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Abstract

Knowledge on seasonal land cover is important to pastoralists and farmers as it aids
in understanding the patterns throughout the year. This study was carried out to (a)
understand the long-term land-use and land-cover (LULC) change; (b) the vegetation
dynamics and ecosystem resilience; and (c) gain insight in the local perspective on these
factors. The study was carried out in the Monduli and Longido districts in northern
Tanzania. Multi-temporal satellite imagery from the Landsat missions from 1985 to 2019
were used. Using a RandomForest classifier 32 images were classified based on a train-
ing dataset for the wet or dry season. The extend of the LULC classes was determined.
This resulted in a highly variable class sizes. This was in disagreement of the classified
maps with field observations and visual interpretation of satellite imagery. Questions
were raised on comparable results from other studies. From eight different vegetative
areas the NDVI was computed over time. Of the rural areas, only forested area showed
a significant increasing trend, the other regions had no trend. The agricultural areas all
showed an increase in the annual averaged NDVI. The intra-annual NDVI is strongly
correlated to the seasonal precipitation. For all areas during a dry year the trend was
typically lower and during a wet year typically higher than normal NDVI values. The
NDVI values consecutively to a dry year were lower than normal for the natural systems
but did not show any deviation from normal in the second consecutive year. This indi-
cates the strong resilience of the systems to short-term droughts. The inhabitants noted
an increase in temperature, trees, competition for grazing and unreliable rains. This has
an effect on the availability of good quality grass. The change in temperature has been
measured by meteostations. The change in vegetation was not detected by any change in
NDVI.

Key words: LULC change, Google Earth Engine (GEE), Landsat, vegetation dynamics, NDVI,
semi-arid
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1 Introduction

Land degradation is one of the world’s major socio-economic and environmental prob-
lems, affecting over a billion people in 110 countries worldwide (Middleton and Thomas,
1997). According to the World Atlas on Desertification, “land degradation leads to a long-
term failure to balance demand for and supply of ecosystem goods and services” (Cherlet et al.,
2018). These ecosystem goods and services is what all life on our planet is entirely depen-
dent on (Pullanikkatil et al., 2016). The provided goods and services consist out of a wide
range, such as food, clean water, disease management and climate regulation (Millenium
Ecosystem Assessment, 2005).

Grassland ecosystems are under tremendous pressure from a rising demand for nat-
ural resources and animal products to cope with a sharply increasing human population.
Agricultural expansion accompanied by high water consumption and the conversion of
natural landscapes into cultivated lands have led to severe land degradation all over the
world (Tangud et al., 2018; Pullanikkatil et al., 2016; Wickama et al., 2014). Land degrada-
tion undermines the land’s productivity and contributes to the degradation of ecosystem
services. The degradation is being borne disproportionately by the poor and is sometimes
the decisive component which results in poverty and social conflict (Millenium Ecosys-
tem Assessment, 2005; Interim Secretariat, 1994). The loss of productive land is part of a
vicious circle for many rural people in the developing world in which land degradation
can be both the cause and the consequence of poverty (Tal and Cohen, 2007).

East Africa is home to thousands of pastoralists who herd their livestock in the semi-
arid to arid areas of the region. The pastoralist have been challenged by means of re-
strictions on mobility, privatization of land, and substitution of pastoralism with less
sustainable forms of livestock keeping. According to the WISP (2008) mobility and lo-
cally owned institutions for land management would positively influence biodiversity
conservation and sustainable land management. One of the pastoralist groups, The Maa-
sai, a Nilotic ethnic group of semi-nomadic pastoralists and agro-pastoralists, live on the
rangelands of southern Kenya and northern Tanzania. Their rangelands cover 150,000
km2 and are known for the iconic pastoralist population (∼1,297,000 inhabitants) and its
high mammal concentrations (∼2 million) (Homewood et al., 2009). Currently the area is
undergoing rapid changes, perceived to be both positive and negative. The alleviation of
poverty is an important positive change, but the wildlife populations are dwindling and
the environmental sustainability is decreasing due to changes in land-use and land-cover
(LULC) (Homewood et al., 2009).

In order to foster both developments in a positive way, it is important to understand
the changing LULC and the people livelihoods. The LULC in this area is largely depen-
dent on the amount of rainfall. Intensive rainfall and extensive droughts alternate in
the region (NBS, 2017; Galvin et al., 2004) which affects the forage availability, livestock
production and also the livelihoods of the people. Long term LULC change in Tanzania
has been studied with the use of remote sensing data (1980s – 2015)(Bergh, 2016; Kiunsi
and Meadows, 2006; Mtui et al., 2017). These studies have shown that the natural and
semi-natural vegetation has decreased by both anthropological factors and ecosystem dy-
namics. From the studies it was concluded that urban area, agricultural area and bare soil
has increased significantly, while the extensiveness of natual lands such as savannah has
decreased. However, these studies do not agree on the amount of LULC change for the
different LULC classes. Due to the use of limited datasets the studies could be biased e.g.
by climatic factors and classification errors(Conroy, 2001; Degen, 2015; Iqbal and Khan,
2014; Maerker et al., 2015; Quénéhervé et al., 2015).

Knowledge on seasonal land cover is important to pastoralists and farmers as it aids
in understanding the patterns throughout the year and aids in identification of times and
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location with optimum vegetation growth. Understanding the change of LULC can allow
quantifying and monitoring trends in agricultural activities, forest cover, disease trans-
mission and land degradation (Midekisa et al., 2017). A change in the LULC has affected
the wildlife species in and around national parks and game-controlled areas (protected
areas, PAs) all over Tanzania. Wildlife encounters are more frequent with humans, set-
tlements and agricultural activities due to the establishment and expansion of villages,
population growth, and a change in agricultural policies that were established in 1974
and 1983 to improve social welfare of the inhabitants (Prins, 1987). These policies have
caused enhanced land degradation because of the increased amount of settlements, live-
stock herds, farming and mining activities (Msoffe et al., 2011; Mwalyosi, 1992; Prins,
1987). An area commonly cited as having serious land-degradation problems in terms of
overgrazing and soil erosion is the Monduli and Longido districts in northern Tanzania
(Blake et al., 2018; Kiunsi and Meadows, 2006). This is an area typical of the drylands of
the Rift Valley.

In this context, this study will focus on the land-use and land-cover changes in north-
ern Tanzania from 1985 to 2019, and the subsequent consequences regarding livelihood
strategies. The threefold objective of this study is:

• to assess long term land-use and land-cover changes using multitemporal and mul-
tispectral satellite imagery from the Landsat missions of the Monduli and Longido
district, northern Tanzania;

• to assess seasonal land cover dynamics and ecosystem resilience to climatic factors;

• and to gain insight into the local perspective of the land-use and land-cover change
and vegetation dynamics.
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2 Materials and methods

2.1 Study area

Tanzania is divided into thirty-one regions, which are all divided into districts. The
study area of this research are the administrative Monduli and Longido districts in the
Arusha region, northern Tanzania (Figure 3)(UN OCHA ROSA, 2018). The districts are
situated between latitudes 2.20°and 4.50°S and between longitudes 36.00°and 37.30°E.
The total area covers approximately 16,000 km2 and has 282,112 inhabitants (158,929 and
123,153, Monduli and Longido district respectively) (NBS, 2013). It is an important area
for wildlife conservation, since large parts of the Arusha Region are PAs, including or
bordering the Manyara, Arusha, Tarangire, Mount Kilimanjaro and Serengeti National
Park, and the Ngorongoro Conservation Area.

For many years the Maasai people occupied this area. Most of the inhabitants are
from the Maasai ethnic group (40%), 20% is Waarusha and the other 40% is not indige-
nous (Decentralized Climate Finance Project, 2019). The Maasai originally live in small
villages or boma which consists of 20 up to 200 people living in huts made from timber
and manure. The total population of Maasai has been reported as numbering 1,290,000,
based on the number of people speaking Maa, a member of the Nilo-Saharan linguistic
family. The Maasai used to live as pastoralists, herding livestock such as cows, goats and
sheep for their livelihood (Homewood et al., 2009). Due to the strong seasonality of the
precipitation and the flourishment of vegetation, it is important for the Maasai to be able
to migrate to find other pastures and resources (Fratkin, 2001).

The study area is characterized by a semi-arid landscape. It is characterized by four
climatic seasons (Figure 2). A short wet season is from November to December, fol-
lowed by a short hot season (Jan-Mar) until the long rains start which occur typically
from March to May. From May to October a long dry season can be identified with cooler
temperatures. The mean annual rainfall is between 450 and 1,200 mm, averaging around
750 mm annually (Figure 4). The lower lying areas receive a mean annual rainfall of
about 650 mm, whereas the highlands receive 1,000 mm to 1,200 mm per year on av-
erage (Quénéhervé et al., 2015; Prins, 1987). The average temperature is between 20-25
degrees Celsius (°C), with a minimum of 11 °C in July to September and a maximum high
temperature of 31 °C in January and February (Conroy, 2001; TMA, 2019).

Figure 2: Annual precipitation and temperature variability. Source: TMA (2019)
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Figure 3: Study area: the Monduli and Longido districts, Tanzania. Source: Bergh (2016)

The physical characteristics of the area, such as morphology, geology and soils, are
strongly influenced by tectonic activities and volcanism (Kiunsi and Meadows, 2006).
The characteristics have influenced rainfall distribution, vegetation types and wildlife of
the area. The Monduli district is part of the Lake Manyara catchment. Lake Manyara,
part of an endorheic basin, is the southernmost lake within the eastern arm of the East
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Figure 4: Long term precipitation and min and max temperature. The blue bars represent the
precipitation averaged over the three available meteostations, the orange bars represent the pre-
cipitation computed from available data supplemented with monthly averaged precipitation.

African Rift System (EARS). The lake is shallow and saline, and is situated 960 m a.s.l.
The lake varies in extend between 410 and 480 km2, and has also dried up in the past
completely during dry seasons.

In the districts are multiple large volcanic mountains, both active and inactive. These
mountains stand out in the dominantly flatter landscape, and often have higher rainfall
on or near their slopes. Apart from the forests on the slopes of the mountains savannah
is the major land cover type. Savannah are grasslands, which also have trees and shrubs.
Savannah’s are generally on the transition area between tropical rain forests to deserts,
which in this area is represented by the forests of the Monduli mountains, Mt. Meru
and the Ngorongoro, and the drier more arid regions of Simanjiro District and Dodoma
Region in the south. The savannah’s might have been maintained and extended by the
Maasai through fire and grazing of their livestock, suppressing the growth of bushes and
trees.

2.2 Land cover classification

Imagery from the Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Mapper
plus (ETM+) and the Landsat Operational Land Imager (OLI) instruments was used to
identify and quantify long term LULC change in the study area. Multiple other studies
conducted in Tanzania have applied this approach (Msoffe et al., 2011; Mtui et al., 2017).
Most of these studies used only two or three images at different time periods to assess
the LULC change, which enlarges the possibility of analysing an anomaly due to a bias in
data. If errors are made in the assessment of one image, this would have a large influence
on the total outcome. Therefore, this study used 32 images made between 1982 to 2018.
Landsat images were selected to cover the study area (path 168, row 62 and 63). To ensure
the assessment of the selected images would not provide biased information, data of
the available monthly rainfall were obtained from the Tanzanian Meteorological Agency
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(TMA). The amount of rainfall strongly limits the vegetation cover in semi-arid countries,
so this information is important to determine about the likelihood of biased classification.

