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Abstract 

This study is about optimizing the municipal solid waste collection: collection scheduling and 

garbage truck routing. We argue that the use of sensors for monitoring the amount of waste 

in containers can improve the prediction of accumulation levels and make scheduling more 

efficient: fewer overflows and fewer unnecessary visits. The benefits that such optimization 

can bring about are substantial: a reduction in air pollution and traffic and a decrease in 

operational costs. At the same time, these changes imply that each container will not have a 

fixed collection frequency anymore but will be collected as late as possible without letting it 

overflow. Dynamic scheduling will inevitably require dynamic routing: the routes will be 

defined based on the set of containers chosen for the given date. We will discuss the benefits 

and the potential drawbacks that these floating schedule and routing may bring about. We 

approach the problem from a computational and algorithmic perspective and use methods 

from the fields of combinatorial optimization and operations research to solve the problem. 

We review some of the exact and heuristic methods and draw our conclusion based on the 

literature. Finally, we develop and present a minimalistic software kit that consists of an 

application for receiving and storing sensor data and a QGIS plugin for scheduling and 

routing. 
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1 Introduction 

This chapter starts by introducing the research problem’s context (1.1), proceeds by defining 

the project scope and some important constraints (1.2) and mentioning how this work is 

related to the company called GIS Specialisten and the municipality Almere was chosen as a 

study area for this project (1.3). Finally, we list the research objectives (1.4) and questions (1.5). 

1.1 Problem context 

Municipal solid waste management is an integral element of city management and may 

take up a significant part of the municipal budget. Some studies indicate that the expenses 

may reach 50% of the municipal budget in the developing countries (Mamun et al., 2015). In 

the ‘developed’ countries, this share is presumably lower, but is still considerable. The largest 

part of these expenses is incurred in waste transportation: approximately 70% on average 

(Faccio, Persona, & Zanin, 2011; Silva, 2016). Reducing the garbage truck mileage can thus 

help save the municipal budget and also diminish the environmental impact. 

 

Municipal garbage containers are normally emptied by specialized waste collection vehicles. 

Traditionally, this is done on a fixed schedule that is based on long-term observations or some 

statistical estimations (Nuortio, Kytöjoki, Niska, & Bräysy, 2006). For example, using the 

population count and the average waste disposal rate per person. Most of the time, 

however, this only gives a rough estimate. Another practice is tasking the collectors with 

registering the fill level for each container they empty (Lopes, Ramos, & Barbosa-Póvoa, 

2015). This manual way of data collection may help improve the accuracy of estimations, but 

it increases the time the crew spends at each container and the results depend on the 

collector’s ability to visually gauge the amount of waste in it.  

 

Replacing human-made records with sensor data may increase the prediction accuracy of 

the waste accumulation levels, thus improving the scheduling so that both too frequent and 

too rare visits could be prevented. Too frequent visit result in unnecessary expenses incurred 

by operating a vehicle (fuel, wages), and some authors also mention the increase in air 

pollution as one of the negative effects (Faccio et al., 2011). Too rare visits impact the sanitary 

conditions: overfull bins may results in waste lying around and contaminating the environment 

(Likotiko, Nyambo, & Mwangoka, 2017; Nuortio et al., 2006). Some research shows that up to 

60% of the containers are emptied prematurely, with the waste collection vehicle travelling 

extra distance to collect minor amounts of waste (Ramos, de Morais, & Barbosa-Póvoa, 

2018b). The use of real-time data about the amount of waste in containers will allow haulers 

to cut down the costs, reduce pollution caused by vehicle operation and avoid delays in 

emptying the containers. This logic goes in line with the Smart City approach in which the 

urban environment is optimized using information technology and the data is collected 

automatically by specialized sensors (Likotiko et al., 2017).  

 

There are various data communication technologies; among them, Long-Range (LoRa) has 

gained popularity for its low energy consumption and long range (up to 1 km in an urban 

environment) that allows to save on building potentially costly infrastructure such as cell 

towers. Devices that operate on LoRa have a long lifespan: at least one year for the sensor 

we use in this study, as promised by the manufacturer. This comes at the expense of low data 

rates, that is, a limited payload that a sensor can send (Centenaro, Vangelista, Zanella, & 

Zorzi, 2016). Since several bytes, at most, are enough to report on the amount of waste in a 

waste container, this latter limitation does not, generally, have a strong impact on the 

problem in this project.  

 



7 

 

It is easy to imagine a situation in which the haulers come to work in the morning, check 

which containers are going to overflow on that day and go and empty them all. In reality, 

however, the availability of such real-time data does not yet allow to discard scheduling. The 

amount of work must be balanced throughout the week to allow planning the working hours. 

Planning is also important for choosing the size of the vehicle fleet and the number of 

employees: drivers and collectors. Thus, in this study we attempt to develop a solution that 

does not simply decide which containers to empty today, based on their current fill level, but 

rather tries to look forward and schedule each container for the date after which it is 

expected to overflow. Once the planning is done, a set of one or more routes, each 

corresponding to a single vehicle, should be defined through the scheduled containers such 

that the overall costs of commute are minimized. These costs can be the travel time, the 

route distance, or a combination of the two. The objective of finding an optimal set of routes 

through a set of locations for a fleet of vehicles implies that the problem involves spatial data 

and spatial analysis. More specifically, it involves network analysis for routing through the 

street network and can thus be put into a broad category of Vehicle Routing Problems (VRP).  

1.2 Problem scope and limitations 

Waste collection is one part of waste management. It involves the transportation of waste 

from public waste disposal facilities (waste containers) to landfills or waste processing stations. 

Further waste treatment and recycling are beyond the scope of this study. We use the term 

‘waste’ to refer to municipal solid waste (MSW), which can also be called garbage, trash or 

rubbish. The potential difference between the various MSW categories from the recycling 

perspective is not investigated. Other waste types such as sewage sludge or agricultural 

waste are also beyond the scope of this study. There exist different types of waste containers, 

with no strict regulations as to what to call each type. The terminology also varies between 

the countries and regions. In this study, we use ‘(waste) container’ as an umbrella term for all 

of these. The waste containers with underground storage space are sometimes simply 

referred to as ‘underground (waste) containers’. 

 

This study aims to design a solution that could be equally used by the municipalities and the 

private sector, although because we test our implementation for the municipality of Almere, 

the results may better address the municipal services. Due to the time and cost restrictions, 

this implementation is be minimalistic and subject to hardware and software availability. 

There may be better solutions, and the study does not set a goal of exploring and comparing 

all possible options. Optimally, the system should be tested by installing a number of sensors in 

actual waste containers. This, however, is beyond our capabilities, and we use mock data 

instead. Finally, although this study focuses on using sensors for data collection, it can, with 

minor adjustments, be used with data coming from any other source. In fact, as stated 

above, we ourselves test the system without the actual sensor data. 

1.3 Organizational context and case study 

This study follows in the footsteps of the work done by Grigory Nedaev at GIS Specialisten 

within the context of one of the company’s pilot projects. The project is experimental and 

investigates the opportunity of using ultrasonic sensors to monitor the fill levels of waste 

containers and using those records to improve the collection scheduling and routing. The 

municipality of Almere expressed their interest in this idea at the outset of the project (winter 

2018/2019), and we decided to use this opportunity and carry out a case study on Almere. 

We conducted a preliminary interview on the 29th of January, in which the representatives of 

Stadsreiniging Almere expressed their interest in sensor-aided waste collection and shared 

some thoughts about a previous experience that they had with another contractor. 

According to them, they were not entirely satisfied with the result of that project and were 
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looking for a new contractor, GIS Specialisten being on the candidates. Later, however, 

Almere put this collaboration on hold while this study was already in progress. We were 

unable to reach them in March and April having received no response to the emails we sent. 

Having tried to get in touch through GIS Specialisten, we received a response that Almere 

needed more time to decide whether they would like to further collaborate with the 

company. The time it would take them to decide was not announced. At the time of finishing 

this study, this collaboration is still on hold. 

 

At that point, we decided to keep Almere as the study area but essentially abandon the 

case study because we had no access to the municipal data or information. For example, 

we would not be able to compare our results, such as total truck mileage, with theirs. We had 

to resort to the existing open data sources, such as Basisregistratie Grootschalige Topografie 

(BGT) for container locations, for example, but we believe that those may be less accurate in 

some respects and provide fewer details. As a consequence, we would be unable to make 

the case study realistic. Instead, we decided to focus more on the methods and algorithms 

for solving the problem and on the development of an example software application that 

would be able to receive data from sensor and do scheduling and routing. 

 

We keep this study related to the company’s project but independent in the sense that it is 

not driven by the company’s objectives. We use some of the company’s hardware: namely, 

a sensor and a gateway. GIS Specialisten provided us with one ultrasonic LoRa sensor, one 

The Things Network (TTN) gateway and a corporate TTN account. The abovementioned is 

agreed and guaranteed by the authors and the external advisor at the company, Marlex de 

Jong. 

1.4 Research Objectives 

The first objective of this study is to design an algorithmic solution for scheduling the emptying 

of waste containers based on automatically transmitted sensor data about their fill level, and 

on finding an optimal set of routes for a fleet of waste collection vehicles. The optimality of a 

solution is defined by the time a fleet of garbage trucks spends underway to meet its waste 

collection obligations (let no containers overflow). To meet this objective, we formulate a 

mathematical optimization problem and review the existing exact methods and heuristics for 

solving it.  

 

The second objective is to build a software prototype that would implement this algorithm: 

receive and process sensor data, perform scheduling and routing, and visualize the results.  

1.5 Research Questions 

To help meet the first objective, the following research questions are formulated: 

• What is the mathematical programming formulation of the problem? 

• How can the operational costs be calculated? 

• Which exact methods can be used to solve it and is it possible to use these methods in 

the given use case considering the size of the problem (number of containers)?  

• Which heuristics can be used instead? To what extent do applied heuristics affect 

optimality of found solutions?  

 

The second objective brings up the following questions: 

• What technology can be used to implement and solve an optimization problem of 

the kind defined in the project? 

• If there are several components required, how can they be integrated to work with 

real-time data input? 
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2 Related research 

Despite the emphasis on using sensors, a certain part of the underlying solution does not 

depend on how the data is obtained. What matters is how this input is processed. This makes 

the studies that do not use sensors but still solve the vehicle routing problem in application to 

waste collection no less valuable for our project. Section 2.2 presents both variations, starting 

from the older work and proceeding chronologically. Section 2.3. finalizes this chapter with a 

review of the studies that focus on the hardware rather than on the route optimization. First, 

however, we briefly review the class of problems that this project aims to solve (2.1). 

2.1 Vehicle routing problems 

Garbage truck routing in municipal solid waste collection is commonly solved as a Vehicle 

Routing Problem (VRP) (Archetti & Speranza, 2014; Faccio et al., 2011; Lopes et al., 2015; 

Nuortio et al., 2006; Ramos et al., 2018b; Silva, 2016). A VRP asks “What is the optimal set of 

routes for a fleet of vehicles to traverse in order to visit a given set of locations?". It is a 

generalization of the well-known Travelling Salesman Problem (TSP) to the case of multiple 

vehicles (Golden & Wasil, 2008). Splitting the set of locations in several parts and solving the 

TSP for each set independently is not, generally, the same as solving a VRP: optimality of each 

TSP solution cannot guarantee the optimality of their combination. This makes solving a VRP a 

more complex task than solving a TSP, and since the TSP is NP-hard, the VRP, as its 

generalization, is at least as hard (Archetti, Speranza, & Vigo, 2014).  

 

There are many variants of the Vehicle Routing Problem, and some authors use more specific 

terms such as “Capacitated Vehicle Routing Problem” (CVRP) when the constraints on the 

vehicle capacity are introduced, or “Vehicle Routing Problem with Time Windows” when the 

vehicles can only visit the locations within certain time periods. For a comprehensive survey of 

Vehicle Routing problems, we refer the reader to Golden, Raghavan & Wasil (2008). The 

diversity of the VRP variants suggests that VRP should be regarded as a class of problems that 

share the goal of finding an optimal combination of routes through a set of locations. The 

optimality of such a set of routes is most commonly measured in terms of their overall length, 

travel duration or a combination of the two. 

 

It is important, however, to draw a line between the cases where the set of visit locations is a 

given, and the ones where it must first be subsetted from a larger set. The latter class of 

problems is commonly referred to as “Vehicle Routing Problems with Profits”, or VRPP. For a 

comprehensive survey on this specific variety, see Archetti, Speranza & Vigo (2014). Other 

possible terms include “Stochastic Vehicle Routing Problems” (Nuortio et al., 2006) and the 

“Team Orienteering Problem” (C. Archetti, Feillet, Hertz, & Speranza, 2009; Archetti, Hertz, & 

Speranza, 2007). In these problems, multiple possible partitions of the location set must be 

compared to identify the most “profitable” one. A number of studies on smart waste 

collection report better results using the “with profits” approach (Nuortio et al., 2006; Ramos et 

al., 2018b; Silva, 2016). The solutions they present do not simply choose all waste containers 

that exceed a certain fill level threshold, but are capable, for example, of observing that it is 

cheaper to collect waste from a half-empty container today if it is located close to the full 

containers that are being visited, rather than drive to visit that single container when it fills up.   

 

The notions of profit and cost are abstract and should not always be taken literally. The VRPs 

are commonly solved using network analysis and graph theory. Profits are associated with visit 

locations, but depending on the solution, can be assigned to the road segments that those 

locations belong to. Profits may denote the actual monetary gains from visiting a location, 

e.g. in case of food delivery, but are not restricted to such semantics. In the case of waste 
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collection, profits generally refer to the amounts of waste collected from waste containers, 

although given waste selling prices, the amounts may be converted into a monetary value 

(Ramos, de Morais, & Barbosa-Póvoa, 2018a). Costs are generally incurred by traversing the 

edges (also called arcs), i.e. road segments, and are assigned to those. However, nodes (also 

called vertices) can also be assigned costs: in waste collection, that could be the time spent 

emptying the given container. Costs assigned to arcs often represent the length of the road 

segment or the time required to traverse it. Given a cost function, these values can be 

converted to the monetary values. 

 

Vehicle Routing Problems are NP-hard which means that the time it takes to solve it to 

optimality (that is, using an exact method) rises exponentially with the number of destinations, 

and these time cost may not be feasible for the given use case. Therefore, heuristics and 

metaheuristics are commonly used instead. The past decades saw a growing amount of 

research on metaheuristics, - algorithms that control the behavior of one or more heuristics to 

solve the given problem within a reasonable time. They are not guaranteed to return an 

optimal solution, but given enough time, they are expected to find a solution sufficiently close 

to the global optimum. Golden, Raghavan & Wasil (2008) and Archetti, Hertz & Speranza 

(2007) present an overview of metaheuristics for VRPs.  

2.2 VRP in municipal waste collection 

Nuortio et al. (2006) present one of the most comprehensive works on the topic and describe 

a case study about two municipalities in Eastern Finland. They do not use sensors, but instead 

approximate the accumulation rates using a combination of historical records and statistical 

data. This is useful in the situation where the system must be designed and tested before the 

deployment of sensors is possible. The authors use the fact that a truck is weighed each time 

it arrives at the waste disposal to estimate the amount of waste collected from each 

container. The mean average does not necessarily represent a realistic value, however, so 

Nuortio et al. complement this data with statistical indicators, such as population density and 

GDP per capita for the given neighborhood. In addition, they use regression analysis to study 

temporal trends: seasonal, monthly and other variations in waste disposal rate. Besides, they 

calculate the travel time between the containers using historical data which means that they 

collect their own traffic data.  

 

The conceptual design is highly detailed, kept as close to reality as possible, imposing a 

number of restrictions. The truck fleet consists of identical trucks with a capacity of 26 tons 

each. The different types of waste are collected separately, and each vehicle can only 

collect one type during a single route. There are several different types of containers, of 

which underground containers must be collected separately. Collection can only be done 

on workdays and within the following time windows: between 6 AM and 10 PM. The disposal 

site, where the trucks deliver the collected waste to, is open from 6 AM on Monday to 7 PM 

on Friday. The 8-hour working day includes a 30-minute lunch break and two 15-minute 

coffee breaks, and can be exceeded, in which case an overtime pay is incurred. The authors 

also recognize the need to allocate containers to scheduled dates prior to solving the VRP 

itself, and hence call the problem a Periodic Vehicle Routing Problem, or an allocation-

routing VRP. They present a software implementation that calculates optimal routes based on 

any of the three objectives: distance, duration and a combination of the two. 

 

The authors run tests to compare the results with the then-current situation. Importantly, 

Nuortio et al. do not attempt to optimize the number of required routes but rather minimize 

their combined length. In doing so, they argue that the number of routes corresponds to the 

number of vehicles available, and in reality, the haulers would not like to change the fleet size 

or let some of the trucks stay unused; instead, they would like to know how to spread the 
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workload between them more evenly and potentially reduce the average travel time of 

each truck. They first test whether the order of locations in the existing routes can be 

optimized by solving the Travelling Salesman Problem (TSP) on each single route. At this stage 

they already report an improvement of on average 12% per route in terms of distance. Next, 

they run the complete algorithm that includes schedule optimization. This time they report a 

46% improvement from the current situation. The authors mention, however, that the 

imperfections in the road dataset and the approximations made in estimating the baseline 

data must be accounted for. 

 

Faccio, Persona & Zanin (2011) present a use case of municipal solid waste collection in an 

Italian city with 100,000 inhabitants. As the paper’s title suggests, they develop their model to 

be used with sensor data and build it in such way that it can be optimized for several different 

parameters: time spent, distance travelled, and the number of vehicles used. Having no 

opportunity to deploy actual sensors, they test their hypotheses on historical data provided 

by the municipality. They do not, however, provide details about the contents and accuracy 

of this data. The authors present a detailed description of the hardware setup: containers are 

equipped with volumetric sensors, GPRS transceivers and electronic tags that uniquely 

identify each container (RFID tags). The vehicles are equipped with GPS modules to track 

their location in real time and electronic devices that read the RFID tags installed in the 

containers. The containers hourly report on their fill level. Besides, every time a vehicle empties 

a container, it reads and reports its unique ID to the system. Following either of these two 

events, the collection routes are regenerated, i.e. the routes are not only generated before 

the dispatch but are also recalculated at collection time when any of the containers report a 

change in fill level. This continuous re-routing distinguishes this study from many others 

although it is not clear how convenient it is for the drivers. Furthermore, it also means that the 

model does not involve any scheduling, but rather operates “on-the-fly” and is limited to the 

present day. 

 

The authors present several variants of the solution, one for every objective. All of them, 

however, are deterministic in the sense that the selection of the containers is based on a fixed 

threshold. None of them allows scheduling. Besides, it is not entirely clear how the authors find 

an optimal combination of routes. Despite discussing several heuristics, they seem to solve the 

problem by constructing the routes sequentially using the Nearest Neighbour method, i.e. a 

greedy algorithm. If so, this suggests that the solution is not likely to be optimal. Strong points 

of this project are a feasibility study and a cost-benefit analysis. The authors present the costs 

of the vehicles and devices, fuel and maintenance expenditures, wages, etc., and do so for 

each scenario. According to the figures presented, it will take between three and five years 

until the costs of sensor deployment are earned back. 

 

Likotiko, Nyambo & Mwangoka (2017) attempt to solve this problem via agent-based 

modelling using NetLogo. Containers are equipped with sensors, but the authors do not say of 

what type those are. At a certain interval, sensors report on the fill levels that get stored in a 

database. At the start of each day, the application selects all containers with fill level above 

a certain threshold and solves a TSP on them. The authors claim to use the “Dijkstra’s 

algorithm as implemented in NetLogo”, and although that refers to a well-known shortest 

path finding algorithm, it is not exactly the same as solving the TSP. Altogether this study 

seems to present a relatively simple deterministic model with no scheduling. 

 

Ramos and her colleagues at Lisbon University have published a series of papers on waste 

collection optimization (Lopes et al., 2015; Ramos et al., 2018b, 2018a; Ramos, Gomes, & 

Barbosa-Póvoa, 2014). In their research, they often refer to the papers that we have 

described above. Two of their works (Ramos et al., 2018b, 2018a) describe a case study 

about a local waste collection company: there is a homogeneous vehicle fleet and a 

homogeneous container set. The vehicle capacity, fleet size and the maximum tour length 
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are the key constraints in the model. As Nuortio et al., Ramos and co-authors also use the 

company’s actual data both as an input for the model and as a baseline to evaluate the 

results. The haulers provided them with the actual fill level records for each container: upon 

emptying a container, the collectors record the observed fill levels on an ordinal scale 

“<25%”, “25-50%”, “50-75%”, “75-100%”. 

 

The authors set an objective of maximizing the amount of waste collected per unit distance 

travelled. They solve it as a node routing problem but do not use the road network. Instead, 

they use Euclidian distance between the containers; they multiply this distance by a constant 

(1.53), as they believe it represents the average ratio between the road and the straight-line 

distances in their study area. They do not, however, describe how they arrived at this figure. 

From our perspective, such modelling might oversimplify the solution and impact the results, 

so in our study we use an actual road network instead. 

