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Abstract

In this thesis an introduction to geometric or Clifford algebra is given, with an
emphasis on the geometric aspects of this algebra. The aim is to show that this
algebra is a powerful tool for both mathematics and physics and results in compact,
coordinate free expressions. The main focus will be on Euclidean spaces of 2 and 3
dimensions, but it will be shown that it is possible to extend the results to higher
dimensions. Finally a start will be made to further extend to more general algebras
with non-degenerate bilinear forms with a mixed signature.
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1 Introduction

Starting from familiar Euclidean spaces in 2 and 3 dimensions (R2 and R3), which are vector
spaces with an inner product, we extend them to an associative algebra called Geometric al-
gebra or Clifford algebra by introducing the geometric product, after first having had a look
at the exterior algebra. Geometric algebra contains elements which can represent geometric
objects such as points, lines, planes and volumes, but at the same time these objects can be
used as operators. We will derive elegant coordinate free expressions for a number of geometric
operations such as projection, reflection and rotation. We will discover that several other well
known algebras like complex numbers, quaternions and the Pauli algebra, are subalgebras of
geometric algebra. Geometric algebra will also provide a natural representation for what are
called polar and axial vectors. After getting familiar with the properties of the geometric al-
gebra in 2 and 3 dimensions, we will take a more general approach which allows us to extend
this type of algebra to arbitrary dimensions and quadratic forms with mixed signature. In this
general approach we will take the geometric product as basic and formulate other products in
terms of it. We will limit ourselves to vector spaces over the field R.

2 The outer product in 2 and 3 dimensions

From physics we are familiar with products between vectors. Examples are the inner or dot
product, which results in a scalar, and the vector product which results in another vector.
The inner product is a symmetric bilinear product of two vectors which results in a scalar.
The vector product is an anti-symmetric bilinear product which results in a vector which is
orthogonal to both vectors in the product and has a direction which is determined by the ’right
hand rule’. Although these two products have proved to be very useful in physics, there are
a few shortcomings. Both products miss the very desirable algebraic property of associativ-
ity and do not support the definition of a multiplicative inverse. The definition of the vector
product limits its use to 3 dimensions and does not allow for easy generalization to higher
dimensions. The inner product is only defined between 2 vectors and produces a scalar and
not a vector again so it is not an operation that closes in the vector space. Considered from
a 2D standpoint, the vector product does not close in the 2D space, it needs the third dimension.

We can remove the disadvantages mentioned for the vector product by defining a new product
which is called the outer product (due to Grassmann). It will retain some of the properties of
the vector product, but most importantly: it will be associative.

First we define what we mean by the orientation of a subspace of some Euclidean space.
A line through the origin is a 1-dimensional subspace of a Euclidean space of dimension ≥ 1.
We can turn the line into an oriented line by choosing a basis (in this case 1 vector {e1}). For
an arbitrary vector v = λe1 in this 1-dimensional subspace we now can define its orientation
by taking the sign of its coordinate λ.

A plane through the origin is a 2-dimensional subspace of a Euclidean space of dimension ≥ 2.
We can turn the plane into an oriented plane by choosing an ordered basis (in this case 2
vectors B = {e1, e2}). For an ordered set of arbitrary independent vectors {v1, v2} in this
2-dimensional subspace we now can define its orientation by taking the sign of the determinant
of the coordinates of the vectors relative to the chosen basis: detB(v1, v2). If we would choose
{v1, v2} as our ordered basis, this determinant would be clearly equal to 1 and we would have
a positive orientation.
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We can generalize this to subspaces of dimension k of a space with dimension n ≥ k by choos-
ing an ordered basis B = {e1, e2, . . . , ek} for this subspace and defining the orientation of an
ordered set of independent vectors {v1, v2, . . . , vk} as the sign of the determinant of coordinates
detB(v1, v2, . . . , vk). From its definition we see that the orientation of a set of vectors is inverted
when we exchange any two vectors of the set.

A vector v in a Euclidean space has a magnitude which is given by the length of the vector
‖v‖ =

√
v · v and a direction which is given by the line ` that is spanned by the vector v. A

vector has also an orientation when the line ` is oriented.

The outer product a ∧ b of two vectors will be defined as a new kind of object, different from
a vector, called a bivector or 2-vector, which also has properties of magnitude, direction and
orientation just like a vector. The symbol used for the outer product is ’∧’ and therefore it
is also referred to as the ’wedge’ product. We can interpret it as an amount of oriented area
in the plane spanned by the vectors a and b, where the magnitude is equal to the area of the
parallelogram that is determined by a and b, the direction is equal to that of the plane spanned
by a and b and the orientation is given by the orientation of the ordered set of vectors {a, b}
relative to a chosen orientation of the plane.

Geometrically it is clear that the magnitude of b∧ a is equal to the magnitude of a∧ b because
they both determine the same parallelogram. From the definition of orientation we see that
the orientation of b ∧ a is the opposite of that of a ∧ b, so a property of the outer product of
two vectors is: a∧ b = −b∧ a. We should not think of the bivector as having a shape like that
of the parallelogram, but as a certain amount of area in a particular plane, which can be given
a sign when we choose an orientation for the plane. We will see that choosing an orientation is
equivalent to a choice of some non-zero bivector in that plane and assume its orientation to be
positive; the orientation of the bivector a ∧ b can then be calculated.

Like the product of 2 vectors, the outer product of 3 vectors will produce a new type of object
called a trivector or 3-vector, different from vectors and bivectors. It can be interpreted as
an amount of volume in a 3 dimensional (sub)space spanned by the 3 vectors. For the outer
product of 3 vectors, we have two possibilities: (a ∧ b) ∧ c and a ∧ (b ∧ c). The magnitude
of (a ∧ b) ∧ c is defined as the magnitude of a ∧ b times the magnitude of the component of
c perpendicular to the plane defined by a ∧ b. The magnitude of a ∧ (b ∧ c) is defined as the
magnitude of b ∧ c times the magnitude of the component of a perpendicular to the plane
defined by b ∧ c. Geometrically, both magnitudes are equal to the volume of a parallelepiped
formed by the vectors a, b, c and therefore equal to each other. The orientation of (a ∧ b) ∧ c
and a ∧ (b ∧ c) is defined as the orientation of the ordered set of vectors B = {a, b, c} relative
to some chosen orientation for the subspace spanned by B . Because it only depends on the
order of the vectors, the orientation for the products (a∧ b)∧ c and a∧ (b∧ c) is the same. The
direction of a ∧ b ∧ c is the 3-dimensional space spanned by the vectors a, b and c. Because
magnitude, direction and orientation of (a∧ b)∧ c and a∧ (b∧ c) are equal we obtain the result
that the outer product is associative.

