
Thesis - Nodal Derivatives in the Finite Element Method as Applied to

Geodynamic Modelling

Tom Weir

July 15, 2019



Contents

1 Introduction 1

2 Surface Derivatives 2

2.1 Surface Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Heat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Internal Nodes - Strain Rate 31

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Centre to Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Corner to Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Superconvergent Patch Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Benchmark - Donea and Huerta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Q2Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Conclusion 41

1



Abstract

A range of methods for calculating nodal derivatives were evaluated for the Finite Element Method in the context of

computational geodynamics. For stress and heat flux of surface nodes, the Consistent Boundary Flux method of Zhong

et al [15] was found to be more accurate than the other methods examined. For the strain rate tensor on internal nodes,

the most accurate of the methods tested was found to be the Superconvergent Patch Recovery method of Zienkiewicz and

Zhu [16] [17].



Chapter 1

Introduction

The Finite Element Method (FEM) is used extensively in computational modelling in many fields, including in geody-

namics, such as in the codes CITCOMCU [11], ASPECT [1], FANTOM [12], MILAMIN [2] and CONMAN [9]. In the

case of viscous geodynamic models the primary variables of the model are the velocity vector vi, the pressure p and the

temperature T , and these are known to a high degree of accuracy on the nodes. The derivatives of these variables are

known to a usually lower degree of accuracy on the nodes. However, some of these derivatives are of geophysical interest,

are related to other quantities of geophysical interest, or are useful in deriving other quantities of geophysical interest.

The derivatives in question are the strain rate tensor eij = 1
2 (∂ivj + ∂jvi)

1 and the temperature gradient ∂iT . Also of

interest is the stress tensor σij = 2µeij − δijp 2, which is function of the strain rate tensor.

The stress tensor on the surface is required for calculating the dynamic topography, which is an important output and

constraint for mantle convection models. [5] [14]. The temperature flux at the Earth’s surface is of significant importance

in the thermal evolution of the Earth [6], as is the heat flux between the core and the mantle [10] The strain rate inside

the domain is useful, for example in the case of viscoelastoplasticity [4].

In this thesis I examine, implement and analyse various methods of calculating these quantities on the nodes, both on

the surface of the domain and in the domain itself, and evaluate which method produces the most accurate results. I start

with surface derivatives, examining the surface stress and temperature flux, and then examine the strain on the internal

nodes. These are all implemented using the code Fieldstone [13].

1Where ∂i = ∂
∂xi

.
2where µ is the viscosity and δij is the Kronecker delta.
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Chapter 2

Surface Derivatives

2.1 Surface Stress

We start with an investigation of the into the stress (or traction) on the surfaces of the computational domain. There are

three methods used and compared in this work, the centre-to-node method (CN), the least squares method (LS), and the

consistent boundary flux method (CBF). The details of these methods are described below.

2.1.1 Methods

Centre-to-Node (CN)

In this method, the relevant derivative is calculated using a standard finite element method for each element. The value

of the derivative on each node is then calculated as an unweighted average of each element adjacent to the node. With

regular quadrilateral elements and a rectangular domain, as used in this paper, this leads to interior nodes receiving the

average of four elements, edge nodes two elements, and corner nodes one element. This is also referred to as the pressure

smoothing method in other works.

Least Squares (LS)

This method is related to the Superconvergent Patch Recovery Method of Zienkiewicz and Zhu [16] [17], which is explained

in greater detail in Section 3.1.3. In short, it takes a patch of four elements, and computes the value of the derivative at

the centre of each of these nodes. It then takes a polynomial and fits it to these values using a least squares method, and

uses this to compute the value of the derivative at the node.

Consistent Boundary Flux (CBF)

The CBF is the most complex of the three methods being detailed here. It is obtained by rearanging the Stokes equation

into a form that allows for the boundary fluxes to be calculated directly. Starting with a standard form of the Stokes
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Equation:

∂jσij = bi

Where σij is the stress tensor, and bi is the body force vector. We then premultiply by an arbitrary test function N and

integrate over the entire domain to get the weak form of the equation:∫
Ω

N∂jσijdV =

∫
Ω

NbidV

We then use the chain rule and divergence theorem to rewrite this equation:∫
Γ

Nσijnj dS −
∫

Ω

∂jNσij dV =

∫
Ω

NbidV

where Γ is the boundary of the domain Ω.We note that the traction vector is defined by:

ti = σijnj

and use this to rearrange the equation to give us the following:∫
Γ

NtidS =

∫
Ω

∂jNσijdV +

∫
Ω

NbidV

This equation can then be solved over the domain using a finite element method, to give us the tractions. It should be

noted that the above equation is true for any arbitrary domain Ω, and thus the domain of the above equation can be

chosen to consist only of the elements that lie on the edge of the total domain being of the model in question.

I begin by discussing the discretisation of the lefthand side of the equation. Firstly, the domain is divided into elements,

and the equation is integrated over each element. The elemental equations are then assembled into a full domain matrix.

Now, we consider the tractions to be unknowns on the nodes, in standard FEM style. For Q1 elements:

tx =

2∑
i=1

txiNi ty =

2∑
i=1

tyiNi (2.1.1)

where Ni is the ith basis function, and txi is the x-traction on the ith node.

