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Abstract

This study is about optimizing the municipal solid waste collection: collection scheduling and
garbage fruck routing. We argue that the use of sensors for monitoring the amount of waste
in confainers can improve the prediction of accumulation levels and make scheduling more
efficient: fewer overflows and fewer unnecessary visits. The benefits that such optimization
can bring about are substantial: a reduction in air pollution and traffic and a decrease in
operational costs. Af the same time, these changes imply that each container will not have a
fixed collection frequency anymore but will be collected as late as possible without letting it
overflow. Dynamic scheduling will inevitably require dynamic routing: the routes will be
defined based on the set of containers chosen for the given date. We will discuss the benefits
and the potential drawbacks that these floating schedule and routing may bring about. We
approach the problem from a computational and algorithmic perspective and use methods
from the fields of combinatorial optimization and operations research to solve the problem.
We review some of the exact and heuristic methods and draw our conclusion based on the
literature. Finally, we develop and present a minimalistic software kit that consists of an
application for receiving and storing sensor data and a QGIS plugin for scheduling and
roufing.
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1 Introduction

This chapter starts by infroducing the research problem’s context (1.1), proceeds by defining
the project scope and some important constraints (1.2) and mentioning how this work is
related to the company called GIS Specialisten and the municipality Aimere was chosen as a
study area for this project (1.3). Finally, we list the research objectives (1.4) and questions (1.5).

1.1 Problem context

Municipal solid waste management is an integral element of city management and may
take up a significant part of the municipal budget. Some studies indicate that the expenses
may reach 50% of the municipal budget in the developing countries (Mamun et al., 2015). In
the ‘developed’ countries, this share is presumably lower, but is still considerable. The largest
part of these expenses is incurred in waste transportation: approximately 70% on average
(Faccio, Persona, & Zanin, 2011; Silva, 2016). Reducing the garbage truck mileage can thus
help save the municipal budget and also diminish the environmental impact.

Municipal garbage containers are normally emptied by specialized waste collection vehicles.
Traditionally, this is done on a fixed schedule that is based on long-term observations or some
statistical estimations (Nuortio, Kytdjoki, Niska, & Braysy, 2006). For example, using the
population count and the average waste disposal rate per person. Most of the time,
however, this only gives a rough estimate. Another practice is tasking the collectors with
registering the fill level for each container they empty (Lopes, Ramos, & Barbosa-Pévoa,
2015). This manual way of data collection may help improve the accuracy of estimations, but
it increases the time the crew spends at each container and the results depend on the
collector’s ability to visually gauge the amount of waste in if.

Replacing human-made records with sensor data may increase the prediction accuracy of
the waste accumulation levels, thus improving the scheduling so that both too frequent and
too rare visits could be prevented. Too frequent visit result in unnecessary expenses incurred
by operating a vehicle (fuel, wages), and some authors also mention the increase in air
pollution as one of the negative effects (Faccio et al., 2011). Too rare visits impact the sanitary
conditions: overfull bins may results in waste lying around and contaminating the environment
(Likotiko, Nyambo, & Mwangoka, 2017; Nuortio et al., 2006). Some research shows that up to
60% of the containers are emptied prematurely, with the waste collection vehicle travelling
extra distance to collect minor amounts of waste (Ramos, de Morais, & Barbosa-Pévoa,
2018b). The use of real-time data about the amount of waste in containers will allow haulers
to cut down the costs, reduce pollution caused by vehicle operation and avoid delays in
emptying the containers. This logic goes in line with the Smart City approach in which the
urban environment is optimized using information technology and the data is collected
automatically by specialized sensors (Likotiko et al., 2017).

There are various data communication technologies; among them, Long-Range (LoRa) has
gained popularity for its low energy consumption and long range (up to T km in an urban
environment) that allows to save on building potentially costly infrastructure such as cell
towers. Devices that operate on LoRa have a long lifespan: at least one year for the sensor
we use in this study, as promised by the manufacturer. This comes at the expense of low data
rates, that is, a limited payload that a sensor can send (Centenaro, Vangelista, Zanella, &
Zorzi, 2016). Since several bytes, at most, are enough to report on the amount of waste in a
waste container, this latter limitation does not, generally, have a strong impact on the
problem in this project.



It is easy to imagine a situation in which the haulers come to work in the morning, check
which containers are going to overflow on that day and go and empty them all. In reality,
however, the availability of such real-time data does not yet allow to discard scheduling. The
amount of work must be balanced throughout the week to allow planning the working hours.
Planning is also important for choosing the size of the vehicle fleet and the number of
employees: drivers and collectors. Thus, in this study we attempt to develop a solutfion that
does not simply decide which containers to empty foday, based on their current fill level, but
rather tries to look forward and schedule each container for the date after which it is
expected to overflow. Once the planning is done, a set of one or more routes, each
corresponding to a single vehicle, should be defined through the scheduled containers such
that the overall costs of commute are minimized. These costs can be the travel fime, the
route distance, or a combination of the two. The objective of finding an optimal set of routes
through a set of locations for a fleet of vehicles implies that the problem involves spatial data
and spatial analysis. More specifically, it involves network analysis for routing through the
street network and can thus be put intfo a broad category of Vehicle Routing Problems (VRP).

1.2 Problem scope and limitations

Waste collection is one part of waste management. It involves the transportation of waste
from public waste disposal facilities (waste containers) to landfills or waste processing stations.
Further waste treatment and recycling are beyond the scope of this study. We use the term
‘waste’ to refer to municipal solid waste (MSW), which can also be called garbage, trash or
rubbish. The potential difference between the various MSW categories from the recycling
perspective is not investigated. Other waste types such as sewage sludge or agricultural
waste are also beyond the scope of this study. There exist different types of waste containers,
with no strict regulations as to what to call each type. The terminology also varies between
the countries and regions. In this study, we use ‘(waste) container’ as an umbrella term for alll
of these. The waste containers with underground storage space are sometimes simply
referred to as ‘'underground (waste) containers’.

This study aims to design a solution that could be equally used by the municipalities and the
private sector, although because we test our implementation for the municipality of Almere,
the results may better address the municipal services. Due to the time and cost restrictions,
this implementation is be minimalistic and subject to hardware and software availability.
There may be better solutions, and the study does not set a goal of exploring and comparing
all possible options. Optimally, the system should be tested by installing a number of sensors in
actual waste containers. This, however, is beyond our capabilities, and we use mock data
instead. Finally, although this study focuses on using sensors for data collection, it can, with
minor adjustments, be used with data coming from any other source. In fact, as stated
above, we ourselves test the system without the actual sensor data.

