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Abstract  

 

Droughts can have detrimental consequences for agriculture, hydropower generation and ecology. 

It is important to increase our understanding of this phenomenon to be able to assist in water 

management and to be able to take preventive measures. The Magdalena-Cauca macro-basin 

(MCMB) is located in the northwest of Colombia. The climate is mainly influenced by shifting of the 

Inter Tropical Convergence Zone, the north-easterly trade winds and the Chocó-jet. Droughts are 

known to occur in the MCMB during El Niño events.  

Four large scale hydrological models (ORCHIDEE, HTESSEL, WaterGAP3 and PCR-

GLOBWB) were evaluated for the MCMB, followed by a quantification of droughts using five 

different drought indices (SPI, SPEI, ETDI, SMDI and SDI) and the determination of the correlation 

between droughts and the El Niño Southern Oscillation (ENSO). The MSWEP precipitation data 

exhibited good performance. Therefore, this forcing dataset was used as forcing for the MCMB. Not 

all model products had a good performance, nevertheless, they were still valuable for the drought 

analysis because the absolute error is longer relevant for drought indices due to their computation 

procedure.  

 Droughts were found to occur most often in the southeast of the catchment, likely because 

this region is less affected by the westerly Chocó-jet, which supplies moist air. During El Niño 

events, the drought-affected area starts in the northeast of the MCMB and moves from there to the 

southwest. This finding agrees well with the fact that the Chocó-jet decreases in intensity during El 

Niño events, enabling the drier easterly trade winds to reach further to the west.  

 The correlation with ENSO is strongest in the west of the catchment, and is strongest for 

the 6-month model ensemble mean SPEI index. The correlation between drought indices and the 

Multivariate ENSO index (MEI) is weaker for a strongly positive MEI values.  

  This drought analysis of the MCMB can assist in future research using use drought indices, 

and their correlation to ENSO, to predict droughts in the MCMB and assist in water management. 
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1. Introduction 
 

The Magdalena-Cauca macro-basin (MCMB) is the largest river catchment in Colombia. It is located 

in the west of country, where the climate is principally influenced by the shift of the Intertropical 

Convergence Zone (ITCZ). Variabilities in the climate are caused by the El Niño Southern 

Oscillation (ENSO) (Hoyos et al., 2013; Restrepo & Kjerfve, 2000). El Niño, the warm phase of 

ENSO, is known to cause droughts in the MCMB (Poveda et al., 2001). 

Droughts can have many detrimental consequences for both ecosystems and societies. 

Crop yields can decrease and cause economic damage, water bodies with drinking water reserves 

shrink and ecosystems can be disturbed. Droughts are a complex hazard, and are relatively poorly 

understood. Analysing historical drought events is crucial to increase our understanding of the 

phenomenon and to assist in water management (Heim Jr., 2002; Keyantash & Dracup, 2002; van 

Loon, 2015; Mishra & Singh, 2011; Narasimhan & Srinivasan, 2005; Vicente-Serrano et al., 2010; 

Wilhite, 2000; Zargar et al., 2011).  

Drought can be described as a temporary, below average availability of water resources 

due to variability of natural conditions (Heim Jr., 2002; van Loon, 2015; Werner & Gründermann, 

2014). Generally, four types of drought can be distinguished: i) meteorological drought, ii) 

agricultural drought, iii) hydrological drought and iv) socio-economic drought (Figure 1) (Heim Jr., 

2002; van Loon, 2015; Wilhite, 2000; Zargar et al., 2011). Meteorological drought is a lack of 

precipitation over an extensive area and period of time. Agricultural drought refers to a soil 

moisture deficit in the root zone, thus affecting the amount of moisture available for vegetation. 

Hydrological drought is used to describe water deficits in surface and subsurface water bodies. 

Finally, socio-economic drought refers to the impact caused by the previous three types of 

droughts, such as crop failure or drinking water shortages (van Loon, 2015).  

 

 

Figure 1. Schematic representation of the relations between different categories of drought (van Loon, 2015) 
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Through drought propagation, a drought starting as a meteorological drought can develop 

to become an agricultural drought, because the water deficit propagates through the hydrological 

system (Figure 2) (van Loon, 2015). This development has four distinguishable effects:  i) pooling; 

ii) lag; iii) lengthening and iv) attenuation. First, the timescale on which the droughts act increases 

from meteorological drought to hydrological drought. This causes pooling: multiple, smaller 

meteorological droughts can result in one large hydrological drought. Second, the hydrological 

drought will occur later than the meteorological drought - an effect called lag - because it takes 

time for the water deficit to develop through the hydrological system. Third, the drought event will 

last longer; this is called lengthening. Finally, the intensity of the hydrological drought will be less 

compared to the meteorological drought, because the water deficit will be spread over a longer 

time. This effect is called attenuation.  

 

 

Figure 2. Schematic representation of drought development through the hydrological system (van Loon, 2015, 
van Loon & van Lanen, 2012) 

 

Drought is often confused with aridity, water shortage and water scarcity. Aridity is, in contrast to 

drought, a more permanent condition and can be explained as the general characteristic of an arid 

climate (van Loon, 2015; Werner & Gründermann, 2014). A water shortage is a temporary 

situation where the human water demand cannot be met. When the water shortage is more 

permanent, one can speak of water scarcity (Werner & Gründermann, 2014).  

Drought analysis is important for water management. In order to perform the analysis, 

drought indices have been developed. More than 100 different drought indices have been 

proposed, each taking into account different aspects of a drought and each with their own 

strengths and weaknesses. Drought indices can take many aspects of a drought into account, both 

quantitative and qualitative. For a quantitative analysis, the duration, intensity, timing and spatial 

extent can be incorporated. Qualitative aspects in drought indices are represented by using 

different hydro-climatic parameters, such as precipitation for meteorological drought, soil 
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moisture for agricultural drought and discharge for hydrological drought (Heim Jr., 2002; 

Keyantash & Dracup, 2002; Nalbantis & Tsakiris, 2009; Zargar et al., 2011). Drought indices are 

computed using hydro-meteorological data, for which in-situ observations can be used. When in-

situ observations are lacking, Water Resources Reanalysis (WRR) data can be used. WRR data 

combines in-situ observations, earth observation data and global hydrological model output 

(Flörke et al., 2013; Van Loon, 2015; Werner & Gründermann, 2014). There are a lot of different 

hydrological models available to generate the hydrological model output for WRR datasets. For 

drought management it is important to use (a) suitable hydrological model(s) in order to generate 

a useful and meaningful WRR dataset. 

 Often, droughts can be correlated with sea surface temperature (SST) anomalies, such as 

the El Niño Southern Oscillation (ENSO). SST anomalies often have a periodic return, which makes 

that the next anomaly can be predicted with a certain confidence (Barnston et al., 1999; Chen et al., 

2004; Zhao et al., 2010). When the correlation between SST anomalies and drought occurrence is 

strong, the predictive aspect of the SST anomaly can help predict the next drought event and thus 

assist in water management (Hoyos et al., 2017; Poveda et al., 2001, 2006) 

The aim of this research is to perform a drought analysis for the Magdalena-Cauca macro-

basin. This will be accomplished by fulfilling the following objectives: 

I. Test the performance of four large scale hydrological models, for the precipitation forcing 

data, and the potential evapotranspiration and discharge model products, for the 

Magdalena-Cauca macro-basin;  

II. Quantify droughts in the MCMB by computing five drought indices based on model 

products of the four models; 

III. Determine the strength of the correlation between droughts and the El Niño Southern 

Oscillation (ENSO)  
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2. Study area 
 

The Magdalena-Cauca macro-basin is located in the west of Colombia and comprises two main 

rivers: the Cauca river in the west and the Magdalena River in the east (Figure 3). The Andes 

mountain range reaches is most northern point in the MCMB, where it splits into three main 

branches: the Cordillera Occidental (forming the south-western border of the catchment) the 

Cordillera Central and the Cordillera Oriental (forming the eastern border of the catchment). Both 

the Cauca and Magdalena rivers flow from south to north. The Cauca River is, after the Magdalena 

River, the largest river in Colombia, and has its headwaters near the city of Popayán at 3125 m 

elevation. Its average annual discharge is 2347 m3/s and the drainage basin area is 63.300 km2 

(Restrepo et al., 2006). The Cauca flows between the Cordillera Occidental (west) and the 

Cordillera Central (central) until it merges with the Magdalena river close to the city of Santa Cruz 

de Mompox. The Magdalena headwaters are a lake in the Huila department of Colombia at 3685 m 

elevation, and the river flows between the Cordillera Central (central) and the Cordillera Oriental 

(east). The length of the Magdalena from its headwaters to the sea is 1612 km. The combined 

Magdalena-Cauca macro-basin has an area of 257,438 km2. The Magdalena eventually flows into 

the Caribbean Sea close to the city of Barranquilla (Restrepo et al., 2006; Restrepo & Kjerfve, 

2000). The average annual discharge at Calamar, ± 100 km upstream of Barranquilla, is 7200 m3/s, 

± 5000 m3/s.  

 

 

Figure 3. Location of the Magdalena-Cauca macro-basin in northern South-America (left), and the land use in 
Colombia (right). The catchment is located between -77.00° and -72.25° longitude and 1.75° and 11.25° latitude. 
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The Magdalena-Cauca river system is the largest river in the Andes (Restrepo et al., 2006) 

and it is the most important river basin in Colombia. It covers around 24% of the country’s area 

and around 79% of the Colombian population lives in this area, which corresponds to 120 

people/km2 (Restrepo et al., 2006). The river has the largest specific sediment yield in South 

America: it contributes 9% of the sediment discharged from eastern South America (Restrepo  & 

Kjerfve, 2000). The specific sediment yield is defined as the sediment yield divided by the drainage 

area of a river. Sediment finds its origin in erosion and depositional processes, which are 

influenced by factors such as topography, climate, vegetation, soil and bedrock properties, and land 

use. In the past decades, the basin has seen large-scale land use changes (Restrepo & Syvitski, 

2006). The forest cover of the Colombian Andes has decreased due to population increase and land 

use changes. Poor agricultural practices lead to increased erosion rates (Restrepo et al., 2006). 

The area of the MCMB is tectonically active (Restrepo & Kjerfve, 2000). The Cordilleras in 

the MCMB can have steep hill slopes of over 45°, which, in combination with high precipitation 

rates, may consequently lead to landslides. The Cordilleras reach elevations over 4000 m (Figure 

4) and therefore influence the meteorology in the MCMB significantly (Poveda et al., 2005). 

 

  

Figure 4. Topography of north-west Colombia, with the border of the MCMB indicated in yellow (Commons, 2019) 

 

Because Colombia is located close to the equator, the annual hydrometeorological cycle in 

Colombia is affected by the shifting of the Intertropical Convergence Zone (ITCZ) (Poveda et al., 

2007). Besides this, the climate of Colombia is also influenced by the north-easterly trade winds 

and the Chocó-jet. The north-easterly trade winds come from the Atlantic ocean. They get their 

southward direction from the Hadley circulation: warm air rises near the equator and moves 
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northwards at high altitudes. At ± 30° latitude, the air cools and sinks and travels southwards back 

to the equator while picking up moisture near the Earth’s surface. The air gets a westwards 

direction due to the Coriolis effect. The Chocó-jet is a westerly jet at ± 5°N which brings moist air 

from the Pacific ocean into Colombia. The jet is driven by a sea-surface temperature gradient 

between the cold water in front of Ecuador and Peru and warm temperatures in Colombia and the 

Colombian Pacific (Poveda & Mesa, 2000). When the jet is blown into Colombia, it is blocked by the 

Andes mountain range and forced to rise due to orographic effects along the western flank of the 

Cordillera Occidental (Poveda, 1998). Here, the extremely high precipitation occurs with rates up 

to 12000 mm per year (Poveda & Mesa, 2000). On the top of the Cordillera Occidental, the Chocó-

jet meets the north-easterly trade winds. This enhances deep convection in the Cauca and 

Magdalena valleys (Figure 5) (Poveda, 1998). The Chocó-jet is strongest from May to November, 

when the ITCZ is located on the northern hemisphere which enhances the eastward direction of 

the jet.  

 

Figure 5. Schematic representation of the interactions between the westerly Chocó-jet and easterly trade winds 
in the Cauca valley, Colombia (López & Howell, 1967) 

 

There are two wet seasons (March to May and October to November) and two dry seasons 

(December to February and June to September) in Colombia. Both wet seasons have roughly the 

same characteristics, however, in the upper part of the MCMB the first wet season of the calendar 

year is more intense (Restrepo et al., 2006). This intensification can be explained by a stronger 

Chocó-jet during this period: the Chocó-jet becomes dominant over the north easterly trade winds 

at lower elevations and penetrates into inland Colombia, bringing more moist air (Gallego et al., 
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2018; Poveda et al., 2001, 2007). Rainfall amounts are generally around 2050 mm per year, but 

due to the mountain ranges variation is high.  

