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Abstract

Plastic pollution poses one of the most urgent threats of present time to the marine
environment. Global plastic production is growing exponentially and causing an
unprecedented increase in the amount of mismanaged plastic waste available to enter
the world’s oceans. Microplastic particles with a density lower than that of seawater
float on the ocean surface and tend to accumulate in the Subtropical Gyres of all
ocean basins due to geostrophic and Ekman currents and Stokes drift. This work
develops a method to analyse the possible pathways followed by particles that were
sampled in the South Atlantic Subtropical Gyre in order to identify their sources.
To do so, particle trajectories were computed by means of Lagrangian simulations
backward in time and for each particle the probability of being sourced from nine
selected cities bordering the South Atlantic Ocean was calculated.

Probability calculations were performed following both an exponential and a
quadratic modelling approach on two different datasets. Both models were imple-
mented in such a way that the probability decreased with an increase in distance
between the particle and the potential source. The probabilities were also a function
of the source uncertainty distance, a parameter representing the uncertain distance
at which a particle could be identified as being sourced from a given location. The
consistency between the results obtained from two modelling approaches and the
different datasets allowed to pinpoint the Ŕıo de la Plata estuary (comprising Mon-
tevideo and Buenos Aires), Cape Town and Rio de Janeiro as the most likely sources
of microplastics to the South Atlantic Subtropical Gyre. Additionally, from sensi-
tivity analysis the most meaningful source uncertainty distance was determined to
range between 25 and 100 km.

The methodology developed to calculate land source probabilities is fully trans-
ferable and could be used regardless of the study domain and the source locations
that want to be addressed. For this reason, its simplicity and reliability might make
it a powerful tool to identify the relative contribution of different sources and pro-
vide a base on which quantitative studies can be performed to assess the amount of
microplastics that accumulate in a given region from selected sources.
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Layman’s Abstract

Plastics have been found in all oceans and their presence poses an urgent threat
on wildlife and the ecosystems. Floating plastics tend to accumulate in the middle
of the Subtropical Gyres, which are large-scale systems of surface currents. In this
study, the pathways followed by microplastics (plastics smaller than 5 mm) in the
South Atlantic Ocean were studied from computer simulations.

From the computation of the trajectories of virtual microplastic particles released
in the open ocean and tracked backward in time, the probabilities with which nine
of the most populous cities on the eastern coast of South America and western coast
of Africa are sourcing microplastics to the South Atlantic Subtropical Gyre were
calculated. Montevideo, Buenos Aires, Cape Town and Rio de Janeiro resulted to
be the cities with the highest probabilities of being the land sources of microplastics
among all those assessed. The methodology developed to calculate the probabilities
of different land sources could be fully transferred to other ocean basins and/or used
to identify other land and ocean sources, making it a powerful tool for future studies
aiming to quantify the contribution of various cities and rivers to the pollution of
the marine environment.
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1. General Introduction

1.1. Plastic pollution

Marine plastic pollution is one of the most urgent environmental, societal and eco-
nomic issues of present times. Plastic has been found floating on the water surface
(Cózar et al., 2014), accumulating on the seafloor (Woodall et al., 2014) and washing
up on shorelines (Galgani et al., 2015) in all ocean basins. It has been observed in
polar regions of both hemispheres (Isobe et al., 2017; Obbard et al., 2014) and in
some of the most remote areas on the planet (Lavers and Bond, 2017). Plastic in
the marine environment has been found to cause biodiversity losses (Derraik, 2002;
Gall and Thompson, 2015), to negatively impact the reproduction and development
of different wildlife species (Oehlmann et al., 2009) and potentially threat human
health (Thompson et al., 2009; Wright and Kelly, 2017).

Global plastic production reached 350 million tonnes in 2015 (Geyer et al., 2017)
and is doubling approximately every 11 years (PlasticsEurope, 2013), meaning that
the amount of plastics produced between 2019 and 2030 will be the same as that
manufactured between 1950, when large scale plastic production began, and 2019.
The majority of plastic is produced for packaging purposes (Geyer et al., 2017;
PlasticsEurope, 2018), therefore having a short life span and in most cases turn-
ing into waste after a single use. The vast amount of discarded single-use plastic
is particularly problematic in developing countries, where the consumer capacity is
increasing significantly as a consequence of improving economic conditions, while
adequate waste management infrastructure is lagging. As a result, the interplay
between these two factors will cause an increase in the amount of plastic available
to enter the marine environment unless robust waste management policies are im-
plemented in the near future (Jambeck et al., 2015, 2018; Lebreton and Andrady,
2019).

It was estimated that the amount of mismanaged plastic waste available to enter
the ocean from coastal areas in 2010 alone ranged from 4.8 to 12.7 million tonnes
(Jambeck et al., 2015), while Lebreton et al. (2017) estimated that between 1.51
and 2.41 million tonnes enter the ocean from riverine input every year. While at the
moment the most critical region is represented by Asia (Jambeck et al., 2015; Lebre-
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1. General Introduction

ton and Andrady, 2019), Africa’s unprecedented population growth and progressive
urbanisation in coastal areas, together with the increased consumer capacity of its
people and the lag in adequate waste managment infrastucture, have the potential
to shift the main hot-spot of land-sourced plastic to the ocean from South-East Asia
to Africa as soon as in 2040 (Jambeck et al., 2018; Lebreton and Andrady, 2019).

Based on size, plastic can enter the world’s oceans as macroplastic (>5 mm) or
microplastic (<5 mm) (Arthur et al., 2009; Frias and Nash, 2019). In this work, due
to the use of data gathered and analysed by different studies, the term microplastics
refers to all plastic debris collected in surface-trawling plankton nets during surveys
(van Sebille et al., 2015). Microplastics can be primarily produced in that size or
can be the result of larger debris breaking down due to mechanical and chemical
weathering. The former is mainly a consequence of wave action in coastal areas,
while the main factors involved in the latter are the exposure to solar ultraviolet
(UV) radiation and ambient temperature (Andrady, 2011).

In the open ocean, buoyant plastics were found to accumulate in all five Subtrop-
ical Gyres, where smaller fragments are more abundant than larger debris (Cózar
et al., 2014; Eriksen et al., 2014). These empirical findings were also reproduced by
numerical models, which allowed to quantify the counts and mass of microplastics
floating on the ocean surface in the range of 15 to 51 trillion particles and 93 and
236 thousand metric tons, respectively (van Sebille et al., 2015; Lebreton et al.,
2012; Maximenko et al., 2012; van Sebille et al., 2012). The accumulation of debris
in the Subtropical Gyres is due to the converging dynamics of Ekman currents at
mid-latitudes (Maximenko et al., 2012; Onink et al., 2019). As plastics are often
less dense than seawater, they do not sink with water in the regions where surface
convergence is the strongest and they accumulate on the surface.

1.2. South Atlantic Subtropical Gyre

The Southern Hemisphere is characterised by a scarcity of field measurements of
(micro)plastic abundance in the marine environment compared to the Northern
Hemisphere, and the South Atlantic Ocean is no exception to this. Nevertheless,
plastic debris was found stranded on the uninhabited Inaccessible Island, in the
middle of the basin, more than three decades ago (Ryan and Watkins, 1988). While,
as previously stated, modelling studies have identified all five Subtropical Gyres to be
accumulation areas for plastic debris, more empirical data is needed to quantify the
extent of marine plastic pollution to the ocean basins of the Southern Hemisphere.

In addition to the data collected by the two global expeditions presented in
Eriksen et al. (2014) and Cózar et al. (2014), microplastics were also found floating
in the western tropical region of the South Atlantic (Do Sul et al., 2014) and Ryan
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1. General Introduction

(2014) identified an area of higher debris density between 3 - 8◦E at a latitude of
34 - 35◦S. The characteristics of the litter found within this area (i.e. absence of
short-lived litter that would indicate a local source and the high abundance of items
with encrusting biota) suggested that the plastics had been drifting for a long time
before reaching the accumulation zone, leading to its denomination as the South
Atlantic ‘garbage patch’.

1.2.1. Surface circulation

The South Atlantic Subtropical Gyre (SASG) is an anticyclonic system of wind-
driven surface currents composed of the westward flowing South Equatorial Current
at the northern boundary, the southward flowing Brazil Current at the western
boundary, the eastward flowing South Atlantic Current at the southern boundary
and the northward flowing Benguela Current at the eastern boundary (Figure 1.1).

The circulation in the SASG, as in all subtropical gyres, is the result of geostrophic
and Ekman currents. Geostrophic currents are governed by the balance between sur-
face pressure gradients and Coriolis force and the meridional and zonal components
of the velocity can be expressed as:

ug = − 1
fρ

∂p

∂y
vg = 1

fρ

∂p

∂x
(1.1)

where f = 2Ωcos(φ) is the Coriolis parameter, which depends on the Earth’s rate
of rotation (Ω) and the latitude at which it is computed (φ), and ρ is the density of
water. Pressure can also be expressed as p = p0 + ρgη, where p0 is the atmospheric
pressure at the ocean surface, g is the gravitational acceleration and η is sea surface
height. Therefore, assuming a constant-density ocean where atmospheric pressure is
uniform over the surface, geostrophic velocities are a function of sea surface height
and can be rewritten as:

ug = − g
f

∂η

∂y
vg = g

f

∂η

∂x
(1.2)

Ekman currents are resulting from the effect of wind stress over the surface of
the ocean and are driven by the balance between wind and Coriolis forces. This
wind-driven type of current is present only up to a depth of approximately 50 –100
m in the upper ocean (the so-called Ekman layer) and its velocity is higher at the
surface and decreases with depth. The depth of the Ekman layer corresponds to the
e-folding depth of the velocity and is:
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1. General Introduction

He =
√

2Av
f

(1.3)

where Av is the eddy viscosity. At the ocean surface, water moves at an angle of
45◦ to the left of the wind direction in the Southern Hemisphere because of Coriolis
acceleration. The movement of the upper layer induces an acceleration to the left
on the layer below, which will have a lower velocity, until the velocity is zero at the
bottom of the Ekman layer. The resulting structure is a spiral and its net transport
(Ekman transport) is directed exactly 90◦ towards the left of the wind direction in
the Southern Hemisphere. It can be described as:

Ue = τy
fρ

Ve = − τx
fρ

(1.4)

where τy and τx are the wind stress in the meridional and zonal direction respec-
tively and ρ is the density of the water. As winds are blowing in different directions
depending on the latitude, they produce varying stress on the ocean surface and
therefore divergence or convergence of water due to Ekman transport. The Trade
winds at low latitudes and the Westerlies at mid-latitudes cause convergence and a
doming of sea surface, under which water is downwelled due to the conservation of

Figure 1.1: Surface circulation in the South Atlantic Ocean. Adapted from Niebler et al. (2003).
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1. General Introduction

mass. As sea surface is higher where Ekman transport converges, this sea surface
height difference generates currents that flow around the high pressure area due to
geostrophy giving rise to the Subtropical Gyre (Figure 1.2).

1.3. Scope of the project

The South Atlantic Ocean borders only with low and middle income countries, ex-
cluding Argentina and Uruguay which are classified as high income (World Bank
definitions based on 2017 Gross National Income). In 2015, South American and
Western Africa generated almost 10.3 million metric tonnes (Mt) of mismanaged
plastic waste (Lebreton and Andrady, 2019) and Brazil and South Africa were among
the top twenty countries by generation of mismanaged plastic waste (Jambeck et al.,
2015). As mentioned in Section 1.1, Africa even has the potential to become the con-
tinent with the highest amount of mismanaged plastic waste by 2040 (Lebreton and
Andrady, 2019). For these reasons, assessing the history and fate of plastic pollution
in the South Atlantic is extremely relevant and could provide vital information for
preventing land waste to enter the marine environment.