Landsat missions have created the longest continuously-acquired data archive of the
Earth surface. The images were obtained from the United States Geological Survey
(USGS) through the Google Earth Engine (GEE) workspace (Gorelick et al., 2017). Data
from the Landsat 4, 5, 7 and 8 satellites were chosen for this study due to their coverage
since 1982 and collection of medium resolution (30 m) multispectral images. All images
from Landsat 4, 5 and 8 in the time period 1982 to 2019 covering the study area were se-
lected. The imagery was pre-processed to convert the raw scenes to at-sensor reflectance
for accounting of the solar elevation and the seasonally variable Earth-Sun distance. Im-
ages taken on the same date were mosaiced to cover the whole research area in every
image. The images with less than 10% cloud cover over the research area were selected
and clouds were masked with a rudimentary cloud scoring algorithm provided by GEE.

The classification and analysis of the LULC classes was done with the GEE workspace.
This is a high-performance computing platform which gives access to a vast and expand-
ing amount of (pre-processed) earth observation data. Moreover, it enables storage, pro-
cessing and the analysis of big datasets without being expensive or time consuming.

To model and predict the LULC classes, the Random Forest classification algorithm
was used in GEE. This is a pixel based decision tree classification algorithm. Decision tree
classification algorithms have been widely used for different image analysis and classi-
fications (Midekisa et al., 2017) and have proved to improve the classification accuracy
(Gislason et al., 2006).

The overall accuracy of the image classification will be strongly influenced by the
selected training properties and the training data (Millard and Richardson, 2015). For
the training and classification multiple spectral bands were used (blue, green, red, Near
infrared (NIR), two Shortwave infrared bands (SWIR1/SWIR2), NDVI and NDWI (Table
A.1/A.2). The NDVI is an indicator of the vitality and density of vegetation at a pixel (eq.
1). The NDWI is an indicator of the presence or absence of water in waterbodies using
green and NIR wavelengths (eq. 2).

NDVI =
ρNIR–ρRed

ρNIR + ρRed
(1)

NDWI =
ρgreen–ρNIR

ρgreen + ρNIR
(2)

where rho (ρ) is the surface reflectance (-). The NDVI is based on different intensities
of reflected sunlight from the visible and near infrared (NIR) part of the electromagnetic
spectrum (400-700 nm and 700-1100 nm, respectively). Healthy plant leaves will mostly
absorb light from the red spectrum (630-690 nm) and will re-emit radiation from the NIR
part of the spectrum because the energy is too large to synthesize. The NDVI ranges
from -1 to +1. NDVI values below 0 indicate the presence of water, up to 0.1 indicate
rock, sand and snow, 0.2 to 0.3 represents shrub and grasslands, while high values (0.6 to
0.8) indicate temperate and tropical rainforests.

To increase the accuracy the properties elevation and slope of the surface were also
added. The elevation and slope surface were derived from data of the Shuttle Radar
Topography Mission (SRTMGL1v3), which was re-sampled to a resolution of 30 m. This
resulted in a total of 10 properties to train on.

Improvement of the classifier

The algorithm performing the classification had to be trained. The resulting classifier was
tested on performance accuracy. To increase the accuracy and reliability of the outcome
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Figure 5: Flow chart of the LULC classification. Blue boxes consist out of a separate flow for a
classification of imagery from the dry or the wet season

three steps were undertaken. First the dataset for training and validation1 was adjusted.
This included the aggregation and splitting of LULC classes and addition and exclusion
of data. The addition and exclusion were done on the basis of local knowledge and high-
resolution satellite imagery. Secondly the images used for training were changed from
one to two for the different seasons. Thirdly the used bands for training and classification
were tested for an in- or decrease of the accuracy. The accuracy of the training properties
has been tested with all properties but one left out to check if any band would contribute
negatively to the accuracy.

The dataset consisted out of approximately 150 polygons of ten selected classes (Ta-
ble 1, Figure 6). The data in the dataset was collected during a ground survey in the first
quarter of 2019 and supplemented based on high resolution satellite imagery and local
knowledge. The classification is based on the land-cover definitions used by the Interna-
tional Geosphere-Biosphere Program (IGBP) (Loveland and Belward, 1997). The original
dataset has 3019 pixels, both for training and validation. The datapoints were collected in
Monduli District and neighbouring Karatu district and were chosen on accessibility and
homogeneity of the land cover class. The data points of the training datasets should be
randomly distributed or have a proportional amount of data of each LULC class (Millard
and Richardson, 2015). Since the acquisition of data points was largely dependent on
accessibility the data points were collected proportional according to the LULC distribu-
tion determined by Bergh (2016). The dataset for classification was adjusted according
to different factors. In order to increase the total accuracy, the dataset was changed nine
times. The size of the polygons was changed, polygons were added and polygons were

1hereafter training data or dataset unless stated otherwise
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Table 1: Land-use and land-cover classification scheme. Adopted from Loveland and Belward
(1997)

Class Class name Description

5 Mixed forests

Land dominated by trees >2 meters and
a canopy cover >60%. Consists of tree
communities with interspersed mixtures
or mosaics.

6 Closed shrubland
Land with woody vegetation (evergreen
or deciduous) <2 meters tall and with
shrub canopy cover >60%.

7 Open shrubland
Lands with woody vegetation (evergreen
or deciduous) <2 meters tall and with
shrub canopy cover between 10-60%.

8 Woody savannah

Lands with grasses, forbs and other un-
derstory systems, with canopy cover be-
tween 30 and 60% (evergreen or decidu-
ous). Tree height >2 meters

9 Savannah

Lands with grasses, forbs, and other un-
derstory systems and with tree canopy
cover between 10% and 30% Tree height
>2 meters.

10 Grassland
Lands with variety of grasses and forbs.
Woody vegetation cover (trees and
shrubs) is less than 10%.

12 Agriculture

Lands covered with temporary crops fol-
lowed by harvest and bare-soil period
e.g. single and multiple cropping sys-
tems. Perennial woody crops are classi-
fied as the appropriate shrubland cover
type.

13 Built up / natural vegetation mosaic

Lands with houses at least 40%, and 60%
composed of natural vegetation (trees,
shrubs grass, forbs), bare land (rock, soils
or sand) (modified definition).

16 Barren or sparsely vegetated
Lands with exposed soils, sand or rocks,
with no more than 10% vegetation cover
at any time of the year.

17 Water bodies Lakes, streams, rivers and water holes
(boreholes).

deleted from the dataset. This had an effect on the total amount of pixels in the dataset
and also on the amount of pixels per class (Table 2).

Training imagery

The classifier was trained with the use of satellite imagery. For the training two different
sets of imagery were used for the different sensor types of the satellites. The bands from
the TM and ETM+ sensors have the same bandwidth (Table A.1), however the OLI sensor
from Landsat 8 is slightly different (Table A.2). Therefore the training of the RandomFor-
est algorithm was done with seperate images of Landsat 7 and Landsat 8.

Furthermore, with the use of the first 5 datasets only one pair of images was used
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Figure 6: Satellite image with the locations of the training and validation dataset. In red are the
locations of the data from dataset 1, blue are the locations of the data from dataset 6.
Source: https://code.earthengine.google.com/65bf716f8bfa8c0b3aa8d94fdf198582.

for the training. Those images were selected on cloud cover and to match the date of
acquisition with the date of ground truth data collection (Q1 2019, wet season). In the
training with dataset 6 a distinction was made between the dry and wet season. Due
to a high variability of the phenology of vegetation in semi-arid and arid landscapes it
was chosen to make a second classifier based on images of the dry season and to classify
images of the dry season. All pixels of the dataset were (visually) corrected for notable
errors of classification during the dry season, and a second set of training images was
chosen which were cloud free and obtained during the most recent dry season (Table
B.1). Due to a defect in the Scan Line Detector datagaps exist in Landsat 7 imagery. This
caused a part of the training data to be unusable with the Landsat 7 imagery (16%).

LULC classification validation

The classification of the landscape has been performed with the three changing input pa-
rameters: the training data, the training images, and the LULC classes. For the training of
the classifier a randomly selected eighty percent of the dataset was used. The remaining
twenty percent was used for validation and describing the performance of the classifica-
tion model (Xiong et al., 2016). A confusion matrix was created, together with the user’s
(Au), producer’s (Ap), and overall (Ao) accuracies and the Kappa coefficient (k̂), which
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Table 2: The amount of pixels per class and total per training dataset.
Source: https://code.earthengine.google.com/fcead8006a7d38f45804094719365c52

Dataset
Class Description 1 2 3 4 5 6 (rainy) 6 (dry)

5 Forest 506 1507 506 2062 24432 759 759
6 Closed Shrub 31 31 31 29 29 30 30
7 Open shrub 86 86 86 64 60 63 63
8 Woody savannah 193 193 193 215 215 429 429
9 Savannah 232 232 262 218 218 197 197

10 Grassland 587 587 587 557 557 566 566
12 Cropland 867 779 294 244 244 513 368
13 Urban 352 247
16 Bare 94 94 94 99 99 106 113
17 Water 71 1071 1071 1071 1071 244 373
50 Dry broadleaf 109 157 154

Total 3019 4827 3124 4559 27034 3065 3053

are given by:

Ao =
Sd

n
(3)

Au =
Xij

Xj
(4)

Ap =
Xij

Xi
(5)

k̂ =
Ao − Ae

1− Ae
(6)

in which

Ae =
1
n

r

∑
i=1

xi+ · x+i (7)

where Sd is the total number of correct classified pixels, n is the total number of pixels, Xij
is the observation in row i column j, Xi it the marginal total of row i, Xj is the marginal
total of column j, xi+ is the marginal sum of row i, and x+i is the marginal sum of column
i. Kappa is a useful measure of classification accuracy, because it compensates partly for
the low number of classes which might produce a high accuracy because of the simpler
legend (Xiong et al., 2016; Rossiter, 2014). The accuracies, interpretation of imagery and
field experience was used to determine the overall reliability of the results. The LULC
classifications resulted in LULC maps of which the area per class was computed. This
resulted in a class area change over time.

2.3 Seasonal vegetation dynamics

NDVI is regarded as a reliable indicator for land cover conditions and variations, and
over the years it has been widely used for vegetation monitoring (Lanorte et al., 2015).
By measuring the NDVI the canopy ‘greenness’ of the system will be determined during
different seasons. It has been shown to be closely associated with other qualitative vege-
tation parameters, such as canopy cover, leaf area index and biomass (Xie et al., 2016).

Based on the results of the LULC classification, medium and high resolution imagery
and local knowledge eight groups representative for the dominant vegetation types were
located (Table E.1). Each group consisted out of one or more areas, of which the average
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NDVI was calculated. For each location a dataset was made with images covering the
area with no cloud cover.

Dataset

Images from Landsat programmes 4, 5, 7 and 8 were used. The bandwidth of the sensors
is different for each instrument (Table A.1/A.2), resulting in differences in the vegetation
index. If the NDVI from different instruments is compared, they vary a few percent, but
the values were shown to be highly linearly correlated (She et al., 2015; Roy et al., 2016;
Ju and Masek, 2016; Steven et al., 2003). This enables the calibration of NDVI between
the different sensors. The Landsat 4 and 5 TM sensor was not corrected because it has
similar responses as the 7 ETM+ sensor (Steven et al., 2003) and has too limited data in
the areas to produce significant correction factors (Table E.2).