The Colombian climate is influenced over longer timescales by the El Niño Southern 

Oscillation (ENSO) (Hoyos et al., 2013). During a normal situation, there is a warm pool in the west 

of the Pacific ocean, causing deep atmospheric convection and a high air pressure in the western 

Pacific and a low air pressure in the eastern Pacific. The low level trade winds blow from east to 

west. During an El Niño event (the warm phase of ENSO), the warm water from the western Pacific 

and the accompanying  high air pressure system move to the east. The sea-surface temperature 

gradient decreases and this caused the trade winds  to weaken. Because the Chocó-jet is driven by 

the sea-surface temperature gradient, the strength of the Chocó-jet also decreases during El Niño 

(Poveda et al., 2007). Poveda & Mesa (1997), found that in the north of South America, especially in 

Colombia, El Niño events are associated with negative rainfall anomalies whereas La Niña events 

are associated with positive rainfall anomalies. There are multiple consequences of droughts 

corresponding with El Niño events described in literature. The 1991-1992 El Niño event caused a 

reduction in precipitation, which consequently lead to reduced crop production and energy 

generation (Gutiérrez & Dracup, 2001). The 1997-1998 El Niño event also had severe economic 

consequences: coffee and other crop production failed due to the drought and large amounts of 

livestock were lost due to the heat waves caused by the El Niño event. The Colombia Reports, 

described that during the 2015 El Niño event, water levels in the Magdalena river reached a lowest 

level on record (Lander, 2015). According to (Poveda et al., 2004), total daily precipitation 

measured between 1960 and 1999 over 51 stations over the middle and south of the MCMB 

increases with an average of 20.8% during La Niña and decreases with an average of 22.2% during 

El Niño events. (Restrepo & Kjerfve, 2000b) found that 69% of the variability in stream flow in the 

Magdalena River can be explained by the Southern Oscillation Index (SOI), an index used to 

quantify the strength of ENSO. Their research showed higher discharges during La Niña events and 

lower discharges during El Ninõ events. The effects of ENSO are more prominent in rivers in the 

west and north than in the east and south of Colombia (Poveda et al., 2005; Restrepo & Kjerfve, 

2000a). The phase for discharge anomalies were almost in phase with the SOI anomalies over 

three years, which implies that there is almost no lag between the SOI and river discharge 

(Restrepo & Kjerfve, 2000a).  
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3. Methods 
 

This section loosely follows the order of the objectives described in the introduction. First, the data 

used for this study will be discussed, followed by a description of the four large scale hydrological 

models under evaluation and the methods of measuring their performance. This corresponds with 

objective 1 (Figure 6). Next, the different drought indices are described followed by the methods 

used for drought analysis, corresponding to objective 2. Finally, the methods for determining the 

strength of the correlation between droughts and ENSO are discussed, which corresponds to 

objective 3.  

 

 

Figure 6. Workflow of this study. Input data are presented by green boxes, final products are presented by blue 
boxes and the objectives are presented by red boxes. 
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3.1 Data 

The in-situ data for precipitation, temperature and discharge was made available by the Colombian 

Institute of Hydrology, Meteorology and Environmental Studies (IDEAM). The daily time series for 

precipitation were available for 2256 stations, and the daily time series for minimum and 

maximum temperature were available for 468 and 481 stations, respectively. For precipitation, 

stations with ≥ 85% complete observations were used for interpolation. For temperature, stations 

with ≥ 50% complete observations were used for interpolation, because temperature has a high 

correlation with elevation. Eventually, for precipitation 905 stations were used for interpolation 

and for minimum and maximum temperature 259 and 468 stations were used, respectively. Gaps 

in the data were not filled. Spatial interpolations in the MCMB were performed on a daily basis, 

using the stations with data available for that day. The Kriging with External Drift (KED) 

methodology (Wackernagel, 1998) was used to interpolate the precipitation data. For interpolation 

of the temperature data, the Co-kriging (CK) method was used (Matheron, 1971). The 

interpolations were validated through cross validation, using the data from the stations with less 

than 85% and 50% complete observations. For both datasets, the DEM was used as a covariance. 

The interpolation procedures resulted in daily maps with a spatial resolution of 0.1° and a 

temporal range from January 1980 up to and including December 2012. This data was converted to 

monthly data with 0.25° resolution for further processing. 

The reference evapotranspiration (ET0) was calculated from the temperature data using 

the Hargreaves equation (Hargreaves & Samani, 1985). To be able to compare the in-situ data with 

the modelled data, the in-situ precipitation data and the calculated reference evapotranspiration 

were re-scaled to a raster with a 0.25° resolution. Daily in-situ discharge data was available for 262 

stations located along the Cauca and Magdalena rivers. The daily data was first converted to 

monthly data, where months with one or more missing values were given no data. Locations with 

more than 90% complete observations over time were converted to cells in a raster with a 0.25° 

resolution, in order to allow further analysis. Here, the cells were given the same value as the data 

point. These precipitation, reference evapotranspiration and discharge data sets were used as 

benchmark for the model performance.  

 The four evaluated models and their products are part of the eartH2Observe project . This 

project combined earth observations, global hydrological models and in-situ data to produce two 

water resources reanalysis (WRR) datasets: WRR-1 and WRR-2 (Table 1). WRR-2 used the Multi-

Source Weighted-Ensemble Precipitation (MSWEP) dataset for model forcing (Beck et al., 2017). 

The MSWEP dataset has a spatial resolution of 0.25° and runs from 1979 up to and including 2014. 

Because the MSWEP precipitation dataset combines three different hydro-climatic data sources, 

has a higher spatial resolution, corrects for gauge under-catch and orographic effects (Beck et al., 

2017) and because this dataset is known to give better results in the MCMB (Sterk & Rodriguez, 

2017), WRR-2 was chosen over WRR-1 for this study. Since the MSWEP data is used as forcing for 

every model in WRR-2, the precipitation data is the same for every model.  
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The forcing data and all modelled data was obtained through the thredds-server of the E2O 

project in a NetCDF format for the period from January 1980 up to an including December 2014. 

Since the thredds-server provides the data for the entire world, the datasets were masked for the 

MCMB, using a shapefile of the MCMB from IDEAM. Next, the units were converted so the values 

would represent monthly data.  

 

Table 1. Overview of main characteristics of the WFDEI and MSWEP datasets 

Full name Abbre-

viation 

Forcing 

for: 

Data 

sources 

Temporal 

coverage 

Spatial 

resolution 

Temporal 

resolution 

Reference 

WATCH 

Forcing Data 

applied to 

ERA-Interim 

data 

WFDEI WRR-1 
 Gauge 

 Reanalysis 

1979 – 

2012 
0.5° 3 hours 

(Weedon 

et al., 

2014) 

Multi-Source 

Weighted-

Ensemble 

Precipitation 

MSWEP WRR-2 

 Gauge 

 Reanalysis 

 Satellite  

1979 – 

2015 
0.25° 3 hours 

(Beck et 

al., 2017) 

 

 

3.2 Models 

The eartH2Observe project (E2O) includes ten large scale hydrological models. For global water 

resources reanalysis, the use of multiple models can reduce the errors and uncertainties induced 

by individual models (Beven & Binely, 1992; Schellekens et al., 2017). These ten models produced, 

together with in-situ data and earth observation data, the WRR-2. From the ten models in E2O, six 

models are Global Hydrological Models (GHMs) and four models are Land Surface Models (LSMs) 

(Beck et al., 2017). GHMs simulate (sub-)surface water fluxes and storages, and solve only the 

water balance. LSMs simulate interactions between the soil, vegetation and atmosphere and are 

more physically based. They solve both the water and the energy balances (Bierkens, 2015). The 

six GHMs in eartH2Observe are: LISFLOOD, PCR-GLOBWB, SWBM, W3RA, WaterGAP3 and HBV-

SIMREG. The four LSMs in eartH2Observe are: HTESSEL, JULES, ORCHIDEE and SURFEX. Four of 

the models in the eartH2Observe project have been calibrated in previous studies: HBV-SIMREG, 

SWBM, LISFLOOD and WaterGAP3 (Schellekens et al., 2017). Since none of the models is perfect, it 

is useful to define which models perform best in a certain-situation. 

The four models were evaluated using the model products and five computed drought 

indices. Therefore, all parameters for calculating the drought indices needed to be included by the 

models used for the evaluation. For this study, the following models were used for evaluation 

because they include the necessary parameters: ORCHIDEE, HTESSEL, WaterGAP3 and PCR-

GLOBWB (Table 2). Of these four models, ORCHIDEE and HTESSEL are LSMs and WaterGAP3 and 

PCR-GLOBWB are GHMs. Since the ORCHIDEE, HTESSEL and PCR-GLOBWB models were not 
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calibrated, this has to be accounted for when evaluating the model performances. Besides 

individual evaluation of the four models mentioned above, the ensemble means of these four 

models were also evaluated because the ensemble of multiple models can reduce the errors and 

uncertainties induced by individual models (Beven & Binely, 1992; Schellekens et al., 2017). 

 

Table 2. Characteristics of the four models used for the evaluation (after: Schellekens et al., 2017) 

Model ORCHIDEE HTESSEL WaterGAP3 PCR-GLOBWB 

Model type LSM LSM GHM GHM 

Interception Single reservoir 

Structural 

resistance to 

evaporation 

Single reservoir, 

Potential 

evaporation 

Single reservoir Single layer, subject 

to open water 

evaporation 

Evaporation Bulk PET 

(Barella-Ortiz et al., 

2013) 

Penman-Monteith Priestley-Taylor Penman-Monteith 

Soil layers  11  9 1 2 

Soil depth 2 m 3 m 1 m 1.5 m 

Ground-water Yes No Yes Yes 

Runoff Green and Ampt 

infiltration 

Saturation excess Beta function Saturation excess 

Reservoirs/   

lakes 
No No Yes Yes 

Routing Based on 

HydroSHED  

(Lehner  and  Grill,  

2013) 

CaMa-flood Manning-Strickler Travel time 

approach 

Water use Irrigation only No Yes Yes 

Time step 900 s energy 

balance, 3 hour 

routing 

1 hour 1 day 1 day 

Calibrated No No Yes No 

Reference (D’Orgeval et al., 

2008) 

(Balsamo et al., 

2009) 

(Döll et al., 2009, 

2012; Flörke et al., 

2013) 

 

(van Beek et al., 

2011; Wada et al., 

2014) 
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3.2.1 ORCHIDEE (model provider: CNRS) 

 

ORCHIDEE is a land surface model. As described by (D’Orgeval et al., 2008), it consists of three 

modules that operate at different scales. The first module is the energy balance module, and the 

second module is the hydrology module, which solves the hydrological balance with tile sizes that 

depend on the distribution of vegetation. This module splits surface infiltration and runoff using a 

time-splitting procedure; a method that allows for time steps smaller than 30 minutes. Vertical 

diffusion is solved using the Van Genuchten-Mualem parameters and the Fokker-Planck equation. 

13 types of vegetation are included in the ORCHIDEE model, grouped into three main classes: bare 

soil, trees and grass and crop. For determining the root zone infiltration, the different root 

characteristics for different types of vegetation are accounted for. The total soil column has a 

constant depth of 2 meters. Potential evaporation is estimated using an unstressed surface energy 

balance (Barella-Ortiz et al., 2013). The third module is the river routing module. Rivers, surface 

and subsurface runoff are routed through three different reservoirs, each with their own residence 

time (Figure 7). Runoff is calculated by the Green and Ampt infiltration equation and is used as 

input for the fast reservoir (indicated by V2 in Figure 7). The slow reservoir (indicated by V3 in 

Figure 7) is fed by drainage and together with the fast reservoir it feeds the downstream stream 

reservoir. Irrigation is also included in this model (Schellekens et al., 2017). 

  

 
Figure 7. Schematic representation of the ORCHIDEE river routing scheme (D’Orgeval et al., 2008) 
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3.2.2 HTESSEL (model provider: ECMWF) 

 

The Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) is a land surface 

model with a single reservoir. The model is not calibrated and uses a priori parameter estimations. 

For determining bare ground evaporation it uses the Penman-Monteith equation (Schellekens et 

al., 2017). As the ‘T’ for ‘Tiled’ in the name ‘HTESSEL’ indicates, tiles are included in the model. 

These tiles consist of bare ground, low and high vegetation, intercepted water, shaded and exposed 

snow and open and frozen water (Figure 8). Each tile has its own water and energy balances. There 

are nine soil layers with a total depth of three meters, and additionally a layer of snow can be 

added. By using multiple soil layers, processes in the soil with different timescales between one 

day and one year can be represented. Darcy’s law is used for sub-surface processes. For hydraulic 

conductivity and diffusivity, the Van Genuchten equation is used. Precipitation can be intercepted 

until saturation occurs, and once saturation occurs, water will fall as throughfall and is divided 

over surface runoff and infiltration. This is done according to a variable infiltration capacity based 

on soil type and local topography. Six soil texture classes based on the Food and Agriculture 

Organization from 2003 are used: coarse, medium, medium fine, fine, very fine and organic. Each 

soil class has its own volumetric moisture content for saturation, field capacity and wilting point 

(Balsamo et al., 2009). The routing is performed by the catchment-based, macro-scale floodplain 

model CaMa. The CaMa river routing model calculates the floodplain inundation dynamics by 

parameterizing the subgrid-scale topography of a floodplain (Yamazaki et al., 2011). The HTESSEL 

model is the only model of the four models used in this study that does not include groundwater 

(Schellekens et al., 2017).  

