvious way to do this. For
functions in C∞(Ω) we can assign values at the boundary by just restricting
the function to the boundary. Therefore, the idea is to use the density from
the above theorem to extend this to Sobolev functions. We have the following
remarkable result.

Theorem 2.33 (Trace operator, [2, §5.5 Theorem 1]). Let Ω be open,
bounded and with C1 boundary. For p <∞ there exists a continuous linear
map

T : W 1,p(Ω)→ Lp(∂Ω)

such that for u ∈ W 1,p(Ω) ∩ C(Ω) the map T coincides with restriction to
the boundary, i.e. Tu = u|∂Ω.

The above map is called the trace operator and we usually just write
Tu = u|∂Ω even if u does not lie in C(Ω). A special class of Sobolev functions
is the one consisting of trace zero functions.

Definition 2.34. We define W 1,p
0 (Ω) for p < ∞ as the space of functions

u ∈W 1,p(Ω) with u|∂Ω = Tu = 0.

In some sense these Sobolev functions go to zero near the boundary, but
it is not really clear in what way exactly. This is answered in the following
theorem.

Theorem 2.35 (Density of C∞c (Ω) in W 1,p
0 (Ω), [2, §5.5 Theorem 2]). Let Ω

be open, bounded and with C1 boundary. Then C∞c (Ω) is dense in W 1,p
0 (Ω),

i.e. we can approximate trace zero function by smooth functions with compact
support.

Clearly any u ∈ C∞c (Ω) has trace zero and by continuity of the trace
operator the same holds for any function in the closure of C∞c (Ω) in W 1,p(Ω).
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Hence we conclude by Theorem 2.35 that W 1,p
0 (Ω) is equal to the closure of

C∞c (Ω) in W 1,p(Ω). Sometimes this is taken as the definition of W 1,p
0 (Ω). A

very useful inequality for trace zero functions states that we can bound the
Lp norm of this function by the Lp norm of its weak derivative.

Lemma 2.36 (Poincaré inequality, [24, Theorem 13.19]). Let Ω be open,
bounded and with C1 boundary. Then there exists a constant CΩ, which only
depends on Ω and p, that satisfies for all u ∈W 1,p

0 (Ω)

‖u‖Lp(Ω) ≤ CΩ

(
n∑
i=1

‖Dxiu‖
p
Lp(Ω)

)1/p

= CΩ‖∇u‖Lp(Ω).

Proof. By approximation it is enough to prove this for u ∈ C∞c (Ω). Extend
u as zero outside Ω such that it is defined on Rn. By boundedness of Ω we
can choose a and b such that Ω ⊂ Rn−1 × [a, b]. For x = (x1, . . . , xn) we
denote x′ = (x1, . . . , xn−1) and this gives us by compact support that

u(x) = u(x′, xn)− u(x′, a) =

∫ xn

a
Dxnu(x′, t) dt.

Hence we obtain∫
Ω
|u(x)|p dx ≤

∫
Ω

(∫ xn

a
|Dxnu(x′, t)| dt

)p
dx

≤
∫

Ω

(∫ xn

a
1 dt

)p/p′
·
(∫ xn

a
|Dxnu(x′, t)|p dt

)
dx

≤ (b− a)p/p
′
∫

Ω

∫ b

a
|Dxnu(x′, t)|p dt dx,

where the second line follows from Hölder’s inequality. We note that the last
integrand is not dependent on xn. Therefore we split up the integral over Ω
as an integral over Rn−1 and one over [a, b] by Fubini to obtain∫

Ω
|u(x)|p dx ≤ (b− a)p/p

′
∫ b

a

∫
Rn−1

∫ b

a
|Dxnu(x′, t)|p dt dx′ dxn

= (b− a)p/p
′+1

∫
Ω
|Dxnu(x)|p dx

= (b− a)p/p
′+1‖Dxnu‖

p
Lp(Ω),

from which the result follows.

In the proof we actually only used boundedness in the xn-direction and
only needed the partial derivative with respect to xn to bound the Lp-norm
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of u. We do not need this stronger result however, so we maintain the more
simple formulation.

With this we have discussed most of the basic theory about Sobolev
spaces. Lastly, we mention a few results that come to play when studying
the regularity of obstacle problems. The first of which is a characterization
of W 1,∞ in terms of Lipschitz functions. We denote C0,1(Ω) as the space of
Lipschitz functions on Ω.

Theorem 2.37 (W 1,∞(Ω) = C0,1(Ω), [2, §5.8 Theorem 4]). Let Ω be open,
bounded and with C1 boundary. Then u lies in W 1,∞(Ω) if and only if u is
Lipschitz continuous.

Another question one can ask is whether a Sobolev function is C1 under
certain conditions. A sufficient condition turns out to be that the Sobolev
function and its weak derivative are continuous.

Lemma 2.38. Let u ∈W 1,p(Ω) be continuous with continuous weak deriva-
tive ∇u. Then u lies in C1(Ω).

Proof. We consider the mollification of u given by uε = δε ∗ u. Since u is
continuous we find that uε converges uniformly to u on compact subsets
of Ω (Theorem 2.23). Furthermore, we have that Dxiuε = δε ∗ (Dxiu) so
by continuity of the weak derivative Dxiu we also see that Dxiuε converges
uniformly to Dxiu on compact subsets of Ω. Hence we see that uε converges
to u in the uniform C1-norm. Continuous differentiability is preserved under
this norm so we conclude that u is continuously differentiable on any compact
subset of Ω. Since continuous differentiability is a local property we obtain
u ∈ C1(Ω) as desired.

We wish to extend Theorem 2.37 to the case of W 2,∞ and C1,1, where
C1,1 is the space of continuously differentiable functions with Lipschitz con-
tinuous derivative. To this end assume that Ω is open, bounded and with
C1 boundary and let u ∈ W 2,∞(Ω). Then we find that u and ∇u are Lip-
schitz by Theorem 2.37. Hence by Lemma 2.38 we conclude u ∈ C1,1(Ω).
Conversely, if u ∈ C1,1(Ω) then we find by Theorem 2.37 that the weak
second partial derivatives lie in L∞(Ω). Since furthermore u and ∇u are
bounded because they are Lipschitz on a bounded domain we conclude that
u ∈ W 2,∞(Ω). The fact that u is Lipschitz follows since ∇u is bounded.
Hence we have proven the following.

Theorem 2.39. Let Ω be open, bounded and with C1 boundary then we have
W 2,∞(Ω) = C1,1(Ω).

Lastly, we want to state and prove a approximation of C1,1 functions by
their first order Taylor polynomial.
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Lemma 2.40. Let u ∈ C1,1(Ω) then we have for all x, y ∈ Ω such that the
line between x and y lies in Ω that

|u(y)− u(x)−∇u(x) · (y − x)| ≤ L|y − x|2,

with L the Lipschitz constant of ∇u.

Proof. As u is continuously differentiable and the line between x and y lies
in Ω we find by the mean value theorem that

u(y)− u(x) = ∇u(η) · (y − x),

with η = tx+ (1− t)y for some t ∈ [0, 1]. This yields

|u(y)− u(x)−∇u(x) · (y − x)| =|(∇u(η)−∇u(x)) · (y − x)|
≤ |∇u(η)−∇u(x)| · |y − x|
≤ L|η − x| · |y − x|
≤ L|y − x|2.
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3 Uniqueness and Existence

In this section we discuss the existence and uniqueness of minimizers of
integral functionals F of the following form

F(u) =

∫
Ω
f(x,∇u(x)) dx, (3.1)

where Ω ⊂ Rn is a bounded C1 domain (i.e. open, connected and with C1

boundary). We are minimizing F over functions u in the set

W 1,p
g (Ω) = {u ∈W 1,p(Ω) | u|∂Ω = g},

for p ∈ (1,∞) and g ∈ C1(∂Ω). Since ∂Ω is a closed C1-manifold we can
extend g to a C1 function G on Rn. The function G and its derivative
are bounded on Ω as Ω is bounded and thus we obtain that G ∈ W 1,p

g (Ω).
Therefore the set W 1,p

g (Ω) is non-empty and it makes sense to minimize over
this set. Furthermore, W 1,p

g (Ω) is a closed affine subset of W 1,p(Ω) as the
trace is a linear and continuous operator. Because the space W 1,p(Ω) is
reflexive for the choice p ∈ (1,∞) the space W 1,p

g (Ω) is perfectly suited for
addressing the problem of existence of minimizers. Note that (3.1) might
not be well-defined depending on the function f : Ω×Rn → R but we come
to this later. In this section we are following the treatment of [6, Chapter
2].

3.1 Direct Method

We first work towards the existence of minimizers and this is done by utilizing
the so called direct method in the calculus of variations. It was developed
after Hilbert had posed his 20th problem around 1900, which asked whether
these variational problems had solutions. The method is based on a very
simple idea, which reduces the problem of finding a minimizer to verifying
certain properties on F . Let us first illustrate this method in the finite-
dimensional case. Suppose we wish to prove existence of a minimum of a
function f : Rn → R that satisfies

(i) For every sequence {xi} with ‖xi‖ → ∞ we have f(xi)→∞;

(ii) For every sequence {xi} → x we have f(x) ≤ lim infi→∞ f(xi).

(Note that condition (ii) is automatically satisfied when f is continuous). To
find a minimum we need to find a x0 ∈ Rn such that f(x0) = infRn f . The
most direct thing we can do is choose a sequence {xi} such that limi→∞ f(xi) =
infRn f . Our naive hope is that this sequence (or a subsequence thereof) con-
verges to a point at which f attains its minimum. To show that this is the
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case we note that by property (i) the minimizing sequence {xi} is bounded.
Now using that closed and bounded sets are compact yields a convergent
subsequence {xik} → x0 for some x0 ∈ Rn. To show that f attains its
minimum at x0 we apply property (ii) to get

f(x0) ≤ lim inf
k→∞

f(xik) = lim
k→∞

f(xik) = inf
Rn
f.

This proves the existence of a minimum.

The key in this simple proof was using the compactness of closed and
bounded sets to extract a convergent subsequence. However, in infinite-
dimensional spaces the closed unit ball is never compact. Hence we cannot
guarantee that bounded sequences have convergent subsequences. A partial
replacement for this can be achieved by instead considering weak conver-
gence. Namely, for reflexive Banach spaces bounded sequences admit weakly
convergent subsequences, see Theorem 2.8. Having this functional analytic
property is the main reason why we consider Sobolev spaces as opposed to
more standard spaces like Ck, which are not reflexive. In order to generalize
the direct method to arbitrary reflexive Banach spaces (X, ‖.‖) we need to
slightly adapt the second property imposed to cater to weak convergence.
Thus, let F : X → R ∪ {∞} be a functional then we need the following
criteria on F :

(P1) Coercivity: For every sequence {ui} with limi→∞‖ui‖ = ∞ we have
that limi→∞F(ui) =∞;

(P2) Weak lower semicontinuity: For every sequence {ui}⇀ u we have
F(u) ≤ lim infi→∞F(ui),

where ⇀ indicates weak convergence. The property P1 is called coercivity
and the property P2 is called weak lower semicontinuity. We carry out the
proof of existence of minimizers when F satisfies P1 and P2.

Theorem 3.1 (Direct method, [6, Theorem 2.1]). Let X 6= ∅ be a reflex-
ive Banach space or a closed convex subset of a reflexive Banach space. If
the functional F : X → R ∪ {∞} satisfies P1 and P2 then there exists a
minimizer u0 ∈ X, i.e. F(u0) = infu∈X F(u).

Proof. We treat the case of a reflexive Banach space first and argue like in the
finite-dimensional case. Assume without loss of generality that infu∈X F(u) 6=
∞, otherwise any u trivially minimizes F . Now we take a sequence {ui} in
X such that

lim
i→∞
F(ui) = inf

u∈X
F(u) <∞.

We claim that {ui} is bounded. Indeed, if this is not the case then a subse-
quence {uik} of {ui} diverges to infinity. However, this implies by coercivity
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that limk→∞F(uik) = ∞ contradicting the above. Thus the sequence {ui}
is bounded in the reflexive Banach space X. By virtue of Theorem 2.8 we
can extract a subsequence {ui} (not relabelled) that converges weakly to
some u0 ∈ X. Now we apply the weak lower semicontinuity to obtain

F(u0) ≤ lim inf
i→∞

F(ui) = lim
i→∞
F(ui) = inf

u∈X
F(u),

which proves the result in the first case.

