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Abstract

The acquisition of highly sparse wavefield data, while maintaining information content, can yield
significant gains in acquisition productivity, and enable cost-effective autonomous platforms. To
achieve these goals, the use of wavefield data jointly with its first- and second-order spatial de-
rivatives allows for relaxation of Nyquist sampling criteria up to a factor of three under regular
sampling. This sampling rate can be potentially further decimated by means of compressive sens-
ing and preconditioning approaches. We introduce a multicomponent reconstruction scheme which
uses sparse, irregularly-sampled data, containing pressure fields and two orders of its spatial deriv-
atives, to retrieve the desired regularly-sampled, dense data. Here, we employ a jittered sampling
scheme, together with a consistent preconditioning for the solver, that aims for higher or lower
sampling according to the expected data complexity. The method is tested on a seismic shot-gather
decimated in space domain with different sampling patterns. The results verify that by regular
sampling with one-third of the original Nyquist rate, the resulting decimated wavefield from the
seismic data set is successfully reconstructed by the multicomponent reconstruction. When using
irregular sampling, our approach provides observably better reconstructions for the cases that are
over-subsampled, with sampling rates lower than one-third of the original Nyquist rate, and con-
siderably lower for the lesser complex portions of the data. The multicomponent reconstruction is
adapted for 3D wavefield generated from a 2D ocean turbulence model with layer wavespeed con-
figuration for imposing additional derivatives in shot direction and cross-derivatives, along with
physics-based preconditioning. The reconstruction has major seismic events well-reconstructed
from the over-subsampled wavefield.
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Chapter 1

Introduction

Since the first publication[10] about seismic observation of thermohaline fine structure in an
oceanographic front, various oceanographic structures(e.g. Ocean internal waves, water mass
boundaries, etc.) have been imaged from field and synthetic data with applications of seismic
oceanography[10, 9, 11, 8, 5, 2, 25, 19, 12, 16]. Seismic oceanography offers a new solution for
oceanography studies, meanwhile controllable seismic sources and fast responses of seismic events
make seismic oceanography extremely suitable for oceanography monitoring, if provided with
stable and continuous wavefield data.

Most seismic oceanography studies, however, are implemented on large-scale seismic acquisition
(e.g. towed-marine seismic acquisition), which are extremely expensive to ever scale to on-demand
oceanographic studies. Low-running-cost autonomous platforms, with recent examples of such are
the SpiceRack[21], or Wave Gliders[14], are designed for long-term oceanographic data acquisition,
with endurance up to 12 months, making them suitable devices for monitoring purposes. These
platforms allow for swarm surveys [15]: low-footprint, high-productivity surveys of which one
notable issue is the high cost-per-unit of the platforms themselves. Thus, the number of such
platforms is limited, and thus, they tend to be used to sparsely cover the research areas. Here
we choose to design several different sampling schemes based on the well-sampled case, including
regular sampling, irregular sampling, and multi-source sampling. Figure 1.2 is a demonstration
on the sampling schemes, detailed explanation will be discussed on the following chapters.

Although the topic of sparse sampling and reconstruction have been widely explored in the
seismic exploration community over the past two decades, here we revisit the topic with the par-
ticular goal of enabling highly-sparse acquisition by autonomous platforms, in order to maximize
the wavefield information while minimizing the number of autonomous vehicles in the field.

Large intervals between sparsely distributed streamers put a high demand on wavefield recon-
struction in order to mitigate the effects of spatial aliasing, which is caused by a lower-than-Nyquist
sampling rate from the distribution of the platforms. Similar problems arise in ocean-bottom
or land acquisition geometries. With one alternative to handling spatial gaps, Robertsson, et
al.(2008)[20] extends the multichannel sampling theorem from Linden(1959)[13] with the use of
both the first- and second order derivatives of the pressure data, successfully lowering the Nyquist
sampling rate by means of gradient-based reconstruction. Building on this approach, gradient-
based wavefield reconstruction methods relying on basis-pursuit and the use of priors have been
proposed [24, 17], relying mostly on first-order gradients.

Figure 1.1 is an example of Multichannel Interpolation by Matching Pursuit (MIMAP)[24],
which uses multicomponent seismic measurements for crossline wavefield reconstruction and doesn’t
require assumptions such as linearity of seismic events to interpolate severely aliased data. Fig-
ure 1.1 shows different results from a simple synthetic data, in which both sinc interpolator and
multichannel sinc interpolator fail to address the spatial aliasing, while MIMAP has successful
reconstruction in t-x domain and f-k domains.

Based on the multichannel sampling theorem, here we introduce a new wavefield reconstruction
scheme, called multicomponent reconstruction, which combines multichannel sampling theorem

Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring 1



CHAPTER 1. INTRODUCTION

Figure 1.1: Example with simple synthetics: close-up of a region of the t-y domain and f-k trans-
forms of the whole dataset. (a, b) Input pressure, sampled at 75 m; (c,d)pressure reconstructed
by using a sinc interpolator;(e,f) pressure reconstructed by using a multichannel sinc interpolator,
also having as input the crossline gradients at the samples positions;(g,h)pressure reconstructed
with MIMAP, also having as input the crossline gradients at the samples positions[24].

with compressed sensing, allowing for relaxation of Nyquist sampling criteria up to a factor of
three under regular sampling. This sampling rate can be potentially further decimated by means
of compressive sensing and preconditioning approaches. The retrieval of the wavefield data is
achieved by creating a linear sampling operator which the desired model to the observed data
and its derivatives, followed by solving the linear-equation with specific types of solvers based on
preconditioning and priors.