This study aims to identify the sources of microplastics floating on the surface

Figure 1.2: Schematic structure of the Subtropical Gyres in the Southern Hemisphere. The small
blue arrows represent the direction of Ekman transport. Modified after van Sebille (2015).
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1. General Introduction

layer of the South Atlantic Ocean by means of Lagrangian simulations run back-
ward in time using horizontal general circulation and Stokes drift data for the period
between 2005 and 2019 and by the implementation of an innovative algorithm to
calculate the probability with which nine of the most populous coastal cities bor-
dering the basin could be the sources of particles accumulating in the SASG. Using
data from the Royal Netherlands Institute for Sea Research (NIOZ) ‘South Atlantic
Subtropical Gyre Plastics Cruise’ and from van Sebille et al. (2015), the pathways
followed by microplastics collected in the SASG were assessed to identify the most
probable land sources. The identification of land sources could give important in-
formation on the assemblages of (micro)organisms found on microplastics retrieved
during sampling in the field, as particles with different histories have visited differ-
ent ecosystems within the ocean domain. This is especially relevant for the data
obtained from the NIOZ ‘South Atlantic Subtropical Gyre Plastics Cruise’ expe-
dition, on which further work will be conducted to investigate the assemblages of
(micro)organisms colonising microplastic samples.

In Chapter 2, the methods, results and discussion of Lagrangian modelling are
presented, providing information on the choices made before the advection of those
particles on which probability calculations are made. Chapter 3 contains the meth-
ods, results and discussion related to identification of land sources of microplastic to
the SASG. The conclusions of the work presented in this thesis are found in Chapter
4.

6



2. Lagrangian modelling

2.1. Introduction

The pathways or trajectories of microplastic particles on the surface of the South At-
lantic Ocean were assessed using a Lagrangian modelling approach. The Lagrangian
approach is based on the description of the surrounding environment using a refer-
ence frame that moves together with the infinitesimal particle that is being advected
and it is considered to be complementary to the Eulerian approach, which is based
on the description of fluid dynamics in a fixed reference frame.

Lagrangian modelling consists in the advection backward or forward in time of
virtual particles integrated within time-evolving, two- or three-dimensional Eulerian
velocity fields often obtained from ocean general circulation models (OGCMs) or
from altimetry measurements (van Sebille et al., 2018). While here this approach
was used to study microplastic particles, it has to be noted that the applications of
Lagrangian modelling in physical oceanography are diverse and for example it has
been used to model dispersal of oil spills (North et al., 2011), fish larvae (Lett et al.,
2008), sea ice (Lindsay and Stern, 2004; Rampal et al., 2016) and tracers such as
nutrients (Chenillat et al., 2015).

2.2. Methods

2.2.1. Field data

Between the 4th and 24th of January 2019 the Royal Netherlands Institute for Sea
Research (NIOZ) carried out the ‘South Atlantic Subtropical Gyre Plastics Cruise’,
leaving from Cape Town (South Africa) and heading towards the centre of the South
Atlantic Subtropical Gyre. During the expedition surface trawls with manta nets
were undertaken at 24 different locations in the eastern part of the South Atlantic
Ocean (Figure 2.1; Table 2.1). Microplastics were found at all sampling locations,
with a density varying between 6 · 102 and 3.8 · 105 particles/km2 (mean = 9.6 · 104

particles/km2; median = 4.3 · 104 particles/km2). In addition to the data collected
during the NIOZ 2019 expedition, field data for the South Atlantic collected by
Cózar et al. (2014) and Eriksen et al. (2014) and used in van Sebille et al. (2015)
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2. Lagrangian modelling

Figure 2.1: Surface trawl sampling locations for the NIOZ ‘South Atlantic Subtropical Gyre Plastics
Cruise’ and previous expeditions considered in van Sebille et al. (2015).

were utilised for part of the simulations and analyses as well.

2.2.2. The Parcels framework

Virtual microplastic particles were advected in a two-dimensional ocean flow field
using Parcels (Probably A Really Computationally Efficient Lagrangian Simulator),
which is explained in detail in Lange and van Sebille (2017) and Delandmeter and
van Sebille (2019). In Parcels, virtual particles advected within the ocean flow field
could be prescribed a specific particle ‘behaviour’, which is expressed by the user
in entirely customizable ‘kernels’. The trajectory followed by a particle is computed
solving the following equation:

X(t+ ∆t) = X(t) +
∫ t+∆t

t
v(x, τ)dτ + ∆Xb(t) (2.1)

where X(t) is the two-dimensional position of the particle, v(x,τ) is the surface
velocity field at that location and ∆Xb(t) is the change in particle position due
to its prescribed ‘behaviour’, expressed in a kernel. At each location the surface
velocity field v(x,τ) was obtained through linear interpolation of the ocean flow
field data. In this work, to avoid particle beaching, a specific kernel was developed
and used in all simulations to push back to their previous position those particles
that had absolute velocity magnitudes below 0.001 m s−1, which were only reached
in proximity to land.

For the first par of this study, each simulation consisted in the backward advec-
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2. Lagrangian modelling

Sampling
location #

Latitude
[◦N]

Longitude
[◦E] Date Sampling

location #
Latitude
[◦N]

Longitude
[◦E] Date

1 -33.66477 18.03866 04/01/2019 13 -30.41112 -7.26208 12/01/2019
2 -33.51575 15.40349 05/01/2019 14 -29.99130 -11.58838 13/01/2019
3 -33.43135 13.62885 05/01/2019 15 -29.87998 -11.00460 14/01/2019
4 -33.31850 11.47783 06/01/2019 16 -29.87234 -7.99645 15/01/2019
5 -32.67499 7.03407 07/01/2019 17 -29.96830 -6.47338 15/01/2019
6 -32.55659 6.37040 08/01/2019 18 -29.98479 -3.94384 16/01/2019
7 -32.16113 3.61088 09/01/2019 19 -30.52156 -0.73241 18/01/2019
8 -31.84218 1.75581 09/01/2019 20 -30.83991 0.87086 18/01/2019
9 -31.53942 -0.32359 10/01/2019 21 -31.26654 2.81060 19/01/2019
10 -31.29263 -1.77394 10/01/2019 22 -32.16496 6.26655 20/01/2019
11 -30.92371 -3.59027 11/01/2019 23 -32.53798 9.33704 21/01/2019
12 -30.74764 -5.32828 11/01/2019 24 -32.99624 12.48462 22/01/2019

Table 2.1: Coordinates where and date on which microplastic sampling was undertaken during the
NIOZ 2019 ‘South Atlantic Subtropical Gyre Plastics Cruise’.

tion of 24000 virtual particles (1000 per NIOZ 2019 sampling location, with random
seeding within a 25 km2 area centered at the sampling location) using the foruth-
order Runge-Kutta method (RK4). The location of the particles was stored daily.
The spatial domain of the analysis extended between latitude 0 - 70◦S and longi-
tude 73◦W - 25◦E. As soon as a particle left this domain during its advection, it was
deleted from the simulation. Simulations lasted 5 model years (260 weeks) based
on the findings of Wichmann et al. (2019), who argued that the maximum mixing
time of the South Atlantic is 6 years and after that the information on the particle’s
initial location is lost. Therefore, advecting particles backward for a longer period
than the mixing time would produce meaningless results due to processes like the
amplification of numerical error and the effects of varying integration schemes in a
chaotic system such as the ocean surface.

Ocean flow fields

The eddy-resolving surface circulation ocean flow fields used here included a forecast
and a reanalysis product, both obtained from the Copernicus Marine Environment
Monitoring Service (CMEMS). The need to use two different products was deter-
mined by the fact that the Global Ocean Physics Reanalysis 1/12◦ (GLORYS12V1)
product was available up until 26/12/2017, therefore not reaching the sampling
time of the NIOZ expedition in 2019. On the other hand, the Global Ocean 1/12◦

Physics Analysis and Forecast Updated Daily only covered the time span between
01/01/2016 and Present, therefore not allowing for a five-year backward simulation.
Both products use NEMO 3.1 ocean model (Madec and the NEMO team, 2008) and
atmospheric forcing from ECMWF (European Centre for Medium-Range Weather
Forecasts), but the Forecast product is based on a 3-hourly atmospheric forcing,
while the Reanalysis one is based both on a 3-hourly and 24-hourly atmospheric
forcing from ERA-Interim. As the two products overlapped for almost two years,
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2. Lagrangian modelling

Figure 2.2: Average velocities between 01-01-2010 and 01-03-2019. The average velocities for
surface circulation were calculated using the SwitchDec2017 ocean flow field. The arrows indicate
the direction and the colormap the magnitude of the velocity.

between 01/01/2016 and 26/12/2017, two ocean flow fields were created: one using
the Reanalysis product from 2014 until 26/12/2017 and the Forecast product from
27/12/2017 until Present, named SwitchDec2017 ; and the other using the Reanaly-
sis product from 2014 until 31/12/2015 and the Forecast product from 01/01/2016
until Present, named SwitchJan2016.

Before performing any analysis of virtual particle simulations, a comparison had
to be made between the ocean flow fields used when advecting the particle back-
wards. Three simulations with particles seeded at the exact same locations were
performed: one using the SwitchDec2017 ocean flow field; a second one using the
SwitchDec2017 ocean flow field, but releasing particles seven days after their loca-
tions were originally sampled (therefore identified as SwitchDec2017 deferred); and
the last one using SwitchJan2016. The three simulations ran for 5 years with an
integration time step of 2 hours, recording particle location every day and track-
ing 24000 particles (1000 per NIOZ 2019 sampling location, with random seeding
around the location).

Additional simulations were run including surface Stokes drift to the total ocean
flow field. As Röhrs et al. (2012) and Fraser et al. (2018) argued that waves sig-
nificantly affected the trajectories of surface drifters, it is hypothesised that the
pathways followed by virtual particles in the simulations with Stokes drift differ
substantially from those of particles advected in the general circulation flow field
only. Zonal and meridional components of Stokes drift at the sea surface were
obtained from the ECMWF ERA5 hourly product with a 0.5◦x0.5◦ resolution. For
computational ease, only the daily value at timestamp 00:00 was implemented in the
simulation. This is consistent with the temporal resolution of the general circulation
ocean flow field, which has a 24-hour resolution with timestamp set at 00:00.

The average velocities for surface circulation and Stokes drift over the domain
can be seen in Figure 2.2.
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2. Lagrangian modelling

Integration time step

The consistency between backward and forward simulations was assessed by com-
paring the trajectories of particles advected in an ocean flow field only consisting of
the general circulation horizontal velocities. In order to do so, all the particles that
remained in the South Atlantic basin for the entire backward simulation using the
SwitchDec2017 flow field were advected forward for 5 years from the date and loca-
tion of their last observation in the backward simulation. Corresponding backward
and forward simulations were run with integration time steps of 2 hours, 1 hour,
30 minutes and 15 minutes. At the end of the forward simulation, the distance d
between the location where the particle was released in the backward simulation
and the location where it was observed at the end of the forward simulation was
calculated using the Haversine formula:

d = 2r arcsin

√√√√sin 2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin 2

(
λ2 − λ1

2

) (2.2)

where r is the average radius of the Earth with a value of 6371 km, φ1 and φ2

are the latitudes, and λ1 and λ2 are the longitudes of the two points.

2.3. Results

2.3.1. Ocean flow fields

The trajectories of virtual particles advected in flow fields with different characteris-
tics were analysed by dividing the ocean domain into 1◦x1◦ bins and calculating the
probability that each bin was occupied by a particle during the entire simulation.
As particle trajectories are deterministic, meaning that the same flow returns the
same results, the differences observed in simulations performed with different ocean
flow fields could only be due to contrasting flow conditions.