Similarly we can define the outer product of k vectors and call it a k-vector, where the number
k is called the grade of the k-vector.

If we want to turn the bivectors into a vector space, we have to define the product of a bivector
with a scalar and the sum of two bivectors. The product of a scalar λ with a bivector B is
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simply a bivector λB with a magnitude equal to |λ|‖B‖, the same direction as B and the same
orientation as B when λ > 0 and opposite orientation if λ < 0. The sum of two bivectors B
and C is a bit more complicated. Bivectors B and C are associated to planes B and C through
the origin through their direction. When the two planes are the same, the sum of B and C will
also be in that plane and the magnitude will be defined as the sum of the oriented magnitudes.
When the two planes are different, they will intersect in a line through the origin and we can
find a non-zero vector a which spans that line and is common to the planes B and C. Therefore
we can find vectors b in B and c in C such that B = a ∧ b and C = a ∧ c. We now define
B + C = a ∧ b + a ∧ c = a ∧ (b + c) and this states (by definition) that the outer product
distributes over bivector addition. It is not hard to show that the sum does not depend on the
choice of the vector a and therefore is well defined. Therefore the bivectors in 3D form a vector
space. Addition of k-vectors in higher dimensions can also be defined by choosing a basis and
adding the projections of k-vectors on the basis k-vectors to obtain a new k-vector.
We do not need to define the outer product of two bivectors or higher in 3D, since this requires
4 vectors and one of the vectors would always be a linear combination of the others and, as
a consequence of the anti-commutativity of the outer product, the product would always be zero.

In 2D we have the subspaces of scalars, vectors and bivectors and from these we can define
a vector space which is given by the direct sum of these subspaces. Although adding scalars,
vectors and bivectors might seem strange at first sight, it is not different to the addition be-
tween real and imaginary numbers as used in the algebra of the complex numbers or adding
monomials to form polynomials. Adding the outer product to this vector space gives an algebra
which is called the exterior algebra Λ(R2).

In 3D we have the subspaces of scalars, vectors, bivectors and trivectors which now gives the
exterior algebra Λ(R3).

The use of the outer product can be generalized to vector spaces of dimension higher than 3. In
that case we will define it to be associative, distributive, anti-commutative and bilinear. The
outer product of k vectors is called a k-blade and we assume they can also be added and satisfy
the properties of a vector space. In dimensions higher than 3, the sum of a number of k-blades
cannot not always be written as a product of vectors (so again a k-blade) and we will use the
more general term k-vector for this. If the vectors in a blade are taken from a vector space of
dimension n, we can at most have n-blades because any number of vectors higher than n will
always be linearly dependent and result in an outer product of 0. The dimension of a k-vector
subspace based on a vector space with dimension n will be

(
n
k

)
. Given that we have a basis

B = {e1, e2, . . . , en} for the vector space, we can form n!/(n−k)! possible k-blades, but because
of the anti-commutativity of the outer product, any two k-blades containing the same basis vec-
tors in any order will differ only by a sign and therefore we have to divide by an extra factor of k!.

Finally we can create an even bigger vector space by allowing k-vectors of different grade
to be added together and define things so that they obey the axioms of a vector space.
This vector space contains objects which are called multivectors and which are linear com-
binations of scalars, vectors, 2-vectors, ..., n-vectors. The dimension of this vector space is(
n
0

)
+
(
n
1

)
+ . . .+

(
n
n

)
= 2n. The nice thing is that this vector space can now be turned into an

algebra because the outer product now closes, provided we identify the outer product of a scalar
with any multivector with the vector space product of a scalar with a multivector and consider it
to commute so: λ∧M = M∧λ = λM = Mλ. This algebra is called the exterior algebra

∧
(Rn).

The grade of a multivector can be obtained by the grade operator 〈.〉k. So 〈A〉k returns a

3



multivector containing all k-vector parts of A. In order to explicitly mention that a multivector
A has grade k we write it as Ak. When confusion might arise with k being an index, we will
write A<k>. A multivector which is a sum of only k-vectors is called a homogeneous multivector.
A short way to express this is as a condition: 〈A〉k = A.

3 Geometric Algebra in Euclidean spaces

Geometric algebra will be defined as an extension of the exterior algebra, which is built on
the same vector space of multivectors as the exterior algebra, but the outer product has been
replaced by a new product, called the geometric product, which is also associative and distribu-
tive, but not commutative or anti-commutative. The geometric product of two homogeneous
multivectors A and B, which we will write simply by AB, can now be a sum of homogeneous
multivectors of higher and lower grade than A and B, whereas the outer product only produced
a multivector of higher grade (or equal for scalars) than A and B. An additional note on no-
tation is that we will use lower case Greek letters to denote scalars, lower case Latin letters to
denote 1-vectors and upper case Latin letters to denote general multivectors. In expressions
that use indices, we will use the Einstein summation convention by default and will write ’(no
summation)’ behind the equation when it is not used.

The geometric product of two vectors combines the properties of the inner and outer products
and is defined as:

ab = a · b+ a ∧ b (1)

Although the first to mention it was Grassmann, the first to really put it into action was
Clifford. This resulted in what mathematicians nowadays call Clifford algebras, although the
original name given by Clifford himself was geometric algebra [Doran et al., 2003, p.20].