Starting from testing the multicomponent reconstruction on a benchmark single seismic shot-
gather data set, we explore the effects of multichannel sampling theorem, together with sampling
patterns and preconditioning. Then a single synthetic seismic shot-gather data set generated from
a ocean turbulence model (figure 6.1) is tested with the addition of the preconditioning based
on its physics-based priors. In the end of this research, 3D ocean turbulence seismic wavefield
reconstruction with the multicomponent reconstruction is achieved.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Sampling scheme: a) an example of well-sampled case; b) regu-
lar sampling(subsampling); c) irregular sampling(subsampling); d) multi-source irregular
sampling(subsampling). Stars and triangle represent sources and receivers, respectively.

Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring 3



Chapter 2

Gradient-based Reconstruction

The multichannel sampling theorem by Linden (1959)[13] extends the Nyquist-Shannon sampling
theorem with wavefield data and its first derivative, and is able to lower the minimum sampling
rate, relative to the conventional Nyquist rate, by a factor of two(eq. 2.1). Bringing this concept
to exploration geophysics, Robertsson et al.(2008)[20] show that the Nyquist wavenumber can be
further increased up to a factor of three when both first and second-order derivatives are available.

p(y0) =

∞∑
m=−∞

p(
m

σ
)sinc(σy0 −m)

p(y0) =
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{p(2m

σ
) + (y0 −

2m

σ
)× ∂yp(

2m

σ
)}sinc2(σ

y0
2
−m)

(2.1)

For seismic wavefield acquisition, each receiver (e.g. wave glider) will be equipped with mul-
ticomponent sensors, which are able to record scalar data, its first-order spatial derivatives (from
particle velocity measurements) in desired directions. Second-order derivatives could, in principle,
be obtained from closely-spaced arrays of multicomponent sensors, as shown in figure 2.1. While
on the source side, closely-spaced arrays of phase-controlled sources can generate data as if excited
dipole sources, in order to measure derivatives in the source direction by the 3D-sensor array of
receivers. Here, we assume the traces sampled at the source location can still have high signal-
to-noise ratio which contain turbulence reflection or diffraction signals, rather than dominated by
direct arrivals.

Based on the multichannel sampling theorem, to build a multicomponent reconstruction method
for wavefield reconstruction, the problem is simply represented as:

dobs = S dmod (2.2)

where dobs is a vector of the observed scalar (pressure) data and its first- and second-order
derivatives in the sub-sampled direction(s); dmod is the desired wavefield model. In this research,
we assume that data are well sampled in time domain but sub-sampled in space domain, having
Nyquist wavenumber(s) lower than the highest wavenumber component of the signal. The sampling
operator S is composed of a restriction operator Rr, keeping only the traces that can be recorded
by the receivers, together with operators for first- and second-order derivatives in the sub-sampled
direction D1 and D2. For reconstruction using pressure data dt and its first spatial derivative d1

recorded by the receivers after decimation:

dobs =

(
dt

d1

)
and S =

(
Rr

D1

)
(2.3)

For reconstruction with pressure data and its first- and second-order spatial derivatives d1 &
d2 recorded by the receivers after decimation:
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dobs =

dt

d1

d2

 and S =

Rr

D1

D2

 (2.4)

Here, we use the Fourier-based models for spatial derivatives:

D1 = Rr ∗ F−1 ∗ diag(ikn) ∗ F

D2 = Rr ∗ F−1 ∗ diag[(ikn)2] ∗ F
(2.5)

Where F is the Fourier transform and F−1 is the inverse Fourier transform; diag(ikn) and
diag[(ikn)2] are the diagonal matrices with wavenumber. Figure 2.2 is the derivatives data calcu-
lated from a 2D wavefield data (figure 3.1). Note that Restriction operator Rr is also applied in
each derivative operator, for gradients data can only be attained through receivers.

In this research, we numerically obtain the gradients and decimated wavefield by applying
the forward operators to the original relatively well-sampled wavefield scalar data, for it is a
convenient method to generate derivative data without noise and error. While this approach may
need revisiting when processing the field scalar data and field gradient data, which is beyond the
scope of this research.

The reconstruction of wavefield is carried by inversion of the linear system. The choice of solvers
depends on data structure, thus it can vary according to the implemented priori information.
LSQR[18] is the mostly used solver for inversion in this study, which minimizes the l2-misfit
between observed and predicted data (eq.2.6). LSQR is believed to be good at solving over-
determined problems, however, as will be shown in our results, if given appropriate preconditioning,
LSQR can still give satisfying inversion from under-determined problems, for example in our case,
the wavefield reconstruction from over-subsampled data with sampling rate lower than threefold
subsampling.

LSQR : minimize ‖dobs − Sdmod‖2 (2.6)

The a priori information we rely on in this research refer to data structure in different basis
and they are implemented by data-driven sampling and preconditioning, which will be explained
in the next chapters.

Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring 5



CHAPTER 2. GRADIENT-BASED RECONSTRUCTION

Figure 2.1: Autonomous platform: a)Wave glider[14] and the 3D sensor array used for multichannel
sampling, capable of gradients measurement. b)Source composition, including an array of marine
vibrators, guarantee gradients in source direction.
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Figure 2.2: First- and second-order spatial derivatives calculated from the 2D benchmark shot-
gather using the Fourier representation.
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Chapter 3

Sampling Pattern

3.1 Regular sampling

Different sampling schemes are discussed in this research, including regular sampling, irregular
sampling and data-driven irregular sampling. Regular sampling is used to verify the prediction by
the multichannel sampling theorem. Decimation up to a factor of three is made to a benchmark
single seismic shot-gather from van den Berg and Friedlander (2013)[23], with the source location in
the middle of the 128 evenly distributed receivers, as is shown in figure 3.1 along with corresponding
frequency-wavenumber spectrum. Seismic acquisitions normally are known for their relatively large
sampling intervals in at least one spatial direction (e.g. crossline), and for being well-sampled in
the time domain. Thus, only situations with spatial subsampling are covered in this project.
Compared with the original f-k domain, the spatial aliasing is pronounced after decimation, and
the order of alias increases with larger sampling interval.

3.2 Irregular sampling

Inspired by compressed sensing, for over-subsampled cases with sampling rate lower than one-third
of the original Nyquist rate, irregular sampling is applied to maximize the wavefield information
while minimizing the number of samples in the field. Irregular sampling is implemented with
jittered sub-sampling[6], as shown in figure 3.2, by first regularly choose nodes with specific interval
according to the decimation rate, with actual sampling locations jittering between the nodes and
the last trace before next node, thus every trace is equally likely to be sampled.

Herrmann (2010)[7] gives an example about the different sampling schemes and their imprint in
the Fourier domain, in figure 3.3, showing that given same amount of samples, regular sampling will
create sparse and strong alias in Fourier domain, while irregular sampling tends to generate weak
sub-sampling artifacts, compared with original wavenumber components. The artifacts created by
the regular sampling can dominate the l2-misfit of the reconstruction, hindering the retrieval of
the original Fourier spectrum. Therefore, irregular sampling can better minimize the number of
samples, while maintaining the major signal components of the original wavefield.

Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring 7
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Figure 3.1: 2D benchmark shot-gather dataset[23] with regular sampling and corresponding Four-
ier spectrum: a) Original wavefield; b) regular sampling scheme with half of the original Nyquist
sampling rate; c) regular sampling scheme with one-third of the original Nyquist sampling rate.

Figure 3.2: Jittered subsampling: nodes are regularly distributed based on the number of samples,
the actual sampling location will vary between the nodes and the last trace before next node.
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CHAPTER 3. SAMPLING PATTERN

Figure 3.3: Different sampling schemes and thheir imprint in the Fourier domain for a simple
signal: (a,b) Regularly sampled above Nyquist rate and its wavenumber spectrum; (c,d) irregularly
threefold subsampled with a discrete uniform distribution and its wavenumber spectrum; (e,f)
regularly threefold subsampled and its wavenumber spectrum[7]

3.3 Data-driven irregular sampling

Based on the data structure of the 2D benchmark wavefield, a data-driven irregular sampling is also
introduced for reconstruction from over-subsampled data. The purpose-built irregular sampling
is developed based on the priori information of the model, hence the sampling scheme will vary
with different data sets. Figure 3.4 is a partitioned sampling scheme (fourfold decimation) based
on the 2D example data, with threefold regular subsampling at the center and sixfold irregular
subsampling on both flanks, in order to better sample the more complex part of the data (near
offsets), while sparsifying the data where the signal is less complex (far offsets). Priori information
is required for applying data-driven irregular sampling, thus in this study partitioned sampling is
working as an example of implementing priori information in sampling.

Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring 9
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Figure 3.4: Data-driven irregular sampling and corresponding partition of the wavefield based on
data structure: a) the priori-based sampling scheme with regular threefold subsampling in near
offsets(trace No. 44-84), while irregularly sixfold subsampled on far offsets(trace No. 0-43, 85-
128); (b,c) The partition of priori-based sampled wavefield, consisting of two part(trace No.0-84
& trace No.44-128), based on different wavenumber components of both flanks.
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Chapter 4

Preconditioning

The role of preconditioning is significant when solving an under-determined problem, for which the
space of acceptable solutions is narrowed by imposing priori information, in a cost of additional
computation (i.e., the cost of preconditioning operators themselves). In this study, we discuss the
the effect of physics-based priors through preconditioning operators, such as imposing causality in
time-space, and enforcing the dispersion relation in f-k domain.

The solving of the problem in eq.2.6 gives the result in space-time domain. However, as is
shown in figure 3.1, the seismic shot-gather data set is well-confined and sparser in the Fourier
domain compared with space-time domain. Hence, it is more favorable to solve the linear system
in the Fourier domain. The preconditioning for solver is implemented by transforming model into
the Fourier domain, and the linear equation then becomes:

dmod = F−1df

dobs = S F−1 df

(4.1)

The LSQR solver is now solving the following new problem, which gives the model in the
Fourier domain df :

minimize
∥∥dobs − SF−1df

∥∥
2

(4.2)

Similarly, physics-based priors can be imposed in the linear equation. For example, the 2D
wavefield data in figure 3.1 is acquired in water(i.e., near-constant wavespeed) over a well-behaved
geology. Space-time preconditioner can be created with the assumed constant wavespeed and off-
set, and f-k preconditioner can be made with wavespeed and maximum frequency component. For
the Fourier spectrum, we approximate the dispersion relation with an hourglass-shaped precondi-
tioner centered at zero, composed of two opposing triangles in the f-k domain. The preconditioners
are implemented as masks and inserted in the linear system:

dobs = S Pxt F−1 Pkω d̂f

dmod = Pxt F−1 Pkω d̂f

(4.3)

Eq.4.3 is the linear equation including the preconditioner (Pxt) in space-time domain and the
preconditioner(Pkω) in Fourier domain. The inversion of the new linear equation will give the

result of d̂f , instead of the model in the Fourier domain. The model is given by the re-application
of the preconditioner.