 

Ramos et al. formulate three different approaches to sensor-enabled waste collection. In the 

first approach, only the containers whose fill level exceed a certain value are emptied. This 

selection procedure is run every morning before dispatching the vehicles, and only covers 

the current day. This significantly reduces the implementation complexity but makes it 

somewhat short-sighted since the accumulation rates are likely to vary among the containers 

and the chosen threshold may not be suitable for all of them. Besides, there is no planning for 

the rest of the week or beyond.  

 

The second approach improves on the first one by calculating a projected fill level for each 

container using its accumulation rate. The model allows to choose the lowest admissible 

service level, so a certain number of containers are allowed to overflow up to a certain point 

if such scenario yields better results. The solution may be optimal for the given day as it 

guarantees the required service level, but the nature of municipal solid waste collection may 

still require a longer-term schedule that fixes the collection dates for the coming week, month 

or a similar calendar period (at least long enough to define the working hours and the 

required number of employees and vehicles).  

 

In the third approach, the model also takes the lowest allowed service level, and finds the 

number of containers that are allowed to overflow. Now, for each container, the closest 

overflow date is calculated, and if on a given day the number of such containers exceeds 

the allowed value, the model schedules the container’s emptying for that date. Once all the 

containers have been scheduled, the algorithm solves the VRP for each of the days, in this 

way planning the containers and the route ahead for the given time horizon (Ramos et al. 

use 30 days as such). 

 

While the first two approaches yielded worse results than the company’s baseline indicators, 

the third approach showed an improvement in the distance travelled per waste collected 

ratio. Lowering the service level to 99% resulted in even larger savings, a compromise that 

may or may not be acceptable in a real situation. Overall, the authors argue that their results 

(specifically, the third approach) prove the benefits of using fill level sensors, although we 

suggest this method should first be enhanced by using a real road network as the graph 

base. Finally, the authors do not provide the formula that they used to arrive at a constant 

factor of 1.53. 

 

In one of the most recent studies on the topic, Ferrer & Alba (2018) present a use case of 

Algeciras (Spain). They develop a model similar to ours and set the objective of minimizing 

the distance travelled by the fleet. They also calculate waste accumulation rates for each 

container based on the previous measurements by the sensor. One merit of their model is 

that it can consider a heterogeneous fleet and a heterogeneous set of containers.  
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The software setup is divided in four modules: Data Management, Intelligent Decision, Routes 

Generation and Visualization. The data management module is a database in which all 

containers with their locations and attributes are stored, as well as their historical fill level 

records and a cost matrix specifying the commute cost between each pair of containers, in 

distance and in time. They use Google Maps API to generate the cost matrix, one with 

distances (constant over time) and one with travel times (computed anew every time, using 

Google’s traffic data). Finally, they use the same database to store the solutions. The 

intelligent decision module is a set of algorithms from the field of machine learning, as authors 

describe them, which use historical data to make future predictions. They do not specify 

which exact method they use, however, unless they simply use an average of historical 

accumulation rates. The routing module is built around what they call an “evolutionary 

algorithm (1+1)”. The solution can generate routes for different dates, thus facilitating 

scheduling. Finally, the visualization module is a web page that provides a simple interface for 

requesting routes and displaying them on a map. At the time of writing this section, it is 

available online at http://mallba3.lcc.ua.es/binct/.  

 

The authors run two experiments. In the first one, they predict future fill levels for a number of 

containers and later compare their prediction with factual observations. They use 217 

communal paper waste containers in the city and an eleven-month archive of historical fill 

levels. In this case, the historical data is the records made by waste collectors on the spot 

when emptying the container (the authors do not specify how the collectors do it). The 

authors derive the accumulation rate function using three methods: linear regression, 

Gaussian process and support vector machine for regression (SMOreg). They repeat the test 

30 times, and the results show that the mean absolute error is the lowest when using Gaussian 

process (3.83% compared to 7.41% for linear regression and 9.52% for SMOreg). 

 

In the second experiment, they predict the fill levels for a future date, generate routes and 

then when the date arrives, compare their results with the hauler’s route in terms of distance 

and duration. In their calculation, they tune the algorithm to mark all containers that exceed 

the 80% fill level as mandatory for emptying and the ones between 50% and 80% as optional. 

The algorithm picks 77 containers, which is more than the haulers schedule for that day (64) 

and divides them between two vehicles. The results show the overall distance and time for 

each of the routes and the average of both values per container visited. Based on these 

figures, the authors conclude that their solution reduces the overall mileage by 20% (even 

though more containers are visited), and the mileage per unit waste collected by 33%. These 

results are obtained using 10,000 iterations of the intelligent selection algorithm. The authors 

do not comment, however, on the optimality of this solution in the long run, i.e. in 

combination with other dates. The reported results may save costs on the given day, but 

whether they increase the results over a longer time period, remains unclear. Overall, 

however, this project presents an illustrative study with a high level of detail about the 

algorithm used (Ferrer & Alba, 2018).  

2.3 Research on using sensors in waste collection 

Our study focuses on the data processing rather than on the hardware used to acquire the 

data. We still do, however, discuss the hardware part, hence we present here a brief review 

of the literature devoted more specifically to that side of the problem. 

 

Mamun, Hannan, Hussain & Basri (2015) develop and test a prototype in which they use a 

combination of an ultrasonic sensor, an accelerometer, a magnetic proximity sensor and a 

microprocessor to monitor the state of a container. Their results show that in their case sensors 

reduce the waste collection expenses by 10–20% because of a 26% lower fleet mileage. They 

do not, however, describe the routing algorithm they use and focus mostly on the hardware 
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details: the sensors they use, e.g. each module’s energy consumption, price, etc., which 

allows to accurately estimate the costs of deploying sensors. They install sensors in a few 

containers and run a series of performance tests. Among the results are the 5 – 10% error rate 

for the fill level measurements. To increase the battery life, they set the fill level sensor in sleep 

mode by default. When the lid where the accelerometer is installed is opened or closed, or 

the container is tipped over during emptying, the combination of the acceleration dynamics 

and the status of the lid (open/closed) reported by the proximity sensor define the status of 

the container (full / not full). Additionally, they use install weight sensors under the container. 

Finally, the authors present some valuable information on the costs of solid waste collection in 

developing countries. According to their information, waste management takes up to 50% of 

municipal budget, and about 85% of these costs are incurred in waste collection and 

transportation. 

 

Rovetta et al. (2009) describe a setup tested in Pudong, China: 240-liter wheeled bins were 

equipped with two sets of devices: one on the inside of the lid and the other one on the 

bottom. The lid set included an optical camera, four LED lights, an ultrasonic sensor, an 

electronic thermometer and a humidity sensor. The LED lights illuminate the inside of the 

container when the camera takes snapshots. The authors used a combination of image-

processing with the ultrasonic ranging to determine the fill level. Unfortunately, the authors do 

not elaborate on the method they use. Although other papers also mention how cameras 

can help validate and improve the data obtained by ultrasonic ranging (see Mamun, 2015), 

the combination of the two may be an expensive solution. Now, the bottom set was 

comprised of a pressure sensor to estimate the content’s weight and an electronic 

thermometer. Both sets of devices were connected to a processing unit and a GPRS modem 

for data transmission. An interesting fact is that the authors use the weight and fill level 

measurements to calculate the density of the bin’s contents with the aim of defining the type 

of waste inside the bin. We have not come across this idea in the other studies we have 

reviewed, and although the goal itself is generally understood, the method suggests that the 

authors arrive at the average density, and if the contents are heterogeneous, this might 

provide little help in defining the constituting parts. Finally, the authors use an optimization 

engine to schedule and define routes via VRP, but do not detail the implementation. The 

present the value for the computed routes, such as distance and duration, but do not 

compare them with the actual data, apparently due to unavailability, so they rather illustrate 

that the system is generally capable of defining routes and scheduling pick-up dates 

(Rovetta et al., 2009). 

 

Hannan, Arebey, Begum & Basri (2011) describe a system very similar to the one developed 

by Mamun et al. (2015) but use optical cameras to take images of the container’s inside 

before it is emptied by the vehicle. They use an image of an empty container as a default 

and compare it with pre-emptying images by subtracting the pixel values of the two images 

(converted to their greyscale versions). In their case, the container’s walls are generally 

represented by the darker shades while the waste shows up as lighter shades. By using some 

decision algorithm, the details of which they do not provide, a binary image is derived in 

which all pixels have values either 0 (no waste) or 1 (waste). The ratio of these two categories 

allows the authors to estimate the amount of waste in the container. Additionally, the authors 

use the pixel intensity in the grayscale images to estimate the amount of waste in the vertical 

direction. Hannan et al. mention that this method was developed empirically by running tests 

with different amounts of waste in the container and comparing the pixel value histograms of 

the obtained images (Hannan, Arebey, Begum, & Basri, 2011). 

 

There have been many more studies on the use of sensor in municipal solid waste collection, 

but it is beyond our capabilities to present them all here. In general, it appears that ultrasonic 

rangers are used more often than cameras since image analysis techniques are generally 

more complex than deriving the fill level from the measurements obtained by ultrasonic 
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sensors. Furthermore, ultrasonic rangers send their records in a few bytes whereas each 

image may take up several megabytes, and it means more storage is required and 

processing may take longer time. Ultrasonic sensors do, however, one important vulnerability: 

the waste inside the container must be spread evenly. 
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3 Methodology 

We use the municipality Almere as a study area. Our choice fell on Almere because they 

collaborated with GIS Specialisten in the pilot project described in section 1.3. Almere is a 

mid-to-large-sized municipality with just over 200,000 inhabitants in which communal 

containers with underground storage space are used for waste collection at apartment 

blocks. An interview with the representatives of Stadsreiniging Almere (see appendix A) 

showed that they were supportive of the idea of using sensors to optimize the way they 

perform waste collection and transportation. Almere already had a similar project before 

(2017 – 2018, carried out by VConsyst). The experience was not entirely positive, and 

Stadsreiniging was looking for another contractor (D. Puzic, G. Kalkhoven, G. Chandler, 

personal communication, 29th of January 2019).  

3.1 Sensors 

Ultrasonic rangers are a type of sensors commonly used for waste level monitoring. The one at 

our disposal is a “Smart Waste Bin Detector DF702 LoRaWAN” (fig.1) produced by CNDingtek 

(Beijing, China).  

 

 
Figure 1. The sensor used in this study. 

 

It is housed in a protective case and mounted on the inside of the container’s lid. From there 

it sends a downward signal at equal time intervals. The signal bounces back off either the 

garbage or the container bottom and comes back to the sensor. The sensor built-on chop 

converts the signal’s travel time into the distance between the current waste level and the 

top of the container (fig.2). This, and another binary value that says whether the container is 

full (threshold set to 90%), are then sent to whatever the sensor is connected to, in our case 

The Things Network. 
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Figure 2. The work principle of the sensor. 

 

The sensor is also supplied with a thermometer that registers whether the container has 

caught fire (it sends 0 (false) or 1 for ‘true’). Additionally, it measures the orientation of the 

container. Should it tilt, fall on the side or turn over, the sensor will send another ‘1’ value in its 

payload, otherwise ‘0’. Finally, if the battery is running out, it will also send a binary value in a 

separate bit. In this case, however, it will not send the rest of the values in order to save the 

battery power. All measurements are taken concurrently (CNDigitek, 2019). In this study, 

however, we only use the fill level value, leaving the rest of functionality for the future work. 

The sensor is wired to work on LoRa, which operates at 868Mhz in the EU. 

 

Ultrasonic rangers do have certain vulnerabilities. They will give erroneous records if the waste 

inside the container is spread unevenly or any other obstacles come in the signal’s way. For 

example, the problem in Almere was the bulging of the trash bag that lines the container 

from the inside. With the parts of the bag getting in the sensor’s line of sight, the recorded fill 

levels were often exaggerated. Ultrasonic rangers are not the only available type of sensors. 

Mamun et al. (2015) and Faccio et al. (2011) both review the use of different sensors for waste 

monitoring. Common alternatives are optical or infrared cameras that produce images that 

can be processed by feature-recognition algorithms to determine the fill level. In section 2.3, 

we have reviewed some studies that use other sensor or compare the sensors between each 

other. 

3.2 Research problem model 

The objective of finding an optimal set of routes for a fleet of vehicles to visit a given set of 

locations defines a Vehicle Routing Problem (VRP), a generalization of the Travelling 

Salesman Problem (TSP) to the case of multiple vehicles. Since in our case the set of locations 

to visit on any given day must first be selected from the superset of all registered containers 

based on fill level, the problem turns into a VRP with Profits (VRPP). Thus, there are two major 

steps: selection and routing. Fig. 3 presents an overview of these steps. 
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Figure 3. Algorithm workflow overview. 

 

There is a homogeneous fleet of garbage trucks and a heterogeneous set of waste 

containers that are served by the fleet. There may be several types of containers, each with 

its own capacity, height and service time (the time it takes to empty it). Each container is 

equipped with an ultrasonic ranger that reports on the container’s fill level at equal interval 

(in this study, we use one time a day). The objective is to minimize the amount of time the 

fleet spends underway, aggregated over the dates for which the containers have been 

scheduled (time horizon). No containers are allowed to overflow (100% service level). Time 

series of fill level records obtained from sensors are then differences, i.e. the daily increases 

are computed, and these are then averaged over a certain period of time. In this study, we 

do not set a fixed limit on age of the records that can be used to calculate the predicted 

accumulation levels because we believe that it strongly depends on the use case. The 

scheduling and route planning algorithms are designed to be run once for each time horizon: 

for each container it finds the date when it is expected to overflow, based on recorded 

history. If service level is set 100% (default), the algorithm schedules the container’s emptying 

for the day prior to becoming full. Additionally, it ensures that it is a working day. 

3.3 Cost function 

The optimality of a route is most commonly expressed in two metrics: distance and travel 

time. The latter can also be called the route duration. In the Euclidean space, the shortest 

path is always the fastest. In our case, however, paths obey the road network with its line 

segments, their speed limits, allowed travel direction, etc. It is well known that the shortest 

path for a vehicle on a road network is not always the same as the fastest path. A longer 

route on a highway can be faster than a shorter route through regular roads, because of the 

speed limit difference, traffic lights, etc. In a case study, one would likely want to estimate the 

improvement brought about by the routing optimization in the monetary value as well. We 

suppose that this monetary value can be represented as a function of both the route 

duration and its distance. Two major variable costs of waste collection are: labor, i.e. driver 

and collector wages, and fuel (Greco, Allegrini, Del Lungo, Gori Savellini, & Gabellini, 2015). 

Wages are paid per hour whereas the fuel consumption is given in 𝐿/𝑘𝑚. Maintenance costs 

have a mixed nature. Many parts, e.g. engine, wear out with distance traveled and are, as 

such, variable costs. Other maintenance costs, like periodic vehicle inspections or changing 

between summer and winter tires, are fixed. Generally, the variable part of the maintenance 

costs is a function of mileage (e.g. engine life). Hence the variable costs 𝐶(𝑟𝑖) for any given 
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route 𝑟𝑖 can be approximated as a function of both its duration 𝑇(𝑟𝑖) (h) and its length 𝐿(𝑟𝑖) 

(km): 

𝐶(𝑟𝑖) = 𝑇(𝑟𝑖) ⋅ (𝑤𝑑𝑟 + 𝑛𝑐𝑜𝑙 ⋅ 𝑤𝑐𝑜𝑙) + 𝐿(𝑟𝑖) ⋅ (𝑓 ⋅ 𝑝 + 𝑚)            (1) 

where:  

• 𝑤𝑑𝑟 is the driver’s hourly wage, € 

• 𝑤𝑐𝑜𝑙  is the collector’s hourly wage, € 

• 𝑛𝑐𝑜𝑙 is the number of collectors per vehicle 

• p is the fuel price per liter for the fuel type used, € 

• f is the fuel consumption of the garbage trucks used in Almere, 𝐿/𝑘𝑚 

• m is the average maintenance costs per km travelled, € 

 

A deeper insight shows that the real relation between the variables is much more complex: 

fuel consumption can vary greatly depending on the vehicle’s weight, and the weight of a 

garbage truck underway steadily increases as the it collects more waste. Moreover, the age 

of a vehicle and its speed dynamics (acceleration, deceleration) must be considered as well. 

Maintenance can be a factor of both time and mileage. Without any information from the 

hauler, we lack a firm basis for estimating the fuel consumption and the maintenance costs. 

We believe, however, that the fastest route is usually the cheapest one as well (an 

assumption that can perhaps be challenged by the reader). Therefore, we make the travel 

duration an objective in the minimization problem that we formulate in this study. We 

encourage the reader, however, to challenge our assumptions and develop a more 

complex and realistic cost function, especially if the required technical details are available.  

 

For this study, we reduce the cost function of a route to a function of its duration: 

 

𝐶(𝑟𝑖) = 𝑇(𝑟𝑖)       (2) 

 

And the total cost of a solution can be calculated as a sum of the costs of the routes 𝑅 =

{𝑟𝑖 , … , 𝑟𝐾𝑚𝑎𝑥
}: 

𝐶(𝑅) = ∑ 𝑟𝑖

𝑘

𝑘=1

       (3) 

 

3.4 Input data: road dataset 

One popular source of road data is OpenStreetMap. Since it is open for anyone to make 

edits, it may require a quality check, although openness can also mean more frequent 

updates. Nevertheless, we decided to use the official national road dataset, Nationaal 

Wegenbestaand (NWB), instead. The comparison between OpenStreetMap and NWB is 

beyond the scope of this study. NWB is open data and it can be downloaded from the 

website of Rijkswaterstaat along with the accompanying documentation (Rijkswaterstaat, 

2019). For further processing, we clipped the dataset to the administrative boundaries of 

Almere using the corresponding QGIS tool (fig.4): 
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Figure 4. Representation of NWB for the territory of Almere (in red). 

 

NWB does not specify speed limits or any other metric that can be used to calculate the time 

it takes to traverse any given road segment. Since such metric is required for solving the 

problem, we augmented NWB as follows. First, the length of each segment was added as a 

separate attribute (use ‘$length’ operator in QGIS). Next, we added a new attribute to store 

the speed limit for each road segment. The best guess about its value can be made based 

on the road type expressed by its ‘routeletter’ attribute. It is ‘A’, ‘N’ or ‘E’ for highways and 

NULL (empty) for other roads. On highways, trucks are limited to 80 km/h; on other roads, the 

limit is 50 km/h for the built-up areas and 80 km/h otherwise (ANWB, 2019). We are unaware of 

any datasets that would demarcate the built-up areas for the given territory. Since Almere is 

mostly urbanized, we consider all its area to be built-up and define the speed limits as follows: 

 

Table 1. Speed limits approximation for NWB in Almere. 

Routeletter Speed limit, km/h 

NOT NULL (A, N or E) 80 

NULL 50 

 

Speed limit is an extreme approximation for the expected travel speed. We therefore 

multiplied it by a constant factor x. For this study, we arbitrarily chose 𝑥 = 0.7. For real-world 

applications, we recommend using traffic data instead, if possible. Now, the estimated travel 

duration 𝑡𝑖𝑗 for any given line segment (edge) 𝑒𝑖𝑗 that connects junctions i and j, can be 

calculated by simply dividing the expected travel speed on it by the segment’s length 𝑙𝑖𝑗. 

Finally, we converted it from hours into minutes. Now this attribute represents the ‘cost’ of the 

traversing the given edge, or, in graph theory terms, the weight of the edge. The formula for 

the above procedure is presented below:  

 

𝑡𝑖𝑗 =
𝑙𝑖𝑗   

𝑥 ∗ 𝑠𝑝𝑒𝑒𝑑𝑖𝑗
𝑚𝑎𝑥        (4) 

 

where 𝑠𝑝𝑒𝑒𝑑𝑖𝑗
𝑚𝑎𝑥 denotes the speed limit for edge 𝑒𝑖𝑗. 
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Another limitation of NWB is that the allowed travel directions (both ways / one way) are only 

specified for highways (routes classified as ‘A’, ‘N’ or ‘E’). We are unaware of any open 

sources that could augment NWB in this respect. Therefore, we simply assume all road 

segments for which the direction is not specified (NULL) to be traversable in both directions. If 

the direction is specified as ‘H’ (forward only) for a given segment 𝑒𝑖𝑗, we set 𝑡𝑗𝑖 = 106. That is, 

travel duration for the reverse edge is set to a large value that by far exceeds any real travel 

durations in the given network and will make the optimization algorithm always prefer other 

road segments. 