Both the simulations ran using the SwitchDec2017 and SwitchJan2016 flow fields
showed a higher-probability area between latitude 25◦S - 40◦ and longitude 15◦W
- 15◦E (Figure 2.3A Top). Particles advected in the SwitchJan2016 flow field had
trajectories heading towards the northern part of the ocean basin and also transited
more along the coastal areas compared to those advected in the SwitchDec2017
flow field (Figure 2.3A Bottom). On the other hand, particles advected in the
SwitchDec2017 flow field had more trajectories visiting the south-westernmost part
of the basin. Bins in the mid-latitudes showed a higher probability to be occu-
pied by a particle during the entire simulation when particles were advected in
SwitchDec2017 rather than in SwitchJan2016.
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Figure 2.3: A) Top: Probability for SwitchDec2017 and SwitchJan2016 that a 1◦x1◦ bin was
occupied by a particle during the 5-year simulation. The sum of all the probabilities in the
domain is 100. Bottom: Difference in probability values for each 1◦x1◦ bin between the simu-
lations ran using SwitchDec2017 and SwitchJan2016. B) Top: Probability for SwitchDec2017 and
SwitchDec2017 deferred that a 1◦x1◦ bin was occupied by a particle during the 5-year simulation.
The sum of all the probabilities in the domain is 100. Bottom: Difference in probability values for
each 1◦x1◦ bin between the simulations ran using SwitchDec2017 and SwitchDec2017 deferred.
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2. Lagrangian modelling

Particles advected in the SwitchDec2017 deferred flow field also showed a higher-
probability area in correspondence with that observed for SwitchDec2017 and Switch-
Jan2016, even if the shape was slightly different. Moreover, some of the bins in
that area in SwitchDec2017 deferred showed a much higher probability than in
SwitchDec2017 (Figure 2.3B Top). When looking at the difference between the val-
ues calculated from SwitchDec2017 and SwitchDec2017 deferred, a rather distinct
separation between the particle trajectories in the two ocean flow fields became vis-
ible (Figure 2.3B Bottom). When virtual particles were released on the same day
as they were observed during the NIOZ 2019 expedition, their trajectories covered
the north and western parts of the basin more than when they were released one
week later. In this latter case, more particles occupied the bins off the coast of
South Africa, dominating over the values observed for SwitchDec2017 especially in
the domain between 25 - 30◦S and 0 - 15◦E.

When particles were advected in an ocean flow field consisting of the sum of
SwitchDec2017 and surface Stokes drift (from here on SwitchDec2017 wStokes),
their trajectories varied substantially from when they were advected in SwitchDec2017
only (Figure 2.4). Bins in the area off the coast of South America had a much higher
probability to be occupied by a particle during the SwitchDec2017 wStokes simula-
tion than during SwitchDec2017. In agreement with this, bins in the area off the

Figure 2.4: Top: Probability for SwitchDec2017 without and with surface Stokes drift that a 1◦x1◦

bin is occupied by a particle during the five-year simulation. The sum of all the probabilities in the
domain is 100. Bottom: Difference in probability values for each 1◦x1◦ bin between the simulations
run using SwitchDec2017 without and with surface Stokes drift.
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coast of South Africa had a much higher probability to be occupied by a particle
during the SwitchDec2017 simulation.

2.3.2. Integration time step

Corresponding backward and forward simulations were run for 5 years and performed
for ∼420 particles advected in SwitchDec2017 with integration time steps of 2 hours,
1 hour, 30 minutes and 15 minutes. The exact number of particle differed slightly
based on the integration time step considered, as more or less particles remained in
the domain for the entire 5-year backward simulation (Figure 2.5).

Decreasing the time step from 2 hours to 1 hour produced a great improvement
in the mean Haversine distance between the starting point of the backward and the
ending point of the forward simulation, but the subsequent decrease from 1 hour
to 30 and 15 minutes did not result in any further improvement. Additionally, the
standard deviation values obtained for the four cases showed that the smallest mean
Haversine distance was accompanied by the largest standard deviation (Table 2.2).
The distributions of Haversine distances between the initial and final positions of
corresponding particles released in backward and forward simulations obtained using
different integration time steps were assessed by performing a Kolmogorov-Smirnov
(K-S) test. Table 2.3 shows that the distributions were significantly different from
each other, highlighting that the results obtained were dependent on the integration

Figure 2.5: Example of the same trajectory calculated backward and forward with different inte-
gration time steps (∆t).
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2. Lagrangian modelling

time step used.
For the backward and forward simulations ran with an integration time step of

1 hour the distance between corresponding particles was calculated for each point
along their trajectories for the entire simulation (Figure 2.6). The separation dis-
tance was used to obtain the relative dispersion between the two particles over time,
which was calculated as the square of the separation distance and is a measure of
the spread of the particles around their centre of mass by the flow. Some parti-
cles separated early in their trajectory, and acted more as outliers as highlighted
by the mean value of dispersion compared to the median. The latter showed that
corresponding particles followed the same trajectory for about 200 days and then
started separating, with their dispersion increasing quickly over time and reaching
separation distances of hundreds of kilometres. The decomposition of dispersion
in its meridional and zonal component revealed that a strong anisotropy started
developing after about 10 days of simulation, with the zonal dispersion becoming
one order of magnitude larger than the meridional. This result was not surprising,
considering that particles were predominantly subjected to the eastward flow of the
southern portion of the South Atlantic Subtropical Gyre.

2.4. Discussion

The results presented in the previous section showed how influential the ocean flow
field and the integration time step were in determining the path followed by virtual
particle in Parcels due to the chaotic nature of ocean flow (Wichmann et al., 2019).

The differences in probability with which each bin was occupied by a particle
during course of the entire simulation resulted to be more significant when comparing
particles advected in the same flow field but released a week apart (SwitchDec2017
and SwitchDec2017 deferred; Figure 2.3B) than when advecting particles in two
partially different flow fields (SwitchDec2017 and SwitchJan2016 ; Figure 2.3A).
This suggested that the internal variability of the system over a time period as
short as one week was able to affect the trajectories of particles released more than
when the flow field was partially different. The variability observed for a period of
time as short as one week could be linked to the fact that particles were released in

Integration time step [h] 2 1 0.5 0.25

Mean [km] 2428 1820 2214 2507
Std [km] 1089 1464 1180 1251

Table 2.2: Mean and standard deviation of the Haversine distance between the ending location of
the forward simulation and starting location of the backward simulation for corresponding particle
trajectories calculated with different integration time steps.
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one of the regions with the largest eddy kinetic energy in the world’s oceans, where
the the leakage of water from the Indian Ocean carried by the Agulhas Current
produces the so-called Agulhas Rings (Rae, 1991). Therefore, the two combinations
of CMEMS ocean field products proved to be consistent regardless of whether the
switch from Forecast to Renalysis product took place in December 2017 or January
2016. It was decided to perform the switch in December 2017 so that the Reanalysis
product would cover the majority of the simulation and also because Reanalysis was
updated in light of observations while Forecast was not (Parker, 2016).

As hypothesised, the inclusion of surface Stokes drift into the ocean flow field in
which the particles were advected highly affected their trajectories, with a higher
probability of bins in the western part of the basin being occupied by a particle
during the simulation. This is in agreement with Clarke and Van Gorder (2018)
findings that Stokes drift is driven by the local wind condition and is in the direction
of the wind. The main feature of atmospheric circulation in the South Atlantic is
the South Atlantic Subtropical Anticyclone (or Subtropical High), which is semi-
permanent and spreads between 15◦ - 45◦S and 45◦W - 15◦E (Reboita et al., 2019).
The anticyclonic circulation in the Southern Hemisphere is in anticlockwise direction,
therefore explaining the differences observed between the trajectories of particles
advected in SwitchDec2017 noStokes and SwitchDec2017 wStokes ocean flow fields.
Below the Subtropical High, the Westerlies blowing over the South Atlantic increase
transport due to Stokes drift from South America towards the east. This explains
why the bins closer to the coast of South America had a much higher probability
of being occupied by a particle in a backward simulation. Not all particles that
were advected backwards reached the coastal area south of 35◦S. Hence, the effect
of Stokes drift on those particles that kept on being advected in the open ocean was
to enhance their pathways northward towards lower latitudes off the coast of South
America and then to push them towards more southern latitudes as a result of the
action of Trade winds, explaining why bins at latitudes north of 30◦S had a higher
probability of being occupied by a particle when surface Stokes drift was added to
the ocean flow field.

0.25 hr 0.5 hr 1 hr 2 hr

0.25 hr 1 5.60E-26 2.00E-40 1.00E-16
0.5 hr 5.60E-26 1 4.80E-42 3.50E-24
1 hr 2.00E-40 4.80E-42 1 1.90E-39
2 hr 1.00E-16 3.50E-24 1.90E-39 1

Table 2.3: Difference in distance distributions obtained for the four integration time steps assessed.
The table reports the p-values associated with the null hypothesis that two independent samples
of distances were drawn from the same continuous distribution. Histograms of the distributions
are available in Figure A.1.
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2. Lagrangian modelling

The consistency between backward and forward simulations, which is a crucial
element in the interpretation of results obtained from Lagrangian models, proved to
be complicated. The difference in the trajectories and ending point of forward sim-
ulations versus the starting point of backward simulations was a direct consequence
of how the position of a particle was calculated from equation 2.1. The position X(t
+ ∆t) was obtained integrating the velocity v at position X(t) over the time step,
but X(t) was different when going forward and backward, therefore different veloc-
ities were used for the integration. In light of this, it was expected that decreasing
the integration time step would have returned an increased consistency between the
trajectories of the forward and backward simulations, as reducing the interval of
the integration would have decreased the distance travelled by the particle in the
interval. However, it happened only when decreasing the integration time step from
2 to 1 hour. One explanation for this might be that the reduction of integration
time step causes a larger propagation of the numerical error, as the position of the
particle is evaluated more often than when the trajectory is computed using a larger
time step.

Here, the comparison between backward and forward trajectories of individual
particles was performed to obtain information on the reversibility of the second part
of this study: the identification of sources of microplastic to the SASG. Therefore,
investigating the exact mechanisms involved in the diversification of trajectories
computed via backward and forward simulation lies outside of the scope of this
project and future work is required to assess the differences of advecting particles
in a Lagrangian framework backward and forward in time. Lagrangian simulation
in backward mode remains a powerful tool to investigate the pathways of clusters
of particles and their origin, which is the scope of the remainder of this study.
Taking into account the results and considerations presented above, it was decided
to proceed with this study advecting particles in an ocean flow field composed of
both a horizontal general circulation component (SwitchDec2017 ) and surface Stokes
drift and to use an integration time step of 1 hour. The trajectories of the particles
released at the 24 sampling locations of the NIOZ 2019 cruise as a result of the
5-year simulation ran using these model settings are visible in Figure 2.7.
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2. Lagrangian modelling

Figure 2.7: Trajectories of the 24 clusters of particles released at the NIOZ 2019 sampling locations,
represented by the black dots.
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3. Land sources of microplastics

3.1. Introduction

The advection of virtual particles backward in time allows not only to analyse the
effects of ocean dynamics on the pathways followed by particles, but also to inves-
tigate where they originated. This is particularly important for microplastics, as
identifying the most significant sources of pollution to the ocean could provide solid
background information for the implementation of waste management policies on
the national and international level. Microplastics are indeed often the product of
the degradation of larger debris coming from land sources that mainly break down
due to mechanical and chemical weathering (Andrady, 2011).

3.2. Methods

Based on population estimation data for 2019 (Demographia, 2019), the four most
populous coastal cities on the eastern side and the five most populous on the western
side of the South Atlantic basin were selected to assess their probability as land
sources of microplastics (Table 3.1). An algorithm was developed that calculated
the probability of each city being the source of each microplastic particle based on
the trajectory it followed during the entire simulation. While here it was decided
to investigate the probabilities of the most populous cities bordering the South
Atlantic Ocean, the algorithm is not basin-specific and could be used to calculate
the probabilities of other locations to be sources of microplastics in any backward
Lagrangian simulation.