If X is a closed and convex subset of a reflexive Banach space then all
the above steps are valid except possibly that u0 ∈ X. Namely, this element
could lie in the ambient Banach space. However, as closed and convex sets
in Banach spaces are weakly sequentially closed as well (Theorem 2.9) it
follows that in fact u0 ∈ X and therefore the proof is still valid.

Having established this theorem we can now focus on giving simple suf-
ficient conditions for a functional as in (3.1) to be coercive and weakly lower
semicontinuous.

3.2 Coercivity

In this section we discuss the well-definedness and coercivity property of the
functional in (3.1)

F(u) =

∫
Ω
f(x,∇u(x)) dx.

We achieve these properties by imposing certain conditions on the function

f : Ω× Rn → R,

which results in well-definedness and coercivity of F .

Well-definedness plays a role as the Lebesgue integral in (3.1) might not
exist even if we allow the value infinity. First of all the map x 7→ f(x,∇u(x))
needs to be measurable for the integral to be defined. We guarantee this by
assuming f to be continuous in both its arguments. Secondly, the integral of
the negative part of f cannot be infinite as this would either imply F = −∞
or that the integral is not well-defined. To avoid this we can either assume
that f is bounded in some sense such that the integral is always finite or
that f ≥ C for C ∈ R such that the integral is well-defined albeit possibly
infinite (this uses that Ω is bounded). As we will see the property f ≥ C
is required for coercivity regardless so assuming this property does not lose
generality. Therefore we assume from now on that f is continuous and that
f ≥ C for some C ∈ R. This yields that (3.1) is well-defined.
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Now we consider coercivity. Intuitively, we need that F grows just as
quickly as the the norm such that any sequence diverging in terms of the
norm does the same in terms of F . In the case of the Sobolev norm ‖.‖1,p it
is therefore natural to assume the following p-coercivity bound

µ|ξ|p − C ≤ f(x, ξ), (x, ξ) ∈ Ω× Rn, (3.2)

with µ,C > 0 constants. This bound makes the functional F(u) comparable
to a constant times the p-norm of ∇u. This almost gives us want we want
but we also need that it is comparable with the p-norm of u. However, by
using the Poincaré inequality we actually obtain a way to bound the p-norm
of u in terms of the p-norm of ∇u. Therefore the condition (3.2) is sufficient
for coercivity as we will formalize in the following proposition.

Proposition 3.2. Let F be as in (3.1). If f is continuous and satisfies the
p-coercivity bound (3.2) for p ∈ (1,∞) then F is coercive on W 1,p

g (Ω).

Proof. Let {ui} be a sequence in W 1,p
g (Ω) such that ‖ui‖1,p → ∞. We fix

any v ∈W 1,p
g (Ω) then it follows that ui− v ∈W 1,p

0 (Ω) and ‖ui− v‖1,p →∞.
By the Poincaré inequality (Lemma 2.36) we find that

‖ui − v‖1,p ≤ (1 + (CΩ)p)1/p · ‖∇(ui − v)‖p,

which implies that ‖∇(ui − v)‖p →∞ and subsequently that ‖∇ui‖p →∞.
Finally, by the p-coercivity bound (3.2) we find that

F(ui) ≥ µ‖∇ui‖pp − C meas(Ω),

which shows that F(ui)→∞. This proves the result.

3.3 Weak Lower Semicontinuity

In this section we describe a sufficient condition for F to be weakly lower
semicontinuous. It is slightly more difficult to see what kind of condition on
f we need for weak lower semicontinuity. First of all, we still assume that
f ≥ −C for some C > 0, which is needed for well-definedness and coercivity.
It turns out that if furthermore

ξ 7→ f(x, ξ) is convex for all x ∈ Ω (3.3)

then F is weakly lower semicontinuous. This is the content of the following
theorem. This result dates back to 1920 where Tonelli proved this weak
lower semicontinuity result for slightly more general integral functionals. He
published this in his paper ’La semicontinuità nel calcolo delle variazioni’,
see [19].
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Theorem 3.3 ([6, Theorem 2.6]). Let F be as in (3.1) and assume that
f ≥ −C and f satisfies (3.3). Then F is weakly lower semicontinuous on
W 1,p
g (Ω).

Proof. We divide the proof into two steps.

Step 1. We first prove that F is strongly lower semicontinuous. We may
assume that f ≥ 0 as we can replace f with f +C without loss of generality
(Ω is bounded). Take a sequence {ui} in W 1,p

g (Ω) converging to u strongly
then we show that

F(u) ≤ a := lim inf
i→∞

F(ui).

To do this we can take a subsequence {ui} (not relabelled) such that F(ui)→
a. This limit remains unchanged if we take any further subsequence. In par-
ticular, since ∇ui → ∇u in Lp(Ω) we can extract a subsequence by Theorem
2.20 such that ∇ui → ∇u pointwise almost everywhere and limi→∞F(ui) =
a. As f ≥ 0 we can now apply Fatou’s lemma (Theorem 2.11) to obtain

F(u) =

∫
Ω
f(x,∇u(x)) dx ≤ lim inf

i→∞

∫
Ω
f(x,∇ui(x)) dx = lim

i→∞
F(ui) = a,

as desired.

Step 2. For the weak lower semicontinuity, let {ui} be a sequence con-
verging weakly to u in W 1,p

g (Ω). We have to show that

F(u) ≤ a := lim inf
i→∞

F(ui).

Again we take a subsequence {ui} (not relabelled) such that limi→∞F(ui) =
a. In order to go from weak to strong convergence we use Mazur’s lemma
(Theorem 2.10). The lemma states that we can find a function K : N → N
and scalars λ(i)k ∈ [0, 1] for k = i, . . . ,K(i) such that the convex combina-
tions

vi =

K(i)∑
k=i

λ(i)kuk with

K(i)∑
k=i

λ(i)k = 1

converge strongly to u in W 1,p
g (Ω). Now we use that f is convex in its second

argument to obtain

F(vi) =

∫
Ω
f

x,K(i)∑
k=i

λ(i)kuk

 dx

≤
K(i)∑
k=i

λ(i)kF(uk).
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As
∑K(i)

k=i λ(i)k = 1 and F(uk) → a we conclude that the limit of the right
hand side is a. Thus we find that lim infi→∞F(vi) ≤ a. Because vi converges
strongly to u we can use step 1 to conclude

F(u) ≤ lim inf
i→∞

F(vi) ≤ a,

which yields the result.

Remark 3.4. It can actually be shown that convexity is a neccesary condi-
tion for weak lower semicontinuity when f does not depend on x. Although
we do not prove this here, it is good to know that demanding convexity is
not too strong of a criteria. See for example Proposition 2.9 in [6] for a
proof.

Having established the criteria for coercivity and weak lower semiconti-
nuity we can now state the following existence and uniqueness result.

Theorem 3.5 (Existence and uniqueness). Let F be as in (3.1) and K 6= ∅
a closed and convex subset of W 1,p

g (Ω). If f satisfies the p-coercivity bound
(3.2) and the convexity in (3.3) then F has a minimizer in K. If furthermore
f is strictly convex in its second argument then this minimizer is unique.

Proof. By Proposition 3.2 and Theorem 3.3 F is both coercive and weakly
lower semicontinuous on K. Furthermore, K is a non-empty closed and
convex subset of the reflexive Banach space W 1,p(Ω). Now applying the
direct method (Theorem 3.1) we find that there exists a minimizer u0 ∈
K. For uniqueness, assume that to the contrary there exist two different
minimizers u0 and v0 in K. Now define u := u0/2 + v0/2 which lies in K
as K is convex. Since u0 − v0 ∈ W 1,p

0 (Ω) and ‖u0 − v0‖1,p 6= 0 we have by
Poincaré’s inequality that ‖∇u0 − ∇v0‖p 6= 0. This means that ∇u0 and
∇v0 differ on a set of positive measure. Using strict convexity of f we now
obtain that∫

Ω
f(x,∇u(x)) dx <

∫
Ω

1

2
(f(x,∇u0(x)) + f(x,∇v0(x))) dx.

Using linearity of the integral we find that

F(u) <
1

2
(F(u0) + F(v0)) = inf

K
F ,

which is a contradiction thus proving uniqueness.

In the above we can in particular take K = W 1,p
g (Ω) but we need this

more general statement when we are dealing with obstacle problems in Sec-
tion 5.
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Example 3.6. Consider the Dirichlet functional

D(u) =

∫
Ω

|∇u|2

2
dx.

In the above setting we have f(x, ξ) = |ξ|2
2 . It is readily seen that this f is

strictly convex in its second argument and satisfies the 2-coercivity bound.
We therefore find by Theorem 3.5 that the problem

Minimize D(u) over all u ∈ H1
g (Ω) = W 1,2

g (Ω)

has a unique solution u0 ∈ H1
g (Ω).

As a last remark on existence we want to note that the results can be
extended to functionals of the form

F(u) =

∫
Ω
f(x, u,∇u) dx.

In this case we need that ξ 7→ f(x, y, ξ) is convex for every (x, y) ∈ Ω×R to
ensure weak lower semicontinuity and certain bounds for coercivity, see [6,
Theorem 5.2] or [7, Theorem 3.23].
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4 Regularity

In this section we discuss the regularity of minimizers of variational prob-
lems. It was necessary for our proof of existence to consider the more general
Sobolev spaces in contrary to Ck spaces. Now that we can show existence
of minimizers the next step consists of showing that the minimizers satisfy
certain smoothness properties. This is very important to know as a general
Sobolev function can even be discontinuous, see [2, §5.2 Example 4]. Es-
tablishing these smoothness properties of the minimizer is called regularity
theory and in this section we show useful methods from this area and work
out the regularity for the specific case of the Dirichlet functional.

Our first aim is to derive an equation that is necessarily satisfied by
the minimizer. It is inspired by the finite-dimensional analogue, where a
necessary condition for a function to have a minimum is that its derivative
vanishes. In the infinite-dimensional case we actually get a partial differential
equation which is called the Euler-Lagrange equation and we discuss its weak
form as well, see Lemma 4.2. The Euler-Lagrange equation does not imply
certain regularity in general but it is the basis of proving the regularity
in specific cases. For the Dirichlet functional the Euler-Lagrange equation
turns out to be the Laplace equation. Thus we can obtain regularity of the
minimizer of the Dirichlet functional by studying the regularity of weakly
harmonic functions. This is what we carry out. Lastly, we also discuss
properties of sub- and superharmonic functions, which turn up naturally
when introducing an obstacle in the minimization problem of the Dirichlet
functional.

4.1 Euler-Lagrange Equation

We first recall that for a differentiable function f : Rn → R attaining a
minimum at x0 ∈ Rn implies for the directional derivative that

Df(x0)v = lim
h→0

f(x0 + hv)− f(x0)

h
= 0

for all v ∈ Rn. This is because f(x0 + hv)− f(x0) ≥ 0 so we find that

lim
h↓0

f(x0 + hv)− f(x0)

h
≥ 0, and lim

h↑0

f(x0 + hv)− f(x0)

h
≤ 0.

Since the limit exists it must therefore be equal to zero. Now define

F : W 1,p
g (Ω)→ R, F(u) =

∫
Ω
f(x, u(x),∇u(x)) dx (4.1)
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with Ω ⊂ Rn a C1-domain, f : Ω×R×Rn → R continuous and g ∈ C1(∂Ω).
We can define a similar directional derivative for F but now W 1,p

g (Ω) is not a
vector space so the directional derivative vanishes only in certain directions.
This is because F(u0 +hϕ)−F(u0) ≥ 0 can only be guaranteed if u0 +hϕ ∈
W 1,p
g (Ω). We can achieve this by picking ϕ ∈W 1,p

0 (Ω) but for simplicity we
first restrict ourselves to the case ϕ ∈ C∞c (Ω).

Definition 4.1. The first variation of F at u ∈ W 1,p
g (Ω) in the direction

ϕ ∈ C∞c (Ω) is defined as (if it exists)

δF(u)(ϕ) := lim
h→0

F(u+ hϕ)−F(u)

h
.

Suppose for now that the variation of F exists. By the argument in the
finite-dimensional case we find that for a minimizer u0 ∈ W 1,p

g (Ω) we have
δF(u)(ϕ) = 0 for all ϕ ∈ C∞c (Ω). This gives us an equation which the
minimizer has to satisfy, i.e. a necessary condition. Hence it is interesting to
calculate this first variation explicitly (if it exists). For this we need certain
bounds on f and its derivatives, which allow us to interchange the limit with
the integral. We write (x, y, ξ) ∈ Ω× R× Rn and set Dyf(x, y, ξ) to be the
derivative with respect to the second argument and Dξf(x, y, ξ) the gradient
with respect to the third argument. Note that Dyf(x, y, ξ) is a scalar while
Dξf(x, y, ξ) is a vector in Rn. We will assume the bounds:

|f(x, y, ξ)|, |Dyf(x, y, ξ)|, |Dξf(x, y, ξ)| ≤ C(1 + |y|p + |ξ|p), (4.2)

for (x, y, ξ) ∈ Ω × R × Rn and a constant C > 0. We can now state the
following result.