3.5 Input data: container locations 

Basisregistratie Grootschalige Topografie (BGT), developed by Kadaster (Kadaster, 2019), is 

an open spatial dataset that contains miscellaneous objects, from buildings and roads to 

street furniture and waste containers. We chose it over OpenStreetMap for the same reasons 

as described in the previous section. Waste containers in BGT (4854 features in total) belong 

to the category ‘Bak’ (‘container’, IMGeo, 2019) and are divided into three types:  

1. ‘afval apart plaats’ (recycling bin with underground collection space) 

2. ‘container’ (larger containers without underground collection space) 

3. ‘afvalbak’ (smaller street bin) 

 

A closer look at the data, however, revealed significant discrepancies between BGT and the 

information presented on the website of the municipality of Almere (Gemeente Almere, 

2019). For example, there are only 34 ‘afval apart plaats’ items in BGT, and the majority of the 

actual recycling bins (as presented on the municipality’s website) are missing. Since we were 

not able to obtain any data from Almere, we use random selections, 100 and 500, from the 

4854 containers stored in BGT for the territory of Almere. Fig. 5 & 6 show these selections: 

 

 
Figure 5. 100 randomly selected waste containers from BGT in Almere. 
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Figure 6. 500 randomly selected waste containers from BGT in Almere. 

 

For the implementation and testing, we also needed the type of waste, volume and height 

for each container. In section 4.2., we describe how we use these parameters to predict 

accumulation rates. For now, let us say that BGT does not provide any of them, and we had 

to mock them up. Almere separates municipal solid waste into five categories (Gemeente 

Almere, 2019):  

• Paper and cardboard 

• Plastic, tins and packaging (PMT) 

• Glass (mixed) 

• Organic (groenafval) 

• Unsorted (restafval) 

 

We randomly assigned an equal number of containers in each of our two selection to each 

type of waste, e.g. 20 containers to each category for the 100-container selection. For the 

height, we use 2000 mm, 2 meters (the maximum range of our sensor), for all containers in 

both selections. For the volumes, we used two values, 3𝑚3 and 4𝑚3, and split each selection 

in half among those two. This mock data is not backed by any observation and may deviate 

from reality, but as we say in this paper, without access to the actual data, we focus more on 

the prototype development and we believe that should the reader use our prototype for a 

case study, our simulated data can be easily replaced with the actual data.   

3.6 Converting road network into a complete graph 

Solving a (C)VRP(P) requires knowing the commute cost between each pair of destinations 

(waste container locations in our case) and each destination and the depot. In reality, 

however, the most commonly available input data are road datasets, e.g. Nationaal 

Wegenbestaand (NWB) in the Netherlands. Such datasets represent a road network, made of 

road segments and the junctions between them. Road segments can be represented as 

single or multilines (multilines in NWB). They are usually relatively short, so most roads consist of 

multiple road segments. By using a road network itself to solve a VRP, one would find a set of 
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tours that visit all the junctions, but we are interested in containers instead. This brings up a 

problem of converting a road network (a sparse graph) into a complete graph. 

 

A graph is complete if all pairs of its vertices are connected by edges. Therefore, such 

transformation requires finding the shortest (or fastest) path between each pair of containers 

and between each container and the depot. Finding the shortest path between two vertices 

is a common task in the field of network analysis and most GIS applications feature at least 

one tool to solve it. GRASS GIS has a tool for finding all shortest path for a set of locations, for 

each pair of them. The algorithm is called v.net.allpairs and we use it via QGIS because of the 

extra GUI convenience it provides. However, it can also be executed in the command 

prompt. Our choice fell on this tool because, firstly, GRASS is FOSS, and, secondly, it does not 

require extra scripting to batch the execution (repeat it for all pairs of vertices). The algorithm 

description can be found the official GRASS GIS documentation (Bundala, Bergenheim, & 

Metz, 2009).  

 

This tool does, however, have its drawbacks, the main one being that it returns each shortest 

path by segment (each segment as a separate record), therefore the output requires further 

aggregation to obtain single geometry for every pair of vertices. We use QGIS native 

Aggregate tool for this purpose. We will comment on the performance of this combination in 

more detail in chapter 6. 

3.7 Other procedures & methods  

• Interviews with municipalities Almere (in person, Appendix A) and Houten (Appendix B) 

• Experimental software development (Appendix C) 
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4 Methods and algorithms for solving the CVRP(P) 

This chapter presents the answers to the research questions formulated for the first objective 

(see section 1.5). We break down the VRPP into the subset selection procedure (selecting 

which containers to empty) and the VRP itself, which due to the prominence of the vehicle 

capacity constraint, we call the Capacitated Vehicle Routing Problem (CVRP), in line with 

other related research. The chapter starts with formulating the CVRP as a mathematical 

optimization problem, proceeds with the exact methods for solving it, after which it presents 

some relevant heuristics and metaheuristics. 

4.1 CVRP: Problem formulation 

Let 𝐺(𝑉, 𝐸) be a complete directed graph where 𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑛} is the set of vertices, 𝑣0 

represents the depot and {𝑣1, … , 𝑣𝑛} represent the waste containers, and 𝐸 = {𝑒𝑖𝑗 ∶ 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠

𝑗} is the set of edges, representing the shortest paths between each pair of vertices. Each 

vertex 𝑣𝑖 has an associated demand 𝑞𝑖 ≥ 0 that represents the amount of waste to be 

collected from that container in kg. Each edge 𝑒𝑖𝑗 has an associated cost 𝑐𝑖𝑗  (in minutes) that 

is in our case represented by the time it takes to traverse it (travel duration), but can also 

represent cost of a different type, e.g. monetary cost, depending on the nature of the 

underlying real-world problem. Since the shortest paths 𝑒𝑖𝑗 follow the road network, and do 

not, generally, represent the Euclidean shortest paths, the costs of traveling between any to 

vertices are not, generally, equal: 𝑐𝑖𝑗 ≠ 𝑐𝑗𝑖. This implies that the graph is directed and the CVRP 

is directed. 

 

Let 𝐾𝑚𝑎𝑥denote the maximum number of vehicles available. The fleet is homogeneous, i.e. all 

vehicles have the same capacity 𝑄𝑚𝑎𝑥 and a maximum tour duration 𝑇𝑚𝑎𝑥 that is imposed by 

the working hours. A solution is defined as a set of routes 𝑅 = {𝑟1, … , 𝑟𝐾𝑚𝑎𝑥
} where some of the 

routes can be empty (𝑟𝑘 =  ∅). Each non-empty route 𝑟𝑘 ⊆ 𝐸 is an ordered array of edges 𝑟𝑘 =

[𝑒0𝑖 , … , 𝑒𝑗0 ∶  𝑣𝑖 , 𝑣𝑗 , 𝑣0 ∈ 𝑉]. For convenience, let us write 𝑒𝑖𝑗 ∈ 𝑟𝑘 if edge 𝑒𝑖𝑗 is part of route 𝑟𝑖 and 

𝑣𝑖 ∈ 𝑟𝑘 if any edge 𝑒𝑖𝑥 or 𝑒𝑥𝑖, ∀ 𝑣𝑥 ∈ 𝑉, makes part of route 𝑟𝑖. In a ‘classical’ VRP, each route is 

a Hamiltonian cycle, i.e. a graph in which each vertex 𝑣𝑖, 𝑑𝑒𝑔−(𝑣𝑖) =  𝑑𝑒𝑔+(𝑣𝑖) = 1 

(considering the graph is directed), but we assume that this requirement may be 

unsatisfiable, e.g. due to the presence of dead-end streets, and is not necessary for solving 

the problem. Each route 𝑟𝑘 can be measured in terms of its total duration 𝑇(𝑟𝑘) =

∑ 𝑐𝑖𝑗𝑒𝑖𝑗 ∈ 𝑟𝑘  and the total amount of waste collected 𝑄(𝑟𝑘) =  ∑ 𝑞𝑖𝑣𝑖 ∈ 𝑟𝑘
. A route is considered 

feasible if starts and ends at the depot, contains no cycles that do not include the depot, 

and the vehicle capacity and tour duration constraints are satisfied: 𝑇(𝑟𝑘) ≤ 𝑇𝑚𝑎𝑥  and 𝑄(𝑟𝑘) ≤

𝑄𝑚𝑎𝑥. A solution is considered feasible if all its routes are feasible. We will use these 

conventions throughout this chapter, so their summary is presented in table 2: 

 

Table 2. Main variable names that we use in this chapter. 

𝑣𝑖  ∈ 𝑉 vertex (container) 

𝑣0 ∈ 𝑉 depot 

𝑒𝑖𝑗    𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 edge (shortest path between 𝑣𝑖 and 𝑣𝑗) 

𝑞𝑖    𝑣𝑖 ∈ 𝑉 amount of waste in container 𝑣𝑖 (𝑞0 = 0) in kg 

𝑐𝑖𝑗    𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 edge cost (travel duration) in min 

𝑄𝑚𝑎𝑥  vehicle capacity 

𝑇𝑚𝑎𝑥  maximum route duration 

𝐾𝑚𝑎𝑥 maximum number of vehicles (routes) 

𝑟𝑘 ∈ 𝑅 route (tour) 

𝑇(𝑟𝑘) route duration 
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4.2 Reducing the VRPP to the VRP: container selection 

In the definition presented in the previous section, container set V is a given and represents, in 

fact, a subset of all containers that was selected for emptying on the given day 𝑡𝑥, (𝑥 ∈ ℤ). 

How does this selection happen? The daily updates coming from the sensors suggest the 

selection can be done ‘on-the-fly’, on the same day the collection is performed and for that 

day only, and the day after the same procedure will be repeated with up-to-date fill levels 

from the sensors. This system would be the opposite of the traditional approach where there 

was only planning via forecasting and minimal to no (near-)real-time information. An 

example of such system is described in Faccio, Persona & Zanin (2011). 

 

Most researchers, however, believe that planning cannot be discarded, but should rather be 

improved by using sensor data (Ferrer & Alba, 2018; Lopes et al., 2015; Nuortio et al., 2006; 

Ramos et al., 2018b). The role of sensors here is to provide accurate measurements 

automatically and at regular intervals, so that planning can be based on actual fill levels 

rather than statistical approximations or long-term observations. This is where the problem 

acquires a temporal dimension. We assume that the time grain for waste collection planning 

is one day: the obtained solution consists of a set of routes that covers the whole day. For the 

next day, another set of routes must be found. We also assume that any given container is 

emptied at most once a day. Our goal is to keep the service level at 100%, i.e. let no 

containers overflow. 

 

Let 𝑉∗ = {𝑣1, 𝑣2, … , 𝑣𝑛} denote the set of all containers serviced by our system. All of them are 

equipped with sensors that report the fill level once a day. These records make up time series 

of the form [ … , ℎ𝑖(𝑡𝑥−1), ℎ𝑖(𝑡𝑥), ℎ𝑖(𝑡𝑥+1), … ], 𝑣𝑖 ∈ 𝑉∗ and 𝑡𝑥 the x-th day of observation, ℎ𝑖(𝑡𝑥) is 

the distance between the lid of the container and the waste body (mm) for any container 

𝑣𝑖  ∈  𝑉∗. It can be converted into a fill level given the total height of the inside of the 

container 𝐻𝑖 using the following formula: 

 

𝛾𝑖 = 1 −
ℎ𝑖

𝐻𝑖

     [0,1], 𝑣𝑖 ∈ 𝑉∗     (5) 

 

Fill level can, in turn, be converted into weight, the measure in which the garbage trucks 

saturate their capacity. Given that the waste type and the volume for each container is 

known from the manufacturer, we only need to obtain the average density for that waste 

type. Considering that the categories for waste containers are relatively broad (‘paper and 

cardboard’, ‘organic waste’, etc.), the average density may deviate from the actual 

measurement. The precise estimation of these indicators is beyond the scope of this study 

and the capabilities of the authors, so we use third-party resources (EPA Victoria, 2018; 

Stimular, 2018): 

Table 3. Average material density for the different types of waste. 

Waste type Average density (kg/m3) 

Paper and cardboard 120 

Plastic, tins and packaging (PMT) 70 

Glass (mixed) 300 

Organic (groenafval) 300 

Unsorted (restafval) 50 

 

Using this information, the actual amount of waste 𝑞𝑖  (kg) in each container can be 

calculated: 

 

𝑞𝑖 =  𝛾𝑖 ∗  𝜔 ∗  𝜌, ∀ 𝑣𝑖 ∈ 𝑉∗       (6) 
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Here, 𝜔 is the container’s volume (𝑚3) and 𝜌 is the material’s density (𝑘𝑔 𝑚3⁄ ). 

 

Now, to be able to forecast, we need to calculate accumulation rates for each container. 

The absolute fill levels should therefore be differenced to arrive at time series of the form 

[ … , ∆𝑖(𝑡𝑥 ), ∆𝑖(𝑡𝑥+1), ∆𝑖( 𝑡𝑥+2), … ] where ∆𝑖(𝑡𝑥) is the difference between day 𝑡𝑥 and the 

preceding day for any given 𝑣𝑖 ∈ 𝑉∗. The simplest way would be to compute the mean of the 

increases over a certain period (𝑡1, … , 𝑡𝑛): 

 

𝑎𝑖 =
∑ ∆𝑖(𝑡𝑥)𝑛

𝑥=1

𝑛
     [0,1], ∀ 𝑣𝑖 ∈ 𝑉∗       (7) 

 

There may be, however, some cyclicity in the increases, for example weekly (similarity in 

waste disposal on the same day of the week in consecutive weeks) and annual patterns 

(similarity in waste disposal on the same calendar date in consecutive years) (Johnson et al., 

2017; Kannangara, Dua, Ahmadi, & Bensebaa, 2017). These patterns may be location-

specific, however. Autocorrelation can be used to detect such patterns. However, we do not 

implement it for the reasons that the discuss in chapter 6. 

 

The expected overflow date 𝑡𝑖
𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤

 can be found for any container 𝑣𝑖 ∈ 𝑉∗ by adding the 

number of days until its expected overflow to the current date 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡: 

 

𝑡𝑖
𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤(𝑣𝑖) =  𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ⌈

1 −  𝛾
𝑖

𝑎𝑖

⌉       (8) 

This formula must, of course, obey the ‘date arithmetic’. 

 

Now,  µ𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤(𝑣𝑖) − 1 defines the latest possible collection date for the given container. 

Besides maintaining a 100% service level, it is desirable to avoid collecting waste more 

frequently than needed, as it causes extra costs and air pollution. Therefore µ𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤(𝑣𝑖) − 1 

would be the optimal collection date, by default. However, it must be a workday: Saturdays, 

Sundays and bank holidays must be excluded. It must be mentioned that the work schedules 

in waste management may differ between the countries, regions, etc., and the exact rules as 

to which days to exclude should be defined considering the local principles.  

If a given date is not a workday, the collection must be shifted. Since shifting to a later date 

would violate the required service level, it can only be rescheduled to an earlier date. The 

algorithm does it one day at a time and stops once it has found a valid calendar date. 

4.3 Exact methods for solving the CVRP 

Exact methods for solving the VRP include Mixed Integer Linear Programming and Branch-

and-Bound that are described below but are not limited to those two. For a comprehensive 

overview of the exact methods, see Laporte (1992) and Archetti, Speranza & Vigo (2014). 

4.3.1 Mixed Integer Linear Programming 

This formulation is based on Archetti, Speranza & Vigo (2014) and Ramos, de Morais & 

Barbosa-Povoa (2018b). Given a fixed number of available vehicles 𝐾𝑚𝑎𝑥, a set of tours 𝑅 =

{𝑟1, … , 𝑟𝐾𝑚𝑎𝑥
} should be defined, such that: 

• each non-empty tour 𝑟𝑘  starts and ends at the depot 𝑣0 (some tours may be empty) 

• the duration of any tour cannot exceed the limit  

• the number of tours cannot exceed the maximum available number of vehicles 

• the total amount of waste collected on any tour cannot exceed the vehicle capacity 
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Let us define two decision variables: 

• 𝑦𝑖
𝑘, a binary variable equal to 1 if 𝑣𝑖 ∈ 𝑉 is visited on route 𝑟𝑘  and 0 otherwise 

• 𝑥𝑖𝑗
𝑘 , a binary variable equal to 1 if 𝑒𝑖𝑗 ∈  E is traversed on route 𝑟𝑘 and 0 otherwise 

 

Now, here is the formulation of the problem: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗 ∗ 𝑥𝑖𝑗
𝑘

𝑛

𝑗=0

𝑛

𝑖=0

𝐾𝑚𝑎𝑥

𝑘=1

, 𝑣𝑖 , 𝑣𝑗 ∈ 𝑟𝑘 , 𝑖 ≠ 𝑗        (9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ 𝑦0
𝑘  ≤ 𝐾𝑚𝑎𝑥   

𝐾𝑚𝑎𝑥

𝑘=1

                   (10) 

∑ ∑ 𝑐𝑖𝑗 ∗ 𝑥𝑖𝑗
𝑘  ≤  𝑇𝑚𝑎𝑥

𝑛

𝑗=0

, ∀ 𝑟𝑘 ∈ 𝑅

𝑛

𝑖=0

          (11) 

∑ 𝑞𝑖 ∗ 𝑦𝑖
𝑘 ≤ 𝑄𝑚𝑎𝑥, ∀ 𝑟𝑘 ∈ 𝑅

𝑛

𝑖=1

          (12) 

 

𝑦𝑖
𝑘 ∈ {0,1}           ∀ 𝑣𝑖 ∈ 𝑉, 𝑟𝑘 ∈ 𝑅     (13)   

 
𝑥𝑖𝑗

𝑘 ∈ {0,1}          ∀ 𝑒𝑖𝑗 ∈ 𝐸, 𝑟𝑘 ∈ 𝑅       (14) 

 
The objective function (9) minimizes the total time spent by the fleet of vehicles. Constraint 

(10) limits the number of routes to the number of vehicles required. Constraint (11) limits each 

tour’s duration and constraint (12) ensures that the total amount of waste collected on each 

tour is feasible with regards to vehicle capacity Finally, (13) and (14) are the definitions of the 

decision variables. 

4.3.2 Branch and Bound 

Branch-and-bound algorithms use state space search for finding the best solution: the set of 

all candidate solutions forms a rooted tree with the full set at the root. Each branch of the 

tree represents a subset of the solution set. Each state tree’s branch is first checked against 

the upper and lower estimated bounds on the current optimal solution and is discarded if it 

cannot produce a better solution than the best found so far by the algorithm. The algorithm 

depends on efficient estimation of lower and upper bounds of regions/branches of the 

search space. If no bounds are available, the algorithm degenerates to an exhaustive 

search. The formulation presented here is based on (Laporte, 1992). First, we first introduce 

𝐾𝑚𝑎𝑥 − 1 new (artificial) depots. Now we have one depot vertex for each vehicle and 𝑛′ =

(𝑛 − 1 + 𝐾𝑚𝑎𝑥) vertices in total. This defines a new complete set of vertices 𝑉′ = {𝑣0, 𝑣1, … , 𝑣′}, 

such that 𝑉 ⊆ 𝑉′, and a new complete edge set 𝐸′ = {𝑒𝑖𝑗 , 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉′}. Let us define an 

extended cost matrix 𝐶′ = [𝑐′𝑖𝑗] as: 

 

𝑐𝑖𝑗     (𝑣𝑖 , 𝑣𝑗 ∈ 𝑉), 

 

𝑐𝑖0    (𝑣𝑖 ∈ 𝑉\{𝑣0}, 𝑣𝑗 ∈ 𝑉′\𝑉), 

               𝐶𝑖𝑗       (15) 

𝑐0𝑗     (𝑣𝑖 ∈ 𝑉′\𝑉, 𝑣𝑗 ∈ 𝑉\{𝑣0}), 

 

0    (𝑣𝑖 , 𝑣𝑗  ∈ (𝑉′\𝑉) ∪ {𝑣0}) 
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The following allows to eliminate subtours. Let 𝑘𝑚𝑖𝑛(𝑉′′) denote the minimum number of 

vehicles required to visit any given subset of vertices 𝑉′′ such that 𝑉′′ ⊂  𝑉′\{𝑣0} and |𝑉′′|  ≥ 2: 

 

𝑘𝑚𝑖𝑛(𝑉′′) = ⌈
∑ 𝑞𝑖𝑖∈𝑉′′

𝑄𝑚𝑎𝑥

⌉       (16) 

 

which comes from the observation that  the following must apply: 

 

∑ ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

≥  𝑘𝑚𝑖𝑛(𝑉′′),   𝑣𝑖 ∈ 𝑉′′, 𝑣𝑗 ∈ 𝑉′\𝑉       (17) 

 

|𝑉′′| = + ∑ ∑ 𝑥𝑖𝑗

𝑗 ∈ 𝑉′\𝑉𝑖 ∈ 𝑉′′

       (18) 

 

The following subtours are illegal in this definition: 

• Subtours over a set 𝑉′′ of vertices 𝑉\{𝑣0} 

• Subtours that violate the capacity or maximum duration constraints:  

 

Now, let us define the VRP of interest: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗 ∗ 𝑥𝑖𝑗

𝑛′

𝑗=1

𝑛′

𝑖=1

,    𝑖 ≠ 𝑗      (19) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

 

∑ ∑ 𝑥𝑖𝑗

𝑛′

𝑗=1

,    𝑣𝑖 , 𝑣𝑗 ∈ 𝑉′      (20)

𝑛′

𝑖=1

 

 

𝑥𝑖𝑗 ∈ {0,1}   (𝑣𝑖 , 𝑣𝑗 ∈ 𝑉′; 𝑖 ≠ 𝑗)    (21) 

 

∑ ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

≤ |𝑉′′| − 𝑘𝑚𝑖𝑛(𝑉′′), 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉′′       (22) 

 

(19), (20) and (21) define a modified assignment problem where assignments on the main 

diagonal are not allowed and constraint (22) prevents subtours. 

