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Abstract

In this research, tweaks on RDS (Respondent Driven Sampling) are being covered. Ultimately, we are
interested in reducing the variance of the prevalence. However, to this end, the estimators for the degree
and contact type probability are also discussed. Two different sampling methods are being considered:
uniform sampling and non-uniform sampling. For the latter, a difference can be made between perfect
contact information and imperfect contact information. The use of contact information is paramount for
the procedure of non-uniform sampling. And therefore, an analysis of the variance reduction of using
contact information has also been investigated. This includes a simple example of a variance comparison
simulation between full contact information and exclusively index case information. Included is also
a description and discussion of the effects of non-uniform sampling on the attained sample, and the
consequences thereof on the variance of the prevalence estimator.
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1 Introduction

Respondent Driven Sampling (RDS) is a method to acquire data from hard-to-reach populations, making use
of the snowball or chain referral sampling. Through sampling in general, information from a representative
sample is collected, and inferences about the entire population are made. As it is often difficult to find
and contact people from the general population with (and potentially due to) certain characteristics of
interest, RDS has become increasingly prevalent in gathering data from these types of people. For instance,
because these groups are at certain health risks or participate in risky behaviour. Due to being stigmatised or
otherwise, a couple of identified examples of such groups are non-social drug users, hermits, homeless people,
migrants, illiterates, faith based communities, sex workers, males whom have intercourse with other males,
and even jazz-musicians ([5, 3]). Correspondingly, research to the RDS method itself has also continued
progressing. Researchers in the field are attempting to find ways to estimate parameters of interest more
efficiently and with less uncertainty.

Traditionally, RDS leaves the initiative of recruiting new participants up to the index case. This is
thought of to be uniform sampling. Alternatively, one could apply non-uniform sampling, which would
imply selecting by certain traits or types of interest; essentially, then, the researcher could choose the
new recipients of invitations to participate in the study from the list of contacts of the index case under
investigation. Recruiting people often requires coupons or some form of monetary reward, so it is preferable
to gather as much information with as little resources.

By using information about this network of interconnected people and their respective traits, one can
derive asymptotically proper, unbiased estimators. Given this information about the respective sample, using
Markov chain theory, we aim to obtain estimators of prevalence, degree and type homophily of contacts.
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Roughly speaking, the degree indicates the number of contacts an index case has, and the homophily is a
parameter which indicates a preference for contacts of a similar type as the index case. These are relevant
parameters to know and understand when preparing a research which involves inquiring people.

In this paper we suggest two more tweaks to the existing body of measures to improve RDS. We investigate
the influence of non-uniform sampling on statistical sampling power, and we further suggest using the full
information of every index case in order to gather more data. The benefits of such tweaks could potentially
lead to a reduction in time and money, as fewer participants might be needed in order to gain satisfying
results. Such recruitment processes could even be simulated. Additionally and importantly, we investigate
the accuracy or correlation between estimates of index cases about their contacts and the respective certainty
in estimates about prevalence of having the trait of interest and similar statistical estimates, when information
about contacts of index cases is retrieved instead of exclusively information about index cases. The issue is
that index cases can’t necessarily claim with absolute certainty whether their contacts have a certain trait.
An income class is for example harder to estimate accurately than gender.

To motivate the potential of non-uniform sampling, we emphasize that initial sampled populations tend
not to be representative for an entire population. Through a biased initial sample frame, researchers using
RDS intend to collect data from contacts of research participants. A major obstacle in gaining data is
another form of bias; the referrals of index cases could plausibly be similar in terms of characteristics as the
respective index case. RDS can compensate for such biases. However, RDS can also be further optimalised.

2 Theory

2.1 Assumptions

Before we continue with some underlying theory of the terms and topics which we will present results for,
we will make all of our assumptions explicit. These assumptions are important, as they might not represent
real world situations. However, they are convenient to produce a tractable mathematical structure.

• The entire network of individuals the researcher is interested in is connected; the population is linked
by contacts. This means that everyone knows at least one other person. In fact, we will further make
the assumption that the number of coupons (invitations to participate in the research) is always lower
than the number of contacts a person has, i.e., all coupons can be distributed.

• Incentives are used to get all sorts of people to cooperate in the form of coupons. Therefore, there is
no bias towards more cooperative people in the population to participate in the research.

• Reciprocity in relationships. This means that the contacts of the index cases also have the index case
as a contact. Furthermore, the index case knows all contacts, and the respective contacts know the
index case. They can identify each other, and estimate whether the respective person has the trait
(that is, being part of a certain population) or not.

• The network is assumed to have little structure. Therefore, transitivity in contacts is negligible. So the
model is locally tree-like. In other words, very tight interconnected groups of friends are not assumed
to occur. This makes for a so-called configurational model. There is some structure, as the model can
allow a varying degree, and crucially there can be a preference for contacts with certain traits.

• It is also assumed that the population at large is infinitely big (or at least sufficiently large). This
assumption implies that new recruits can be drawn with replacement, as it is assumed that the chance
of recruiting the same person is negligible. So, essentially, the state of the system is only determined
by the last recruit. Therefore, a Markov process is applicable.

• We assume the chain does not break. So, every coupon successfully recruits a new participant.

2.1.1 Degree Distribution

We aim to show that the chance to receive a coupon is the same for all connections, regardless of
degree. To see that the distribution in degree is the same for contacts as for the index case, regardless
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of the degree of the respective index case, consider that the person referring a contact to participate to
the research in conduct has |(m− 1)| options; the person whom previously participated in the research
is excluded after all. The degree of the index case is assumed to be |m|. Then, a person in the list of
contacts has a chance which scales with the number of coupons to be distributed divided by |(m− 1)|
to be selected at random by the respective participant. In other words, the chance to receive a coupon
at random scales with:

(m− 1)× number of coupons

m− 1
= number of coupons

And so, we conclude that the degree distribution of the person receiving a coupon does not differ from
the distribution of the person handing out a coupon (given that they are from the same groups).

Of course, the exception on this occurs when there are more coupons to be distributed than contacts
a person has. We do not explore this case any further.