Lemma 4.2 ([6, Theorem 3.1]). Let F be as in (4.1) and suppose f is
continuously differentiable in its second and third argument and satisfies
(4.2). Then we have for all u ∈W 1,p

g (Ω) that

δF(u)(ϕ) =

∫
Ω
Dyf(x, u,∇u)ϕ+Dξf(x, u,∇u) · ∇ϕdx (4.3)

for all ϕ ∈ C∞c (Ω).

Proof. For simplicity of notation we do not explicitly write the x dependence
everywhere. Note that by the bound on f itself we find that F(u) is well-
defined and finite. Intuitively, to calculate the first variation we need to
differentiate under the integral sign. To formalize this we use the mean
value theorem to write

δF(u)(ϕ) = lim
h→0

∫
Ω

f(x, u+ hϕ,∇u+ h∇ϕ)− f(x, u,∇u)

h
dx

= lim
h→0

∫
Ω
Dyf(x, u+ ηϕ,∇u+ η∇ϕ)ϕ

+Dξf(x, u+ ηϕ,∇u+ η∇ϕ) · ∇ϕdx,
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for η = η(h) ∈ [0, h]. This is obtained by differentiating f(x, u + hϕ,∇u +
h∇ϕ) with respect to h and evaluating at η. By using the growth bounds
on the derivatives and the fact that ϕ and ∇ϕ are bounded we find that the
absolute value of the integrand inside the last integral is bounded uniformly
in h by C ′(1 + (|u| + |ϕ|)p + (|∇u| + |∇ϕ|)p) if we assume |h| ≤ 1. This
bound is integrable since Ω is bounded so we can use Lebesgue’s dominated
convergence theorem (Theorem 2.12) to take the limit of h inside the integral.
Now that we have interchanged the limit we can undo the effects of the mean
value theorem to obtain

δF(u)(ϕ) =

∫
Ω

lim
h→0

f(x, u+ hϕ,∇u+ h∇ϕ)− f(x, u,∇u)

h
dx,

which is equal to (4.3).

For a minimizer u0 ∈W 1,p
g (Ω) of F we therefore obtain the equation

δF(u0)(ϕ) =

∫
Ω
Dyf(x, u0,∇u0)ϕ+Dξf(x, u0,∇u0) · ∇ϕdx = 0,

for all ϕ ∈ C∞c (Ω). This is called the weak form of the Euler-Lagrange
equation. If we recall the definition of weak derivative we see that this
equation implies in a weak sense that

Dyf(x, u0,∇u0)− div[Dξf(x, u0,∇u0)] = 0, (4.4)

where the divergence must be taken of the map x 7→ Dξf(x, u0(x),∇u0(x)).
This partial differential equation is the Euler-Lagrange equation and it estab-
lishes a deep connection between the theory of variational problems and the
theory of partial differential equations. Euler and Lagrange developed this
equation during the 1750s when they were working on variational problems.
This analytical method for solving such minimization problems inspired Eu-
ler to come up with the name ’Calculus of variations’, which is still used
today [22]. It is easy to check by integration by parts and the fundamental
lemma of the calculus of variations (Lemma 2.26) that if u0 and f are C2

then u0 satisfies the weak form if and only if it satisfies the (strong) Euler-
Lagrange equation. In general we only know that u0 ∈W 1,p

g (Ω), which limits
us to working with the weak form of the Euler-Lagrange equation. However,
this can be enough in some cases to show that u0 is C2 or even C∞.

Example 4.3. Consider again the Dirichlet functional

D(u) =

∫
Ω

|∇u|2

2
dx,
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which has a unique minimizer u0 ∈ H1
g (Ω) by Example 3.6. In this case

Dξf(ξ) = ξ so we find by Lemma 4.2 that∫
Ω
∇u0 · ∇ϕdx = 0 for all ϕ ∈ C∞c (Ω).

This is a weak form of the Laplace equation −∆u0 = 0. In the next sub-
section we will study the Laplace equation and its weak form and show that
actually u0 ∈ C∞(Ω).

Our next aim is to extend the first variation to directions in W 1,p
0 (Ω) as

well. We cannot repeat the proof of Lemma 4.2 as that required boundedness
of the test function ϕ. We therefore impose the stronger bounds on the
derivatives

|Dyf(x, y, ξ)|, |Dξf(x, y, ξ)| ≤ C(1 + |y|p−1 + |ξ|p−1). (4.5)

We have the following:

Corollary 4.4 ([7, Theorem 3.37 (III)]). Suppose F and f are as in Lemma
4.2 and f satisfies furthermore the bound (4.5). Then (4.3) holds for all
ϕ ∈W 1,p

0 (Ω).

Proof. The only adaptation we need to make is to show that

|Dyf(x, u+ ηϕ,∇u+ η∇ϕ)ϕ|

and
|Dξf(x, u+ ηϕ,∇u+ η∇ϕ) · ∇ϕ|

are uniformly bounded in η by an integrable function. We will show that
this is the case for the first one as the second can be proven analogously. By
(4.5) we have

|Dyf(x,u+ ηϕ,∇u+ η∇ϕ)ϕ|
≤ C(1 + |u+ ηϕ|p−1 + |∇u+ η∇ϕ|p−1)|ϕ|
≤ C(1 + (|u|+ |ϕ|)p−1 + (|∇u|+ |∇ϕ|)p−1)|ϕ|

for |η| ≤ 1. We show that this last function is integrable. The term C|ϕ| is
fine since by boundedness of Ω and Hölder’s inequality (Theorem 2.17) we
have Lp(Ω) ⊂ L1(Ω) because the constant function 1 lies in Lp

′
(Ω). For the

next term we have by Hölder’s inequality that∫
Ω

(|u|+ |ϕ|)p−1|ϕ| dx ≤ ‖(|u|+ |ϕ|)p−1‖p′‖ϕ‖p

= ‖|u|+ |ϕ|‖p−1
p ‖ϕ‖p <∞,

where p′ = p/(p− 1). This bound follows similarly for all other terms when
we keep in mind that ∇u and ∇ϕ also have finite Lp-norm and this yields
integrability.
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In general, if u satisfies the weak Euler-Lagrange equation then u need
not be a minimum. Indeed, just like in the finite-dimensional case, we can
just have a local minimum or even a maximum or saddle-point. We call
functions u that satisfy δF(u)(ϕ) = 0 for all ϕ ∈ W 1,p

0 (Ω) critical points of
F . We can now actually show that any critical point is a minimizer under
the assumption of convexity.

Proposition 4.5. Let F be as in (4.1) and f jointly convex in its second
and third argument. Then any u0 ∈W 1,p

g (Ω) for which

δF(u0)(ϕ) = 0 for all ϕ ∈W 1,p
0 (Ω)

is a minimizer of F .

Proof. Since f is convex in its second and third argument we find that F
is also convex. Now let v ∈ W 1,p

g (Ω) be arbitrary then we have v − u0 ∈
W 1,p

0 (Ω). Therefore

0 = δF(u0)(v − u0) = lim
h→0

F((1− h)u0 + hv)−F(u0)

h
.

For h ∈ (0, 1] we find by convexity that

F((1− h)u0 + hv)−F(u0)

h
≤ (1− h)F(u0) + hF(v)−F(u0)

h
= −F(u0) + F(v).

Combining the two we obtain that 0 ≤ −F(u0) + F(v) and hence u0 is a
minimizer.

With this we have a complete overview of the Euler-Lagrange equation
and its weak form. We now focus on the weak Euler-Lagrange equation of
the Dirichlet functional to obtain C∞ regularity of the minimizer.

4.2 Regularity of Harmonic Functions

In this section we establish certain properties of harmonic functions and
prove in an elementary way that all harmonic and even weakly harmonic
functions are infinitely differentiable. This implies in particular that the
minimizer of the Dirichlet functional is smooth.

Let Ω ⊂ Rn be an open subset and u ∈ C2(Ω). The function u is
called harmonic if ∆u :=

∑n
i=1Dxixiu = 0. As seen from Example 4.3 any

minimizer of the Dirichlet integral which is twice continuously differentiable
is harmonic. We now prove an important property of harmonic functions,
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which will later allow us to prove smoothness of weakly harmonic functions.
We recall the notation of an average integral

−
∫
Br(x0)

u(x) dx =
1

|Br|

∫
Br(x0)

u(x) dx

and

−
∫
∂Br(x0)

u(x) dS(x) =
1

|∂Br|

∫
∂Br(x0)

u(x) dS(x)

with |Br| the volume of the ball with radius r and |∂Br| the hyper area of
the sphere with radius r.

Lemma 4.6 (Mean value property, [2, §2.2 Theorem 2]). Let u ∈ C2(Ω) be
harmonic. Then for all x0 ∈ Ω the functions

px0(r) = −
∫
∂Br(x0)

u(x) dS(x) and qx0(r) = −
∫
Br(x0)

u(x) dx (4.6)

are constant and equal for 0 < r < d(x0, ∂Ω).

Proof. We use the substitution x = x0 + ry to obtain

px0(r) = −
∫
∂B1(0)

u(x0 + ry) dS(y),

where the Jacobian compensated for the change of area. As u is C2 on the
entire ball we can differentiate under the integral sign to obtain

p′x0(r) = −
∫
∂B1(0)

∇u(x0 + ry) · y dS(y).

Because y is an unit normal vector field of the sphere we can use the Gauss-
Green theorem (Theorem 2.1) to obtain

p′x0(r) =
1

n
−
∫
B1(0)

∆u(x0 + ry) dy = 0,

which proves that px0 is constant. For qx0 we use polar coordinates to get

qx0(r) = −
∫
Br(x0)

u(x) dx =
1

|Br|

∫ r

0

∫
∂Bs(x0)

u(x) dS(x) ds

=
px0(r)

|Br|

∫ r

0
|∂Bs| ds = px0(r),

which yields the result.
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Since u is C2 we have in particular that u(x0) = limr→0 px0(r) = limr→0 qx0(r)
which yields as px0 and qx0 are constant that

u(x0) = −
∫
∂Br(x0)

u(x) dS(x) = −
∫
Br(x0)

u(x) dx.

More generally, any u ∈ L1
loc(Ω) for which the map

qx0(r) = −
∫
Br(x0)

u(x) dx

is constant, satisfies u(x) = qx(r) almost everywhere by Lebesgue’s differen-
tiation theorem (Theorem 2.24). Thus we can change u on a set of measure
zero to find

u(x0) = −
∫
Br(x0)

u(x) dx (4.7)

for all x0 ∈ Ω and 0 < r < d(x0, ∂Ω). We show that this implies that u is
continuous and that

px0(r) = −
∫
∂Br(x0)

u(x) dS(x)

is also constant for 0 < r < d(x0, ∂Ω). Note that continuity allows to
integrate u over ∂Br.

Lemma 4.7. Let u ∈ L1
loc(Ω). If qx0(r) is constant for all 0 < r < d(x0, ∂Ω)

then there is a continuous representative of u which satisfies u(x0) = qx0(r) =
px0(r) for all x0 ∈ Ω and 0 < r < d(x0, ∂Ω).

Proof. We can take the representative of u such that (4.7) holds. We show
that u is continuous. Take a sequence {xi} in Ω such that xi → x for some
x ∈ Ω. We have that u · χBr(xi) converges to u · χBr(x) pointwise with χA
denoting the characteristic function of the set A. We find by Lebesgue’s
dominated convergence theorem (Theorem 2.12) for small enough r that

lim
i→∞

u(xi) = lim
i→∞
−
∫
Br(xi)

u(y) dy = −
∫
Br(x)

u(y) dy = u(x),

which proves that u is continuous. Now it is easy to see that

px0(r) = −
∫
B1(0)

u(x0 + ry) dS(y)
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is continuous in r. Utilizing polar coordinates and the fundamental theorem
of calculus we find

0 =
d

dr
qx0(r) =

d

dr

(
1

|Br|

∫ r

0
|∂Bs|px0(s) ds

)
=
−n
r|Br|

∫ r

0
|∂Bs|px0(s) ds+

|∂Br|
|Br|

px0(r)

=
n

r
(px0(r)− qx0(r)).

This shows that px0(r) = qx0(r) which proves the lemma.