 

Since we transformed the problem at the start by adding duplicate depot vertices, the 

resulting solution must first be corrected. For each edge 𝑒𝑖𝑗 in the solution: 

• if 𝑣𝑖 ∈ 𝑉\{𝑣0} 𝑎𝑛𝑑 𝑗 ∈ 𝑉′\𝑉, replace 𝑒𝑖𝑗 by 𝑒𝑖0 

• if 𝑣𝑖  ∈ 𝑉′\𝑉 𝑎𝑛𝑑 𝑗 ∈ 𝑉′\{𝑣0}, replace 𝑒𝑖𝑗 by 𝑒1𝑗 

• if 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉′\𝑉, delete 𝑒𝑖𝑗 

4.4 Tour construction heuristics 

VRP is an NP-hard problem which means that the time required to find the optimal solution 

grows exponentially with the number of vertices (destinations). The size of the VRPs that can 

be solved by exact methods within a reasonable amount of time constantly grows with the 

advance in computing power but the problems with hundreds of destinations, as may be the 

case with garbage collection, may still take many hours or even days to solve on a regular 

machine, especially with the increase in the number of constraints (capacity, tour duration, 
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number of vehicles, etc.). For this reason, heuristics are widely used to solve large problems in 

a reasonable amount of time. 

 

The performance of any heuristic A can be measured as a ratio 
𝑇(𝑆𝐴)

𝑇(𝑆𝑂𝑃𝑇)
 where 𝑆𝐴 is the 

solution obtained by the heuristic and 𝑆𝑂𝑃𝑇 is an optimal solution obtained by one of the 

exact methods, hence 𝑇(𝑆𝐴) and 𝑇(𝑆𝑂𝑃𝑇) are their respective costs measured in terms of the 

objective’s value. The ratio 
𝑇(𝑆𝐴)

𝑇(𝑆𝑂𝑃𝑇)
 measures the degree of departure of the solution 

obtained by heuristic A from the optimal solution 𝑆𝑂𝑃𝑇 (Cordeau, Gendreau, Laporte, Potvin, 

& Semet, 2002; D. Johnson & McGeoch, 1995). The heuristics presented in this section are 

based on Prodhon & Prins (2016), Cordeau et al. (2002), Johnson & McGeoch (1995), Vidal et 

al. (2013) and Rosenkrantz et al. (1977). 

4.4.1 A foreword on triangle inequality and directed graphs 

For each heuristic, the worst- and best-case performance ratios may depend on whether the 

given problem satisfies the triangle inequality, i.e. for any triangle, the sum of the lengths of 

any two sides must be greater than or equal to the length of the remaining side. In our case, 

a triangle is formed by a triplet of vertices, and their sides are the shortest paths between 

those vertices, i.e. edges of our graph (Johnson & McGeoch, 1995; Prodhon & Prins, 2016). For 

example, for any three vertices 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘 ∈ 𝑉, 𝑐𝑖𝑗 + 𝑐𝑗𝑘 ≥ 𝑐𝑘𝑖 , 𝑐𝑘𝑖 + 𝑐𝑗𝑘 ≥ 𝑐𝑖𝑗 and 𝑐𝑖𝑗 + 𝑐𝑘𝑖 ≥ 𝑐𝑗𝑘. The 

problems that satisfy triangle inequality can be called metric or Euclidean, and those that do 

not – non-metric (Skopal, 2006). 

 

In our problem, the shortest paths between the destinations do not, generally, correspond to 

the Euclidean distance between them since they are calculated along the road network. 

Most authors run tests only on metric problems. In fact, finding the worst- or best-case bounds 

for any TSP/VRP heuristic for problems that do not necessarily satisfy the triangle inequality is 

NP-complete (Rosenkrantz, Stearns, Lewis, Ravi, & Shukla, 1977). Therefore, we advise the 

reader to take the information about the performance of the heuristics in this chapter with 

caution. We always mention whether the triangle inequality has an effect on the algorithm’s 

performance. However, triangle inequality can be enforced by adding a large enough 

constant to each edge’s cost in the graph (Rosenkrantz et al., 1977; Skopal, 2006). The 

present an example in fig.7 below: the original graph on the left does not satisfy the triangle 

inequality as 𝑐𝑖𝑗 + 𝑐𝑖𝑘 < 𝑐𝑘𝑗 (the graph is undirected but the same can be applied to a 

directed graph). By adding a constant 𝑐𝑜𝑛𝑠𝑡 = 2 to each edge’s cost, we enforced the 

triangle inequality (the graph on the right).  

 

 
Figure 7. Triangle inequality inforcement. The graph on the left does obey the triangle inequality (𝒄𝒌𝒊 +

𝒄𝒊𝒋 < 𝒄𝒋𝒌). The graph on the right, produced by incrementing the cost of each edge by 2, does. 

 

The minimum required value of 𝑐𝑜𝑛𝑠𝑡 depends on the values of the edge weights (costs) and 

is, as such, problem dependent. In this study, we do not cover the method for finding the 

suitable value for 𝑐𝑜𝑛𝑠𝑡 and the related matters of enforcing the triangle inequality. The cost 
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of the solution found after applying this enforcement will differ from the ‘true’ cost by 𝑐𝑜𝑛𝑠𝑡 ∗

∑ |𝑟𝑖|
𝐾𝑚𝑎𝑥
𝑘=1 , i.e. by the number of edges in the solution multiplied by the chosen constant. The 

optimality of the solution will not be affected however, as all edges have been incremented 

by an equal amount, and the true cost can be found by subtracting it from the ‘false’ cost. 

 

Another important thing to consider when talking about heuristics is the whether the graph on 

which the problem is solved is directed. Some methods work only on undirected graphs, at 

least in their original formulation, so we do not cover them in our study. One example is the 

Double Minimum Spanning Tree heuristic. But the most prominent of those is the Christofides 

method. First presented in 1976, it still has the best worst-case performance ration among all 

existing tour construction heuristics for symmetric problems (Vidal, Crainic, Gendreau, & Prins, 

2013). If 𝑐𝑖𝑗 = 𝑐𝑗𝑖  ∀ 𝑒𝑖𝑗 ∈ 𝐸, the problem is said to be symmetric and the graph to undirected. 

Otherwise, the problem is asymmetric, and the graph is directed. There exist, to our 

knowledge, some adaptations of this method to asymmetric problems (Roughgarden, 2016), 

but leave those beyond the scope of this study. 

4.4.2 Nearest Neighbor 

This is arguably the simplest heuristic: starting from the depot, the algorithm iteratively adds 

the closest vertex (to the latest added vertex in the tour). A greedy approach, it is likely to 

yield routes that are far from being optimal and can sometimes find no feasible solution at all, 

even if such exists for the given problem. The benefits are, of course, the ease of 

implementation and a runtime of O(n2). For the problems that satisfy the triangle inequality, 
𝑇(𝑆𝐴)

𝑇(𝑆𝑂𝑃𝑇)
≤ 0.5(⌈log

2
𝑁⌉) + 0.5) (Rosenkrantz et al., 1977). 

 

Acting sequentially, a heuristic will be constructing one tour at a time, and it will finish the tour 

by linking it back to the depot if the next candidate node violates the constraints: makes the 

tour exceed its length or duration limits, the vehicle capacity, etc. Sequential construction 

naturally tends to minimize the number of routes, thus minimizing the number of vehicles used. 

It may perform better for the problems where using as few vehicles as possible is an objective. 

At the same time, sequential construction makes the eventual number of routes 

unpredictable and often results in the last route being much shorter than the rest. If the 

number of vehicles is fixed than the parallel way is the only option.  

 

Acting in a parallel fashion, the heuristic will initiate one tour for each vehicle and add one 

vertex to each route in every iteration. The principle for adding the vertices remains the same, 

but the order in which the routes are modified in each iteration may affect the results. 

Imagine a vertex equidistant from the endpoints of two or more routes. In the Nearest 

Neighbor heuristic, the choice of the route to add it to will depend purely on the arbitrary 

order in which they have been initialized. Besides, there is no way to minimize the number of 

vehicles used. Fig. 8 below shows the sequential and the parallel ways of the Nearest 

Neighbor heuristic. 
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Figure 8. Nearest Neighbor heuristic. Left: sequential. Right: parallel (Prodhon & Prins, 2016). Prodhon & 

Prins use 𝑹𝒊 instead of 𝒓𝒊 to denote a single route. Numbers are the costs of adding the node. 

4.4.3 Nearest Insertion, Farthest Insertion and Cheapest Insertion 

Nearest Insertion works the following way. For a given emerging tour 𝑟𝑖 find 𝑣𝑥 (𝑣𝑥 ∉ 𝑟𝑖 , 𝑣𝑥 ∈ 𝑉) 

closest to it (in terms of perpendicular distance). For that 𝑣𝑥, find 𝑒𝑗𝑘 ∈ 𝑟𝑖 such that 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 =

𝑐𝑗𝑥 + 𝑐𝑥𝑘 −  𝑐𝑗𝑘 is minimal; introduce such 𝑒𝑗𝑥 and 𝑒𝑥𝑘 in 𝑟𝑖 and remove 𝑒𝑗𝑘. If 𝑟𝑖 = ∅, simply 

introduce two edges 𝑒0𝑥 and 𝑒𝑥0. 

 

Farthest insertion only differs in that the farthest node from the current tour is selected. This 

might feel counter-intuitive, but the general idea is to establish an outline of a tour first, and 

then ‘fill in’. Rosenkrantz et al. (1977) argue that it prevents accidental deletion of the shorter 

edges by later insertions. 

 

Cheapest Insertion method first computes 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑐𝑗𝑥 +  𝑐𝑥𝑘 −  𝑐𝑗𝑘  for each 𝑣𝑥 ∉ 𝑟𝑖, and 

chooses the insertion candidate with the minimum 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 value. That is, Nearest insertion 

chooses the closest candidate vertex and finds the best way to introduces it in a tour while 

Cheapest Insertion precomputes the costs of insertion and chooses the cheapest candidate.  

 

Both Nearest and Farthest Insertion run in 𝑂(𝑛2); Cheapest Insertion – in 𝑂(𝑛2 log 𝑛 ). All three 

methods have a fixed worst-case performance ratio of  
𝑇(𝑆𝐴)

𝑇(𝑆𝑂𝑃𝑇)
≤ 2 (Johnson & McGeoch, 

1995; Prodhon & Prins, 2016).  

 

The way these three heuristics can be adopted to VRP is the same as in Nearest Neighbor: 

either by sequentially augmenting one tour until the constraints are violated or by initializing 

𝐾𝑚𝑎𝑥 tours and augmenting one tour with one vertex at a time.  

4.4.4 Clarke-Wright Savings Method 

This method generates an initial solution in which one vehicle is assigned to each destination: 

it travels from the depot to the destination and back, the next one travels to its respective 

destination and back to the depot, and so on. This, obviously, creates a very expensive 

solution that most likely violates the maximum number of vehicles constraint; hence the 

constraint is relaxed: 

𝑅 = { [𝑒0𝑖, 𝑒𝑖0], … , [𝑒0𝑛, 𝑒𝑛0] } 

 

At the second step, the method determines how much can be saved if any two tours are 

merged: if instead of sending a new vehicle to the next destination, we could let the current 

vehicle travel to the next destination without returning to the depot. To do so, we calculate 

the saving 𝜎𝑖𝑗 for each pair of destinations 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉: 
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𝜎𝑖𝑗 = 𝑐𝑖0 +  𝑐0𝑗 − 𝑐𝑖𝑗          (23) 

 

The algorithm must avoid cycles and isolated edges by ensuring that for each vertex 𝑣𝑖, 

𝑑𝑒𝑔−(𝑣𝑖) =  𝑑𝑒𝑔+(𝑣𝑖) = 1 (for directed graphs) or 𝑑𝑒𝑔(𝑣𝑖) = 2 (for undirected graphs). An 

example is shown in fig. 9 we eliminated the return paths to the depot and connected the 

destinations directly to obtain two routes. 

 

 

Figure 9. Clarke-Wright savings method. Here, we assume that 𝝈𝒊𝒋 is on top of our savings list. Hence, we 

connect those vertices and remove the edges that connect them with the depot. 

 

The implementation can be sequential: 

1. Build an initial solution 𝑆0 and compute saving for all pairs of vertices and sort them in 

the descending order 

2. Consider, in turn, each route 𝑟𝑥 = [𝑒0𝑖, 𝑒𝑗0] in the initial solution 𝑆0  

3. Determine the first 𝜎𝑘𝑖  or 𝜎𝑗𝑙 from the top of the list that can be used to feasibly merge 

𝑟𝑥 with another route 𝑟𝑦 that either starts with 𝑒0𝑙 or ends with 𝑒𝑘0 

4. If there are no such mergers, repeat the previous steps for the next route 𝑟𝑥+1; 

otherwise, implement the merger and repeat the previous steps for the resulting route 

 

Alternatively, a parallel version can be implemented: 

1. Build an initial solution 𝑆0 and compute saving for all pairs of vertices and sort them in 

the descending order 

2. Starting from the top, check if there exists a pair of routes 𝑟𝑥, 𝑟𝑦 such that one of them 

starts with 𝑒0𝑗 and the other one ends with 𝑒𝑖0 

3. If such a pair is found, merge the two routes by adding 𝑒𝑖𝑗 and removing 𝑒𝑖0 and 𝑒0𝑗 

4. Stop if there are no feasible mergers 

 

A merge is infeasible cannot be performed if the resulting route violates the vehicle capacity 

constraint, the maximum tour duration, and also if it reduces the number of tours in the 

solution to a value less than 𝐾𝑚𝑖𝑛. If such is not specified, it can potentially reduce the solution 

to a single TSP tour. 

This method also operates in a ‘greedy’ fashion, because it prioritizes the mergers with larger 

savings. To address this issue, the heuristic can be adjusted to skip the highest priority merger 

with a certain probability α and perform the next merger on the list (this concept is known as 

randomization). The original Clarke-Wright algorithm runs in 𝑂(𝑁2 𝑙𝑜𝑔2𝑁) and guarantees 
𝑇(𝑆𝐴)

𝑇(𝑆𝑂𝑃𝑇)
≤ (𝑙𝑜𝑔

2
𝑁) + 1 for the problems that satisfy the triangle inequality (Johnson & 

McGeoch, 1995; Prodhon & Prins, 2016). It generally outperforms the Nearest Neighbor and 

Nearest Insertion heuristics and minimizes the number of tours, thus being well-suited for the 

problems where the number of vehicles must be minimized. 
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4.4.5 GENI (Generalized Insertion Procedure) 

This method was originally designed by Gendreau et al. (1992) for the TSP, but in a successive 

paper (Gendreau, Hertz, & Laporte, 1994) the authors describe its adaptation to the VRP. Let 

us first present the procedure for the TSP, and then show how it can be adapted to produce 

multiple routes. 

 

The algorithm starts by initializing a tour of three randomly selected and randomly ordered 

vertices (besides the depot): 𝑟̅ = [𝑒0𝑖, 𝑒𝑖𝑗 , 𝑒𝑗𝑘 , 𝑒𝑘0]. In each iteration, the algorithm randomly 

picks one candidate 𝑣𝑥 ∈ 𝑉, 𝑣𝑥 ∉ 𝑟̅ and considers its insertion between any two vertices 𝑣𝑖, 𝑣𝑗 ∈
𝑟̅. Importantly, 𝑣𝑖, 𝑣𝑗 need not be consecutive. Let us define 𝑣𝑘 ∈ 𝑟̅ as a vertex on the path 

from 𝑣𝑗 to 𝑣𝑖 and 𝑣𝑙 ∈ 𝑟̅ – on the path from 𝑣𝑖 to 𝑣𝑗 (𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘, 𝑣𝑙 ∈ 𝑟̅). Now, for each such 

combination of 𝑣𝑥, 𝑣𝑖, 𝑣𝑗 and 𝑣𝑙, the algorithm considers two types of insertion, code-named 

‘1’ and ‘2’ (fig. 10 & 11): 

 

 
Figure 10. Insertion type I. The left part shows the original graph, the right one – the result; edges that are 

altered in the process are shown by dashed lines; 𝒗 is the insertion candidate; (Gendreau, Hertz, & 

Laporte, 1992) 

 

 
Figure 11. Insertion type II. The left part shows the original graph, the right one – the result; edges that are 

altered in the process are shown by dashed lines; v is the insertion candidate; (Gendreau et al., 1992) 

 

In both types of insertion, 𝑣𝑖 and 𝑣𝑗 become immediate neighbors of 𝑣𝑥 on either side; some 

edges are removed, and new ones are introduced. In type I, paths 𝑣𝑖+1 … 𝑣𝑗 and 𝑣𝑗+1 … 𝑣𝑘 are 

reversed; edges 𝑒𝑖,𝑖+1, 𝑒𝑗,𝑗+1, 𝑣𝑘,𝑘+1 are deleted. In type II, paths 𝑣𝑖+1 … 𝑣𝑙−1 and 𝑣𝑙 … 𝑣𝑗 are 

reversed; edges 𝑒𝑖,𝑖+1, 𝑒𝑗,𝑗+1, 𝑣𝑙,𝑙+1 are deleted. This means that there are 𝑛4 potential insertions 

for each candidate vertex (Gendreau et al., 1992). To reduce the time complexity, the 

method uses the notion of a p-neighborhood to limit the number of candidate insertions. Let 

us define a neighborhood 𝑁𝑝(𝑣𝑥) as a set of p closest vertices to 𝑣𝑥 (in terms of the cost 
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function’s value) that are in the same tour. If 𝑣𝑥 has fewer than p neighbors on the tour, then 

they all fall into the 𝑁𝑝(𝑣𝑥). The value of the p is chosen by the implementor. Let us now select 

𝑣𝑖, 𝑣𝑗 ∈ 𝑁𝑝(𝑣𝑥), 𝑣𝑘 ∈ 𝑁𝑝(𝑣𝑖+1), 𝑣𝑙 ∈ 𝑁𝑝(𝑣𝑗+1) and consider inserting 𝑣𝑥 between any of the 𝑣𝑖, 𝑣𝑖+1, 

as long as 𝑣𝑖 ∈  𝑁𝑝(𝑣𝑥). The value of the objective for each of these potential moves is 

evaluated and the best one is accepted. The p-neighborhoods for each of the vertices are 

updated in each iteration.   

 

For each candidate vertex, there are 𝑂(𝑝4) possible 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘 , 𝑣𝑙 combinations. Once the best 

insertion is found, it takes 𝑂(𝑛) to update the tour. And there are 𝑛 − 3 such iterations for each 

V, hence the total time complexity of GENI for the TSP is 𝑂(𝑛𝑝4 +  𝑛2). 

 

Now, to accommodate multiple routes, the authors propose a Split algorithm that constructs 

a giant tour, i.e. a tour with all vertices in V, 𝑟̅ = [𝑒0𝑖, … , 𝑒𝑛0] using GENI first and then splitting this 

tour into at most 𝐾𝑚𝑎𝑥  tours. Let us define a procedure  

𝑠𝑝𝑙𝑖𝑡(𝑡𝑜𝑢𝑟, 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡) that works the following way: 

1. Initialize 𝑘 = 1 and 𝑅 = ∅ 

2. If 𝑘 > 𝐾𝑚𝑎𝑥, stop; otherwise, Initialize a new tour 𝑟𝑘; 

3. If 𝑘 = 𝐾𝑚𝑎𝑥, set 𝑟𝑘 = 𝑡𝑜𝑢𝑟, add 𝑟𝑘 to R and stop; otherwise, go to step 4; 

4. Remove the first edge 𝑒𝑖𝑗 in 𝑡𝑜𝑢𝑟 and append it to 𝑟𝑘 if and only if its insertion does not 

violate either the vehicle capacity or the tour duration constraint; if it does, proceed 

to step 4; otherwise, repeat step 3; 

5. Reconnect 𝑟𝑘 to the depot by appending 𝑒𝑗0 to it; if for the resulting 𝑟𝑘, 𝑇(𝑟𝑘) ≤ 𝑇𝑚𝑎𝑥, go 

to step 6; otherwise, delete 𝑒𝑗0, remove 𝑒𝑖𝑗 from 𝑟𝑘 and append it back to 𝑡𝑜𝑢𝑟, 

append 𝑒𝑖0 to 𝑟𝑘 thus reconnecting it to the depot, go to step 6; 

6. Reconnect 𝑡𝑜𝑢𝑟 to the depot: given that 𝑒𝑥𝑦 is currently the first in 𝑡𝑜𝑢𝑟, insert 𝑒0𝑥 

before it; go to step 7; 

7. Set 𝑘 = 𝑘 + 1, add 𝑟𝑘 to R, insert and go to step 2; 

 

The last tour 𝑟𝐾𝑚𝑎𝑥
includes all remaining destinations and may not be feasible. Alternatively, 

the last k tours may be empty. To this end, the authors propose a tour improvement 

procedure US that is described in section 4.5.2. 