2.2 Seeds and Waves

A seed is the first reachable participant to be included in the research. This seed might very well be of a
certain, more accessible type. Through chain-referral sampling, one could also reach the group bearing the
other trait. Getting the initial seed to supply information to the researcher and then having the researcher
select a new participant will result in a new wave. In a way, one could state that the initial seeds are the
0th wave. Assuming only one coupon is being handed out, each new recruited participant makes for a new
wave in the sample.

2.3 Coupons

Every participant in the research project receives a certain number of coupons which can be distributed
among their respective contacts. Given a fixed number of participants, handing over a single coupon results
in more waves than handing over several coupons. More coupons per participant might on the other hand
allow gaining more information with a smaller chance of a chain ‘ending’. Realistically, there is always a
chance a chain could break, because a recruit with a coupon could choose not to proceed with the research,
either by not participating or by refusing to contact another individual.

2.4 Degree

The degree of a subject is simply the number of contacts one has. We attempt to estimate the degree of all
groups relevant to the research. Usually only two groups are being compared, and so, we limit ourselves to
this particular case. A degree of a participant will be referred to as di.

The average degree of a group can be estimated as a mean of the degrees of every member. The mean
degree of the group is as follows, with Da being the mean degree of group A, di being the degree of person
i, and |A| being the total number of people in group A:

Da =
1

|A|

|A|∑
i=1

di

2.5 Prevalence

The prevalence is the proportion of the population being researched that has a certain trait of interest. This
could be a personality type, it could be a disease (as common in epidemiology), but it could also for instance
be an activity. However, it is always expressed as a proportion of a particular total population. Let us
consider a random trait a, and its complementary trait b, for an undefined population. In this case, we can
express the prevalence of a as follows:

Pa =
number of individuals with trait a

(number of individuals with trait a) + (number of individuals with trait b)
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For estimating prevalence, we encounter several problems. The main problem, for which RDS is used
as frequently as it is, is to obtain a sampling frame of populations with traits which make them difficult
to contact. Moreover, it might not simply be possible to express the fraction of people of a sample with a
certain trait in comparison to the entire sample due to homophily of contacts (more on this later). Basically,
we can’t assume that the sample retrieved is actually an entirely representative sample of the population.
And so, we require to compensate for these biases in estimating the prevalence from a sample.

To estimate the prevalence, we make use of the reciprocity assumption [6]. As all relations are reciprocal,
we have that the entire network is connected with ties between people in the population. This has the
interesting implication that the number of ties from group A to group B is similar. So, take Tab, the number
of ties from group A to group B, and vice versa for Tba. We get:

Tab = Tba

Obviously, this only holds on the population level. However, we can still make use of this approximation
for an estimation. Moreover, the number of ties Tab is equal to the mean degree of group A multiplied by
the proportion of contacts of participants of group B and the prevalence of group A. A similar formula holds
for Tba. In short, we have:

Tab = PaDapab and Tba = PbDbpba.
With this we get the following equivalence:

PaDapab = PbDbpba (1)

Now, using Pa + Pb = 1, we can derive a formula for both Pa and Pb:

Pa =
Dbpba

Dapab +Dbpba

Pb =
Dapab

Dapab +Dbpba

(2)

2.6 Homophily

Participants with a certain trait could have a relative preference in contacts for people with the same trait
(or opposite trait). Contacts might not be randomly distributed. This preference is commonly referred to
as ‘homophily of contacts’. For why this occurs, there are many possibilities.

Although there is agreement on this much, there are various formal definitions of homophily. One such
definition, given by David Easley and Jon Kleinberg ([4]), compares the difference of cross-group connection
likelihood with a null hypothesis of there being no significant preference. In short, this means that when we
have a group A and a group B with respective proportions p and q, we infer that the null hypothesis would
imply that the probability of a cross-group relation is 2pq. This is reasonably intuitive, although possibly
not entirely practical.

We intend to use the definition given by Douglas D. Heckathorn ([2]). In this approach, it is assumed
that homophily implies a fixed proportion of contacts being of the same type. The other non-fixed contacts
are randomly distributed over the other groups.

Assume that paa is the proportion of contacts of a member of group A that is of type A. Or rather,
the chance thereof, as not all members of the group will have this same proportion; the chance of a contact
in a certain group (first index) being of a certain type (second index). The chance of being selected as a
person with ‘trait a’ depends on the degree of the respective groups as well. A group with a higher degree,
is more likely to have the respective person as a contact than a group with a smaller degree, assuming equal
prevalences. Of course, the prevalence is also relevant. All things considered, then, we get the following
formula:

paa = Ha + (1−Ha)
PaDa

PaDa + PbDb
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In which Ha is the homophily of group A, Pa is the prevalence of ‘trait a’, and Da is the (average) degree
of group A.

We shall see that with this it follows that there is only one value for homophily which is equal for groups
A and B, and therefore Ha = Hb := H. This follows from the result we get for the homophily of group A
(which is the same as when the calculation is done for group B). We shall already refer to the homophily
parameter as H. To this end, we shall also use that paa = 1− pab and PaDa

PaDa+PbDb
= (1− PbDb

PaDa+PbDb
), latter

as follows from algebra, by multiplying the 1 by the denominator of the other term.
We can now express the homophily in terms of the other quantities. We refer to the Appendix (23) for

the calculation. Here we will only present the result, also see (24).

H = 1− pab(PaDa + PbDb)

PbDb

And after filling in the prevalences Pa and Pb as derived in (2), we get (24):

H = 1− pba − pab
We see from this result (24) that with random mixing, the homophily would be 0, as then pab + pba = 1.

The maximum value is 1 and the minimum value is −1, as is evident from the formula.

3 Estimators

3.1 Degree

In order to estimate the degree, we have to take into account the fact that our sample is biased towards
higher degree values. So a mean reported degree of the sample will not suffice. We will have to correct for
this.

The issue here is that the degree of people in the sample are likely to be higher than that of the general
population they were drawn from ([1]). A higher number of contacts increases the chance of being recruited
after all, as there are more people who could refer to a person with a high degree. So, members with a high
degree will then be oversampled. We can, however, weigh respondents inversely to their degree to counteract
this bias.