An ordinary least-squares linear regression was used to correct the OLI-TIRS data to
TM/ETM+ data. The dataset used for the correction factor consisted out of images from
different satellites but taken on the same date, 1 day or 8 day difference (Ju and Masek,
2016, Appenndix A). A variation in vegetation of the eight areas results in the generation
of different NDVIs (She et al., 2015). Therefore for each location a correction factor was
computed between the TM/ETM+ sensor and the OLI-TIRS sensor. If R2>0.40, the slope
of the regression line was used as the correcting factor, else no correction factor was used
(Table 3).

The Landsat at sensor imagery was pre-processed, consisting of amongst other things
atmospheric correction and computation of the cloud/shadow pixels (Zhu et al., 2015).
Clouds and aerosols were masked out of the surface reflectance imagery with the use of
the pixel qa band.

Trend analysis

The dataset of each location consisted of 362 up to 756 images, depending on the exact
locations chosen. The temporal dispersion within the datasets was based on the avail-
ability of cloud free images. This resulted in on average 6% of the images being made
between 1985 and 2000, and the remaining 94% between 2000 to 2019 (Table E.2).

The NDVI can be distorted by undetected cloud or cirrus cover, or shadows in the
imagery. Therefore monthly averaged values were used if multiple NDVI values were
available. With these monthly averaged values seasonally averaged NDVI values were
derived for the wet season (FMAM), dry season (ASO) and annual values (Aug-Jul).

Due to the non-normal distribution of data over time the Mann Kendall (MK) trend
test was chosen to identify of any long-term trend in the NDVI. The MK is a non-paramteric
rank-based test method which is widely used to assess the presence of any trends in a

Table 3: Correction factors of the OLI-TIRS NDVI values for each area in the form Y = a · x + b.
If R2 ≤ 0.4 the correction factor was not applied and the original values were used. The Date∆ is
the difference in date of the paired NDVI of TM/ETM+ and OLI-TIRS imagery. Positive values
represent OLI-TIRS imagery to be later taken, negative values represent OLI-TIRS imagery to be
earlier taken than the corresponding TM/ETM+ imagery

Grass N Grass S Forest Sav. N Sav. S Rice Banana Intercrop

a 0.7766 0.9062 -0.0003 0.9035 0.8341 0.533 0.2556 1.0248
b -0.0104 -0.0445 0.7842 -0.0415 -0.0158 - 0.3275 0.4512 0.1019
R2 0.771 0.769 2.00E-07 0.743 0.643 0.593 0.069 0.551
r 0.878 0.877 0.000 0.862 0.802 0.770 0.263 0.742
Date ∆ +8 +1 +1 +8 +1 +1 +1 -1
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time series of climatic data, environmental data, or hydrological data (Teferi et al., 2015;
Mbatha and Xulu, 2018; Nasanbat et al., 2018; Chamaille-Jammes et al., 2006; Forkel et al.,
2013). The MK is calculated by:

S =
n−1

∑
k=1

n

∑
j=k+1

sign(Xj − Xk) (8)

sign(Xj − Xk) =


+1, i f (Xj − Xk) > 1
0, i f (Xj − Xk) = 0
−1, i f (Xj − Xk) < 1

 (9)

Var(S) =
1
18

[
n(n− 1)(2n + 5)−

q

∑
p=1

tp(tp − 1)(2tp + 5)

]
(10)

ZMK =


S−1√
Var(S)

i f S > 0

0 i f S = 0
S+1√
Var(S)

i f S < 0

 (11)

where sign is the signum function, Xi and Xj are the sequential data values of the time
series in the years i and j, n is the length of the time series, tp is the number of ties for the
pth value, and q is the number of tied values. Positive values of ZMK indicate increasing
trends, while negative ZMK values indicate decreasing trends in the time series. The value
of the S statistic is associated with the Kendall’s tau (τ):

τ =
S
D

(12)

D =

[
1
2

n(n− 1)− 1
2

q

∑
p=1

tp(tp − 1)

]1/2 [
1
2

n(n− 1)
]1/2

(13)

where D is the denominator (-). The MK was applied on the seasonal and yearly NDVI
per area. The value of τ correlation indicated the strength of the trend if the trend was
significant. Another correlation coëfficient for ordinal data would be Spearman’s Rho (ρ),
but ρ is less reliable with many ties in the dataset.

The intra-annual variability and resilience of the areas to drought was tested with
the use of the corrected NDVI values from the Landsat 4, 5, 7 and 8 satellite. Of each
datapoint the day of year (DOY) was computed and plotted against the NDVI values. In
order to test for drought on the vegetation the NDVI values were divided in three groups,
based on the amount of precipitation of the hydrological year. The meteorological station
at Karatu has the longest record of annual precipitation (TMA, 2019), therefore this record
was used to test for the first and third quartile of annual precipitation which resulted in
714 mm and 950 mm. Each group of NDVI values (dry, normal or wet year) was tested
with the use of local regression (LOESS). To test for the resilience of the systems two
groups were added, with respectively the NDVI values the first, and the second year
following after a dry year. The different agricultural areas were not tested with the data
of the second year following after a dry year due to the high anthropogenic influences on
the system and the effect of this on the vegetation.

Climatic factors

The health of vegetation and NDVI is dependent on many anthropogenic and natural
factors. The most important natural factors are temperature and precipitation (Moulin
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et al., 1997). Because water is the most limiting factor for vegetation growth in semi-arid
systems, the NDVI is compared to the response to precipitation. Long term monthly pre-
cipitation measurements (1968-2018) and short term daily precipitation (2009-2014) were
recorded (TMA, 2019). Data from three stations close to the research area (Karatu, Babati
and Monduli) was used and the monthly rainfall were all well correlated (τ>0.64, Z>17,
p<2.2E−16). The precipitation of the area was obtained by calculating the mean monthly
average of at least two stations. The seasonal (wet and dry) and yearly precipitation
(hydrological year: Aug-Jul) was tested for any monotonic trends with the use of MK.
The correlation between the intra-annual precipitation and NDVI of the different areas
was tested with Kendalls tau (τ). The long term annual NDVI and precipitation was not
tested due to the little overlap in data and the data gaps present in the NDVI dataset.
A dataset of long term monthly minimum and maximum temperature (1980-2018) was
also tested with MK. These results were used for better interpretation of the results of the
trend analysis on the NDVI.

2.4 Local perspective on environmental change

In addition interviews were held with local inhabitants. This gave an insight on the
perception of LULC change, vegetation dynamics and climatic variations. In total 16
households from three villages were interviewed with the use of one or two (local) trans-
lators (Kiswahili and Maasai languages). The selection of interviewees was based on
accessibility, willingness to participate and the participation in agro-pastoralism because
of the higher dependency on the climate and environment. Both men and women were
involved, although the majority of respondents were men. The reason might be that
women may have been reluctant to be involved in the interviews due to cultural stan-
dards. The questions used for the survey were semistructured, which helped to derive
qualitative and quantitative information. It was designed to retrieve information on (1)
the respondents social, economic and geographic characteristics (livestock holdings, land
ownership, income sources); and (2) experiences on (a) vegetation health and dynamics,
and (b) climatic factors and water availability. The results of the interviews were used to
put the LULC change and vegetation dynamics in perspective.
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3 Results

3.1 LULC change

The collection of images for the analyis of LULC change resulted in a series of images
covering 98% of the study area. Due to the flight plan of the satellites an area in the
north-west (the Ol Doinyo Lengai vulcano) is not included in the imagery. The images
including this area could have been mosaiced to the images for analysis, but the acqui-
sition date and time will be different which would result in a deviating classification of
this area. An area of approximately 275 km2 is therefore not included.

The image collection comprises 32 images with a different acquisition date (Table
B.2). The maximum cloud cover of these images over the research area is 9.90%, with
an average of 3.75%. This set comprised of 7 images from the Landsat 4/5 satellite in
the period between January 1985 and November 2009, and 25 images retrieved from
the Landsat 8 satellite acquired between August 2013 and March 2019. This resulted
in a coarse temporal resolution for the first thirty years and a relatively fine temporal
resolution for the last six years.

Improvement of the classifier

Six important datasets with the ground truth and training data were used:

1. The first classifier was made with the collected data with ten different classes (Dataset
1). The accuracy of the classifier was high (0.92) but the classified LULC maps were
unrealistic (Figure D.1/D.2). The classes shrubland and savannah were merged be-
cause of the low representation of these classes, their similarity and to increase the
reliability of the classification of this class (John et al., 2009). However, the unreal-
istic results of urban, forest, agriculture and water area led to the rejection of the
results.

2. To increase the accuracy of urban, water and forested areas pixels were added to the
second dataset. By adding data, the spectral range of these classes would be more
accurately represented. With a correct spectral representation of the training data
the classifier would be improved. Therefore two areas were removed because these
contained too many contaminated pixels (pixels assigned to a class while represent-
ing another class). This resulted in a over estimation of agricultural lands and a still
highly fluctuating forest area through the seasons. Thus these results were rejected.

3. With only connecting roads and no big cities or towns in the research area the rela-
tive appearance of urban area is small. This information, together with the doubt-
full results of urban classification the urban class and training data was excluded for
this and further datasets. The class agriculture showed to be unlikely widespread
and to have a similar pattern with bare area from Bergh (2016), so the data was
checked for contamination with the class bare. The dataset was checked and sus-
pected contaminating pixels were excluded. The dataset was also expanded with
some water (like dataset 2) and new agricultural areas. This resulted in a extremely
varying total size of forest area (Figure D.4c/D.4d) and to a lesser degree bare area.
The implausibility of fast growth and deforestation caused the rejection of these
results.

4. Dataset 4 and 5 were focussed on solving the big (seasonal) variation in total forest
area (Figure 7). By adding respectively 1500 and 24000 training pixels of forest, the
aim of a perfect spectral representation of forest was tried to be approached. How-
ever, the dataset should have a proportional amount of pixels attributed to each
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class. Due to the impossibility of adding a similar proportional amount of pixels
from other classes, an overestimation of forested area was the result and thus the
classification did not improve. For dataset 5 a distinction was made between moist
and dry (sub)tropical broadleaf forest. The moist (sub)tropical forest was assumed
to be less rainfall dependent and to be evergreen. The dry (sub)tropical forest was
characterized by forest of thorny trees and shrubs such as acacia. The expansion
and decrease of forest could have been caused by the correct and incorrect classi-
fication of the dry (sub)tropical forest. Due to its decrease in leaf area in the dry
season and corresponding canopy, the see-through from space is enhanced result-
ing in increased soil detection. This was not successful in the training and did not
result in a more continuous surface area of moist (sub)tropical forest (Figure D.6c).
The tested accuracy of dataset 5 is on average the highest (0.994) which can be at-
tributed to the high amount of forest training pixels (Table 2). The high amount of
pixels in one class results in a high producers accuracy for that class but the pro-
ducers accuracy for the other classes remain relatively low (Table C.1 and C.2). The
accuracy is therefore not useful. Yet again, the results were rejected.