4.4.6 Comparison 

Rosenkrantz et al. (1977) compare the three insertion heuristics described in section 4.4.3, 

along with the Nearest Neighbor method, on random Euclidean instances, and conclude 

that Farthest Insertion performs the best on average for small instances (up to 100 nodes), 

followed by Cheapest Insertion, Nearest Insertion and Nearest Neighbor respectively,  but for 

larger instances the results are less consistent, with only Nearest Insertion performing worse on 

average than the other three. They also observe that the optimality of the solution obtained 

empirically does not, generally, correspond with the theoretical performance bounds of the 

respective heuristics. 

 

Johnson & McGeoch (1995) compare Nearest Neighbor and the Savings method on a set of 

different problems and report the following results (the results are average over multiple runs): 

the Savings method provides better solutions on average, with 
𝑇(𝑆𝐴)

𝑇(𝑆𝑂𝑃𝑇)
≈ 9.6% for small-sized 

problems (102); but the for larger problems, the excess over the optimal solution starts to 

deteriorate, reaching 12% for problems with 105 vertices. For Nearest Neighbor, these figures 

are 26% and 23%, respectively, hence its performance improves with the problem size. The 

authors do not explain this behavior. Separately, the authors test GENI on instances 

containing from 100 to 500 vertices. The conclude that GENI outperforms all other compare 

heuristics for those problem sizes. The excess over the optimal solution is 9.1% on average for 
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𝑝 = 3 and drops to 5.6% for 𝑝 = 20. We only provide the ratios because these results date 

back to 1995, and the absolute values must have changed dramatically. The Savings 

method, despite being slower than Nearest Neighbor, gives much better results. Cordeau et 

al. (2002) argue that this merit, in combination with the algorithm’s easy implementation, 

made the Saving method perhaps the most commonly used tour construction heuristic 

implemented in software applications. This claim, however, dates back to 2002, and the 

advance in computing power may have changed the balance of powers since then. 

4.5 Tour improvement heuristics 

In this section, we discuss local search methods. Local search algorithms start with an initial 

solution S generated by one of the tour construction heuristics and inspect the solutions in its 

neighborhood N(S). A neighborhood is as a set of similar solutions, where the notion of 

similarity depends on the employed heuristic. Generally, the neighbor solutions are those that 

are located one move away from the current (incumbent) solution. A move can be a swap 

of vertices within a tour or between the tours, for example. An improvement heuristic 

evaluates the solutions is N(S) iteratively and either accepts or rejects them. Local search 

procedures can be either first-improvement or best-improvement. In the first case, the first 

downhill (improving) neighbor solution 𝑆′ is accepted, in the second case, all neighbor 

solutions are inspected and the best one is accepted. The efficiency of these two types 

depend on the given problem and either one may perform better than the other (Johnson & 

McGeoch, 1995; Prodhon & Prins, 2016). Last but not least, a downhill move that violates the 

constraints, such tour duration limit or the vehicle capacity, cannot be accepted. We will 

later discuss some metaheuristics that allow local search to accept uphill solution under 

certain conditions, but in the description of these tour improvement heuristics we assume that 

a move that violates the constraints cannot be accepted.  

4.5.1 X-Opt 

Algorithms of this family work by iteratively changing X edges in the initially generated 

solution. At each iteration, X edges are removed and must be replaced with X new edges; X! 

ways to reconnect the affected vertices are available (Johnson & McGeoch, 1995). As in 

other local search methods, these ways are compared one by one, either all of them (best-

improving search) or until a downhill solution is found (first-improving search). X-Opt itself 

originally refers to this local search procedure only, and it must be combined with some other 

method used to generate the initial solution, e.g. Nearest Neighbor, although some authors 

do not mention the tour construction method they used. 

 

Since it takes 𝑂(𝑛𝑥) to test all possible moves for a given solution, time complexity quickly 

grows with X. Increasing the X beyond 𝑋 = 3 usually improves the results by fractions of a 

percent (if improves at all) while resulting in significantly longer execution times. Therefore, the 

most widely used variants are 2-Opt and 3-Opt, with the latter often showing better results 

(Prodhon & Prins, 2016). The former takes an initially generated tour and replaces two of its 

edges, thus producing a new tour (fig.12).  



36 

 

 
Figure 12. An example of a 2-Opt move. 

 

In the picture above, edges 𝑒𝑐𝑑 and 𝑒𝑏𝑎 were removed and 𝑒𝑐𝑏 and 𝑒𝑑𝑎 were introduced 

instead. The algorithm performs one or more such moves in each iteration. An iteration ends 

when a new, downhill solution is accepted; afterwards, the procedure is repeated for the 

new solution. This procedure stops when it there are no improving moves in the neighborhood 

of the incumbent solution. Needless to say, this may mean that the algorithm found the 

optimal solution, or simply got stuck in a local minimum. 3-Opt acts in a similar fashion but 

changes three edges at a time (fig.13). 

 
Figure 13. An example of a 3-Opt move. 

 

The solution obtained by X-Opt lies within 0.25 √𝑁
2𝑋

≤
𝑇(𝑆𝐴)

𝑇(𝑆𝑂𝑃𝑇)
≤ 4√𝑁 under triangle inequality 

and if the initial solution was generated randomly (Johnson & McGeoch, 1995; Prodhon & 

Prins, 2016). 
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The examples above illustrate simple moves on a single tour. Alternatively, a move can affect 

more than one tour. Fig. 14 shows an example of a 2-Opt move for a VRP with two vehicles.  

 
Figure 14. 2-Opt move for a VRP with two vehicles. 

 

Given two routes 𝑟𝑖 and 𝑟𝑗, we replaced edges 𝑒5,6 in 𝑟𝑖 and 𝑒9,10 in 𝑟𝑗 with new edges 𝑒5,10 and 

𝑒6,9 respectively. Here, the number of vehicles required must be equal to the value X picked 

for X-Opt: a 3-Opt algorithm can perform a similar move with three tours at a time, etc. 

Nevertheless, as we mentioned above, X-Opt algorithms with 𝑋 > 3 are rarely used, so this 

approach is not scalable, although the algorithm can also be implemented to affect two or 

three tours at a time within a larger number of tours in the problem, so that only part of all 

tours are affected in each iteration. In fact, several versions of X-Opt can be combined in 

one algorithm that features several different types of moves. In this case, each move type 

has its own neighborhood in each iteration, and the best move across all types must be 

found (Prodhon & Prins, 2016).  

 

Johnson & McGeoch (1995) run tests on 3-Opt and 2-Opt comparing them with the results 

obtained by Clarke-Wright and Nearest Neighbor construction heuristics with no tour 

improvement applied. They use Nearest Neighbor, Randomized Nearest Neighbor (Nearest 

Neighbor in which the probability of adding the nearest vertex is 2/3 and the second nearest 

vertex – 1/3) and Clarke-Wright to construct the initial solution. Their results show that by using 

2- and 3-Opt one can achieve significantly better results: solution obtained by 3-Opt are on 

average only 3% worse than the optimal solution, 2-Opt – 4.5% worse, and these figures vary 

by fractions of a percent for the instances from 102 and 106 vertices. As to the choice of the 

construction heuristic used to generate the starting solution, they conclude that Clarke-

Wright, in the implementation they use, performs surprisingly poorly, while their 

implementation of Nearest Neighbor shows much better results, and this holds for both 2- and 

3-Opt. These results were obtained on the problems with 103 vertices. 

4.5.2 US (Stringing and Unstringing) 

US was developed by Gendreau et al. (1992) and presented in combination with GENI. The 

terms ‘stringing’ and ‘unstringing’ refer to adding a vertex to a tour and removing a vertex 

from a tour, respectively. The original version works on a single (TSP) tour. In Gendreau et al. 

(1994), the authors use US for solving a VRP by applying it to the giant tour produces by GENI 

(see section 4.4.5) before splitting it into separate tours. Theoretically, it can be applied to 

each single tour after the splitting, but only if a tour has at least three vertices apart from the 

depot. Since this cannot always be guaranteed, in the description below we assume it is 

applied to the giant tour produced by GENI or any similar procedure before the splitting. 

However, if in the given solution all tours have three or more non-depot vertices, it can be 

applied to each of these tours instead. 
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Since US and GENI shared the same notions we refer the reader to section 4.4.5. Briefly: 

• 𝑁𝑝(𝑣𝑥) is called a p-neighborhood of 𝑣𝑥 and is defined as a set of p closest vertices to 

𝑣𝑥 (in terms of the cost function’s value) that are on the same tour 

• 𝑣𝑖, 𝑣𝑗, 𝑣𝑘, 𝑣𝑙 are vertices on the given tour 𝑟 such that for the given orientation of 𝑟, 𝑣𝑘 

lies on the path from 𝑣𝑗 to 𝑣𝑖 and 𝑣𝑙 – on the path from 𝑣𝑖 to 𝑣𝑗 (𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘 , 𝑣𝑙 ∈ 𝑉) 

 

There are two types of unstringing possible. For type I, let us consider 𝑣𝑗 ∈ 𝑁𝑝(𝑣𝑖+1) and, for a 

given tour orientation, 𝑣𝑘 ∈ 𝑁𝑝(𝑣𝑖−1) as a vertex on the path (𝑣𝑖+1 … 𝑣𝑗−1). Then the tour is 

altered as showed in fig.15: 

 

 
Figure 15. US Type I operation. The left part shows the original graph, the right one – the result; edges that 

are altered in the process are shown by dashed lines; 𝒗𝒊 is unstrung; (Gendreau et al., 1992) 

 

For type II operation, let us consider 𝑣𝑗 ∈ 𝑁𝑝(𝑣𝑖+1) and, for a given tour orientation, 𝑣𝑘 ∈
𝑁𝑝(𝑣𝑖−1) as a vertex on the path (𝑣𝑗+1 … 𝑣𝑖−2) and 𝑣𝑙 ∈ 𝑁𝑝(𝑣𝑘−1) as a vertex on the path 

(𝑣𝑗 … 𝑣𝑘−1). Then the tour is altered as shows in fig. 16: 

 

 
Figure 16. US Type II operation. The left part shows the original graph, the right one – the result; edges 

that are altered in the process are shown by dashed lines; 𝒗𝒊 is unstrung; (Gendreau et al., 1992) 

 

The two stringing procedures are identical to the two types of vertex insertion in GENI (see 

section 4.4.5), and the unstringing are essentially the reverse versions of those. Now, the entire 

US algorithm proceeds as follows: starting with an initial tour, generated by either GENI or any 

other tour construction heuristic, it considers each of the two types of unstringing for each of 

the two possible tour orientations and accepts the most improving of these moves. The 

algorithm stops once all the vertices have been tested. The authors run a series of test on 
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problems with Euclidean distances and from 100 to 500 vertices and conclude that GENI 

combined with US (‘GENIUS’) consistently outperforms several combinations of tour 

construction and tour improvement heuristics, such as Clarke-Wright’s saving method 

combined with 2- or 3-Opt tour improvement heuristic. No results are reported, however, for 

the problem with non-Euclidean distances (costs). 

4.6 Metaheuristics 

Metaheuristics typically control the behavior of the underlying heuristic(s). Most tour 

improvement heuristics employ Local Search. The search space is defined by the set of 

possible solutions. The adjacent (neighboring) solutions constitute a neighborhood and have 

one-move difference between each other (the definition of a move depends on the 

employed heuristic), e.g. one 2-Opt move. An adjacent solution is produced by applying one 

iteration of the tour improvement heuristic to the current solution. The collection of solutions 

produced by applying all possible moves to the current (incumbent) solution constitutes the 

that solution’s neighborhood. 

 

A metaheuristic can guide Local Search to avoid getting stuck in local optima. There are 

several ways to do it: restart the heuristic from different initial solutions, memorize the solutions 

that have already been tried and should be avoided, allow the heuristic to accept uphill 

solutions with a certain probability, etc. What is important to understand, many metaheuristics 

use one or more heuristics and orchestrate them throughout the procedure, thus 

metaheuristics are not strictly alternatives to heuristics but rather have a hierarchical 

relationship with those. 

 

The CVRP, at least in our formulation, is a minimization problem, meaning that the objective 

function seeks to find the solution with the minimal possible objective’s value. Therefore, by 

saying ‘local optima’ we imply ‘local minima’. However, in describing the general principle of 

the given metaheuristic, we would like to emphasize that it can as well be used for 

maximization problem, so we use ‘local optimum’ as a more general term. If one solution has 

lower cost than another, we call the former ‘downhill’ and the latter one – ‘uphill’, when 

compared with each other. Informally, ‘downhill’ means ‘better’ and ‘uphill’ means ‘worse’, 

in terms of the objective’s value, in a minimization problem. We call a set of solutions a 

‘plateau’ if they have equal costs. 

 

Another important thing to consider is that most metaheuristics are problem independent. 

They may be designed and tested for a certain problem or a class of problems, but can, with 

some adjustment, be used for other problems as well, although some methods are known to 

perform better for certain problems. Specifically, in the case of Vehicle Routing Problems, 

popular heuristics like Genetic algorithms and Ant Colony Optimization have proved to be 

less efficient (Prodhon & Prins, 2016), and are superseded by other metaheuristics, three of 

which we discuss in the following sections: Simulated Annealing, Tabu Search and Guided 

Local Search. 

4.6.1 Simulated Annealing 

This metaheuristic is named after the process of annealing used in metallurgy, a technique 

involving heating and controlled cooling of a metal to change its properties. Similarly, in 

Simulated Annealing (let us call it SA for brevity), there is a dynamic ‘temperature’ parameter 

that decreases with time. The higher the temperature, the greater the probability of 

accepting uphill solutions along the solution space. Accepting worse solutions allows the 

procedure to escape local optima and eventually find the optimum solution (Kirkpatrick, 

Gelatt, & Vecchi, 1983).  
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At each iteration, the search examines one randomly picked solution in the neighborhood. It 

compares it with the incumbent solution and decides whether to accept or reject the new 

solution with a probability based on the current temperature value. When the temperature of 

the system decreases to zero, the procedure turns into a greedy search with a randomized 

step: only downhill solutions are accepted, and the algorithm loses the ability to jump out of 

local minima. However, by this time we expect it to have found either the global minimum or 

a solution sufficiently close to it in terms of its cost. The performance of the algorithm depends 

on the temperature function of time that we choose. More specifically, in each iteration the 

probability of accepting an uphill solution 𝑆′ is defined by the probability function 𝑃(𝑆, 𝑆′, 𝜏) 

where 𝜏 is the current temperature and S is the incumbent solution. The lower the 

temperature, the lower the probability, and the other way around: 

 

lim
𝜏→0

𝑃(𝑆, 𝑆′, 𝜏) = 0;    lim
𝜏→+∞

𝑃(𝑆, 𝑆′, 𝜏) = 1      (24) 

 

The acceptance probability for downhill moves can simply be set to 1, but more 

sophisticated implementations make it an inverse function of the difference between the 

compared solution: the larger the difference, the lower the probability (Vidal et al., 2013).  

 

For any given finite problem, the probability that the SA algorithm terminates with a global 

optimum approaches 100% as the annealing schedule is extended, but it will take at least as 

much time as any exact method (Prodhon & Prins, 2016). An efficient schedule is the one that 

produces results sufficiently close to the global optimum but finishes the search in a 

reasonably short period of time. Implementation of SA thus requires defining three functions: 

the acceptance probability function, the temperature function of time (annealing schedule) 

and the initial temperature 𝜏0. Last but not least, the local search procedure must be chosen; 

in the case of the VRP, - one of the tour improvement heuristics (see section 4.5). For the 

acceptance probability function, it is common (Prodhon & Prins, 2016) to use 

 

exp (−
(𝑇(𝑆′) − 𝑇(𝑆))

𝜏
),     ∀ 𝑇(𝑆′) > 𝑇(𝑆)  

       𝑃(𝑆, 𝑆′, 𝜏) =        (25) 

1, ∀ 𝑇 (𝑆′
) ≤ 𝑇(𝑆) 

 

 

Here, a downhill move is always accepted, and the probability of accepting an uphill move 

is essentially the Boltzmann’s probability factor from the field of statistical mechanics 

(Kirkpatrick et al., 1983). The optimality of the resulting solution does not, generally, depend 

on the quality of the initial solution, because of the high scatter of the moves under high 

temperature values at the start of the procedure (Prodhon & Prins, 2016).  

 

For the annealing schedule, a common approach is to reduce the temperature by a 

constant factor, e.g. 0.95, after each iteration 𝑡𝑥. Alternatively, a maximum number of 

iterations 𝑡𝑚𝑎𝑥 can be provided, after which the temperature is set to zero, and the search 

stops: 

 
𝜏0

𝑡
,   𝑡𝑥 ≤  𝑡𝑚𝑎𝑥 

   𝜏 =       (26) 

0,   𝑡𝑥 >  𝑡𝑚𝑎𝑥 
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Alfa, Heragu & Chen (1991) use SA with the 3-Opt heuristic to solve a CVRP. They start by 

constructing a single giant tour that includes all destinations, split it according to the 𝑠𝑝𝑙𝑖𝑡 

procedure that we defined in section 4.4.6, and then optimize the resulting routes via 3-Opt. 

Their version of 3-Opt is different to the one we described in section 4.5.1: they pick three 

edges from any of the tours in R, at random. It can be three edges of the same tour, or three 

edges in three different tours, or two edges in one tour and another one in another tour. The 

authors use the following configuration for SA: 

• For the acceptance probability function, they use formula (23) discussed above 

• Initial temperature is set to some 𝜏0 ∈ ℤ 

• For the cooling rate, they use a constant factor 𝛼𝑐𝑜𝑜𝑙, such that 0 < 𝛼𝑐𝑜𝑜𝑙 < 1 

• This cooling rate is applied every 𝑡𝑐𝑜𝑜𝑙 ∈ ℤ iterations 

• The number of iterations is limited to 𝑡𝑚𝑎𝑥 ∈ ℤ, after which the procedure stops 

 

𝜏0, 𝛼𝑐𝑜𝑜𝑙 , 𝑡𝑐𝑜𝑜𝑙 𝑡𝑚𝑎𝑥 are parameters. The algorithm proceeds as follows: 

 

Step 1: 

Select the values for all four parameters above. Initialize 𝑆∗ for storing the best solution found 

so far, 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 for the incumbent solution, temperature value 𝜏 = 𝜏0, 𝑡𝑡𝑜𝑡𝑎𝑙 = 1 to keep the 

iteration count and 𝑡𝜏 = 1 to store the number of iterations done with the current value of 𝜏. 

Importantly, in their algorithm, 𝑡 is only incremented when 𝜏 is changed, that is, every 𝑡𝑐𝑜𝑜𝑙 

iterations, thus essentially keeping the number of different values of 𝜏 used, rather than the 

total iteration count. The latter can then be calculated as 𝑡𝑐𝑜𝑜𝑙 ∗ 𝑡𝑡𝑜𝑡𝑎𝑙. 

 

Step 2: 

Construct a single (TSP) tour 𝑟𝑖𝑛𝑖𝑡 = [𝑒0𝑖, … , 𝑒𝑛0] with all vertices in V (relax the capacity and 

duration constraints but ensure that it is a valid TSP tour otherwise: no subtours; 𝑣0 is the start 

and end vertex of the tour). The authors use the Nearest Neighbor heuristic, but any other tour 

construction method can be used instead. 

 

Step 3: 

Run 𝑠𝑝𝑙𝑖𝑡(𝑟𝑖𝑛𝑖𝑡 , 𝑄𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥) that returns a solution 𝑆𝑜 with a route set 𝑅, |𝑅| ≤ 𝐾𝑚𝑎𝑥; 𝑆𝑜 may not be 

feasible. Set 𝑆∗ = 𝑆𝑜 and 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑆𝑜. 

 

Step 4: 

Generate a 3-Opt neighborhood for 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and evaluate their costs. Select the best of these 

solutions 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒. 

 

Step 5: 

If 𝑇(𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) < 𝑇(𝑆∗), set 𝑆∗ = 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 and go to step 7; otherwise, go to step 6. 

 

Step 6: 

Generate a random number 𝑥 in [0.0, 1.0]. If 𝑃(𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝑇(𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒), 𝜏) > 𝑥, go to Step 6; 

otherwise, set 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 and go step 5. 

 

Step 7: 

If 𝑡𝜏 ≥ 𝑡𝑐𝑜𝑜𝑙, proceed to step 8; otherwise, set 𝑡𝜏 = 𝑡𝜏 + 1 and go to step 1. 

 

Step 8: 

If 𝑡𝑡𝑜𝑡𝑎𝑙 ≥ 𝑡𝑚𝑎𝑥 , stop; otherwise, set 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑡𝑜𝑡𝑎𝑙 + 1, 𝑡𝜏 = 𝑡𝜏 + 1, 𝜏 = 𝜏 ∗ 𝛼𝑐𝑜𝑜𝑙 and go to step 1. 