The above lemma implies that any u ∈ L1
loc(Ω), for which qx0 is constant,

satisfies the mean value property. This mean value property is very powerful,
as we can prove that it actually implies infinite differentiability. This result
is surprisingly simple to prove.

Proposition 4.8 ([2, §2.2 Theorem 6]). Let u ∈ L1
loc(Ω) satisfy the mean

value property, then we have u ∈ C∞(Ω).

Proof. By Lemma 4.7 we can take the continuous representative of u such
that

u(x0) = −
∫
∂Br(x0)

u(x) dS(x) = −
∫
Br(x0)

u(x) dx

for all x0 ∈ Ω and 0 < r < d(x0, ∂Ω). Let x0 ∈ Ω and take 0 < r <
1
2d(x0, ∂Ω) then we show that u ∈ C∞(Br(x0)). We take the standard
mollifier δε (Definition 2.22) and by radial symmetry we have a function
δ̃ε : R≥0 → R such that δ̃ε(|x|) = δε(x). Set uε = δε ∗ u which is well-defined
on Br(x0) for ε < r and satisfies uε ∈ C∞(Br(x0)). We verify that u = uε
on Br(x0) thereby proving the result. Let y ∈ Br(x0) then we have

uε(y) =

∫
Bε(y)

δε(y − x)u(x) dx

=

∫
Bε(y)

δ̃ε (|y − x|)u(x) dx

=

∫ ε

0

∫
∂Bs(y)

δ̃ε(s)u(z) dS(z) ds

= u(y)

∫ ε

0
|∂Bs|δ̃ε(s) ds = u(y).

This last part follows as∫ ε

0
|∂Bs|δ̃ε(s) ds =

∫
Bε(0)

δε(x) dx = 1.
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With this lemma in place we are ready to prove regularity of weakly
harmonic functions. A function u ∈ L1

loc(Ω) is weakly harmonic if∫
Ω
u∆ϕdx = 0 for all ϕ ∈ C∞c (Ω).

Clearly, any harmonic function is weakly harmonic by using integration by
parts. Similarly if u ∈ H1(Ω) and∫

Ω
∇u · ∇ϕdx = 0 for all ϕ ∈ C∞c (Ω),

then we obtain by integration by parts that u is in fact weakly harmonic.
In particular, we can use the regularity of weakly harmonic functions for
the minimizer of the Dirichlet functional. The following classical regularity
result was proven by Weyl in 1940 in his paper [21]. He proved this by
utilizing the fundamental solution of the Laplacian, while we are using a
more modern approach through mollifiers.

Theorem 4.9 (Weyl’s Lemma, [12, Lemma 1.19]). Let u ∈ L1
loc(Ω) be a

weakly harmonic function. Then u ∈ C∞(Ω) and ∆u = 0.

Proof. The idea of the proof is to show that u satisfies the mean value
property and then appeal to Proposition 4.8. Take x0 ∈ Ω and some r > 0
with 0 < r < 1

2d(x0, ∂Ω) implying that u ∈ L1(B2r(x0)). Let δε be the
standard mollifier and define uε = δε ∗ u which is well-defined on Br(x0) for
ε < r and lies in C∞(Br(x0)). We now wish to show that uε is harmonic.
To this aim let ϕ ∈ C∞c (Br(x0)) then we find that∫

Br(x0)
uε(x)∆ϕ(x) dx =

∫
Br(x0)

(∫
Bε(x)

δε(x− y)u(y) dy

)
∆ϕ(x) dx

=

∫
Br+ε(x0)

(∫
Bε(y)

δε(y − x)∆ϕ(x) dx

)
u(y) dy

=

∫
Br+ε(x0)

(δε ∗∆ϕ)(y)u(y) dy.

The second line follows by Fubini. Indeed, instead of integrating for every
x ∈ Br(x0) the variable y over Bε(x) we integrate for every y ∈ Br+ε(x0)
the x-variable over Bε(y)∩Br(x0). As ∆ϕ has support inside Br(x0) we can
omit the intersection with Br(x0). By properties of the convolution we have
δε ∗∆ϕ = ∆(δε ∗ ϕ) and thus we obtain∫

Br(x0)
uε(x)∆ϕ(x) dx =

∫
Br+ε(x0)

∆(δε ∗ ϕ)(y)u(y) dy

=

∫
Ω
u(y)∆(δε ∗ ϕ)(y) dy = 0,
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as ∆(δε ∗ ϕ) ∈ C∞c (Br+ε(x0)). We conclude that∫
Br(x0)

uε(x)∆ϕ(x) dx = 0 for all ϕ ∈ C∞c (Br(x0))

and as uε is smooth we obtain by integration by parts twice that∫
Br(x0)

∆uε(x)ϕ(x) dx = 0 for all ϕ ∈ C∞c (Br(x0)).

By the fundamental lemma of the calculus of variations we find that uε
is harmonic. This implies by Lemma 4.6 that uε satisfies the mean value
property and therefore the function

qεx0(r) = −
∫
Br(x0)

uε(x) dx

is constant. Since uε converges to u in L1(Br(x0)) as ε goes to zero (Theorem
2.23) we find that

qx0(r) = −
∫
Br(x0)

u(x) dx = lim
ε→0
−
∫
Br(x0)

uε(x) dx = lim
ε→0

qεx0(r).

This implies that qx0 is constant as well and by Lemma 4.7 we obtain that u
satisfies the mean value property. By application of Proposition 4.8 we can
now take a representative such that u ∈ C∞(Br(x0)) and as this holds for
any x0 ∈ Ω we have u ∈ C∞(Ω). Harmonicity of u now follows from∫

Br(x0)
u(x)∆ϕ(x) dx = 0 for all ϕ ∈ C∞c (Br(x0))

by using integration by parts and the Fundamental lemma of the calculus of
variations.

This important result lies at the foundation of our regularity theory for
the obstacle problem. Actually, we can even prove that harmonic functions
are analytic but we do not need this. However, a bound on the partial
derivatives of harmonic functions turns out to be very convenient.

Lemma 4.10 ([2, §2.2 Theorem 7]). Let u be harmonic and bounded inside
Br0(x). Then we have a constant K > 0 such that

r0|∇u(x)|+ r2
0|D2u(x)| ≤ K‖u‖L∞(Br0 (x)).
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Proof. We prove the bound for any r < r0 from which the result follows by
taking the limit. Since the Laplace operator commutes with partial deriva-
tives for smooth functions we find that any partial derivative of u is again
harmonic. Thus we obtain by the mean value property and the Gauss-Green
theorem that

|Dxiu(x)| = |−
∫
Br(x)

Dxiu(y) dy|

= | 1

|Br|

∫
∂Br(x)

u(y)νi(y) dS(y)|

≤ |∂Br|
|Br|

‖u‖L∞(Br(x)) =
K1

r
‖u‖L∞(Br(x)),

where νi is the ith component of a unit normal vector field on the sphere.
Next, for the second partial derivatives we find similarly that

|Dxixju(x)| ≤ 2K1

r
‖Dxiu‖L∞(Br/2(x)).

Since for any y ∈ Br/2(x) we have that Dxiu is harmonic on Br/2(y) we can
use the bound on the first partial derivatives to get

|Dxixju(x)| ≤ 4K2
1

r2
‖u‖L∞(Br(x)).

This proves the lemma for an appropriately chosen K.

For the dam problem in Section 6 we need the min-max principle for
harmonic functions. This is a profound result about harmonic functions
which is interesting on itself.

Proposition 4.11 ([2, §2.2 Theorem 4]). Let u ∈ C(Ω) be a non-constant
and harmonic function on Ω. If Ω is connected and bounded then for all
x0 ∈ Ω we have

min
Ω
u < u(x0) < max

Ω
.

Proof. We concern ourselves with the minimum case which is analogous to
the maximum case. Suppose there exists an x0 ∈ Ω such that u(x0) =
m := minΩ u, which is well-defined by compactness of Ω. Then the set
U = {x ∈ Ω | u(x) = m} is non-empty and it is closed in Ω by continuity of
u. Furthermore, for any x ∈ U we have by the mean value property

m = u(x) = −
∫
Br(x)

u(y) dy

for 0 < r < d(x, ∂Ω). This can only hold if u ≡ m on Br(x) which means
that Br(x) ⊂ U . We conclude that U is a non-empty open and closed subset
of Ω and hence equal to Ω by connectedness. This contradicts the fact that
u is not constant on Ω and thereby proves the result.
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4.3 Sub- and Superharmonic Functions

In this section we discuss certain properties of sub- and superharmonic func-
tions which are very similar to those of harmonic functions. The reason we
treat this is because the Euler-Lagrange equation becomes an inequality
when we introduce an obstacle. Thus we will naturally be dealing with
(weakly) sub- and superharmonic functions. The results proven in this sec-
tion are mostly trivial adaptations of those concerning harmonic functions.

Definition 4.12. A function u ∈ C2(Ω) is called subharmonic if ∆u ≥ 0
and superharmonic if ∆u ≤ 0.

In one dimension subharmonic functions correspond to convex functions
and superharmonic correspond to concave functions. Additionally, harmonic
functions correspond to functions of the form u(x) = ax + b for a, b ∈ R.
Since the graph of any convex function between two points always lies below
the straight line connecting these points we find that subharmonic func-
tions lie below harmonic functions in some sense. This is also where the
name subharmonic comes from and could be used as an alternate definition.
Regardless, sub- and superharmonic functions satisfy a similar mean value
property to harmonic functions which we now prove.

Lemma 4.13 (Mean value property). Let u ∈ C2(Ω) be subharmonic then
for all x0 ∈ Ω the functions

px0(r) = −
∫
∂Br(x0)

u(x) dS(x) and qx0(r) = −
∫
Br(x0)

u(x) dx

are increasing for 0 < r < d(x0, ∂Ω). If u is superharmonic then they are
decreasing.

Proof. We only treat the case of subharmonic functions since they are anal-
ogous. Exactly as in Lemma 4.6 we find that

p′x0(r) =
1

n
−
∫
B1(0)

∆u(x0 + ry) dy ≥ 0.

This shows that px0 is increasing. Now employing polar coordinates we find
that

qx0(r) =
|∂Br|
|Br|

∫ r

0
−
∫
∂Bs(x0)

u(x) dS(x) ds =
n

r

∫ r

0
px0(s) ds.

Differentiating yields

q′x0(r) =
n

r

(
px0(r)− 1

r

∫ r

0
px0(s) ds

)
≥ 0

as rpx0(r) ≥
∫ r

0 px0(s) ds. This proves the result.
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In particular the above lemma implies that for subharmonic functions

u(x0) = lim
s→0

px0(s) ≤ px0(r) and u(x0) = lim
s→0

qx0(s) ≤ qx0(r)

for 0 < r < d(x0, ∂Ω). For superharmonic functions we have

u(x0) ≥ px0(r) and u(x0) ≥ qx0(r).

Contrary to harmonic functions, the mean value property for sub- and super-
harmonic functions does not imply smoothness. However, we can still show
that weakly sub- and superharmonic functions satisfy the mean value prop-
erty, which we will use later. A weakly subharmonic function is a function
u ∈ L1

loc(Ω) such that for all nonnegative ϕ ∈ C∞c (Ω) we have∫
Ω
u(x)∆ϕ(x) dx ≥ 0.

Note that this implies in some weak sense that ∆u ≥ 0. The function is called
weakly superharmonic if the above integral is always smaller or equal to zero.
We have the following result showing that weakly sub- and superharmonic
functions satisfy one part of the mean value property.

Proposition 4.14. Suppose u ∈ L1
loc(Ω) is weakly sub- or superharmonic.

Then for all x0 ∈ Ω we have that the function

qx0(r) = −
∫
Br(x0)

u(x) dx

is increasing or decreasing respectively for 0 < r < d(x0, ∂Ω).

Proof. This is completely analogous to the first part of Theorem 4.9. We
mollify u to get a smooth function uε which turns out to be sub- or super-
harmonic. Then using that uε satisfies the mean value property and taking
the limit of ε to zero yields the mean value property for u.

Lastly, we prove a modest regularity result for weakly sub- and superhar-
monic functions, which becomes essential when investigating the regularity
for obstacle problems.