For this part of the study both the NIOZ 2019 sampling data and those retrieved
from van Sebille et al. (2015) were used. In accordance with the results presented
in Chapter 2, particles released at times and locations corresponding to the NIOZ
2019 sampling stations were advected in the SwitchDec2017 wStokes ocean flow
field (this simulation will be referred to as NIOZ 2019 from now on), while for
those released at times and locations from van Sebille et al. (2015) the horizontal
general circulation component of the flow field was obtained from CMEMS Global
Ocean Physics Reanalysis 1/12◦ (GLORYS12V1) as it covered the entire time span
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3. Land sources of microplastics

City Country Latitude [◦N] Longitude [◦E] Population [M]

Luanda Angola -8.82 13.22 7.645
Benguela Angola -12.58 13.39 0.565
Cape Town South Africa -33.93 18.56 4.260
Pointe Noire Congo -4.80 11.84 1.090
Rio de Janeiro Brazil -23.00 -43.30 12.070
Salvador Brazil -13.00 -38.45 3.325
Recife Brazil -8.09 -34.88 3.570
Buenos Aires Argentina -34.58 -58.36 15.130
Montevideo Uruguay -34.91 -56.15 1.325

Table 3.1: Cities selected as land sources of microplastics based on their population (Demographia,
2019) and location around the South Atlantic Ocean.

of the simulation, and Stokes drift was added to it (this simulation will be referred
to as van Sebille et al. (2015) from here on). In order to have similar amounts of
particles advected in the two five-year simulations, 24000 particles were released in
total for NIOZ 2019 (1000 per sampling location) and 27600 for van Sebille et al.
(2015) (200 per sampling location). The trajectories of the 24 clusters of particles
released in NIOZ 2019 can be observed in Figure 2.7. To evaluate the influence of
the advection time on the probabilities calculated for each source, these were also
calculated based only on the first half (2.5 years) of the standard simulation.

The algorithm was implemented as follows. First, the Haversine distance (eq.
2.2) to each city was calculated for each point on the trajectory of the particles.
The probability of each city being the source of the particle at each point on the
trajectory was calculated following both an exponential (P̃ expp,s) and quadratic
distribution (P̃ quadp,s) in order to identify the effects of the modelling choices on
the results obtained. In both cases, only the city closest to the particle at that point
on the trajectory could be its source and therefore have a probability larger than
zero, while all other cities could only have a zero probability of being the source
of the particle at that point on the trajectory (Figure 3.1). For the exponential
distribution the probability was calculated as:

P̃ expp,s(β, dp,s) =

e
− 1
β
dp,s , if dp,s ≤ dp,k ∀ k

0, otherwise
(3.1)

where β is the scale parameter of the exponential distribution, dp,s is the distance
from point p on the trajectory to city s and dp,k are the distances to all other cities.
Since the value of β could not be found in or derived from any study available in the
literature, P̃ expp,s was evaluated for seven different values of β between 2.5 and 250
km. From a physical point of view, β represents the radius of the imaginary circle
defining the ‘catchment area’ of each source and it is referred to as source uncertainty
distance. The decision of modelling a circular ‘catchment area’ was based on the fact
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3. Land sources of microplastics

Figure 3.1: Subdivision of the South Atlantic Ocean into domains where only the closest city could
be the source of the particle. Figure generated on a 0.2◦x0.2◦ grid.

that a circular shape would better represent currents flowing in different directions,
while using an elliptical ‘catchment area’ with a shorter radius towards the ocean and
a larger one parallel to the coast would have caused longshore/boundary currents
to affect more the probabilities obtained for the various land sources.

For the quadratic distribution the probability was calculated as:

P̃ quadp,s(β, dp,s) =


(
1− dp,s

3β

)2
, if (dp,s ≤ 3β) ∧ (dp,s ≤ dp,k ∀ k)

0, otherwise
(3.2)

where β is the same source uncertainty distance used for the calculation of prob-
abilities based on the exponential distribution and it is multiplied by a factor 3 in
order for the two approaches to be consistent. In fact, one of the differences be-
tween the two implementations is that the calculation of probabilities based on the
exponential law did not require to identify a cut-off distance after which the prob-
ability would be zero, as the exponential distribution tends asymptotically towards
zero, while it was necessary to do so for the quadratic distribution. Based on the
exponential distribution, a particle had a 5% probability Pexpp,s of being sourced
from a given city when its distance to the source was:
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3. Land sources of microplastics

0.05 = e−βdp,s

dp,s = −βln(0.05)

dp,s ∼ 3β

(3.3)

Therefore, it was decided to use 3β as the cut-off distance after which a particle
could only have a probability P̃ quadp,s equal to zero of being sourced from its closest
city (Figure 3.2).

P̃ expp,s and P̃ quadp,s depended only on the distance between the particle and
the city evaluated, but did not take into account the time along the trajectory of the
particle. In the real ocean, the effects of buoyancy and biofouling on microplastic
were found to cause a decrease with time in the probability of a particle being still
afloat on the surface of the ocean (Fazey and Ryan, 2016). Translated to backward
modelling, this meant that it was more likely that a particle was sourced from
the first city it was closest to during the simulation than at the following cities.
Therefore, in order to include the history of the floating particle, the probabilities
P̃ expp,s and P̃ quadp,s were updated given that the particle was sourced from any
city at previous points on the trajectory:

Pp,s =


P̃p,s, if p = 0

P̃p,s ·

1−
p−1∑
l=0

∑
k

Pl,k

 , if p > 0
(3.4)

Figure 3.2: Exponential and quadratic decreases in probability with distance. Figure obtained
with a source uncertainty distance (β) of 10.
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3. Land sources of microplastics

where P̃p,s represented both the exponential and quadratic implementation, as
from this step onward the calculations were independent from the distribution cho-
sen to calculate the probability based only on the distance. For each p > 0, the
probability P̃p,s was multiplied by the probability that the particle was not sourced
from any city when evaluated at previous points along the trajectory.

Lastly, the overall probability with which a particle was sourced from city s was
simply the sum of the probabilities with which it was sourced from that city when
evaluated at all points p:

Ps =
∑
p

Pp,s (3.5)

The probabilities calculated for each individual particle were averaged over the
number of particles advected in order to obtain the probability of each city as a
source of microplastic to the South Atlantic Subtropical Gyre. In addition, the
sets of 1000 particles released in the NIOZ 2019 standard simulation were analysed
individually to evaluate the sources of the microplastic samples collected at different
locations during the expedition.

In order to assess the accuracy of the probability calculations, the bootstrap
method (Efron, 1992) was used to estimate the mean and standard deviation of
the probabilities that particles released in the South Atlantic Subtropical Gyre were
sourced from the nine selected cities. Bootstrapping is a resampling technique based
on the performance of inferential statistics on resampled data with sample size N
that were independently sampled with replacement from existing sample data of size
N . Sampling with replacement means that duplicates of values from the existing
data sample are allowed in the bootstrap resamples. Here, 1000 bootstrap resamples
were created and for each of them the probability of each city being the source of
microplastic was calculated. From the distribution of the 1000 probabilities for each
source it was possible to infer the mean value and how much it varied across all
resamples.

3.3. Results

3.3.1. Sources of microplastics sampled during the NIOZ 2019 expedition

The analysis of the 24 individual particle clusters advected for 5 years in the NIOZ
2019 standard simulation gave insight on how the release date and location influence
the trajectories of the particles (Figures 2.7, 3.3 and 3.4). In addition, calculating
the probabilities specifically for a given location rather than for the SASG as a
whole system, could provide significant information for the biological assemblages
that can be found on microplastic based on where it was retrieved and what path it
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3. Land sources of microplastics

followed to get there. Overall, the probabilities calculated for each of the 24 clusters
showed much less variability when β = 25 km than when it was 100 km (Figures
3.3 and 3.4). From 1000 bootstrap resamples the mean and standard deviation of
probability values for all sampling locations were calculated (Tables B.1 and B.2).

For β = 25 km, only sampling location #1 returned probabilties completely
different with Cape Town dominating, while for all the other 23 locations the largest
probability was that particles were sourced from somewhere else (Rest), represented
by the black ring on the outside of the pie charts. The category Rest did not
only include locations within the domain that were not considered as sources, but
also the probability that particles were sourced from coastal areas bordering other
basins. When considering only the known sources assessed, Montevideo was the
most probable one, followed by Buenos Aires and Cape Town. Only location #2
had a probability of being sourced from Cape Town almost as large as in Montevideo.
Rio de Janeiro and Salvador followed the other three cities in probability, and shared
rather similar values overall. Probability values for each source at the 24 sampling
locations can be found in Table B.1.

With a source uncertainty distance of 100 km, locations #1 and #2 returned
an almost 100% probability of being sourced from Cape Town, and location #24 a
probability slightly larger than 50% (Table B.2). For all other locations the most
probable source was again Montevideo, but Cape Town and Rio de Janeiro also had
significant values. In particular, Cape Town resulted to be a more probable source
for particles coming from sampling location #3, #4, #6 and #23, while Rio de
Janeiro for all the others, with values much larger than Cape Town for all sampling
points located westward of 5◦E.

The values obtained for location #1 represented clear outliers both when prob-
abilities were obtained with β equal to 25 and 100 km, and they were the most
consistent between the two calculations. As a matter of fact, sampling location #1
was ∼ 20 km from the coast north of the Cape and the majority of the particles
released there remained in the area for the entire simulation because of the unre-
solved morphology of the Cape Town area or left the domain to the Indian Ocean
(Figure 2.7). Contrarily, microplastics released at sampling point #2 had the largest
probability of being sourced from Montevideo when β was 25 km, but had an almost
100% probability of coming from Cape Town when β was 100 km. An analogous
result could be observed for sampling location #24, for which Cape Town domi-
nated when probabilities were calculated with a source uncertainty distance of 100
km and Montevideo of 25 km. In particular, sampling location #2 was less then
300 km from Cape Town, which meant that with β = 100 km, the probability of the
particles released there of being sourced from Cape Town just based on the release
location was already larger than 5%.
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3. Land sources of microplastics

While it was the second most probable known source when β was 25 km, Buenos
Aires’ probability was relevant only for sampling locations #3 –#5 and #22 –#24
when β was 100 km. The opposite could be observed for Rio de Janeiro, which stood
out as the second most probable source for the majority of NIOZ 2019 sampling
locations when β was 100 km, but was almost irrelevant for all of them when β was
25 km.

The outward-bound leg of the journey reached sampling location #14 as its
north-westernmost point (Table 2.1), after which the expedition headed back to
Cape Town. The two closest sampling locations were #6 and #22, which were at a
distance of 44 km, followed by locations #14 and #15 which were 57 km apart. Par-
ticles released at location #6 and #22 showed more significant discrepancies in their
source probabilities than those released at #14 and #15 for both values of source
uncertainty distance. An explanation could be found in the internal variability of
the system and follows on the results presented in Section 2.3, as the two sampling
points were visited 12 days apart during the cruise and so were the particles released
during the simulation (Table 2.1).

3.3.2. Sources of microplastics to the Gyre

In regard to the probabilities of each of the nine cities to be the sources of mi-
croplastics to the SASG, in all cases considered the mean values calculated from
the 1000 bootstrap resamples converged to the probabilities obtained for the four
original samples (two each for the NIOZ 2019 and van Sebille et al. (2015) datasets,
one considering the entire 5 years of simulation and the other considering only the
first 2.5 years). Therefore, the results presented here show the means and standard
deviations derived from inferential statistics performed on the bootstrap resamples.
All probability values can be found in Tables B.3 - B.10. As the size of bootstrap
resamples was large and the standard deviation values obtained were low, it could
be argued that the mean probability values are a precise representation of the pop-
ulation. In general, larger probability values also had larger standard deviations,
but the coefficient of variation (the ratio between the standard deviation and the
mean) increased as probability values decreased. This suggested that the estimates
of source probabilities were more accurate for sources with a higher probability and
it is in agreement with the fact the a change in the number of times sources with
lower probabilities in the original samples were represented in the bootstrap resam-
ples generated more variance than a change in the representation of probabilities
that were already high in the original samples.

Figures 3.5 and 3.6 show that, as expected, an increase in source uncertainty
distance (β) resulted in a general increase in probability of particles being sourced
from the selected cities and consequently a decrease in the probability of being

27



3. Land sources of microplastics

Fi
gu

re
3.