The LSQR solver is used in this study for its stability, though it is designed for solving over-
determined problems. Our reconstruction results show that given appropriate preconditioners,
LSQR is still able to perform well in inverting our linear equation, in the case that the sampling
rate is lower than threefold subsampling Nyquist rate.

Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring 11



CHAPTER 4. PRECONDITIONING

Implementing a priori information that enforces sparsity is another preconditioner for wavefield
reconstruction. Wavefield data are generally sparser in the Fourier domain than in the space-time
domain, and it can be even sparser in other basis. For example, the Curvelet transform[3, 4] is
a multi-dimensional and multi-directional extension of the Fourier transform, which will project
wavefield data into a even sparser domain. Starting from the sparsity of the data, sparsity-
promoting solvers (e.g. SPGL1[22] and FISTA[1], ) tend to have better inversion in the areas with
large amount of traces missing, compared with LSQR under the same preconditioner.

SPGL1(BPDN) : minimize
∥∥∥d̂f

∥∥∥
1

subject to ‖dobs − SPdmod‖2 ≤ σ

FISTA : minimize ‖dobs − SPdmod‖2 + ε
∥∥∥d̂f

∥∥∥ subject to dobs = SPd̂f

(4.4)

The 2D wavefield example has the feature of well-aligned hyperbolic-like events in the time-
space domain, which translate into coherent features with interference notches in the Fourier
domain, thus being a good example for implementing L1-solvers. In contrast, scattering in the
ocean turbulence wavefield appears as more random diffractions in the time-space domain, leading
to a far less sparse, incoherent f-k domain spectrum, confined by a simple dispersion relation, thus
favouring the use of the LSQR solver.

12 Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring



Chapter 5

2D Wavefield Reconstruction

Before proceeding to ocean turbulence wavefield reconstruction, a benchmark 2D shot-gather seis-
mic wavefield data set[23] is used for exploring and examining the multicomponent reconstruction
method with different sampling patterns.

5.1 Regular sampling

The multichannel sampling theorem is built on regular sampling condition, thus we test our
reconstruction procedure first on regular sampling with half-decimation and threefold-decimation,
respectively.

Figure 5.1 is the reconstruction result from regular sampling with sampling rate as half of
the original Nyquist rate. The case in which only pressure data is used in the multicomponent
reconstruction fails to retrieve the missing traces and the spatial aliasing is still pronounced in the
Fourier domain. While the case in which both pressure data and its first-order spatial derivative
are used successfully recovers the missing traces and nullifies the spatial aliasing in the Fourier
domain. Both of the reconstructions are solved with LSQR solver (400 iterations for each) in
space-time domain without preconditioner. The result verifies the multichannel sampling theorem
by Linden(1959)[13], that the Nyquist sampling rate can be lower to a half of the original Nyquist
rate when the scalar data and its first derivative are available.

The reconstruction results from threefold decimation are shown in figure 5.2. Similar to the
previous example, the decimated data set is reconstructed in space-time domain with LSQR solver
(400 iterations) and without preconditioner. The case with pressure data only again fails to re-
cover the missing traces, while the use of first-order spatial derivative is able to reduce the spatial
aliasing but also fails to reconstruct the original wavefield. The last case verifies the prediction by
Robertsson, et al.(2008)[20], when the pressure data and both of its spatial derivatives are avail-
able, the effective Nyquist wavenumber is increased by a factor of three, which enables successful
wavefield reconstruction from threefold decimation data set.

When the decimation rate of regular sampling is higher than threefold decimation, the mul-
ticomponent reconstruction fails to recover the missing traces. Irregular sampling and precondi-
tioner are then imposed to push the limit of subsampling.

5.2 Irregular sampling

With our over-subsampled data reconstruction examples, we explore the effect of compressive
sensing by means of purpose-built irregular sampling and solver preconditioning.

The benchmark 2D wavefield data is characterized with distinctive partitions, with more com-
plex central traces (near offsets) and relatively simple flanks (far offsets). The near-offset traces
have higher amplitude and their frequency-wavenumber components are more complex, while the
far-offset traces are of lower amplitude and near-constant slopes (simpler Fourier spectrum).

Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring 13
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Figure 5.1: Wavefield reconstruction from regularly half subsampled using the multicomponent
reconstruction method. Barcode on the top represent sample distribution (white bars for sampled
traces, dark bars for missing traces).