We can use this to expand the equation:

∫
Γ
N0tx0dS∫

Γ
N0ty0dS∫

Γ
N1tx1

dS∫
Γ
N1ty1dS∫

Γ
N2tx2

dS∫
Γ
N2ty2dS∫

Γ
N3tx3dS∫

Γ
N3ty3dS



=



∫
Ω
∂iN0σxi0dV∫

Ω
∂iN0σyi0dV∫

Ω
∂iN1σxi1dV∫

Ω
∂iN1σyi1dV∫

Ω
∂iN2σxi2dV∫

Ω
∂iN2σyi2dV∫

Ω
∂iN3σxi3dV∫

Ω
∂iN3σyi3dV



+



∫
Ω
N0bx0dV∫

Ω
N0by0dV∫

Ω
N1bx1

dV∫
Ω
N1by1dV∫

Ω
N2bx2

dV∫
Ω
N2by2dV∫

Ω
N3bx3dV∫

Ω
N3by3dV



(2.1.2)

We now consider the element shown in Figure 2.1, which is on the lower boundary of the domain. The tractions do

not exist on nodes 2 and 3, and as such the lower half of the vector equation above may be discarded1. Further, as the x

1N.B. This is mathematically dubious and difficult to rigorously justify. However, it works.
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Figure 2.1: Diagram of the Q1P0 element showing element numbering used.

and y components of the equation are independent of each other, they can be separated. For the x-tractions, this gives

us: ∫Γ
N0tx0

dS∫
Γ
N1tx1

dS

 =

∫Ω
∂iN0σxi0dV∫

Ω
∂iN1σxi1dV

 +

∫Ω
N0bx0

dV∫
Ω
N1bx1

dV

 (2.1.3)

We integrate the left hand side over only one edge, in this case the 0-1 edge:

∫
Γ

NitxdS =

∫
Γ0−1

NitxdS (2.1.4)

∫
Γ0−1

N0txdS =

∫
Γ0−1

N0(NΓ
0 tx0 +NΓ

1 tx1)dS (2.1.5)

∫
Γ0−1

N1txdS =

∫
Γ0−1

N1(NΓ
0 tx0 +NΓ

1 tx1)dS (2.1.6)

These can either be integrated exactly 2, or using a trapezoidal integration method3. In the analytical case, we have

the following results: ∫
Γ0−1

N0N
Γ
0 dS =

∫
Γ0−1

N1N
Γ
1 dS =

h

2

2

3
(2.1.7)

∫
Γ0−1

N1N
Γ
0 dS =

∫
Γ0−1

N0N
Γ
1 dS =

h

2

1

3
(2.1.8)

2This can either be an analytical solution, or an exact solution calculated using Gauss-Legendre Quadrature.
3N.B. In the context of CBF, this trapezoidal integration method is also referred to as Gauss-Lobatto Quadrature, as trapezoidal integration

is equivalent to the lower limit of Gauss-Lobatto Quadrature, in the case that the number of integration points is two.
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where h is the distance between the nodes on the edge being integrated over. This leads to a left hand side of the form:

h

2

 2
3

1
3

1
3

2
3

 ·
tx0

tx1

 (2.1.9)

For the trapezoidal integration, we get the following:∫
Γ0−1

N0N
Γ
0 dS =

∫
Γ0−1

N1N
Γ
1 dS =

h

2
(2.1.10)

∫
Γ0−1

N1N
Γ
0 dS =

∫
Γ0−1

N0N
Γ
1 dS = 0 (2.1.11)

This leads to a left hand side of the form:

h

2

1 0

0 1

 ·
tx0

tx1

 (2.1.12)

This second method of integration is also known as mass lumping (ML), and is not without consequences: Firstly, it

leads to a diagonal left hand side matrix, which makes the solving step trivial and computationally very cheap. Secondly,

it means each element is decoupled from each other element. That is, the traction at each node for one dimension is

dependent exclusively on the right hand side value at that node and that dimension. This latter point become relevant

later in the discussion and analysis of what I have termed ”corner weirdness.”

The algorithm proceeds as follows. All elements are looped over. For each element, the right hand side vector of

Equation 2.1.2 is formed, in the same manner as in the main Stokes solver of the code. Each boundary of the domain is

then looped over, and if the element lies on the boundary, the relevent components of the elemental right hand side vector

are extracted, and assembled into the global right hand side vector, in standard FEM manner. The elemental left hand

side matrix, as computed using either an exact or mass lumping technique as detailed above, is assembled into the global

left hand side matrix. Note that as each boundary is looped over for each element, corner elements are assembled over

twice, as they lie on two boundaries. After all elements are looped over, the left and right hand sides of the equation are

solved, to give the tractions on all boundary nodes.

This algorithm can be extended to Q2Q1 and Q3Q2 elements, by applying the same principles. This is not done in

detail here. However, note that the mass lumping in these cases uses a higher order Gauss-Lobatto integration, with 3

integration points for Q2Q1 and 4 points for Q3Q2.