 

 
Figure 8. Schematic representation of the HTESSEL model (Balsamo et al., 2009) 
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3.2.3 WaterGAP3 (model provider: Kassel University) 

 

Water Global Assessment and Prognosis 3 (WaterGAP3) is the only calibrated model in this study. 

It is a global hydrological model taking into account anthropogenic influences such as water 

abstractions and dams. It is grid based and the hydrological cycle is represented as a sequence of 

storage compartments, such as canopy, snowpack, soil, groundwater and surface water (Figure 9). 

The maximum canopy storage depends on the leaf area index. The Priestley-Taylor equation is 

used to determine evaporation. The snowpack is represented as a single layer and is modelled 

using a degree-day approach. Infiltration is modelled by representing the soil as a single layer of 1 

m depth, where the infiltration depends on the effective precipitation, soil texture, soil saturation 

and land cover. Water that does not form runoff, will be infiltrated into the soil storage. 

WaterGAP3 consists of both the WaterGAP Global Hydrology Model (WGHM) and five 

separate water abstraction models for irrigation, livestock, households, thermal power plants and 

manufacturing (Döll et al., 2009, 2012).  

 

 
Figure 9. Schematic representation of the WaterGAP3 model (Döll et al., 2012) 
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3.2.4 PCR-GLOBWB (model provider: Utrecht University) 

 

PCR-GLOBWB (PCRaster GLOBal Water Balance model) is a large scale, grid based, global 

hydrological model (van Beek & Bierkens, 2009). Each cell is composed of a soil layer, two 

underlying storage layers (with maximum depths of 0.3 and 1.2 respectively) and a groundwater 

layer (Figure 10). Small vegetation extracts water from only the upper soil layer, while large 

vegetation also extracts water from the bottom layer. PCR-GLOBWB is a leaky-bucket type model, 

meaning that the leaky-bucket principle is applied on each cell to determine the transport of 

moisture between the layers and between the surface and the atmosphere. Direct runoff, interflow 

and base flow are included even as canopy interception and snow storage. Precipitation falls as 

rain when temperatures are above freezing point, and as snow otherwise. Snow melt is modelled 

based on temperature, using the HBV model (Bergstrom, 1976). For surface flow, the kinematic 

wave approximation is used. Potential evapotranspiration can come from either canopies or from 

the bare soil. Actual evaporation can be assigned, or calculated by the model from the potential 

evaporation and the moisture content of the soil, using the Penman-Monteith equation. PCR-

GLOBWB was not calibrated for eartH2Observe WRR-2.  

 

 
Figure 10. Schematic representation of the PCR-GLOBWB model (van Beek and Bierkens, 2009) 
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3.3 Model evaluation 

There are several performance measures to quantify the performance of hydrological models, of 

which the mean squared error (MSE), the Nash-Sutcliffe efficiency (NSE) and the Kling-Gupta 

efficiency (KGE) are the most widely used. Although the MSE and NSE are used often, they have the 

disadvantage that the mean of the observations is used as a baseline. Using the mean can lead to an 

overestimation of the model skill when there is a strong seasonality in the dataset (Gupta et al., 

2009), or an underestimation when the mean of the modelled data and observed data differ, while 

the standard deviations are very similar. Since the latter was likely to be the case in this research, 

the model performance was quantified using the Kling-Gupta efficiency (KGE). This performance 

criteria has the advantage that the Pearson correlation coefficient ( ), the bias ( ), and the 

variability ratio ( ) are included. The KGE represents a Euclidian distance in a 3 dimensional space 

and is defined as follows (Gupta et al., 2009):  

 

          
(eq. 1) 

                          
(eq. 2) 

  
     

     

 
 

(eq. 3) 

  
  

  

  
(eq. 4) 

  
  

  

  
(eq. 5) 

  

      is the covariance between the modelled and the observed values;    is the standard 

deviation of the modelled values and    is the standard deviation of the observed values; and    

and    are the mean of the modelled and observed values, respectively.  

The KGE values range from    to 1, where 1 indicates a perfect model performance of the 

simulated dataset with regard to the observed dataset. A perfect Pearson correlation has a value of 

-1 for a perfect negative correlation and a value of 1 for a perfect positive correlation. For both the 

Beta and Alpha component, a value of 1 is ideal, but values can range between 0 and  . 

For each model product of the four models, graphs for the time series were made. To 

illustrate the spatial differences, the time series of the model products are given for five cells in the 

MCMB (Figure 11). The particular five cells are chosen in order represent both upstream and 

downstream locations, and different proximities to major river branches and mountain ranges. For 

precipitation, potential evapotranspiration, actual evapotranspiration and root zone soil moisture, 

the following five locations were selected:  

 Location A (cell 66) is located at (-74.875° W, 10.125° N), at a downstream part of the 

Magdalena-Cauca river.  

 Location B (cell 295) is located in the central basin of the MCMB, at (-74.625° W, 7.125° N).  
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 Location C (cell 360) is located in the Cordilleras Oriental, the eastern mountain range 

forming the eastern border of the MCMB, at (-72.625° W, 6.375° N).  

 Location D (cell 428) is located half way on the Magdalena river, at (-74.625° W, 5.375° N). 

 Location E (cell 535) is located at (-76.375° W, 3.875° N) close to an upstream part of the 

Cauca river and close to the Cordilleras Central. 

For the discharge time series, location B is replaced by location F and location E is replaced by 

location G, because location B and E are not located exactly on a major river branch.  

 Location F (cell 164) is located at (-74.125° W, 8.875° N) at a downstream part of the 

Magdalena river, in a swampy area not far upstream from the meeting point of the 

Magdalena and Cauca rivers.  

 Location G (cell 591) is located at (-76.625° W, 3.125° N), where conditions are similar to 

the conditions of location E.  

 

 
Figure 11. MCMB with the locations selected for analysis and the main rivers and wetlands (in light blue) 

 

For precipitation, reference evapotranspiration and discharge, in-situ data was available. 

This allows for the quantification of the performance using the in-situ observations from IDEAM as 

benchmark. For precipitation, the KGE for the MSWEP forcing data was calculated using the in-situ 

precipitation. For potential evapotranspiration the KGE for the potential evapotranspiration data 

of the four models and the ensemble mean was calculated using the reference evapotranspiration. 

For discharge, the KGE for the discharge data of the three models and the ensemble mean was 

calculated using the in-situ discharge data. The calculations for precipitation and potential 

evapotranspiration were done for every 0.25° cell in the MCMB. The KGE of discharge was only 

calculated for cells in the catchment for which in-situ data was available. The spread of KGE values 

and of the Pearson’s correlation, bias and variability ratio are illustrated in plots of the Cumulative 

Distribution Functions (CDFs). The CDFs give the frequency that the KGE (or one of its 
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components) will be equal or below a specific value. The spatial distribution of the KGE values is 

illustrated by raster maps of the MCMB.  

For actual evapotranspiration and root zone soil moisture, in-situ data was not available, 

therefore, the KGE could not be computed. Box plots are given showing the distribution of all 

values in the population, over both space and time. The box plots give information on the median, 

indicated by the thick line in the middle of the box, standard deviation, indicated by the box, and 

the lower and upper 1.5 interquartile range, indicated by the whiskers. Outliers are values lower or 

higher than the lower and upper 1.5 interquartile range, respectively, and are indicated by small 

circles.   

 

3.4 Drought indices 

To give an overview of drought propagation through the hydrological system of the MCMB, 

different drought indices representing different types of droughts were used for the drought 

quantification in this study. For this study, five different drought indices were calculated: the 

Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index 

(SPEI), the Evapotranspiration Deficit Index (ETDI), the Soil Moisture Deficit Index (SMDI) and the 

Streamflow Drought Index (SDI) (Table 3). The data needed for computation of these drought 

indices came from the eartH2Observe WRR-2. The indices were calculated for each of the four 

models and for the ensemble mean on a cell by cell basis, allowing to observe differences between 

models and to analyse spatial trends through time.  

 
Table 3. The drought indices used in this study. Input data refers to Precipitation (P) from the MSWEP forcing 
data, Potential Evapotranspiration (PET), Actual Evapotranspiration (AET), Root Zone Soil Moisture (RM) and 
Discharge (Q). 

Index Type Input data Period Abbr. Reference 

Standardized 

Precipitation Index 

Meteorological P 1, 3, 6, 12, 24, 

36 

SPI (McKee et al., 1993) 

Standardized 

Precipitation 

Evapotranspiration 

Index 

Meteorological P, PET 

 

1, 3, 6, 12, 24, 

36 

SPEI (Vicente-Serrano et 

al., 2010) 

Evapotranspiration 

Deficit Index 

Agricultural PET, AET 1 ETDI (Narasimhan & 

Srinivasan, 2005) 

Soil Moisture Deficit 

Index 

Agricultural  RM 1 SMDI (Narasimhan & 

Srinivasan, 2005) 

Streamflow Drought 

Index 

Hydrological Q 1 SDI (Nalbantis & Tsakiris, 

2009) 
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3.4.1 SPI 

 

The SPI is based solely on precipitation and is a meteorological drought index (Zargar et al., 2011). 

The SPI was developed by McKee et al. (1993). This index compares observed rainfall with a 

rainfall probability distribution function. First, a monthly precipitation dataset of a period of 

preferably 30 years or longer is standardized for a certain period. This makes it possible to 

compare the index over different regions and points in time. This period can be 1, 3, 6, 12, 24 or 36 

month(s), where each period represents different water sources affected by precipitation deficits. 

Each month, a new value is determined using the previous 1, 3, 6, 12, 24 or 36 month(s). The 

standardized precipitation is then fitted to a gamma function to determine the correlation between 

precipitation and probability. This probability is used to determine the precipitation deviation for 

a normally distributed probability density with a mean equal to zero and a standard deviation 

equal to unity. This is the SPI (McKee et al., 1993). Different intensities of drought can be defined 

based on the SPI, ranging from values just below zero (mild drought) to values below –2.00 

(extreme drought) (Table 4). McKee et al. (1993) state an event with a negative SPI can be 

regarded as a drought event when the SPI falls below -1.0. The start of the event is the moment the 

SPI becomes negative and the event ends when the SPI becomes positive again. 

 

Table 4. SPI values and corresponding drought categories (McKee et al., 1993) 

SPI values Drought category 

0 to -0.99 Mild drought 

-1.00 to -1.49 Moderate drought 

-1.50 to -1.99 Severe drought 

≤ -2.00 Extreme drought 

 

An advantage is that the SPI can give information on drought on multiple time scales, 

depending on the time interval chosen for computation. When propagating from the 1-month to 

the 36-month SPI via the 3-, 6-, 12- and 24-month SPI, different aspects of the hydrological system 

are represented. According to McKee et al. (1993), these timescales “represent arbitrary but typical 

time scales for precipitation deficits to affect the five types of usable water sources”. The five 

usable water sources “include soil moisture, ground water, snowpack, streamflow and reservoir 

storage”. Zargar et al. (2011), state that the 1- and 3-month SPI reflect short-term conditions, such 

as seasonal estimation of precipitation and moisture conditions. A disadvantage of the SPI is that it 

only takes precipitation into account. Other factors that can contribute to a drought, e.g. 

temperature, evapotranspiration and soil moisture, are neglected (Vicente-Serrano et al., 2010).  

The precipitation data is supplied by the MSWEP dataset, the forcing dataset for all models 

in the WRR-2 of the eartH2Observe project. Therefore, the SPI is the same for all models.  
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3.4.2 SPEI 

 

The SPEI is also a meteorological drought index (Zargar et al., 2011). This drought index takes the 

role of precipitation and potential evapotranspiration into account. The SPEI is also sensitive to 

long term climate change because temperature is indirectly taken into account by the potential 

evapotranspiration, a factor which the SPI is not sensitive to (Vicente-Serrano et al., 2010). The 

method for computation is similar to the method for calculating the SPI, only instead of solely 

taking the precipitation, the difference between the precipitation and the potential 

evapotranspiration (PET) per month i is taken: 

             ( eq. 6) 

   is a simple measure of the water surplus or deficit for a specific month. Determination of the 

potential evapotranspiration is a challenge, because additional data on wind speed, solar radiation, 

temperature and relative humidity is necessary. Empirical equations can be used to determine the 

potential evapotranspiration. According to (Mavromatis, 2007), the method chosen to determine 

the potential evapotranspiration does not make a significant difference in the drought index 

product.  