4:
Pr

ob
ab

ili
tie

s
ca

lc
ul

at
ed

w
ith

β
=

10
0

km
w

ith
w

hi
ch

m
ic

ro
pl

as
tic

sa
m

pl
es

re
tr

ie
ve

d
at

ea
ch

of
th

e
N

IO
Z

20
19

sa
m

pl
in

g
lo

ca
tio

ns
w

er
e

so
ur

ce
d

fr
om

ea
ch

of
th

e
ni

ne
se

le
ct

ed
ci

tie
s

an
d

fr
om

so
m

ew
he

re
el

se
(R

es
t)

.
T

he
th

ic
kn

es
s

of
th

e
bl

ac
k

rin
g

re
pr

es
en

ts
th

e
pr

ob
ab

ili
ty

of
pa

rt
ic

le
s

no
t

be
in

g
so

ur
ce

d
at

th
e

ni
ne

ci
tie

s
(R

es
t)

.
Va

lu
es

ar
e

lis
te

d
in

Ta
bl

e
B

.2
.

28



3. Land sources of microplastics

sourced from somewhere else (Rest) both when calculated using the exponential
and quadratic distribution. Probability values calculated with smaller values of β
resulted to be more coherent among exponential and quadratic modelling, while
diverging quite significantly for β values larger than 100 km, with the exponential
distribution returning higher probabilities than the quadratic. Nevertheless, the
order of sources based on their probability remained relatively consistent between
corresponding exponential and quadratic results, besides for the largest value of β
considered (250 km). Since the comparison is between models and not datasets,
as the results are a function of the release locations, the two are presented in the
following subsections separately. Nevertheless, many features that distinguished the
exponential and quadratic approaches were observed in both NIOZ 2019 and van
Sebille et al. (2015).

NIOZ 2019

The two models returned Buenos Aires as the city with the highest probability when
β was 1.43 and 10 km, followed by Montevideo and Cape Town, both when assessing
the full 5 years and only the first 2.5 years of the trajectories (Figure 3.5). In the case
of the 2.5-year trajectories, the standard deviation values obtained for Montevideo
and Cape Town for β = 2.5 and 10 km were almost identical, not allowing to
differentiate the two sources as one more likely than the other. When β increased
to 14.3 km, Montevideo became the most probable source as calculated using the
exponential model, but Buenos Aires remained the most probable when following
the quadratic approach. Again, the two models gave back consistent results for
NIOZ 2019 when calculations were performed with β = 25 km.

For source uncertainty distances of 100 and 143 km, the standard deviations of
Cape Town and Montevideo, the two most probable sources, gave rise to an overlap-
ping interval between three standard deviations above and below the mean among
the two sources when calculated following the quadratic approach, but this was not
observed for the exponential when the entire 5-year trajectory was considered. For
β values greater than 100 km, Buenos Aires’ probability went down to zero for all
cases assessed using the quadratic distribution, while it had slightly larger values
when calculated with the exponential approach.

The largest values of β assessed was 250 km, which returned significant differ-
ences between the results obtained from the two models. As a matter of fact, the
exponential approach produced a relative order of most to least probable source
that was different than that obtained for β = 143 km and also different than that
obtained following the quadratic distribution. When β was 143 km the three most
probable land sources of microplastics were Montevideo, Cape Town and Rio de
Janeiro. This did not change for β = 250 km using the quadratic distribution, but
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3. Land sources of microplastics

it became Cape Town, Rio de Janeiro and Montevideo when using the exponential
model.

The probabilities calculated only considering the first 2.5 years of the trajec-
tories were generally lower than the corresponding ones obtained from the 5-year
trajectories. The values obtained from the exponential distribution were the most
consistent between 5-year and 2.5-year calculations for β = 250 km, in particular
for Cape Town.

van Sebille et al. (2015)

Buenos Aires resulted to be the most probable source when probabilities were calcu-
lated using the two smallest values of β following the exponential approach and the
three smallest values following the quadratic approach (Figure 3.6). The city with
the second-highest probability for source uncertainty distances of 2.5 and 10 km
as obtained from the exponential model was Montevideo, which became the most
probable source when β was increased to 14.3 km. Montevideo was also the sec-
ond most probable source obtained for source uncertainty distances between 2.5 and
14.3 km when calculated following the quadratic distribution. The relative order of
sources was inconsistent between the two models also when calculations were per-
formed with β = 25 km, with Buenos Aires being the third most likely source when
calculated with the exponential distribution but the second one with the quadratic
distribution.

When source uncertainty distance was increased to 100 and 143 km, the prob-
ability values and the interval between three standard deviations above and below
the mean overlapped completely for Cape Town and Montevideo both when using
the exponential and quadratic distribution. Analogously to what observed in NIOZ
2019, for β values greater than 100 km Buenos Aires’ probability reached zero for
all cases assessed using the quadratic distribution, while the values calculated from
the exponential distribution were marginally larger.

For β = 250 km, contrasting results were obtained from the two modelling ap-
proaches. In this case, the exponential distribution returned an order of most proba-
ble sources that differed from that obtained following the quadratic distribution and
also the exponential distribution with β = 143 km, with Rio de Janeiro dominating
over Cape Town and Montevideo. Rio de Janeiro’s and Cape Town’s intervals be-
tween three standard deviations above and below the mean slightly overlapped in the
exponential modelling and Cape Town’s and Montevideo’s overlapped completely in
the quadratic modelling results. Additionally, the exponential model returned prob-
ability values between 1 and 3% for Benguela, Salvador and Recife, while they were
all lower than 1% when calculated following the quadratic distribution. As returned
from the exponential approach, Luanda and Pointe Noire also had probability values
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3. Land sources of microplastics

slightly larger than zero. This was the only case in which the northernmost African
cities considered for the study resulted as probable sources of microplastics to the
South Atlantic Subtropical Gyre.

The differences between probabilities calculated only considering the first 2.5
years and the full 5 years of the trajectories were more remarked for low values of
source uncertainty distance. The limited variability obtained for larger values of β
could be attributed to the fact that release locations in this dataset were spread out
over the entire basin.

3.4. Discussion

While simulations of microplastic dynamics by means of Lagrangian modelling for-
ward in time have previously allowed to identify accumulation areas of debris in all
ocean basins (van Sebille et al., 2015; Eriksen et al., 2014), to date no studies have
been published on the potential of using backward trajectories to assess the sources
of microplastic found in the ocean gyres. The methods developed for this study
were used here to assess the relative contribution of different coastal cities to the
pollution of the South Atlantic Ocean, but the same algorithm could be applied to
any type of source and any basin once the trajectories of the particles are known.

The soundness of the methodology can be inferred from the consistency between
the results obtained across all computations performed on the two datasets both
following an exponential and quadratic distributions. For all source uncertainty
distances considered excluding 250 km, the quadratic and exponential approaches
returned very similar relative orders of cities from the most to least probable between
corresponding cases and for the lowest values of β also coinciding values.

The choice of modelling the probability with which a particle was sourced from
a given source based on its distance both following an exponential and quadratic
distribution was arbitrary, and the two approaches produced different results due
to their intrinsic characteristics. The exponential modelling returned a sharper
decrease in probability with distance for smaller distances and did not require a
limit to the ‘catchment area’ of each source, as the exponential distribution tends
asymptotically towards zero. On the other hand, probabilities obtained from the
quadratic modelling decreased more moderately with distance at the beginning of
the distribution, but then showed a stronger decrease than those obtained from the
exponential model as distance increased and they became zero for distances equal
and larger than the cut-off radius (three times the source uncertainty distance, eq.
3.2). For the smallest two source uncertainty distances, the two approaches returned
similar results but they progressively differed with an increase in β. For the largest
β, the two modelling choices resulted in a significant discrepancy both in magnitude
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3. Land sources of microplastics

and relative order of the most probable sources.
The coherence between the results observed in both simulations when particle

trajectories were considered for 5 and 2.5 years suggests that for a value of β as large
as 250 km, particles reached a 100% probability of being sourced at one or more
of the selected cities in the earliest part of their trajectory. As a matter of fact,
from the computation of Pp,s followed that a particle only had a 5% probability of
being sourced at a given city when the distance dp,s was larger than −βln(0.05) (Eq.
3.3). For β = 250 km, that became dp,s > 749 km, and from the distribution of the
sampling locations observed in Figure 2.1 it can be seen that many sampling points
were located within 750 km (∼ 8◦ longitude at a latitude of 30◦S) from the coast
and source cities. Therefore, it is argued that the probabilities calculated through
exponential modelling with β = 250 km are in many cases reflecting the locations
where particles were released during the Lagrangian simulation. On the other hand,
the more pronounced decrease in probability for larger distances and the cut-off
radius of the quadratic distribution returned significantly smaller probabilities than
those obtained from the exponential approach for β equal to 250 km. Hence, for
large uncertainty distances the results obtained from quadratic modelling were less
biased on the release location than those obtained from exponential modelling.

Assessing the probability of both Buenos Aires and Montevideo as sources of
microplastics instead of having them together as a single source highlighted some
of the strengths and limitations of the methodology. The two cities are located on
the estuary of the Ŕıo de la Plata, with Montevideo being closer to the ocean than
Buenos Aires. As the algorithm developed only allowed the closest city to the par-
ticle to be its source (eq. 3.1 and 3.2), Montevideo always prevailed over Buenos
Aires unless the particles reached the most inland part estuary or when they were
close to the continent at latitudes lower than the Ŕıo de la Plata estuary. The lat-
ter case resulted in an unrealistic division between the two cities, as the distance
was calculated on the great circle and for Buenos Aires specifically did not reflect
the morphological and oceanographic configuration of the real system. When they
reached the estuary, the morphology and resolution of the data caused the parti-
cles to get stuck there for the remainder of the simulation and spend an important
amount of time closer to Montevideo and Buenos Aires, which was unrealistic. The
majority of particles that reached the estuary already had a 100% probability of be-
ing sourced from cities other than Buenos Aires when this was calculated using larger
values of β, but this was not the case for β equal to 2.5, 10 and 14.3 km. Smaller
source uncertainty distances favoured Buenos Aires over Montevideo as a source for
the particles that reached the estuary because the coordinates of the former were
closer to the ocean than those of the latter. For these reasons the probability of
Buenos Aires as a source of plastic to the SASG increased with a decrease in β,
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3. Land sources of microplastics

while that of Montevideo simultaneously decreased. Therefore, the interpretation of
Montevideo as a dominant source when probabilities were calculated with β = 25,
100 and 143 km is better revisited as the dominance of the Ŕıo de la Plata and its
estuary as sources, especially if one considers the much larger population of Buenos
Aires than of Montevideo.

In general, even if assessing probabilities with values of β as low as 2.5, 10 and
even 14.3 km allowed to identify the underlying mechanisms behind the discrepancies
in the results obtained for Montevideo and Buenos Aires, such low values of source
uncertainty distance can hardly be supported from a geographical and physical point
of view. Coastal cities of sizes such as those considered here are spread out for more
than 10 km along the coast and representing them as one point located at arbitrary
coordinates, even if accurately selected, did not account for the whole picture. In
fact, in the case of Cape Town the morphology of the area lead to the choice of a
location that was further inland than 2.5 km in order for it to be located not too far
from one side of the Cape or the other. Additionally, the ocean flow fields obtained
from CMEMS Reanalysis and Forecast products had a resolution of 1/12◦ (∼ 9 km),
while the ERA5 Stokes drift data had a resolution of 0.5◦ (∼ 55 km) at the Equator
(6.5 and 39 km respectively at latitude 45◦N/S). In the case of β = 2.5 km, particles
only have a probability smaller than 5% of being sourced from a given city when
using the exponential and 0% when using the quadratic approach for distances dp,s >
7.49 km (eq. 3.3),which is less than the resolution of the highest-resolved product
used for this study.

All the five cities closer to the Equator showed much lower probabilities of sourc-
ing microplastics to the SASG, but in particular the three on the African coast
(Benguela, Luanda and Pointe Noire) had a 0% probability for all the NIOZ 2019
simulations, both using exponential and quadratic modelling, and only Benguela had
a probability larger than 1% of being the source of microplastics to the SASG, when
calculated with β equal to 250 km in van Sebille et al. (2015) using the exponential
distribution. The trajectories in Figure 2.7 show how no particles were advected
close to the three northernmost African cities in the NIOZ 2019 standard simula-
tion. This is consistent with Onink et al. (2019) finding that particles released at
those locations and advected forward in time crossed the Equator and were located
in the North Atlantic basin at the end of the 12-year simulation.