From this definition it follows that the geometric product of two orthogonal vectors is equal to
the outer product and therefore anti-commutes, whereas the geometric product of two collinear
vectors is equal to their inner product which in that case is a scalar. For the geometric product
of a vector with itself we have a2 = aa = a · a = ‖a‖2. This also means that every non-zero
vector has an inverse under the geometric product: a−1 = a/a2 = a/‖a‖2.

It is also possible to define the inner and outer product in terms of the geometric product.
Because ba = b · a+ b∧ a = a · b− a∧ b, we can derive the following relations for the inner and
outer product of two vectors:

a · b =
ab+ ba

2

a ∧ b =
ab− ba

2

(2)

In the following we will denote the spaces of multivectors based on the vector spaces R2 and
R3 respectively, as G2 and G3. Later, when we will generalize to higher dimensions and other
spaces than G2 and G3, we will use the geometric product as the basic multiplication operation
and define other products, among which the inner and outer products, in terms of it.
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3.1 Geometric algebra in 2D

In this section we will limit ourselves to the geometric algebra of G2. From the definition of
the geometric product we saw that collinear vectors commute and give a scalar result whereas
orthogonal vectors anti-commute and give a bivector result. These properties are important
and will be used over and over in the following. The geometric product of two arbitrary vectors
will always be a sum of a scalar part and a bivector part.

Every multivector in G2 can be written as a linear combination of basis vectors derived from
an orthonormal basis {e1, e2} of the original vector space R2. Since the basis vectors are
orthonormal, their geometric product is equal to the outer product and therefore we get the
bivector e1 ∧ e2 = e1e2, which we will also write as e12. This is the highest grade we can get
because in a product with more than 2 factors we will have to repeat basis vectors and therefore
the outer product will give the result 0. The dimension of the bivector subspace is equal to 1
because all products of 2 different basis vectors only differ by a sign and are therefore linearly
dependent. The highest grade in a multivector space is therefore equal to the dimension of
the vector space on which it is based, so for G2 that is 2. The elements of the subspace with
the highest grade are also called pseudoscalars and the element of the orthonormal basis that
generates it is called the unit pseudoscalar and is denoted by the symbol I. The properties
of I can differ depending on the grade but it is used often so it deserves a special symbol. A
possible basis for the vector space G2 can be: {1, e1, e2, e1e2}. The bivector e1e2 represents an
oriented area in the plane and because the vectors ei form an orthonormal basis, the magnitude
of e1 ∧ e2 is equal to 1 so I = e1e2. If we multiply a basis vector say e1 from the left with the
pseudoscalar I we get:

Ie1 = e1e2e1 = −e1e1e2 = −e2 and

Ie2 = e1e2e2 = e1.
(3)

This result is the same as when we had rotated the two basis vectors clockwise over an angle of
π/2. Because every vector is a linear combination of the basis vectors and rotation is a linear
operation, multiplying any vector by e1e2 to the left corresponds to a clockwise rotation over
π/2.

Similarly multiplying a vector to the right by e1e2 corresponds to an anti-clockwise rotation
over π/2:

e1I = e1e1e2 = e2 and

e2I = e2e1e2 = −e2e2e1 = −e1.
(4)

From this we can also conclude that the pseudoscalar I = e1e2 anti-commutes with a vector
since rotating a vector a ninety degrees clockwise gives the opposite of rotating that vector
anti-clockwise over ninety degrees, which is formulated algebraically as:

aI = aieiI = −aiIei = −Iaiei = −Ia (5)

3.1.1 Projection and Rejection

For vectors a and b we have: a = a‖b + a⊥b where a‖b is the component of a parallel to b which
is called the projection of a onto b and a⊥b is the component of a perpendicular to b which is
called the rejection of a onto b.
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Figure 1: Projection and Rejection of a vector

They can be calculated using geometric algebra as follows:

a = a(bb−1)

= (ab)b−1

= (a · b+ a ∧ b)b−1

= (a · b)b−1 + (a ∧ b)b−1

= a‖b + a⊥b

(6)

We did not use the dimension of the vector space in this derivation, so the results hold in spaces
Gn with arbitrary n.

3.1.2 Reflection in a vector (or line)

We can calculate the reflection M(a) of a vector a in a line spanned by a vector b as follows:

Figure 2: Reflection of a vector

Mb(a) = (a‖b)− (a⊥b)

= (a · b)b−1 − (a ∧ b)b−1

= (b · a)b−1 + (b ∧ a)b−1

= (b · a+ b ∧ a)b−1

= bab−1

(7)

Again the result holds for arbitrary spaces Gn.
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From this expression it follows that the result does not depend on the length of the vector b
and therefore it simplifies the expression even further when b is a unit vector because in that
case we have b−1 = b. The expression for the reflection then becomes Mb(a) = bab.
Sometimes it is more convenient to specify the line by a unit normal vector n and in that case
we get:

M⊥n(a) = a⊥n − a‖n
= −nan

(8)

The formula shows in an easy way that if we reflect two vectors a and b in a unit vector n, the
inner product between the two is invariant so lengths and angles are preserved by reflection.
Let Mn(a) = nan and Mn(b) = nbn then we have:

Mn(a)Mn(b) = (nan)(nbn)

= nannbn

= nabn

(9)

and therefore

Mn(a) ·Mn(b) = 1
2
(Mn(a)Mn(b) + Mn(b)Mn(a))

= 1
2
(nabn+ nban)

= 1
2
n(ab+ ba)n

= n1
2
(ab+ ba)n

= n(a · b)n
= nn(a · b)
= a · b

(10)

3.1.3 Rotation in 2D

We might remember from geometry that every rotation can be obtained by successive reflection
in two lines where the angle of rotation that is obtained is twice the angle between the two
lines.