5



2.1.2 Benchmarks

These methods are tested against several analytical benchmarks to measure their accuracy compared to one another, and

how this changes as a function of mesh resolution.

Zhong, Gurnis and Hulbert

In the paper of Zhong et al [15], primarily concerned with introducing and detailing the CBF, they introduce a benchmark

to test their implementation of the CBF. This benchmark consists of a 1×1 box, with free slip boundary conditions on all

boundaries. The density is uniformly zero throughout the domain, except at a depth y0, where it is given by ρ = ρ0αT (x).

The temperature is defined by T (x) = cos(kx), where k is the wavenumber, defined in terms of the wavelength λ as

k = 2π
λ . A Greens function method is used to derive the analytical solution for the y-traction on the upper surface, given

by ty = cos(kx)
sinh(k) (k(1− y0) sinh(k) cosh(ky0)− k sinh(k(1− y0)) + sinh(k) sinh(ky0)). In their paper, Zhong et al. solve this

benchmark for a 64 × 64 grid, for the cases that y0 = 63/64, y0 = 62/64 and y0 = 59/644. I implemented a version of

the code Fieldstone [13] to replicate this benchmark, which included the three methods of traction calculation detailed in

Section 2.1.1. Replication of these results is shown in Table 2.1.1. I also present a modified version of this benchmark

in which the value of y0 is kept constant at 0.5, as this allows the grid resolution to be varied while avoiding a situation

where the density is zero on all nodes. This therefore allows the accuracy of the various methods to be examined as a

function of grid spacing, to allow a more complete analysis. Further to this, in the paper Zhong et al only examine the

accuracy of the traction at the top left of the domain. In addition to this I calculate L1 and L2 norms of the errors over

the whole upper surface, as a function of grid resolution.

Table 2.1.1: Top left corner tractions.

Method y0 = 63/64 y0 = 62/64 y0 = 59/64

Analytical 0.995476 0.983053 0.912506

Pressure Smoothing (Zhong et al.) 1.15974 1.06498 0.911109

CBF (Zhong et al.) 0.994236 0.982116 0.912157

CBF (Fieldstone) 0.994236 0.982116 0.912157

Firstly, I present plots of the tractions, as calculated using the CBF and CN methods, along with the analytical solution,

for a range of grid resolutions. These are shown in Figure 2.2. As expected, both methods show increasing accuracy with

increasing resolution. Two notes should be made about the benchmark at this stage. Firstly, the benchmark was assessed

using two codes, using two different formulations: one using a penalty method, one using a full pressure method. These

codes produced results differing only by a fraction of a percent, and therefore only one set of results is shown. Mass

lumping similarly produces very little difference to the results. Secondly, the value of ρ0α must be equal to the number of

4Note that due to a typo in the paper of Zhong et al., they erroneously state that they use y0 = 60/64 instead of y0 = 59/64.
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Table 2.1.2: Convergence Rates of the L1 and L2 norms for the benchmark of Zhong et al., for each of the three methods.

Method L1 L2

LS 2.00 2.00

CN 2.05 2.05

CBF 2.06 2.06

elements along each axis to obtain results which match the analytical solution.

Next we examine the error norms. The log-log graph of these norms as a function of the grid resolution is shown in

Figure 2.3. As can be seen, the relationship shown in this graph is linear, indicating that the relationship between these

norms and grid resolution is of the form

||et||1= Chrt (2.1.13)

where et is the norm of the traction t, h is the grid spacing, C is a constant and rt is the convergence rate. This can then

be rearranged to:

log(||et||1) = log(C) + rt log(h) (2.1.14)

Regression analysis can be carried out to calculate the value of the gradient of the lines. From these, it is possible to

calculate that in this case the CBF produces results equivalent in accuracy to the CN method with an approximately 31%

higher grid resolution, and the LS method with a 63% increase in grid resolution.

Donea and Huerta

The second benchmark we use is that of Donea and Huerta, taken from [3]. This once again uses a 1 × 1 box, however

this time all boundary conditions are no-slip. The benchmark uses the following prescribed body forces:

bx = (12− 24y)x4 + (−24 + 48y)x3 + (−48y + 72y2 − 48y3 + 12)x2

+(−2 + 24y − 72y2 + 48y3)x+ 1− 4y + 12y2 − 8y3

by = (8− 48y + 48y2)x3 + (−12 + 72y − 72y2)x2

+(4− 24y + 48y2 − 48y3 + 24y4)x− 12y2 + 24y3 − 12y4

This is then solved to give:

u(x, y) = x2(1− x)2(2y − 6y2 + 4y3)

v(x, y) = −y2(1− y)2(2x− 6x2 + 4x3)

p(x, y) = x(1− x)− 1/6

where the −1
6 constant for the pressure is chosen such that the total pressure over the domain is zero.
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Figure 2.2: Plot of the CBF, CN and analytical tractions on the upper surface for the benchmark of Zhong, Gurnis and

Hulbert, for two values of the number of elements. Note the increase in accuracy with more elements.
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Figure 2.3: Convergence rates for the benchmark of Zhong, Gurnis and Hulbert.
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Figure 2.4: Pressure Checkerboard in the Benchmark of Donea and Huerta.