For two individuals of which one has twice as many contacts as the other individual, the chance of being
recruited for the person with more contacts is also twice as high [6]. By inversely correcting to their degree
we can counteract this for the estimator. We suggest the following estimator, with NA being the number of
participants in group A, and d̃a being the estimated mean degree:

d̃a =

∑NA
i=1

1
di
di∑NA

i=1
1
di

=
NA∑NA
i=1

1
di

(3)

Now, to calculate the variance of the mean degree, we introduce µ̃a = 1
d̃a

, as the harmonic mean is

equivalent to the arithmetic mean of the reciprocals.
The variance of 1

di
from the sample is as follows:

σ2
A =

1

NA

NA∑
i=1

(
1

di
− µ̃a

)2

(4)
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We now wish to calculate the variance of the mean degree:

V ar(d̃a) = V ar

(
NA∑NA
i=1

1

di

)
= V ar

(
1

1
NA

∑NA
i=1

1
di

)
= V ar

(
1

µ̃a

)
(We expect µ̃a to be close to µa. Therefore, we write µ̃a = µa + εµa).

= V ar

(
1

µa + εµa

)
= V ar

(
1

µa(1 +
εµa
µa

)

)
+O((

εµa
µa

)2)

≈ 1

µ2
a

V ar

(
1− εµa

µa

)
=

1

µ2
a

V ar

(
εµa
µa

)
=

1

µ4
a

V ar

(
εµa

)
=

1

µ4
a

V ar

(
εµa + µa

)
=

1

µ4
a

V ar

(
1

NA

NA∑
i=1

1

di

)

=
1

µ4
aN

2
A

NA∑
i=1

V ar

(
1

di

)
=

1

µ4
aN

2
A

NAσ
2
A

=
1

µ4
aNA

σ2
A

(5)

To get an estimator for the variance of the degree of the population, we use the following expression:

V ar(d̃a) =
1

NA

σ2
A

µ̃4
a

(6)

Now, with a large enough sample (so that NA becomes large enough), we get the following normal
distribution:

d̃a ∼ N
(
Da,

1

NA

σ2
A

µ̃4
a

)
(7)

3.2 Prevalence

In order to estimate the prevalence of a group of a certain type / with a certain characteristic, we make
the distinction between several situations. First of, we want to know the estimators in the case of uniform
sampling. We wish to explore the estimators for non-uniform sampling as well, with and without perfect
information retrieved from participants with coupons about their contacts.
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3.2.1 Uniform Sampling through coupons

We start off by estimating the prevalence in the case of uniform sampling through coupons. We do not use
the information retrieved from index cases about contacts.

First of, to estimate the chance of a contact being of a certain type within a certain group, also for
now referred to as selection or contact proportions, we require the use of the recruitment counts, which are
strictly speaking also estimators, but we are not interested in them. We denote these by kaa, kab, kba and
kbb. Now, we estimate the type contact or selection proportion of contacts of type B selected by type A as:

p̃ab =
kab

kaa + kab

Given sufficiently large values of kaa and kab, the selection proportion is normally distributed with mean
paa (the true selection proportion) and corresponding variance, i.e.:

p̃aa ∼ N(paa,
paa(1− paa)

kaa + kab
)

Conceptually, we can see that homophily and mean degree influence the retrieved recruits in the sample.
We already derived a relation for the prevalence based on this theory, see (2). Of course, it is assumed that
the sample size is big enough. Now, through an estimation of the degree and the selection proportions, we
can derive one for the prevalence:

p̃a =
d̃bp̃ba

d̃ap̃ab + d̃bp̃ba
(8)

Now that we have an estimation for the prevalence, we also wish to know the variance of the error of the
estimator. We consider the following function:

f(d̃a, d̃b, p̃ab, p̃ba) =
d̃bp̃ba

d̃ap̃ab + d̃bp̃ba

To calculate the variance of p̃a, we take a point θ = (µ1, µ2, µ3, µ4) as estimator, and add an error term
to all these variables. Essentially what we do is working out the following Taylor expansion:

f(µ1 + ε1, µ2 + ε2, µ3 + ε3, µ4 + ε4) = f(µ1, µ2, µ3, µ4) +

4∑
i=1

∂f

∂xi
(µ1, µ2, µ3, µ4)× εi +O(εiεj)

As a result, we get the following variance (see the Appendix for the full calculation):

V ar(p̃a) = (− p̃ap̃b
d̃a

)2 × V ar(ε1) + (
p̃ap̃b

d̃b
)2 × V ar(ε2) + (− p̃ap̃b

p̃ab
)2 × V ar(ε3) + (

p̃ap̃b
p̃ab

)2 × V ar(ε4) (9)

We recognise the terms ε1 and ε2 as respectively the errors of the mean degree of group A and B, while
ε3 and ε4 are the errors of p̃ab and p̃ba.

The variance of the mean degree gives the following results:

V ar(ε1) =
1

µ4
a

σ2
A

NA

V ar(ε2) =
1

µ4
b

σ2
B

NB

With σA and σB being the standard deviation of the reciprocal of sample mean degree of group A and
B, and NA and NB being respectively the number of group A and B recruits, see 4.

To estimate the variance of ε3 and ε4, we use the distributions of p̃ab and p̃ba:
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p̃ab ∼ N
(

kab
kaa + kab

,
p̃aap̃ab
kaa + kab

)
The error of the selection proportion (or better yet: chance of a contact being of a certain type within a

certain group) is normally distributed with the same variance as p̃ab:

V ar(ε3) =
p̃aap̃ab
kaa + kab

V ar(ε4) =
p̃abp̃bb
kab + kbb

3.2.2 Using contact information from index cases

Although it is a common practice in RDS to only make use of information supplied by the participant
receiving a coupon, there is also the possibility to gain information about all contacts of a participant at
once. After all, an index case is supposed to know all of its contacts, and the participants are asked about
their degree. This would drastically increase the amount of information gained per coupon, scaling with the
mean degree, if given information is entirely accurate. However, if this information can not be supplied with
absolute certainty, an estimation by the index case about the contacts has to be made. From the sample
gained, we can ascertain whether the information about traits are correct for the participants which received
coupons, and compare it with the estimation of the respective contact which gave the coupon and made an
estimation. Now, if this estimation is no better than guessing, we do not expect to receive any valuable
information from using all information given about contacts. In fact, this information will then essentially
be useless. Given the correlation calculated from the sample, we would like to know at what point the data
is too contaminated with uncertainty for it to be of value. We will discuss that more in 3.2.6.