Figure 3: Rotation of a vector in a plane

If we take independent unit vectors m and n to represent the direction of two lines and we first
reflect a vector a in the line with direction m, followed by reflection in the line with direction
n, we get a rotated vector R(a) given by:

R(a) = n(mam)n = (nm)a(mn) (11)
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If we denote the angle between the unit vectors m and n by φ and the unit pseudoscalar e1∧ e2
by I, and remember that the magnitude of m ∧ n is equal to sin(φ), we can write:

mn = m · n+m ∧ n = cos(φ) + sin(φ)I (12)

Because I2 = −1 and comparing this to i2 = −1 for the complex numbers, we can define an
exponential by using power series and get an expression similar to Euler’s formula:

cos(φ) + sin(φ)I = eφI (13)

Similarly we get for nm:

nm = n ·m+ n ∧m = m · n−m ∧ n = cos(φ)− sin(φ)I = e−φI (14)

The angle of rotation θ is twice the angle φ between m and n therefore in 2D we can write for
a rotation of a vector a over an angle θ:

R(a) = (nm)a(mn) = e−Iθ/2 a eIθ/2 (15)

Because we have seen that the unit pseudoscalar I in 2D anti-commutes with vectors, we have:

e−φIa = (cos(φ)− sin(φ)I)a = a(cos(φ) + sin(φ)I) = aeφI (16)

Therefore we can write for rotations over an angle θ in 2D:

R(a) = e−Iθ/2 a eIθ/2 = e−Iθ a = a eIθ (17)

An important note is that the exponents can only be added because they commute. We will
see that we can not simply pull the exponents over to one side for a vector a in 3D which is
not in the plane of rotation, but the product with exponentials on both sides will be still valid.

Because the geometric product of scalars and pseudoscalars commutes, it is not hard to show
that the (even) subalgebra of the direct sum of the scalar and pseudoscalar subspaces is iso-
morphic to the algebra of the complex numbers. So the complex numbers are ’contained’ in
geometric algebra.

3.2 Geometric algebra in 3D

We now have a vector space of 3 dimensions so an orthonormal basis with 3 vectors e1, e2 and e3.

Since these basis vectors are orthonormal, we now have 3 independent anti-commuting bivectors:
e1e2, e2e3 and e3e1 and 1 trivector e1e2e3.
The basis for G3 will now consist of 23 = 8 basis vectors:

1 basis vector for the 0-dimensional scalar subspace (the number 1)
3 basis vectors for the 1-dimensional vector subspace, (e1, e2, e3)
3 basis vectors for the 2-dimensional bivector subspace, (e1e2, e2e3, e3e1)
1 basis vector for the 3-dimensional trivector subspace, (e1e2e3), the unit pseudoscalar, which
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we will again denote by I.

The basis vectors for the bivector subspace determine planes embedded in the 3D space, and
similarly to what we saw in 2D, they square to -1 and right and left multiplication of a vector
with the basis bivector in the same plane will rotate the vector 90 degrees anti-clockwise or
clockwise respectively.

The unit pseudoscalar I also squares to −1 (it takes only 1 exchange to reverse the order of I):

I2 = (e1e2e3)(e1e2e3) = −(e1e2e3)(e3e2e1) = −1 (18)

This will not always be the case. For example in 4 dimensions it takes 2 exchanges to reverse
the order of the basis vectors so we get:

I2 = (e1e2e3e4)(e1e2e3e4) = (−1)2(e1e2e3e4)(e4e3e2e1) = 1 (19)

With the above choice of basis vectors we can write the bivectors in the basis as:

Ek = Iek. (20)

We also can write:

ei ∧ ej = εijkEk. (21)

From this it follows that:

eiej = ei · ej + ei ∧ ej
= δij + εijkEk.

(22)

For the product of the bivectors Ei and Ej we find:

EiEj = IeiIej

= IIeiej

= −eiej
= −δij − εijkEk.

(23)

From this we see that different basis bivectors will anti-commute and their product will again
be a bivector and that the product of equal basis bivectors is equal to -1.

If we look at the direct sum of the scalars and the bivectors with the geometric product, we
get a subalgebra which looks very similar to that of the quaternions except for the fact that
the product of the three basis bivectors E1, E2, E3 results in 1 instead of -1.

E1E2E3 = (e2e3)(e3e1)(e1e2) = e2e2 = 1 (24)

In order to solve this last discrepancy, we invert all basis vectors to E ′i = −Ei to get:

E ′1E
′
2E
′
3 = (e3e2)(e1e3)(e2e1) = (e3e2e1)(e3e2e1) = I−1I−1 = (−I)(−I) = −1 (25)

So with the correspondence: 1 ↔ 1, e3e2 ↔ i, e1e3 ↔ j, e2e1 ↔ k, we see that the even subal-
gebra of scalars and bivectors in G3 is isomorphic to the quaternions.
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3.2.1 The pseudoscalar in G3
The basis vector with the highest grade in G3 is the vector e1e2e3 which is an oriented volume
with unit magnitude and it spans a 1-dimensional subspace of G3. This vector is again called
the pseudoscalar with symbol I.

The product of a vector with the pseudoscalar commutes because the pseudoscalar commutes
with every basis vector. It takes 3 interchanges to move the basis vector through the pseu-
doscalar from the leftmost to the rightmost position. Although it would seem that this would
product a minus sign, every basis vector gets exchanged with itself in the proces and the prod-
uct of a vector with itself commutes of course. Therefore the effective number of exchanges is 2
and therefore there is no sign change overall. Because we can repeat this process for a product
of several basis 1-vectors the pseudoscalar commutes with basis vectors of all grades in G3 and
therefore with all multivectors.

The product of the pseudoscalar I with a vector maps a vector to a bivector and we get the
inverse mapping by multiplying a bivector by I−1 = −I. Therefore the spaces of vectors and
bivectors are called dual spaces. We also can consider the spaces of scalars and pseudoscalars
as dual and this forms the basis for the term pseudoscalar. We already saw that dual spaces
have the same number of basis vectors and now we can also define a bijection between dual
spaces by using the pseudoscalar. Similar to the terms scalar and pseudoscalar, we also have
the terms vector and pseudovector, where a pseudovector is an element of the dual space of the
vectors. The term pseudovector is also used in the context of polar and axial vectors and we
will say more about this when we have had a look at reflections and rotations in 3D.