Proposition 4.15 ([1, Corollary 3.2]). Let u ∈ L1
loc(Ω) be weakly subhar-

monic. Then u has an upper semicontinuous representative which satisfies

u(x0) ≤ −
∫
Br(x0)

u(x) dx

for all x0 ∈ Ω and 0 < r < d(x0, ∂Ω). If u is weakly superharmonic then it
has a lower semicontinuous representative which satisfies

u(x0) ≥ −
∫
Br(x0)

u(x) dx

for all x0 ∈ Ω and 0 < r < d(x0, ∂Ω).
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Proof. We treat the case of u being subharmonic. We have by Proposition
4.14 that for any x0 ∈ Ω the function

qx0(r) = −
∫
Br(x0)

u(x) dx

is increasing on 0 < r < d(x0, ∂Ω). Therefore we find that limr→0 qx0(r)
exists, albeit possibly equal to −∞. By Lebesgue’s differentiation theorem
(Theorem 2.24) we can now choose a representative such that

u(x0) = lim
s→0
−
∫
Bs(x0)

u(x) dx ≤ −
∫
Br(x0)

u(x) dx

for all x0 ∈ Ω and 0 < r < d(x0, ∂Ω). Regarding the upper semicontinuity,
take a sequence {xi} converging to x in Ω. Since for small enough r we
have that uχBr(xi) converges pointwise to uχBr(x) we find by Lebesgue’s
dominated convergence theorem that

−
∫
Br(x)

u(y) dy = lim
i→∞
−
∫
Br(xi)

u(y) dy.

Since each integral on the right hand side is greater than or equal to u(xi)
we find that

−
∫
Br(x)

u(y) dy = lim
i→∞
−
∫
Br(xi)

u(y) dy ≥ lim sup
i→∞

u(xi).

Letting r go to zero now yields u(x) ≥ lim supi→∞ u(xi), which proves the
upper semicontinuity.
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5 Obstacle Problems

We are finally ready to formally define obstacle problems and to discuss the
regularity of solutions for the classical obstacle problem. We first look at
the uniqueness and existence of solutions, which follows almost immediatly
from the results in Section 3. Then we derive a so called variational in-
equality, which is a replacement of the weak Euler-Lagrange equation for
obstacle problems. Afterwards we dive in depth into the classical obstacle
problem and prove the optimal C1,1-regularity of solutions. Lastly, we touch
upon some generalizations of the optimal regularity and results about the
free boundary. For a good introduction on obstacle problems in one dimen-
sion see [8, Chapter 5.4], while we will be discussing the general case mostly
following [1].

Obstacle problems are similar to the minimization problems that we
have seen in Section 3 with the added constraint that we are minimizing
over functions that lie above a given obstacle function. Therefore we define
the set of admissible functions as

Kψ = {u ∈W 1,p
g (Ω) | u ≥ ψ a.e. in Ω}

where Ω ⊂ Rn is a bounded C1-domain, g ∈ C1(∂Ω) and ψ ∈W 1,p(Ω)∩C(Ω)
is the obstacle function. We also impose that ψ|∂Ω ≤ g for Kψ to be non-
empty. The obstacle problem now reads:

Minimize F(u) =

∫
Ω
f(x,∇u(x)) dx over all u ∈ Kψ, (5.1)

where f : Ω × Rn → R is continuous. Our first goal is to prove uniqueness
and existence of the minimizer by applying Theorem 3.5.

Theorem 5.1. Suppose f satisfies the p-coercivity bound (3.2) and is strictly
convex in its second argument. Then there exists a unique minimizer u0 ∈
Kψ of F .

Proof. This follows immediately from Theorem 3.5 if we can prove that Kψ

is a non-empty closed and convex subset of W 1,p
g (Ω). Let u, v ∈ Kψ then we

have for t ∈ [0, 1] that

tu+ (1− t)v ≥ min{u, v} ≥ ψ (a.e).

Thus tu+(1−t)v lies in Kψ, which proves that Kψ is convex. For closedness,

let {ui} be a sequence in Kψ converging to u ∈ W 1,p
g (Ω). In particular this

means that ui → u in Lp(Ω) and thus a subsequence converges pointwise
almost everywhere. We conclude that u ≥ ψ almost everywhere and hence
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u lies in Kψ. This proves that Kψ is closed in W 1,p
g (Ω). Lastly, we need to

show that Kψ is non-empty. To this aim let G : Ω→ R be a C1-extension of
g. Then we have that both G and ψ lie in W 1,p(Ω) and thus w := max{G,ψ}
lies in W 1,p(Ω) ([5, Theorem 4.4 (iii)]). Moreover, w also lies in C(Ω) so we
find that the trace of w is just its restriction to the boundary. This is equal
to g as we have ψ|∂Ω ≤ g. It is also clear that w ≥ ψ so we conclude that
w ∈ Kψ. This proves that Kψ is non-empty and thereby the theorem.

From now on we denote the unique solution of (5.1) by u0. Having this
solution we can now try to determine what kind of properties it satisfies. Be-
cause of the obstacle one cannot hope that the weak Euler-Lagrange equation
applies to the minimizer. This is because u0 + hϕ with ϕ ∈ W 1,p

0 (Ω) does
not necessarily lie in Kψ even for small h. Indeed, if ϕ takes negative values
then u0+hϕ could lie below the obstacle. Therefore we cannot conclude that
F(u0) ≤ F(u0 +hϕ), which was necessary to show that δF(u)(ϕ) = 0. How-
ever, by convexity of Kψ we have for any v ∈ Kψ that u0 + h(v − u0) ∈ Kψ

for h ∈ [0, 1]. This gives us a type of Euler-Lagrange inequality. We assume
that f satisfies the hypotheses of Corollary 4.4 then we have the following
result.

Proposition 5.2. Let u0 be the minimizer of (5.1). Then for all v ∈ Kψ

we have δF(u0)(v − u0) ≥ 0. Explicitly, this means that∫
Ω
Dξf(x,∇u0) · ∇(v − u0) dx ≥ 0. (5.2)

Proof. We know that δF(u0)(v−u0) exists by Corollary 4.4. Set ϕ = v−u0

then we find

δF(u0)(ϕ) = lim
h→0

F(u0 + hϕ)−F(u0)

h
= lim

h↓0

F(u0 + hϕ)−F(u0)

h
.

Since for h ∈ [0, 1] we have u0 + hϕ ∈ Kψ and thus F(u0) ≤ F(u0 + hϕ)
we conclude that the last limit is nonnegative as desired. If we recall the
explicit formula for δF(u0) as in Corollary 4.4 then we obtain the result.

The inequality in (5.2) is called a variational inequality. This inequality
encodes the entire obstacle problem in the case when F is convex (which
is guaranteed when ξ 7→ f(x, ξ) is convex). Namely, any u0 ∈ Kψ which
satisfies the variational inequality is then actually a minimizer.

Proposition 5.3. Suppose F is convex and there is some u0 ∈ Kψ for which
δF(u0)(v − u0) ≥ 0 for all v ∈ Kψ. Then u0 is a minimizer of F in Kψ.

Proof. For any v ∈ Kψ we have δF(u0)(v − u0) ≥ 0. Now we can reason
analogously to Proposition 4.5 with convexity of F to find 0 ≤ −F(u0)+F(v)
which yields the result.
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We conclude that solving the variational inequality is equivalent with
solving the obstacle problem when F is convex. Although we have shown
the existence of minimizers through the direct method, in certain cases es-
tablishing solutions of the variational inequality is also a possibility. See
for example [4, Chapter 1], where existence for obstacle problems is shown
through the variational inequality.

Our next step is to show regularity of the solution u0 by using the vari-
ational inequality. This delicate issue cannot be carried out for all general
integrands f : Ω×Rn → R at once. Hence we restrict ourselves to the classi-
cal obstacle problem that is related to harmonic functions whose regularity
we have studied.

5.1 Classical Obstacle Problem

The classical obstacle problem is defined as

Minimize D(u) =

∫
Ω

|∇u|2

2
dx over all u ∈ Kψ,

where
Kψ = {u ∈ H1

g (Ω) | u ≥ ψ a.e. in Ω}.

Again we assume Ω is a C1-domain, g ∈ C1(∂Ω) and ψ ∈ H1(Ω)∩C(Ω) such
that ψ|∂Ω ≤ g. This problem can be seen as a general obstacle problem with

the choice f(x, ξ) = |ξ|2
2 . In one dimension the problem models an elastic

string which is fixed at the boundary and suspended by the obstacle ψ, see
Figure 1. For more examples and applications see Section 6. As we have
seen in Example 3.6 the Dirichlet functional is coercive and weakly lower
semicontinuous on H1

g (Ω). Furthermore, it has a strictly convex integrand
and thus Theorem 5.1 shows that we have a unique solution u0 ∈ Kψ of the
classical obstacle problem.

In Example 4.3 we have shown that the first variation of the Dirichlet
functional is given by

δF(u)(v) =

∫
Ω
∇u · ∇v dx.

Hence the variational inequality for the Dirichlet functional becomes∫
Ω
∇u0 · ∇(v − u0) dx ≥ 0

for all v ∈ Kψ. We may take v = u0+ϕ for any nonnegative ϕ ∈ C∞c (Ω) from
which we see that u0 is weakly superharmonic. By applying Proposition 4.15
we have the following.
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Figure 1: Two examples of the solution of the classical obstacle problem in
one dimension.

Corollary 5.4. The solution u0 has a pointwise defined lower semicontinu-
ous representative which satisfies

u0(x) = lim
s→0
−
∫
Bs(x)

u0(y) dy ≥ −
∫
Br(x)

u0(y) dy

for all 0 < r < d(x, ∂Ω).

Note that for now u0 = ∞ can occur on a set of measure zero, but this
turns out not to be the case. From now on we identify u0 with this lower
semicontinuous representative. For this representative we have for all x ∈ Ω
that

u0(x) = lim
r→0
−
∫
Br(x)

u0(y) dy

≥ lim
r→0
−
∫
Br(x)

ψ(y) dy = ψ(x),

where the last part follows from continuity of ψ. We find that u0 ≥ ψ holds
everywhere in Ω. Now we can define the following sets

Λ = {x ∈ Ω | u0(x) = ψ(x)} and N = {x ∈ Ω | u0(x) > ψ(x)}.

Λ is called the contact or coincidence set and N is the noncoincidence set.
Furthermore, the set Γ := ∂Λ ∩ Ω is called the free boundary. We have the
following result.

Proposition 5.5 ([1, Corollary 3.3 and 3.4]). The set Λ is closed in Ω and
N is open. In addition, u0 ∈ C∞(N) and ∆u0 = 0 on N .
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Proof. The function u0−ψ is also lower semicontinuous and this implies that
Λ is closed in Ω. Indeed, let {xi} be a sequence in Λ converging to x ∈ Ω
then we have

(u0 − ψ)(x) ≤ lim inf
i→∞

(u0 − ψ)(xi) ≤ 0,

which shows that x ∈ Λ. As N is the complement of Λ we find that N
is open. To prove the last claim let ϕ ∈ C∞c (N) be any function and let
M ⊂ N be its compact support. Since u0 − ψ is lower semicontinuous and
positive on M we find that there is a x0 ∈M such that

min
x∈M

(u0 − ψ)(x) = (u0 − ψ)(x0) > 0.

We have used the fact that a lower semicontinuous function attains its
minimum on a compact set, which follows from the (finite-dimensional)
direct method. We conclude that if we choose ε > 0 small enough that
v = u0 + εϕ ≥ ψ and hence v ∈ Kψ. Now appealing to the variational
inequality with v = u0 + εϕ and dividing by ε yields∫

Ω
∇u0 · ∇ϕdx ≥ 0.

Since this holds for any test function (not necessarily nonnegative) it must
also hold for −ϕ. From this we conclude that∫

Ω
∇u0 · ∇ϕdx = 0 for all ϕ ∈ C∞c (N),

which shows that u0 is weakly harmonic on N . Using Weyl’s lemma (The-
orem 4.9) we conclude that u0 is almost everywhere equal to a smooth har-
monic function on N . However, since that representative is continuous it is
exactly the representative u0 that we have chosen.

With this proposition we already know a lot about u0. Indeed, it is
harmonic away from the contact set and equal to ψ on the contact set.
In particular, u0 < ∞ holds everywhere in Ω. Furthermore, u0 will be as
regular as the obstacle ψ as long as there are no problems across the free
boundary Γ. However, such problems can occur. If we look at the solution
u0 of the one-dimensional obstacle problem on the left side of Figure 1, then
by the previous proposition we have that u′′0 = 0 when u0 does not touch
the obstacle. At the same time we can see that at all places where u0 does
touch the obstacle we have u′′0 = ψ′′ < 0. This implies that u′′0 cannot be
continuous even though ψ is smooth. In general dimensions, it holds that
∆u0 can vary discontinuously across the free boundary as it is zero on N and
equal to ∆ψ on Λ (if it exists). Therefore, the optimal regularity which we
can hope to prove is that u0 has bounded second derivative in the interior
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of Ω, explicitly u0 ∈ W 2,∞
loc (Ω). It turns out that we can indeed prove this

optimal regularity by assuming that ψ ∈ W 2,∞(Ω). We note by Theorem
2.39 that this is the same as stating that u0 ∈ C1,1

loc (Ω) if ψ ∈ C1,1(Ω).