6. The strong spectral difference of vegetation during the year resulted in a big varia-
tion of classifications. By changing the classification into a dual dataset and classi-
fier, this effect was attempted to decrease. The dataset was duplicated into one for
the dry classifier and one for the wet classifier. The amount of pixels from forest
and water were restored to reasonable levels (compared to dataset 5). All pixels for
both datasets were visually checked for applicability and contamination with the
use of imagery from both the wet and dry season.

Figure 7: Area of the class forest over time and based on different training datasets

The adjustment of the dataset for training and validation increased the accuracy on
average from 0.92 to 0.96 (Table 4 and Table C.3 to C.6). The accuracy of dataset 5 is on
average the highest (0.994) which can be attributed to the high amount of pixels in class
5, forest (Table 2). The high amount of pixels in one class results in a high producers
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accuracy for that class but the producers accuracy for the other classes remain relatively
low (Table C.1/C.2). The kappa index is between 0.93 and 0.96 for the four training
images of the last dataset.

The changes in the dataset and different training images had an effect on the classifi-
cation algorithm. This resulted in different classifications of satellite imagery (Fig D.1 to
D.6). In figure 8 the LULC class size on 29 January 2018 can be seen, resulting from the
different datasets. This date was chosen because it is close to and in the same season as
the training images. It can be seen that the changes of the dataset had a big influence on
the classification area. The class urban showed a relatively high area in the first datasets,
which was one of the reasons to exclude this class in the next datasets. The class forest
showed an overestimation of the total area for almost all of the datasets when this was
visually compared with true- and false-color imagery. The class savannah has increased
at least twice in dataset 6 for this date.

In image 7 the area size of the class forest is depicted over time. The total classified
area forest fluctuates a lot over time and also between the different datasets. The trend of
each dataset is similar, with some exceptions for dataset 6. This is caused by the difference
of the training images used for the classifier. For datasets 1-5 only one image was used
for training, originating from the wet season (21 Mar 2019), and for dataset 6 this was
changed to two training images and classifiers for both the wet and dry season. This
resulted in a totally different classifier for the images of the dry season.

A strong seasonal periodicity of the area sizes would result in a specific trend through-
out the year. In Figure 9 the area size of the classes is measured for the day of the year

Table 4: The accuracies of the training based on different datasets. Grouped and ungrouped
refers to the grouping of the savannah class (class 6, 7, 8 and 9).

Landsat 7 Landsat 8

Dataset Wet Dry Wet Dry

1 (ungrouped) 0.915 0.915 0.916 0.916
1 (grouped) 0.923 0.923 0.924 0.924

2 0.960 0.960 0.941 0.941
3 0.940 0.940 0.940 0.940
4 0.969 0.969 0.976 0.976
5 0.995 0.995 0.994 0.994
6 0.955 0.970 0.966 0.950

Table 5: Accuracies of the used properties for the training based on Trainingset 6.

Landsat 7 Landsat 8

Property left out Wet Dry Wet Dry

None 0.955 0.970 0.966 0.950
Blue 0.941 0.958 0.958 0.954
Green 0.943 0.962 0.958 0.951
Red 0.957 0.956 0.972 0.953
NIR 0.945 0.960 0.969 0.953
SWIR1 0.949 0.958 0.964 0.961
SWIR2 0.955 0.956 0.959 0.943
Elevation 0.941 0.952 0.964 0.950
Slope 0.912 0.935 0.940 0.929
NDWI 0.953 0.956 0.964 0.953
NDVI 0.951 0.966 0.966 0.951
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Figure 8: Class sizes on 29th Jan 2018 classified for different datasets.

(DOY). The data originating from the Landsat 4/5 satellite is omitted from this graph to
exclude errors originating from the different sensors. All classes have a high variability
of area size during a large part of the rainy season (Dec-Mar). During the dry season an
increase of grassland and bare soil is observed and a decrease of agriculture and forest.

The area per class over time is shown in Figure 10 and 11. The different satellites used
in this research is clearly visible in the graph of Figure 10. The little amount of datapoints
(7) between 1985 and 2013 (Landsat 4/5) is in sharp contrast to the relative high amount
of datapoints in the timeperiod of 2013-2019 where data of the Landsat 8 was used.

The class savannah is most dominant in the area all the time except for one moment.
The classes forest, grass and agriculture cover during the whole time-span the same range
of total area of 300 to 3000 km2. In the years 1985-2010 bare has the second largest area,
and after this period it merges with the classes forest, grass and agriculture. Periodicity
for many classes can be seen during the period 2013-2019. Savannah shows a drop in
the wet season (around February) in 2016, 2017, 2018 and 2019, when many other classes
show peaks of area size.

The class water is the least abundant in the area but also shows some peaks around
the wet seasons between 2014 and 2019. Cloud shadows were not masked in the images
and were often classified as water. The increase of water is mostly close to Lake Natron
in the north-west just outside the study area. Flooding of this lake could also be the cause
of an increase of water.

Bare soil can be dominantly found in the center of the study area surrounding a moun-
tain and spreading to the east (Figure 11). Cropland can be found along the edges of
different mountains and mostly along the shores of Lake Natron and Lake Manyara to
the south-west. Forest concentrates strongly around mountainous areas and extends and
disappears from these patches. Savannah is the most abundant land cover class (39-64%)
and can together with grasslands be found on the lower lying plains. The classes grass,
agriculture and bare tend to alternate. In Fig. 11a it is mostly classified as bare soil, in
Fig. 11b this has been replaced mainly by grassland, while in Fig. 11c it is labelled as
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Figure 9: Day of year (DOY) of the class area size of the all available images from the Landsat 8
collection, based on dataset 6.

agricultural area. In Fig. 11d a mix of those three classes is present in the specific area.

Figure 10: Area of the classes over time based on dataset 6.

3.2 Vegetation dynamics

The effects of droughts and seasonal rainfall on the resilience of the classes in the area
was assessed by comparing precipitation data with the NDVI time-series. Trend analysis
was applied on the NDVI time-series.
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(a) 18 Jan 1985 (wet season) (b) 17 Oct 1988 (dry season)

(c) 29 Jan 2018 (wet season) (d) 23 Sep 2017 (dry season)

(e) Legend

Figure 11: Land cover maps based on dataset 6.
Source: https://code.earthengine.google.com/3c45bd93284b0b2048cf2bc21d4176ef
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Climatic context

The yearly averaged rainfall in the period 1973 to 2009 is 786 mm, with the precipi-
tation having a distinct dry and wet season. The intra-annual variability is very high
(CV=94.98%). Of the three meteostations only one siginificant trend was measured. In
Karatu there is a negative trend of the rainfall during the long rainy season (MAM)(τ=-
0.239, p=0.033)(Table F.1 - F.4). The monthly averaged precipitation over the area shows
no significant trends during any season (long dry/wet, short dry/wet, annual).

The yearly averaged temperature in the research area, represented by one meteo-
station in Arusha, is significantly increasing (all p<0.021). Both the minimum and the
maximum show a strong positive trend (τ=0.569 and τ=0.262)(Table F.5).

Temporal NDVI-rainfall relationships

In the different areas the NDVI have similar trends during the year, with an increasing
NDVI during the wet season and decreasing NDVI during the wet season (Figure 12).
The values vary from area to area, and also the range of NDVI differs between the differ-
ent vegetation types (mean: 0.154<NDVI<0.687; and variation: 10.18%<CV<33.86%)(Table
E.3). The forested area and banana plantations have the highest and most constant NDVI,
while both grassland and savannah have the lowest NDVI values during the dry season
(0.10-0.15) and fluctuate more.

The NDVI in all areas except the ricefields is higher during a wet year (Fig. 12, blue
line), and lower during a dry year (Fig. 12, yellow line) compared to normal years (green
line), and at the end of the dry season (October) the NDVI values of the natural systems
return to a steady state in all situations (wet/normal/dry year). The ricefields and agri-
culture (intercrop) have high NDVI values early in wet season (Nov-Dec) representing
the the biannual growth of crops. For the ricefields this is only partially represented by
the trendlines due to a smaller amount of data available after the building of an irrigation
system in 2012.

After a dry year the response in the south during the first part of the rainy season
(Nov-Dec) is similar to the increase in NDVI during a wet year, but at the end of the rainy
season it is below a normal year. In the north the response after a dry year is similar to a
normal year, which is continued throughout the rest of the wet season. The grasslands in
the north have a lag in the decline of NDVI during the dry season which is accompanied
with a lack of data in the period July and beginning of August. The trend of the NDVI
two years after a dry year (Fig. 12, red-dotted line) is similar to the trend of a normally
wet year (Fig. 12, green line). The bananafields and intercrop agricultere show a normal
response at the start of the wet season, but at the end of the wet season the values are
lower than during the dry year. The ricefields have a trend the other way around, with a
slow response to the first rainfall and higher than normal NDVI values at the peak of the
rainy season

The non-agricultural areas have a significant and strong correlation between NDVI
and rainfall with a lag of 1 month (p<0.002, τ>0.667) (Table E.4). The banana and maize
fields also show a strong significant relation, however with a lag of 2 months (p<0.01,
τ =0.576).

Long term NDVI

The MK test was applied on the average seasonal NDVI per area for the wet and dry
season, and yearly averaged NDVI. This resulted in nine significant trends (all τ>0.325,
p<0.05) (Table 6). The forested area, rice, banana and intercrop fields showed a significant
increase of the NDVI over time for both the wet season and annual average. The banana
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Figure 12: Intra-annual NDVI trends.
Blue = high precipitation; green = average precipitation; yellow = low precipitation; red (dashed)
with shadow = NDVI 1 year after a low precipitation year plus one standard deviation; red (dot-
ted) = NDVI 2 years after a low precipitation year.

fields also showed a correlated increase of the NDVI during the dry season. The other
areas did not have any significant positive or negative trend.

Table 6: Significant positive trends of long term NDVI (1985-2019) measured over eight different
areas during different seasons (wet, dry, annual).

Area Season Var(Score) Denominator Score tau 2 sided p-value

Forest Wet 1833.3 300 118 0.393 0.006
Rice Wet 1625.3 276 114 0.413 0.005
Banana Wet 1625.3 276 136 0.493 0.001
Intercrop Wet 1833.3 300 128 0.427 0.003
Banana Dry 1257.7 231 143 0.619 6.22E-05
Forest Annual 3141.7 435 167 0.384 0.003
Rice Annual 2842.0 406 218 0.537 4.7E-05
Banana Annual 2842.0 406 196 0.483 0.000
Intercrop Annual 2842.0 406 170 0.419 0.002

3.3 Perspectives of local people

The people interviewed were living dispersed over an area of 100km2, belonged to three
different villages and two tribes. The majority were Maasai, with only one household
being Waarusha. All of the interviewees were agro-pastoralists, although the extend of
their agricultural area depended per season on the expectations on rainfall and financial
possibilities. One household was also involved in a business of sandal making and distri-
bution. The age of the respondents was between 20 and 103 years old and the time living
in the research area differed from ten to over sixty years.

The weather patterns and climate has changed according to the majority. All peo-
ple mentioning the temperature (6) noticed an increase of temperatures, with some of
them noting an increase of extreme heat. The amount of rainfall increased according to
two households while the majority of 10 said the precipitation became less with some of
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them also mentioning a distortion in the seasonality (3). Multiple households mentioned
the drought in 2009, which is also reflected by the meteorological data (TMA, 2019) and
indicated a worsening of the both the amount of precipitation and the seasonality.