 

 

3.4.3 ETDI 

 

The evapotranspiration deficit index (ETDI) is an agricultural drought index developed by 

(Narasimhan & Srinivasan, 2005). For determining the ETDI, the water stress ratio is calculated 

first: 

   
       

   
                       

WS is the monthly water stress ratio, PET the monthly potential evapotranspiration and AET the 

monthly actual evapotranspiration. The long term water stress ratio for each month in a year is 

determined by taking the median of the water stress ratio for that month during a long term period 

of multiple decades (e.g. 30 years). The maximum and minimum water stress ratio are also 

obtained for each month of the year from the long term period dataset. The monthly water stress 

anomaly (WSA) is then calculated by subtracting the water stress ratio from the median long term 

water stress, and dividing this by the median minus the minimum in case the water stress ratio is 

equal to the median water stress ratio, or by dividing by the maximum minus the median in case 

the soil water is larger than the median water stress ratio. The result is multiplied by 100 to give 

the WSA in percentages. By this method, the seasonality is removed from the water stress anomaly. 

Eventually, the ETDI is obtained by equation (8): 
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3.4.4 SMDI 

 

The SMDI was developed by Narasimhan & Srinivasan (2005) as well. It is an agricultural drought 

index that makes use of the amount of water in the root zone. The amount of moisture in the soil is, 

among other things, influenced by temperature, precipitation and evapotranspiration. The type of 

land use and land cover is of importance, since some types of vegetation demand more water and 

have a higher transpiration rate in contrast to other crops, which will influence the amount of 

water in the soil. The computation procedure is very similar to the computation procedure of the 

ETDI, only instead of the WS, the monthly available soil water in the root zone is used. The long 

term soil moisture for each month is determined by taking the median of available soil water for 

that month during a long term period of multiple decades. The maximum and minimum soil water 

are also obtained for each week from the long term period dataset. The soil moisture deficit (SMD) 

is then calculated by subtracting the median soil water from the monthly soil water, and dividing 

this by the median minus the minimum in case the soil water is equal to the mean soil water, or by 

dividing by the maximum minus the median in case the soil water is larger than the median soil 

water. The result is multiplied by 100. The SMDI is obtained by equation (9): 

                  
    

  
                  

 

3.4.5 SDI 

  

The Streamflow Drought Index (SDI) is a hydrological drought index developed by Nalbantis & 

Tsakiris (2009). Hydrological drought is concerned with the amount of water in water bodies, such 

as rivers and lakes. Hydrological drought indices therefore make use of discharge data. To calculate 

the SDI, monthly streamflow volumes are needed. From the monthly streamflow volumes, the 

cumulative streamflow is computed for a reference period. The SDI is computed by dividing the 

cumulative streamflow minus the mean cumulative streamflow by the standard deviation of the 

cumulative streamflow. The SDI is then equal to the standardized streamflow volume. Next, the SDI 

can be transformed into a normal distribution, by taking the natural logarithms of cumulative 

streamflow.  

 

3.5 Drought analysis 

Spatial differences between drought index time series are relatively small due to the computation 

methods of the drought indices, which often involve a form of standardization or normalization. 

Therefore, for each drought index, one time series per model is given, showing per month the 

average drought index values of all cells in the catchment.  

To illustrate the spatial distribution of the frequency of the occurrences of dry months in 

the MCMB, the ratio of dry months to all months was computed: the number of months with a 

drought index value below -1 were divided by the total number of months for which a drought 
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index value is available. Note that for drought indices with a larger aggregation period, the total 

number of months with available data is smaller.  

 

3.6 Correlation between droughts and ENSO  

The Multivariate ENSO Index (MEI) was used in this study to quantify ENSO. The data for the MEI 

were obtained from the Climate Explorer of the Royal Dutch Meteorological Institute (KNMI). 

Because the MEI includes six atmospheric and oceanographic parameters, it is regarded as a very 

comprehensive index (Wolter & Timlin, 2011). Positive MEI values coincide with El Niño events 

and negative MEI values coincide with La Niña events. Values above an index of 2 or below an 

index of -2 can be regarded as a strong El Niño or La Niña event, respectively. The strongest El 

Niño events in the period between 1980 and 2015 occurred in the winters of 1982-1983 and 1997-

1998 and two smaller El Niño events occurred in the winters of 1986-1987 and 1991-1992 

(IDEAM, 2014), as can be observed in Figure 12. El Niño events can often be correlated with 

droughts in Colombia (Hoyos et al., 2013, 2017) (Poveda et al., 2007). A strong negative correlation 

between a drought index and the MEI indicates a strong positive correlation between droughts and 

El Niño.  

The correlation between droughts and ENSO is determined using the Pearson’s correlation 

between the drought indices and the MEI (equation 3). The Pearson correlation coefficient was 

computed for each cell in the MCMB and for every drought index. For each drought index, a CDF is 

given showing the distribution of the Pearson’s correlation values. Also, a scatter plot is given 

showing the monthly spatial means of the drought indices plotted against the monthly MEI values. 

The spatial distribution of the Pearson’s correlation is illustrated by raster maps of the MCMB.  

 

 
Figure 12. Multivariate ENSO index (KNMI, 2019). 
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4. Results 
 

4.1 Performance of the selected models for the MCMB 

 

4.1.1 Precipitation 

 

The precipitation data is equal to the MSWEP forcing data and is therefore the same for all four 

models. The MSWEP dataset combines gauge, reanalysis and satellite data and corrects for gauge 

under-catch and orographic effects. From the time series it is evident that the MSWEP forcing data 

performs well (Figure 13). An annual cycle can be observed with two peaks of high precipitation 

per year: one around May and one around October. This corresponds with the timing of wet 

seasons due to the shifting of the ITCZ, as described by Restrepo et al. (2006). Precipitation 

amounts vary per location. Locations B and D show the highest amount of precipitation: maxima 

are around 400 mm per month. These two cells are located at lower elevations in the basin of the 

catchment. Locations A, C and E have almost halve of this precipitation amount (around 200 mm 

per month), and are located on the mountain ranges in the west and east (location C and E, 

respectively) and more north, near the coast (location A).   

The high KGE values for most cells in the catchment indicate a good performance (Figure 

14). Locations A, B, C, D and E have KGE values of 0.86, 0.78, 0.90, 0.94 and 0.93, respectively. 89% 

of the cells in the catchment have a KGE of 0.50 or higher, and 62% have a KGE of 0.75 or higher. 

Some cells in the north and along the border of the MCMB show lower KGE values (Figure 15). The 

KGE comprises three components: the Pearson’s correlation (eq. 3), bias (eq. 4) and the variability 

ratio (eq. 5), which each have the same weight in the KGE computation. The Pearson’s correlation 

is strong for all cells in the catchment (99% of the cells have a Pearson’s correlation above 0.75), 

indicating good timing of the minima and maxima of the MWSEP dataset. Therefore, the Pearson’s 

correlation is not responsible for the lower KGE values. The bias and variability ratio are good for 

most cells in the catchment, except for cells in the north and along the border. This indicates that 

the mean and the standard deviation of the MSWEP data and in-situ data do not agree well for 

these cells in the catchment, which results in lower KGE values in these areas.   
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Figure 13. Precipitation of MSWEP forcing data and IDEAM for cell 66 (A), 295 (B), 360 (C), 428 (D) and 535 (E) 
in the MCMB. 

 

  

Figure 14. CDF plot of KGE, Pearson’s correlation, bias 
and variability ratio for the MSWEP dataset 

Figure 15. Spatial distribution of the KGE for the 
MSWEP dataset over the MCMB 
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4.1.2 Potential evapotranspiration 

 

The potential evapotranspiration is negative, because the fluxes are directed downward in 

eartH2Observe. The KGE was calculated for the potential evapotranspiration of the four models 

and the ensemble mean using the reference evapotranspiration (ET0) based on in-situ temperature 

data. The potential evapotranspiration is the maximum achievable evapotranspiration for a 

specific crop type. The reference evapotranspiration is calculated for a reference grass crop 

(Thornthwaite, 1948).  If a model uses a crop type that is different from the reference grass crop, 

this will result in a different mean potential evapotranspiration. Besides this, the models use 

different methods to calculate the potential evapotranspiration. HTESSEL and PCR-GLOBWB use 

the Penman-Monteith equation (van Beek & Bierkens, 2009; Schellekens et al., 2017), whereas 

ORCHIDEE uses the Bulk method (Barella-Ortiz et al., 2013) and WaterGAP3 uses the Priestley-

Taylor equation (Schellekens et al., 2017).  

 For the four most northern locations, the models – especially the HTESSEL model – show 

larger potential evapotranspiration amounts and a larger standard deviation than the reference 

potential evapotranspiration (Figure 16). The models disagree strongly on the maximum potential 

evapotranspiration, but agree relatively well on the minimal evapotranspiration. At location E, the 

potential evapotranspiration amounts are more in line with the reference evapotranspiration in 

terms of magnitude, and the different models agree well. Again, the annual cycle with two minima 

and two maxima per year can be observed.  

 

Table 5. KGE values for ORCHIDEE, HTESSEL, WaterGAP3 and PCR-GLOBWB and the ensemble mean of these 
four models, for cells 66 (A), 295 (B), 360 (C), 428 (D) and 535 (E) in the MCMB 

 
A B C D E 

ORCHIDEE -1.99 -0.76 -1.33 -0.78 -2.00 

HTESSEL -4.84 -4.81 -8.36 -7.18 -1.52 

WaterGAP3 0.49 -0.49 0.15 -0.46 -0.93 

PCR-GLOBWB -0.04 0.21 -0.16 -0.06 -0.56 

Ensemble mean -1.51 -1.30 -2.21 -2.01 -1.22 

 

The KGE values of the time series shown in Figure 16 is given in Table 5. For the potential 

evapotranspiration, the KGE is generally lower than for the precipitation: no model has cells with a 

KGE over 0.75 (Figure 17). This low KGE value is mainly influenced by a large variability ratio. 

Especially the HTESSEL model has much larger deviations from the mean and is more negative 

compared to the other models and the in-situ data. The GHMs (PCR-GLOBWB and WaterGAP3) 

perform the best: 12% and 1% of the cells in the catchment have a KGE of 0.50 or higher, 

respectively. The Pearson’s correlations are moderately strong, especially for the WaterGAP3 and 

PCR-GLOBWB models. For the ORCHIDEE, HTESSEL, WaterGAP3 and PCR-GLOBWB models and 

the ensemble mean, 35%, 24%, 73%, 69%, and 38% of the cells have Pearson’s correlations of 0.50 

or higher, respectively.  
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The ORCHIDEE, WaterGAP3 and PCR-GLOBWB models show a spatial pattern of KGE 

values where the KGE is best just above the middle of the catchment, and worst in the upper rim 

and in the south and east of the catchment (Figure 18). The HTESSEL model shows a different 

pattern, where the KGE is best at the south and north eastern border. The HTESSEL model shows a 

highly irregular pattern with very poor KGE values spread throughout the catchment. 

 

 

Figure 16. Reference evapotranspiration (ET0) of IDEAM and potential evapotranspiration for ORCHIDEE, 
HTESSEL, WaterGAP3 and PCR-GLOBWB models and the ensemble mean of these four models, for cell 66 (A), 295 
(B), 360 (C), 428 (D) and 535 (E) in the MCMB 
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Figure 17. KGE (A), Pearson’s correlation (B), bias (C) and variability ratio (D) of the potential 
evapotranspiration for the ORCHIDEE, HTESSEL, WaterGAP3 and PCR-GLOBWB models and the ensemble mean 
of these four models 

 

 

Figure 18. Spatial distribution of the KGEs of the potential evapotranspiration for the ORCHIDEE (A), HTESSEL 
(B), WaterGAP3 (C) and PCR-GLOBWB (D) models and the ensemble mean of these four models (E) 
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4.1.3 Actual evapotranspiration 

 

For actual evapotranspiration, the values are also negative because of the downward directed 

fluxes in eartH2Observe. Because there was no in-situ data available for the actual 

evapotranspiration, a performance test was not possible. To illustrate the differences between the 

models, model statistics will be discussed briefly.  

The standard deviations of the actual evapotranspiration of the WaterGAP3 and PCR-

GLOBWB models show a larger standard deviation compared to the ORCHIDEE and HTESSEL 

models (Figure 19). The timing of maxima and minima is sometimes off for the WaterGAP3 model 

compared to the other models, which correspond relatively well with each other (Figure 20).  

Between May and October, a maximum of evapotranspiration occurs, often with a small 

minimum in the middle. This period corresponds with the main growing season of rice in Colombia 

(FAO, 2002). Around February, a minimum in total evaporation can be observed, which 

corresponds with the end and harvesting of the second growing season of rice.   

All models show a similar spatial pattern throughout the catchment. More 

evapotranspiration occurs in the centre of the catchment and along the Magdalena river towards 

the southeast. In the southeast of the basin, rice paddies and other forms of agriculture are located, 

and there is dense vegetation due to a humid climate. Less actual evapotranspiration occurs along 

the borders of the catchment, where the mountain ranges are located.   