For the non-uniform cases, it is essential to know the contact information of every index case. We are
not, however, discussing non-uniform sampling here. We refer to formula 9 for the relevant equation. Our
information about types (which we notified as recruitment counts before in the uniform sampling case) will
more or less scale with the (size biased) degree of participants.

As for the estimators, take the recruitment counts to be the counts of a certain type within a certain
group instead. Of course, these counts will be far higher than in the uniform case we treated before, simply
for the reason that we have to retrieve information about all contacts to select new participants.

Now, to derive a variance to account for the increased amount of information we retrieve, we refer to 9.
In this equation, we witness a sum of four terms. With a set degree, we attain that the first two terms with
V ar(ε1) and V ar(ε2) are 0, as the values of σA and σB become 0 with a set degree. We then see that the
other two terms dominate, but the increase of information gained from using the information about contacts,
will result in higher numerators: kaa+kab and kab+kbb. If we take this increase of information, but continue
sampling uniformly, the variance terms V ar(ε3) and V ar(ε4) become smaller by (the size unbiased degree -
1 - #coupons); in this case the set degree of 10− 1− 1 that we considered. The 1 stands for the person the
coupon was received from, and we would already possess the information about the people who are about
to receive their coupons as well. The scaling factor between merely coupon information and full contact
information is then as follows:

size biased degree− 1

# coupons
(10)

With a variable degree, we will get the situation that the first two variance terms will dominate, as they
will not be equal to 0. Though the variance of the prevalence reduces by degree, the variance terms involving
the recruitment counts will be so small eventually if the degree is sufficiently large, that an even larger degree
is not going to make a significant difference.

We will cover an example to clarify. Assume the degree is constant. In this case, we see from 9, that the
information of all waves except the last and the seed (0th wave) will result in a variance of the prevalence
which is smaller by the term as given in Equation 10. We will also treat a variable degree, a variance of 2,
equal prevalences, and a sample size of 50 for each group. Note that the parameters we have chosen are very
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artificial. The Python code for the example can be found in the Appendix at 5.3. The parameters for the
example can also; we have chosen very generic parameters for the sake of giving an example of approximately
how to do a comparison between full contact information and no contact information.

Figure 1: A generic example of a prevalence variance comparison between full contact information and
exclusively coupon information. The functions plot a ratio between full contact info and no contact info.
The red line (variable degree) has set mu and sigma parameters, indicative of a variable degree. The blue
line only involves the epsilon3 and epsilon4 terms in the expression for the variance of the prevalence; these
are variances of the probability of a contact being of a certain type within a certain group.

Of course, as the µa, µb, σA and σB parameters are so artificially chosen, this is not a very realistic
example, but it serves to get the idea of doing a variance comparison across.

3.2.3 Non-Uniform Sampling: Perfect Information

3.2.4 Introduction

As the case of non-uniform sampling is comparable to the case above with uniform sampling, except for
having a greater sample size and different sampling, we can derive the relevant results using the previous
section.

Our information about types (which we notified as recruitment counts before) will scale with the (size
biased) degree of participants. However, as we also sample non-uniformly between the two groups, we can
have a similar number of participants from one group with a coupon as to the other quite rapidly, with
little uncertainty. That is, in the non-uniform case, we can establish to hand a coupon to a group with a
probability of a half (given that both groups are among the contacts of every index case). This works well
mainly when the prevalences are actually about equal. It bypasses the problems homophily presents. This
would mean that even with a small sample, we reach an even amount of both groups with a reasonably small
error, conceptually speaking. See Figure 2.
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Figure 2: Due to sampling non-uniformly, the chains of similar types with a coupon in the sample get much
smaller. This ultimately results in less variance in the total number of participants recruited from both
types.

There are issues with this sampling method. Assume that the only relevant group is A (that is, B is
essentially non-existent or has a prevalence of less than a percent), and we estimate prevalences of A and B to
be about equal. In this case, one would expect to retrieve a lot of data about this insignificant group B, and
non-uniform sampling will be essentially twice as bad as uniform sampling, as an upperbound. However, if
the degree of the participants is finite and sufficiently low (say, about 10), it may well be that participants of
type B do not even appear as contacts of any participant. So, in reality this issue might not be as staggering
as an upperbound to the reduction of the sample size from the sampling method by 2. The issue with this,
is that all the information gained about the smaller group will hardly reduce the variance of the prevalence,
see (9).

To elaborate, imagine there is homophily, and we begin sampling from group A. Now, in the case of
uniform sampling, we could get a chain of participants from group A, before we jump to a chain of group B.
It is even possible, that we never get any participants from group B. Essentially, the issue is that we cannot
reach the desired proper mixing with a small relative error (or variance rather). This can potentially result
in a much higher variance of the prevalence from the retrieved sample than anticipated.

What we desire is to compare the advantage of non-uniform sampling compared to uniform sampling
when it comes to attaining data from a sample. Of course, we have to take into account, that for non-uniform
sampling, it is necessary to retrieve data of all contacts of the index cases, because we need that to select
our new recruits.