1.3 Organizational context and case study

This study follows in the footsteps of the work done by Grigory Nedaev at GIS Specialisten
within the context of one of the company’s pilot projects. The project is experimental and
investigates the opportunity of using ultrasonic sensors to monitor the fill levels of waste
containers and using those records to improve the collection scheduling and routing. The
municipality of Aimere expressed their interest in this idea at the outset of the project (winter
2018/2019), and we decided to use this opportunity and carry out a case study on Almere.
We conducted a preliminary interview on the 29th of January, in which the representatives of
Stadsreiniging Almere expressed their interest in sensor-aided waste collection and shared
some thoughts about a previous experience that they had with another contractor.
According to them, they were not entirely saftisfied with the result of that project and were
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looking for a new conftractor, GIS Specialisten being on the candidates. Later, however,
Almere put this collaboration on hold while this study was already in progress. We were
unable to reach them in March and April having received no response fo the emails we sent.
Having tried to get in touch through GIS Specialisten, we received a response that Almere
needed more time to decide whether they would like to further collaborate with the
company. The time it would take them to decide was not announced. At the fime of finishing
this study, this collaboration is still on hold.

At that point, we decided to keep Almere as the study area but essentially abandon the
case study because we had no access to the municipal data or information. For example,
we would not be able to compare our results, such as total truck mileage, with theirs. We had
to resort to the existing open data sources, such as Basisregistratie Grootschalige Topografie
(BGT) for container locations, for example, but we believe that those may be less accurate in
some respects and provide fewer details. As a consequence, we would be unable to make
the case study realistic. Instead, we decided to focus more on the methods and algorithms
for solving the problem and on the development of an example software application that
would be able to receive data from sensor and do scheduling and routing.

We keep this study related to the company’s project but independent in the sense that it is
not driven by the company’s objectives. We use some of the company’s hardware: namely,
a sensor and a gateway. GIS Specialisten provided us with one ulfrasonic LoRa sensor, one
The Things Network (TTN) gateway and a corporate TTN account. The abovementioned is
agreed and guaranteed by the authors and the external advisor at the company, Marlex de
Jong.

1.4 Research Objectives

The first objective of this study is fo design an algorithmic solution for scheduling the emptying
of waste containers based on automatically transmitted sensor data about their fill level, and
on finding an optimal set of routes for a fleet of waste collection vehicles. The optimality of a
solution is defined by the time a fleet of garbage trucks spends underway to meet its waste
collection obligations (let no containers overflow). To meet this objective, we formulate a
mathematical optimization problem and review the existing exact methods and heuristics for
solving it.

The second objective is to build a software prototype that would implement this algorithm:
receive and process sensor datfa, perform scheduling and routing, and visualize the results.

1.5 Research Questions

To help meet the first objective, the following research questions are formulated:
e  Whatis the mathematical programming formulation of the problem?
¢ How can the operational costs be calculated?
e Which exact methods can be used o solve it and is it possible to use these methods in
the given use case considering the size of the problem (number of containers)?
e Which heuristics can be used instead? To what extent do applied heuristics affect
optimality of found solutions?e

The second objective brings up the following questions:
¢ What technology can be used to implement and solve an optimization problem of
the kind defined in the project?
e If there are several components required, how can they be integrated to work with

real-time data input?
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2

Related research

Despite the emphasis on using sensors, a certain part of the underlying solution does not
depend on how the data is obtained. What matters is how this input is processed. This makes
the studies that do not use sensors but sfill solve the vehicle routing problem in application to
waste collection no less valuable for our project. Section 2.2 presents both variations, starting
from the older work and proceeding chronologically. Section 2.3. finalizes this chapter with a
review of the studies that focus on the hardware rather than on the route optimization. First,
however, we briefly review the class of problems that this project aims to solve (2.1).

2.1 Vehicle routing problems

Garbage fruck roufing in municipal solid waste collection is commonly solved as a Vehicle
Routing Problem (VRP) (Archetti & Speranza, 2014; Faccio et al., 2011; Lopes et al., 2015;
Nuortio et al., 2006; Ramos et al., 2018b; Silva, 2016). A VRP asks “What is the optimal set of
routes for a fleet of vehicles to traverse in order to visit a given set of locationse". Itis a
generalization of the well-known Travelling Salesman Problem (TSP) to the case of multiple
vehicles (Golden & Waisil, 2008). Splitting the set of locations in several parts and solving the
TSP for each set independently is not, generally, the same as solving a VRP: optimality of each
TSP solution cannot guarantee the optimality of their combination. This makes solving a VRP a
more complex task than solving a TSP, and since the TSP is NP-hard, the VRP, as its
generalization, is at least as hard (Archetti, Speranza, & Vigo, 2014).

There are many variants of the Vehicle Routing Problem, and some authors use more specific
terms such as “Capacitated Vehicle Routing Problem” (CVRP) when the constraints on the
vehicle capacity are infroduced, or “Vehicle Routing Problem with Time Windows” when the
vehicles can only visit the locations within certain time periods. For a comprehensive survey of
Vehicle Routing problems, we refer the reader to Golden, Raghavan & Wasil (2008). The
diversity of the VRP variants suggests that VRP should be regarded as a class of problems that
share the goal of finding an optimal combination of routes through a set of locations. The
opfimality of such a set of routes is most commonly measured in terms of their overall length,
travel duration or a combination of the two.

It is important, however, to draw a line between the cases where the set of visit locations is a
given, and the ones where it must first be subsetted from a larger set. The latter class of
problems is commonly referred to as “Vehicle Routing Problems with Profits”, or VRPP. For a
comprehensive survey on this specific variety, see Archetti, Speranza & Vigo (2014). Other
possible terms include "Stochastic Vehicle Routing Problems™ (Nuortio et al., 2006) and the
“Team Orienteering Problem” (C. Archetti, Feillet, Hertz, & Speranza, 2009; Archetti, Hertz, &
Speranza, 2007). In these problems, multiple possible partitions of the location set must be
compared to identify the most “profitable” one. A number of studies on smart waste
collection report better results using the “with profits” approach (Nuortio et al., 2006; Ramos et
al., 2018b; Silva, 2016). The solutions they present do not simply choose all waste containers
that exceed a certain fill level threshold, but are capable, for example, of observing that it is
cheaper to collect waste from a half-empty container today if it is located close to the full
containers that are being visited, rather than drive to visit that single container when it fills up.