3.2.2 The product of a vector with a bivector

In 2D we saw that multiplying a vector with a bivector resulted in a rotation over 90 degrees
together with a scaling equal to the magnitude of the bivector. The direction of rotation de-
pended on the orientation of the bivector and whether we multiplied from the left or from the
right. Therefore multiplication of a vector with a bivector was anti-commutative. In 3D we
can have a component of the vector a perpendicular to the plane determined by the bivector
B and therefore we can decompose a as: a = a‖B + a⊥B.

Figure 4: Multiplication of a vector a with a bivector B

The parallel component a‖B will be rotated and scaled by the bivector B in the same way as
it did in 2D. In the plane determined by the bivector B we can always find a unique vector b
perpendicular to a‖B such that B = a‖B ∧ b = a‖Bb. We have:
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a‖BB = a‖Ba‖Bb = a2‖Bb (26)

and since a2‖B is a scalar, a‖BB therefore is a vector.

To see what happens to the the perpendicular component a⊥B we observe that the vectors
a⊥B, a‖B and b are mutually perpendicular, they all anti-commute and therefore their product
is a 3-vector. Also we have:

a⊥BB = a⊥Ba‖Bb = −a‖Ba⊥Bb = a‖Bba⊥B = Ba⊥B (27)

which shows that a⊥B commutes with B.

So in 3D the product of a vector with a bivector will in general be the sum of a vector (grade
1) and a pseudoscalar (grade 3).

Up till now we have defined the geometric product in terms of the inner and outer product for
two vectors. Now we want to extend this definition to products of three vectors in such a way
that the geometric product is associative.

Similar to the definition for two vectors, we would like to define the geometric product of a
vector a with a bivector B as a combination of the inner and outer product as follows:

aB = a ·B + a ∧B
Ba = B · a+B ∧ a

(28)

Now looking at the geometric product of a vector a with a bivector b ∧ c we have:

a(b ∧ c) = a · (b ∧ c) + a ∧ (b ∧ c) (29)

Figure 5: How to calculate a · (b ∧ c)?

The only term that is not yet clear is a ·(b∧c), but we can use the vector product to help us find
it. We define the inner product to be distributive and we make the (reasonable) assumption
that the inner product of a vector that is perpendicular to some plane B will vanish for every
bivector with the same direction as that plane.

11



a · (b ∧ c) = (a‖B + a⊥B) · (b ∧ c)
= a‖B · (b ∧ c) + a⊥B · (b ∧ c)
= a‖B · (b ∧ c)
= a‖B · (b ∧ c) + a‖B ∧ (b ∧ c)
= a‖B(b ∧ c)

(30)

Right multiplying a‖B by b∧ c will rotate a‖B over 90 degrees with the same orientation as b∧ c
and will scale by the magnitude of b ∧ c which is equal to |b||c| sin(b∠c). But we get the same
result if we calculate the vector product (b× c)× a‖B = (b× c)× a and therefore:

a · (b ∧ c) = a‖B(b ∧ c)
= (b× c)× a‖B
= (b× c)× a
= (a · b)c− (a · c)b,

(31)

where the last step uses an identity for vector products. So the final expression for a(b ∧ c)
becomes:

a(b ∧ c) = (a · b)c− (a · c)b+ a ∧ (b ∧ c) (32)

Similarly we have:

(b ∧ c)a = (b ∧ c) · a+ (b ∧ c) ∧ a
= (b ∧ c) · a+ a ∧ b ∧ c

(33)

With a shortened derivation similar to that of a · (b ∧ c) we get:

(b ∧ c) · a = (b ∧ c) · a‖b∧c
= (b ∧ c)a‖b∧c
= −a‖b∧c(b ∧ c)
= −a · (b ∧ c)
= (a · c)b− (a · b)c.

(34)

Substituting this result gives:

(b ∧ c)a = (b ∧ c) · a+ (b ∧ c) ∧ a
= (a · c)b− (a · b)c+ a ∧ b ∧ c

(35)

Now looking at the geometric product of three vectors we have:

a(bc) = a(b · c+ b ∧ c)
= (b · c)a+ a · (b ∧ c) + a ∧ (b ∧ c)
= (a · b)c− (a · c)b+ (b · c)a+ a ∧ b ∧ c,

(36)

Similarly we have:

(ab)c = (a · b+ a ∧ b)c
= (a · b)c+ (a ∧ b) · c+ (a ∧ b) ∧ c
= (a · b)c− (a · c)b+ (b · c)a+ a ∧ b ∧ c,

(37)

which shows that with these definitions the geometric product is indeed associative.
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We have been defining the geometric product in terms of the inner and outer product, but now
we can also define the inner and outer product in terms of the geometric product. This will be
the strategy used when we want to generalize further to higher dimensions, where we can rely
less on our geometric intuition and cannot make use of the vector product. From our previous
results we can deduce:

a ·B = a · (b ∧ c)
= (a · b)c− (a · c)b
= −(b(a · c)− c(a · b))
= −(b ∧ c) · a
= −B · a

(38)

and

a ∧B = a ∧ (b ∧ c)
= (b ∧ c) ∧ a
= B ∧ a

(39)

Using this and: aB = a ·B + a ∧B and Ba = B · a+B ∧ a = −a ·B + a ∧B we find:

a ·B =
aB −Ba

2
and

a ∧B =
aB +Ba

2

(40)

Notice that with respect to the definition for two vectors, the plus and minus signs have changed
places.

Finally we can also define the inner product of two bivectors: (a ∧ b) · (c ∧ d).