Now, as for the variance in terms of attained types of the index cases, we point out that we select them
with a set probability, and therefore always get a set distribution with a set binomial variance, given of
course that the degree and prevalences are sufficiently large. The number of participants in group A with
non-uniform sampling, which is indicated by NA, has a variance, assuming a probability of a half to switch
group, of approximately (binomially distributed):

V ar(ÑA) = 1/2× (1− 1/2)×#waves = #waves/4
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3.2.5 In practice

The probability that an index case of type A includes a person of type B is equal to:

0×P (Type A no contact with type B)+
1

2
P (Type A contact with A and B)+1×P (Type A no contact with A)

Assuming that individual i has a degree di, and the chance of an individual of type A to have contact
with an individual of type B is pab, then we get the following probability, assuming that the index case can
not return the coupon back to whoever gave it:

0× (1− pab)di−1 +
1

2
× (1− (1− pab)di−1 − (pdi−1ab )) + 1× pdi−1ab

In general, the probability of a connection from A to B could be given as:

∞∑
i=2

iPi∑∞
j=2 jPj

[
1

2
(1− (1− pab)i−1 − pi−1ab ) + pi−1ab

]
(11)

In which Pi is a probability of retrieving a certain degree. By setting the degree for all participants on
10, we can get an intuitive idea of what to retrieve; it will be merely an exercise in bookkeeping to tackle
more possibilities in practice. Based on the parameters (proportions or probabilities of contacts being of a
certain type within a certain type), we can then compute the matrix with transition probabilities per wave.

With a set degree, we can factor out these estimators. We have to note, however, that the increase of
information gained from contacts does not decrease the estimator of the degree. However, the sampling
method does alter the number of participants retrieved in both groups, and therefore can affect the variance
of the prevalence.

Also with a set degree, we are left with p̃ba
p̃ab+p̃ba

. The increase of information, leads to an expression in
which we get a Bernoulli trial per contact within the sample of type A of their contacts, to verify whether
they are of type B or not.

∑Ñb
i=1

∑Di−1
j=1 Ber(pba)∑Ñb

i=1

∑Di−1
j=1 1

(12)

Comparing non-uniform sampling and uniform sampling, will involve the probability distribution of
retrieving a number of contacts of a certain type, and integrating or summing the variance of the prevalence
over all possibilities and probability values.

These concepts can be used for simulations.

3.2.6 Non-Uniform Sampling: Imperfect Information

This is the most complicated and interesting case. We got a situation in which we attempt to estimate the
prevalence of a type through information about types and reports of index cases, however the reports are
not guaranteed to be 100% correct. In essence, the data we possess is the types of the participants who have
been handed out a coupon, and the reports of every index cases about their respective contacts.

For simplicity’s sake, let us label these CAA for the number of participants with a coupon, which happen
to be of type A, and were estimated correctly to be of type A by a contact. We label CAB for the participants
with a coupon which were of type B and were reported to be of type A, and accordingly, we label participants
of type A which were reported to be of type B as CBA, and participants of type B which were reported as
B as CBB . Moreover, contacts which have not received a coupon, but were reported to be of type A will be
labeled as RA, and contacts which were reported to be of type B as RB .

Through this information, we can estimate a sensitivity parameter SA and SB , which stand respectively
for the chance of estimating a contact to be of type A given that the respective contact is of type A, and
the chance of estimating a contact to be of type B, given that the person is of type B. In other words:
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SA = P (Person reported to be of type A|Type A)

SB = P (Person reported to be of type B|Type B)

Then we have the following approximations, which we will try to use when linearising the log-likelihood
function we will compose.

SA ≈
CAA

CAA + CBA
(13)

SB ≈
CBB

CBB + CAB
(14)

The two other parameters we have, for participants of type A, are p̃aa and p̃ab = 1 − p̃aa. We have to
estimate these using the data we have. Then we can compute the prevalence again as we did before, using the
theory from (2). We are not interested in the sensitivity parameters, but we have to use the approximations
to get a solvable system of equations with Mathematica. Because if we were to attempt taking the derivate
of the LogLikelihood function to every parameter and setting it equal to 0, we would not get a solvable
system.

Now, as for estimating the proportions from the data we have and the sensitivities, we use a log-likelihood
approach. The likelihood function will be as follows:

L(p̃AA, SA, SB) =

(
p̃AASA

)CAA
×(

(1− p̃AA)(1− SB)

)CAB
×
(
p̃AA(1− SA)

)CBA
×(

(1− p̃AA)SB

)CBB
×(

p̃AASA + (1− p̃AA)(1− SB)

)RA
×
(

(1− p̃AA)SB + p̃AA(1− SA)

)RB
(15)

This naturally results in the following log-likelihood function:

logL(p̃AA, SA, SB) = CAA

(
log(p̃AA) log(SA)

)
+

CAB

(
log(1− p̃AA) + log(1− SB)

)
+ CBA

(
log(p̃AA) log(1− SA)

)
+

CBB

(
log(1− p̃AA) + log(SB)

)
+

RA log

(
p̃AA)SA + (1− p̃AA)(1− SB)

)
+RB log

(
(1− p̃AA)SB + p̃AA(1− SA)

)
(16)

Now, additionally, using the following three approximations of the coupon information, we can solve with
Mathematica to retrieve an estimate of the proportion of people of type A in the sample of type A. Note that
NcA indicates the number of coupons given by type A individuals, so that equals CAA+CBA+CAB +CBB .
See the Appendix for the full calculations 5.4.

CAA = p̃aaSANcA

CAB = (1− p̃aa)(1− SB)NcA

13



CBB = (1− p̃aa)SBNcA

We retrieve the aforementioned 13 and 14, but also:

p̃aa =
CAA + CBA

NcA

Now, linearising the parameters of the LogLikelihood Function (16) by adding an error term εA to SA,
εB to SB , and an error term εp to p̃aa, and then calculating consecutive series to the first order, after which
we simplify the result, we retrieve an expression which can be found in the Appendix at 5.4. The result of
the series expansion after inserting the approximations and derivating to p̃aa is as follows:

Figure 3: The simplified series for the solution of p̃aa.

We take a different approach now. We once again refer to the LogLikelihood Function 16. This time
we will manually derive the results, to retrieve expression for the variance terms of the sensitivity and the
probability of type A within group A. However, this time, we will use only one sensitivity parameter: S.