Based on this priori information, a data-driven partitioned sampling scheme (figure 3.4) is
created by regularly sample the near offsets part with one-third of the original Nyquist rate,
and irregularly sample the far offsets part with jittered subsampling. The interval of the jittered
sampling nodes is 3, making the possible maximum interval between two traces 6 times the original
sampling rate. The overall sampling rate of the scheme is one-fourth of the original Nyquist rate.
Our goal here is to set irregular sampling that takes advantage of data structure that is known
a priori. In this example, the priori information is that the medium structure is expected to be
well-behaved, e.g., quasi-layered.

In this case, preconditioning is implemented in sampling pattern and the linear system. The
linear system is solved in the Fourier domain, according to the eq.4.1. Due to different signs of
wavenumber components in both flanks, in order to reduce spatial aliasing from reconstruction,
the original linear system based on the decimated data set is divided into two linear systems,
with one recovering the central traces and left flank, another recovers the central traces and right
flanks, shown in figure 3.4. Both share the near-offset part for its extended components in the
Fourier domain are the constraint for solving the under-determined problem.

Figure 5.3 is the reconstruction result from the partitioned sampling scheme. The near-offset
part is successfully reconstructed and the far-offset part is also retrieved considerably well given
the fact that both flanks are over-subsampled, and the errors are mainly cluster around the areas
where a large number of traces are missing. Our cases show that by combining application-specific
sampling schemes and preconditioning, together with multichannel sampling, the overall residual
is notably reduced for over-subsampled data sets.

14 Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring
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Figure 5.2: Wavefield reconstruction from regularly threefold subsampled using the multicom-
ponent reconstruction method. Barcode on the top represent sample distribution (white bars for
sampled traces, dark bars for missing traces)
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Figure 5.3: Wavefield reconstruction from the data-driven irregular sampling scheme using the
multicomponent reconstruction method.
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Chapter 6

Turbulence Wavefield Inversion

Moving on to ocean turbulence wavefield reconstruction, we choose to test our multicomponent
reconstruction method on synthetic data sets, which are generated from the 2D model with its
wavespeed configuration shown in figure 6.1. Temperature and salinity are affected by ocean
turbulence, which interacts with different water layers and induces density variation in the bound-
aries of the turbulence. Therefore, despite the wavespeed in water is relatively homogeneous, the
presence of ocean turbulence will still be able to generate medium contrasts in the ocean.

Notice that turbulence will vary with time as well as seismic acquisition requires time to make
measurements, hence the medium is supposed to change during each shot measurement. This
property makes strong constraint to small scale seismic acquisition, yet the model used in this
research has the size of 4000m× 2000m, with the coverage of the shots and receivers up to 3000m
and trace interval as 10m and can be several times larger for spatial over-subsampling, which
dominates the scale of turbulence variations in the model, leading to an assumption that the
medium is considered to be static during seismic acquisition.

The original seismic wavefield is generated by running shots in the model and each seismic
shots are made separately and only one shot is measured for each acquisition. For the full set of
data, the shots and receivers are located on the top of the model, and both of them share the same
locations. We here assume that the receivers that are closed to the source locations still have high
signal-to-noise ratio over the full wavefield, instead of being saturated by direct arrivals.

16 Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring



CHAPTER 6. TURBULENCE WAVEFIELD INVERSION

Figure 6.1: 2D ocean turbulence model, with layered wavespeed configuration while overall
wavespeed is relatively homogeneous.
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Figure 6.2: Irregularly sixfold subsampled turbulecen wavefield with jittered subsampling and the
filtering of direct waves and sediment reflections based on offset and wavespeed. Barcode on the
top represent sample distribution (white bars for sampled traces, dark bars for missing traces).
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6.1 2D synthetic ocean turbulence wavefield reconstruction

Based on the example 2D wavefield reconstruction, a shot-gather generated from the model with
the source location in the middle of the 301 evenly distributed receivers is explored in order to
make the method adapt to the ocean turbulence wavefield. To this end, we choose the central
shot-gather data to include as many seismic events as possible. Figure 6.2 shows the data structure
of the wavefield, including strong direct arrivals, sediment reflections, turbulence diffraction and
reflection. Among which the turbulence diffraction and reflection between the direct arrivals and
sediment reflections are of most value, for they are necessary for turbulence inversion. Though the
later arrivals also contain information from turbulence, the strong sediment signals overshadow
turbulence seismic signals which may strongly influence event reconstruction.

In the context of reconstruction, we suppress direct arrivals and sediment reflections from the
data. Because of the low amplitude of the turbulence diffractions and reflections, solvers tend to
reach convergence too early because they will fit the louder direct and sediment-related events
first, leaving the desired turbulence-related events poorly reconstructed. Accordingly, the data
set after filtering is normalized with the maximum value of the whole space-time domain to help
numerical convergence of the iterative solvers. Figure 3.3) is the normalized turbulence seismic
wavefield and its corresponding f-k domain.

In our cases, the gradient-based reconstruction successfully reconstructs the turbulence signals
under regular sampling with interval three times as the original sampling interval. Following
to the procedure of the multicomponent reconstruction, irregular sampling and preconditioners
are imposed to further decimate the data set and keep reconstruction results comparable to the
original wavefield.