The South Atlantic Ocean is a highly-connected basin (Froyland et al., 2014;
Onink et al., 2019; Wichmann et al., 2019) and a significant amount of particles
advected in the simulations left the study domain both at 25◦E to the Indian Ocean
and at 75◦W in correspondence of Drake’s Passage. When a particle left the domain,
it was given coordinates of 90◦N 0◦E for the remaining part of the simulation, so
that it would be located at far enough distance not to have any probability to be
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3. Land sources of microplastics

sourced from one of the nine cities. Therefore, the category Rest does not only
include locations within the domain that were not considered as sources, but also
the probability that those particles were sourced from coastal areas bordering other
basins. In particular, Onink et al. (2019) calculated that after 12 years of advection
forward in time, almost 40% of the particles located in the South Atlantic were
initially released in the Indian Ocean and 9% in the South Pacific. In the real
ocean, however, particles would be able to re-enter the domain considered after
leaving it, while this option was not taken into account in the simulations. Hence,
the decision of deleting particles as soon as they left the domain might have caused
a loss in information on source probabilities.

An important consideration on the procedure developed to calculate source prob-
abilities is that it did not take into account the role played by the temporal resolution
of the individual particle’s trajectory. In this study, the position of each particle was
saved once per day in the output of the Lagrangian simulation, hence the probabili-
ties were obtained from the daily location of the particle. A change in the temporal
resolution of the particle’s trajectory would cause a change in the source proba-
bilities obtained, as calculations would be based on more (less) points along the
same trajectory if the output of the Lagrangian simulation were saved more (less)
frequently than once per day. As particles could have a maximum cumulative prob-
ability of being sourced from the nine selected cities of 100%, probabilities assessed
more often along the trajectories would likely cause particles to reach a cumulative
100% probability earlier in time than when probabilities are calculated based on less
points on the trajectory, and vice versa. Therefore, as future work, the computation
of source probabilities needs to be standardised in such a way that they would not
be affected by the temporal resolution of Lagrangian simulations’ outputs.

The implementation of the history of the particle as the update in probability
given that the particle was sourced from somewhere in the earlier stages of the
trajectory was a realistic approximation that could be improved with the availability
of new data. Fazey and Ryan (2016) argued that it takes between 17 and 66 days for
plastic debris of various sizes to reach a 50% probability of sinking due to biofouling,
but their experiment was performed in harbour waters in a controlled setting and no
open ocean data are available at the moment. In the real ocean buoyant microplastic
particles are subjected to biofouling and therefore sink to the deeper layers and
the bottom of the ocean once the growth of organisms makes them denser than
seawater. Hence, the assumption that the first city to be passed-by by the particle
in a backward simulation had a larger probability to be its source than the cities
passed-by later reflects the likelihood that an increase in the time spent afloat would
result in an increase of the probability of the particle not being on the surface of
the ocean anymore. On the other hand, it is highly unlikely that a particle would
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stay afloat for five years (Koelmans et al., 2017), so implementing a decrease in time
regardless of whether particles were sourced at previous points on the trajectory
might return more accurate results.
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4. Conclusion

Previous studies based on modelling microplastics dynamics forward in time within
a Lagrangian framework allowed to identify the Subtropical Gyres of all oceans
as accumulation areas of debris, but to date no previous work had identified the
land sources of microplastics found in the Gyres using trajectories obtained from
backward Lagrangian models. The study presented here analysed the trajectories of
microplastics particles advected backward in time for 5 years in the South Atlantic
Ocean. Particles were released at locations corresponding to the sampling points of
the NIOZ 2019 ‘South Atlantic Subtropical Gyre Plastics Cruise’ and those retrieved
from van Sebille et al. (2015) and were advected in an ocean flow field consisting of
the sum of surface general circulation and Stokes drift. No single general circulation
flow field was available for the five years between 2014 and 2019 when the simulation
was run for particles representing those collected during the NIOZ 2019 cruise, thus
a Reanalysis and a Forecast product from CMEMS had to be combined to obtain
a flow field continuous in time. As the two products overlapped for almost two
years, the trajectories of particles advected in two flow fields in which the switch
from Reanalysis to Forecast product took place at different times between 2016 and
2017 were analysed and showed that there were no significant discrepancies between
the Reanalysis and Forecast velocities. Additionally, Stokes drift has been proven
to significantly affect the pathways followed by the particles. Lastly, the step-wise
computation of particle trajectories was proven to return inconsistencies between
corresponding backward and forward simulations.

Nine of the most populous coastal cities bordering the South Atlantic Ocean
were chosen as land sources and their probability of sourcing plastics to the South
Atlantic Subtropical Gyre was calculated based on the distance between the particle
and the source at each point on the trajectory. Probabilities were calculated follow-
ing both an exponential and a quadratic distribution in which the probability of a
city being the source of the particle decreased with an increase in distance and was
also a function of the parameter β, the source uncertainty distance, that reflected
the radius of the ‘catchment area’ of each source. Moreover, the history of the parti-
cle was taken into account, making it more likely that particles were sourced at the
city/cities to which they passed by in the earlier stages of their trajectories. A sen-
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sitivity analysis was performed using seven values of β varying between 2.5 and 250
km, which returned a significant increase in probability values for different sources
with an increase in β, especially when calculated with the exponential distribution.

The probabilities calculated for the NIOZ 2019 and van Sebille et al. (2015)
simulations returned consistent values among the exponential and quadratic ap-
proaches especially for values of β between of 25 and 100 km. This was also the
range identified as the most meaningful from a geographical and physical point of
view, as it is able to capture the size of cities as large as those considered here.
The sources that returned the highest probabilities were the Ŕıo de la Plata estu-
ary (comprising of Montevideo and Buenos Aires), Cape Town and Rio de Janeiro.
Recife, Pointe-Noire, Luanda and Benguela always returned probabilities equal or
close to zero, in agreement with the findings of Onink et al. (2019) who argued that
particles released in the northernmost part of the South Atlantic Ocean in forward
simulations were able to cross the Equator and end up in the North Atlantic.

From the analysis of the 24 separated clusters of particles released during the
NIOZ 2019 simulation, it was possible to conclude that the internal variability of
the ocean system might cause large discrepancies in the trajectories, and therefore
identified sources, of particles released at relatively close distance but 12 days apart.

Future work

Overall, this work presented a new approach to study the land sources of microplas-
tics from the outputs of Lagrangian simulations performed in backward mode. The
algorithm developed to calculate the probabilities with that arbitrarily selected loca-
tions were identified as the sources of microplastics to the South Atlantic Subtropical
Gyre was created in such a way to be a transferable method that could be used re-
gardless of the study domain and the source locations that want to be addressed.
The sources identified could at a later stage be investigated from a geographical or
socio-economical perspective to quantify the amount of microplastic they are releas-
ing to the Gyres and eventually to help with the implementation of better policies
aimed to reduce microplastics pollution to the marine environment.

Future work is necessary to improve the soundness of the methodology developed
in this study and to obtain more detailed results. While the calculation of prob-
abilities based on trajectories obtained from Lagrangian simulations with a daily
output provides an estimate of the sources on a time scale that captures the dy-
namic state of the system, a stronger approach would require to standardise the
probabilities calculated regardless of the timestamp of the Lagrangian simulation’s
output. An additional term reproducing the sinking probability due to biofouling
could be added to the current algorithm so that source probabilities would decrease
with time at a rate that reflects the environmental conditions in the ocean. The work
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of Fazey and Ryan (2016) represents a starting point from which the implementation
of sinking probability due to biofouling could be devised. Another factor that would
reinforce the accuracy of the results obtained is the quantification of likely releases
of (micro)plastics to the ocean from the sources investigated, so that it could be
included as a prior to the calculation of source probabilities. This would increase
the probabilities of those sources where more plastic is likely to be released to the
marine environment compared to those where plastic waste is better managed. One
database where information on mismanaged plastic waste is available is the Waste
Atlas (2019; http://www.atlas.d-waste.com). Lastly, to be able to assess the
probabilities of sources located relatively close to each other (e.g. Montevideo and
Buenos Aires), each source could be attributed an area of influence. This would
allow multiple sources to be the source of a particle with the same probability when
the particle is located in the overlapping section of different areas of influence.
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B. Probability Tables

NIOZ 2019 Bootstrap Mean Bootstrap St Dev

Luanda 2.5 0.000 0.000 0.000
Luanda 10 0.000 0.000 0.000
Luanda 14.3 0.000 0.000 0.000
Luanda 25 0.000 0.000 0.000
Luanda 100 0.000 0.000 0.000
Luanda 143 0.000 0.000 0.000
Luanda 250 0.000 0.000 0.000

Benguela 2.5 0.000 0.000 0.000
Benguela 10 0.000 0.000 0.000
Benguela 14.3 0.000 0.000 0.000
Benguela 25 0.000 0.000 0.000
Benguela 100 0.000 0.000 0.000
Benguela 143 0.002 0.002 0.000
Beguela 250 0.055 0.055 0.002

Cape Town 2.5 0.010 0.010 0.006
Cape Town 10 1.309 1.310 0.043
Cape Town 14.3 2.577 2.577 0.079
Cape Town 25 4.502 4.502 0.120
Cape Town 100 18.459 18.465 0.209
Cape Town 143 26.852 26.858 0.237
Cape Town 250 47.586 47.592 0.270

Pointe Noire 2.5 0.000 0.000 0.000
Pointe Noire 10 0.000 0.000 0.000
Pointe Noire 14.3 0.000 0.000 0.000
Pointe Noire 25 0.000 0.000 0.000
Pointe Noire 100 0.000 0.000 0.000
Pointe Noire 143 0.000 0.000 0.000
Pointe Noire 250 0.000 0.000 0.000

Buenos Aires 2.5 3.607 3.605 0.105
Buenos Aires 10 5.476 5.472 0.131
Buenos Aires 14.3 4.198 4.194 0.107
Buenos Aires 25 1.437 1.435 0.054
Buenos Aires 100 1.294 1.295 0.036
Buenos Aires 143 2.040 2.040 0.057
Buenos Aires 250 0.286 0.286 0.011

Rio de Janeiro 2.5 0.000 0.000 0.000
Rio de Janeiro 10 0.009 0.009 0.004
Rio de Janeiro 14.3 0.032 0.031 0.007
Rio de Janeiro 25 0.302 0.301 0.017
Rio de Janeiro 100 11.827 11.828 0.160
Rio de Janeiro 143 16.064 16.066 0.187
Rio de Janeiro 250 27.173 27.172 0.229

Salvador 2.5 0.000 0.000 0.000
Salvador 10 0.014 0.014 0.002
Salvador 14.3 0.048 0.048 0.006
Salvador 25 0.223 0.222 0.019
Salvador 100 0.740 0.738 0.030
Salvador 143 0.280 0.279 0.014
Salvador 250 0.150 0.150 0.005

Recife 2.5 0.000 0.000 0.000
Recife 10 0.000 0.000 0.000
Recife 14.3 0.000 0.000 0.000
Recife 25 0.000 0.000 0.000
Recife 100 0.009 0.009 0.001
Recife 143 0.003 0.003 0.000
Recife 250 0.008 0.008 0.000

Montevideo 2.5 0.747 0.748 0.034
Montevideo 10 2.780 2.782 0.080
Montevideo 14.3 5.101 5.101 0.115
Montevideo 25 10.016 10.014 0.182
Montevideo 100 25.093 25.099 0.239
Montevideo 143 31.677 31.682 0.254
Montevideo 250 21.729 21.725 0.212

Table B.3: Probabilities calculated for NIOZ 2019 from the exponential distribution when consid-
ering the entire 5-year simulation.
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B. Probability Tables

NIOZ 2019 - 2.5 yrs Bootstrap Mean Bootstrap St Dev

Luanda 2.5 0.000 0.000 0.000
Luanda 10 0.000 0.000 0.000
Luanda 14.3 0.000 0.000 0.000
Luanda 25 0.000 0.000 0.000
Luanda 100 0.000 0.000 0.000
Luanda 143 0.000 0.000 0.000
Luanda 250 0.000 0.000 0.000