So, once again, we have: 16. We will name this function l.
From this, we retrieve the following two derivates:

∂l

∂S
=
CAA + CBB

S
− CAB + CBA

1− S
+

RA(2p̃aa − 1)

p̃aa × S + (1− p̃aa)(1− S)
+

RB(1− 2p̃aa)

(1− p̃aa)× S + p̃aa × (1− S)
(17)

∂l

∂p̃aa
=
CAA + CBA

p̃aa
− CAB + CBB

1− p̃aa
+

RA(2S − 1)

p̃aa × S + (1− p̃aa)(1− S)
+

RB(1− 2S)

(1− p̃aa)× S + p̃aa × (1− S)
(18)

Now, for both derivatives, we use the following series approximation:

S = S0 + εs

paa = p0aa + εp

And using the following Taylor series:
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1

S
=

1

S0 + εs
=

1

S0

(
1

1 + εs
S0

)
=

1

S0

(
1− εs

S0

)
We can express the first two terms in 17 as:

CAA + CBB
S0

(
1− εs

S0

)
− CAB + CBA

1− S0

(
1− εs

1− S0

)
And in 18 as:

CAA + CBA
p0aa

(
1− εp

p0aa

)
− CAB + CBB

1− p0aa

(
1− εp

1− p0aa

)
Now, for the third term, after replacing the parameters by the approximations, and expanding the

denominator, we retrieve the following expression:

RA(2p0aa + 2εp − 1)

p0aaS0 + (1− p0aa)(1− S0) + εp(2S0 − 1) + εs(2p0aa − 1) +O(εsεp)

We label the constant term as K:

K = (p0aaS0 + (1− p0aa)(1− S0))

And with this constant term, we retrieve:

RA(2p0aa − 1 + 2εp)

K(1 +
εp(2S0−1)

K +
εs(2p0aa−1)

K ) +O(εsεp)

Now we apply a Taylor series:

RA(2p0aa − 1 + 2εp)

K

(
K(1− εp(2S0 − 1)

K
− εs(2p

0
aa − 1)

K
) +O(εsεp)

)
And with that, we can find the linearised expression:

RA(2p0aa − 1)

K
+ εp

(
2RA
K
− 2S0 − 1

K

RA(2p0aa)

K

)
+ εs

(
− 2p0aa − 1

K

RA(2p0aa − 1)

K

)
+O(ε2)

Additionally, through similar methods, and by defining the constant:

K ′ = (S0 + p0aa − 2S0p
0
aa)

We get:

RB(1− 2p0aa)

K ′
+ εp

(
−2RB
K ′

− (1− 2S0)RB(1− 2p0aa)

K ′2

)
+ εs

(
1− 2p0aa
K ′

RB
1− 2p0aa
K ′

)
Now, combining all these terms, we get the overall linearisation of 17:

A+B × εs + C × εp = 0 (19)

With:

A =
RB(1− 2p0aa)

K ′
+
RA(2p0aa − 1)

K
+
CAA + CBB

S0
− CAB + CBA

1− S0

B =
RB(1− 2p0aa)2

K ′2
+
RA(2p0aa − 1)2

K2
− CAA + CBB

S2
0

− CAB + CBA
(1− S0)2

C =

(
−2RB
K ′

− RB(1− 2S0)(1− 2p0aa)

K ′2

)
+

(
2RA
K
− 2S0 − 1

K

RA(2p0aa − 1)

K

)
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We require that we set this equation 19, which is the linearised version of 17, equal to 0.
Similarly, we can retrieve a linearised version of 18 through similar methods. We will not go through the

steps.
Expressing the third term as:

RA(2S0 − 1)

K
+ εs

(
−2RA
K

− 2p0aa − 1

K

RA(2S0 − 1)

K

)
+ εp

(
− (2S0 − 1)

K

RA(2S0 − 1)

K

)
+O(ε2)

And the fourth term as:

RB(1− 2S0)

K ′
+ εs

(
1− 2S0

K ′
RB

1− 2p0aa
K ′

)
+ εp

(
−2RB
K ′

− (1− 2S0)2
RB
K ′2

)
+O(ε2)

And with that, we get the linearised expression of 18:

D + E × εs + F × εp = 0 (20)

With:

D =
CAA + CBA

p0aa
− CAB + CBB

1− p0aa
+
RA(2S0 − 1)

K
+
RB(1− 2S0)

K ′

E =
−2RA
K

− 2p0aa − 1

K

RA(2S0 − 1)

K
+

1− 2S0

K ′
RB

1− 2p0aa
K ′

F = −2S0 − 1

K

RA(2S0 − 1)

K
+

(
−2RB
K ′

− (1− 2S0)2RB
K ′2

)
Now we can combine 19 and 20 to solve for the epsilon values, or also the variance terms of the sensitivity

and contact type probability parameters. We then find the following solutions:

εs = −AF −DC
FB − EC

(21)

εp = −AE −DB
CE −BF

(22)

4 Discussion

Although we formulated several methods and presented the formulas with which a researcher could investigate
the benefits of non-uniform sampling, we can not conclusively prove its merits. However, given suitable
prerequisites, the decreased variance in type sampling can notably reduce the variance of the prevalence
estimator. Specific examples or estimates of situations will have to be checked accordingly, analytically or
through simulations. If a researcher aims for a certain maximum variance, it can be accomplished with a
higher certainty with non-uniform sampling than with uniform sampling, as with the latter we get the issue
that there’s always a legitimate chance of undersampling one of the groups.

Potentially interesting to investigate could be the situation of several groups existing in a certain pop-
ulation, with several of the groups being hard-to-reach. Essentially, this will be a more elaborate case of
the same thing, with once again an equal number of ties between all groups. The prevalence can then be
expressed in several ways, as we can take the degree of different groups, and the estimator which results in
the lowest variance would be optimal.

Given reasonable conditions, non-uniform sampling is a potent method to retrieve results of estimators
such as prevalence with more precision than can be retrieved with uniform sampling. Although it has its
issues, most crucially with the way a probability of sampling between groups has to be established beforehand,
it has the potential to improve upon the current sampling methods applied with RDS.