We can write the dot product of two vectors a and b as a · b = (a · b)b−1b, which is the geometric
product of the projection of a onto the line spanned by b, with b. Similarly the dot product of
two bivectors a∧ b and c∧ d can be defined as the projection of the bivector a∧ b on the plane
spanned by c ∧ d, multiplied by c ∧ d. The projection of a ∧ b on c ∧ d is equal to the outer
product of the projections of a and b on c ∧ d. If we write B = c ∧ d) then the projection of
a on B is given by (a · B)B−1 and because it is in the same plane, it anti-commutes with B.
Similar relationships hold for the projection of b on B. Therefore we can write:

(a ∧ b) · (c ∧ d) = ((a ·B)B−1 ∧ (b ·B)B−1)B

= 1
2
((a ·B)B−1(b ·B)B−1 − (b ·B)B−1(a ·B)B−1)B

= 1
2
((a ·B)B−1(b ·B)− (b ·B)B−1(a ·B))

= −1
2
((a ·B)(b ·B)B−1 − (b ·B)(a ·B)B−1)

= −1
2
((a ·B)(b ·B)− (b ·B)(a ·B))B−1

= −((a ·B) ∧ (b ·B))B−1

= −(a · (c ∧ d)) ∧ (b · (c ∧ d))(c ∧ d)−1

= −(((a · c)d− (a · d)c) ∧ ((b · c)d− (b · d)c))(c ∧ d)−1

= −((a · c)(b · d)− (a · d)(b · c))(c ∧ d)(c ∧ d)−1

= −((a · c)(b · d)− (a · d)(b · c))

= −
∣∣∣∣a · c a · d
b · c b · d

∣∣∣∣

(41)
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The inner product of a bivector c ∧ d with itself gives:

(c ∧ d) · (c ∧ d) = (c · d)(d · c)− (c · c)(d · d)

= −
∣∣∣∣c · c c · d
d · c d · d

∣∣∣∣
= −(c2d2 − (c · d)2)

= −c2d2 sin2(c∠d),

(42)

which is a negative number, which could be expected because the square of a bivector is a
negative scalar.

3.2.3 Trivectors

The highest grade objects in 3D that we can have are 3-vectors and they form a 1-dimensional
subspace of G3. We can envisage them as volumes in space with a certain magnitude and ori-
entation and because their subspace is 1 dimensional they all have the same direction. If we
have an orthonormal basis {e1, e2, e3} for the underlying vector space, a basis vector for the
subspace of trivectors could be e1e2e3. Because the subspace of scalars also has a dimension
of 1, the elements of the trivector subspace are also called pseudoscalars. The pseudoscalar
which has a magnitude of 1 and the same orientation as a chosen orientation for the 3D space
is called the unit pseudoscalar and is denoted by the symbol I. As soon as we have chosen a
basis vector I = e1e2e3 for the trivector subspace, we can find the orientation of any trivector
by multiplying it by I. If the product is a negative scalar then it has positive orientation and
negative orientation if the product is a positive scalar. The product of the unit pseudoscalar
with itself is II = (e1e2e3)(e1e2e3) = −(e1e2e3)(e3e2e1) = −1 and therefore I has an inverse
equal to −I. Suppose we multiply a basis vector e1 by I = e1e2e3 we get e1(e1e2e3) = e2e3
which is a bivector. It easy to see that this is true for all basis vectors and therefore also for
all vectors. Because I has an inverse, there exists a bijective mapping between vectors and
bivectors. In a similar ways as for scalars and trivectors we call the bivectors pseudovectors.
This relationship is denoted by the term duality so scalars are the dual of trivectors and vectors
the dual of bivectors. The notation used is that of a star: a∗ = aI.

The duality relation also provides us with a way to relate the familiar vector product to the
outer product. If we define the bivectors Ek as Ek = Iek then we have:

IEk = IIek

= −ek
(43)

And therefore we have:

−Ia ∧ b = −IεijkaibjEk
= εijkaibj(−IEk)
= εijkaibjek

= a× b

(44)

and therefore the inverse relationship a ∧ b = Ia× b.

We could have used this to find the expression for a · (b∧ c) from our experience with the vector
product:
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a · (b ∧ c) =
a(b ∧ c)− (b ∧ c)a

2

= I
a(−I)(b ∧ c)− (−I)(b ∧ c)a

2

= I
a(b× c)− (b× c)a

2
= I(a ∧ (b× c))
= −a× (b× c)
= −((a · c)b− (a · b)c)
= (a · b)c− (a · c)b

(45)

Earlier we found for the geometric product of two basis vectors ei and ej:

eiej = δij + Iεijkek (46)

This looks very similar to the expression for the Pauli matrices which is given by:

σiσj = δij I + i εijkσk (47)

where I is the identity matrix and the Pauli matrices σi are given by:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(48)

In quantum mechanics, the Pauli matrices are used to model the spin of particles, but we now
see that they also form a matrix representation for the algebra of 3-space.

3.2.4 Projection and Rejection in 3D

The formulas for projection, rejection and reflection of a vector in a vector (line) are identical
to the ones we found in 2D. With one dimension extra, we now also have the possibility to
reflect a vector in a plane. We first recall the projection a‖b and rejection a⊥b of a vector a on
a vector b, where a = a‖b + a⊥b.

a‖b = (a · b)b−1

a⊥b = (a ∧ b)b−1
(49)

With one dimension extra, we now also have the possibility to reflect a vector in a plane
determined by a bivector B.
Similar to the procedure in 2D, we can determine the projection a‖B of a vector a on a bivector
B, which represents the component of a in the plane and the rejection a⊥B which is the com-
ponent of a perpendicular to the plane. Because we assume that the bivector B is not equal to
0, it has an inverse B−1 so we can write:

a = a(BB−1)

= (aB)B−1

= (a ·B + a ∧B)B−1

= (a ·B)B−1 + (a ∧B)B−1

= a‖B + a⊥B

(50)

If we write B = c ∧ d and B−1 = (c ∧ d)−1 = (c ∧ d)/(c ∧ d)2 we get:
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Figure 6: Projection of a vector on a plane B

(a ·B)B−1 = (a · (c ∧ d))(c ∧ d)/(c ∧ d)2

= ((a · c)d− (a · d)c)(c ∧ d)/(c ∧ d)2
(51)

Substituting c(c∧d) = (c ·c)d−(c ·d)c, d(c∧d) = (d ·c)d−(d ·d)c and (c∧d)2 = (c∧d) ·(c∧d) =
(c · d)2 − (c · c)(d · d), we can write this as:∣∣∣∣a · c a · d

c · d d · d

∣∣∣∣ c− ∣∣∣∣a · c a · d
c · c d · c

∣∣∣∣ d∣∣∣∣c · c c · d
c · d d · d

∣∣∣∣ (52)