The notions of profit and cost are abstract and should not always be taken literally. The VRPs
are commonly solved using network analysis and graph theory. Profits are associated with visit
locations, but depending on the solution, can be assigned o the road segments that those
locations belong to. Profits may denote the actual monetary gains from visiting a location,
e.g. in case of food delivery, but are not restricted to such semantics. In the case of waste
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collection, profits generally refer to the amounts of waste collected from waste containers,
although given waste selling prices, the amounts may be converted into a monetary value
(Ramos, de Morais, & Barbosa-Pévoa, 2018a). Costs are generally incurred by traversing the
edges (also called arcs), i.e. road segments, and are assigned to those. However, nodes (also
called vertices) can also be assigned costs: in waste collection, that could be the time spent
emptying the given container. Costs assigned to arcs often represent the length of the road
segment or the time required to traverse it. Given a cost function, these values can be
converted to the monetary values.

Vehicle Routing Problems are NP-hard which means that the time it takes to solve it to
optimality (that is, using an exact method) rises exponentially with the number of destinations,
and these time cost may not be feasible for the given use case. Therefore, heuristics and
metaheuristics are commonly used instead. The past decades saw a growing amount of
research on metaheuristics, - algorithms that control the behavior of one or more heuristics to
solve the given problem within a reasonable time. They are not guaranteed to return an
optimal solution, but given enough time, they are expected to find a solution sufficiently close
to the global optimum. Golden, Raghavan & Wasil (2008) and Archetti, Hertz & Speranza
(2007) present an overview of metaheuristics for VRPs.

2.2 VRP in municipal waste collection

Nuortio et al. (2006) present one of the most comprehensive works on the topic and describe
a case study about two municipalities in Eastern Finland. They do not use sensors, but instead
approximate the accumulation rates using a combination of historical records and statistical
data. This is useful in the situation where the system must be designed and tested before the
deployment of sensors is possible. The authors use the fact that a truck is weighed each time
it arrives at the waste disposal to estimate the amount of waste collected from each
container. The mean average does not necessarily represent a realistic value, however, so
Nuortio et al. complement this data with statistical indicators, such as population density and
GDP per capita for the given neighborhood. In addition, they use regression analysis to study
temporal frends: seasonal, monthly and other variations in waste disposal rate. Besides, they
calculate the travel time between the containers using historical data which means that they
collect their own traffic data.

The conceptual design is highly detailed, kept as close to reality as possible, imposing a
number of restrictions. The truck fleet consists of identical frucks with a capacity of 26 tons
each. The different types of waste are collected separately, and each vehicle can only
collect one type during a single route. There are several different types of containers, of
which underground containers must be collected separately. Collection can only be done
on workdays and within the following time windows: between 6 AM and 10 PM. The disposal
site, where the frucks deliver the collected waste to, is open from 6 AM on Monday to 7 PM
on Friday. The 8-hour working day includes a 30-minute lunch break and two 15-minute
coffee breaks, and can be exceeded, in which case an overtime pay is incurred. The authors
also recognize the need to allocate containers to scheduled dates prior fo solving the VRP
itself, and hence call the problem a Periodic Vehicle Routing Problem, or an allocation-
routing VRP. They present a software implementation that calculates optimal routes based on
any of the three objectives: distance, duration and a combination of the two.

The authors run tests to compare the results with the then-current situation. Importantly,
Nuortio et al. do not attempt to optimize the number of required routes but rather minimize
their combined length. In doing so, they argue that the number of routes corresponds to the
number of vehicles available, and in reality, the haulers would not like to change the fleet size
or let some of the trucks stay unused; instead, they would like fo know how to spread the
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workload between them more evenly and potentially reduce the average tfravel time of
each truck. They first test whether the order of locations in the existing routes can be
optimized by solving the Travelling Salesman Problem (TSP) on each single route. At this stage
they already report an improvement of on average 12% per route in terms of distance. Next,
they run the complete algorithm that includes schedule optimization. This time they report a
46% improvement from the current situation. The authors mention, however, that the
imperfections in the road dataset and the approximations made in estimating the baseline
data must be accounted for.

Faccio, Persona & Zanin (2011) present a use case of municipal solid waste collection in an
Italian city with 100,000 inhabitants. As the paper’s title suggests, they develop their model to
be used with sensor data and build it in such way that it can be optimized for several different
parameters: time spent, distance fravelled, and the number of vehicles used. Having no
opportunity to deploy actual sensors, they test their hypotheses on historical data provided
by the municipality. They do not, however, provide details about the contents and accuracy
of this data. The authors present a detailed description of the hardware setup: containers are
equipped with volumetric sensors, GPRS transceivers and electronic tags that uniquely
identify each container (RFID tags). The vehicles are equipped with GPS modules to track
their location in real time and electronic devices that read the RFID tags installed in the
containers. The containers hourly report on their fill level. Besides, every time a vehicle empties
a container, it reads and reports its unique ID to the system. Following either of these two
events, the collection routes are regenerated, i.e. the routes are not only generated before
the dispatch but are also recalculated at collection time when any of the containers report a
change in fill level. This continuous re-routing distinguishes this study from many others
although it is not clear how convenient it is for the drivers. Furthermore, it also means that the
model does not involve any scheduling, but rather operates “on-the-fly” and is limited to the
present day.

The authors present several variants of the solution, one for every objective. All of them,
however, are deterministic in the sense that the selection of the containers is based on a fixed
threshold. None of them allows scheduling. Besides, it is not entirely clear how the authors find
an optimal combination of routes. Despite discussing several heuristics, they seem to solve the
problem by constructing the routes sequentially using the Nearest Neighbour method, i.e. a
greedy algorithm. If so, this suggests that the solution is not likely to be optimal. Strong points
of this project are a feasibility study and a cost-benefit analysis. The authors present the costs
of the vehicles and devices, fuel and maintenance expenditures, wages, etc., and do so for
each scenario. According fo the figures presented, it will take between three and five years
until the costs of sensor deployment are earned back.

Likotiko, Nyambo & Mwangoka (2017) attempt to solve this problem via agent-based
modelling using NetLogo. Containers are equipped with sensors, but the authors do not say of
what type those are. At a certain interval, sensors report on the fill levels that get stored in a
database. At the start of each day, the application selects all containers with fill level above
a certain threshold and solves a TSP on them. The authors claim to use the "Dijkstra’s
algorithm as implemented in NetLogo”, and although that refers to a well-known shortest
path finding algorithm, it is not exactly the same as solving the TSP. Alfogether this study
seems to present a relatively simple deterministic model with no scheduling.