Unlike the previous benchmark, this benchmark has no-slip boundary conditions on all boundaries, and as such both

tx and ty can be computed on all four boundaries, and as we have the full equation for both velocity and pressure we can

calculate analytical solutions for both of these on all boundaries.

Certain solutions of the Donea and Huerta benchmark produce a checkerboard pressure mode, which is shown in Figure

2.4. As the surface traction is a function of the pressure (for the ’outward’ tractions), this means that we get a zigzag

pattern in the tractions, as is shown in Figure 2.5. This behaviour only occurs for the full pressure version of the code,

and not for the penalty version. As such, further analysis is done solely on the results of the penalty version.

The second matter to be discussed is the ’corner weirdness’ problem. The value of the tractions on the corner nodes is

not properly defined in a square box, as there is no definition of the normal at a corner. The method is implemented in a

manner such that each corner node is assembled over twice. This leads to the result that, on a corner node, ty = σyy +σxy

and tx = σxx + σxy.

This has few consequences with free slip boundary conditions, as σxy = 0 on the boundaries and therefore it does not

impact the non-zero tractions. With no slip boundary conditions however, it leads to anomalous values for the tractions

at the corner nodes. As is shown in Figures 2.7 and 2.6, if mass lumping is not used, then this anomalous value at the

corner can propagate into the domain. In the absence of a better solution, the best mechanism for minimising the impact

of this phenomenon is to use mass lumping and to ignore the traction values on the corner nodes in any analysis.

As before, we examine the convergence rates of the L1 and L2 norms of the various measures of the tractions, as

a function of grid spacing. We use the results of the mass lumped code, and ignore the values of the corner nodes, in

calculating these norms, so as to avoid the effects of the corner weirdness. Unlike the previous benchmark, these norms

were calculated for all four surfaces of the domain, and for both tx and ty, using three methods, giving 24 in total.
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Figure 2.5: Surface Tractions for the benchmark of Donea and Huerta, showing analytical values and CBF values, calcu-

lated using a ”full” solution of the velocity-pressure system. Note the effects of checkerboard pressure, causing a zigzag

pattern in the CBF tractions.

Table 2.1.3: L2 norm convergences for the Q1P0 Donea and Huerta benchmark.

Method Upper Lower Sides

tx ty tx ty tx ty

LS 1.90 1.99 1.90 1.99 2.00 1.90

CN 1.01 0.92 1.01 0.92 0.96 1.01

CBF 1.76 2.03 1.76 2.03 1.89 1.76
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Figure 2.6: Surface Tractions for the benchmark of Donea and Huerta, showing analytical values and CBF values, calcu-

lated using a penalty method, with no mass lumping. Note the corner weirdness’ propogating into the domain.

Table 2.1.4: L1 norm convergences for the Q1P0 Donea and Huerta benchmark.

Method Upper Lower Sides

tx ty tx ty tx ty

LS 1.86 1.95 1.86 1.95 1.95 1.86

CN 1.01 0.89 1.01 0.89 0.94 1.01

CBF 1.82 1.99 1.82 1.99 1.86 1.82
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Figure 2.7: Surface Tractions for the benchmark of Donea and Huerta, showing analytical values and CBF values, calcu-

lated using a penalty method, with mass lumping. Note the ’corner weirdness’ does not propagate into the domain.
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Figure 2.8: Convergence for Q2Q1.

Donea and Huerta Q2Q1

The Consistent Boundary Flux method was extended to Q2Q1 elements, and tested on the benchmark of Donea and

Huerta. As previously, the corner weirdness phenomenon is observed, and propagates into the domain unless the mass

lumping method is used. This is shown in Figures 2.9 and 2.10. The convergence of the norms is shown in Figure 2.8.
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Figure 2.9: Tractions for the CBF Donea and Huerta Benchmark using Q2Q1 elements with Mass Lumping.
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Figure 2.10: Tractions for the CBF Donea and Huerta Benchmark using Q2Q1 elements without Mass Lumping.
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Figure 2.11: Convergence for Q3Q2.

Donea and Huerta Q3Q2

The Consistent Boundary Flux method was extended to Q3Q2 elements, and tested on the benchmark of Donea and

Huerta. As previously, the corner weirdness phenomenon is observed, and propagates into the domain if mass lumping

method is not used. However, in case, even with mass lumping, some corner weirdness still propogates into the domain,

although to a lesser extent than without mass lumping. This is shown in Figures 2.12 and 2.13. The convergence of the

norms is shown in Figure 2.11. It can be seen that no traction converges at a regular integer or half-integer rate. This

may be connected to the corner weirdness propogating into the domain even with mass lumping present.
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Figure 2.12: Tractions for the CBF Donea and Huerta Benchmark using Q3Q2 elements with Mass Lumping.
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Figure 2.13: Tractions for the CBF Donea and Huerta Benchmark using Q3Q2 elements without Mass Lumping.
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Annulus Benchmark

The CBF was implemented in an annulus benchmark taken from the fieldstone manual [13]. The velocity profile of this

benchmark is shown in Figure 2.14.