We now turn to the proof of this optimal regularity result. Therefore
we assume that ψ ∈ C1,1(Ω) and for simplicity of notation we introduce
v0 = u0 − ψ, which is zero on Λ and positive on N . We prove the C1,1

loc

regularity for the function v0, which then automatically also holds for u0.
Since the regularity is concerned with what happens at the free boundary we
first prove the following result which shows that the rate at which v0 grows
away from the free boundary is at most quadratic.

Lemma 5.6 ([1, Lemma 4.2]). Assume ψ ∈ C1,1(Ω) = W 2,∞(Ω). There is
a constant C > 0 which satisfies

0 ≤ v0(x) ≤ Cd(x,Γ)2

for x ∈ N such that d(x,Γ) ≤ 1
3d(x, ∂Ω).

Proof. The idea of the proof is to use the fact that u0 is harmonic on N and
weakly superharmonic on Ω. Then using a smart comparison we obtain the
result. First we define for any x ∈ Ω the function

fx : Ω→ R, fx(y) = ‖∆ψ‖∞
|x− y|2

2n
.

The crucial properties of this function are that ∆fx ≡ ‖∆ψ‖∞ and fx(x) = 0.
Next, take x0 ∈ N such that d(x0,Γ) ≤ 1

3d(x0, ∂Ω) holds. We set r0 :=
d(x0,Γ) from which we find that u0 is harmonic on Br0(x0). Therefore the
map h1(z) = v0(z) + fx0(z) satisfies

∆h1 = −∆ψ + ‖∆ψ‖∞ ≥ 0 a.e. in Br0(x0),

which shows that it is weakly subharmonic. By the mean value property
(Proposition 4.14 with r → r0) we find

v0(x0) = h1(x0) ≤ −
∫
Br0 (x0)

v0(z) + fx0(z) dz

≤ −
∫
Br0 (x0)

v0(z) dz + ‖∆ψ‖∞
r2

0

2n
.

On the other hand we can take y0 ∈ Br0(x0) ∩ Λ, see Figure 2, such that
B2r0(y0) ⊂ Ω by choice of x0. Now we define the function

h2(z) := v0(z)− fy0(z) = u0(z) + (−ψ(z)− fy0(z)),
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••x0
y0

r0

Figure 2: Illustration for Lemma 5.6.

which is the sum of two weakly superharmonic functions and thereby weakly
superharmonic. In a similar way we obtain by the mean value property
(r → 2r0)

0 = v0(y0) = h2(y0) ≥ −
∫
B2r0 (y0)

v0(z) dz − ‖∆ψ‖∞
2r2

0

n
.

Combining the two inequalities and using that v0 ≥ 0 and Br0(x0) ⊂
B2r0(y0) we have

v0(x0)− ‖∆ψ‖∞
r2

0

2n
≤ −
∫
Br0 (x0)

v0(z) dz ≤ |B2r0 |
|Br0 |

−
∫
B2r0 (y0)

v0(z) dz

= 2n−
∫
B2r0 (y0)

v0(z) dz ≤ 2n‖∆ψ‖∞
2r2

0

n
,

which proves the result for C = ‖∆ψ‖∞(2n+1

n + 1
2n).

Quadratic growth is what we expect from a function with bounded second
derivatives. Similarly, we expect the derivative to have linear growth and
naturally the second derivative to be bounded. This is what we prove in the
following slightly technical lemma, which enables us to intuitively obtain the
optimal regularity.

Lemma 5.7 ([1, Theorem 4.1]). Assume ψ ∈ C1,1(Ω) = W 2,∞(Ω). Then
there is a constant C ′ which satisfies

|∇v0(x)| ≤ C ′d(x,Γ) and |D2v0(x)| ≤ C ′ (5.3)

for all x ∈ N such that d(x,Γ) ≤ 1
6d(x, ∂Ω).
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Figure 3: Schematic representation of the set Λα.

Proof. For any x0 ∈ N and r > 0 such that Br(x0) ⊂ N we can use a Taylor
approximation of ψ at x0 to define the following approximation of v0:

h(y) := u0(y)− (ψ(x0) +∇ψ(x0) · (y − x0)).

Indeed, if we calculate |h(y)− v0(y)| then this is bounded by the error term
of the Taylor approximation of the C1,1 function ψ. Thus we have by Lemma
2.40 that

|h(y)− v0(y)| = |ψ(y)− ψ(x0)−∇ψ(x0) · (y − x0)|
≤ Lr2, for y ∈ Br(x0),

with L the Lipschitz constant of ∇ψ. Next, define for α > 0 the set

Λα = {x ∈ N | d(x,Γ) ≤ α · d(x, ∂Ω)},

which is schematically represented in Figure 3. Our goal is to prove (5.3)
for all x ∈ Λ1/6. Take x0 ∈ Λ1/6 and set r := d(x0,Γ)/2. It is an easy
check that Br(x0) ⊂ Λ1/3. In addition, for any y ∈ Br(x0) we have d(y,Γ) ≤
r + d(x0,Γ) = 3

2d(x0,Γ). Thus by using Lemma 5.6 we find that

‖v0‖L∞(Br(x0)) ≤
9

4
Cd(x0,Γ)2 = 9Cr2.

Hence we obtain by this bound and the bound on the Taylor approximation
that

‖h‖L∞(Br(x0)) ≤ ‖v0‖L∞(Br(x0)) + ‖h− v0‖L∞(Br(x0))

≤ (9C + L)r2.
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Furthermore, as the Taylor polynomial is linear we find ∆h = ∆u0 = 0 on
Br(x0) ⊂ N . Therefore we can apply the bound for harmonic functions
(Lemma 4.10) to h on Br(x0) to yield (divide by r2)

|∇h(x0)|
r

+ |D2h(x0)| ≤ K

r2
‖h‖L∞(Br(x0))

≤ K(9C + L).

Since ∇v0(x0) = ∇h(x0) and D2v0(x0) = D2h(x0) −D2ψ(x0) (D2u0(x0) is
well-defined since u0 is smooth in N) we can rewrite the above to

|∇v0(x0)|
r

+ |D2v0(x0)| ≤ K(9C + L) + ‖D2ψ‖∞ =: C ′.

We have chosen a representative of D2ψ, which is a weak derivative, that
satisfies D2ψ(x) ≤ ‖D2ψ‖∞ everywhere. Since r ≤ d(x0,Γ) this proves the
lemma.

In some sense the previous two lemmas show that v0 behaves like a C1,1

function in Λ1/6, which is exactly the crucial region. Therefore the optimal
regularity result is now fairly simple to prove. This result was first proven
by Jens Frehse in 1972, see [20].

Theorem 5.8 (Optimal regularity, [1, Theorem 4.1]). Let ψ ∈ C1,1(Ω) =
W 2,∞(Ω). Then the function v0 lies in C1,1

loc (Ω) and hence the solution of the

classical obstacle problem u0 lies in C1,1
loc (Ω).

Proof. We first prove that v0 ∈ C1(Ω). As v0 = 0 on Λ we have that ∇v0 = 0
a.e. on Λ ([5, Theorem 4.4 (iv)]). Thus we take the representative of ∇v0

such that ∇v0 = 0 everywhere on Λ. We conclude that now v0 and ∇v0 are
continuous on Λ and they are continuous on N by harmonicity. In addition,
Lemma 5.6 and 5.7 imply that for any sequence {xi} in N with d(xi,Γ)→ 0
we have v0(xi)→ 0 and ∇v0(x0)→ 0. Therefore v0 and ∇v0 are continuous
on Ω (recall that discontinuities can only occur across the free boundary).
This implies by Theorem 2.38 that v0 ∈ C1(Ω).

Now we prove that ∇v0 is locally Lipschitz. Since u0 is smooth on N
we find at once that ∇v0 is locally Lipschitz on N . We prove the same on
the set Λ ∪ Λ1/12, where Λ1/12 is defined as in Lemma 5.7. For x, y ∈ Λ1/12

we may assume that x and y do not lie both in Λ otherwise |∇u0(x) −
∇u0(y)| = 0. Assume without loss of generality that also d(x,Λ) ≥ d(y,Λ)
which means that x ∈ Λ1/12, while y can lie in either Λ or Λ1/12. We
consider two cases. The first case is that |x − y| < d(x,Γ)/2 =: r. An easy
computation yields that Br(x) ⊂ Λ1/6 and therefore we have by Lemma 5.7
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that ‖D2v0‖L∞(Br(x)) ≤ C ′. Hence by Theorem 2.38 ∇v0 is Lipschitz on

Br(x) (with constant C ′) so

|∇v0(x)−∇v0(y)| ≤ C ′|x− y|.

The second case is when |x− y| ≥ d(x,Γ)/2. Since x, y ∈ Λ ∪Λ1/12 we have
by Lemma 5.7 that

|∇v0(x)| ≤ C ′d(x,Γ) and |∇v0(y)| ≤ C ′d(y,Λ),

since ∇v0(y) = 0 if y ∈ Λ. We now use a rough estimate and the assumption
d(x,Γ) ≥ d(y,Λ) to get

|∇v0(x)−∇v0(y)| ≤ |∇v0(x)|+ |∇v0(y)| ≤ 2C ′d(x,Γ) ≤ 4C ′|x− y|.

This proves that ∇v0 is Lipschitz continuous on Λ ∪ Λ1/12 with Lipschitz
constant 4C ′. As the interiors of Λ ∪ Λ1/12 and N comprise Ω we conclude

that v0 ∈ C1,1
loc (Ω).

Remark 5.9. Under weaker conditions we can also state regularity results.
For example, we can show that u0 is continuous if ψ is continuous or u0 is C1

if ψ is C1. See for example [3]. We have restricted ourselves to the optimal
case for simplicity.

5.2 Generalizations and the Free Boundary

In this section we discuss extensions of the optimal regularity result to ellip-
tic obstacle problems and the regularity of the free boundary of the classical
obstacle problem.

We first wish to generalize the C1,1
loc regularity result to a specific class of

elliptic obstacle problems. These are obstacle problems with the functional

E(u) =

∫
Ω

∇uTA∇u
2

dx,

where A is a symmetric positive definite matrix (i.e. it has strictly pos-
itive eigenvalues). Note that this functional corresponds to the Dirichlet
functional when A is the identity. The obstacle problem for this functional
becomes

Minimize E(u) over all u ∈ Kψ = {v ∈ H1
g (Ω) | v ≥ ψ a.e. in Ω},

where Ω, ψ and g are as in Section 5.1. I have come up with my own
argument to show that this problem is equivalent to the classical obstacle
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problem by using a linear transformation. After showing this we then obtain
that the optimal regularity also holds for the functional E . Consider the
decomposition A = OTDO with O orthogonal and D a diagonal matrix
with positive entries. This decomposition exists as A is symmetric and
positive definite. Now we can define the principal square root of A as

√
A :=

OT
√
DO, where

√
D is the diagonal matrix with as entries the square roots

of those of D. We see that
√
A is also symmetric and positive definite and√

A
√
A = A. To make the distinction between a matrix and a linear map

we define the smooth invertible map

L : Rn → Rn, x 7→ (
√
A)−1x.

Since L is smooth and invertible (with smooth inverse) we have that Ω′ :=
L(Ω) is a C1-domain. Hence we can define the classical obstacle problem on
Ω′ as

Minimize D(u) =

∫
Ω′

|∇u|2

2
dx over all u ∈ K ′ψ,

with K ′ψ = {v ∈ H1(Ω′) | v|∂Ω′ = g ◦ L−1, v ≥ ψ ◦ L−1 a.e.}. We show
equivalence of the two minimization problems. First, by our chosen defini-
tions the map L induces a bijection between Kψ and K ′ψ, which is explicitly
given by

L∗ : K ′ψ → Kψ, v 7→ v ◦ L.