A further suggestion of interest could be to investigate whether the sampling probability between groups
can be adjusted by interim variance calculations of the sample at every wave. This way, the variance of the
prevalence can reduced ongoing by decreasing the biggest variance term at every wave.
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5 Appendix

5.1 Homophily

paa = H + (1−H)
PaDa

PaDa + PbDb

paa −
PaDa

PaDa + PbDb
= H(1− PaDa

PaDa + PbDb
)

H =
paa − PaDa

PaDa+PbDb

(1− PaDa
PaDa+PbDb

)

=
(1− pab)− (1− PbDb

PaDa+PbDb
)

( PbDb
PaDa+PbDb

)

=
−pab + PbDb

PaDa+PbDb

( PbDb
PaDa+PbDb

)

= 1− pab(PaDa + PbDb)

PbDb

(23)

We now fill in the prevalences Pa and Pb as derived in 2:

H = 1−
pab(

Dbpba
Dapab+Dbpba

Da + Dapab
Dapab+Dbpba

Db)
Dapab

Dapab+Dbpba
Db

= 1− pabDbpbaDa + pabDapabDb

DaDbpab

= 1− pba − pab

(24)

5.2 Variance Prevalence

For the variance of the estimator of the prevalence p̃a, we consider a function f of variables d̃a, d̃b, p̃ab, and
p̃ba:

f(d̃a, d̃b, p̃ab, p̃ba) =
d̃bp̃ba

d̃ap̃ab + d̃bp̃ba

We approximate the prevalence in point θ = (µ1, µ2, µ3, µ4). We use the notation that δ = µ1µ3 + µ2µ4.

f(d̃a, d̃b, p̃ab, p̃ba) =
(µ2 + ε2)(µ4 + ε4)

(µ1 + ε1)(µ3 + ε3) + (µ2 + ε2)(µ4 + ε4)

We use the notation that δ = µ1µ3 + µ2µ4

=
1

δ
× µ2µ4 + µ4ε2 + ε2µ4 +O(ε2ε4)

1 + µ3ε1
δ + µ1ε3

δ + µ4

δ + µ2ε4
δ +O(ε3)

=
1

δ
× (µ2µ4 + µ2ε2 + µ2ε4 +O(ε2ε4))(1− µ3ε1

δ
− µ1ε3

δ
− µ4ε2

δ
− µ2ε4

δ
−O(ε3))

≈ µ2µ4

δ
+
µ4ε2
δ

+
µ2ε4
δ
− µ2µ4

δ
(
µ3ε1
δ

+
µ1ε3
δ

+
µ4ε2
δ

+
µ2ε4
δ

)

=
µ2µ4

δ
+ ε1(−µ3µ2µ4

δ2
) + ε2

µ4

δ
(1− µ2µ4

δ
) + ε3(−µ1µ2µ4

δ2
) + ε4

µ2

δ
(1− µ2µ4

δ
)

Assume that c = µ2µ4

δ . We write the other terms before the epsilon values as constants ci too.

= c+ ε1c1 + ε2c2 + ε3c3 + ε4c4 +O(ε3)
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Now to take the variance:

V ar(p̃a) = V ar(c+ ε1c1 + ε2c2 + ε3c3 + ε4c4)

Because of independence:

V ar(p̃a) = c21V ar(ε1) + c22V ar(ε2) + c23V ar(ε3) + c24V ar(ε4)

As all ci terms are known constants, only the variance of the εi’s have to be found. Replacing all ci’s
using the relation found in (2) gives:

V ar(p̃a) = (− p̃ap̃b
d̃a

)2 ∗ V ar(ε1) + (
p̃ap̃b

d̃b
)2 ∗ V ar(ε2) + (− p̃ap̃b

p̃ab
)2 ∗ V ar(ε3) + (

p̃ap̃b
p̃ab

)2 ∗ V ar(ε4)

5.3 Simulation for including full contact information

import matplotlib.pyplot as plt

import numpy as np

# only 1 coupon is being used

pa = 1/2

pb = 1/2

paa = 1/2

pbb = 1/2

pab = 1/2

pba = 1/2

Na = 50

Nb = 50

kaa = 25

kab = 25

kba = 25

kbb = 25

sigmaA = 0.01

sigmaB = 0.01

’’’

Var1 = (1/mu^4 * sigmaA^2 / Na)

Var2 = (1/mu^4 * sigmaB^2 / Nb)

Var3 = paa*pbb / (kaa + kab)

Var4 = pab*pbb / (kab + kbb)

’’’

’’’

# Because sigma involves mu, and we take a set sigma value,

but do not want to blow up the actual variance,

we will work with a set value for mu too.

See the formula for more details...

Essentially, the sigma will get much smaller with large degree values, normally.

’’’
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mua = 1/20

mub = 1/20

def VarDeg(d):

return ( (-pa*pb/d)**2 * ((1/(mua)**4) * sigmaA**2 / Na) + (pa*pb/d) * (1/(mub)**4 * sigmaB**2 / Nb) + (-pa*pb/pab)**2 * (paa*pbb / (kaa + kab)) + ((pa*pb/pab)**2 * pab*pbb / (kab + kbb)) )

def VarNoDeg(d):

return ( (-pa*pb/pab)**2 * (paa*pbb / (kaa + kab)) + (pa*pb/pab)**2 * (pab*pbb / (kab + kbb)) )

def VarDegInfo(d):

return ( (-pa*pb/d)**2 * ((1/(mua)**4) * sigmaA**2 / Na) + (pa*pb/d) * (1/(mub)**4 * sigmaB**2 / Nb) + (-pa*pb/pab)**2 * (paa*pbb / (kaa + kab)*(d-1)) + ((pa*pb/pab)**2 * pab*pbb / (kab + kbb)*(d-1)) )

def VarNoDegInfo(d):

return ( (-pa*pb/pab)**2 * (paa*pbb / (kaa + kab)*(d-1)) + (pa*pb/pab)**2 * (pab*pbb / (kab + kbb)*(d-1)) )

di = np.linspace(2, 52, num = 100)

plt.figure(’ExampleSimRDS’)

plt.plot(di, VarDegInfo(di)/VarDeg(di), ’r’, label = ’Variable degree’)

plt.plot(di, VarNoDegInfo(di)/VarNoDeg(di), ’b’, label = ’Set degree’)

plt.xlabel(’$Degree$’, fontsize = 11)

plt.ylabel(’Variance reduction’, fontsize = 11)

plt.title(’A prevalence variance comparison between including contact info and excluding contact info’)

plt.legend(loc = ’upper right’)