Ramos and her colleagues at Lisbon University have published a series of papers on waste
collection optimization (Lopes et al., 2015; Ramos et al., 2018b, 2018a; Ramos, Gomes, &
Barbosa-Pévoa, 2014). In their research, they often refer to the papers that we have
described above. Two of their works (Ramos et al., 2018b, 2018a) describe a case study
about a local waste collection company: there is a homogeneous vehicle fleet and a

homogeneous container set. The vehicle capacity, fleet size and the maximum tour length
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are the key constraints in the model. As Nuortio et al., Ramos and co-authors also use the
company's actual data both as an input for the model and as a baseline to evaluate the
results. The haulers provided them with the actual fill level records for each container: upon
emptying a container, the collectors record the observed fill levels on an ordinal scale
"<25%", "25-50%", *50-75%", "75-100%".

The authors set an objective of maximizing the amount of waste collected per unit distance
fravelled. They solve it as a node routing problem but do not use the road network. Instead,
they use Euclidian distance between the containers; they multiply this distance by a constant
(1.53), as they believe it represents the average ratio between the road and the straight-line
distances in their study area. They do not, however, describe how they arrived at this figure.
From our perspective, such modelling might oversimplify the solution and impact the results,
so in our study we use an actual road network instead.

Ramos et al. formulate three different approaches to sensor-enabled waste collection. In the
first approach, only the containers whose fill level exceed a certain value are emptied. This
selection procedure is run every morning before dispatching the vehicles, and only covers
the current day. This significantly reduces the implementation complexity but makes it
somewhat short-sighted since the accumulation rates are likely to vary among the containers
and the chosen threshold may not be suitable for all of them. Besides, there is no planning for
the rest of the week or beyond.

The second approach improves on the first one by calculating a projected fill level for each
container using its accumulation rate. The model allows to choose the lowest admissible
service level, so a certain number of containers are allowed to overflow up to a certain point
if such scenario yields better results. The solution may be optimal for the given day as it
guarantees the required service level, but the nature of municipal solid waste collection may
still require a longer-term schedule that fixes the collection dates for the coming week, month
or a similar calendar period (at least long enough to define the working hours and the
required number of employees and vehicles).

In the third approach, the model also takes the lowest allowed service level, and finds the
number of containers that are allowed to overflow. Now, for each container, the closest
overflow date is calculated, and if on a given day the number of such containers exceeds
the allowed value, the model schedules the container’'s emptying for that date. Once all the
containers have been scheduled, the algorithm solves the VRP for each of the days, in this
way planning the contfainers and the route ahead for the given time horizon (Ramos et al.
use 30 days as such).

While the first two approaches yielded worse results than the company's baseline indicators,
the third approach showed an improvement in the distance fravelled per waste collected
rafio. Lowering the service level to 99% resulted in even larger savings, a compromise that
may or may not be acceptable in a real situation. Overall, the authors argue that their results
(specifically, the third approach) prove the benefits of using fill level sensors, although we
suggest this method should first be enhanced by using a real road network as the graph
base. Finally, the authors do not provide the formula that they used to arrive at a constant
factor of 1.53.

In one of the most recent studies on the topic, Ferrer & Alba (2018) present a use case of
Algeciras (Spain). They develop a model similar fo ours and set the objective of minimizing
the distance fravelled by the fleet. They also calculate waste accumulation rates for each
container based on the previous measurements by the sensor. One merit of their model is
that it can consider a heterogeneous fleet and a heterogeneous set of containers.
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The software setup is divided in four modules: Data Management, Intelligent Decision, Routes
Generation and Visualization. The data management module is a database in which alll
containers with their locations and attributes are stored, as well as their historical fill level
records and a cost matrix specifying the commute cost between each pair of containers, in
distance and in time. They use Google Maps API to generate the cost matrix, one with
distances (constant over fime) and one with travel fimes (computed anew every time, using
Google’s traffic data). Finally, they use the same database to store the solutions. The
intelligent decision module is a set of algorithms from the field of machine learning, as authors
describe them, which use historical data to make future predictions. They do not specify
which exact method they use, however, unless they simply use an average of historical
accumulation rates. The routing module is built around what they call an “evolutionary
algorithm (1+1)". The solution can generate routes for different dates, thus facilitating
scheduling. Finally, the visualization module is a web page that provides a simple interface for
requesting routes and displaying them on a map. At the time of writing this section, it is
available online at http://mallba3.lcc.ua.es/binct/.

The authors run two experiments. In the first one, they predict future fill levels for a number of
containers and later compare their prediction with factual observations. They use 217
communal paper waste containers in the city and an eleven-month archive of historical fill
levels. In this case, the historical data is the records made by waste collectors on the spot
when emptying the container (the authors do not specify how the collectors do it). The
authors derive the accumulation rate function using three methods: linear regression,
Gaussian process and support vector machine for regression (SMOreg). They repeat the test
30 times, and the results show that the mean absolute error is the lowest when using Gaussian
process (3.83% compared to 7.41% for linear regression and 9.52% for SMOreg).

In the second experiment, they predict the fill levels for a future date, generate routes and
then when the date arrives, compare their results with the hauler’s route in terms of distance
and duration. In their calculation, they tune the algorithm to mark all containers that exceed
the 80% fill level as mandatory for emptying and the ones between 50% and 80% as optional.
The algorithm picks 77 containers, which is more than the haulers schedule for that day (64)
and divides them between two vehicles. The results show the overall distance and time for
each of the routes and the average of both values per container visited. Based on these
figures, the authors conclude that their solution reduces the overall mileage by 20% (even
though more containers are visited), and the mileage per unit waste collected by 33%. These
results are obtained using 10,000 iterations of the intelligent selection algorithm. The authors
do not comment, however, on the optimality of this solufion in the long run, i.e. in
combination with other dates. The reported results may save costs on the given day, but
whether they increase the results over a longer fime period, remains unclear. Overall,
however, this project presents an illustrative study with a high level of detail about the
algorithm used (Ferrer & Alba, 2018).

2.3 Research on using sensors in waste collection

Our study focuses on the data processing rather than on the hardware used to acquire the
data. We still do, however, discuss the hardware part, hence we present here a brief review
of the literature devoted more specifically to that side of the problem.

Mamun, Hannan, Hussain & Basri (2015) develop and test a prototype in which they use a
combination of an ultrasonic sensor, an accelerometer, a magnetic proximity sensor and a
microprocessor to monitor the state of a container. Their results show that in their case sensors
reduce the waste collection expenses by 10-20% because of a 26% lower fleet mileage. They
do not, however, describe the routing algorithm they use and focus mostly on the hardware
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details: the sensors they use, e.g. each module’s energy consumption, price, etc., which
allows to accurately estimate the costs of deploying sensors. They install sensors in a few
containers and run a series of performance tests. Among the results are the 5 - 10% error rate
for the fill level measurements. To increase the battery life, they set the fill level sensor in sleep
mode by default. When the lid where the accelerometer is installed is opened or closed, or
the container is fipped over during emptying, the combination of the acceleration dynamics
and the status of the lid (open/closed) reported by the proximity sensor define the status of
the container (full / not full). Additionally, they use install weight sensors under the container.
Finally, the authors present some valuable information on the costs of solid waste collection in
developing countries. According to their information, waste management takes up to 50% of
municipal budget, and about 85% of these costs are incurred in waste collection and
transportation.