 

The authors run several tests, each time with the same: 

• 𝑡𝑐𝑜𝑜𝑙 = 80 ∗ |𝑉|  

• 𝛼𝑐𝑜𝑜𝑙 = 0.95 



42 

 

• 𝜏0 = 200  

 

but with different 𝑡𝑚𝑎𝑥 values: they use 15, 20 and 40. Comparing their results with those 

produced by other researchers for the same VRP instances, they conclude that their method 

returns results at least as good as several other methods including 3-Opt alone, Lagrangian 

Relaxation and Integer Linear Programming, but takes more time on average. They also state 

that augmenting their method with a way for optimizing the initial solution could improve the 

results and reduce the CPU time used (Alfa, Heragu, & Chen, 1991). 

4.6.2 Tabu Search 

Tabu Search (for brevity, let us call it ‘TS’) attempts to prevent getting stuck in local optima or 

repeating the same moves by memorizing their locations within the search space. It stores 

these in a tabu list in memory (usually as a queue). The entries are stored for a number of 

iterations called tabu tenure. Separately, it also stores the best solution currently encountered 

to return it as the outcome of the search at the end (Cordeau et al., 2002). 

 

For example, let us imagine that in a CVRP, the destination 𝑣𝑖 has been moved from route 𝑟𝑗 

to route 𝑟𝑘. To prevent cycling, a new entry (𝑣𝑖 , 𝑖, 𝑗) should be added to the tabu list and 

stored there for the duration of the tabu tenure. Entries in a tabu list can also store other 

information, such as how many times each destination has been swapped between the 

routes; when a limit on the number of swaps for the given is reached, the metaheuristic may 

attempt to alter the search procedure: allow more complex moves, restart the search from 

another initial solution, etc. Alternatively, the other way around, the destinations that have 

not yet been swapped a single time may be forced to swap (Prodhon & Prins, 2016). 

 

Different variants of TS can implement different forbidding and freeing strategies. A forbidding 

strategy defines what solutions and when to add to the tabu list. A freeing strategy tells which 

solutions, and when, to remove from the list. These two strategies can themselves be 

managed and altered by a top-level short-term strategy. These strategies depend on the tour 

improvement heuristic used. To make examples simple and concise, let us assume that our 

heuristic is to swap two vertices between the two tours that make up the same solution, e.g. 

given a solution 𝑆 that consists of two routes 

 

𝑟1 = [𝑒01, 𝑒14, 𝑒43, 𝑒30] and 𝑟2 = [𝑒05, 𝑒57, 𝑒76, 𝑒60], 

 

we swap vertices 𝑣1and 𝑣6, obtaining a neighbor solution 𝑆′ consisting of routes 

 

𝑟1
′ = [𝑒06, 𝑒64, 𝑒43, 𝑒30] and 𝑟2

′ = [𝑒05, 𝑒57, 𝑒71, 𝑒10]  

 

The forbidding strategy is defined by its tabu criteria. The most common practice is to ban 

repeating the same move for a certain number of iterations, so that the search does not go in 

cycles. For example, the swap (𝑣6, 𝑣1) that we made earlier can be disallowed for three 

iterations. Another common example is forbidding the moves that resulted in an uphill 

solution. For example, if after our (𝑣6, 𝑣1) swap we performed a (𝑣5, 𝑣3) swap, and the resulting 

solution has higher overall travel duration, the latter swap can be considered unpromising 

and put in the tabu list. 

 

Imagine that the best solution in the current neighborhood is in the tabu list, moreover that is 

the only improving solution in the current neighborhood, what should be done then? This is 

where the freeing strategy and its aspiration criteria come into play. Under certain conditions, 

a move can be removed from the tabu list before the end of its tenure. The exact condition 
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depends on the implementation. One example would be: if a given move yields a solution 

better than the current best solution, that move is released from the tabu list and the move is 

accepted, otherwise the best of the non-tabu moves is selected even if it is an uphill move. 

 

Unlike exact methods, metaheuristics like TS never converge unless a stopping criterion is 

provided. Here are some examples of the stopping criteria often used in TS (Glover, 1990; 

Prodhon & Prins, 2016): 

• A maximum number of iterations 

• Number of iterations since a downhill solution was last found 

• Absence of feasible moves in the incumbent solution’s neighborhood 

• Objective’s value for the incumbent solution (e.g. less than a certain threshold) 

 

The use of tabu lists is an intuitive and effective solution but it also means that tabu search 

can consume a lot of memory. The recency-based tabu list (disallowing recently performed 

moves) can be implemented as a queue of a fixed length n, where n is the tabu tenure. This 

implements the short-term memory. The intermediate-term memory is represented by the rules 

that make the search favor downhill moves. Finally, long-term memory can be implemented 

by the diversification rules that restart the search from a previously unexplored region of the 

solution space if it got stuck or reached a dead-end (Glover, 1990; Prodhon & Prins, 2016). 

 

Gendreau, Hertz & Laporte (1994) present a TS algorithm for solving the CVRP which they call 

Taburoute. They use the GENIUS heuristic, i.e. a combination of the GENI tour construction 

heuristic (see section 4.4.5) combined with the US tour improvement procedure (see section 

4.5.2). The TS orchestrates those and guides them through the solution space. The method 

attempts to improve the solution moving a given vertex from one route to another. All these 

combinations for each given vertex form a solution’s neighborhood. The algorithm keeps a list 

W of all vertices that are allowed to be moved to another route. Initially, all 𝑣𝑖 ∈ 𝑉 are on this 

list and all moves are allowed.  

 

The authors use penalties, a notion that is not innate to TS, but is common in other 

metaheuristics. For example, penalizing undesirable solutions is a core practice in Guided 

Local Search that we will discuss in the next section. Therefore, we can state that Gendreau 

et al. (1994) hybridize their TS algorithm by using an augmented objective function. Let 𝐹1 

denote the (original) objective function associated with any feasible solution: 

 

𝐹1(𝑆) =  ∑ ∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝐾𝑚𝑎𝑥

𝑘=1

               (27) 

 

Now, let 𝐹2 denote the augmented objective function associated with any solution: 

 

𝐹2(𝑆) = 𝐹1(𝑆) +  𝛼 ∑ [( ∑ 𝑞𝑖

𝑣𝑖 ∈ 𝑟𝑖

) − 𝑄𝑚𝑎𝑥]

+𝐾𝑚𝑎𝑥

𝑘=1

+ 𝛽 ∑ [( ∑ 𝑐𝑖𝑗

𝑒𝑖𝑗 ∈ 𝑟𝑖

) − 𝑇𝑚𝑎𝑥]

+𝐾𝑚𝑎𝑥

𝑘=1

            (28) 

 

where [𝑥]+ is 𝑚𝑎𝑥(𝑥, 0), 𝛼 > 0 and 𝛽 > 0. If solution 𝑆 is feasible, 𝐹1(𝑆) =  𝐹2(𝑆), otherwise two 

penalty costs are added: one for excessive duration and one for excessive capacity. Now, 

the SEARCH algorithm proceeds as follows: 

 

Step 0: 

Initiate the following variables: 

• list 𝑊 = [𝑣𝑖 , … 𝑣𝑛]  

• S for the incumbent solution 
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• 𝐹1* and 𝐹2* to store the best currently encountered 𝐹1(𝑆) and 𝐹2(𝑆) 

• S* to store the best currently known feasible solution 

• 𝑆̃ to store the best currently known solution 

• 𝑡 to store the iteration count 

 

Define the search strategy (forbidding and freeing strategies): 

• u – number of vertices from W to consider in each iteration 

• 𝑝1 – neighborhood size used in GENIUS 

• 𝑝2 – number of p-neighbors a candidate 𝑣𝑖 must have in route 𝑟𝑖 to be inserted there 

• 𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥 – upper and lower bounds on the tabu tenure 

• h – the frequency at which changing β and α is considered 

• 𝑡𝑚𝑎𝑥 – the number of consecutive iterations with no downhill solution found after which 

the search will converge 

• 𝑔 – a scaling factor used to penalize an uphill solution (see step 2 below); the authors 

generally recommend using 𝑔 ∈ [0.005, 0.2]. Lower values do not produce enough 

diversification in the search, higher values generally decrease the optimality of the 

results 

• ∆𝑚𝑎𝑥 – the largest |𝐹2(𝑆𝑖+1) − 𝐹2(𝑆𝑖)| for any two successive solutions 𝑆𝑖 , 𝑆𝑖+1 examined 

• 𝑡𝑖𝑚𝑒𝑠𝑀𝑜𝑣𝑒𝑑(𝑣𝑖) – the number of times a given vertex has been moved 

 

Step 1:  

Generate an initial solution 𝑆0 using GENI and set 𝑆 = 𝑆0. Randomly select u vertices from W. 

 

Step 2: 

For each of u randomly selected vertices from W: consider all possible moves from its current 

route 𝑟𝑖 to another route 𝑟𝑗, where 𝑟𝑗 must either contain at least one of the 𝑝1 nearest 

neighbors of 𝑣𝑖 or be empty. Insert 𝑣𝑖 into 𝑟𝑗 according to the GENI procedure and evaluate 

the resulting solution 𝑆′. If the move is tabu, it is disregarded unless either of the two following 

conditions apply: 

• 𝑆′ is feasible and 𝐹1(𝑆′) < 𝐹1* 

• 𝑆′ is infeasible and 𝐹2(𝑆′) < 𝐹2* 

 

If the move has been disregarded, proceed with the next vertex; otherwise, set 𝑇(𝑆′) equal 

to: 

• 𝐹2(𝑆′) if 𝐹2(𝑆′) <  𝐹2(𝑆)  

• 𝐹2(𝑆′) +  ∆𝑚𝑎𝑥√|𝑅| ∗ 𝑔 ∗ 𝑡𝑖𝑚𝑒𝑠𝑀𝑜𝑣𝑒𝑑(𝑣𝑖)/𝑡 otherwise 

 

Step 3: 

Find the best move among the ones performed in Step 2 (except the disregarded moves). 

The solution 𝑆′ produced by this move is accepted unless all three of these conditions are 

satisfied: 

1) Incumbent solution 𝑆 is feasible 

2) 𝐹2(𝑆′) >  𝐹2(𝑆) 

3) US was not used in the previous iteration 

 

If they are satisfied, then the current candidate solution, despite being the best move in the 

current neighborhood, is worse than the incumbent solution. In such case, the new solution is 

produced by applying the US tour improvement heuristic to the incumbent solution S instead. 

 

Step 4: 

If US was not applied in the previous step and the candidate move was accepted, that 

move is added to the tabu list for 𝜃 iterations, where 𝜃 is a randomly selected integer in the 
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interval [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥]. The authors postulate that a variable tabu tenure improves the results. 

They use 𝜃𝑚𝑖𝑛 = 5, 𝜃𝑚𝑎𝑥 = 10. 

 

Step 5: 

If t is a multiple of h, update α as follows: 

• If in all previous iterations where t was a multiple of h the solution did not violate the 

capacity constraint, set 𝛼 =  𝛼/2 

• If in all previous iterations where t was a multiple of h the solution did violate the 

capacity constraint, set 𝛼 =  2𝛼 

Apply the same to β with respect to the duration constraint. 

 

Step 6: 

If 𝐹1 and 𝐹2 have not been updated for 𝑡𝑚𝑎𝑥 iterations, stop, otherwise go to step 1. 

 

This was the description of the SEARCH procedure. Now, the main overall algorithm 

TABUROUTE works in the following way: first, n initial solutions are generated using GENI (n is a 

parameter). Then, SEARCH is applied to each of them for a certain number of iterations 𝑡𝑥 

with some arguments 𝑝1and 𝑝2, and the most promising solution is chosen as 𝑆0 for SEARCH. 

The number of initial solutions and iterations are input parameters defined by the user or 

implementor. Finally, SEARCH is applied with that starting solution twice, each time with 

different 𝑝1 and 𝑝2 values (hence, there are three pairs of 𝑝1 and 𝑝2 used throughout the 

TABUSEARCH altogether). 

 

Step 0: 

Set 𝛼 = 𝛽 = 1 and 𝐹1* =  ∞. 

 

Step 1: 

For 𝑡𝑥 iterations do: 

• Construct an initial solution 𝑆0 using GENIUS and update 𝐹1*, 𝐹2*, S* and 𝑆̃* accordingly 

• Call SEARCH with the first pair of arguments 𝑝1 and 𝑝2 

• If the resulting 𝐹1* < ∞, set S = S*; otherwise set S = 𝑆̃* 

 

Step 2: 

Call SEARCH with other 𝑝1 and 𝑝2; set 𝑆 = 𝑆*; otherwise set 𝑆 = 𝑆̃* 

 

Step 3: 

Call SEARCH with the third pair of 𝑝1 and 𝑝2. If 𝐹1* < ∞, return S*, otherwise return NULL (no 

solution found). Stop the algorithm. 

 

Gendreau et al. (1994) test their method on fourteen different problem instances that contain 

between 50 and 200 cities and compare their results with a number of different methods, 

including two other versions of Tabu Search, a version of Simulated Annealing and Clarke-

Wright savings method on its own. Their results indicate that all simple heuristics like Clarke-

Wright, are dominated by metaheuristics that use in their comparison, specifically, Simulated 

Annealing and Tabu Search. They report that among the latter, their Taburoute algorithm 

results in solutions that are closer to optimality, but subsequently discuss that those results 

should be taken with caution for a number of reasons (for a detailed explanation, see the 

paper). 
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4.6.3 Guided Local Search 

This section is based on Voudouris & Tsang (2001) and Prodhon & Prins (2016). As the name 

suggests, Guided Local Search (GLS) is a metaheuristic that sits on top of Local Search and 

guides it to escape local optima. It does so by applying a penalty to a solution if it exhibits 

certain features. The choice of features used for penalization depends on the move(s) used. 

Edges (shortest paths between destinations) are commonly used for GLS (Arnold & Sörensen, 

2019; Kilby & Prosser, 2002; Prodhon & Prins, 2016; Voudouris & Tsang, 2001). In fact, the 

authors of GLS, Voudouris & Tsang (2001) argue that edges are ‘ideal GLS features’, so we 

make the same choice in this section. By penalizing a solution, GLS changes the solution 

space: a penalized local optimum may cease to be one, essentially ‘rising’ above the 

neighbor solutions (in a minimization problem). This approach is an alternative to, for 

example, random restarts or acceptance probability. Penalizing is implemented by assigning 

a given solution S a new cost 𝑇′(𝑆) defined by an augmented objective function 𝐹𝑝𝑒𝑛(𝑆): 

 

𝐹𝑝𝑒𝑛(𝑆) = 𝑇(𝑆) + 𝜆 ∑ ∑(𝑝𝑖𝑗  ∗  𝜀𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(𝑆)),     𝑖 ≠ 𝑗           (29) 

where:  

• 𝑝𝑖𝑗 is the current penalty given to S for having edge 𝑒𝑖𝑗  in it 

• 𝜀𝑖𝑗(𝑆) is a binary variable equal to 1 if 𝑒𝑖𝑗  is present in S and 0 otherwise 

• 𝜆 is a parameter 

 

Higher values of 𝜆 lead to diversification of the search: plateaus and basins are searched 

more coarsely; lower values intensify the search: the search employs a finer step. 

 

Now, the use of penalties is not unique to GLS, but the way GLS chooses which features to 

penalize is what makes it truly efficient (Voudouris & Tsang, 2001). It uses a notion of utility of a 

feature; the higher the feature’s (let us take an edge as a feature) utility 𝑢𝑖𝑗(𝑆), the more 

prominent its role in the solution. It is defined as follows: 

 

𝑢𝑖𝑗(𝑆) = 𝜀𝑖𝑗(𝑆)  ∗  
𝑐𝑖𝑗

1 + 𝑝𝑖𝑗

              (30) 

 

The higher the edge cost, the greater the utility of penalizing it. At the same time, the higher 

the edge’s penalty, the lower the utility. Most often, the feature with the highest utility is 

penalized. If there are more than one such features, all of them may be penalized, but the 

implementation is flexible. When it comes to the amount of penalty, the most common 

approach (Arnold & Sörensen, 2019; Kilby & Prosser, 2002; Voudouris & Tsang, 2001) seems to 

be to increment 𝑝𝑖𝑗 by 1 every time 𝑒𝑖𝑗 is penalized; the penalty then essentially represents the 

number of times the feature has been penalized. This value is then scaled by 𝜆 to reach the 

desired level of effect on the objective function. The value of 𝜆 is problem-dependent and 

experimentation is encouraged although Voudouris & Tsang (2001) argue that empirical 

results suggest that 𝜆 for the given problem can be computed the following way: 

0. Let us define a function 𝑛𝑢𝑚_𝑒𝑑𝑔𝑒𝑠(𝑅𝑠) = ∑ |𝑟𝑘|
𝐾𝑚𝑎𝑥
𝑘=1 , where 𝑅𝑠 is the set of routes in 

solution S; then 𝑛𝑢𝑚_𝑒𝑑𝑔𝑒𝑠(𝑅𝑠) returns the number of edges in solution S 

1. Run the algorithm with an arbitrary value 𝜆, e.g. 𝜆 = 1 

2. Introduce a parameter 𝛼𝑔𝑙𝑠 

3. At the first encountered local minimum S, set 𝜆 =
𝛼𝑔𝑙𝑠 ∗ 𝑇′(𝑆)

𝑛𝑢𝑚_𝑒𝑑𝑔𝑒𝑠(𝑅𝑠)
 

 

The authors believe that 𝛼𝑔𝑙𝑠 is relatively instance-independent and should be in [1
8⁄ , 1

2⁄ ] for 

routing problems like TSP and VRP. 
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Just as with other metaheuristics, a termination condition must be specified, most commonly 

it is a certain number of iterations 𝑡𝑚𝑎𝑥. This part is also problem-dependent, and the best 

value should be found empirically. Below is a general step-by-step description of GLS that 

uses edges as features: 

 

Step 0: 

Generate an initial solution 𝑆0 randomly or using a tour construction heuristic. 

 

Step 1: 

Initiate: 

• 𝑝𝑖𝑗 for each 𝑒𝑖𝑗 and set 𝑝𝑖𝑗 = 0 for all 𝑒𝑖𝑗 

• S* to store the best solution met so far 

 

Step 2: 

Repeat until the stopping condition is met: 

Perform Local Search using the objective function 𝐹𝑝𝑒𝑛(𝑆) until a local minimum 𝑆𝑙𝑜𝑐𝑎𝑙
∗  is 

reached. 

Once it has been reached:  

• set S* = 𝑆𝑙𝑜𝑐𝑎𝑙
∗  

• compute 𝑢𝑖𝑗 for each 𝑒𝑖𝑗 in 𝑆𝑙𝑜𝑐𝑎𝑙
∗  

• set 𝑝𝑖𝑗 = 𝑝𝑖𝑗 + 1 for the feature with the highest utility 

 

Step 3: 

The stopping condition has been met. Return T(S*). 

 

Finally, a note on the underlying heuristics. The authors, Voudouris & Tsang (2001) state that 

GLS is not, generally, very sensitive to the optimality of the initial solution given that sufficient 

time is allocated for the search. That means that simple tour construction heuristics like 

Nearest Neighbor can be used. In fact, the starting solution can be generated randomly. For 

the tour improvement heuristics, the authors’ view is similar: they believe that more 

sophisticated algorithms provide less space for GLS itself to act and can sometimes even 

reduce the optimality of the result. They recommend 2-Opt as simple method that performs 

well for the routing problems. 

4.7 Conclusion 

There are several exact methods for solving Vehicle Routing Problems but since the VRP is NP-

hard, heuristics are still widely used to solve large instances in an acceptable span of time. 

Some real-world applications of the VRP may be sensitive enough to the optimality of the 

found solution to favor long execution times of exact algorithms over the speed of (meta-

)heuristics. We believe that municipal waste collection is not one of those. The traditional 

fixed-schedule and fixed-routes approach is entirely based on approximations, and the 

consequences of route and schedule suboptimality are, generally, tolerable. This is to say that 

haulers are likely to prefer methods that arrive at near-optimal solution in an acceptable 

period of time. 

 

Prodhon & Prins (2016) argue that local search procedures are crucial for solving a VRP, and 

the metaheuristics that employ local search solve routing problems more efficiently than 

those that do not use local search, for example, Genetic Algorithms and Ant Colony 

Optimization. Among those that do, Tabu Search generally outperforms Simulated Annealing 

and since the early 1990s, when the former became widely used, it has been considered the 

best-performing metaheuristic (or, rather, a metaheuristic family). However, in the last 
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decade, they argue, it was largely outperformed by other metaheuristics, such as Guided 

Local Search.  

 

Cordeau et al. (2002), state that Tabu Search generally performs better than Simulated 

Annealing or any other metaheuristic, but their paper was published before Guide Local 

Search was invented. Arguments like this, dating almost twenty years back, should, of course, 

be taken with caution, because each family of metaheuristics gradually evolves over time as 

new variations appear, and the balance between them may shift. Same applied to 

Voudouris & Tsang (2001), the inventors of Guided Local Search, who report having tested 

their method (using Lin-Kernigan’s variable-opt as a tour improvement heuristic) on the 

problems from the TSPLIB and found that it had outperformed certain implementations of 

Simulated Annealing and Tabu Search.  