We can also project a bivector A = a ∧ b on a plane determined by a bivector B = c ∧ d. We
define this as the outer product of the projections a‖B of the vector a and b‖B of the vector b
on the plane determined by B. The result is a bivector again:

a‖B ∧ b‖B = (a · (c ∧ d)) ∧ (b · (c ∧ d))

= ((a · c)d− (a · d)c) ∧ ((b · c)d− (b · d)c)

= ((a · c)(b · d)− (a · d)(b · c))(c ∧ d)

(53)

which can also be written as: ∣∣∣∣a · c a · d
b · c b · d

∣∣∣∣∣∣∣∣c · c c · d
d · c d · d

∣∣∣∣(c ∧ d) (54)

3.2.5 Reflections in 3D

In 3D we will be looking at reflection in a plane and therefore it is natural to use the unit normal
vector n to the plane or the bivector B that determines the plane to describe the reflection.
First we decompose the vector a into a component a‖n parallel to n and a⊥n perpendicular to
n.
For reflection of a vector a in a plane we can use the unit normal vector n to the plane. The
reflected vector M(a) is given by:
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Figure 7: Reflection of a vector in 3D

M⊥n(a) = a⊥n − a‖n
= (a ∧ n)n− (a · n)n

= −((a · n)− (a ∧ n))n

= ((n · a) + (n ∧ a))n

= −nan

(55)

If we use the bivector B that determines the plane we get:

MB(a) = a‖B − a⊥B
= (a ·B)B−1 − (a ∧B)B−1

= (a ·B − a ∧B)B−1

= (1
2
(aB −Ba)− 1

2
(aB +Ba))B−1

= −BaB−1

(56)

3.2.6 Rotations in 3D

Similar to the way it was done in 2D, we get a rotation in 3D by two consecutive reflections,
but in stead of reflecting in two lines, we will now use two planes. For this case, it is convenient
to describe the planes by their unit normal vectors m and n. The rotation will then take place
in the plane represented by m ∧ n over twice the angle between m and n. Vectors that are
orthogonal to both m and n will not be changed by the two reflections since they lie in both
the planes determined by m and n. By using the formulas for reflecting in a plane by using its
normal vector we get:

Rmn(a) = M⊥n(M⊥m(a))

= −n(−mam)n

= nmamn

(57)

The formula shows that this result is the same as if we had done consecutive reflections in the
normal vectors m and n, because in stead of −mam for reflection in a plane, we use mam for
reflection in a vector, but this does not change the result because the minus signs cancel.
We can now define an object which we will call a rotor R by: R = nm and rewrite our formula
for rotation as:

RR(a) = RaR† (58)
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Figure 8: Rotation of a vector in 3D

In this formula we have used an operation called reversion, which is indicated by a dagger (†).
As its name already suggests, the reversion operator reverse the order of a product of vectors
so in this case we have: (nm)† = mn.

Because the formula was derived using only the formula for reflection in a vector, which works
in vector spaces of all dimensions, the rotation formula also works in all dimensions. It is easy
to see that:

RR† = R†R = 1, (59)

and therefore the rotation of the product of vectors is the product of the rotated vectors:

R(ab)R† = (RaR†)(RbR†). (60)

It is clear that this can be extended to sums of products of arbitrary length. For example, we
can use it to show that the inner product of two vectors is invariant under rotation:

R(a) · R(b) = (RaR†) · (RbR†)
= 1

2
(RaR†RbR† +RbR†RaR†)

= 1
2
(RabR† +RbaR†)

= R 1
2
(ab+ ba)R†

= R(a · b)R†

= (a · b)RR†

= a · b

(61)

It is also easy to see that the inverse of a rotation mapping is given by R−1(a) = R†aR because:

R(R−1(a)) = R(R†aR)R† = a and

R−1(R(a)) = R†(RaR†)R = a
(62)

When we considered rotations in 2D, we already saw that we can write R = nm in exponential
form:

R = mn = e−ϕIB and

R† = nm = eϕIB ,
(63)

where IB is the unit bivector m∧n
|m∧n| which is the unit pseudoscalar for the plane B represented

by m∧n and ϕ is the angle between m and n. With this notation our rotation formula becomes:
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R(a) = e−ϕIB a eϕIB . (64)

We can decompose a into components a⊥B and a‖B and because a⊥B is perpendicular to both
m and n it will commute with IB and as we saw in 2D, the parallel component a‖B will anti-
commute with Imn. Therefore we get:

eϕIBa‖B = (cosϕ+ IB sinϕ)a‖B

= a‖B(cosϕ− IB sinϕ)

= a‖Be
−ϕIB

(65)

and
eϕIBa⊥B = (cosϕ+ IB sinϕ)a⊥B

= a⊥B(cosϕ+ IB sinϕ)

= a⊥Be
ϕIB

(66)

If we now rewrite our rotation formula:

R(a) = e−ϕIB a eϕIB

= e−ϕIB (a⊥B + a‖B) eϕIB

= e−ϕIB a⊥B e
ϕIB + e−ϕIB a‖B e

ϕIB

= a⊥Be
−ϕIB eϕIB + a‖B e

ϕIBeϕIB

= a⊥B + a‖B e
2ϕIB

(67)

We see that the perpendicular component is not affected by the rotation and the parallel
component is rotated over an angle 2ϕ with orientation given by IB. Therefore if we want to
specify a rotor that rotates over an angle θ in an oriented plane B, we should write R = e−(θ/2)IB .

3.2.7 Polar and axial vectors

In physics there are quantities that can be represented by vectors, but not all vector quantities
behave the same way under some symmetry transformations like reflections and rotations. The
transformation that is often used to show the difference is called an inversion and it can be
viewed as the composition of a reflection in some plane followed by a rotation over an angle π
in the same plane. For a vector quantity like velocity, this transformation will map a velocity
v to −v and this type of vector is called a polar vector. But for a vector quantity like angular
momentum L = r×p, r will be mapped to −r and p to −p but the quantity L = r×p = −r×−p
will be left unchanged. This type of vector quantity is called an axial vector or sometimes also
a pseudovector. As vectors of R3 we can not tell the difference, but in G3 we represent polar
vectors by 1-vectors and axial vectors by 2-vectors which have exactly the required symmetry
properties, but are different objects. If by n we denote the normal vector to our plane of
reflection and rotation, our formulas for reflection and rotation of a vector a become:

M⊥n(a) = −nan,
R(π) = cos(π/2)− sin(π/2)In = −In,
R⊥n = R(π) aR(π)† = −InaIn = nan,

R⊥n(M⊥n(a)) = n(−nan)n = −a.