 

 

Figure 19. Box plots of actual evapotranspiration values for all cells in the MCMB and for all months from 
January 1980 up to and including December 2014, for the ORCHIDEE, HTESSEL, WaterGAP3 and PCR-GLOBWB 
models and the ensemble mean of these four models 
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Figure 20. Actual evapotranspiration for ORCHIDEE, HTESSEL, WaterGAP3 and PCR-GLOBWB and the ensemble 
mean of these four models, for cells 66 (A), 295 (B), 360 (C), 428 (D) and 535 (E) in the MCMB 
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4.1.4 Root zone soil moisture 

 

For the root zone soil moisture, no in-situ was data available and only modelled values are 

compared. The root zone is not defined in the same way for every model. According to the 

eartH2Observe literature, the root zone soil moisture includes the total soil moisture available for 

evapotranspiration according to the specific model. When this is not defined, the soil moisture up 

to 1 m depth is used (Beck et al., 2017). The number of soil layers differs as well. This influences 

the absolute root zone soil moisture amount, as can be observed in the time series. The models also 

use different (amounts of) soil types with different parameter values, and different types of 

vegetation that influence the root zone soil moisture content. This leads to differences in the 

standard deviation of root zone soil moisture.  

From the box plot, it is directly evident that the ORCHIDEE model produces relatively 

much root zone soil moisture and the WaterGAP3 model produces relatively little root zone soil 

moisture (Figure 21). PCR-GLOBWB, HTESSEL and the ensemble mean fall in between.  

All models show a yearly cycle with a maximum around January and a mininum around 

April and June (Figure 22). For locations C and E, located at the Cordilleras Central and Oriental, 

respectively, root zone soil water amounts are smaller. At these locations, the minima and maxima 

per year often show a dent in the middle of the peak.. 

 

 

Figure 21. Box plots of root zone soil moisture values for all cells in the MCMB and for all months from January 
1980 up to and including December 2014, for ORCHIDEE, HTESSEL, WaterGAP3 and PCR-GLOBWB and the 
ensemble mean of these four models 

 

When the spatially mean time series are normalized, all models show similar temporal patterns 

(Figure 23). Through the process of normalization, absolute differences in the soil moisture 

amounts are no longer relevant because the monthly spatial mean root zone soil moisture values 

have been re-scaled between the minimum and maximum of the time series. 
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Figure 22. Root zone soil moisture for ORCHIDEE, HTESSEL, WaterGAP3 and PCR-GLOBWB and the ensemble 
mean of these four models, for cells 66 (A), 295 (B), 360 (C), 428 (D) and 535 (E) in the MCMB 
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Figure 23. Spatial mean of the normalized root zone soil moisture of ORCHIDEE, HTESSEL, WaterGAP3 and PCR-
GLOBWB and the ensemble mean of these four models 

 

 

4.1.5 Discharge 

 

Within the eartH2Observe project, there was no modelled discharge data available for ORCHIDEE 

model. Therefore, this model is not included in the discharge model performance. The model 

evaluation for discharge is based on point locations of discharge measurements along the 

Magdalena and Cauca river and their tributaries. These points have been converted to a raster with 

a resolution of 0.25° x 0.25°, to be able to compare the in-situ with the modelled data. The value of 

the raster cell is equal to the corresponding data point.  

The difference between the modelled discharge time series and the in-situ discharge time 

series is relatively large for some locations in the MCMB (Figure 25). HTESSEL and WaterGAP3 

tend to significantly overestimate the discharge, whereas PCR-GLOBWB slightly underestimates 

the discharge. For location A, located downstream of the Magdalena-Cauca river, all models agree 

well with the IDEAM discharge data. For location C, discharge amounts for the HTESSEL model are 

almost zero for the entire time series, while the other models and the IDEAM data do show a 

significant amount of discharge. The HTESSEL model also shows very little discharge for location E, 

but this is in line with the IDEAM data. Here, the other models overestimate discharge. Per year, 

two maxima can be observed at April and October, corresponding with the timing of wet seasons 

due to the shifting of the ITCZ (Restrepo et al., 2006).  

The performance for discharge is very poor (Table 6, Figure 24). Most cells do have a 

positive KGE value, but some cells have extremely negative KGE values (Figure 26). The ensemble 

mean has the best KGE score – 4% of the cells have a KGE over 0.75 and 20% of the cells have a 

KGE over 0.50 – since in the ensemble mean the over- and underestimations of the different 

models are averaged out. All models have a relatively strong Pearson’s correlation with the in-situ 

data. For the HTESSEL, WaterGAP3, PCR-GLOBWB models and the ensemble mean, 82%, 77%, 

24% and 80% of the cells have Pearson’s correlations of 0.5 or higher.  
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 The low KGE values are therfore largely influenced by strong biases and variability ratios: 

the mean standard devation of the model products for discharge deviate significantly form the 

observed discharge data.  

 

Table 6. KGE values for the HTESSEL, WaterGAP3 and PCR-GLOBWB models and the ensemble mean of these 
three models, for cells 66 (A), 164 (F), 360 (C), 428 (D) and 591 (G) in the MCMB 

 
A F C D G 

HTESSEL 0.40 -0.07 -0.47 -23.59 0.16 

WaterGAP3 0.55 0.15 0.09 -26.20 -14.95 

PCR-GLOBWB 0.55 0.38 0.22 -7.71 -4.13 

Ensemble mean 0.65 0.52 0.41 -18.74 -5.36 

 

When the KGE is plotted against the upstream area of the corresponding discharge 

stations, it becomes apparent that for the cells for which the upstream area is available, the 

performance is generally better for stations that have a larger upstream area (Figure 27).   

 

 

Figure 24. KGE, Pearson’s correlation, bias and variability ratio of the discharge for the HTESSEL, WaterGAP3 
and PCR-GLOBWB models and the ensemble mean of these three models 
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Figure 25.  Discharge time series of IDEAM and the HTESSEL, WaterGAP3 and PCR-GLOBWB models and the 
ensemble mean of these three models, for cells 66 (A), 164 (F), 360 (C), 428 (D) and 591 (G) in the MCMB 
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Figure 26. Spatial spread of the KGE values of the discharge for the HTESSEL (A), WaterGAP3 (B) and PCR-
GLOBWB (C) models and the ensemble mean of these three models (D) 

 

 

 
Figure 27. Upstream area plotted against the KGEs of discharge of the ensemble mean of the HTESSEL, 

WaterGAP3 and PCR-GLOBWB models, for all KGE values (above), and only for KGE values above 0 (below). 

 

 

           

0 

50000 

100000 

150000 

200000 

250000 

300000 

-160 -140 -120 -100 -80 -60 -40 -20 0 20 

U
p

st
re

am
 a

re
a 

[k
m

2
] 

KGE [-] 

0 

50000 

100000 

150000 

200000 

250000 

300000 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

U
p

st
re

am
 a

re
a 

[k
m

2 ]
 

KGE [-] 



36 
 

4.2 Drought analysis 

4.2.1 SPI 

 

Since the SPI is solely based on precipitation data, which is equal to the MSWEP forcing data, this 

drought index is the same for all four models. The SPI is calculated for temporal aggregations of 1, 

3, 6, 12, 24, and 36 months (n), meaning that the SPI of month x takes the previous n months into 

account.  

Pooling, lengthening, attenuation and lag can be observed in Figure 28. When increasing 

the time scale of the SPI from 1-month to 36-month, the number of drought events (where SPI < -1) 

decreases from a spatial average of 34 events to only 1 event (pooling). The length of each 

individual drought event increases from a spatial average between 1 and 8 months to 53 months 

(lengthening). The intensity of the events decreases when the time scale is increased (attenuation). 

Lag can be observed by the later timed onsets of each drought even when increasing the 

aggregation period from 1-month to 36-months.  

A SPI of -1 is reached first around ’82-’83. This drought event is relatively short and is 

followed by multiple other small drought events until the end of ’83. The next drought event occurs 

in ’85. This event is more pronounced in the SPIs with shorter aggregation periods. This indicates 

that over a longer period, no abnormal low amount of precipitation has fallen. In ’92-’93, one of the 

two most severe drought events occurs. This event lasts  at least until ’84, which is relatively long. 

The next drought event is the other most severe event, but this event lasts rather short - from ’97 

to ’98 – but is relatively intense, especially for shorter aggregation periods, with SPI values 

dropping below -2.  The final significant drought event occurs around January ’10, which lasts 

relatively short again. This drought event does not occur in SPIs with longer aggregation periods.  
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Figure 28. Time series of the spatial mean per month of the 1, 3, 6, 12, 24 and 36-month SPI 

 

Droughts occur everywhere in the catchment (Figure 29). It differs per month, year and temporal 

aggregation period where the most negative SPI values can be found. However, large differences 

within the catchment in a single month are unlikely to occur. Generally, there are slightly more dry 
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months in the southeast of the catchment and at -74° longitude, between 6° to 8° latitude . There 

are less dry months in the central basin of the catchment, around location B at (-74.625°, 7.125°). 

The ratio of dry months to all months becomes bigger when the aggregation period is increased.  

 

 

Figure 29. Ratio of months with a SPI value below -1 to all months, for every cell in the MCMB for the 1-month 
(A), 3-months (B), 6-months (C), 12-months (D), 24-months (E) and 36-months (F) SPEI 

 

 

For the 1-month SPI, a single month can show very negative SPI values while the 

preceding and succeeding months show positive SPI values and a different spatial pattern. For SPIs 

with an aggregation period of six months or more, a clearer pattern can be observed: generally, at 

the start of a drought, more negative SPEI values are located in the northeast, whereas towards the 

end of the drought more negative values are located in the southwest. This pattern is present for 

the droughts between October 1982 and January 1984, between September 1986 and July 1987, 

between September 1991 and December 1992 and between April 1997 and  June 1998 (Figure 30).  

The drought between December 2009 and April 2010 is mainly located in the south of the MCMB. 
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Figure 30. Spatial distribution of the 6-month SPI values for(from left to right and from top to bottom) every 
month from  April 1997 to  June 1998 

 

 

4.2.2 SPEI 

 

The Standardized Precipitation Evapotranspiration Index is based on both the precipitation data 

and the potential evapotranspiration data. Again, the precipitation data is the same for all four 

models, but the potential evapotranspiration differs per model, which results in different SPEI 

indices for each model. The SPEI shows behaviour that is very similar to the SPI, both in space and 

time, for all aggregation periods. Therefore only the 6-month SPEIs of all models are given (Figure 

31). 

The timing of increase and decrease of the SPEI is very similar per model, but the maxima 

and minima show differences for each model. The differences between the models increase with 

increasing temporal aggregation. It is remarkable that it is not the same model that gives the 

lowest SPEI values all the time. This might indicate that it is not the same model parameter that 

causes a minimum or maximum in the SPEI, but rather that different parameters take the overhand 

per minimum or maximum. During the drought events following the 1982-1983, 1986-1987 and 

1997-1998 El Niño events, the HTESSEL model shows the lowest SPEI values and both the 

WaterGAP3 and the PCR-GLOBWB models show the highest SPEI values. In contrast, after the 

1991-1992 El Niño event the WaterGAP3 and PCR-GLOBWB models show the lowest SPEI values 

and the HTESSEL model shows the highest SPEI values. The SPEI values of the ORCHIDEE model 

and the ensemble mean seem to fall between the values of these three afore mentioned models.  

 

 



40 
 

 

Figure 31. Time series of the spatial mean of the 6-month SPEI for ORCHIDEE, HTESSEL, WaterGAP3, PCR-
GLOBWB and the ensemble mean of these four models 

 

For the SPEI, droughts can be found everywhere in the catchment, and distributional 

patters are similar to the SPI (Figure 32, Figure 33). The pattern with the droughts shifting from 

the north of the catchment to the south of the catchment can also be observed for the same months 

as for the SPI.   
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Figure 32. Ratio of months with a SPEI value below -1 to all months, for every cell in the MCMB for the 1-month 
(A), 3-months (B), 6-months (C), 12-months (D), 24-months (E) and 36-months ensemble mean SPEI (F) 

 

 

Figure 33. Ratio of months with a SPEI value below -1 to all months, for every cell in the MCMB for the 6-month 
SPEI of  ORCHIDEE (A), HTESSEL (B), WaterGAP3 (C), PCR-GLOBWB(D) models and the ensemble mean of these 
four models (E) 
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4.2.3 ETDI 

 

The evapotranspiration deficit index is based on the potential and actual evapotranspiration. What 

becomes directly apparent when looking at the mean ETDI's time series for all models is that all 

models give different mean ETDI time series (Figure 34). Especially the WaterGAP3 model has very 

different ETDI values compared to the other three models and the ensemble mean. WaterGAP3 

often showed significantly larger actual evapotranspiration amounts, but the potential 

evapotranspiration minus the actual evapotranspiration did not get below zero.  