Rovetta et al. (2009) describe a setup ftested in Pudong, China: 240-liter wheeled bins were
equipped with two sets of devices: one on the inside of the lid and the other one on the
bottom. The lid set included an optical camera, four LED lights, an ultrasonic sensor, an
electronic thermometer and a humidity sensor. The LED lights illuminate the inside of the
container when the camera takes snapshots. The authors used a combination of image-
processing with the ultrasonic ranging to determine the fill level. Unfortunately, the authors do
not elaborate on the method they use. Although other papers also mention how cameras
can help validate and improve the data obtained by ultrasonic ranging (see Mamun, 2015),
the combination of the two may be an expensive solution. Now, the bottom set was
comprised of a pressure sensor to estimate the content’s weight and an electronic
thermometer. Both sets of devices were connected to a processing unit and a GPRS modem
for data transmission. An interesting fact is that the authors use the weight and fill level
measurements to calculate the density of the bin's contents with the aim of defining the type
of waste inside the bin. We have not come across this idea in the other studies we have
reviewed, and although the goal itself is generally understood, the method suggests that the
authors arrive at the average density, and if the contents are heterogeneous, this might
provide little help in defining the constituting parts. Finally, the authors use an optimization
engine to schedule and define routes via VRP, but do not detail the implementation. The
present the value for the computed routes, such as distance and duration, but do not
compare them with the actual data, apparently due to unavailability, so they rather illustrate
that the system is generally capable of defining routes and scheduling pick-up dates
(Rovetta et al., 2009).

Hannan, Arebey, Begum & Basri (2011) describe a system very similar to the one developed
by Mamun et al. (2015) but use optical cameras to take images of the container’s inside
before it is emptied by the vehicle. They use an image of an empty container as a default
and compare it with pre-emptying images by subtracting the pixel values of the two images
(converted to their greyscale versions). In their case, the container’s walls are generally
represented by the darker shades while the waste shows up as lighter shades. By using some
decision algorithm, the details of which they do not provide, a binary image is derived in
which all pixels have values either 0 (no waste) or 1 (waste). The ratio of these two categories
allows the authors to estimate the amount of waste in the container. Additionally, the authors
use the pixel intensity in the grayscale images to estimate the amount of waste in the vertical
direction. Hannan et al. mention that this method was developed empirically by running tests
with different amounts of waste in the container and comparing the pixel value histograms of
the obtained images (Hannan, Arebey, Begum, & Basri, 2011).

There have been many more studies on the use of sensor in municipal solid waste collection,
but it is beyond our capabilities to present them all here. In general, it appears that ultrasonic
rangers are used more often than cameras since image analysis techniques are generally

more complex than deriving the fill level from the measurements obtained by ultrasonic
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sensors. Furthermore, ultrasonic rangers send their records in a few bytes whereas each
image may take up several megabytes, and it means more storage is required and

processing may take longer time. Ultrasonic sensors do, however, one important vulnerability:
the waste inside the container must be spread evenly.



3 Methodology

We use the municipality Almere as a study area. Our choice fell on Aimere because they
collaborated with GIS Specialisten in the pilot project described in section 1.3. Almere is a
mid-to-large-sized municipality with just over 200,000 inhabitants in which communal
containers with underground storage space are used for waste collection at apartment
blocks. An interview with the representatives of Stadsreiniging Almere (see appendix A)
showed that they were supportive of the idea of using sensors to optimize the way they
perform waste collection and transportation. Almere already had a similar project before
(2017 — 2018, carried out by VConsyst). The experience was not entirely positive, and
Stadsreiniging was looking for another contractor (D. Puzic, G. Kalkhoven, G. Chandler,
personal communication, 29t of January 2019).

3.1 Sensors
Ultrasonic rangers are a type of sensors commonly used for waste level monitoring. The one at

our disposal is a “Smart Waste Bin Detector DF702 LoORGWAN" (fig.1) produced by CNDingtek
(Beijing, China).

Figure 1. The sensor used in this study.

It is housed in a protective case and mounted on the inside of the container’s lid. From there
it sends a downward signal at equal fime intervals. The signal bounces back off either the
garbage or the container bottom and comes back to the sensor. The sensor built-on chop
converts the signal’s travel time into the distance between the current waste level and the
top of the container (fig.2). This, and another binary value that says whether the container is
full (threshold set to 90%), are then sent to whatever the sensor is connected to, in our case
The Things Network.



Figure 2. The work principle of the sensor.

The sensor is also supplied with a thermometer that registers whether the container has
caught fire (it sends 0 (false) or 1 for ‘true’). Additionally, it measures the orientation of the
container. Should it filt, fall on the side or turn over, the sensor will send another ‘1’ value in ifs
payload, otherwise ‘0’. Finally, if the battery is running out, it will also send a binary value in a
separate bif. In this case, however, it will not send the rest of the values in order to save the
battery power. All measurements are taken concurrently (CNDigitek, 2019). In this study,
however, we only use the fill level value, leaving the rest of functionality for the future work.
The sensor is wired to work on LoRa, which operates at 868Mhz in the EU.

Ultrasonic rangers do have certain vulnerabilities. They will give erroneous records if the waste
inside the container is spread unevenly or any other obstacles come in the signal’s way. For
example, the problem in Almere was the bulging of the trash bag that lines the container
from the inside. With the parts of the bag getting in the sensor’s line of sight, the recorded fill
levels were often exaggerated. Ultrasonic rangers are not the only available type of sensors.
Mamun et al. (2015) and Faccio et al. (2011) both review the use of different sensors for waste
monitoring. Common alternatives are opftical or infrared cameras that produce images that
can be processed by feature-recognition algorithms to determine the fill level. In section 2.3,
we have reviewed some studies that use other sensor or compare the sensors between each
other.

3.2 Research problem model

The objective of finding an optimal set of routes for a fleet of vehicles to visit a given set of
locations defines a Vehicle Routing Problem (VRP), a generalization of the Travelling
Salesman Problem (TSP) to the case of multiple vehicles. Since in our case the set of locations
to visit on any given day must first be selected from the superset of all registered containers
based on fill level, the problem furns into a VRP with Profits (VRPP). Thus, there are two major
steps: selection and routing. Fig. 3 presents an overview of these steps.
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Figure 3. Algorithm workflow overview.