The availability or quality of grass, an important resource for the livestock of the
agro-pastoralists, was decreasing according to all respondents mentioning it (11). Most
of them thought this was caused by an increase of livestock (7), but a increase of trees (5),
and the decrease of rainfall (4) and fire (1) were also mentioned. The increase of trees in
the area was supported by other respondents too (11 in total) but not always linked to
the decrease of grassland.

The increase of livestock has led to an increase of competition for grass and other
resources. The availability of water increased due to the building of many small dams
catching water during the wet season, reducing the competition for water which would
have been the main competitive resource. However the increase of the population in the
area has led to an increase of cattle, sheep and goats too, resulting in an increase of pres-
sure on the grasslands. Some of the interviewees would seasonally migrate to another
location to overcome the effects of diminishing food resources, but this is less favourable
nowadays due to the application of agriculture and better accessibility of other services
such as education and public transport at their current location.
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4 Discussion

4.1 LULC change

This study shows the difficulty of LULC classification in semi-arid regions. The used
methods for determining the long term LULC (1985-2019) have not been able to deliver
reliable, consistent LULC maps and area sizes over time. Although the tested accuracies
on the classified training images resulted in high levels, two factors showed that the out-
come does not agree with field observations and visual interpretation of satellite imagery.

LULC class size variability

The first indicator of incorrect classification is the high variability in LULC class area size
between the classified maps which were expected not to deviate a lot within a year or a
relative short period due to the time it normally takes for a system to change from one
class to another. The classes forest, water, and savannah were expected to have very little
seasonal changes (Hu and Zhang, 2013). Nonetheless the classes forest and savannah
can fluctuate thousands of km2 within a year (Table B.2). Extreme rainfall events and
associated floods could be detected as an (extreme) increase in area of water, and the
degradation of land due to (extreme) droughts could be reflected by an increase of bare
soil area (especially from grasslands), but this is not expected to this extend.

Table 7: LULC change in semi-arid regions

Vegetation class Change over
time

Absolute
change (km2)

Change of total
area

This research
Bare soil -73% 4030 27%
Savannah 54% 2533 17%

Bergh (2016)
Grassland -55% 916 6%
Bare soil 57% 1801 11%

Mtui et al. (2017)
Closed shrubland -28% 173.6 7%
Woody savannah -55% 271.1 10%
Swamp 105% 256.9 10%

John et al. (2009)
Shrubland -48% 121466 11%
Bare soil 124% 150790 13%

Many other studies have indicated a LULC change in semi-arid landscapes, but like
this study there are big variations in class area size despite the unlikeliness of big changes
in woody vegetation (Table 7) (Bergh, 2016; Kiunsi and Meadows, 2006; Mtui et al., 2017;
John et al., 2009; Zewdie and Csaplovies, 2015). In these studies less data were used to
determine the LULC change (2-4 images versus 32). To overcome possible fluctuations in
the classification due to seasonality these studies used images from the same season. As
can be seen in Figure 9 this is still ambiguous. The result of this study can demonstrate
that with the use of a small amount of images the outcome and conclusions could be
reversed if another set of images was used. For example:

• If image 2 and 24 are being compared (respectively Feb 1985 and Jan 2018), in in-
crease in grassland is detected (1137 to 3535 km2). If image 1 and 29 were used
(both Jan, 1987 and 2017) a decrease would have been the result (1978 to 1036 km2).

• The same applies for respectively a decrease and increase of savannah between the
images 2 and 20, or 5 and 25 (6532 to 5943 km2 (1985-2017); or 8414 to 5943 km2

(1993-2016)).
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Therefore the results of this and other studies, which all have big changes in the LULC
classification, are doubtful on the validity of the results (Bergh, 2016; Kiunsi and Mead-
ows, 2006; Mtui et al., 2017; John et al., 2009). The results from Zewdie and Csaplovies
(2015), which uses of four images and a smaller amount of classes, show a more realistic,
gradual increase of cropland at the expense of forest.

Spectral variations

The second indicator of the incorrect classifications can be found by looking at the in-
dividual classified maps. By comparing the original satellite imagery and the result of
the classified maps it is visible that errors have been made in the classification. The big
changes resulting from the adjusted training dataset indicates that the specific spectral
range of each class are close to each other. A small change in either the classifier or the
pixel value will therefore result in a different classification map.

Classifier

The change of the classifier, with the use of different ground truth datasets (Table 2), re-
sulted in different LULC class area sizes (Table B.2, Figure 8/10) and classification maps
(Figure 11 and D.1-D.6). Despite the lack of a true probability sampling design and there-
fore a possible bias in the dataset (Stehman and Foody, 2019), the accuracy of the training
was high (Table 4). The confusion matrix and associated user’s, producer’s, and overall
accuracies have been mentioned to be the core elements of the accuracy assessment of
mapping land cover (Stehman and Foody, 2019). Many other studies obtained an overall
accuracy between 0.70 and 0.96 with Kappa ranging between 0.67 to 0.95 which was con-
sidered a successful classification and mapping of the study area (Kharazmi et al., 2018).
Therefore the accuracies from this research were considered good, but might have been
affected by a bias in the sampling data.

Pixel value

It is assumed that the individual pixel value and the spectral range of each class have a
bigger effect on the incorrect outcomes because of the high variation of LULC class areas.
Every class has a specific spectral range. A pixel value within that range will be assigned
to that class. If pixels change easily from one class to another than the pixel values were
already at the edge of the range. This can have two explanations.

Firstly, the spectral differences between the classes are small. If the vegetation of two
classes is comparable or only a little different, the reference spectra of the two classes are
very similar. The transition between the classes forest and savannah, and between sa-
vannah and grassland is rather smooth, due to the similarities of the classes in vegetative
composition. The spectral difference between for example a big shrub and a small tree
will be rather small, resulting in a possible misclassification.

Secondly, the classifier is a static algorithm. It is based on one image at a time with
specific climatic conditions. At any other moment these conditions will be different, and
so will be the condition of the vegetation. The dynamics of the vegetation will change
the pixel values. The value could change such that it is outside the spectral range of
its original class. If that is the case it will be assigned to a different class. Sinha (2012)
emphasizes the seasonality of LULC in temperate to subtropical climates due to tem-
perature and rainfall. Seasonal trends of those factors result in different vegetation and
management response, leading to different phenologies which could be interpreted dif-
ferent from satellite imagery (Gómez et al., 2016). When the imagery of this study is
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filtered for a specific season (JFM or ASON), the class area size is still deviating and not
unambiguously increasing or decreasing throughout the seasons.

In this research the seasonality is hardly visible (Figure 9). Any trend might be
abruptly broken because of the use of two algorithms. For each season a separate clas-
sifier was used to decrease the seasonality effect. Due to the high variation in the wet
season no trends are visible here, but during the dry season some trends were noted. The
decrease of agricultural land and increase of bare soil is a normal appearance due to the
harvesting of the crops and the remaining bare land after this. The decrease of forest and
increase of grassland don’t seem to naturally exchange area, but savannah could be a
good mediator for this. During the dry season acacia forests will become less green and
therefore shift to the savannah class, whereas the trees and shrubs in the savannah class
also become less dominant and shift to the class grassland.

4.2 Vegetation dynamics

Vegetation can change due to numerous causes. According to Teferi et al. (2015) there
are three possibilities of how this change appears: (1) the seasonality of the climate (e.g.
temperature and rainfall) has an effect on the phenology of vegetation resulting in a cyclic
change of the vegetation; (2) a gradual but monotonic change over a longer period of time
exists because of a changing environment such as land degradation or a change in land
management; and (3) due to a specific event in time the vegetation changes abruptly such
as deforestation, floods, droughts and fires.

Precipitation and temperature

The observed non-uniform downward trend of precipitation during the long rains, in
Karatu only, is in agreement with findings over the whole of Tanzania where only a few
meteo-stations show a downward trend during the long rain season (MAM) or yearly
precipitation (United Republic of Tanzania, 2014; Rowell et al., 2015). The observed pre-
cipitation levels, the variation and trend is also in line with previous findings (Pardoe
et al., 2018; Rowell et al., 2015; Agrawala et al., 2003). However multiple projections pre-
dict an increase in rainfall over almost the entirety of the greater Horn of Africa up to
16.3% in 2100 in the north eastern highlands of Tanzania due to thermodynamic effects
(United Republic of Tanzania, 2014; Shongwe et al., 2011).

Temperature

The correlated and significant upward trend of temperature has been observed around
the whole region, with a similarly stronger trend of mean minimum temperatures (Agrawala
et al., 2003; United Republic of Tanzania, 2014). An increase in temperature causes an in-
crease of the potential evapotranspiration (ETp). Because water is the limiting factor in
semi-arid regions, the increase of ETp will cause a greater stress on the vegetation. A
result of greater stress would be a decrease of NDVI, but this was not observed in this
research.

Intra-annual NDVI and climate

The NDVI of the natural and agricultural areas in northern Tanzania are characterized
by the strong correlation with seasonal rainfall (Table E.4). This is in agreement with
other research showing this characteristic in water limited regions (Moulin et al., 1997).
The lower correlation (τ) of the forests and the agricultural areas can be linked to the
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higher water availability. The forests are located near rivers or mountains where the wa-
ter availability is higher compared to the lower lying plains. The agricultural areas are
under constant human influence, including the manual application of water and fertil-
izers, positively affecting the living conditions of the vegetation and making it less de-
pendent on rainfall, and negatively affecting the vegetation by harvesting. The natural
areas have invariably a lag of 1 month (NDVI response is one month after precipitation)
for the best correlation between the precipitation and the NDVI, whereas the agricul-
tural areas have mixed lags dependent on the planting scheme and crop response. The
ricefield is not significantly correlated between precipitation and NDVI due to the high
anthropogenic influence on this crop.

The intra-annual variation of the NDVI has been lowest for the forest and bananafields
compared to the other areas. This can be explained by the year-round evergreen foliage
of these systems, resulting in little to no gaps in the canopy. Research by Fuller and Prince
(1996) also showed that the interannual CV can be more than doubled for different for-
est systems such as wet woodland and acacia woodland, with the annual mean NDVI
showing a reversed decreasing trend for decreasing precipitation.

The intra-annual variability of the eight areas have seasonal trends as expected. The
strong positive correlation between the NDVI and rainfall can be seen in all of the dif-
ferent vegetation classes (Figure 2 and 12). The correlation between the seasonal NDVI
and precipitation can also be seen in the differences in NDVI between dry, normal and
wet years. During dry years the NDVI is invariably below normal and during wet years
above normal NDVI values. Remarkable is the point at the end of the dry season where
the NDVI reaches an equal value in a dry, normal or wet year of the savannah and grass-
land areas. This indicates the depletion of the natural resources for the vegetation, or an
equilibrium position to survive during periods of high stress.

Also after a dry year the NDVI is recovering well. The increase of the NDVI after
a dry year indicates the resilience of the system, at which the resources are optimally
utilized as soon as the conditions allow. Most of the natural systems show a lower than
normal NDVI trend after a dry year, but during the second year no significant differences
in the intra-annual variability of the NDVI are distinguished. This points to the resilience
of the natural systems and the strong resistance to a year of drought. A longer period of
stress, such as drought or increased grazing, could lead to a catastrophic vegetation shift.
A positive plant-soil feedback could consequently lead to desertification (Rietkerk, 1998).
Due to a lack of data the systems have not been tested for any effects of longer periods of
drought.