We choose to implement physics-based priori information based on data structure in space-
time domain and f-k domain. The preconditioner in space-time domain is designed in the same
way with the filter which filters the direct waves and sediment signals, by means of the calcula-
tion from offsets. As for preconditioner in f-k domain, it starts with the data structure, which is
determined by the relatively homogeneous wavespeed of the model and has the shape of ”hour-
glass” (shown in figure 6.3). The f-k preconditioner is imposed by creating a mask in f-k domain
built according to the hourglass-like structure of the Fourier spectrum. Furthermore, due to the
dispersed apexes of the hyperbolas in the turbulence wavefield in time-space, its Fourier spectrum
is relatively homogeneous within the mask, hence LSQR solver is selected for turbulence wavefield
reconstruction.

Figure 6.2b is a irregular sampling case using jittered subsampling with sampling rate as
one-sixth of the original sampling rate. The partitioned sampling used in 2D example data is not
suitable for the dispersed hyperbola distribution in the turbulence wavefield. The multicomponent
reconstruction based on eq.4.3 is applied to retrieve the original wavefield from the subsampled
data set, solving with LSQR solver in 600 iterations. After the inversion of the linear equation,
preconditioning and scaling are applied back to retrieve the original wavefield. The result and its
relative error in space-time domain and f-k domain are shown in figure 6.4. The reconstruction is
analogous to the original shot-gather data, despite the original data is subsampled with six times
fewer traces. The errors mainly focus on low wavenumber and high frequency components, subject
to high-order spatial aliasing.

The 2D turbulence wavefield reconstruction provides guides for 3D wavefield reconstruction,
since the filtering is based on offsets and the mask in f-k domain is designed according to the
wavespeed in the ocean.
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Figure 6.3: Normalized wavefield and its Fourier spectrum after the filtering of direct arrivals and
sediment reflections.
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Figure 6.4: Wavefield reconstruction from irregularly sixfold subsampled filtered turbulence wave-
field with compressive sensing and physics-based preconditioning: a) reconstruction result in space-
time domain; b) corresponding residual in space-time domain; c) its relative errors in the Fourier
domain, maximum normalization.
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6.2 3D synthetic ocean turbulence wavefield reconstruction

The 3D synthetic ocean turbulence wavefield discussed in this research is still generated from the
same 2D space of the model, but with the same number of shots as the number of receivers. More
specifically, the shots and receivers share the same location, and the assumption that close-to-shot
receivers can measure the shots with high signal-to-noise ratio remains valid.

Decimation rate discussed in 3D sampling pattern refer to the number of shots and receivers,
instead of the number of traces. For example, threefold decimation is equal to keeping nine times
fewer traces from the original data set. More importantly, the decimation is acting on the same
location from shot side and receivers side, meaning that each location will either have both shot
and receiver or none of them, depending on the sampling pattern.

In 3D cases, because of the increase of dimensionality, derivatives used in the multicomponent
reconstruction will not only be limited to the first- and second-order derivatives in the receiver
direction, but also with derivatives in shot direction and cross-derivatives, with the maximum
order of two. The l.h.s and the sampling operator now become:

dobs =



dt

dr1

dr2

ds1

ds2

dr1s1

dr2s1

dr1s2

dr2s2


and S =



Rr

Dr1

Dr1

Ds1

Ds2

Dr1s1

Dr2s1

Dr1s2

Dr2s2


(6.1)

Where drx and dsx represent derivatives in receiver direction and shot direction, respectively.
drxsx are the cross-derivatives measured by the receivers. On the sampling operator side, Drx and
Dsx are corresponding operators for derivatives calculation in receiver direction and shot direction,
in which we use the similar Fourier representation as eq. 2.5. kr and ks share the same axis since
shot intervals and receiver intervals and their numbers are identical. Drxsx is the corresponding
cross-derivatives operators:

Dr1s1 = Rrs ∗ F−1 ∗ diag(ikrn) ∗ diag(iksn) ∗ F

Dr2s1 = Rrs ∗ F−1 ∗ diag[(ikrn)2] ∗ diag(iksn) ∗ F

Dr1s2 = Rrs ∗ F−1 ∗ diag[(ikrn)] ∗ diag(ik2sn) ∗ F

Dr2s2 = Rrs ∗ F−1 ∗ diag[(ikrn)2] ∗ diag(ik2sn) ∗ F

(6.2)

Rrs is the restriction operator for decimating the receivers and shots, diag[(ikxn) and diag[(ik2xn)
are diagonal matrices with wavenumber in shot direction and receiver direction. Cross-derivatives
are necessary for recovering the missing shots from the decimated data set. Figure 6.7 is part of
the 3D reconstruction result from a threefold regular decimation case that no cross-derivatives are
included in the multicomponent reconstruction. The reconstruction fails to recover the missing
shots, but has the sampled shot well reconstructed, which is in line with the result in the 2D
reconstruction case.

Filtering of the direct waves and sediment reflections is applied based on offsets. Precondition-
ers in 3D reconstruction are derived from the 2D turbulence wavefield reconstruction procedure.
The mask in space-time domain is in the same design with the filter, while the mask in the Fourier
domain is more complicated due to the increased dimensionality and the filtering in space-time
domain. Figure 6.5 is the wavenumber spectrum at four specific frequencies scaled by the highest
frequency component of the original wavefield, indicating similar f-k relation with the 2D single
shot date set.

As a result of the filtering in space-time domain, artifacts are created in a form of constant
wavenumber components in the f-k domain, and their amplitude and range vary with frequency.
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Figure 6.5: Normalized 3D turbulence wavefield wavenumber spectrum for specific frequencies
with first arrivals and sediment reflections filtered; constant wavenumber components outside the
high-amplitude rectangle on the center are considered to be the artifacts created by filtering of
the direct waves and sediment reflections.