 

Finally, Vidal et al. (2013) do a thorough analysis using 20 different metaheuristics and their 

combinations, and testing them on a number of VRP instances from the VRPLIB (Vidal et al., 

2013). The Guided Local Search methods they include in their tests (they have two variations 

that are combinations of Guided Local Search with other metaheuristics) perform better on 

average than Simulated Annealing, pure Tabu Search and various implementations of 

Genetic Algorithms, although these Guided Local Search methods still give worse results than 

a few complex hybrid metaheuristics. The runtimes for those, however, are notably longer, 

and they are harder to implement. In terms of implementation, Cordeau et al. (2002) point 

out that the most efficient heuristics are not always the most widely used ones. In order to be 

implemented, a heuristic must be described in sufficient detail. In fact, heuristics that are easy 

to implement (most likely because of a clear and, possible, simple design) are more likely to 

be widely used than their complex peers. Cordeau et al. (2002) attribute the wide use of the 

Clarke-Wright savings method to this fact. Prodhon & Prins (2016) draw the same conclusion 

with regard to metaheuristics, stating that despite hybridization (combining several 

metaheuristics) appears to be a trend, the test runs show that the performance improvement 

they promise is most of the time not as great as the increase in runtimes and implementation 

complexity that the hybridization ensues. From the above discussion, we conclude that Guide 

Local Search appears to be best-performing method among regular (non-hybridized) 

metaheuristics, followed by Tabu Search. 
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5 Implementation 

In this chapter, we present a minimalistic software application for receiving, pre-processing 

and storing sensor data, as well as a QGIS 3 plugin for scheduling, routing and visualizing the 

results. 

5.1 The Things Network application 

The sensor that we present in section 3.1 is connected to a The Things Network (TTN) gateway 

via LoRa (wirelessly). To do so, we use the TTN account of GIS Specialisten (since the sensor 

and the gateway belong to them) but to replicate the procedure, one could create a free 

account on the TTN’s website (The Things Industries, 2019). An account holder has one or 

more applications. An application groups one or more sensors into a single project that has its 

unique Application ID and Access Key (used as a password). A sensor sends its payload to 

the gateway via LoRa. The gateway is a stationary device that is connected to the Ethernet. 

One gateway can receive data from multiple sensors located in the range of up to 1 km in 

an urban environment. A gateway then sends this data to the TTN network server over the 

Ethernet cable although it can also use cellular connection. The architecture overview is 

presented in fig.17: 

 
Figure 17. The general TTN architecture. 

 

The data sent by the sensors can be viewed on the TTN console in the account: 

 
Figure 18. An example of a data record sent by a sensor, as displayed on the TTN console. 

 

The CNDingTek waste container sensor used in this study sends a 4-byte uplink that is 

represented in the TTN as 4 pairs of digits, or 4 hexadecimal values. The sensor reports on 5 

different values in the following order: 

• Whether it is full (1/0) 

• Whether it caught fire (1/0) 

• Whether it is positioned upright (1/0) 

• Whether the battery is empty (1/0) 
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• The distance between the sensor and current garbage level (mm, max = 2000) 

 

By default, five bytes would be required for such a message. However, the first four 

measurement will never actually need a whole byte and can in fact always be represented 

by only one hexadecimal digit (decimal 0 through 15). Hence it is possible to logically put two 

values into one byte. For example, if the first byte is ‘11’ in hexadecimal, it represents a 

decimal number ‘16’, but if we read it as a string of two characters instead, it can be 

interpreted as two decimal numbers: ‘1’ and ‘1’, which means ‘yes, it is full’ and ‘yes, it is on 

fire’. This structure is summarized in table 4: 

 

Table 4. Structure of the sensor's payload (‘X’ stands for ‘any value’). 

Meaning Message pattern 

full (true) 1XXXXXXX 

on fire (true) X1XXXXXX 

not upright (true) XX1XXXXX 

empty battery (true) XXX1XXXX 

remaining distance XXXX1234 

 

The last value, the remaining distance, can vary from 0 to 2000 meters (the maximum 

distance the sensor can scan), which will mean the number of millimeters left to the top of the 

container. A single byte can only represent the decimal 0 through 255, so again, the optimal 

logic would be to send four different hexadecimal values and read them as a string 

representing a decimal number. In table 4, the last four number are technically two 

hexadecimal values: ‘12’ and ‘34’, but read together, they represent ‘1234’ (decimal) which 

tells that there is 1.234 m left free in the container.  

 

Using the application’s ID and Access Key, any client (in respect to the TTN network server) 

application can subscribe to the uplinks from the sensors that belong to that application. A 

subscription here means that the payloads (uplinks) from the sensors will be received 

automatically and in near-real time: a delay of up to a few seconds can be expected. The 

frameworks on which such a client can be built are listed on the TTN website (The Things 

Industries, 2019) and include Python, Node.js, Node Red, Go and Java. We chose Node.js for 

its asynchronous nature that allows to accelerate the processing. For storing the data, we use 

PostgreSQL with the PostGIS extension. Fig.19 presents the data model: 

 

 
Figure 19. PostgreSQL Data model. 

 

An uplink from the sensor is decoded in the TTN client. It sends two output values: the id of the 

container / sensor (must correspond to one of the values in the ‘fid’ column of relation 

‘containers’) and the ‘remaining height’, i.e. the distance in mm reported by the sensor. A 

new record is then inserted into the ‘fill_levels’ table: 

• ‘record_id’ is an autoincremented field 

• ‘container_id’ is received from the TTN 
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• ‘recorded_on’is received from the TTN 

• ‘remaining height’ is received from the TTN 

• ‘fill_level’ is computed automatically using a trigger function 

• ‘increase’ is computed automatically using a trigger function 

5.2  QGIS plugin 

QGIS allows extending its functionality with custom plugins built either on C++ or Python. We 

use the latter. Please, notice that the plugin is developed for QGIS 3 and may be 

incompatible with QGIS 2. The link to the repository and some instructions can be found in 

Appendix C. The plugin combines the scheduling and routing functions. Fig.20 presents a 

view of the plugin’s toolbar. We describe the buttons from left to right. There are five buttons: 

 

 

Setup: 

Setup is required to activate the other functions. It presents the user with a dialog with two 

types of input parameters: those related to the database connection (credentials and the 

names of the tables and fields to use) and the VRP constraints: the minimum and maximum 

number of vehicles, the tour duration limit and the vehicle capacity. Finally, the user is also 

asked to specify the depot coordinates. The coordinates must be in WGS 84! Internally, they 

will be converted to the coordinates of the CRS of the containers table. The plugin does not 

check whether the container and the roads tables are in the same CRS, this is up to the user 

to ensure. We used the coordinates of Stadsreiniging Almere (52.35, 5.22) where, as we know 

from the interview, all the vehicles are stationed. 

 

After the user rounds off, the plugin checks the PostgreSQL inputs by running a test 

connection. If the connection fails, the user will be presented with a warning message ‘Could 

not connect to the database!’ If any other inputs are invalid, the plugin shows another 

warning message saying ‘One or more input values are invalid!’ If everything is correct, 

however, the other buttons become enabled. 

 

Convert road network into graph: 

This function does what is described in section 4.6. It takes the road dataset (table specified in 

the previous step) and applies the GRASS v.net.allpairs to it. Subsequently, it applies 

‘Aggregate’ from the QGIS native tools to aggregate the elements of the same shortest path 

into a single line feature as described in section 3.5. The outcome is a GeoJSON file stored in 

the plugin’s ‘temp_data’ directory that contains the shortest paths between each pair of 

vertices, where vertices are either containers or the depot (i.e. their locations). 

 

Schedule collection dates: 

The collection dates are assigned to containers according to the procedure described in 

section 5.2. Upon its success, the user is presented with ‘Scheduling done’ message. 

 

Show containers: 

Loads a set of containers scheduled one layer per date. 

 

Find routes: 

Solves the CVRP for each of the collection dates and loads each solution as a separate layer. 

The algorithm is based on Google OR Tools (Google Developers, 2019b). We use an 

implementation of Guided Local Search provided in that toolkit to solve the VRP in 

Figure 20. The plugin's toolbar. 
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combination with the Cheapest Insertion method to construct the initial solution. Next section 

discusses the method in more detail. 

5.3 Solution method used in the implementation 

Google OR Tools offer simple Local Search (Steepest Descent), i.e. a greedy tour 

improvement heuristic, and three metaheuristics that we described in the previous chapter: 

Simulated Annealing, Tabu Search and Guided Local Search. The developers recommend 

Guided Local Search for VRP but mention that there is no single ‘best’ (meta-)heuristic, and 

the performance is problem-dependent (Google Developers, 2019b). In this argumentation 

they refer to the ‘No Free Lunch’ theorem by Wolpert and Macready (Wolpert & Macready, 

1997).  

 

For the reasons described in the previous chapter, our choice fell on Guided Local Search. In 

the Google OR Tools implementation, shortest paths between destinations are used as 

features, penalties for each edge are initialized to zero and are incremented by one every 

time the search runs into a local minimum. Only the highest-utility (single) edge is penalized 

each time. 𝜆 is a parameter with default value 𝜆 = 0.1. The Local Search methods 

implemented in OR Tools uses the ‘best-of’ approach. We also specified one-minute service 

time for each container so simulate the time spent emptying the containers. 

 

There are different options for construction of the initial solution: Nearest Neighbor (default), 

the Savings method, Nearest Insertion and Cheapest Insertion (both parallel and sequential 

versions) and also other heuristics that were not covered in the study: Christofides’, Cheapest 

Edge and Sweep methods. The user can also construct a custom heuristic. We chose the 

Cheapest Insertion method (called ‘Best Insertion’ in Google OR) because it has a fixed worst-

case performance ratio 2 (unlike, e.g. Nearest Neighbor and Clarke-Wright), is suitable for 

directed graphs (unlike the Cristofides’ method) and the literature suggests that it performs 

better on average than Nearest Insertion (see section 4.4.3). 

 

The stopping condition can be either a runtime limit or a limit on the number of moves 

performed. Additionally, a limit can be set on the time spent on evaluating a neighbor 

solution. In our case, the runtime limit is the most intuitive choice. 

 

During the development, we noticed that the minimum number of routes sufficient for a 

feasible solution was always the optimal one, meaning that employing extra vehicles would 

always give us solutions of at best the same cost or higher. Therefore, our algorithm finds a 

solution for each number of vehicles starting from the lower bound and stops one a feasible 

solution has been found. We cannot provide any strict proof of this concept, but we believe 

that haulers would, in most cases, like to minimize the number of vehicles used. We also 

presume that there may be (substantial) marginal costs of using an extra vehicle (and hence, 

also, a few more people) and since we do not incorporate them in our cost function, the 

actual cost of a solution, as the number of vehicles increases, may rise faster than the cost 

function’s value reflects. 

5.4 Synthetic data used for testing 

Since we did not have an opportunity to deploy sensors in actual containers, we had to use 

mock data to test our applications. The structure of the software did not change, but in the 

plugin’s data_manager.py file, we added a function called generate_fill_levels. It can be 

called with an array of integers in the interval [1,12] that represent the months for which the 

synthetic fill levels should be generated. The function is in the ‘main’ of the module, so it will 

automatically execute upon a call to the file. For each sensor (container), it inserts one 
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record for each calendar date in the specified time interval; daily increase is picked 

randomly in the interval [0.05, 0.2]. We chose these bounds arbitrarily as we did not manage 

to receive any information from Almere. Therefore, we do not aim at evaluating the results, 

but rather use mock data to facilitate the application testing. 

5.5 Testing 

The tests were run on HP Pavilion laptop with an Intel Core i7-7700HQ CPU with two cores 

2.80GHz each, and 16 GB of RAM. We used metaheuristics, and for those to converge, one 

should provide a stopping condition; we used time limit. Hence, the runtimes are predefined 

by the user, and there is no ‘speed’ comparison possible. However, there is an important 

preparatory step of finding a fastest path between each pair of containers or a container 

and a depot. This is implemented as an exact algorithm, and it does vary significantly with the 

number of containers. Table 5 shows the average time it took to produce fastest paths for all 

pairs of vertices using our GRASS GIS + QGIS combination that was described in 3.5. 

 

Table 5. The runtimes for v.net.allpairs (GRASS) + aggregate (QGIS). 

20 containers 100 containers 500 containers 

< 1 minute ≈ 8 minutes ≈ 300 minutes (5 hours) 

 

The runtime grows very fast with the number of vertices which was expected. We attempted 

to run the procedure for 1000 vertices, but it crashed after almost 20 hours of runtime. We 

believe that this was mostly caused by the suboptimality of our implementation, namely using 

GeoJSON files for input-output (the options we had to choose because of v.net.allpairs does 

not seems to offer an interface to write to Geopackage or PostgreSQL, for example, at least 

not when used via QGIS API). We discuss this matter at the end of Chapter 6.  

 

We used maximum route duration 𝑇𝑚𝑎𝑥 = 420, i.e. 7 hours, assuming a standard 8-hour 

working day with a lunch break of 30 minutes and two coffee breaks of 15 min. The same 

constraint value is used, for example, by Nuortio et al. (2006). This assumption only works, of 

course, if the workers do not have to return to the depot for these breaks (have a lunch box 

with them or have their lunch at a location along their route. Next, we use vehicle capacity 

𝑄𝑚𝑎𝑥 = 10000, i.e. 10 tons. This value was obtained from the specifications (RDW, 2019) of the 

vehicles (DAF CF 290 FAN trucks with a waste compression mechanism) that is, according to 

some sources (Geesinknorba Group, 2018; Omroep Flevoland, 2018), are used by 

Stadsreiniging Almere. We do not know the number of vehicles they have, nor whether there 

is a minimal number required to be used. We assume that the goal is to minimize the number 

of vehicles used as described in section 5.3.  

 

For testing, we randomly selected 100 containers from BGT. Next, we generated simulated fill 

levels for them as described in the previous section and did the scheduling (fig.21):  
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Figure 21. Collection schedule generated for the 100 randomly selected containers. The legend 

specifies the date and the number of containers on that date, in square brackets. 

 

Fig. 22 presents the resulting routes: 

 
Figure 22. Routes generated for the 100 randomly selected containers from fig.20 using Guided Local 

Search and Cheapest Insertion for the initial solution. Note that there is one route for each date. 
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Despite our choice in metaheuristics fell on Guided Local Search for the reasons discussed in 

the previous chapter, we decided to compare it with the other two metaheuristics 

implemented in Google OR tools: Tabu Search and Simulated Annealing. All these 

metaheuristics require an initial solution, and the results may differ depending on the heuristic 

chosen to generate it. We justified our choice for the Cheapest Insertion method in section 

5.3. To check how the initial solution impacts the results, we run each of the three 

metaheuristics with each of the three heuristics. We ran these cross tests for two different 

selection sizes, 100 containers and 500 containers. Finally, we use a runtime limit as a stopping 

condition for the metaheuristics and test two values: one minute and ten minutes. Let us first 

present the schedules for 100 containers (fig.23) and 500 containers (fig.24): 

 

 
Figure 23. Number of containers scheduled (synthetic data). 

 

 
Figure 24. Number of containers scheduled (synthetic data). 

 

For 100 containers, each date’s solution required only one vehicle. For 500 containers, 

however, the number of vehicles ranged from one to three. And both statements apply to 

the results obtained by all metaheuristics and tour construction method combination (fig.25): 
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Figure 25. Number of generated routes (synthetic data). This number coincided for all metaheuristics. 

 

We can see that the distribution in fig.25 does not logically follow the one in fig. 24. For 

example, 14th of June is by far the leading day in terms of the number of containers 

scheduled, but they all fit in one route, just like on the 10th of June for which there were just a 

few containers scheduled. At the same time, for the 11th of June, three vehicles were 

required. We inspected these solutions and found that all extra vehicles were added after the 

capacity constraint was reached. No routes came close to reaching their duration 

constraints; the longest of them, the solution for the 11th of June, was only 245 minutes as 

found by an exact method. It is fair to repeat here, however, that we did not use traffic data 

and did not have access to the real speed limits either, so the absolute tour duration values 

may not make much sense here. 

 

First, we found the optimal solution for each of the selection sizes. To do so, we did not specify 

any metaheuristic in Google OR tools, thus using the default parameters. The documentation 

does not indicate which exact method is used, but this would only matter for runtime 

comparisons. Table 6 presents the optimal solution costs (total for each date): 

 

Table 6. Performance of an exact method for 100 random containers. 

 100 containers 500 containers 

Total cost 511 1232 

Runtime ≈ 3 minutes ≈ 390 minutes (3h 30 min) 

 

Let us now present the comparison between the solution obtained using different 

combinations of metaheuristics and tour construction heuristics of our choice. We ran each 

combination ten times. Since the objective is to minimize the overall cost of transportation for 

the time horizon, i.e. all scheduled dates, below we only present the summarized costs for all 

the dates in the give solution. These summarized costs were further averaged over the ten 

runs. Tables 7 and 8 present the results obtained for 100 containers (runtimes one minute and 

ten minutes, respectively). Table 9 and 10 show the results for 500 containers for the same 

runtimes. 

 

Table 7. Total travel time (min) for 100 random containers, search time limit – 1 minute 

 Nearest Neighbor Cheapest Insertion Clarke-Wright 

Guided Local Search 556 556 557 

Tabu Search 558 566 558 

Simulated Annealing 560 561 559 
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Table 8. Total travel time (min) for 100 random containers, search time limit – 10 minutes 

 Nearest Neighbor Cheapest Insertion Clarke-Wright 

Guided Local Search 556 556 556 

Tabu Search 556 561 556 

Simulated Annealing 558 561 559 

 

Table 9. Total travel time (min) for 500 random containers, search time limit – 1 minute 

 Nearest Neighbor Cheapest Insertion Clarke-Wright 

Guided Local Search 1354 1353 1353 

Tabu Search 1360 1369 1364 

Simulated Annealing 1381 1382 1378 

 

Table 10. Total travel time (min) for 500 random containers, search time limit – 10 minutes 

 Nearest Neighbor Cheapest Insertion Clarke-Wright 

Guided Local Search 1353 1353 1353 

Tabu Search 1355 1359 1358 

Simulated Annealing 1381 1382 1378 

 

It appears that Tabu Search is the most sensitive to the optimality of the initial solution. It 

turned out to have performed the worst with the Cheapest Insertion method, despite our 

hopes for its efficiency. It is hard for us to say what the reason may be. Guided Local Search, 

on the opposite, is almost insensitive to the choice of the tour construction heuristic. This may 

be due the similarity of the tours they produce, or because the improvement procedure 

generally has a much bigger impact on the result, as it was described in section 4.6.3. 

Unfortunately, our implementation does not allow to inspect those initial solutions. Simulated 

Annealing was somewhere in between, with slight variations in the results. It seems to work 

best with the Savings method (among the ones tested).  

 

As to the time limits set for the metaheuristics, for Guided Local Search and Simulated 

Annealing, in both cases the results were nearly identical. It appears that one-minute runtime 

is enough for these metaheuristics, and the results do not improve much afterwards; for the 

given problem sizes, of course. Tabu Search showed the most noticeable improvement from 

one-minute to ten-minute runtime. 

 

Let us now take the best result for each metaheuristic (among all its combinations) and 

compare their performance with the results obtained using an exact method. We use the 

formula  
𝑇(𝑆𝐴)−𝑇(𝑆𝑂𝑃𝑇)

𝑇(𝑆𝑂𝑃𝑇)
 , i.e. the excess of the metaheuristic’s best solution’s cost over the optimal 

solution’s cost. Table 11 summarizes the results: 

 

Table 11. The excess of the metaheuristic’s best solution’s cost over the optimal solution’s cost. 

 Guided Local Search Tabu Search Simulated Annealing 

100 containers 8.81% 8.81% 9.20% 

500 containers 9.82% 9.98% 11.86% 

 

Overall, Guided Local Search and Tabu Search produced much better results than Simulated 

Annealing, especially for 500 containers. Between the former two, there is only a minor 

difference for 500 containers, so it fair to say that they performed equally good. However, 

Guided Local Search was able to arrive at those results within one-minute runtime, while for 

Tabu Search it took more time. Additionally, the insensitivity to the underlying tour 

construction heuristic may be an advantage of Guided Local Search because it makes it 

easier to implement. 
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6 Discussion 

In this chapter, we reflect on the results of the study. We start with some general discussion 

(6.1), continue with the limitation imposed by the project’s scope (6.2), discuss some direction 

for future work (6.3) and round off with a more specific talk about the presented 

implementation (6.4). 

6.1 General notes 

In chapter 4, we presented a number of exact methods and heuristics for solving the VRP. We 

had to narrow our selection down to only include two exact methods, three metaheuristics 

and several simple heuristics. There exist more algorithms in each category, but we had to 

mind our time constraints and only show a few examples. We encourage the reader to 

explore beyond those and challenge our findings. In our examples, we tried to be concise 

and find the right balance between generality and specificity.  