Long term NDVI and climate

Although the high correlation between seasonal rainfall and NDVI, the minimal down-
ward trend of rainfall in Karatu was not reflected by long term NDVI values over the
area. The intra-annual NDVI is stronger correlated to precipitation compared to the in-
terannual NDVI (Richard and Poccard, 1998; Daham et al., 2018) which is reflected in this
result.

The significant and positive trend in the NDVI of all the agricultural areas was as
expected. This can be attributed to a change in the land management. In the year 2012 an
improved irrigation system was established at the village of Mto wa Mbu. This caused an
improved and more constant water inflow over the area throughout the year. As a result,
crops were grown year-round. The NDVI values of the ricefields (Figure 12) also reflect
this change in management by a biannual peak of NDVI, representing two growing and
harvesting seasons a year.

In the natural vegetative areas the only long term monotonic trend in NDVI that has
been found is an increase of NDVI of the forested areas. An increasing trend is shown
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in the long rainy season (FMAM) and in the annual NDVI. The cause of this change is
unclear because any change in management is unknown, and it is contradictory with
the positive trend in temperature and negative trend in rainfall. Theoretically, a gradual
revival of the forest could occur due to a fire in the past or a decrease of collection of
wood for personal use, but this has not been observed.

A decrease of the NDVI of savannah and grasslands was expected in the Monduli and
Longido districts, but no significant trends were measured. An increasing population
in the area (NBS, 2013) likely causes enhanced pressure on the system, an increase of
mean temperatures (Figure 4) would lead to increased evapotranspiration, and scattered
trends of decreasing rainfall (United Republic of Tanzania, 2014) adds to the likeliness of
decreasing NDVI in natural areas of northern Tanzania.

The MK trend test does only measure trends over the whole research time period.
Any temporal trends, characterized by a turning point (TP) at which the NDVI trend
changes from positive to negative or reverse, could be levelled out over the whole time
period. If the data showed a decrease up to 2000 and an similar increase up to 2018
this might have a netto zero effect. By incorporating a TP, (other) trends might have
been found for both climatological factors as well as the NDVI itself. Changing land
management resulting in a changing NDVI does only start at a given moment and not
necessarily over the whole period of time of this research. A greening and browning
trend was detected over Kenya and Tanzania with a TP in the 1990’s, with a net browning
trend over the whole time period (1982-2013) (Wei et al., 2018). The different results could
be explained by a different dataset and a different methodology that was used, which
incorporated the removal of noises and short-term fluctuations in advance.

4.3 Perspective of local people

The results of interviews show that local inhabitants of the rural savannah zone have
noticed that temperatures are increasing and rainfall is declining. Also multiple remarks
were made about the drought in 2009. These observation correspond with the evidence
of changes recorded by one or multiple meteostations nearby. Therefore the information
is regarded as generally reliable. There was a great consensus about the increase of trees
among the respondents, however without a distinct reason. This could have been mea-
sured by the long term trend of NDVI in the savannah (southern part), but has not been
detected. The so called ecological transition might result in different vegetation with sim-
ilar NDVI values and therefore remains untraceable for satellite observations. Also the
increased competition for grass was not represented by a decrease of NDVI from grass-
lands. If any shortages of water and grass were pressing, the old custom of the Maasai
to move to a temporal village, especially during the dry season, is still applied. The re-
silience of the different land cover classes is strong enough to overcome the increased
herbivore feeding and decreased rainfall and will be regenerated the next year. However
the Maasai implied that the movement to other areas is not longer always favourable, as
they gratefully use public services such as education, health care and public transport.
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5 Conclusion

In this study an assessment has been done on the long term LULC changes in the Mon-
duli and Longido districts in northern Tanzania with the use of multi-temporal Landsat
imagery. A total of 32 images has been collected from the period 1985 to 2019. After the
training of two algorithms with the use of ground truth data all images were classified.
Despite the high accuracy which resulted from the accuracy assessments en changes that
were applied to the training data no conclusions can be drawn on the LULC changes
in the research area. The total area of each class was showing big variations over time,
which also questions the results of other researches which used a small set of images (¡5).
The big variations are presumably caused by the small spectral differences between the
classes, and the big variation of the vegetation by the seasons.

Also the dynamics and the resilience of eight different vegetative areas have been
studied. This has been done by using long term rainfall data, and obtained NDVI values
of each area. Over the period 1985-2019 satellite imagery from Landsat has been collected
and the NDVI was calculated. With this data an assessment was done on the long term
trends, as well as intra-annual trend analysis and resilience. By analysing the long term
NDVI in the dry and wet season and annual means it is proven that all the different
agricultural areas have become greener based on the annual averaged NDVI. Of the five
natural systems the forested area has become greener in the wet season and the annual
NDVI values. The other natural areas have not shown any positive or negative trends.

The intra-annual trend of the NDVI is strongly, positively correlated with the precip-
itation. For all eight different areas the NDVI is on average higher during a wet season,
and lower during a dry season compared to a normal amount of precipitation during the
year.

The resilience of the system, measured by using the NDVI values one year or two
years after a dry year, is strong. The agricultural areas experience a strong influence of
human interactions. In the first year after a dry year lower to normal NDVI values were
measured. For the natural areas during the first year after a dry year lower than normal
or lower than dry NDVI trend was measured, but in the second year after a dry year the
deviation to normal is no longer to be found. This indicates the strong resilience of the
systems. Despite the declining trend in rainfall at one of the meteostations and increasing
temperatures, the NDVI of the natural systems is constant over time or is increasing and
shows a strong resilience.

The local population has also been able to detect changes in the weather, at which an
increasing temperature and unreliable rainfall patterns were frequently heard observa-
tions. The Maasai indicate that there is an increase in the amount of trees, what has not
been detected by changes in the NDVI. The increase of trees is considered as a negative
development, which together with an increasing population and herd sizes would lead
to the declining availability of grass. The Maasai have been able to solve this problem
like they have been doing for a long period in history, by moving to more prosperous
land during the dry season. However, this is less favourable for them as they thankfully
use services such as education, health care and public transport.

5.1 Recommendations

Shortcomings were revealed in the LULC classification in semi-arid regions. Although
the accuracy of the training was good, the outcomes were not sufficient. By determining
the exact causes of the misclassification, valuable information would be obtained in or-
der to perform a better LULC analysis. A better understanding of the limitations of the
accuracy assessment is needed.
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The vegetation dynamics and resilience of the system has been tested with a small
dataset and averaged NDVI values over a bigger area. This showed promising results of
the resistance of the system to one year of drought. However with a bigger and random-
ized dataset of locations a better indication of the resilience of the area can be given.

One of the main drivers of LULC change and vegetation dynamics is precipitation.
Precipitation measurements in this research area are inconsistent or absent. This causes
difficulties for determining years of drought, and possible seasonality changes. A hydro-
logical model which produces a dataset with monthly precipitation would be valuable to
solve these unknowns.

An effect of long term drought in combination with the grazing pressure could lead
to a tipping point of vegetation shift and lead to land degradation. At this moment the
carrying capacity of the system is unknown. Local inhabitants indicate an increase of
competition for grazing lands, and the effects of a long term drought on this develop-
ment is unknown. By assessing the resilience of this and other semi-arid systems to long
term drought an insight can be given on the effects. With that information a possible
exceedance of the tipping point caused by grazing can be prevented.
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Appendices

Appendix A Sensor bands

Table A.1: Properties of the Landsat TM and Landsat EMT+ sensors

Landsat 4/5 (TM) Landsat 7 (ETM+)

Band Band Spatial Spectral Wavelengths (µm) Band Spatial Spectral Wavelengths (µm)

description name resolution
(m) Min Max name resolution

(m) Min Max

Blue B1 30 0.45 0.52 B1 30 0.45 0.515
Green B2 30 0.52 0.6 B2 30 0.525 0.605
Red B3 30 0.63 0.69 B3 30 0.63 0.69
NIR B4 30 0.76 0.9 B4 30 0.775 0.9
SWIR1 B5 30 1.55 1.75 B5 30 1.55 1.75
SWIR2 B7 30 2.08 2.35 B7 30 2.09 2.35
TIR1 B6 120 10.4 12.5 B6 VCID 60 10.4 12.5
Panchromatic - - - - B8 13x15 0.52 0.9

Table A.2: Properties of the Landsat OLI-TIRS and Sentinel MSI sensors

Landsat 8 OLI-TIRS Sentinel 2A/2B MSI

Band Band Spatial Spectral Wavelengths (µm) Band Spatial Spectral Wavelengths (µm)

description name resolution
(m) Min Max name resolution

(m) Min Max

Aerosol B1 30 0.435 0.451 B1 60 0.433 0.453
Blue B2 30 0.452 0.512 B2 10 0.4575 0.5225
Green B3 30 0.533 0.59 B3 10 0.5425 0.5775
Red B4 30 0.636 0.673 B4 10 0.65 0.68
Red Edge 1 - - - - B5 20 0.6975 0.7125
Red Edge 2 - - - - B6 20 0.7325 0.7475
Red Edge 3 - - - - B7 20 0.773 0.793
NIR B5 30 0.851 0.879 B8 10 0.7845 0.8995
Red Edge 4 - - - - B8a 20 0.855 0.875
Panchromatic B8 15 0.503 0.676 - - - -

Water Vapour - - - - B9 60 0.935 0.955
Cirrus B9 30 1.363 1.384 B10 60 1.36 1.39
SWIR1 B6 30 1.566 1.651 B11 20 1.565 1.655
SWIR2 B7 30 2.107 2.294 B12 20 2.1 2.28
TIR1 B10 100 10.6 11.19 - - - -
TIR2 B11 100 11.5 12.51 - - - -
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Appendix B LULC images

Table B.1: Imagery used for the training of the classifier. Dark gray are images acquired during

the wet season, light gray are images acquired during the dry season.

Acquisition date Satellite and sensor Cloud cover WRS path WRS row

9-Sep-2018 0 169 62
18-Sep-2018 7 168 62
18-Sep-2018 Landsat 7 ETM+ 2 168 63
31-Jan-2019 0 169 62
24-Jan-2019 3 168 62
24-Jan-2019 9 168 63

3-Dec-2017 6.83 169 62
23-Sep-2017 0 168 63
23-Sep-2017 Landsat 8 OLI-TIRS 1.58 168 62
12-Mar-2019 0.17 169 62
21-Mar-2019 1.43 168 62
21-Mar-2019 4.71 168 63

Table B.2: The total area of each LULC class in km2 with dataset 6. Images used for classification. Cloud
cover is relative over the study area (%). Dark gray are images acquired during the wet season, light gray
are images acquired during the dry season.