This is an analytical benchmark, where the velocity, pressure and density fields are defined by the following:

vr(r, θ) = g(r)k sin(kθ), (2.1.15)

vθ(r, θ) = f(r) cos(kθ), (2.1.16)

p(r, θ) = kh(r) sin(kθ), (2.1.17)

ρ(r, θ) = ℵ(r)k sin(kθ), (2.1.18)

with

f(r) = Ar +B/r, (2.1.19)

g(r) =
A

2
r +

B

r
ln r +

C

r
, (2.1.20)

h(r) =
2g(r)− f(r)

r
, (2.1.21)

ℵ(r) = ∂r∂rg −
∂rg

r
− g

r2
(k2 − 1) +

f

r2
+
∂rf

r
, (2.1.22)

A = −C 2(lnR1 − lnR2)

R2
2 lnR1 −R2

1 lnR2
, (2.1.23)

B = −C R2
2 −R2

1

R2
2 lnR1 −R2

1 lnR2
. (2.1.24)

The values of the constants are as follows:

R1 = 1 (2.1.25)

R2 = 2 (2.1.26)

C = −1 (2.1.27)

k = 4 (2.1.28)

The values of R1 and R2 ensure that the velocity is tangential to the inner and outer surfaces. The inner radius of the

annulus is R1 and the outer radius is R2.

The velocity and pressure fields are solved for using a pre-existing fieldstone code, to which the CBF and Centre-to-

Node methods were added for this thesis. The x and y tractions are then calculated on the inner and outer surfaces using

both the CBF and Centre-to-Node methods, and are shown along with the analytical values in Figure 2.15. The L1 and

L2 norms were calculated as a function of grid spacing for each of these tractions, and these are shown in Figure 2.16.

Note that the x and y tractions have identical norm magnitudes. As these graphs show, the CBF greatly outperforms the

Centre-to-Node method in this case.
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Figure 2.14: Velocity magnitude for the annulus benchmark, from the fieldstone manual [13]
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Figure 2.15: Tractions for the annulus benchmark.
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2.2 Heat Flux

We next move on to an examination of the heat flux at the surface of the domain. There are two methods examined in

this work, the elemental integration and the Consistent Boundary Flux method.

2.2.1 Methods

Elemental Integration Method

This method consists of calculating the flux for each surface element by integrating the temperature gradient over said

element, and then summing these elemental values to get the total flux through the surface.

CBF

This method is similar to the surface traction CBF method detailed in Section 2.1.1. It is derived by rearranging the heat

equation to calculate the fluxes directly. We start from a conventional form of the heat equation:

ρcp(∂tT + ui∂iT ) = ∂ik∂iT (2.2.1)

We then move to the weak form: ∫
Ω

ρcp(∂tT + ui∂iT )dΩ =

∫
Ω

∂ik∂iTdΩ (2.2.2)

As previously, we integrate by parts and apply the divergence theorem:∫
Ω

Nρcp(∂tT + ui∂iT )dΩ =

∫
Γ

N∂ikTnidΓ−
∫

Ω

∂iNk∂iTdΩ (2.2.3)

What we care about is the heat flux qi = −∂ikT , so we can substitute this in and rearrange, to give:∫
Γ

NqidΓ = −
∫

Ω

Nρcp∂tTdΩ−
∫

Ω

Nρcpui∂iTdΩ−
∫

Ω

∂iNk∂iTdΩ (2.2.4)

This is then discretised in a manner equivalent to the discretisation of the surface stress CBF discussed above in Section

2.1.1.
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2.2.2 Benchmarks

I present here a set of analytical benchmarks of increasing complexity to test the two methods. On each benchmark the

total heat flux through the upper boundary of the domain is calculated as a function of grid spacing, and the fractional

error of this is calculated. The total heat flux is defined as

Q =

∫ x1

x0

∂y(kT (y = y1))dx (2.2.5)

where the domain is [x0, x1]× [y0, y1]. These are tested using a version of Fieldstone [13] with Q1 temperature elements

and an instantaneous temperature solver.

Conduction Analytical Benchmark

The two methods are first tested against a pure conduction benchmark. This is a steady state pure conduction benchmark

with no heating, solving the simplest form of the heat equation:

∂ik∂iT = 0 (2.2.6)

This is solved over the domain [0,1]×[0,1]. The temperature is constrained to be 0 on the lower boundary and 1 on the

upper boundary, which leads to the temperature being defined by the equation T = y, and an analytical Nusselt number

of 1. The temperature profile is shown in Fig 2.18. This benchmark is taken from the fieldstone manual [13].

As can be seen in Figure 2.17, the CBF converges and becomes more accurate with higher resolution. However, the

elemental method is extremely accurate due to the simple nature of the benchmark, and is thus accurate to within machine

precision for all resolutions.

Conduction Analytical Benchmark Heating

The next benchmark is related to the above benchmark, but with the addition of a constant heating term, such that the

heat equation is now of the form:

∂ik∂iT +H = 0 (2.2.7)

This is solved with the same constraints and domain as above, with the heating factor H = 1 and heat conductivity k = 1.