 

 

 
Figure 34. Time series of the spatial mean of the ETDI for ORCHIDEE, HTESSEL, WaterGAP3, PCR-GLOBWB and 
the ensemble mean of these four models 

  

In contrast to the SPI and SPEI, very negative and very positive ETDI values can occur in the MCMB 

in the same month. ETDI values are especially low between April 1997 to  June 1998, mainly in the 

southwest of the catchment. Generally, more negative ETDI values occur in the south and the north 

(Figure 35). The same months show negative values as for the SPI and SPEI. These trends are less 

pronounced or absent for the WaterGAP3 ETDI values. For this model, little islands with positive or 

negative ETDI values are spread over the catchment and the timing of strongly negative values is 

different. The shift of droughts from north to south is not observed for the ETDI.  
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Figure 35. Ratio of months with a ETDI value below -1 to all months, for every cell in the MCMB for the 
ORCHIDEE (A), HTESSEL (B), WaterGAP3 (C), PCR-GLOBWB(D) models and the ensemble mean of these four 
models (E) 

 

 

4.2.4 SMDI 

 

The differences between the four models are pronounced in the Soil Moisture Deficit Index, but the 

models do correspond in timing of the minima and maxima (Figure 36). The large differences 

between models that could be observed for the root zone soil moisture data are not present in the 

SMDI, due to the computation methods for this index. The values range from -3 to 3 and vary a lot 

over time. Again, it differs per drought event which model gives the most negative SMDI values. For 

the ’83-’84 drought event, both the ORCHIDEE and PCR-GLOBWB models give the most negative 

SMDI values. For the ’91-’92, ’97-’98 and 2013 and 2014 drought events, the WaterGAP3 model 

produces the most negative SMDI values. This is also evident in Figure 37, where the WaterGAP3 

model shows the highest ratio of months with a sub -1 SMDI value to all months. The smallest ratio 

of dry months to all months can generally be found in the centre of the catchment above 6°N.  

The same months show droughts for the SMDI as for the 3-month and 6-month SPI and 

SPEI, and ETDI, but the SMDI does have a higher standard deviation than the 3-month and 6-month 

SPI and SPEI. The same shifts of droughts from north to south with time as is the case for the SPI 

and SPEI can also be observed for the SMDI. Very negative SMDIs tend to occur more often in the 

north, east and south.  
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Figure 36. Time series of the spatial mean of the SMDI for the ORCHIDEE, HTESSEL, WaterGAP3, PCR-GLOBWB 
and the ensemble mean of these four models 

 

 

Figure 37. Ratio of months with a SMDI value below -1 to all months, for every cell in the MCMB for the 
ORCHIDEE (A), HTESSEL (B), WaterGAP3 (C), PCR-GLOBWB(D) models and the ensemble mean of these four 
models (E) 
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4.2.5 SDI 

The Streamflow Deficit Index is based on discharge data of the models. Because there is no 

discharge data available for the ORCHIDEE model in the WRR-2, this model is not included in the 

drought analysis.  

All models and all cells show similar temporal patterns, even though the discharge data 

showed big differences between models for some locations (Figure 38). This can be explained by 

the standardization and transformation to a normal distribution performed in the computation of 

the SDI. The pattern of the SDI is similar to the 3-month and 6-month SPI and SPEI. The models 

agree relatively well, however, the PCR-GLOBWB model seems to give lower SDI values at the 

beginning of the time series and higher values towards the end compared to the other models. The 

same pattern could be observed for the discharge values.  

 

 

Figure 38. Time series of the spatial mean of the SDI for HTESSEL, WaterGAP3, PCR-GLOBWB and the ensemble 
mean of these three models 

 

 

 



46 
 

In the spatial distribution of ratio of months with a SDI below -1 to all months, the river networks 

of the Magdalena and Cauca rivers can be distinguished (Figure 39). This is especially clear for the 

PCR-GLOBWB model. Because the cells containing a major river branch will experience stronger 

fluctuations in discharge, it is logical that these cells will experience more dry months. 

 

 

Figure 39.  Ratio of months with a SDI value below -1to all months, for every cell in the MCMB for HTESSEL (A), 
WaterGAP3 (B), PCR-GLOBWB(C) and the ensemble mean of these three models (D) 

 

4.3 Correlation between drought and ENSO 

4.3.1 SPI 

 

The strength of the negative Pearson’s correlation between the SPI and the MEI strongly depends 

on the chosen temporal aggregation (Figure 40). The correlation is strongest for the 6-month SPI, 

followed by the 12-month SPI. It can also be observed that the points in the SPI vs. MEI plot tend to 

be located around the 1:1 line, except for the area with a negative SPI and positive MEI (Figure 41). 

Here, the points are located above the 1:1 line, which means that for a strongly positive MEI, the 

drought index it not necessarily strongly negative. A strong El Niño event is thus not per definition 

a severe drought. This could also be observed in Figure 28: for the ’82-’83 and the ’86-’87 El Niño 

events, the SPI does not drop far below -1.  

 

  

Figure 40. CDF plot of the Pearson’s correlation 
between the 1, 3, 6, 12, 24, and 36-month SPI and the 
MEI 

Figure 41. Scatter plot of the spatial mean of the 1, 3, 6, 
12, 24 an 36-month SPI values versus the MEI values 
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 The spatial distribution of the strength of the correlation is roughly the same for all SPI 

time scales, with stronger correlations north of the middle of the catchment and the weakest 

correlations along the southeast border of the catchment, roughly between coordinates (-76,2) and 

(-72,6), where the mountains are located (Figure 42). The correlation is also weaker in the 

absolute north of the catchment, close to the Atlantic Ocean. 

 

 
Figure 42. Spatial distribution of the Pearson’s correlation between the 1, 3, 6, 12, 24 and 36-month SPI and the 
MEI 

 

 

4.3.2 SPEI 

 

The 6-month SPEI shows the strongest correlation with the MEI (Figure 43). Again, the correlation 

is weakest for the 1-month and 36-month SPEI. Therefore, only the figures for the 6-month SPEI 

are included. The correlation between the 6-month SPEI and the MEI is a stronger negative 

correlation than for the 6-month SPI, with at least 81% of the cells for all models and the ensemble 

mean having a Pearson’s correlation of -0.50 of lower, with respect to 68% of the cells for the 6-

month SPI.  
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Figure 43. CDF plot of the Pearson’s correlation between the ensemble mean of the 1, 3, 6, 12, 24, and 36-month 
SPEI and the MEI 

 

The four different models agreed well on the SPEI values, which is reflected in similar 

Pearson’s correlation values (Figure 44). For the 6-month SPEI, the ensemble mean shows the 

strongest correlation with the MEI: 86% of the cells show a Pearson’s correlation of -0.50 or lower. 

Similar to the correlation between the SPI and MEI, the correlation is weaker for positive MEI and 

negative SPEI values (Figure 45).  

 

 
Figure 44. CDF plot of the Pearson’s correlation 
between the 6-month SPEI and the MEI for ORCHIDEE, 
HTESSEL, WaterGAP3, PCR-GLOBWB and the ensemble 
mean 

Figure 45. Scatter plot of the spatial mean  6-month 
SPEI values versus the MEI values for ORCHIDEE, 
HTESSEL, WaterGAP3, PCR-GLOBWB and the ensemble 
mean 

 

The spatial patterns are also rather similar to the spatial pattern of Pearson’s correlations 

for the SPI. The weakest correlations can again be found along the south-eastern border of the 

catchment along the line between coordinates (-76°, 2°) and (-72°, 6°) (Figure 46). The strongest 

correlations can be found along above this diagonal line, ranging from the southwest to the north 

of the catchment. A difference between the spatial pattern for the SPEI and the SPI is that the SPEI 

shows also strong correlations in the north, whereas this is not the case for the SPI. 
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Figure 46. Spatial distribution of the Pearson’s correlation between the 6-month SPEI and the MEI for the 
ORCHIDEE (A), HTESSEL (B), WaterGAP3 (C) and PCR-GLOBWB (D) models and the ensemble mean of these four 
models (E) 

 

 

4.3.4 ETDI 

 

All models show relatively large ranges in the CDF plot between the Pearson’s correlation’s 

minimum and maximum (Figure 47, Figure 48). WaterGAP3 has a positive relationship with the 

MEI. The correlation between the ETDI and the MEI is strongest for the ORCHIDEE model, where 

32% of the cells has a Pearson’s r below -0.50. The PCR-GLOBWB model also has a stronger 

correlation: 29% of the cells have a Pearson’s correlation below -0.50. The WaterGAP3 models 

shows the weakest negative correlation with the MEI: there are no cells with a value below -0.50, 

and only 0.28% of the cells has a value below -0.25. The WaterGAP3 models does show the 

strongest positive correlation, with 80% of the cells having an r-vale > 0.25 and 6.8% of the cells 

having an r-value >0.5. 
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Figure 47. CDF plot of the Pearson’s correlation 
between the ETDI and the MEI for ORCHIDEE, 
HTESSEL, WaterGAP3, PCR-GLOBWB and the ensemble  
mean 

Figure 48. Scatter plot of the spatial mean  ETDI values 
versus the MEI values for ORCHIDEE, HTESSEL, 
WaterGAP3, PCR-GLOBWB and the ensemble  mean 

 
The spatial distribution of the Pearson’s correlation is roughly similar for the ORCHIDEE, 

HTESSEL and PCR-GLOBWB models and the ensemble mean, with the strongest negative 

correlations located along the western border of the catchment and in the middle of the catchment 

around 6.5 ° latitude (Figure 49). The Pearson’s r correlation is generally low or sometimes even 

positive in the east and north of the catchment. For the WaterGAP3 model, the correlation is 

strongest and most positive in the north and east, and weakest in the west, which is in contrast 

with the other models. 

 

 

Figure 49. Spatial distribution of the Pearson’s correlation between the ETDI and the MEI for the ORCHIDEE (A), 
HTESSEL (B), WaterGAP3 (C) and PCR-GLOBWB (D) models and the ensemble mean of these four models (E) 
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4.3.3 SMDI       

 

The correlation with the MEI is negative, and strongest for the ensemble mean, where 78% of the 

cells have a Pearson’s correlation value of -0.50 or higher (Figure 50). The model with the 

strongest correlation with the MEI is the HTESSEL model: 66.86% of the cells have an r value of -

0.50 of higher.  

When the MEI is plotted against the SMDI, it becomes apparent that there is stronger 

Pearson correlation for values around a SMDI of 0 and a MEI of 0, but when values become more 

positive or negative, the correlation becomes weaker (Figure 51). The fact that the correlation is 

weaker for minimum and maximum SMDI values, indicated that the MEI has less influence on the 

SMDI.   

 

Figure 50. CDF plot of the Pearson’s correlation 
between the SMDI and the MEI for ORCHIDEE, 
HTESSEL, WaterGAP3, PCR-GLOBWB and the ensemble 
mean 

Figure 51. Scatter plot of the spatial mean  SMDI 
values versus the MEI values for ORCHIDEE, HTESSEL, 
WaterGAP3, PCR-GLOBWB and the ensemble mean 

 

The spatial distribution of the Pearson’s correlations is roughly similar per model (Figure 

52). The correlation for all models is strongest in the west of the catchment between 2.5° and 6.5° 

latitude. Also in the north of the catchment between 9° and 10° latitude the correlation is strong. At 

6°  latitude, the area of stronger correlations spreads almost to the east of the catchment. All 

models show a generally weak correlation in the far eastern corner of the catchment at 6.5° 

latitude and in the west of the catchment around 8.25° latitude. Besides these locations, the 

correlation is also weak at the southeast border of the catchment, which is also the case for the 

other drought indices. Although the spatial distribution of correlations between the SMDI and the 

MEI per model are similar, the strength of the correlations per location do vary per model.    
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Figure 52. Spatial distribution of the Pearson’s correlation between the SMDI and the MEI for the ORCHIDEE (A), 
HTESSEL (B), WaterGAP3 (C) and PCR-GLOBWB (d) models and the ensemble mean of these four models (E) 

 

 

4.3.5 SDI 

 

The ensemble mean shows the strongest correlation with the MEI: 49% of the cells have a 

correlation below -0.50 (Figure 53). The HTESSEL model shows a strong correlation as well, with 

48% of the cells having a correlation below -0.50. In the SDI versus MEI plot, all data points are 

located in a denser cloud compared to the other drought indices, because the variability of the SDI 

is smaller compared to the other drought indices (Figure 54). This is caused by spatially averaging, 

because most of the area of the MCMB is not river, and therefore the variations in runoff are lower.  

 

 
Figure 53. CDF plot of the Pearson’s correlation 
between the SDI and the MEI for HTESSEL, 
WaterGAP3, PCR-GLOBWB and the ensemble  mean 

Figure 54. Scatter plot of the spatial mean SDI values 
versus the MEI values for HTESSEL, WaterGAP3, PCR-
GLOBWB and the ensemble  mean 
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The spatial pattern of the Pearson’s correlation values is more or less similar to the spatial 

pattern of the other drought indices (Figure 55). Along the south eastern border of the catchment, 

the correlation is generally weaker. This is also the case along the borders in the north of the 

catchment; especially for the north eastern corner and the at the west border at 8 ° latitude, where 

no major river branches are located. Besides these areas, there is also a small area where the 

correlation is weaker located in the middle of the catchment around -74.5° longitude and 7.5° 

latitude. This area corresponds with the most northern part of the Cordillera Central.  