# Date Satellite and sensor Cloud cover Forest Savannah Grassland Cropland Bare Water

1 18-Jan-1985 L5 TM 3.31 326 5608 1978 852 5456 19
2 25-Feb-1987 L5 TM 3.26 335 6532 1137 1217 4953 94
3 1-Oct-1988 L4 TM 0.16 477 8638 1937 221 3539 75
4 17-Oct-1988 L4 TM 0.23 490 8416 2422 205 3199 49
5 17-Feb-1993 L4 TM 4.43 1655 8414 882 1531 2096 73
6 30-Jan-1995 L5 TM 6.13 347 5247 943 1053 5680 17
7 4-Nov-2009 L5 TM 0.39 615 7153 2031 279 4639 183
8 8-Jun-2013 L8 OLI-TIRS 7.19 1635 7749 1502 2329 607 488
9 27-Aug-2013 L8 OLI-TIRS 2.91 1064 8604 1911 1346 1157 361

10 28-Sep-2013 L8 OLI-TIRS 4.2 802 9072 1387 1250 1402 250
11 30-Oct-2013 L8 OLI-TIRS 5.39 591 7613 2415 1041 1616 374
12 15-Nov-2013 L8 OLI-TIRS 1.23 1004 7839 2001 2012 1401 382
13 3-Feb-2014 L8 OLI-TIRS 0.89 1033 8862 1773 2012 978 153
14 13-Jul-2014 L8 OLI-TIRS 4.29 1839 8137 1116 1624 1613 282
15 15-Sep-2014 L8 OLI-TIRS 7.26 655 6710 1591 1394 1612 320
16 20-Dec-2014 L8 OLI-TIRS 5.51 1479 7756 1007 2666 670 409
17 10-Mar-2015 L8 OLI-TIRS 1.21 671 8206 2235 1878 1424 202
18 18-Sep-2015 L8 OLI-TIRS 8.96 461 7328 2215 1140 1510 219
19 8-Jan-2016 L8 OLI-TIRS 4.51 2001 7906 1093 2471 566 223
20 25-Feb-2016 L8 OLI-TIRS 9.9 2032 5943 1099 2991 452 638
21 28-Mar-2016 L8 OLI-TIRS 1.7 1115 8871 1517 2035 992 163
22 3-Aug-2016 L8 OLI-TIRS 1.08 1696 8591 1153 1787 1252 253
23 22-Oct-2016 L8 OLI-TIRS 0.9 557 8803 2451 942 1770 199
24 26-Jan-2017 L8 OLI-TIRS 1.53 394 6476 3535 1783 2149 213
25 11-Feb-2017 L8 OLI-TIRS 1.87 497 7236 2734 1779 2004 151
26 23-Sep-2017 L8 OLI-TIRS 0.02 513 8468 2147 2013 1497 189
27 12-Dec-2017 L8 OLI-TIRS 9.21 485 6053 2420 1786 1915 565
28 28-Dec-2017 L8 OLI-TIRS 3.91 253 7424 2538 1445 2904 103
29 29-Jan-2018 L8 OLI-TIRS 1.76 1545 8415 1036 2619 725 189
30 12-Oct-2018 L8 OLI-TIRS 8.58 860 8201 1911 586 1565 411
31 1-Feb-2019 L8 OLI-TIRS 6.96 1297 7268 1492 2228 802 462
32 21-Mar-2019 L8 OLI-TIRS 1.48 497 8141 2652 1534 1426 216
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Figure B.1: Land cover maps from 18 Jan 1985 to 27 Aug 2013
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Figure B.2: Land cover maps from 28 Sep 2013 to 18 Sep 2015
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Figure B.3: Land cover maps from 8 Jan 2016 to 12 Dec 2017
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Figure B.4: Land cover maps from 28 Dec 2017 to 21 Mar 2019 and a legend.
Source: https://code.earthengine.google.com/d26ccffb653761aeaf177475195d7eae
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Appendix C Confusion matrix

Abbreviations:

Sav. = Savannah
Agr. = Agriculture
Inc. class. = Incorrect classified
Err. of Com. = Error of Commission

User’s acc. = User’s accuracy
Error of Om = Error of Omission
Prod. Acc. = Producers Accuracy

Confusion matrixes from the training with dataset 5

Table C.1: Confusion matrix of the training of the classifier with dataset 5 on Landsat 7 imagery.

Forest
(moist)

Forest
(dry)

Sav. Grass Agr. Bare Water Total
Inc.
class.

Err.
of
com.

User’s
acc.

Forest (moist) 3304 0 0 0 1 0 0 3305 1 0 1
Forest (dry) 1 8 0 0 1 0 0 10 2 0.200 0.800
Savannah 0 0 81 0 3 1 0 85 4 0.047 0.953
Grass 0 0 8 77 0 0 0 85 8 0.094 0.906
Agriculture 0 0 1 0 62 0 0 63 1 0.016 0.984
Bare 0 0 2 0 0 17 0 19 2 0.105 0.895
Water 0 0 2 0 0 0 209 211 2 0.009 0.991
Total 3305 8 94 77 67 18 209 3778
Inc. class. 1 0 13 0 5 1 0
Error of om. 0.000 0 0.138 0 0.075 0.056 0
Prod. Acc. 1.000 1 0.862 1 0.925 0.944 1 0.995

Table C.2: Confusion matrix of the training of the classifier with dataset 5 on Landsat 8 imagery.

Forest
(moist)

Forest
(dry)

Sav. Grass Agr. Bare Water Total
Inc.
class.

Err.
of
com.

User’s
acc.

Forest (moist) 4866 0 0 0 1 0 0 4867 1 0 1
Forest (dry) 4 17 0 0 0 0 0 21 4 0.190 0.810
Savannah 1 2 102 7 2 0 0 114 10 0.088 0.895
Grass 0 0 7 105 0 0 0 112 7 0.063 0.938
Agriculture 0 0 0 46 0 0 0 46 46 1 0
Bare 1 0 2 2 0 20 0 25 5 0.200 0.800
Water 0 0 1 2 0 1 218 222 4 0.018 0.982
Total 4872 19 112 162 3 21 218 5407
Inc. class. 6 2 10 57 3 1 0
Error of om. 0.001 0.105 0.089 0.352 1 0.048 0
Prod. Acc. 0.999 0.895 0.911 0.648 0 0.952 1 0.985
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Confusion matrices from the training with dataset 6

Table C.3: Confusion matrix of the training of the classifier with dataset 6 on Landsat 7 imagery
of the wet season.

Forest Sav. Grass Agr. Bare Water Total
Inc.
class.

Err.
of
com.

User’s
acc.

Forest 154 1 0 0 0 0 155 1 0.006 0.994
Savannah 1 111 2 2 2 0 118 7 0.059 0.941
Grass 0 4 81 0 0 0 85 4 0.047 0.953
Agriculture 0 7 0 86 0 0 93 7 0.075 0.925
Bare 0 3 0 1 23 0 27 4 0.148 0.852
Water 0 0 0 0 0 38 38 0 0 1
Total 155 126 83 89 25 38 516
Inc. class. 1 15 2 3 2 0
Error of om. 0.006 0.119 0.024 0.034 0.08 0
Prod. Acc. 0.994 0.881 0.976 0.966 1 1 0.955

Table C.4: Confusion matrix of the training of the classifier with dataset 6 on Landsat 7 imagery
of the dry season.

Forest Sav. Grass Agr. Bare Water Total
Inc.
class.

Err.
of
com.

User’s
acc.

Forest 142 1 0 0 0 0 143 1 0.007 0.993
Savannah 2 125 6 0 0 0 133 8 0.060 0.940
Grass 0 4 78 0 0 0 82 4 0.049 0.951
Agriculture 0 1 1 72 0 0 74 2 0.027 0.973
Bare 0 0 0 0 23 0 23 0 0 1
Water 0 0 0 0 0 55 55 0 0 1
Total 144 131 85 72 23 55 510
Inc. class. 2 6 7 0 0 0
Error of om. 0.014 0.046 0.082 0 0 0
Prod. Acc. 0.986 0.954 0.918 1 1 1 0.971
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Table C.5: Confusion matrix of the training of the classifier with dataset 6 on Landsat 8 imagery
of the wet season.

Forest Sav. Grass Agr. Bare Water Total
Inc.
class.

Err.
of
com.

User’s
acc.

Forest 190 3 0 2 0 0 195 5 0.026 0.974
Savannah 0 146 3 1 0 0 150 4 0.027 0.973
Grass 0 14 91 0 0 0 105 14 0.133 0.867
Agriculture 0 1 0 71 0 0 72 1 0.014 0.986
Bare 0 1 3 1 25 0 30 5 0.167 0.833
Water 0 2 0 0 0 67 69 2 0.029 0.971
Total 190 167 97 75 25 67 621
Inc. class. 0 21 6 4 0 0
Error of om. 0 0.126 0.062 0.053 0 0
Prod. Acc. 1 0.874 0.938 0.947 1 1 0.950

Table C.6: Confusion matrix of the training of the classifier with dataset 6 on Landsat 8 imagery
of the dry season.

Forest Sav. Grass Agr. Bare Water Total
Inc.
class.

Err.
of
com.

User’s
acc.

Forest 179 2 0 1 0 0 182 3 0.016 0.984
Savannah 0 45 4 2 0 0 151 6 0.040 0.960
Grass 0 9 96 0 0 0 105 9 0.086 0.914
Agriculture 0 1 0 116 0 0 117 1 0.009 0.991
Bare 0 0 2 0 22 0 24 2 0.083 0.917
Water 0 0 0 0 0 41 41 0 0 1
Total 179 157 102 119 22 41 620
Inc. class. 0 12 6 3 0 0
Error of om. 0 0.076 0.059 0.025 0 0
Prod. Acc. 1 0.924 0.941 0.975 1 1 0.966
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Appendix D LULC classified maps



D2 D LULC CLASSIFIED MAPS

(a) 18 Jan 1985 (wet season) (b) 17 Oct 1988 (dry season)

(c) 29 Jan 2018 (wet season) (d) 23 Sep 2017 (dry season)

(e) Legend

Figure D.1: Land cover maps based on dataset 1, ungrouped classes.
Source: https://code.earthengine.google.com/d88e11f0b078168de6da82310fc7d2bd
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(a) 18 Jan 1985 (wet season) (b) 17 Oct 1988 (dry season)

(c) 29 Jan 2018 (wet season) (d) 23 Sep 2017 (dry season)

(e) Legend

Figure D.2: Land cover maps based on dataset 1,grouped classes.
Source: https://code.earthengine.google.com/e521ec70bd8e6d45ebf1382e32e7a9d6



D4 D LULC CLASSIFIED MAPS

(a) 18 Jan 1985 (wet season) (b) 17 Oct 1988 (dry season)

(c) 29 Jan 2018 (wet season) (d) 23 Sep 2017 (dry season)

Figure D.3: Land cover maps based on dataset 2.
Source: https://code.earthengine.google.com/00b0795e2d0b3eb0c5ea454b9711b011
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(a) 18 Jan 1985 (wet season) (b) 17 Oct 1988 (dry season)

(c) 29 Jan 2018 (wet season) (d) 23 Sep 2017 (dry season)

Figure D.4: Land cover maps based on dataset 3.
Source: https://code.earthengine.google.com/32893721359e0d2eea39a5582e5f098f
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(a) 18 Jan 1985 (wet season) (b) 17 Oct 1988 (dry season)

(c) 29 Jan 2018 (wet season) (d) 23 Sep 2017 (dry season)

Figure D.5: Land cover maps based on dataset 4.
Source: https://code.earthengine.google.com/1702c8ccea390f3c2952b3344d4d7587
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(a) 18 Jan 1985 (wet season) (b) 17 Oct 1988 (dry season)

(c) 29 Jan 2018 (wet season) (d) 23 Sep 2017 (dry season)