We can also calculate for any u ∈ K ′ψ that

E(L∗u) =

∫
Ω

(∇(L∗u(x)))TA∇(L∗u(x))

2
dx

=

∫
Ω

∇u(Lx)TLTAL∇u(Lx)

2
dx

=

∫
Ω

∇u(Lx)T∇u(Lx)

2
dx,

where the third line follows as LTAL = (
√
A)−1A(

√
A)−1 = Id. Now we

make the substitution y = Lx to obtain

E(L∗u) = det(L−1) ·
∫

Ω′

|∇u(y)|2

2
dy = C · D(u),

with C = det(L−1) > 0. We conclude that L∗ is a bijection between K ′ψ and
Kψ and relates the two functionals E and D by a positive constant. This
indeed implies that the minimization problems are equivalent. In particular
if v0 is the minimizer of the Dirichlet integral over K ′ψ, then u0 := L∗v0 is
the minimizer of E over Kψ. This proves that the optimal regularity result
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also holds for obstacle problems with the functional E . For the optimal reg-
ularity for more general second order elliptic variational inequalities see [4,
Chapter 1.3 and 1.4].

Apart from generalizing the variety of obstacle problems one can try
to investigate the regularity of the free boundary. Namely, in a lot of ap-
plications it is not only the minimizer that is of interest but also the free
boundary. This is for example the case for the dam problem and the op-
timal stopping times explained in Section 6. Hence it would be interesting
to know certain properties of the free boundary in both general and specific
cases. Additionally, when the free boundary is known the classical obstacle
problem reduces to solving the equation ∆u0 = 0 on the set N . The gen-
eral regularity theory for the free boundary of the classical obstacle problem
begins with the assumption that ∆ψ < 0 on the set Λ to avoid pathological
cases. Then the free boundary can be divided up into regular and singular
points. For regular points we find that there is a neighborhood in which the
free boundary is an analytic n − 1-dimensional manifold. For the singular
points it is more subtle and difficult, and there are still some unanswered
questions about the singular points. The first groundbreaking paper on this
topic was [3] by Caffarelli, where he described the structure of the regular
and singular points of the free boundary. For a great approachable text
on this topic and some of the recent developments see the lecture notes by
Figalli [1].
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6 Applications

In this section we study motivating examples and applications of the classical
obstacle problem studied in Section 5. The first example can be seen as the
standard interpretation of the problem, while the second and third are a lot
less obvious. The way they can be rewritten to a classical obstacle problem
is very unexpected and shows the versatility of obstacle problems.

6.1 Modelling of Elastic Membrane

The prime motivating example for the obstacle problem, as discussed in [18,
Chapter 1.2], is that of finding the equilibrium position of an elastic mem-
brane which is suspended by the obstacle ψ. We explain this interpretation
and show two examples.

Let Ω ⊂ R2 be a bounded C1-domain and let u0 : Ω → R describe
the position of a membrane such that the membrane corresponds with the
graph of u0. The membrane is being held fixed at the boundary at height
g ∈ C1(∂Ω). If there is no influence by gravity or other external forces we
can assume that the potential energy of such a membrane is proportional to
the area of this membrane. For a general u ∈ H1(Ω) this area is given by
the functional

A(u) =

∫
Ω

√
1 + |∇u|2 dx.

By the principle of minimal potential energy we find that the equilibrium
position of the membrane u0 can be modelled by minimizer of the functional
A over all functions u ∈ H1(Ω) that satisfy u ≥ ψ and u|∂Ω = g. However,
the area functional A is difficult to analyse and hence we utilize the Taylor

approximation
√

1 + |x|2 ≈ 1+ 1
2 |x|

2 +O(|x|4). Therefore for small |∇u| the
approximation

A(u) ≈
∫

Ω
1 +
|∇u|2

2
dx

is valid. As the constant 1 does not change the minimization problem we see
that minimizing the right hand side is the same as minimizing the Dirichlet
integral

D(u) =

∫
Ω

|∇u|2

2
dx

over the set Kψ = {u ∈ H1
g (Ω) | u ≥ ψ}. Hence the membrane u0 can

be modelled by the solution of the classical obstacle problem, studied in
the previous section. We will simulate the solution of the classical obstacle
problem in two dimensions by using our numerical method given in the
appendix. Two examples of obstacles and solutions are given in Figure 4.
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Figure 4: Two examples of the solution of the classical obstacle problem in
two dimensions representing an elastic membrane. In the top figure we have
ψ(x, y) = 1/4− 2((x− 1/2)2 + (y− 1/2)2) and in the bottom figure we have
ψ(x, y) = −1/8+e−200((x−1/4)2+(y−3/4)2) +1/2 e−100((x−3/4)2+(y−1/4)2). Both
examples have g = 0.
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Ω
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H

h

Figure 5: Cross-section of a dam.

6.2 The Dam Problem

This example is found in [4, Chapter 1.5] and [18, Chapter 2.3 and 2.4].
Consider the cross-section of a dam made out of a porous material like earth,
which separates two reservoirs of water having different heights H and h,
see Figure 5. We are interested in how the water flows through the dam,
which can have effects on the amount of seepage and the erosion inside the
dam. Using (x, y)-coordinates we can represent the cross-section of the dam
as Ω = (0, a)× (0, H). We expect the water level to slowly decrease as we go
from the high reservoir to the low reservoir. Therefore, if N represents the
wet part of the dam and Λ the dry part then we can write their interface
Γ, which describes the water level in the dam, as the graph of a function
η : (0, a)→ (0, H) which is decreasing. Because of this we also find

Λ = {(x, y) ∈ Ω | y ≥ η(x)} and N = {(x, y) ∈ Ω | y < η(x)}.

Our goal is to determine this function η or equivalently Γ by considering an
obstacle problem with free boundary exactly equal to Γ. First we describe
the movement of the water by using the laws of fluid dynamics. By Darcy’s
law we have that

v(x, y) = k(x, y)∇w(x, y),

where w : N → R is the hydraulic head, k is the permeability coefficient and
v is the velocity field of the fluid. The hydraulic head is a kind of pressure
measurement above a certain vertical level. We take the vertical level y = 0
from which we obtain that the hydraulic head is given by w(x, y) = y +
p(x, y), where y represents the elevation head, i.e. the gravitational force
of the water and p(x, y) is the pressure head, i.e. the inner pressure of the
water. Assume for simplicity that k is constant then we have by conservation
of mass div(v) = 0 that ∆w = 0 on N . Since the flow of the water at Γ is
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tangent to Γ we have that w satisfies the system

∆w = 0 on N, Dνw = 0 on Γ, (6.1)

where ν is an outward normal to Γ. Note that the size of k has an influence
on the velocity of the fluid, but it does not affect the above equation of the
hydraulic head as long as it is constant. For the boundary conditions on w we
find that in the reservoirs we can assume there is negligible flow and hence the
pressure at a point is given by the height of the liquid above it. Furthermore,
the pressure is zero on Γ and for (a, y) with a < y < η(a). Lastly, we
assume that the bottom of the dam is impenetrable which translates to
Dyw(x, 0) = 0. We can summarize this to the following boundary conditions.

w(0, y) = H if 0 ≤ y ≤ H,
w(a, y) = h if 0 ≤ y ≤ h,
w(a, y) = y if h ≤ y ≤ η(a),

w(x, y) = y on Γ

Dyw(x, 0) = 0 if 0 ≤ x ≤ a.

(6.2)

We see that (6.1) and (6.2) define a partial differential equation on an
unknown domain N . This is therefore called a free boundary problem and
in this case the free boundary is Γ. We want to transform the problem into
an obstacle problem now. To this aim suppose that we have a solution w of
(6.1), (6.2), which means that η is C1 and w ∈ C1(N ∪Γ)∩C(N). Also w is
smooth on N as w is harmonic. First we show that p(x, y) = w(x, y)−y > 0
in N . As p is harmonic on N and continuous on N we find by the minimum
principle (Proposition 4.11) that p attains its minimum only at the boundary.
We know that p ≥ 0 on the boundary of N except at the bottom. In addition,
at the bottom we have Dy(x, 0) = Dyw(x, 0)− 1 = −1 which means that p
decreases when going up from the bottom. Hence the minimum of p cannot
be attained at the bottom of the boundary either. Thus we conclude that
p ≥ 0 on ∂N and therefore p > 0 on N . Next, we will transform w by
using the Baiocchi transform, which is named after Claudio Baiocchi who
first discovered it, see [11]. The transformed function is given by

u(x, y) =


∫ η(x)

y
w(x, t)− t dt if 0 < y ≤ η(x),

0 if η(x) < y < H,

which is a function defined on Ω = (0, a) × (0, H). This function turns out
to be a solution of an obstacle problem to which we can apply our developed
theory. To this aim we calculate ∆u on N . First we have Dyu(x, y) =
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−w(x, y) + y and Dyyu = −Dyw(x, y) + 1. Next, by using differentiation
under the integral we obtain

Dxu(x, y) =

∫ η(x)

y
Dxw(x, t) dt+ η′(x)(w(x, η(x))− η(x))

=

∫ η(x)

y
Dxw(x, t) dt,

by the fourth condition of (6.2). Thus we have by differentiating again and
using Dxxw = −Dyyw that

Dxxu(x, y) =

∫ η(x)

y
Dxxw(x, t) dt+ η′(x)Dxw(x, η(x))

= −
∫ η(x)

y
Dyyw(x, t) dt+ η′(x)Dxw(x, η(x))

= Dyw(x, y)−Dyw(x, η(x)) + η′(x)Dxw(x, η(x)) = Dyw(x, y),

where the last equality follows by the second part of (6.1). We conclude that
∆u = 1 on N . Additionally u > 0 on N since p > 0 on N . Also we have
u = 0 on Λ. To conclude that u solves an obstacle problem we still need
that ∆u ≤ 1 in distributional sense, explicitly this means that∫

Ω
∇u · ∇ϕdx ≥ −

∫
Ω
ϕdx,

for all nonnegative ϕ ∈ C∞c (Ω). By using the Gauss-Green theorem and
∆u = 1 on N we find∫

Ω
∇u · ∇ϕdx =

∫
N
∇u · ∇ϕdx

= −
∫
N

∆uϕdx+

∫
Γ
Dνuϕdx

= −
∫
N
ϕdx+

∫
Γ
Dνuϕdx.

We now show that the last integral is nonnegative. As Dxu = 0 on Γ we can
calculate

Dνu(x, y) = c(x, y)(−η′(x)Dxu(x, y) +Dyu(x, y))

= c(x, y)(−w(x, y) + y)

= c(x, y)p(x, y) > 0,

where c > 0 scales to get a unit normal. The second line follows since
Dxu = 0 on Γ. Returning to the original computation we now find by using
ϕ ≥ 0 that ∫

Ω
∇u · ∇ϕdx ≥ −

∫
Ω
ϕdx
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as desired. Integrating the boundary conditions (6.2) we find that u|∂Ω = g
where g is the continuous and piecewise smooth function

g(0, y) = 1
2(H − y)2

g(a, y) = 1
2(h− y)2 if 0 < y ≤ h,

g(x, 0) = H2

2 (1− x
a ) + h2

2
x
a ,

g(x, y) = 0 else.

Combining everything that we have shown it is now an easy check by using
that C∞c (Ω) is dense in H1

0 (Ω) that u satisfies the variational inequality∫
Ω
∇u · ∇(v − u) dx ≥ −

∫
Ω

(v − u) dx

for all v ∈ K0 := {v ∈ H1
g (Ω) | v ≥ 0}. This means that u solves the problem

Minimize J (v) =

∫
Ω

|∇v|2

2
+ v dx, over all v ∈ K0. (6.3)

Also u = 0 on Λ and u > 0 on N which shows that indeed Γ is the free
boundary for u. What is not mentioned in [4] is that we can reduce this to
the classical obstacle problem by considering the function

ψ(x, y) =
−(x2 + y2)

4
,

which is smooth and satisfies ∆ψ = −1. Any other smooth function with
Laplacian -1 can be chosen as well. Then u0 = u+ ψ satisfies

∆u0 = 0 on N = {u0 > ψ}∫
Ω
∇u0∇ϕdx ≥ 0 for all ϕ ∈ C∞c (Ω)

u0 ≥ ψ on Ω,

where the second line follows from the fact that ∆u ≤ 1 in distributional
sense. Hence it is easy to check that u0 satisfies the variational inequality
for the classical obstacle problem with obstacle ψ and boundary condition
g + ψ|∂Ω. Therefore we conclude by Proposition 5.3 that u0 minimizes

D(v) =

∫
Ω

|∇v|2

2
dx

over all v ∈ Kψ = {v ∈ H1(Ω) | v|∂Ω = g + ψ|∂Ω, v ≥ ψ}, which is the
classical obstacle problem. (In this case ∂Ω is only piecewise smooth and
so is g but this is a straightforward generalization of what we have done).
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We conclude by Section 5 that there exists a unique solution u ∈ C1,1
loc (Ω)

of (6.3) without assuming that (6.1), (6.2) has a solution. Therefore by
approximating the solution and the corresponding free boundary we can de-
termine in which part of the dam the water is located. Appealing to our
numerical solver for the two-dimensional obstacle problem, see appendix, we
can approximate the solution u of (6.3) and from this approximation we can
determine an approximation of the free boundary. We have carried this out
for the values H = 1 and h = 1/4 and we vary the width of the dam a to
see how it affects the water level, see Figure 6.