Figure 6.6: ”opposing-pyramids” mask in Fourier domain.

The artifacts are of high amplitude in low frequency component in a form of a “cross” shown in
figure 6.5. We then build the mask in f-k domain based on the wavespeed as an extension of the
hourglass-like 2D mask design, with “opposing-pyramids” with the shared tip at zero-frequency in
ω − ks − kr domain, as shown in figure 6.6. The mask keeps only the high-amplitude rectangular
part for each frequency below the highest frequency component, and leaves the artifacts out.

This 3D pyramidal-hourglass structure of the mask will deteriorate the reconstruction over
low frequency components since it set most the low frequency components as zero. On the other
hand, the mask can improve the recovery of middle-to-high frequency components, the major
components for the reflections and diffractions, because the amplitudes of low frequency compon-
ents are considerably larger than other frequency components. By filtering the lower frequency
components, solvers tend to lower the misfit on middle-to-high frequency components, resulting
in well-reconstructed reflections and diffractions.

Figure 6.8 is part of the reconstruction result from fourfold decimation with irregular sampling,
having sixteen times fewer traces that the original data set. The inversion is based on eq.2.2 and
6.1, using LSQR solver with 1000 iterations. Within these eight shot-gather panels, only the first
and the last shot are recorded. Traces in the six missing shots are recovered by the multicomponent
reconstruction, as well as the missing receivers in the two sampled shots. The residual figure 6.9
indicates that the sampled shots are well-reconstructed, and the residual is positively related to
the interval from the nearest sampled shot. The two middle shots are of relatively high residual,
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Figure 6.7: 3 shot-gathers (shot 0 - shot 2) from 3D turbulence wavefield reconstruction without
cross-derivatives, barcode on the top represent sample distribution (white bars for sampled traces,
dark bars for missing traces): a) reconstruction on shot 0 (sampled shot) and its residual in space-
time domain; b) reconstruction on shot 1 (unsampled shot) and its residual in space-time domain;
c) reconstruction on shot 2 (unsampled shot) and its residual in space-time domain.

nevertheless major seismic events are still appropriately recovered. Densely sampled locations have
of course more accurate reconstruction than the eight panels in figure 6.8, and the receiver-gather
panels has the same pattern, as shown in figure 6.10 and 6.11.

For shots and receivers that are located at the left boundary of the sampling range, both
shot-gather and receiver-gather panels show aliasing that is only limited to the first two shots and
receivers, as shown in figure 6.12. We suggest that the aliasing is result from the design of the mask
in f-k domain, which might also filter some of the high-frequency, high-wavenumber components.
However, as this aliasing to only limited to the two shot-gather and receiver-gather panels on the
left boundary, the preconditioner in f-k domain is considered to be effective thus at this point we
make no further alteration on the mask.

The 3D turbulence wavefield reconstruction is developed based on the the procedure of 2D shot-
gather turbulence wavefield reconstruction, with the similar sampling pattern preconditioners in
space-time domain and f-k domain. With the addition of cross-derivatives, the multicompon-
ent reconstruction successfully recovers the traces from missing shots and receivers from fourfold
decimation. The retrieved wavefields are generally comparable to the original wavefield with ac-
ceptable errors, clustering around the area where a large number of shots and receivers are missing,
however, the major turbulence seismic events are distinguishable.
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Chapter 7

Conclusions

In order to develop a seismic wavefield reconstruction method to recover turbulence wavefield
from sparse multichannel measurements, we discuss a gradient-based wavefield reconstruction
along with compressive sensing, based on multichannel sampling theorem including high-order and
multi-dimension spatial derivatives. Given some a priori information about the expected structure
of the data, we design bespoke sampling and inverse construction schemes for over-subsampled
multichannel data.

In the example of 2D wavefield recovery, we test the high-order multichannel reconstruction on a
seismic shot-gather, decimated with different sampling schemes. Our results verify the predictions
of the multichannel sampling theorem, that for regular sampling, the Nyquist sampling rate can be
lower by a factor of three when the pressure data and both of its spatial derivatives are available.
Our prior-based irregular sampling scheme samples the wavefield densely and regularly at near
offsets, where the data are more complex, while being sparse and irregular at the far offsets, seeking
to acquire maximum information with minimum samples. In the accompanying reconstruction
approach, preconditioning is designed in the f-k domain, splitting up of the linear system according
to prior information on the irregular sampling and wavefield structure. The bespoken compressive
sensing and preconditioning approaches increase the effective Nyquist wavenumber and lower the
overall reconstruction residual.

The retrieval of turbulence wavefield from sparse multichannel measurements is tested on
synthetic wavefields which are generated from an ocean turbulence model, where wavespeed is
layered due to presence of turbulence while overall wavespeed is relatively homogeneous. We
explore the turbulence wavefield reconstruction by imposing physics-based preconditioners along
with the multicomponent reconstruction on a irregular sampled single shot-gather generated from
the model. The preconditioners, in space-time domain and f-k domain, further increase the effective
Nyquist wavenumber, and enable successful reconstruction from sixfold decimation data set.