Figure D.6: Land cover maps based on dataset 5.
Source: https://code.earthengine.google.com/c79563f2c0b776a93d795bf1a4c93c23
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Appendix E Vegetation dynamics, NDVI

Table E.1: Coordinates of the locations of teach NDVI trend analysis area.
Source: https://code.earthengine.google.com/83649686817bad89ed9609e5502bec43

Area Lat Lon

36.863 -2.786
36.854 -2.798
36.872 -2.807

Grass 36.882 -2.790

(north) 36.906 -2.718
36.900 -2.730
36.913 -2.732
36.916 -2.717

35.859 -3.375
35.859 -3.375
35.860 -3.375

Ricefields 35.860 -3.375

35.859 -3.375
35.859 -3.375
35.859 -3.375
35.859 -3.375

35.864 -3.319
35.865 -3.320
35.865 -3.320
35.866 -3.320
35.866 -3.320
35.866 -3.320
35.865 -3.320
35.865 -3.319

35.872 -3.329
35.871 -3.330

Intercrop 35.874 -3.330
(maize, 35.873 -3.328

beans, 35.860 -3.291
sunflower) 35.864 -3.291

35.864 -3.290
35.866 -3.289
35.867 -3.287
35.861 -3.287
35.859 -3.289

35.858 -3.344
35.857 -3.344
35.857 -3.347
35.860 -3.347
35.859 -3.345
35.859 -3.345

Area Lat Lon

35.909 -3.349
35.903 -3.357
35.908 -3.361

Grass 35.916 -3.353

(south) 35.930 -3.382
35.925 -3.395
35.932 -3.398
35.943 -3.385

35.983 -3.489
35.981 -3.491
35.984 -3.493
35.987 -3.490

35.986 -3.468
Savannah 35.982 -3.472

(south) 35.986 -3.476
35.988 -3.470

36.127 -3.712
36.123 -3.730
36.147 -3.735
36.152 -3.715

Forest

36.086 -3.376
36.081 -3.378
36.083 -3.382
36.090 -3.380

35.844 -3.372
35.841 -3.376
35.847 -3.377
35.847 -3.373

36.233 -2.880
36.226 -2.885
36.230 -2.894
36.242 -2.887

36.476 -3.257
36.475 -3.261
36.481 -3.261
36.482 -3.257

36.702 -2.697
36.697 -2.703
36.714 -2.707
36.714 -2.697

Area Lat Lon

36.660 -2.562
36.660 -2.574
36.687 -2.573
36.685 -2.560

Savannah 36.853 -2.687
(north) 36.841 -2.706

36.878 -2.709
36.867 -2.687

36.276 -2.503
36.269 -2.552
36.335 -2.540

35.853 -3.356
35.853 -3.358
35.855 -3.357

35.849 -3.353
35.850 -3.354
35.851 -3.353

35.861 -3.371
35.861 -3.373
35.862 -3.373
35.861 -3.371

35.853 -3.371
35.853 -3.371
35.854 -3.369

Banana 35.853 -3.369

plantations 35.854 -3.366
35.855 -3.367
35.855 -3.367
35.856 -3.366

35.853 -3.355
35.855 -3.354
35.854 -3.353
35.854 -3.354

35.863 -3.354
35.863 -3.354
35.864 -3.354
35.864 -3.354
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Table E.2: The amount of images per location used for the NDVI time series analysis. Split into
the total amount of images (Total), the amount of images before the year 2000 (<2000), the amount
of images from Landsat 4 or 5 (TM), Landsat 7 (ETM), and Landsat 8 (OLI-TIRS).

Location Grass N Grass S Forest Sav. N Sav. S Rice Banana Intercrop

Total 362 761 713 387 756 435 673 697
<2000 23 44 38 26 63 25 34 42
TM 34 70 63 35 112 38 54 68
ETM 213 413 402 223 455 212 374 383
OLI-TIRS 115 278 248 129 189 185 245 246

Table E.3: The average NDVI and the coefficient of variation (CV) during the different seasons at
each location (interannual).

Grass N Grass S Forest Sav. N Sav. S Rice Banana Intercrop

NDVI
Wet season 0.179 0.334 0.732 0.321 0.373 0.517 0.621 0.461
Dry season 0.115 0.151 0.658 0.181 0.190 0.440 0.567 0.346

Yearly 0.154 0.240 0.687 0.266 0.277 0.444 0.599 0.381

CV
Wet season 34.11 29.82 9.16 28.33 31.60 17.30 11.93 21.54
Dry season 21.73 20.67 9.88 17.42 35.96 26.20 14.62 22.52

Yearly 33.86 30.53 10.18 29.44 29.97 21.22 9 10.29 27.30

Table E.4: The correlation between long term monthly averaged NDVI and rainfall, calculated
with Kendall’s τ. The lag is the shift in months to obtain the highest significance and correlation.
Other lags could also improve the fits.

Grass N Grass S Forest Sav. N Sav. S Rice Banana Intercrop

p-value 0.000 0.000 0.002 0.000 0.000 0.153 0.009 0.009
T 58 60 55 60 58 55 52 52
tau 0.758 0.818 0.667 0.818 0.758 0.333 0.576 0.576
lag 1 1 1 1 1 0 2 2
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Appendix F Climate data trend tests

Table F.1: The Mann-Kendall trend test was applied on long term rainfall data. The data was
obtained from three meteostations (Karatu, Babati and Monduli) and averaged if two datapoints
were available and left out if only one datapoint was available. The monthly rainfall data was
aggregated into seasonal data, divided into short dry (Jan-Feb), long rain (Mar-May), long dry
(Jun-Oct), short rain (Nov-Dec) and the hydrological year (Aug-Jul).

Average 3 stations Short dry Long rain Long dry Short rain Hydrological year

Score 132 -124 -65 61 -14
Var(score) 8513 5846 6327 6834 5390
Denominator 860.5 666 703 741 630.0
tau 0.153 -0.186 -0.0925 0.0823 -0.0222
2 sided p-value 0.156 0.108 0.421 0.468 0.859

Table F.2: The Mann-Kendall trend test was applied on long term rainfall data. The data was
obtained from Karatu meteostation. The monthly rainfall data was aggregated into seasonal data,
divided into short dry (Jan-Feb), long rain (Mar-May), long dry (Jun-Oct), short rain (Nov-Dec)
and the hydrological year (Aug-Jul).

Karatu Short dry Long rain Long dry Short rain Hydrological year

Score 49 -177 5 77 -1
Var(score) 7365.7 6833.7 5845 5845 4550.3
Denominator 779.5 741 665.5 665.5 561
tau 0.629 -0.239 0.00751 0.116 -0.00178
2 sided p-value 0.576 0.033 0.958 0.320 1

Table F.3: The Mann-Kendall trend test was applied on long term rainfall data. The data was
obtained from Babati meteostation. The monthly rainfall data was aggregated into seasonal data,
divided into short dry (Jan-Feb), long rain (Mar-May), long dry (Jun-Oct), short rain (Nov-Dec)
and the hydrological year (Aug-Jul).

Babati Short dry Long rain Long dry Short rain Hydrological year

Score 78 13 27 10 36
Var(score) 5846 4958.3 4531.7 4165.3 1625.3
Denominator 666 595 555.0 528 276
tau 0.117 0.0218 0.0487 0.0189 0.13
2 sided p-value 0.314 0.865 0.699 0.889 0.385
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Table F.4: The Mann-Kendall trend test was applied on long term rainfall data. The data was
obtained from Monduli meteostation. The monthly rainfall data was aggregated into seasonal
data, divided into short dry (Jan-Feb), long rain (Mar-May), long dry (Jun-Oct), short rain (Nov-
Dec) and the hydrological year (Aug-Jul).

Monduli Short dry Long rain Long dry Short rain Hydrological year

Score 70 -30 -104 58 -44
Var(score) 8513.3 6326 7924.7 9129.3 5390
Denominator 860.5 702.5 819.0 902.5 630.0
tau 0.0813 -0.0427 -0.127 0.0643 -0.0698
2 sided p-value 0.455 0.715 0.247 0.551 0.558

Table F.5: The Mann-Kendall trend test was applied on long term temperature data. The data
was obtained from Arusha Airport meteostation. The mean monthly minimum temperature and
mean monthly maximum temperature were averaged to annual minimum and annual maximum.

Min Max

Score 420 184
Var(score) 6828 6326
Denominator 738.5 702.5
tau 0.569 0.262
2 sided p-value 0.000 0.021
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Appendix G Sediment displacement in gully systems

Sheet wash and consequent soil erosion has been causing loss of topsoil and incision of
flow convergence lines in many parts of the Monduli and Longido district. As stated by
the research of Blake et al. (2018), local herders have noticed that gully erosion has be-
come more severe over the last 15 years. Overgrazing has been found to be the main cause
of sheet erosion development in the specific research area defined by Blake et al. (2018),
although gully erosion was found both in overgrazed areas and along livestock routes.
In a study by Hammond Murray-Rust (1972) a subbasin of 9.3 km2 on the southern slope
of the Monduli Mountain was analysed on the causes of soil erosion. Here the total
sediment yield was 5.798 tons/(ha · y) during a 9 year period, which increased almost
1.5 times in the subsequent two years (Hammond Murray-Rust, 1972). The sediment is
transported to downstream area’s. Lake Manyara is an endorheic basin where (seasonal)
rivers from the Monduli district flow towards to. Due to long periods of droughts and
short but intensive rainfall events, significant amounts of soil are eroded and transported
to Lake Manyara, which increases the risk of reservoir sedimentation. A major source of
sediment is from gully erosion, although the occupied land is often <5% of the area of a
catchment (Ionita et al., 2015).

In order to get an idea of the sediment displacement from gullies within the Lake
Manyara watershed and the possible sediment deposition in the lake, two gully systems
between Mto wa Mbu and Makuyuni were studied. From Google Earth data it is clear
that gully systems in the area develop every rainy season (Figure G.1). To get an insight
of the magnitude of total sediment loss at a gully or during a specific time period, two
gullies were measured. In situ data was collected about the width, depth, typology (V/U
shape) and length of the gully. This was done prior to the long rains, and repeated after
two months.

Figure G.1: Satellite imagery of a gully in Monduli district (3.41°S, 35.96°N) expanding through
time: January 2013 (upperleft), January 2015 (upper right), January 2017 (lower left) and March
2017 (lower right). Source: Google Earth (2013)

The gully to be investigated was chosen based on accessibility, size and signs of (re-
cent) growth. The width and depth of the gully were measured with respect to the un-
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certainties described by Casalı́ et al. (2015). The gully width and depth were measured
at every 5 meters in order to get a proper profile of the system. The depth was measured
on an interval of 0.5 meters. A metal pole was put on both sides of the gully and a rope
was tight in between, 10 cm above the soil at the pin. An interval of 0.5 m was marked
on the rope, at which the depth was determined from that marking to the gully bottom.
This procedure was repeated after two months at the same location. With the collected
data a point cloud can be made, from which the loss of sediment can be calculated. This
will give more information about the displacement of sediment in the gully system.

Two gullies were measured (Image G.2 and G.3). The data of these gullies has been
added as supplementary data in a .csv file.

Figure G.2: Gully 1. Location: 3 29 18.9433S, 35 59 45.7137E
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Figure G.3: Gully 2. Location: 3 27 32.84S, 35 58 17.0190E
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