Figure 6: Simulation of the water level for the dam problem with H = 1,
h = 1/2 and the width a varying from 0.1 to 100.

When a = 0.1 the water level almost remains constant and ends at height
0.91. Hence it is natural to suspect, keeping in mind physical considerations,
that as a goes to zero the water level η will become more and more flat. We
expect that the function η(x/a) converges to the constant function H (on
(0, 1)) as a goes to zero. For a = 1 we can see the water level decreasing
considerably, as expected, and end up at height 0.4. Noteworthy is that
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the end level is still higher than the lower reservoir at height 0.25. When
a = 10 we have that the water level at the end is practically equal to that of
the lower reservoir. As the water cannot drop below the level of the lower
reservoir we imagine that this means that the solution has stabilized in some
sense. Indeed, if we look at the graph for a = 100 we can see that it has
practically the same shape as for a = 10. So we see that once the water
level at the end approaches h, the solution does not change that much when
we increase a (of course we need to scale space). Therefore we expect that
the solution η(x/a) converges to a curve similar to the last graph in figure
6 as a goes to infinity. A different hypothesis is that there is some critical
value am such that η(am) = h and after which the shape of the water does
not change anymore. However, this hypothesis is incorrect as it is proven in
Chapter 2.6 of [4] that η(a) is always strictly larger than h.

6.3 Optimal Stopping Times

The following is an application to financial mathematics, from [10, p.110-
114], where we want to design a strategy to stop a random process at an
optimal time, i.e. maximizing the expected payoff. In [10] this is done for
general stochastic processes but we restrict ourselves to a specific case in
which the classical obstacle problem comes up.

Consider a bounded C1-domain Ω ⊂ Rn and a payoff function ψ ∈
C1,1(Ω) (in particular this means ψ ∈ C(Ω) by extension of Lipschitz func-
tions). This payoff function turns out to be the obstacle function in our
example. For any x ∈ Ω we consider the stochastic process {X(t) =
x + W (t) | t ≥ 0}, where W (·) is an n-dimensional Brownian motion. A
Brownian motion is a family of random variables W (t) for t ≥ 0 such that
t 7→ W (t) ∈ Rn is a continuous path starting at the origin. Also the value
of W (t) −W (s) for t > s is independent of W (s), i.e. it is memoryless in
some sense. Therefore the Brownian motion can be interpreted as a random
walk starting at the origin that has no jumps. There are some more subtle
properties of Brownian motion but we will not go into detail about these.
See for example [26, Chapter 3] for an introduction on Brownian motion.
From the definition of X(·) it follows that X(·) is a random walk starting at
the point x in Ω, see Figure 7.

The game is that we can stop the process X(·) at any time t and receive
the payoff ψ(X(t)). If the process X(·) exits the domain Ω at time t, i.e.
X(t) ∈ ∂Ω, then the process stops immediately and we receive ψ(X(t)). Our
problem is to find a strategy to determine at which time we need to stop
the process to maximize the expected payoff. Of course, at which time we
need to stop is dependent on the process X(·), which is random, and hence
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Ω

x = X(0)

X(t)

Figure 7: Representation of a 2-dimensional Brownian motion starting at x,
which is simulated up to time t.

the stopping time should be a random variable as well. This is because it
depends on the outcome of the experiment X(·) whether we want to stop
at time t0. Note that if we stop the process X(·) at time less than t0 then
this decision can only be based on the outcome of X(t) for t ≤ t0. Indeed, if
we knew beforehand what X(t) is for all t then it is easy and uninteresting
to find the optimal stopping time. That the stopping time is independent
of the future can be captured mathematically, but this will wander too far
away from our goal. For our purposes it is enough to see a stopping time
τ as a nonnegative valued random variable which determines when to stop
and does not use information about the future. Now our goal is to find an
optimal stopping time τ∗ such that

E[ψ(X(τ∗))] = max
τ stopping time

E[ψ(X(τ))],

where E denotes the expected value. Informally this formula states that the
expected outcome when applying the strategy τ∗ is the maximal outcome
over all strategies τ . Instead of trying to solve this directly we shift the
attention to the starting point of the processX(·). We emphasize the starting
point by writing Xx(·) = X(·) and this allows us to define the function

v0(x) = sup
τ stopping time

E[ψ(Xx(τ))].

Now if we want to find an optimal stopping time τ∗ (for any starting point
x) then this is equivalent to showing that

E[ψ(Xx(τ∗))] = v0(x). (6.4)

About v0, because τ ≡ 0 is a valid stopping time we observe that v0(x) ≥
E[ψ(Xx(0))] = ψ(Xx(0)) = ψ(x). We therefore have v0 ≥ ψ on Ω. Note also
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that on the boundary ∂Ω any process immediately stops and hence v0 = ψ
on ∂Ω. This already hints at the fact that v0 has something to do with an
obstacle problem, but we show this later. For now, let u0 ∈ C1,1

loc (Ω) be the
unique solution of the obstacle problem

Minimize D(u) =

∫
Ω

|∇u|2

2
dx over all u ∈ Kψ,

where Kψ = {u ∈ H1(Ω) | u ≥ ψ, u|∂Ω = ψ|∂Ω}. Our strategy is to find
a stopping time τ∗ such that E[ψ(Xx(τ∗))] = u0(x) for any x and establish
that u0 = v0 (as anticipated) from which we obtain (6.4) thus proving the
optimality of τ∗.

As usual we define the sets

Λ = {x ∈ Ω | u0(x) = ψ(x)} and N = {x ∈ Ω | u0(x) > ψ(x)}.

Using these sets we can define the following stopping time τ∗. If Xx(0) =
x ∈ N then we continue the process until the first time t such that Xx(t) ∈
Γ = ∂N ∩ Ω. If Xx(0) = x ∈ Λ then we stop the process immediately. Also
if at any time Xx(t) ∈ ∂Ω then the process is forced to stop. Intuitively,
this means that N is the continuation set and Λ is the stopping set. Let us
now show that E[ψ(Xx(τ∗))] = u0(x). If x ∈ Λ then τ∗ ≡ 0 which implies
E[ψ(Xx(τ∗))] = ψ(Xx(0)) = ψ(x) = u0(x). If on the other hand x ∈ N then
τ∗ is exactly the time at which Xx(·) leaves the region N . We now need a
formula from stochastic calculus which connects the Brownian motion with
the Laplacian. This deep connection is called Itô’s formula and for stopping
times it takes the form

E[u(Xx(τ))] = u(x) + E
[∫ τ

0

1

2
∆u(X(s)) ds

]
. (6.5)

We do not prove this formula but it can be found in [10, p.105]. This formula
captures the way the expected value of a function applied to the Brownian
motion varies over time. Because for s < τ∗ we have X(s) ∈ N we find that
∆u0(X(s)) = 0. Therefore applying (6.5) to u0 and τ∗ yields

E[u0(Xx(τ∗))] = u0(x) + E

[∫ τ∗

0

1

2
∆u0(X(s)) ds

]
= u0(x).

Furthermore, Xx(τ∗) will always lie in ∂N (by design of τ∗) and on this set
we have u0 = ψ. Therefore we can conclude that

E[ψ(Xx(τ∗))] = E[u0(Xx(τ∗))] = u0(x),
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which shows E[ψ(Xx(τ∗))] = u0(x) for all x ∈ Ω. Because this trivially
implies that u0 ≤ v0 we only need to prove u0 ≥ v0 to find (6.4) which
proves that τ∗ is optimal. To this end let τ be any other stopping time.
Then we have by rewriting (6.5) that

u0(x) = E[u0(Xx(τ))] + E
[∫ τ

0
−1

2
∆u0(Xx(s)) ds

]
.

Now ∆u0 ≤ 0 by superharmonicity of u0 and u0 ≥ ψ thus we find

u0(x) ≥ E[u0(Xx(τ))] ≥ E[ψ(Xx(τ))].

Since this holds for any stopping time τ we find u0(x) ≥ v0(x) as desired.

In short, we have established that finding an optimal stopping time for
the Brownian motion starting at x with payoff function ψ can be done by
solving the obstacle problem with obstacle and boundary condition given by
ψ. The optimal stopping time τ∗ is then given by the first time at which
Xx(·) does not lie in the continuation set N .
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Appendix

Here we want to include the code which was used to simulate the obstacle
problem in one and two dimensions, which is used in Figures 1,4 and 6. For
the one-dimensional case it can be readily seen from the theory discussed
that the solution u0 corresponds to the concave envelope of the obstacle ψ
with certain boundary conditions, see [8, Chapter 5.4]. There is an exact
formula for this namely

u0(x) = sup
t≤x,s≥x

(s− x)ψ(t) + (x− t)ψ(s)

s− t
,

where we redefine ψ at the boundary to equal the boundary condition. We
can simply implement this in Matlab R2017b as follows:

%obstacle function, boundary values and interval [0,L]

psi= @(x) exp(-(x-1/2)^2);

a=0.2;

b=0.4;

L=1;

n=501;

dx=L/(n-1);

v=[a, zeros(1,499), b];

for i=2:500

v(i)=psi((i-1)*dx);

end

u0=[a,zeros(1,n-2),b];

m=-inf;

for i=2:n-1

for j=1:i-1

for k=i+1:n

m=max(m,((k-i)*v(j)+(i-j)*v(k))/(k-j));

end

end

u0(i)=m;

m=-inf;

end

v(1)=psi(0);

v(n)=psi(1);

plot((0:dx:L),[u0;v])

leg1=legend(’$u_0$’, ’$\psi$’,’location’, ’southeast’);

set(leg1,’Interpreter’,’latex’);

x1=xlabel(’$x$’);
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set(x1,’Interpreter’,’latex’);

For the two-dimensional case we have implemented the algorithm from [13,
p.26]. This algorithm solves the equation max(∆u, ψ−u) = 0 by using finite
differences. Note that this equation implies u ≥ ψ, ∆u ≤ 0 and ∆u = 0 when
u = ψ, which is the case for the obstacle problem. The code implementing
this in Matlab R2017b is given below.

%domain=[0,a]x[0,b]

a=1;

b=1;

%obstacle psi

psi=@(x) 1/4-2*((x(1)-1/2)^2+(x(2)-1/2)^2);

%boundary condition g

g=@(x) 0;

%stepsize

h=1/100;

im=a/h+1;

jm=b/h+1;

%solution table

u=zeros(im,jm);

%boundary condition

for i=1:im

u(i,1)=g([(i-1)*h,0]);

u(i,jm)=g([(i-1)*h,b]);

end

for j=2:jm-1

u(1,j)=g([0,(j-1)*h]);

u(im,j)=g([a,(j-1)*h]);

end

%initial condition

for i=2:im-1

for j=2:jm-1

u(i,j)=max(0,psi([(i-1)*h,(j-1)*h]));

end

end
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%algorithm

v=u;

for i=2:im-1

for j=2:jm-1

v(i,j)=max((1/4)*(u(i+1,j)+u(i,j+1)+u(i-1,j)+u(i,j-1)),

psi([(i-1)*h,(j-1)*h]));

end

end

l=0;

s=abs(u-v);

while max(s(:))>0.00001

l=l+1;

u=v;

for i=2:im-1

for j=2:jm-1

v(i,j)=max(1/4*(u(i+1,j)+u(i,j+1)+u(i-1,j)+u(i,j-1)),

psi([(i-1)*h,(j-1)*h]));

end

end

s=abs(u-v);

end

ob=zeros(im,jm);

for i=1:im

for j=1:jm

ob(i,j)=psi([(i-1)*h,(j-1)*h]);

end

end

x=0:h:a;

y=0:h:b;

mesh(x,y,transpose(ob),’EdgeColor’,[0.8500 0.3250 0.0980])

hold on

mesh(x,y,transpose(v),’EdgeColor’,[0.3010 0.7450 0.9330])

leg1=legend(’$\psi$’,’$u_0$’,’location’, ’best’);

set(leg1,’Interpreter’,’latex’);

x1=xlabel(’$x$’);

set(x1,’Interpreter’,’latex’,’FontSize’,12);

y1=ylabel(’$y$’);

set(y1,’Interpreter’,’latex’,’FontSize’,12);
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