Benguela 2.5 0.000 0.000 0.000
Benguela 10 0.000 0.000 0.000
Benguela 14.3 0.000 0.000 0.000
Benguela 25 0.000 0.000 0.000
Benguela 100 0.000 0.000 0.000
Benguela 143 0.000 0.000 0.000
Beguela 250 0.022 0.022 0.001

Cape Town 2.5 0.001 0.001 0.000
Cape Town 10 1.256 1.259 0.042
Cape Town 14.3 2.466 2.469 0.079
Cape Town 25 3.992 3.998 0.120
Cape Town 100 13.748 13.758 0.193
Cape Town 143 22.098 22.113 0.228
Cape Town 250 44.727 44.743 0.277

Pointe Noire 2.5 0.000 0.000 0.000
Pointe Noire 10 0.000 0.000 0.000
Pointe Noire 14.3 0.000 0.000 0.000
Pointe Noire 25 0.000 0.000 0.000
Pointe Noire 100 0.000 0.000 0.000
Pointe Noire 143 0.000 0.000 0.000
Pointe Noire 250 0.000 0.000 0.000

Buenos Aires 2.5 2.467 2.464 0.088
Buenos Aires 10 3.005 3.003 0.099
Buenos Aires 14.3 2.383 2.382 0.084
Buenos Aires 25 0.959 0.959 0.049
Buenos Aires 100 0.763 0.761 0.026
Buenos Aires 143 1.159 1.158 0.034
Buenos Aires 250 0.196 0.196 0.008

Rio de Janeiro 2.5 0.000 0.000 0.000
Rio de Janeiro 10 0.008 0.008 0.003
Rio de Janeiro 14.3 0.021 0.021 0.006
Rio de Janeiro 25 0.160 0.160 0.012
Rio de Janeiro 100 6.906 6.902 0.127
Rio de Janeiro 143 9.507 9.504 0.139
Rio de Janeiro 250 21.251 21.242 0.202

Salvador 2.5 0.000 0.000 0.000
Salvador 10 0.012 0.012 0.002
Salvador 14.3 0.042 0.042 0.005
Salvador 25 0.186 0.186 0.017
Salvador 100 0.240 0.240 0.015
Salvador 143 0.051 0.051 0.003
Salvador 250 0.075 0.075 0.003

Recife 2.5 0.000 0.000 0.000
Recife 10 0.000 0.000 0.000
Recife 14.3 0.000 0.000 0.000
Recife 25 0.000 0.000 0.000
Recife 100 0.001 0.001 0.000
Recife 143 0.000 0.000 0.000
Recife 250 0.002 0.002 0.000

Montevideo 2.5 0.166 0.166 0.017
Montevideo 10 1.603 1.599 0.061
Montevideo 14.3 2.957 2.952 0.085
Montevideo 25 5.602 5.594 0.136
Montevideo 100 16.543 16.530 0.202
Montevideo 143 22.628 22.610 0.224
Montevideo 250 18.979 18.965 0.200

Table B.4: Probabilities calculated for NIOZ 2019 from the exponential distribution when consid-
ering only the first 2.5 years of the simulation.
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B. Probability Tables

NIOZ 2019 Bootstrap Mean Bootstrap St Dev

Luanda 2.5 0.000 0.000 0.000
Luanda 10 0.000 0.000 0.000
Luanda 14.3 0.000 0.000 0.000
Luanda 25 0.000 0.000 0.000
Luanda 100 0.000 0.000 0.000
Luanda 143 0.000 0.000 0.000
Luanda 250 0.000 0.000 0.000

Benguela 2.5 0.000 0.000 0.000
Benguela 10 0.000 0.000 0.000
Benguela 14.3 0.000 0.000 0.000
Benguela 25 0.000 0.000 0.000
Benguela 100 0.000 0.000 0.000
Benguela 143 0.000 0.000 0.000
Beguela 250 0.000 0.000 0.000

Cape Town 2.5 0.005 0.006 0.004
Cape Town 10 0.372 0.372 0.019
Cape Town 14.3 1.953 1.951 0.065
Cape Town 25 4.023 4.021 0.123
Cape Town 100 13.912 13.912 0.209
Cape Town 143 16.055 16.058 0.228
Cape Town 250 30.081 30.085 0.265

Pointe Noire 2.5 0.000 0.000 0.000
Pointe Noire 10 0.000 0.000 0.000
Pointe Noire 14.3 0.000 0.000 0.000
Pointe Noire 25 0.000 0.000 0.000
Pointe Noire 100 0.000 0.000 0.000
Pointe Noire 143 0.000 0.000 0.000
Pointe Noire 250 0.000 0.000 0.000

Buenos Aires 2.5 3.296 3.296 0.104
Buenos Aires 10 5.325 5.322 0.134
Buenos Aires 14.3 5.307 5.303 0.132
Buenos Aires 25 3.142 3.138 0.098
Buenos Aires 100 0.000 0.000 0.000
Buenos Aires 143 0.000 0.000 0.000
Buenos Aires 250 0.099 0.099 0.010

Rio de Janeiro 2.5 0.000 0.000 0.000
Rio de Janeiro 10 0.003 0.003 0.002
Rio de Janeiro 14.3 0.010 0.010 0.005
Rio de Janeiro 25 0.034 0.034 0.009
Rio de Janeiro 100 7.169 7.167 0.145
Rio de Janeiro 143 10.299 10.292 0.171
Rio de Janeiro 250 12.477 12.467 0.194

Salvador 2.5 0.000 0.000 0.000
Salvador 10 0.001 0.001 0.000
Salvador 14.3 0.014 0.014 0.003
Salvador 25 0.111 0.112 0.015
Salvador 100 0.792 0.791 0.044
Salvador 143 0.695 0.693 0.040
Salvador 250 0.148 0.148 0.016

Recife 2.5 0.000 0.000 0.000
Recife 10 0.000 0.000 0.000
Recife 14.3 0.000 0.000 0.000
Recife 25 0.000 0.000 0.000
Recife 100 0.000 0.000 0.000
Recife 143 0.001 0.000 0.000
Recife 250 0.000 0.000 0.000

Montevideo 2.5 0.619 0.619 0.033
Montevideo 10 2.154 2.156 0.080
Montevideo 14.3 2.935 2.938 0.091
Montevideo 25 6.945 6.949 0.150
Montevideo 100 14.954 14.950 0.212
Montevideo 143 23.052 23.045 0.240
Montevideo 250 33.247 33.239 0.278

Table B.5: Probabilities calculated for NIOZ 2019 from the quadratic distribution when consider-
ing the entire 5-year simulation.
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B. Probability Tables

NIOZ 2019 - 2.5 yrs Bootstrap Mean Bootstrap St Dev

Luanda 2.5 0.000 0.000 0.000
Luanda 10 0.000 0.000 0.000
Luanda 14.3 0.000 0.000 0.000
Luanda 25 0.000 0.000 0.000
Luanda 100 0.000 0.000 0.000
Luanda 143 0.000 0.000 0.000
Luanda 250 0.000 0.000 0.000

Benguela 2.5 0.000 0.000 0.000
Benguela 10 0.000 0.000 0.000
Benguela 14.3 0.000 0.000 0.000
Benguela 25 0.000 0.000 0.000
Benguela 100 0.000 0.000 0.000
Benguela 143 0.000 0.000 0.000
Beguela 250 0.000 0.000 0.000

Cape Town 2.5 0.000 0.000 0.000
Cape Town 10 0.344 0.344 0.017
Cape Town 14.3 1.895 1.895 0.065
Cape Town 25 3.881 3.882 0.121
Cape Town 100 9.355 9.364 0.184
Cape Town 143 11.145 11.154 0.203
Cape Town 250 24.482 24.499 0.261

Pointe Noire 2.5 0.000 0.000 0.000
Pointe Noire 10 0.000 0.000 0.000
Pointe Noire 14.3 0.000 0.000 0.000
Pointe Noire 25 0.000 0.000 0.000
Pointe Noire 100 0.000 0.000 0.000
Pointe Noire 143 0.000 0.000 0.000
Pointe Noire 250 0.000 0.000 0.000

Buenos Aires 2.5 2.321 2.319 0.091
Buenos Aires 10 3.241 3.237 0.114
Buenos Aires 14.3 2.850 2.848 0.102
Buenos Aires 25 1.793 1.793 0.076
Buenos Aires 100 0.000 0.000 0.000
Buenos Aires 143 0.000 0.000 0.000
Buenos Aires 250 0.073 0.073 0.008

Rio de Janeiro 2.5 0.000 0.000 0.000
Rio de Janeiro 10 0.003 0.003 0.002
Rio de Janeiro 14.3 0.010 0.010 0.005
Rio de Janeiro 25 0.025 0.026 0.009
Rio de Janeiro 100 4.378 4.378 0.112
Rio de Janeiro 143 6.264 6.266 0.141
Rio de Janeiro 250 7.300 7.303 0.149

Salvador 2.5 0.000 0.000 0.000
Salvador 10 0.001 0.001 0.000
Salvador 14.3 0.013 0.013 0.003
Salvador 25 0.098 0.099 0.015
Salvador 100 0.412 0.412 0.032
Salvador 143 0.140 0.141 0.013
Salvador 250 0.002 0.002 0.001

Recife 2.5 0.000 0.000 0.000
Recife 10 0.000 0.000 0.000
Recife 14.3 0.000 0.000 0.000
Recife 25 0.000 0.000 0.000
Recife 100 0.000 0.000 0.000
Recife 143 0.000 0.000 0.000
Recife 250 0.000 0.000 0.000

Montevideo 2.5 0.105 0.105 0.014
Montevideo 10 1.011 1.011 0.053
Montevideo 14.3 1.830 1.828 0.070
Montevideo 25 3.969 3.965 0.113
Montevideo 100 8.507 8.498 0.162
Montevideo 143 14.666 14.659 0.202
Montevideo 250 23.193 23.178 0.248

Table B.6: Probabilities calculated for NIOZ 2019 from the quadratic distribution when consider-
ing only the first 2.5 years of the simulation.
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B. Probability Tables

van Sebille et al. (2015) Bootstrap Mean Bootstrap St Dev

Luanda 2.5 0.000 0.000 0.000
Luanda 10 0.000 0.000 0.000
Luanda 14.3 0.000 0.000 0.000
Luanda 25 0.000 0.000 0.000
Luanda 100 0.000 0.000 0.000
Luanda 143 0.001 0.001 0.000
Luanda 250 0.011 0.011 0.002

Benguela 2.5 0.000 0.000 0.000
Benguela 10 0.000 0.000 0.000
Benguela 14.3 0.000 0.000 0.000
Benguela 25 0.000 0.000 0.000
Benguela 100 0.011 0.011 0.001
Benguela 143 0.166 0.166 0.008
Beguela 250 1.962 1.963 0.044

Cape Town 2.5 0.029 0.029 0.009
Cape Town 10 0.136 0.135 0.018
Cape Town 14.3 0.268 0.267 0.021
Cape Town 25 1.203 1.203 0.039
Cape Town 100 16.236 16.238 0.185
Cape Town 143 21.990 21.995 0.202
Cape Town 250 28.024 28.033 0.217

Pointe Noire 2.5 0.000 0.000 0.000
Pointe Noire 10 0.000 0.000 0.000
Pointe Noire 14.3 0.000 0.000 0.000
Pointe Noire 25 0.000 0.000 0.000
Pointe Noire 100 0.000 0.000 0.000
Pointe Noire 143 0.001 0.001 0.000
Pointe Noire 250 0.051 0.051 0.004

Buenos Aires 2.5 0.639 0.640 0.036
Buenos Aires 10 2.248 2.249 0.083
Buenos Aires 14.3 1.867 1.867 0.068
Buenos Aires 25 0.663 0.663 0.030
Buenos Aires 100 1.120 1.118 0.033
Buenos Aires 143 1.342 1.341 0.034
Buenos Aires 250 1.042 1.042 0.052