There is a homogeneous fleet of garbage frucks and a heterogeneous set of waste
containers that are served by the fleet. There may be several types of containers, each with
its own capacity, height and service time (the time it takes to empty it). Each container is
equipped with an ultrasonic ranger that reports on the container’s fill level at equal interval
(in this study, we use one time a day). The objective is o minimize the amount of fime the
fleet spends underway, aggregated over the dates for which the containers have been
scheduled (time horizon). No containers are allowed to overflow (100% service level). Time
series of fill level records obtained from sensors are then differences, i.e. the daily increases
are computed, and these are then averaged over a certain period of time. In this study, we
do not set a fixed limit on age of the records that can be used to calculate the predicted
accumulation levels because we believe that it strongly depends on the use case. The
scheduling and route planning algorithms are designed to be run once for each time horizon:
for each container it finds the date when it is expected to overflow, based on recorded
history. If service level is set 100% (default), the algorithm schedules the container’'s emptying
for the day prior to becoming full. Additionally, it ensures that it is a working day.

3.3 Cost function

The optimality of a route is most commonly expressed in two metrics: distance and travel
time. The latter can also be called the route duration. In the Euclidean space, the shortest
path is always the fastest. In our case, however, paths obey the road network with its line
segments, their speed limits, allowed travel direction, etc. It is well known that the shortest
path for a vehicle on a road network is not always the same as the fastest path. A longer
route on a highway can be faster than a shorter route through regular roads, because of the
speed limit difference, traffic lights, etc. In a case study, one would likely want to estimate the
improvement brought about by the routing optimization in the monetary value as well. We
suppose that this monetary value can be represented as a function of both the route
duration and its distance. Two major variable costs of waste collection are: labor, i.e. driver
and collector wages, and fuel (Greco, Allegrini, Del Lungo, Gori Savellini, & Gabellini, 2015).
Wages are paid per hour whereas the fuel consumption is given in L/km. Maintenance costs
have a mixed nature. Many parts, e.g. engine, wear out with distance fraveled and are, as
such, variable costs. Other maintenance costs, like periodic vehicle inspections or changing
between summer and winter fires, are fixed. Generally, the variable part of the maintenance
costs is a function of mileage (e.g. engine life). Hence the variable costs C(r;) for any given



route r; can be approximated as a function of both its duration T(r;) (h) and its length L(r;)
(km):
C(r) =T - War +Neor *Weor) + L) - (f -p+m) (€Y

where:

e wy, is the driver’s hourly wage, €

o w,, is the collector’'s hourly wage, €

o 1., is the number of collectors per vehicle

e pisthe fuel price per liter for the fuel type used, €

o fis the fuel consumption of the garbage trucks used in Almere, L/km

¢ mis the average maintenance costs per km travelled, €

A deeper insight shows that the real relation between the variables is much more complex:
fuel consumption can vary greatly depending on the vehicle's weight, and the weight of a
garbage fruck underway steadily increases as the it collects more waste. Moreover, the age
of a vehicle and its speed dynamics (acceleration, deceleratfion) must be considered as well.
Maintenance can be a factor of both time and mileage. Without any information from the
hauler, we lack a firm basis for estimating the fuel consumption and the maintenance costs.
We believe, however, that the fastest route is usually the cheapest one as well (an
assumption that can perhaps be challenged by the reader). Therefore, we make the travel
duration an objective in the minimization problem that we formulate in this study. We
encourage the reader, however, to challenge our assumptions and develop a more
complex and realistic cost function, especially if the required technical details are available.

For this study, we reduce the cost function of a route to a function of its duration:
Cr) =T (2)

And the total cost of a solution can be calculated as a sum of the costs of the routes R =

o T
k

CR=)rn @

k=1

3.4 Input data: road dataset

One popular source of road data is OpenStreetMap. Since it is open for anyone to make
edits, it may require a quality check, although openness can also mean more frequent
updates. Nevertheless, we decided to use the official national road dataset, Nationaal
Wegenbestaand (NWB), instead. The comparison between OpenStreetMap and NWB is
beyond the scope of this study. NWB is open data and it can be downloaded from the
website of Rijkswaterstaat along with the accompanying documentation (Rijkswaterstaat,
2019). For further processing, we clipped the dataset to the administrative boundaries of
Almere using the corresponding QGIS tool (fig.4):



] I Roads in Almere (Nationaaal Wegenbestaand)

0 1 2 km
| | @ OpenStreetMap Contributors

Figure 4. Representation of NWB for the territory of Almere (in red).

NWB does not specify speed limits or any other metric that can be used to calculate the time
it takes to tfraverse any given road segment. Since such metric is required for solving the
problem, we augmented NWB as follows. First, the length of each segment was added as a
separate attribute (use ‘$length’ operator in QGIS). Next, we added a new attribute to store
the speed limit for each road segment. The best guess about its value can be made based
on the road type expressed by its ‘routeletter’ attribute. Itis ‘A’, ‘N’ or ‘E’ for highways and
NULL (empty) for other roads. On highways, trucks are limited to 80 km/h; on other roads, the
limit is 50 km/h for the built-up areas and 80 km/h otherwise (ANWB, 2019). We are unaware of
any datasets that would demarcate the built-up areas for the given territory. Since Almere is
mostly urbanized, we consider all its area to be built-up and define the speed limits as follows:

Table 1. Speed limits approximation for NWB in Almere.
Routeletter Speed limit, km/h
NOT NULL (A, N or E) 80
NULL 50

Speed limit is an extreme approximation for the expected travel speed. We therefore
multiplied it by a constant factor x. For this study, we arbitrarily chose x = 0.7. For real-world
applications, we recommend using traffic data instead, if possible. Now, the estimated travel
duration t;; for any given line segment (edge) e;; that connects junctionsi and j, can be
calculated by simply dividing the expected travel speed on it by the segment’s length [;;.
Finally, we converted it from hours info minutes. Now this attribute represents the ‘cost’ of the
traversing the given edge, or, in graph theory terms, the weight of the edge. The formula for
the above procedure is presented below:

I
2 max (4)

x * speed;

where speed;}** denotes the speed limit for edge e;;.
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Another limitation of NWB is that the allowed travel directions (both ways / one way) are only
specified for highways (routes classified as ‘A’, ‘N’ or ‘E'). We are unaware of any open
sources that could augment NWB in this respect. Therefore, we simply assume all road
segments for which the direction is not specified (NULL) to be traversable in both directions. If
the direction is specified as ‘H' (forward only) for a given segment e;;, we set t; = 10°. That is,
fravel duration for the reverse edge is set to a large value that by far exceeds any real fravel
durations in the given network and will make the opfimization algorithm always prefer other
road segments.