Following to 3D wavefield reconstruction, irregular sampling is now affecting both shot and
receiver axis. Receivers are able to measure derivatives in shot and receiver directions, as well as
cross-derivatives. The multicomponent reconstruction and preconditioners which were used in 2D
wavefield reconstruction are adapted for 3D wavefield data set. Our case, which only has one-fourth
of the shots and receivers (1/16 of the original traces left), proves a strong reconstruction from the
over-subsampled data set, with the major seismic events well-reconstructed, while residual cluster
around the areas where a large number of shots and receivers are missing.

The multicomponent reconstruction, which uses derivatives data calculated by the Fourier
representation from the original wavefield in space-time, will inevitably suffer from noise and
errors in field data, hence further research is needed to process a real seismic data set in such
scenarios. Meanwhile, the turbulence wavefield reconstruction discussed in the project is limited
to large scale acquisition, which enables the assumption of static medium. Understating sampling
requirements, acquisition design and signal reconstruction for moving/flowing media is also the
topic of future research.
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Grant Buffett, Juan José Dañobeitia, and Alcinoe Calahorrano. Imaging meddy finestructure
using multichannel seismic reflection data. Geophysical Research Letters, 35(11), 2008. 1

[3] E[mmanuel] J[] Candes and D[avid] L[] Donoho. Continuous curvelet transform: I. resolution
of the wavefront set. Applied and Computational Harmonic Analysis, 19(2):162–197, 2005.
12

[4] E[mmanuel] J[] Candes and D[avid] L[] Donoho. Continuous curvelet transform: Ii. discret-
ization and frames. Applied and Computational Harmonic Analysis, 19(2):198–222, 2005.
12

[5] Sandro Carniel, Andrea Bergamasco, Jeffrey W Book, Richard W Hobbs, Mauro Sclavo,
and Warren T Wood. Tracking bottom waters in the southern adriatic sea applying seismic
oceanography techniques. Continental shelf research, 44:30–38, 2012. 1

[6] G[illes] Hennenfent and F[elix] J[] Herrmann. Simply denoise: Wavefield reconstruction via
jittered undersampling. Geophysics, 73(3):V19–V28, 2008. 7

[7] Felix J Herrmann. Randomized sampling and sparsity: Getting more information from fewer
samples. Geophysics, 75(6):WB173–WB187, 2010. 7, 9

[8] W Steven Holbrook and Ilker Fer. Ocean internal wave spectra inferred from seismic reflection
transects. Geophysical Research Letters, 32(15), 2005. 1

[9] W Steven Holbrook, Ilker Fer, Raymond W Schmitt, Daniel Lizarralde, Jody M Klymak,
L Cody Helfrich, and Robert Kubichek. Estimating oceanic turbulence dissipation from
seismic images. Journal of Atmospheric and Oceanic Technology, 30(8):1767–1788, 2013. 1
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[17] A[li] Özbek et al. Crossline wavefield reconstruction from multicomponent streamer data:
Part 2—joint interpolation and 3d up/down separation by generalized matching pursuit.
Geophysics, 75(6):WB69–WB85, 2010. 1

[18] C[hristopher] C[] Paige and M[ichael] A[] Saunders. Lsqr: An algorithm for sparse linear
equations and sparse least squares. ACM Transactions on Mathematical Software (TOMS),
8(1):43–71, 1982. 5

[19] Cord Papenberg, Dirk Klaeschen, Gerd Krahmann, and RW Hobbs. Ocean temperature and
salinity inverted from combined hydrographic and seismic data. Geophysical Research Letters,
37(4), 2010. 1

[20] J[ohan] O[] A[] Robertsson et al. On the use of multicomponent streamer recordings for
reconstruction of pressure wavefields in the crossline direction. Geophysics, 70:70–81, 2008.
1, 4, 13

[21] C[onstantin] Tsingas et al. Spicerack: An autonomous underwater vehicle for efficient seabed
seismic acquisition. SEG Expanded Abstracts, pages 5953–5957, 2017. 1

[22] E[] van den Berg and M[] P[] Friedlander. Probing the pareto frontier for basis pursuit
solutions. 31(2):890–912, 2008. 12

[23] E. van den Berg and M. P. Friedlander. Spot: A linear-operator toolbox, August 2013.
https://www.cs.ubc.ca/labs/scl/spot/. 7, 8, 13

[24] M[assimiliano] Vassallo et al. Crossline wavefield reconstruction from multicomponent
streamer data: Part 1—multichannel interpolation by matching pursuit (mimap) using pres-
sure and its crossline gradient. Geophysics, 75(6):WB53–WB67, 2010. 1, 2

[25] Warren T Wood, W Steven Holbrook, Mrinal K Sen, and Paul L Stoffa. Full waveform
inversion of reflection seismic data for ocean temperature profiles. Geophysical Research
Letters, 35(4), 2008. 1

Compressive Acquisition and Wavefield Reconstruction for Ocean Turbulence Monitoring 31




	Contents
	Introduction
	Gradient-based Reconstruction
	Sampling Pattern
	Regular sampling
	Irregular sampling
	Data-driven irregular sampling

	Preconditioning
	2D Wavefield Reconstruction
	Regular sampling
	Irregular sampling

	Turbulence Wavefield Inversion
	2D synthetic ocean turbulence wavefield reconstruction
	3D synthetic ocean turbulence wavefield reconstruction

	Conclusions
	Bibliography