Rio de Janeiro 2.5 0.000 0.000 0.000
Rio de Janeiro 10 0.001 0.001 0.000
Rio de Janeiro 14.3 0.008 0.008 0.002
Rio de Janeiro 25 0.098 0.098 0.009
Rio de Janeiro 100 7.080 7.080 0.115
Rio de Janeiro 143 12.477 12.477 0.150
Rio de Janeiro 250 30.086 30.082 0.219

Salvador 2.5 0.000 0.000 0.000
Salvador 10 0.013 0.013 0.002
Salvador 14.3 0.036 0.036 0.005
Salvador 25 0.137 0.137 0.014
Salvador 100 0.582 0.584 0.024
Salvador 143 1.132 1.134 0.030
Salvador 250 2.912 2.914 0.070

Recife 2.5 0.000 0.000 0.000
Recife 10 0.000 0.000 0.000
Recife 14.3 0.000 0.000 0.000
Recife 25 0.000 0.000 0.000
Recife 100 0.102 0.102 0.004
Recife 143 0.616 0.615 0.021
Recife 250 2.889 2.885 0.082

Montevideo 2.5 0.283 0.282 0.021
Montevideo 10 1.387 1.387 0.059
Montevideo 14.3 2.345 2.345 0.077
Montevideo 25 4.750 4.750 0.115
Montevideo 100 16.268 16.271 0.189
Montevideo 143 22.483 22.479 0.215
Montevideo 250 20.772 20.763 0.201

Table B.7: Probabilities calculated for van Sebille et al. (2015) from the exponential distribution
when considering the entire 5-year simulation.
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B. Probability Tables

van Sebille et al. (2015) -
2.5 yrs Bootstrap Mean Bootstrap St Dev

Luanda 2.5 0.000 0.000 0.000
Luanda 10 0.000 0.000 0.000
Luanda 14.3 0.000 0.000 0.000
Luanda 25 0.000 0.000 0.000
Luanda 100 0.000 0.000 0.000
Luanda 143 0.001 0.001 0.000
Luanda 250 0.011 0.011 0.002

Benguela 2.5 0.000 0.000 0.000
Benguela 10 0.000 0.000 0.000
Benguela 14.3 0.000 0.000 0.000
Benguela 25 0.000 0.000 0.000
Benguela 100 0.011 0.011 0.001
Benguela 143 0.166 0.166 0.008
Beguela 250 1.960 1.962 0.043

Cape Town 2.5 0.029 0.029 0.009
Cape Town 10 0.136 0.135 0.018
Cape Town 14.3 0.266 0.266 0.021
Cape Town 25 1.188 1.189 0.038
Cape Town 100 15.988 15.989 0.183
Cape Town 143 21.689 21.691 0.199
Cape Town 250 27.687 27.679 0.222

Pointe Noire 2.5 0.000 0.000 0.000
Pointe Noire 10 0.000 0.000 0.000
Pointe Noire 14.3 0.000 0.000 0.000
Pointe Noire 25 0.000 0.000 0.000
Pointe Noire 100 0.000 0.000 0.000
Pointe Noire 143 0.001 0.001 0.000
Pointe Noire 250 0.051 0.051 0.004

Buenos Aires 2.5 0.426 0.427 0.029
Buenos Aires 10 1.588 1.587 0.073
Buenos Aires 14.3 1.295 1.294 0.059
Buenos Aires 25 0.434 0.433 0.025
Buenos Aires 100 0.889 0.890 0.026
Buenos Aires 143 1.189 1.189 0.033
Buenos Aires 250 0.992 0.990 0.050

Rio de Janeiro 2.5 0.000 0.000 0.000
Rio de Janeiro 10 0.001 0.001 0.000
Rio de Janeiro 14.3 0.004 0.004 0.001
Rio de Janeiro 25 0.060 0.060 0.006
Rio de Janeiro 100 6.539 6.541 0.108
Rio de Janeiro 143 12.008 12.010 0.153
Rio de Janeiro 250 29.404 29.402 0.224

Salvador 2.5 0.000 0.000 0.000
Salvador 10 0.013 0.013 0.002
Salvador 14.3 0.036 0.035 0.005
Salvador 25 0.134 0.133 0.014
Salvador 100 0.580 0.580 0.025
Salvador 143 1.132 1.131 0.030
Salvador 250 2.908 2.909 0.072

Recife 2.5 0.000 0.000 0.000
Recife 10 0.000 0.000 0.000
Recife 14.3 0.000 0.000 0.000
Recife 25 0.000 0.000 0.000
Recife 100 0.102 0.102 0.004
Recife 143 0.616 0.617 0.021
Recife 250 2.888 2.893 0.082

Montevideo 2.5 0.279 0.279 0.020
Montevideo 10 1.327 1.327 0.057
Montevideo 14.3 2.207 2.206 0.075
Montevideo 25 4.354 4.350 0.111
Montevideo 100 14.540 14.543 0.180
Montevideo 143 20.435 20.443 0.207
Montevideo 250 19.472 19.485 0.205

Table B.8: Probabilities calculated for van Sebille et al. (2015) from the exponential distribution
when considering only the first 2.5 years of the simulation.
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B. Probability Tables

van Sebille et al. (2015) Bootstrap Mean Bootstrap St Dev

Luanda 2.5 0.000 0.000 0.000
Luanda 10 0.000 0.000 0.000
Luanda 14.3 0.000 0.000 0.000
Luanda 25 0.000 0.000 0.000
Luanda 100 0.000 0.000 0.000
Luanda 143 0.000 0.000 0.000
Luanda 250 0.000 0.000 0.000

Benguela 2.5 0.000 0.000 0.000
Benguela 10 0.000 0.000 0.000
Benguela 14.3 0.000 0.000 0.000
Benguela 25 0.000 0.000 0.000
Benguela 100 0.000 0.000 0.000
Benguela 143 0.000 0.000 0.000
Beguela 250 0.027 0.027 0.008

Cape Town 2.5 0.012 0.012 0.005
Cape Town 10 0.095 0.095 0.018
Cape Town 14.3 0.130 0.129 0.020
Cape Town 25 0.374 0.372 0.027
Cape Town 100 9.673 9.667 0.158
Cape Town 143 15.376 15.359 0.204
Cape Town 250 24.233 24.214 0.238

Pointe Noire 2.5 0.000 0.000 0.000
Pointe Noire 10 0.000 0.000 0.000
Pointe Noire 14.3 0.000 0.000 0.000
Pointe Noire 25 0.000 0.000 0.000
Pointe Noire 100 0.000 0.000 0.000
Pointe Noire 143 0.000 0.000 0.000
Pointe Noire 250 0.000 0.000 0.000

Buenos Aires 2.5 0.447 0.449 0.034
Buenos Aires 10 2.328 2.333 0.089
Buenos Aires 14.3 2.303 2.307 0.088
Buenos Aires 25 1.499 1.501 0.064
Buenos Aires 100 0.000 0.000 0.000
Buenos Aires 143 0.000 0.000 0.000
Buenos Aires 250 0.210 0.210 0.015

Rio de Janeiro 2.5 0.000 0.000 0.000
Rio de Janeiro 10 0.000 0.000 0.000
Rio de Janeiro 14.3 0.000 0.000 0.000
Rio de Janeiro 25 0.010 0.010 0.003
Rio de Janeiro 100 2.462 2.465 0.078
Rio de Janeiro 143 5.435 5.441 0.122
Rio de Janeiro 250 10.218 10.227 0.162

Salvador 2.5 0.000 0.000 0.000
Salvador 10 0.004 0.004 0.001
Salvador 14.3 0.018 0.019 0.004
Salvador 25 0.085 0.085 0.012
Salvador 100 0.456 0.456 0.035
Salvador 143 0.415 0.415 0.030
Salvador 250 0.752 0.751 0.031

Recife 2.5 0.000 0.000 0.000
Recife 10 0.000 0.000 0.000
Recife 14.3 0.000 0.000 0.000
Recife 25 0.000 0.000 0.000
Recife 100 0.002 0.002 0.001
Recife 143 0.008 0.008 0.003
Recife 250 0.713 0.712 0.034

Montevideo 2.5 0.219 0.219 0.021
Montevideo 10 0.939 0.943 0.051
Montevideo 14.3 1.386 1.392 0.064
Montevideo 25 2.983 2.990 0.091
Montevideo 100 9.539 9.541 0.162
Montevideo 143 14.330 14.330 0.192
Montevideo 250 24.550 24.556 0.241

Table B.9: Probabilities calculated for van Sebille et al. (2015) from the quadratic distribution
when considering the entire 5-year simulation.
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B. Probability Tables

van Sebille et al. (2015) -
2.5 yrs Bootstrap Mean Bootstrap St Dev

Luanda 2.5 0.000 0.000 0.000
Luanda 10 0.000 0.000 0.000
Luanda 14.3 0.000 0.000 0.000
Luanda 25 0.000 0.000 0.000
Luanda 100 0.000 0.000 0.000
Luanda 143 0.000 0.000 0.000
Luanda 250 0.000 0.000 0.000

Benguela 2.5 0.000 0.000 0.000
Benguela 10 0.000 0.000 0.000
Benguela 14.3 0.000 0.000 0.000
Benguela 25 0.000 0.000 0.000
Benguela 100 0.000 0.000 0.000
Benguela 143 0.000 0.000 0.000
Beguela 250 0.027 0.027 0.008

Cape Town 2.5 0.012 0.012 0.005
Cape Town 10 0.095 0.095 0.017
Cape Town 14.3 0.130 0.130 0.020
Cape Town 25 0.372 0.372 0.027
Cape Town 100 9.478 9.477 0.165
Cape Town 143 15.103 15.101 0.209
Cape Town 250 23.880 23.883 0.250

Pointe Noire 2.5 0.000 0.000 0.000
Pointe Noire 10 0.000 0.000 0.000
Pointe Noire 14.3 0.000 0.000 0.000
Pointe Noire 25 0.000 0.000 0.000
Pointe Noire 100 0.000 0.000 0.000
Pointe Noire 143 0.000 0.000 0.000
Pointe Noire 250 0.000 0.000 0.000

Buenos Aires 2.5 0.287 0.287 0.027
Buenos Aires 10 1.649 1.649 0.077
Buenos Aires 14.3 1.673 1.672 0.078
Buenos Aires 25 1.048 1.047 0.054
Buenos Aires 100 0.000 0.000 0.000
Buenos Aires 143 0.000 0.000 0.000
Buenos Aires 250 0.196 0.196 0.015

Rio de Janeiro 2.5 0.000 0.000 0.000
Rio de Janeiro 10 0.000 0.000 0.000
Rio de Janeiro 14.3 0.000 0.000 0.000
Rio de Janeiro 25 0.006 0.006 0.003
Rio de Janeiro 100 2.037 2.035 0.070
Rio de Janeiro 143 4.913 4.909 0.110
Rio de Janeiro 250 9.842 9.842 0.160

Salvador 2.5 0.000 0.000 0.000
Salvador 10 0.004 0.004 0.001
Salvador 14.3 0.018 0.018 0.004
Salvador 25 0.083 0.083 0.012
Salvador 100 0.452 0.451 0.035
Salvador 143 0.412 0.411 0.030
Salvador 250 0.752 0.753 0.033

Recife 2.5 0.000 0.000 0.000
Recife 10 0.000 0.000 0.000
Recife 14.3 0.000 0.000 0.000
Recife 25 0.000 0.000 0.000
Recife 100 0.002 0.002 0.001
Recife 143 0.008 0.008 0.003
Recife 250 0.713 0.713 0.033

Montevideo 2.5 0.217 0.218 0.021
Montevideo 10 0.904 0.903 0.050
Montevideo 14.3 1.322 1.322 0.063
Montevideo 25 2.805 2.806 0.091
Montevideo 100 8.565 8.568 0.167
Montevideo 143 12.702 12.702 0.189
Montevideo 250 22.306 22.306 0.233

Table B.10: Probabilities calculated for van Sebille et al. (2015) from the quadratic distribution
when considering only the first 2.5 years of the simulation.
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