3.5 Input data: container locations

Basisregistratie Grootschalige Topografie (BGT), developed by Kadaster (Kadaster, 2019), is
an open spatial dataset that contains miscellaneous objects, from buildings and roads to
street furniture and waste containers. We chose it over OpenStreetMap for the same reasons
as described in the previous section. Waste containers in BGT (4854 features in total) belong
to the category ‘Bak’ (‘container’, IMGeo, 2019) and are divided into three types:

1. ‘afval apart plaats’ (recycling bin with underground collection space)

2. ‘container’ (larger containers without underground collection space)

3. ‘afvalbak’ (smaller street bin)

A closer look at the data, however, revealed significant discrepancies between BGT and the
information presented on the website of the municipality of Aimere (Gemeente Almere,
2019). For example, there are only 34 ‘afval apart plaats’ items in BGT, and the maijority of the
actual recycling bins (as presented on the municipality's website) are missing. Since we were
not able to obtain any data from Almere, we use random selections, 100 and 500, from the
4854 containers stored in BGT for the territory of Almere. Fig. 5 & é show these selections:
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Figure 5. 100 randomly selected waste containers from BGT in Almere.
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Figure 6. 500 randomly selected waste containers from BGT in Almere.

For the implementation and testing, we also needed the type of waste, volume and height
for each container. In section 4.2., we describe how we use these parameters to predict
accumulation rates. For now, let us say that BGT does not provide any of them, and we had
to mock them up. Almere separates municipal solid waste into five categories (Gemeente
Almere, 2019):

e Paper and cardboard

e Plastic, tins and packaging (PMT)

o Glass (mixed)

¢ Organic (groenafval)

¢ Unsorted (restafval)

We randomly assigned an equal number of containers in each of our two selection to each
type of waste, e.g. 20 containers to each category for the 100-container selection. For the
height, we use 2000 mm, 2 meters (the maximum range of our sensor), for all containers in
both selections. For the volumes, we used two values, 3m® and 4m3, and split each selection
in half among those two. This mock data is not backed by any observation and may deviate
from reality, but as we say in this paper, without access to the actual data, we focus more on
the prototype development and we believe that should the reader use our prototype for a
case study, our simulated data can be easily replaced with the actual data.

3.6 Converting road network into a complete graph

Solving a (C)VRP(P) requires knowing the commute cost between each pair of destinations
(waste container locations in our case) and each destination and the depot. In reality,
however, the most commonly available input data are road datasets, e.g. Nationaal
Wegenbestaand (NWB) in the Netherlands. Such datasets represent a road nefwork, made of
road segments and the junctions between them. Road segments can be represented as
single or multilines (multilines in NWB). They are usually relatively short, so most roads consist of
multiple road segments. By using a road network itself to solve a VRP, one would find a sef of
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tours that visit all the junctions, but we are interested in confainers instead. This brings up a
problem of converting a road network (a sparse graph) into a complete graph.

A graph is complete if all pairs of its vertices are connected by edges. Therefore, such
transformation requires finding the shortest (or fastest) path between each pair of containers
and between each container and the depot. Finding the shortest path between two vertices
is a common task in the field of network analysis and most GIS applications feature at least
one tool to solve it. GRASS GIS has a tool for finding all shortest path for a set of locations, for
each pair of them. The algorithm is called v.net.allpairs and we use it via QGIS because of the
extra GUI convenience it provides. However, it can also be executed in the command
prompt. Our choice fell on this tool because, firstly, GRASS is FOSS, and, secondly, it does not
require extra scripting to batch the execution (repeat it for all pairs of vertices). The algorithm
description can be found the official GRASS GIS documentation (Bundala, Bergenheim, &
Metz, 2009).

This tool does, however, have its drawbacks, the main one being that it returns each shortest
path by segment (each segment as a separate record), therefore the output requires further
aggregation to obtain single geometry for every pair of vertices. We use QGIS native
Aggregate tool for this purpose. We will comment on the performance of this combination in
more detail in chapter 6.

3.7 Other procedures & methods

e Interviews with municipalities Almere (in person, Appendix A) and Houten (Appendix B)
o Experimental software development (Appendix C)
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4 Methods and algorithms for solving the CVRP(P)

This chapter presents the answers to the research questions formulated for the first objective
(see section 1.5). We break down the VRPP into the subset selection procedure (selecting
which containers fo empty) and the VRP itself, which due to the prominence of the vehicle
capacity constraint, we call the Capacitated Vehicle Routing Problem (CVRP), in line with
other related research. The chapter starts with formulating the CVRP as a mathematical
optimization problem, proceeds with the exact methods for solving it, after which it presents
some relevant heuristics and metaheuristics.

4.1 CVRP: Problem formulation

Let G(V,E) be a complete directed graph where V = {v,, vy, ..., v, } is the set of vertices, v,
represents the depot and {vy, ..., v, } represent the waste containers, and £ = {e;; : i,j €V,i #
j}is the set of edges, representing the shortest paths between each pair of vertices. Each
vertex v; has an associated demand g; = 0 that represents the amount of waste to be
collected from that container in kg. Each edge e;; has an associated cost ¢;; (in minutes) that
is in our case represented by the time it takes to traverse it (travel duration), but can also
represent cost of a different type, e.g. monetary cost, depending on the nature of the
underlying real-world problem. Since the shortest paths e;; follow the road network, and do
not, generally, represent the Euclidean shortest paths, the costs of tfraveling between any to
vertices are not, generally, equal: ¢;; # c;;. This implies that the graph is directed and the CVRP
is directed.