 

 

Figure 55. Spatial distribution of the Pearson’s correlation between the SDI and the MEI for the HTESSEL (A), 
WaterGAP3 (B) and PCR-GLOBWB (C) models and the ensemble mean of these three models (D) 
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5. Discussion 
 

In order to perform a drought analysis four models within the eartH2Observe project WRR-2 were 

analysed for the Magdalena-Cauca macro-basin in Colombia: ORCHIDEE, HTESSEL, WaterGAP3 and 

PCR-GLOBWB. This was followed by a drought analysis using drought indices and exploring their 

relation to ENSO. This study  was performed for the period from January 1980 up to and including 

December 2014 on a monthly basis, with a 0.25° resolution using in-situ data from IDEAM.  

 

5.1 Model performance 

The MSWEP forcing data performs well in the MCMB (62% of the cells have a KGE of 0.75 or 

higher) and therefore this dataset is suitable as forcing for the four large scale hydrological models 

in this study. Because the forcing dataset has a good performance, errors in, and differences 

between the model products are unlikely to be caused by the forcing data. At the edges of the 

catchment, KGE values are generally lower. There are several factors possibly contributing to this 

reduces performance. The reduced performance in the southeast could be caused by the presence 

of the Cordilleras Oriental mountain ranges. Although the MSWEP dataset is corrected for gauge 

under-catch and orographic effects, gauge observations are less dense in mountainous areas (Beck 

et al., 2017; Viviroli et al., 2007). This can result in a lesser performance of the MSWEP data over 

mountainous areas. The reduced performance in the north of the catchment could be explained by 

the proximity to the Atlantic ocean. Oceanic areas are not included in the MSWEP forcing data. 

Therefore, terrestrial hydrology for coastal areas is not influenced by the adjacent ocean. This can 

result in a lesser performance in coastal areas (Beck et al., 2018). The  interpolation of the 

precipitation data by IDEAM (Kriging with External Drift (KED), 3.1 Data) can also be a cause for a 

lower performance. 

The performance for the potential evapotranspiration is relatively poor, due to the 

comparison made with the reference evapotranspiration and due to the different methods used by 

the models to compute the potential evapotranspiration. Therefore, not too much emphasis should 

be placed on the bias and variability ratio components of the KGE: the potential evapotranspiration 

amounts are larger than the reference evapotranspiration amounts because water limitations are 

not taken into account. Also, the use of a different crop type instead of the reference grass crop or a 

different computation method will result in different mean potential evapotranspiration values 

and different standard deviations. Both the GHMs perform better than the LSMs: they are the only 

two models which produce cells that have a KGE over 0.50, and over half of the cells in the 

catchment have a Pearson’s correlation above 0.50. A potential explanation could be that LSMs 

compute the potential evapotranspiration through the surface temperature whereas GHMs do not 

(Barella-Ortiz, 2015). The very poor model performance of the HTESSEL model cannot directly be 

explained by the use of a different equation to calculate the PET, since both PCR-GLOBWB and 

HTESSEL use the same equation, and PCR-GLOBWB does not perform as poorly. PCR-GLOBWB 
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does use a crop coefficient that takes crop-specific transpiration and bare soil evaporation into 

account (Wada et al., 2014). The HTESSEL model mainly focuses on bare ground evaporation 

(Trambauer et al., 2013), but improvements on evaporation for temperate climates have been 

made. Balsamo et al. (2011) state that a point for improvement is the evaporation over free-water 

surfaces.  

Both the performance and the Pearson’s correlation of the models for potential 

evapotranspiration are generally better in the Magdalena valley and the north of the catchment, 

compared to the rest of the catchment, which can be explained by the land cover and topography. 

In the Magdalena valley and the north of the catchment, the land cover mainly consists of grassland 

and crop farming (Figure 3). The topography is also relatively flat and elevation is low; below 500 

m (Figure 4). Since the vegetation types are more similar to the crop type used for calculation of 

the reference evapotranspiration and because the topography is more homogeneous, this explains 

the good performance of the models in this area. 

The model performances for discharge are relatively poor, most likely due to the limited 

spatial resolution. The models tend to over or underestimate the discharge. For some of the 

locations more upstream, some models give discharge values close to zero, whereas IDEAM gives 

significantly larger discharge values, and vice versa. An explanation for this phenomenon might be 

that due to the cell size, cells contain a mix of rivers and other types of land covers. Some river 

branches can therefore be assigned to one cell in one model and to another cell in another model, 

depending on the set threshold. Differences could also be explained by the fact that the models 

compute discharge over the entire cell, and this value is compared to the discharge at a point 

location from IDEAM to compute the KGE. If there are multiple river branches in one cell, this will 

lead to an overestimation of the models. Locations in the MCMB with a larger upstream area often 

have a higher KGE, most likely because a larger area limits the effect of a local error.  

The performance of the MSWEP precipitation dataset is very good for the MCMB. Although 

for the potential evapotranspiration and for the discharge the KGEs indicate a lesser performance, 

these model products are still useful for drought analysis because the Pearson’s correlations 

between the IDEAM and modelled data are strong (above 0.6 for a majority of the cells for the best 

performing models). Because the data is normalized or standardized in the computation 

procedures of the drought indices, the bias and variability ratio are no longer relevant in a drought 

analysis using drought indices. 

 

5.2 Drought indices 

For all drought indices, the ratio of dry months to all months becomes bigger when the aggregation 

period is increased. This can either be explained by the lengthening of droughts with increasing 

aggregation period, and/or by the lack of severe droughts at the start of the time series and the 

shortening of the observation period for SPIs with a longer aggregation period (because the first 

months of the time series cannot return a SPI value yet).  
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For the ETDI, the WaterGAP3 model shows a very different pattern from the other models 

and the ensemble mean. It could be caused by the relatively large total evaporation values of this 

model. Due to the calculation method of the ETDI, this results in a relatively small water scarcity 

ratio (3.4.3 ETDI). This indicates that a lot of evaporation takes place, and has as a consequence 

that the ETDI of the current month is similar to the ETDI of the previous month, except for when 

the water stress ratio is large. For the HTESSEL model, the ETDI pattern seems similar to the 

ORCHIDEE and PCR-GLOBWB models (even though the magnitude of the potential 

evapotranspiration amounts deviated significantly from the reference evapotranspiration and the 

other models, whereas this was not the case for the actual evapotranspiration) because the water 

stress ratio does not become very small.  

The difference in the SMDI between models can be explained by the different soil moisture 

parameters and different soil moisture depths (Table 2). When the soil depth in the model is 

doubled, the water holding capacity is also doubled. This can have consequences during dry 

seasons, because deeper soils have a larger buffer of root zone soil moisture (D’Orgeval et al., 

2008). During periods with little precipitation, this can have as a consequence that the onset of a 

drought according to the SMDI is timed later for a model with a deeper soil compared to a model 

with a shallower soil. It might also have as a consequence that the drought is less intense, meaning 

that the minimum SMDI is less negative.  

The SMDI shows a temporal pattern that is similar to the 3-month and 6-month SPI and 

SPEI. This finding is supported by the research of Vicente-Serrano et al. (2010) and Zargar et al. 

(2011), who state that the medium or 3-month SPI, respectively, relates to soil water content. The 

pattern of the SDI time series is similar to the 3-month and 6-month SPI and SPEI. This confirms 

that longer timescales SPIs and SPEIs reflect deficits in streamflow, as stated by McKee et al. 

(1993).   

Even though not all models have a good skill, they can be of value when analyzing 

droughts, because the different models gave different discharge values, the SDIs are relatively 

similar for all models.  

 

5.3 Drought analysis 

For all drought indices except the ETDI, the area affected by drought moves from the northeast to 

the southwest of the catchment over a period of multiple months. This pattern coincides with El 

Niño events and can be explained by the effects of El Niño on the Chocó-jet. The reduced sea-

surface temperature gradient over the Pacific Ocean occurring during El Niño causes the Chocó-jet 

to become weaker and reach less far inland every month, while the north-easterly trade winds, 

which supply drier air, reach further to the west (Poveda et al., 2005). Therefore, the northeast of 

the catchment is the first to experience a reduced moisture supply. The consecutive year, the 

Chocó-jet is no longer under the influence of El Niño and it can regain its full strength again from 
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May to November. Since most precipitation falls north of 6° N, the north of the catchment recovers 

first, and the south of the catchment recovers later.  

The ratio of dry months to all months is higher in the southeast of the catchment. This area 

receives the least amount of moist air from the Chocó-jet (Poveda et al., 2014), due to the 

Cordilleras Occidental and Central forming a barrier in the east. The area is also on the leeward 

side of the north-easterly trade winds, and therefore also receives little moisture from these winds.  

More potential and actual evapotranspiration is modelled for the central north of the 

catchment (where the climate is generally warmer and wetter) and along the main rivers, and less 

actual evapotranspiration is modelled for the mountains. The spatial pattern of the ETDI also 

clearly follows the topography. Topography is also recognized as an important influences of 

(potential) evapotranspiration, due to lower temperature in the mountains, and the aspects of 

slopes determining the amount of solar radiation received (Kafle & Yamaguchi, 2009). 

For the  SPI and the SPEI, it stands out that the basin of the catchment does not experience 

a severe drought following the 1982-1983 El Nino event, even though this region experiences 

reduced precipitation. This can be explained by the higher precipitation rates in the months 

preceding the El Niño event, which are also experienced exclusively at this location, forming a 

buffer to the reduced precipitation amounts after the El Nino event. The increased precipitation 

rates in this area preceding the El Niño event can be explained by the surrounding topography. The 

Cordillera Occidental reaches its most northern point just south of this area. Therefore, there is no 

barrier present blocking the moist air coming from the west transported by the Chocó-jet.  

 

5.4 ENSO 

The MEI is calculated based on six components: sea-level pressure, zonal and meridional 

components of the surface wind, sea surface temperature, surface air temperature, and total 

cloudiness fraction of the sky. When looking at the time series of all six components, it can be 

observed that most components have a period of either 6 or 12 months (ICOADS, 2016). This can 

explain why the drought indices with a temporal aggregation period of 6 months show the 

strongest correlation with the MEI.  

A strong El Niño event is not per definition a severe drought, partly due to the ’82-’83 and 

the ’86-’87 strong El Niño events, where the SPI does not drop far below -1. This makes it difficult 

to predict the intensity of future droughts using ENSO. 

The correlation between the drought indices and the MEI is the weakest along the south-

eastern border of the catchment and strongest at the western border for all drought indices. The 

most likely explanation is that the Andes acts as a barrier for the effects of ENSO to enter inland 

Colombia. This observation is also described in literature: Poveda (1998) states that the effect of 

ENSO decreases when moving in eastern direction as a result of the interactions with the branches 

of the Colombian Andes. According to Poveda & Mesa (1997), the correlation between the SOI and 

precipitation are strongest near the Pacific ocean, and correlations decrease towards the east.  
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For all drought indices except the ETDI (where the strength of the negative correlation for 

the ensemble mean is weakened by the positive correlation of WaterGAP3), the ensemble mean 

has the strongest correlation with the MEI. The drought index with the strongest correlation with 

the MEI is the 6-month ensemble mean SPEI. The ensemble mean corrects for extremes of the 

individual models, which explains this high correlation. Several other studies also conclude that 

the ensemble mean outperformed the individual models (Alfieri et al., 2012; van Loon et al., 2012; 

Velázquez et al., 2013). 
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6. Conclusion 
 

This study performed a drought analysis for the Magdalena-Cauca macro-basin by I) evaluating 

four different global hydrological and land surface models; II) quantifying droughts using five 

different drought indices based on the model products and III) determining the correlation with 

ENSO.  

Overall, the performance is best for the MSWEP precipitation forcing data and lower for 

the potential evapotranspiration and discharge model products. This is reasonable, because the 

MSWEP precipitation dataset used multiple comprehensive data sources. Due to the good 

performance of the forcing data, the MSWEP forcing data is suitable as forcing in the MCMB. For 

potential evapotranspiration the WaterGAP3 model performs best, however, the comparison 

between the modelled potential evapotranspiration and the reference evapotranspiration is not 

ideal. For discharge, the ensemble mean has the most cells with a good performance. The 

performance is generally better if the upstream area is bigger. If the spatial resolution could be 

improved, this might increase the performance because it would be better possible to distinguish 

rivers in the models. Even though the performance of some model products was not adequate, the 

model products still had value for drought analysis, due to the removal of absolute differences in 

the drought indices computations. 

Droughts occur everywhere in the catchment, but occur most often in the southeast of the 

catchment. This area is often not reached by the westerly Chocó-jet supplying moist air and is on 

the leeward side of the Cordilleras Occidental. Therefore, moisture supply is limited. During El 

Niño events, the area affected by droughts moves from the northeast to the southwest of the 

catchment, due to weakening of the Chocó-jet and dominance of the easterly trade winds at lower 

elevations.  