This gives a temperature defined by the equation:

T = −1

2
y2 +

1

2
y (2.2.8)

and thus an analytical Nusselt number of 1
2 . This benchmark is taken from the fieldstone manual [13]. The temperature

profile is shown in Figure 2.20, and the error convergence in Figure 2.19. In this more complicated case, the elemental

method is no longer accurate to within machine precision, but still outperforms the CBF.
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Figure 2.17: Convergence of temperature flux for the conduction benchmark without heating.

Figure 2.18: Temperature Profile for the Conduction Benchmark.
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Figure 2.19: Convergence of temperature flux for the conduction benchmark with heating.

Figure 2.20: Temperature Profile for the Conduction-Heating Benchmark.
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Figure 2.21: Convergence of temperature flux for the Convection-Conduction Analytical Benchmark.

Convection-Conduction Analytical Benchmark

This benchmark was created as part of this thesis. It is a steady state benchmark, taking into account only advection and

diffusion. It is therefore a solution to the following form of the temperature equation:

ρcpui∂iT − ∂ik∂iT = 0 (2.2.9)

The solution is the following:

T = x2(y − y3) (2.2.10)

ux = 0 (2.2.11)

uy =
2y − 2y3 − 6x2y

x2 − 3x2y2
(2.2.12)

As this velocity has singularities in it, the domain must be chosen to avoid these. The domain therefore chosen is

[3,4]×[0.5,1]. The velocity and temperature fields are shown in Figures 2.23 and 2.22 respectively.

In this benchmark, due to the more complex nature of the temperature field, the CBF outperforms the elemental

method.
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Figure 2.22: Temperature Profile for the Conduction-Convection Benchmark.

Figure 2.23: Velocity Profile for the Conduction-Convection Benchmark.
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Viscous Dissipation Analytical Benchmark

This benchmark features viscous dissipation/frictional heating, solving the following form of the energy conservation

equation:

ρcpui∂iT − ∂ik∂iT = Φ (2.2.13)

where

Φ = τij∂iuj (2.2.14)

This benchmark is based on the horizontal laminar flow of a fluid through an infinitely long pipe (Poiseuille Flow). The

domain is [-1,1]×[-1,1]. The temperature is constrained to be 0 on the upper and lower boundaries, and the velocity is

given by:

vx = u0(1− y2) (2.2.15)

vy = 0 (2.2.16)

This gives a temperature profile of

T =
1

3

ηu2
0

k
(1− y4) (2.2.17)

The convergence of the Nusselt number for this benchmark (using an analytical value for the frictional heating) is

shown in Figure 2.24. As in the previous benchmark, the CBF outperforms the elemental method.
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Figure 2.24: Convergence of temperature flux for the Viscous Dissipation Benchmark.
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Chapter 3

Internal Nodes - Strain Rate

3.1 Methods

Several methods of calculating the internal nodal derivatives of the velocity field in a Navier-Stokes system were examined.

In this thesis I examine three methods: the centre-to-node, corner-to-node and superconvergent patch recovery method.

Further methods not examined in detail in this thesis include the Finite Nodal Displacement Method developed by Ilinca

and Pelletier [7] [8]. They report their method to be the most accurate, however attempts to implement it were not

successful.

3.1.1 Centre to Node

For this method, we first compute the value of the derivative at the centre of each element. Then, for each node, the nodal

value is taken to be the mean of the values at centre of each element adjacent to the node. For nodes inside an element,

the nodal value is take to be equal to the elemental value.

3.1.2 Corner to Node

For each element, the value of the derivative is calculated at the position of each node adjacent to the element, and this

is taken as the nodal value. For nodes that are adjacent to multiple nodes, the nodal value is taken to be the mean of the

values computed for each adjacent element.

3.1.3 Superconvergent Patch Recovery

This method is based on that of Zienkiewicz and Zhu [16] [17]. Within each element, there are points at which the

derivatives converge faster than elsewhere. These points are located at the roots of a Legendre Polynomial, and are thus

at the same points used for Gauss-Legendre Quadrature. For this reason they are also referred to as Gauss Points. For Q1

elements, the single superconvergent point is located at the centre of the element, and thus at the root of the 0th order
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Figure 3.1: Location of the Gaussian Points in Q1 and Q2 elements, taken from the paper of Zienkiewicz and Zhu [16]

Legendre Polynomial. For Q2 there are 4 points, located at (± 1√
3
,± 1√

3
); these are the roots of the 1st order Legendre

Polynomial. The reasons for the superconvergence at these points, and the reasons for their location, are beyond the scope

of this thesis. The location of these points for Q1 and Q2 elements is shown in Figure 3.1.

In this method we take a patch of 4 elements, and first calculate the derivatives at their superconvergent points. We

then fit a polynomial to these points, and use this polynomial to calculate the value of the derivatives at the internal

nodes. This can be done in two ways, and for Q1 it proceeds as follows:

For Q1 we wish to fit a 4 term polynomial of the following form: g = a+bx+cy+dxy, where g is the relevant derivative.