Let Ko denote the maximum number of vehicles available. The fleet is homogeneous, i.e. all
vehicles have the same capacity Q... and a maximum tour duration T, that is imposed by
the working hours. A solution is defined as a set of routes R = {ry, ..., 7, ..} Where some of the
routes can be empty (r, = @). Each non-empty route r, € E is an ordered array of edges r, =
[eois -, €j0 ¢ Vi, U}, v € V]. FOr convenience, let us write e;; € 1, if edge e;; is part of route r; and
v; € . if any edge e, Or ey, V v, € V, makes part of route r;. In a ‘classical’ VRP, each route is
a Hamiltonian cycle, i.e. a graph in which each vertex v;, deg~(v;) = deg*(v;) = 1
(considering the graph is directed), but we assume that this requirement may be
unsatisfiable, e.g. due to the presence of dead-end streets, and is not necessary for solving
the problem. Each route r, can be measured in terms of its total duration T(r,) =

Zeuerk cij and the total amount of waste collected Q(r) = X, er, i+ A route is considered

feasible if starts and ends at the depot, contains no cycles that do not include the depot,
and the vehicle capacity and tour duration constraints are satisfied: T(r,) < Tppa ANd Q (1) <
Qmax- A solution is considered feasible if all its routes are feasible. We will use these
conventions throughout this chapter, so their summary is presented in table 2:

Table 2. Main variable names that we use in this chapter.

v; EV vertex (container)
vy EV depot
e vV EV edge (shortest path between v; and v;)
q v;EV amount of waste in container v; (g, = 0) in kg
cij v,V EV edge cost (travel duration) in min
Qmax vehicle capacity
Toax maximum route duration
Kimax maximum number of vehicles (routes)
. ER route (tour)
T(ry) route duration
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4.2 Reducing the VRPP to the VRP: container selection

In the definition presented in the previous section, container set Vis a given and represents, in
fact, a subset of all containers that was selected for emptying on the given day t,, (x € Z).
How does this selection happen? The daily updates coming from the sensors suggest the
selection can be done ‘on-the-fly’, on the same day the collection is performed and for that
day only, and the day after the same procedure will be repeated with up-to-date fill levels
from the sensors. This system would be the opposite of the traditional approach where there
was only planning via forecasting and minimal fo no (near-)real-time information. An
example of such system is described in Faccio, Persona & Zanin (2011).

Most researchers, however, believe that planning cannot be discarded, but should rather be
improved by using sensor data (Ferrer & Alba, 2018; Lopes et al., 2015; Nuortio ef al., 2006;
Ramos et al., 2018b). The role of sensors here is to provide accurate measurements
automatically and at regular intervals, so that planning can be based on actual fill levels
rather than statistical approximations or long-term observations. This is where the problem
acquires a temporal dimension. We assume that the time grain for waste collection planning
is one day: the obtained solution consists of a set of routes that covers the whole day. For the
next day, another set of routes must be found. We also assume that any given container is
emptied af most once a day. Our goal is fo keep the service level at 100%, i.e. let no
containers overflow.

Let V* = {v,, v,, ..., v, } denote the set of all containers serviced by our system. All of them are
equipped with sensors that report the fill level once a day. These records make up time series
of the form [ ..., h;(t,—1), hi(ty), hi(txs), .. 1, v; € V* and t, the x-th day of observation, h;(t,) is
the distance between the lid of the container and the waste body (mm) for any container
v; € V*. It can be converted into afill level given the total height of the inside of the
container H; using the following formula:

l

h
Yi = 1-— [011]1 Vi EV” (5)
H;

Fill level can, in turn, be converted into weight, the measure in which the garbage trucks
saturate their capacity. Given that the waste type and the volume for each container is
known from the manufacturer, we only need to obtain the average density for that waste
type. Considering that the categories for waste containers are relatively broad (‘paper and
cardboard’, ‘organic waste’, etc.), the average density may deviate from the actual
measurement. The precise estimation of these indicators is beyond the scope of this study
and the capabilities of the authors, so we use third-party resources (EPA Victoria, 2018;
Stimular, 2018):

Table 3. Average material density for the different types of waste.

Waste type Average density (kg/m3)
Paper and cardboard 120
Plastic, fins and packaging (PMT) 70
Glass (mixed) 300
Organic (groenafval) 300
Unsorted (restafval) 50

Using this information, the actual amount of waste g; (kg) in each container can be

calculated:

qi = Yi* w* p, Vv, eV (6)
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Here, w is the container’s volume (m3?) and p is the material's density (kg/m3).

Now, to be able to forecast, we need to calculate accumulation rates for each container.
The absolute fill levels should therefore be differenced to arrive at time series of the form

[, 8i(ty ), Ai(tesr), Ai(trys), ... ] Where A;(t,) is the difference between day t, and the
preceding day for any given v; € V*. The simplest way would be to compute the mean of the
increases over a certain period (ty, ..., t,):

n_oA(t
a; =—Z"‘1n‘( x) [0,1], Vo, eV (7)

There may be, however, some cyclicity in the increases, for example weekly (similarity in
waste disposal on the same day of the week in consecutive weeks) and annual patterns
(similarity in waste disposal on the same calendar date in consecutive years) (Johnson et al.,
2017; Kannangara, Dua, Ahmadi, & Bensebaa, 2017). These patterns may be location-
specific, however. Autocorrelation can be used to detect such patterns. However, we do not
implement it for the reasons that the discuss in chapter 6.

The expected overflow date tfverﬂow can be found for any container v; € V* by adding the

number of days until its expected overflow to the current date tewrrent.

1-v,

a;

L

toverflow (Vi) — tcurrent + [ ] (8

This formula must, of course, obey the ‘date arithmetic’.

Now, Woperfiow(v) — 1 defines the latest possible collection date for the given container.
Besides maintaining a 100% service level, it is desirable to avoid collecting waste more
frequently than needed, as it causes extra costs and air pollution. Therefore Hoyerfrow (v) -1
would be the optimal collection date, by default. However, it must be a workday: Saturdays,
Sundays and bank holidays must be excluded. It must be mentioned that the work schedules
in waste management may differ between the countries, regions, etc., and the exact rules as
to which days to exclude should be defined considering the local principles.

If a given date is not a workday, the collection must be shiffed. Since shiffing tfo a later date
would violate the required service level, it can only be rescheduled to an earlier date. The
algorithm does it one day at a time and stops once it has found a valid calendar date.

4.3 Exact methods for solving the CVRP

Exact methods for solving the VRP include Mixed Integer Linear Programming and Branch-
and-Bound that are described below but are not limited to those two. For a comprehensive
overview of the exact methods, see Laporte (1992) and Archetti, Speranza & Vigo (2014).

4.3.1 Mixed Integer Linear Programming

This formulation is based on Archetti, Speranza & Vigo (2014) and Ramos, de Morais &
Barbosa-Povoa (2018b). Given a fixed number of available vehicles K,,,,, a set of tours R =
{r1, ... 7.} Should be defined, such that:

e each non-empty tour r, starts and ends at the depoft v, (some tours may be empty)

e the duration of any tour cannot exceed the limit

¢ the number of tours cannot exceed the maximum available number of vehicles

e the fotal amount of waste collected on any tour cannot exceed the vehicle capacity
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Let us define two decision variables:
o yl-k, a binary variable equal to 1 if v; € V is visited on route 1, and 0 otherwise
e xf, abinary variable equal to 1if e;; € Eis traversed on route 13, and 0 otherwise

Now, here is the formulation of the problem:

Kmax n n

minimize Z Z 