5.4 Mathematica Calculations of Imperfect Information

We first initialise and solve the parameters with expressions for the data for rough estimations:

Remove["@"]

Solve[{caa == paa*sa*na, cab == (1 - paa)*(1 - sb)*na,

cbb == (1 - paa)*sb*na} /. {na -> caa + cab + cba + cbb}, {sa, sb,

paa}]

Now we define the loglikelihood function:

l[paa_, sa_, sb_] :=

caa*(Log[paa] + Log[sa]) + cab*(Log[(1 - paa)] + Log[1 - sb]) +

cba*(Log[paa] + Log[1 - sa]) + cbb*(Log[1 - paa] + Log[sb]) +

ra*Log[paa*sa + (1 - paa)*(1 - sb)] +

rb*Log[(1 - paa)*sb + paa*(1 - sa)]

Taking the partial derivative to p̃aa, after which we insert approximate values of the parameters, can be
done as follows:

D[l[paa, sa, sb], paa] /. {sa -> caa/(caa + cba) + \[Epsilon]a,

sb -> cbb/(cab + cbb) + \[Epsilon]b,

paa -> (caa + cba)/(caa + cba + cab + cbb) + \[Epsilon]p}

Output:

cab/(1 - (caa + cba)/(caa + cab + cba + cbb) - \[Epsilon]p) - cbb/(

1 - (caa + cba)/(caa + cab + cba + cbb) - \[Epsilon]p) + caa/((

caa + cba)/(caa + cab + cba + cbb) + \[Epsilon]p) + cba/((

caa + cba)/(caa + cab + cba + cbb) + \[Epsilon]p) + (

rb (1 - caa/(caa + cba) - cbb/(

cab + cbb) - \[Epsilon]a - \[Epsilon]b))/((cbb/(

cab + cbb) + \[Epsilon]b) (1 - (caa + cba)/(

caa + cab + cba + cbb) - \[Epsilon]p) + (1 - caa/(

caa + cba) - \[Epsilon]a) ((caa + cba)/(
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caa + cab + cba + cbb) + \[Epsilon]p)) + (

ra (-1 + caa/(caa + cba) + cbb/(

cab + cbb) + \[Epsilon]a + \[Epsilon]b))/((1 - cbb/(

cab + cbb) - \[Epsilon]b) (1 - (caa + cba)/(

caa + cab + cba + cbb) - \[Epsilon]p) + (caa/(

caa + cba) + \[Epsilon]a) ((caa + cba)/(

caa + cab + cba + cbb) + \[Epsilon]p))

We now calculate and simplify the series expansion with linearised parameters:

Series[\%, {\[Epsilon]a, 0, 1}, {\[Epsilon]b, 0, 1}, {\[Epsilon]p, 0,

1}]

FullSimplify[%]

Figure 4: The output for the Series command.

5.4.1 Alternative approaches

As an aside, attempting to solve the following, which involves setting all three derivatives of the loglikelihood
function to the parameters to 0, results in a failure:

Remove["@"]

l[paa_, sa_, sb_] :=

caa*(Log[paa] + Log[sa]) + cab*(Log[(1 - paa)] + Log[1 - sb]) +

cba*(Log[paa] + Log[1 - sa]) + cbb*(Log[1 - paa] + Log[sb]) +

ra*Log[paa*sa + (1 - paa)*(1 - sb)] +

rb*Log[(1 - paa)*sb + paa*(1 - sa)]

FullSimplify[D[l[paa, sa, sb], paa]]

FullSimplify[D[l[paa, sa, sb], sa]]

FullSimplify[D[l[paa, sa, sb], sb]]
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Solve[{D[l[paa, sa, sb], paa] == 0, D[l[paa, sa, sb], sa] == 0,

D[l[paa, sa, sb], sb] == 0}, {paa, sa, sb}]

Instead, we use the following loglikelihood function again, with estimated values for the sensitivity pa-
rameters, simplify this, and take the derivate to p̃aa.

caa*(Log[paa] + Log[sa]) + cab*(Log[(1 - paa)] + Log[1 - sb]) +

cba*(Log[paa] + Log[1 - sa]) + cbb*(Log[1 - paa] + Log[sb]) +

ra*Log[paa*sa + (1 - paa)*(1 - sb)] +

rb*Log[(1 - paa)*sb + paa*(1 - sa)] /. {sa -> caa/(caa + cba),

sb -> cbb/(cbb + cab)}

Simplify[%]

D[%, paa]

As output, we retrieve:

cab (Log[cab/(cab + cbb)] + Log[1 - paa]) +

cbb (Log[cbb/(cab + cbb)] + Log[1 - paa]) +

caa (Log[caa/(caa + cba)] + Log[paa]) +

cba (Log[cba/(caa + cba)] + Log[paa]) +

ra Log[(caa paa)/(caa + cba) + (cab - cab paa)/(cab + cbb)] +

rb Log[(cba paa)/(caa + cba) + (cbb - cbb paa)/(cab + cbb)]

Now, as for solving the derivate to p̃aa by setting it equal to 0, we retrieve an extremely lengthy expression.

Solve[-(cab/(1 - paa)) - cbb/(1 - paa) + caa/paa + cba/

paa + ((-1 + caa/(caa + cba) + cbb/(

cab + cbb)) ra)/((1 - cbb/(cab + cbb)) (1 - paa) + (caa paa)/(

caa + cba)) + ((1 - caa/(caa + cba) - cbb/(cab + cbb)) rb)/((

cbb (1 - paa))/(cab + cbb) + (1 - caa/(caa + cba)) paa) == 0, paa]

We will not supply the answer, as the length of the expression amounts to about 100 pages. It is extremely
lengthy, however it can theoretically be used to obtain an approximation of p̃aa.
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