The first method is the Least Squares method. This method minimises the sum J = 1
2

∑4
i=1[a+bxi+cyi+dxiyi−gh(xi, yi)]

2

with respect to the variables a,b, c and d. We define here that gh is the derivative as calculated using the shape functions

etc, and (xi, yi) are the coordinates of the ith Gaussian Point. The function is minimised when ∂J
∂a = ∂J

∂b = ∂J
∂c = ∂J

∂d = 0.

Imposing these constraints lead to the following linear system:

∑4
i=1 1

∑4
i=1 xi

∑4
i=1 yi

∑4
i=1 xiyi∑4

i=1 xi
∑4
i=1 x

2
i

∑4
i=1 yixi

∑4
i=1 x

2
i yi∑4

i=1 yi
∑4
i=1 yixi

∑4
i=1 y

2
i

∑4
i=1 xiy

2
i∑4

i=1 xiyi
∑4
i=1 x

2
i yi

∑4
i=1 xiy

2
i

∑4
i=1 x

2
i y

2
i

 ·

a

b

c

d

 =



∑4
i=1 g

h(xi, yi)∑4
i=1 xig

h(xi, yi)∑4
i=1 yig

h(xi, yi)∑4
i=1 xiyig

h(xi, yi)

 (3.1.1)

This system can then be solved for the values of a,b, c and d. The value of the derivative at the node can then be calculated

using gnode = a+ bxnode + cynode + dxnodeynode.

The second method is to hold the equation to be true at each Gauss point seperately, thus leading to the following
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system: 
1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4

 ·

a

b

c

d

 =


gh(x1, y1)

gh(x2, y2)

gh(x3, y3)

gh(x4, y4)

 (3.1.2)

This can again be solved for a,b, c and d, and these used to calculate gnode.

For Q2, both of these methods can be applied, using either a 9 term polynomial or a 16 term polynomial. The 9 term

polynomial is of the form g = a+ bx+ cy + dxy + ex2 + fy2 + gx2y + hxy2 + ix2y2, and the 16 term polynomial is of the

form g = a+ bx+ cy+ dxy+ ex2 + fy2 + gx2y+ hxy2 + ix2y2 + jx3 + ky3 + lx3y+my3x+ nx3y2 + oy3x2 + px3y3. Note

that for the second method using 9 terms, the left hand matrix is not square; the system must therefore be solved using

a least squares method, such that if the equation is specified as Ax = b, the solution is x = (ATA)−1AT b.

In the benchmarks section I refer to these methods with numbers. Method 1 refers to the 9 term polynomial with

the first assembly method, method 2 to the 9 term method with the second assembly method, method 3 to the 16 term

polynomial with the first assembly method, and finally method 4 to the 16 term polynomial with the second assembly

method.

3.2 Benchmark - Donea and Huerta

As in the surface strain section, we use the benchmark of Donea and Huerta [3] to test these methods.

bx = (12− 24y)x4 + (−24 + 48y)x3 + (−48y + 72y2 − 48y3 + 12)x2

+(−2 + 24y − 72y2 + 48y3)x+ 1− 4y + 12y2 − 8y3

by = (8− 48y + 48y2)x3 + (−12 + 72y − 72y2)x2

+(4− 24y + 48y2 − 48y3 + 24y4)x− 12y2 + 24y3 − 12y4

This is then solved to give:

u(x, y) = x2(1− x)2(2y − 6y2 + 4y3)

v(x, y) = −y2(1− y)2(2x− 6x2 + 4x3)

p(x, y) = x(1− x)− 1/6

These give the following components of the strain rate tensor:

exx = 4xy(1− x)(1− 2x)(1− y)(1− 2y)

exy = x2(1− x)2(1− 6y + 6y2)− y2(1− y)2(1− 6x+ 6x2)

eyy = −4xy(1− x)(1− 2x)(1− y)(1− 2y) = −exx
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(a) exx (b) exy

Figure 3.2: Strain Rates for the Donea and Huerta Benchmark.

These strain rates are shown in Figure 3.2.

This benchmark is run using the fieldstone code. As the results for the Q1P0 element have already been examined by

Thieulot in an unpublished paper, here I present only the results for the Q2Q1 element. Three variations of this element

are examined. The first is with the elements as regular quadrilaterals. The second is the semi-random element, in which

the corner nodes are displaced randomly, and the other nodes are placed such that the element remains quadrilateral. The

third method is the fully random method, in which all elements are displaced randomly from their quadrilateral positions.

These displacements have a maximum amplitude of h
10 , where h is the relevant dimension of the element. The results of

the regular and semi-random elements are indistinguishable, and are therefore presented together.