 

Metaheuristics tend to be complex and relatively abstract: there exist different versions of 

each, and those versions tend to have multiple parameters, so that the reader may find it 

hard to translate the general recipe into a specific implementation. With this in mind, we 

provide one example implementation for each metaheuristic with pseudocode and 

parameter choice examples. At the same time, we try to avoid being too specific, leaving it 

to the reader, for example, whether to implement the given algorithm in an iterative or in a 

recursive fashion. We also present the test results reported by various author, but we advise 

the reader to not take those numbers as a well-proven result, because, first, some of them are 

several decades old and, second, they depend on the exact implementation of the given 

algorithm and may even be affected by chance or human error. 

 

We emphasize the difference between the symmetric and asymmetric problems (see section 

4.4.1) as it may render some of the existing methods inapplicable to the given situation. A 

large body of research on the TSP and the VRP focuses on symmetric problems, while the 

real-world applications, especially in logistics, mostly require that the problem be modelled 

on an asymmetric graph. This requirement naturally stems from the way the human-made 

transportation networks operate; one-way streets are an example. Garbage truck routing is 

one of those applications, and we decided to omit some prominent algorithms, e.g. the 

Christofides method, that only work on symmetric networks.  

 

This project was devised as a case study, but due to the circumstances that were out of our 

control, we had to correct the original plan. Instead of a case study, we presented a 

minimalistic two-piece software prototype that one could use a template for further 

development. We used free-and-open-source software because of our limited resources and 

because it is easy to customize and combine the different pieces, such as Python and QGIS. 

We believe that there may exist commercial software packages (the inner workings of which 

may not be known or are intentionally hidden) that are able to solve the problems of the 

type and size presented in this work to optimality, using exact methods, but in our 

implementation, we resort to metaheuristics, namely Guided Local Search. 

 

The diversity of existing methods and their implementations suggests that there is no one best 

method for solving the VRP. Most authors present some comparisons and benchmarks but 

many of them only do so for symmetric problems and only include some of the existing 

methods while omitting the other. The empirical results strongly depend on the size of the 

problem, the spatial configuration of destinations (randomly distributed or clustered) the 

imposed constraints, whether the costs obey triangle inequality, etc. 
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Municipal solid waste management is a multipart process. In this study, we focused on the 

waste collection and transportation, and on the scheduling of these. We left recycling and 

the methods of collection (curbside collection vs communal containers, etc.) aside, only 

giving those a few comments. However, those aspects may influence the way the waste is 

collected and transported. There exist different types of waste collection vehicles, from small 

dust carts that service the containers located in pedestrian areas to multicompartment 

garbage trucks that can collect more than one type of waste at a type. On the other hand, 

there are also different types of containers: small street bins, communal recycling bins with 

underground storage space, traditional communal containers, personal containers like Klikos, 

and potentially more different variations. A working solution may require a more complex 

model than the one we present in this study. Let us summarize some aspects that were left 

beyond the scope of this study but are, nevertheless, important for routing and/or scheduling 

of waste collection: 

6.2 Study limitations 

Here, we briefly discuss some simplification we imposed on our problem model form the very 

start because we had to bound the project’s scope to fit into the limited time span allotted. 

6.2.1 Single depot 

In this project, we used Stadsreiniging Almere as the depot, which, as far as we know, is the 

actual starting point for all waste collection vehicles. We also used it as the end point for the 

routes, although we believe that after emptying the last container on the tour, a vehicle first 

goes to a recycling plant located elsewhere. We do not know exactly if this assumption is 

true, however, and if it is, where this plant may be and whether there is one such end point 

or, perhaps, different types of waste are delivered to different facilities. 

6.2.2 Fleet homogeneity 

We potentially simplified the problem by assuming that all vehicles are exactly the same: their 

capacity, the suitability for the different types of waste containers, etc. We believe that this is, 

generally, not true. We focused on the communal recycling containers that are normally 

located along the streets. Those require, to the best of our knowledge, garbage trucks with a 

special lifting mechanism. At the same time, there are smaller ‘street bins’ that are often 

located in pedestrian zones, e.g. parks, where the large garbage trucks cannot go. Those 

containers are commonly emptied by smaller dust carts. Therefore, it is arguably more 

common for the fleet to be heterogeneous. At the same, we believe in this case the overall 

problem can be split into several problems, one for each type of vehicle and the 

corresponding type of containers. For the examples of studies that address this issue, we refer 

the reader to Archetti et al. (2014). 

6.2.3 Waste separation 

Even if the fleet is homogeneous, the waste is not, and its separate collection gradually 

becomes a norm. Therefore, the clustering of containers by route should also be based on 

the type of waste. It may be one type of waste for one vehicle, but to our knowledge, many 

modern garbage trucks feature two or more isolated compartments, so one vehicle may 

collect more than one type. However, first, there are usually four to five types of waste, and 

we believe that garbage trucks are limited to three compartments at most, and, second, 

each vehicle, in this case, has several capacities. This adds a lot of complexity to the problem 
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and its modeling. For an example of solving a multicompartment VRP, see Reed, Yiannakou, 

& Evering (2014) 

6.2.4 Collection methods 

As far as we know, curbside (by-household) collection plays a prominent role in the 

Netherlands and is common, if not prevalent, in some other countries as well (although there 

are countries where it is uncommon, e.g. Russia). The ideas presented in this study mostly 

addressed the communal containers. Even though curbside collection can be done 

separately from collecting communal containers, we presume that there may be cases in 

which the haulers would like to be able to do both on the same day and by the same 

vehicles. 

6.2.5 Floating schedule 

In this study, we point out the flexibility of the schedule as an advantage because it may 

either reduce the operational costs or prevent overflow, or both (which would be a lucky 

situation). We suspect that in reality there are also some legal and organizational constraints 

to the scheduling process. Municipal solid waste collection is most often operated on tax 

money, and should it turn out that a more frequent collection is required according to the 

sensor measurements, the haulers might have to raise the taxes. Another problem that we 

discussed at the start of this paper, is that from the managerial perspective, as well as from 

the perspective of the collectors, assumingly, the more predictable and even the schedule is, 

the better. To address this problem, we discarded the idea of the ‘on-the-fly’ waste collection 

and emphasized the need for a scheduling horizon, e.g. 2-4 weeks. However, this still leaves 

room for longer-term dynamics, under which the workload may differ between the months, 

etc. Therefore, we believe that the implementation of such ‘smart garbage collection’ may 

face a certain amount of objection. 

6.2.6 Time windows 

Last but not least, there may be cases in which some containers can only be emptied within 

certain time spans. We believe that it is more common in commercial waste collection, 

restaurants being one prominent example. Here, by ‘commercial’ refers to the waste 

disposed by organizations, both private and public, and the legal status of the hauler.  

However, we cannot exclude such possibility in the municipal solid waste collection as well. 

Vehicle Routing Problems with Time Windows are a popular research subject, and for some 

examples we again refer the reader to Archetti et al. (2014). 

6.3 Future directions 

There were also some things we wanted to include in our study but did not manage to. These 

improvements may become the subject of a future project. 

6.3.1 Schedule optimization 

Our scheduling algorithm prevents overflows by choosing the date before the expected 

overflow, and it avoids the weekends, but afterwards it does not attempt to redistribute the 

number of containers more evenly across the scheduling horizon. From the managerial and 

operational perspective, an even distribution among the days is highly desirable, in the first 

place because the work hours for drivers and collectors must be acceptable, predictable 



61 

 

and rational. A truly intelligent solution should be able to reshuffle the schedule to make it 

balanced. 

 

We believe that there are two ways to do so: spatial and non-spatial. In the non-spatial way, 

the original schedule may be reshuffled based on statistical metrics such as variance of the 

number of containers scheduled for each day, e.g. variance must not exceed a certain 

value. We expect this approach to be much faster, but then which containers do we move 

from one date to another? This question will probably require a spatial approach. For 

example, we can decide which containers to move based on how they fit into the solution 

generated for a previous date. To this end, however, we have to first solve the VRP for each 

date, then correct the schedule, and then solve the VRP again, and it may require several 

such iterations. This is where (meta-)heuristics should come in handy. We did not, however, 

manage to devise such an algorithm within the time we had for this project. But we consider 

it crucial for a decent implementation and would like to address this need in our further 

research. 

6.3.2 Accumulation rate prediction 

We use mean accumulation rates, i.e. a simple average of the previous fill level records (their 

differences, to be more precise). We believe, however, that there may be temporal patterns, 

and their detection can improve the prediction. We expect weekly and seasonal cyclicity 

but without the data from Almere, we were unable to say anything with certainty. The 

implementation does not, however, necessarily require empirical results. We were able to 

make our plugin detect the periodicity use autocorrelation: for each time lag (number of 

days), it calculates the correlation coefficient, e.g. the actual time series of fill levels records 

and its copy shifted seven days forward reveals a correlation coefficient equal to a certain 

value. However, this is not enough, as these results must then be used to arrive at a complex 

function that would predict how much waste will be accumulated at each container within 

each given time span. Within the time we had for this project, we did not manage to solve 

this problem. For some ideas, we refer the user to Kannangara et al. (2017). 

6.3.3 Cost function 

In section 3.3, we discussed what a realistic cost function could be but came to a conclusion 

that we lacked sufficient knowledge about how vehicles work: how fuel consumption could 

be modeled as a function of travel time and/or distance, and what role vehicle 

maintenance would play in that function. Therefore, we resorted to travel time as the cost 

parameter. This might be an oversimplification, but this decision was also supported by the 

majority of the papers that we had studied. In fact, we had not come across any studies on 

Vehicle Routing Problems that would develop a complex cost function. Most of the authors 

seem to prefer travel duration (Archetti et al., 2009, 2007; Archetti & Speranza, 2014; Babaee 

Tirkolaee, Abbasian, Soltani, & Ghaffarian, 2019; Cordeau et al., 2002; Faccio et al., 2011). 

Some choose travel distance (Ramos et al., 2018a) and some leave the question open, 

saying that the implementation may use either travel distance or duration or mentioning both 

and not specifying the actual cost function (Ferrer & Alba, 2018; Silva, 2016). 

6.4 Reflection on the implementation 

At the end of this chapter, let us share our reflection on the implementation that we 

presented. During the work, we came across quite a few free-and-open-source tools for 

network analysis: Python libraries (NetworkX), C++ libraries (Boost Graph), PgRouting (an 

extension for PostgreSQL), GRASS GIS, QGIS native functionality. In addition, Google, TomTom 
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and HERE (and possibly more companies that work in the same field) provide web APIs with 

powerful network analysis tools that can be used for free up to some limits (Google 

Developers, 2019a; HERE Maps, 2019; TomTom, 2019). There are limits on the number of calls to 

the API, but those are usually in the order of thousands of calls a month, which is more than 

enough for the application in this study. Much more restrictive are the limits on the number of 

destinations for routing, i.e. containers in our case. Google and TomTom will allow up to 25 

destinations, for HERE Map, this figure is 50. Moreover, these limits remain the same for paid 

accounts as well. Therefore, we left these options aside in this study.  

 

Among those FOSS options, mentioned before, we first had to first restrict our choice to the 

ones we have the necessary skills to work with, e.g. we do not have experience with C++ and 

we had to set it aside. Among the rest, Google OR tools impressed us the most: while 

NetworkX and PgRouting have many staple tools for network analysis like shortest path 

algorithms, we could not find more complex tools for solving the TSP, let alone the VRP (at 

least not in the online documentation). Google OR tools are FOSS and have a set of tools for 

solving Vehicle Routing Problems, including three metaheuristics and ten route construction 

heuristics. However, these tools take a complete graph (a cost matrix) as input, i.e. shortest 

paths between each pair of containers or a container and the depot, but there are not built-

in tools for producing one from the actual road network and a set of containers (see section 

3.6 for more explanation). The documentation suggests using Google Maps Distance Matrix 

API that, despite its name, can also produce a travel duration matrix. However, this API is web 

based and it is also limited to 25 destinations at a time. Therefore, we had to search for 

another way to do this part of the task.  

 

QGIS was an obvious candidate; it features a function that computes the shortest/fastest 

path between two locations in a road network, and another one that extends it to find the 

shortest/fastest path between a point and a set of points. These functions are called ‘Shortest 

path (point to point)’ and ‘Shortest path (point to layer)’ respectively. So, to perform our task 

of finding all shortest paths for a number of points, we would have to batch those. And 

although this is not a challenging endeavor, we soon discovered a GRASS GIS tool called 

‘v.net.allpairs’, i.e. it is called ‘all pairs’ and it makes part of the GRASS network analysis 

module. It does exactly what we needed with minimum effort, but we still compared the 

batched version of the QGIS tools with v.net.allpairs. The runtime results were much in favor of 

the latter. One obvious reason is that the batching we did was essentially telling Python to 

execute the QGIS function multiple times and then stitch the results into a single layer. The 

runtime was in fact 7-8 times longer, and the proceeded with the GRASS GIS tool. It does, 

however, have a major inconvenience: it returns each segment of each shortest path as a 

separate record. This is why we used a native QGIS tools ‘Aggregate’ to aggregate those 

segments into one record for each pair of destinations. The result is the desired all pairs of 

shortest paths that can be used further in OR tools, but this aggregation slows down the 

process. It is still much faster than the batched version of the native QGIS tools, but we 

believe that there may be a better ‘all pairs’ algorithm in PgRouting, namely the 

implementations of Floyd-Warshall’s and Johnson’s algorithms (pgRouting Contributors, 2019). 

Within the time bounds of this study we did not manage to test and compare those but we 

encourage the reader to do so because we believe that the runtime of our v.net.allpairs-

aggregate pair are unnecessarily long.  

 

This was also the reason we had to limit our testing samples to 500 containers for a planning 

horizon. Even Almere, which is a relatively small municipality with approximately 200,000 

inhabitants, has about 1500 underground waste containers, and if we add the other types 

that potentially exists, this number may rise to several thousands. This means that our 

application should be tested for larger samples. We believe that the suboptimality of GRASS 

v.net.allpairs is the main and potentially the only bottleneck in our implementation. We 

encourage the reader to replace it with another solution. 
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7 Conclusion 

There is a substantial amount of research done on the topic of optimizing waste collection. 

The authors come from a vast array of countries which indicates that the solutions in this field 

are being sought all over the world as the municipal waste collection remains one of the 

crucial and inevitable activities in any populated area. Despite being a mundane task, it 

can, in fact, incur high expenditures. But it also appears that these costs can be reduced by 

enhancing the scheduling and routing. In the search for a solution, many authors venture into 

the field of operations research and apply or develop relatively complex mathematical 

models. 

 

Working in the field of GIS, we are most interested in the routing aspect of municipal solid 

waste collection, since it is a spatial problem. However, we discussed that routing is tightly 

linked to scheduling in reality, and a realistic solution cannot ignore the temporal dimension 

of the problem. We argued that this increases the problem’s complexity so that it does not fit 

into the bounds of a classical Vehicle Routing Problem and therefore addressed both 

collection scheduling and garbage truck routing. In the scheduling part, we showed how the 

measurements received from the sensors can stored and analyzed to predict the 

accumulation rate for each waste container. Based on this rate, each of them can be 

scheduled for a certain date. For the routing part, we conclude that finding an optimal set of 

routes for a given date (hence through the containers scheduled for that date) can be 

described as solving a capacitated vehicle routing problem.  

 

Vehicle routing problems have been studied extensively over the past 60 years, which 

resulted in an entire family of those, as well as in multiple alternative methods for solving them, 

among which there seems to be no universal solution. The fitness of the different approaches 

depends on two major variables: the size of the problem, most commonly defined by the 

number of waste containers, and the complexity of the problem expressed by the number of 

imposed constraints. We concluded that a scalable approach most likely requires the use 

heuristics, and we picked one of them, - Guided Local Search, - as a promising method. 

 

Finally, we have presented a minimalistic software kit that receives the data from an 

ultrasonic sensor via the Things Network, a LoRa-based wireless data communication 

technology network, and saves that data into PostgreSQL. Further, the other part of the kit, - 

the QGIS plugin, - analyzes that data to calculate the expected overflow date for the given 

container and schedule its collection on one of the days prior to the overflow. Finally, the 

plugin uses Google OR tools, open-source and free software that implements a number of 

methods used for solving routing problems, to construct the routes for the garbage trucks for 

the territory of Almere. For testing however, we had to resort to creating synthetic fill level 

data as we did not have an opportunity to install sensor in actual waste containers. 

 

We regarded Almere as a use case at the outset of the project and hoped that the emerging 

collaboration opportunities would give us a chance to base our study on the real municipal 

waste collection process in Almere. However, our plans had to be changed later. We 

focused on the algorithms and on a software prototype rather than on real implementation 

for a use case. Nevertheless, we hope that this study presented ideas and prototypes that 

can be used for further development. 
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Appendix A. Preliminary interview with Stadsreiniging Almere 

The interview was done on the 29th of January 2019. The respondents were the three 

managers of the municipal waste collection service (Stadsreiniging): Dani Puzic, Gerzon 

Chandler and Gerrie Kalkhoven. The responses represent their collective opinion. 

 

1. Is waste collection in Almere done by the municipality itself or by a contractor 

company? And does this apply to both households and organizations? 

 

Reply: Both are done by the municipality 

 

2. What types of containers are used? 

 

Reply: Communal underground containers are used for multi-apartment building. There 

are approximately 1500 such containers and 90 of those are equipped with sensors. For 

smaller houses, curbside collection is used (Kliko’s and the like); sensors are not used. 

 

3. How are container locations stored? Is this open data? 

 

Reply: No, this data is not open, and it belongs to the municipality of Almere 

 

4. Are the routes the waste collection vehicles travel defined by the actual fill-level of 

the containers at the time or are they fixed based on some kind of estimations? 

 

Reply: Currently, the data from the 90 sensors that we have is not used for truck routing, 

but we would like to start using it as soon as possible with the new contractor. 

 

5. We know that some municipalities use the software called Afvalris to optimize waste 

collection. Do you use Afvalris or any similar software? 

 

Reply: Yes, we use Afvalris. 

 

6. Which of these elements would you like to have done at the municipality, and not by 

the contractor? 

a) Visualization 

b) Visualization and Analysis   

c) Data storage, Visualization and Analysis    

d) Other (please, specify)  

Reply: we are absolutely okay if the contractor does everything internally and 

only provides access to the final result. Our biggest wish is that it would all be 

integrated in one program (visualization, routing, data storage) 

 

7. Which information would you like the waste container sensors to collect (fill level, fire 

alert, geolocation, etc.)? 

 

Reply: Fill level and geolocation, the latter is needed for the Kilko’s because they tend to 

be moved around and get lost. We would also like to use sensors to count the Kliko’s 

because those are the property of municipality but sometimes it is hard for us to keep 

track of how many there are. We would like to have the same smart locks installed as we 

ones used for the underground containers. Then, they can be integrated with the fill level 

sensors so they could send both the waste level and the opening times count. 

 

8. What are the current challenges/points of improvement? 
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Reply: The biggest issue is that these ultrasonic sensors often send erroneous fill levels if the 

waste inside the container is not spread evenly. We are now considering a sensor 

produced by Micodata,; it sends a batch of signals from different positions on the 

container’s lid. Another major issue is short-lived batteries of the currently used sensors. The 

current model lasts eight months on average, instead of the promised two years, and its 

replacement costs around 125 euros per sensor, plus the work cost. 
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Appendix B: Interview with the municipality Houten  

This interview was done on 2nd of February. Unfortunately, the contact person, Maarten van 

Schaik, did not have time to have an in-person interview, so instead we sent him a 

questionnaire. Here are the questions:  

  

1) The municipal website provides some rules for household waste collection but only 

mentions curbside collection. Are there also large communal waste containers used 

for apartment buildings or organizations?   

 

Maarten: Yes, we have those too, but we only serve households, not organizations.  

  

2) How are container locations stored? Is it open data?  

 

Maarten: No, they are stored in an old-fashioned way, in an Excel list.   

 

3) Do you currently use any sensors to monitor the fill level of the municipal waste 

containers dynamically?   

 

Maarten: No, we don’t.  

 

4) Are the routes that the waste collection vehicles travel defined by the actual fullness 

of the containers or are they fixed based on some kind of estimations?  

 

Maarten: Fixed, based on historical records and empirical experience.  

 

5) I know that some municipalities use the software called Afvalris to monitor the waste 

collection system. Do you use Afvalris or any similar software?  

 

Maarten: No, not yet.  

 

6) Some IT companies provide solutions for waste collection optimization. Which of these 

workflow elements would you like to have done at the municipality, and not by the 

contractor?  

a) Visualization  

b) Visualization and Analysis    

c) Data storage, Visualization and Analysis  

d) Other (please, specify)  

 

7) Which information would you like sensors to collect (fill level, fire alert, geolocation, 

etc.)?  

 

Maarten: Fill level and geolocation.  

 

8) Do you think installing sensors in waste containers and using real-time data about their 

fill levels could improve the waste collection system, and would it be worth the costs 

of implementation?   

 

Maarten: Yes, of course, and let’s not forget how it could help the households.   
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Appendix C: Links to the Code 

QGIS plugin: 

https://gitlab.com/nedaevg/almere-routing 

 

TTN client: 

https://gitlab.com/nedaevg/ttn-client 

 

Database backup (PostgreSQL + PostGIS): 

https://gitlab.com/nedaevg/almere_db 