(68)

Geometrically we can see that:
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M⊥n(a ∧ b) = M⊥n(a) ∧M⊥n(b) and

R⊥n(a ∧ b) = R⊥n(a) ∧ R⊥n(b).
(69)

Mappings which preserve the outer product are called outermorphisms and it is easy to see
that compositions of outermorphisms are again outermorphisms.
Therefore we get:

R⊥n(M⊥n(a ∧ b)) = (−a) ∧ (−b) = a ∧ b, (70)

which shows that vectors and bivectors have the same properties under inversion as polar
vectors and axial vectors respectively.
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3.3 Axiomatic approach to Geometric Algebra

A more general approach to geometric algebra is to provide axioms which formulate the essen-
tial properties it should have. An advantage is that it turns out to be possible to find more
than one model that satisfies these axioms and therefore reveals the common structure between
different applications. In this thesis we can only shortly show how these axioms can be formu-
lated but to further exploration of their consequences must be left for further study and the
interested reader is referred to the references mention in the bibliography.

G is a set with operations addition and multiplication. The elements of G are called multivectors.

The addition has properties:

(A1) : A+ (B + C) = (A+B) + C

(A2) : A+ 0 = A

(A3) : A+ (−A) = 0

(A4) : A+B = B + A

(71)

Multiplication has properties:

(A5) : A(BC) = (AB)C

(A6) : 1A = A
(72)

Multiplication is left and right distributive with respect to addition:

(A7) : A(B + C) = AB + AC

(A8) : (A+B)C = AC +BC
(73)

We define functions 〈.〉k : G → Gk, where k ∈ N and Gk = 〈G〉k ⊂ G, with the following
properties:

(A9) : 〈A+B〉k = 〈A〉k + 〈B〉k
(A10) : 〈λA〉k = λ〈A〉k = 〈Ak〉λ, (λ ∈ G0)
(A11) : 〈Bl〉k = δklBl (Bl ∈ Gl)

(A12) : A =
∑
k

〈A〉k

(74)

These properties make G and every Gk into a vector space over G0 and G0 into a field. The
elements of Gk are called k-vectors and the elements of G0 in particular are also called scalars
because of their special relation to the Gk as vector spaces.

It follows that every multivector in G can be uniquely written as the sum of elements of the
vector spaces Gk:

G =
⊕
k∈N

Gk (75)

All these properties make G a unital associative algebra over G0.

Associated with G is quadratic form q : G1 → G0 which is used in the definition of the geometric
product of a 1-vector with itself:

21



(A13) : aa = q(a) (76)

An important relation which follows from this axiom is:

q(a+ b)− q(a)− q(b) = (a+ b)2 − a2 − b2 = ab+ ba, (77)

which is a scalar and is closely related to the definition of the inner product.

For the last axiom we need a definition first:

A k-blade is a k-vector Bk that can be written as a product of k mutually anti-commuting
vectors: Bk = a1a2 . . . ak (aiaj = −ajai, i 6= j).

(A14) Every k-vector can be written as a sum of k-blades. (78)

If we assume that the vector space G1 has a finite dimension n, then the highest k for which Gk
differs from {0} will be also n. This is the case because we cannot have blades which consist of
more than n anti-commuting vectors, since the vectors in such a product must be independent
and we can not have more than n independent vectors in G1.

With the help of the above axioms, we can define the inner and outer product using the geo-
metric product:

First the inner product for homogeneous multivectors 〈A〉r and 〈B〉s:

〈A〉r · 〈B〉s = 〈ArBs〉|r−s| (if r, s > 0

〈A〉r · 〈B〉s = 0, (if r = 0, or s = 0)
(79)

and finally for general multivectors:

A ·B =
∑
r

∑
s

〈A〉r · 〈B〉s. (80)

For the outer product of homogeneous multivectors 〈A〉r and 〈B〉s:

〈A〉r ∧ 〈B〉s = 〈ArBs〉r+s (81)

and finally for general multivectors:

A ∧B =
∑
r

∑
s

〈A〉r ∧ 〈B〉s. (82)

From these basic definitions a lot of useful results can be derived which are important for
the effective use of geometric algebra in practice. Baecause of reasons of time and space,
the interested reader is referred to the literature. A good reference is for further study is
[Hestenes and Sobczyk, 2012].
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3.4 Notes and further references

The first chapters of [Doran et al., 2003] were used as the main source for this thesis. I followed
roughly the same order of presenting the material, but in a number of cases a different strategy
was taken in the proofs. Hopefully it will make the reader interested in the subject because
there is still a lot more to study such as the subject of geometric calculus, which brings geo-
metric algebra and analysis together. This combination again results in compact and elegant
coordinate free expressions for mathematics and physics.

The source that I used for the axiomatic approach to geometric algebra is [Hestenes and Sobczyk, 2012].
It contains a lot of additional material and can be considered as the defining reference of geo-
metric algebra and geometric calculus.

A book that contains an introduction to geometric algebra and shows the application of geo-
metric algebra to mechanics is [Hestenes, 2012].

A more mathematical approach to Clifford algebras can be found in [Vaz Jr and da Rocha Jr, 2016].

A nice reference to read more about the interesting history of the subject is [Crowe, 1994].

A very readable introductions to geometric algebra and geometric calculus is given in [Macdonald, 2010]
and [Macdonald, 2012].

Another area of application of geometric algebra is computer science, especially for calculations
involved in visualization of images from different perspectives. A good source which also treats
different possible models for the axioms of geometric algebra is [Dorst et al., 2010].
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