Three measures of the error are calculated for each independent element of the strain rate tensor. The first is the L2

error, defined as

errL2 =

√ ∑
elements

∫
Ωelement

(eanalyticalij − enumericalij )2dΩ (3.2.1)

The second and third are mean nodal errors, the first on the internal nodes and the second on the edge nodes. They are

defined as:

errinternal =

√∑
internalnodes(e

analytical
ij (xnode, ynode)− enumericalij (xnode, ynode))2

ninternalnodes
(3.2.2)

erredge =

√∑
edgenodes(e

analytical
ij (xnode, ynode)− enumericalij (xnode, ynode))2

nedgenodes
(3.2.3)

As exx = −eyy, the norms for these two terms are identical and presented together. These norms are calculated for a

range of resolutions i.e. resolution studies are carried out.
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(a) Characteristic strain rate error for the first 3

methods of the SPR. Note that the error in some

elements is much higher than in others, with no dis-

cernable pattern in their location. These high error

elements dominate the total error value, leading to

the jagged appearance of the error convergence plots.

(b) Strain rate error for the 4th method of the SPR.

Note that it is regular.

Figure 3.3: Strain Rate errors for two methods of the Superconvergent Patch Recovery Method.

3.2.1 Q2Q1

Regular Grid

The graphs of the norm convergences are shown in Figure 3.6, and the convergence rates are shown in Table 3.2.1. It can

be seen that only one method of SPR converges regularly; the other methods have irregular convergence patterns. The

reason for this can be seen in Figure 3.3, which shows the errors in exx for each of the methods at a given resolution. It

can be seen that the errors for the first three methods are not regular, but are dominated by individual elements with

errors of a much larger magnitude than that of other elements. The reasons for this are not conclusively proven. However,

the two methods using the method that of minimising the least squares function J have a high condition number, and

method 3 is overfitted and solved using a least squares method.

The velocity is shown in Figure 3.5 to converge at a rate of 3. The centre to node and corner to node converge at a

rate of around 2, or 1.5 on the edges. The SPR exhibits superconvergence, with a convergence rate of 3. For the internal

nodes, a rate of 3.5 is observed. This is lower than the rate of 4 observed by Zienkiewicz and Zhu, but is still faster than

the rate of velocity convergence and as such can be termed ultraconvergence. It is not entirely clear why my results do

not replicate the rate of convergence that Zienkiewicz and Zhu acheive. It may be a consequence of the use of a different

benchmark, and the relative simplicity of the benchmark they used compared to the benchmark of Donea and Huerta

implemented here.
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Table 3.2.1: Top left corner tractions.

Method Convergence Rate

L2 Internal Edge

exx exy exx exy exx exy

Centre to Node 1.90 1.86 1.97 1.95 1.46 1.46

Corner to Node 1.89 1.96 1.98 2.00 1.46 1.46

Superconvergent Patch Recovery 3.07 2.88 3.51 3.46 2.99 2.99
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Figure 3.4: Mean condition number of the left hand side matrix for each of the methods of the Superconvergent Patch

Recovery method, as a function of grid spacing, for a Q2Q1 regular mesh.

36



10-9

10-8

10-7

10-6

10-5

 0.01  0.1

e
rr

o
r

h

velocity
x3

Figure 3.5: Convergence of the velocity for a Q2Q1 regular mesh.
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Figure 3.6: Convergence of several norms as a function of grid resolution for the Q2Q1 regular mesh.
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Table 3.2.2: Top left corner tractions.

Method Convergence Rate

L2 Internal Edge

exx exy exx exy exx exy

Centre to Node 1.30 0.96 1.44 1.10 0.92 0.92

Corner to Node 0.93 0.93 1.05 1.01 0.53 0.53

Superconvergent Patch Recovery 0.91 0.86 0.99 0.95 0.47 0.47
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Figure 3.7: Convergence of the velocity for a Q2Q1 random mesh.

Randomised Grid

As is shown in Figure 3.7, in this instance the convergence rate of the velocity is now 2. As Table 3.2.2 shows, no method

converges as well as in the regular grid case, and no method is superconvergent. The best convergence is obtained by the

centre to node, which converges at rates close to 1.5.
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Figure 3.8: Convergence of several norms as a function of grid resolution for the Q2Q1 random mesh.
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Chapter 4

Conclusion

The Consistent Boundary Flux method of Zhong et al [15] was replicated, and compared to other methods of computing

stresses on the surfaces of the domain for Q1P0 elements. The results of their benchmark (with free-slip boundary

conditions) were replicated, and convergence analysis of the results was carried out. It was then extended to the benchmark

of Donea and Huerta [3], with no-slip boundary conditions. On both benchmarks it outperformed all other methods. It

was also extended to an annulus benchmark, where it again outperformed other methods. It was further extended to

Q2Q1 and Q3Q2 elements for the benchmark of Donea and Huerta.

The Consistent Boundary Flux method was then extended to the calculation of surface temperature flux, and tested

against a range of benchmarks. It outperformed an elemental integration method of flux calculation for all but the simplest

benchmarks.

Several methods of calculating strain rate on internal nodes were implemented on Q2Q1 elements, and tested against the

benchmark of Donea and Huerta [3]. For regular and semi-randomised grid the superconvergent patch recovery method of

Zienkiewicz and Zhu [16] [17] was found to be the most accurate, whereas for a randomised grid a centre-to-node method

was found to be the best. However, Ilinca and Pelletier [7] [8] report that their finite nodal displacement mechanism

outperforms the superconvergent patch recovery method, although attempts to replicate this method for this thesis were

unsuccessful.
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