The correlation between drought indices and the MEI is weaker for a strongly positive MEI 

values. The correlation is strongest for the 6-month ensemble mean SPEI. The correlation is 

strongest in the west of the catchment. 

In all, this study paves the way for future research which may use drought indices, and 

their correlation to ENSO, to predict droughts in the MCMB and assist in water management. 

 

  



60 
 

References 
 

Alfieri, L., Thielen, J., & Pappenberger, F. (2012). Ensemble hydro-meteorological simulation for 
flash flood early detection in southern Switzerland. Journal of Hydrology, 424–425, 143–153. 
https://doi.org/10.1016/j.jhydrol.2011.12.038 

Balsamo, G., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M., & Betts, A. K. (2009). A revised 
hydrology for the ECMWF model: Verification from field site to terrestrial water storage and 
impact in the Integrated Forecast System. Journal of Hydrometeorology, 10(3), 623–643. 
https://doi.org/10.1175/2008JHM1068.1 

Balsamo, G., Dutra, E., Beljaars, A., & Viterbo, P. (2011). Evolution of land-surface processes in the 
IFS. ECMWF Newsletter, 127(127), 6. https://doi.org/10.21957/x1j3i7bz 

Barella-Ortiz, A. (2015). Analysis and modelling of soil moisture and evaporation processes , 
implications for climate change. Université Pierre et Marie Curie – Paris VI. 

Barella-Ortiz, A., Polcher, J., Tuzet, A., & Laval, K. (2013). Potential evaporation estimation through 
an unstressed surface-energy balance and its sensitivity to climate change. Hydrology and 
Earth System Sciences, 17(11), 4625–4639. https://doi.org/10.5194/hess-17-4625-2013 

Barnston, A. G., Glantz, M. H., & He, Y. (1999). Predictive skill of statistical and dynamical climate 
models in SST forecasts during the 1997-98 El Niño episode and the 1998 La Niña onset. 
Bulletin of the American Meteorological Society, 80(2), 217–243. 
https://doi.org/10.1175/1520-0477 

Beck, H.E., van Dijk, A. I. J. M., De Roo, A., Dutra, E., Fink, G., Orth, R., & Schellekens, J. (2017). Global 
evaluation of runoff from 10 state-of-the-art hydrological models. Hydrology and Earth 
System Sciences, 21, 2881–2903. https://doi.org/10.5194/hess-2016-124 

Beck, H.E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., & De Roo, A. 
(2017). MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, 
satellite, and reanalysis data. Hydrology and Earth System Sciences, 21(1), 589–615. 
https://doi.org/10.5194/hess-21-589-2017 

Beck, Hylke E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., et al. (2018). 
Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. 
Hydrology and Earth System Sciences Discussions, (September), 1–23. 
https://doi.org/10.1016/j.cub.2014.12.055 

van Beek, L. P. H., & Bierkens, M. F. P. (2009). The global hydrological model PCR-GLOBWB: 
conceptualization, parameterization and verification. Report Department of Physical 
Geography. Utrecht, The Netherlands. Retrieved from 
http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf 

van Beek, L. P. H., Wada, Y., & Bierkens, M. F. P. (2011). Global monthly water stress: 1. Water 
balance and water availability. Water Resources Research, 47(7). 
https://doi.org/10.1029/2010WR009791 

Bergstrom, S. (1976). Development and application of a conceptual runoff model for Scandinavian 
catchments. Norrkoping. 

Beven, K., & Binely, A. (1992). The future of distributed models: Calibration and uncertainty 
prediction. Hydrological Processes, 6, 279–298. 

Bierkens, M. F. P. (2015). Global hydrology 2015: State, trends, and directions. Water Resources 
Research, 51(February), 4923–4947. https://doi.org/10.1002/2015WR017173.Received 

Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E., & Huang, D. (2004). Predictability of El Niño over the 
past 148 rears. Nature, 428(15 April 2004), 4. 

Commons, W. (2019). Colombia Topography. Retrieved April 29, 2019, from 
https://upload.wikimedia.org/wikipedia/commons/3/3b/Colombia_Topography.png 

D’Orgeval, T., Polcher, J., & De Rosnay, P. (2008). Sensitivity of the West African hydrological cycle 
in ORCHIDEE to infiltration processes. Hydrology and Earth System Sciences, 12(6), 1387–



61 
 

1401. https://doi.org/10.5194/hess-12-1387-2008 

Döll, P., Fiedler, K., & Zhang, J. (2009). Global-scale analysis of river flow alterations due to water 
withdrawals and reservoirs. Hydrology and Earth System Sciences, 13(12), 2413–2432. 
https://doi.org/10.5194/hess-13-2413-2009 

Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A., Rodell, M., et al. (2012). Impact 
of water withdrawals from groundwater and surface water on continental water storage 
variations. Journal of Geodynamics, 59–60, 143–156. 
https://doi.org/10.1016/j.jog.2011.05.001 

FAO. (2002). FAO Rice Information. Rome. Retrieved from 
http://www.fao.org/3/Y4347E/y4347e0h.htm 

Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., & Alcamo, J. (2013). Domestic and 
industrial water uses of the past 60 years as a mirror of socio-economic development: A 
global simulation study. Global Environmental Change, 23(1), 144–156. 
https://doi.org/10.1016/j.gloenvcha.2012.10.018 

Gallego, D., García-Herrera, R., Gómez-Delgado, F. de P., Ordoñez-Perez, P., & Ribera, P. (2018). 
Tracking the Choco jet since the 19th Century by using historical wind direction 
measurements. Earth System Dynamics Discussions, (July), 1–23. 
https://doi.org/10.5194/esd-2018-54 

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared 
error and NSE performance criteria: Implications for improving hydrological modelling. 
Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003 

Gutiérrez, F., & Dracup, J. A. (2001). An analysis of the feasibility of long-range streamflow 
forecasting for Colombia using El Niño–Southern Oscillation indicators. Journal of Hydrology, 
246, 181–196. 

Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. 
Applied Engineering in Agriculture, 1(2), 96–99. 

Heim Jr., R. R. (2002). A Review of Twentieth-Century Drought Indices Used in the United States. 
Bulletin of the American Meteorological Society, 22(August), 1149–1165. 

Hoyos, N., Escobar, J., Restrepo, J. C., Arango, A. M., & Ortiz, J. C. (2013). Impact of the 2010-2011 La 
Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. 
Applied Geography, 39, 16–25. https://doi.org/10.1016/j.apgeog.2012.11.018 

Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M. A., Espinosa, J. M., Restrepo, J. C., & Escobar, 
J. (2017). The environmental envelope of fires in the Colombian Caribbean. Applied 
Geography, 84, 42–54. https://doi.org/10.1016/j.apgeog.2017.05.001 

ICOADS. (2016). Release 2.5 Data characteristics. Retrieved March 3, 2019, from 
https://icoads.noaa.gov/r2.5.html 

Kafle, H. K., & Yamaguchi, Y. (2009). Effects of topography on the spatial distribution of 
evapotranspiration over a complex terrain using two-source energy balance model with 
ASTER data. Hydrological Processes, 23(16), 2295–2306. https://doi.org/10.1002/hyp.7336 

Keyantash, J., & Dracup, J. A. (2002). The quantification of drought: An evaluation of drought 
indices. American Meteorological Society, (August), 1167–1180. 

KNMI. (2019). Time series monthly MEI. Retrieved January 28, 2019, from 
https://climexp.knmi.nl/getindices.cgi?WMO=NOAAData/mei&STATION=MEI&TYPE=i&id=s
omeone@somewhere 

Lander, R. (2015, September 22). Colombia suffering worst drought in recorded history. Colombia 
Reports. Retrieved from https://colombiareports.com/colombia-suffering-worst-drought-in-
recorded-history/ 

van Loon, A. F. (2015). Hydrological drought explained. WIREs Water, 2, 359–392. 
https://doi.org/10.1002/wat2.1085 

van Loon, A. F., van Huijgevoort, M. H. J., & van Lanen, H. A. J. (2012). Evaluation of drought 



62 
 

propagation in an ensemble mean of large-scale hydrological models. Hydrology and Earth 
System Sciences. https://doi.org/10.5194/hess-16-4057-2012 

López, M. E., & Howell, W. E. (1967). Katabatic winds in the equatorial Andes. Journal of the 
Atmospheric Sciences, 24, 29–35. 

Matheron, G. (1971). The theory of regionalized variables and their applications. Fontainebleau, 
Paris: Centre de Geostatistique. 

Mavromatis, T. (2007). Drought index evaluation for assessing future wheat production in Greece. 
International Journal of Climatology, 4(27), 911–924. https://doi.org/10.1002/joc.1444 

McKee, T. B., Nolan, J., & Kleist, J. (1993). The relationship of drought frequency and duration to 
time scales. In Eighth Conference on Applied Climatology, American Meteorology Society. 

Mishra, A. K., & Singh, V. P. (2011). Drought modeling - A review. Journal of Hydrology, 403(1–2), 
157–175. https://doi.org/10.1016/j.jhydrol.2011.03.049 

Nalbantis, I., & Tsakiris, G. (2009). Assessment of hydrological drought revisited. Water Resources 
Management, 23(5), 881–897. https://doi.org/10.1007/s11269-008-9305-1 

Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index 
(SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. 
Agricultural and Forest Meteorology, 133(1–4), 69–88. 
https://doi.org/10.1016/j.agrformet.2005.07.012 

Poveda, G. (1998). Retroalimentación dinámica entre El Niño Oscilación del Sur y la hidrología de 
Colombia. Disertación Ph.D., Universidad Nacional de Colombia. Posgrado en 
Aprovechamiento de Recursos Hidráulicos, Medellín. 

Poveda, G., & Mesa, O. (2000). On the existence of Lloró (the rainiest locality on Earth): enhanced 
ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 
1675–1678. 

Poveda, G., & Mesa, O. J. (1997). Feedbacks between hydrological processes in tropical South 
America and large-scale ocean-atmospheric phenomena. Journal of Climate, 10(10), 2690–
2702. https://doi.org/10.1175/1520-0442(1997)010<2690:FBHPIT>2.0.CO;2 

Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., & Mantilla, R. I. (2001). Seasonality in ENSO-related 
precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water 
Resources Research, 37(8), 2169–2178. https://doi.org/10.1029/2000wr900395 

Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., et al. (2005). The Diurnal 
Cycle of Precipitation in the Tropical Andes of Colombia. 

Poveda, G., Waylen, P. R., & Pulwarty, R. S. (2006). Annual and inter-annual variability of the 
present climate in northern South America and southern Mesoamerica. Palaeogeography, 
Palaeoclimatology, Palaeoecology, 234(1), 3–27. 
https://doi.org/10.1016/j.palaeo.2005.10.031 

Poveda, G., Vélez, J. I., Mesa, O. J., Cuartas, A., Barco, J., Mantilla, R. I., et al. (2007). Linking long-term 
water balances and statistical scaling to estimate river flows along the drainage network of 
Colombia. Journal of Hydrologic Engineering, 12(1), 4–13. 
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(4) 

Poveda, G., Jaramillo, L., & Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of 
South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98–118. 
https://doi.org/10.1002/2013WR014087 

Restrepo, J. D., & Kjerfve, B. (2000a). Magdalena river: Interannual variability (1975-1995) and 
revised water discharge and sediment load estimates. Journal of Hydrology, 235(1–2), 137–
149. https://doi.org/10.1016/S0022-1694(00)00269-9 

Restrepo, J. D., & Kjerfve, B. (2000b). Water discharge and sediment load from the western slopes 
of the colombian andes with cocus on Rio San Juan. The Journal of Geology, 108(1), 17–33. 
https://doi.org/10.1086/314390 

Restrepo, J. D., & Syvitski, J. P. M. (2006). Assessing the effect of natural controls and land use 



63 
 

change on sediment yield in a major Andean River: the Magdalena drainage basin, Colombia. 
Ambio, 35(2), 65–74. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16722251 

Restrepo, J. D., Kjerfve, B., Hermelin, M., & Restrepo, J. C. (2006). Factors controlling sediment yield 
in a major South American drainage basin: The Magdalena River, Colombia. Journal of 
Hydrology, 316(1–4), 213–232. https://doi.org/10.1016/j.jhydrol.2005.05.002 

Schellekens, J., Dutra, E., Martínez-De La Torre, A., Balsamo, G., Van Dijk, A. I. J. M., Sperna Weiland, 
F., et al. (2017). A global water resources ensemble of hydrological models: The 
eartH2Observe Tier-1 dataset. Earth System Science Data, 9(2), 389–413. 
https://doi.org/10.5194/essd-9-389-2017 

Sterk, G., & Rodriguez, E. (2017). Colombia. In Global Earth Observation for integrated water 
resource assessment: Applicability of Earth Observation and Global Hydrological Data for Local 
Applications (pp. 59–78). 

Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical 
Review, 38(1), 55–94. https://doi.org/10.2307/210739 

Trambauer, P., Maskey, S., Winsemius, H., Werner, M., & Uhlenbrook, S. (2013). A review of 
continental scale hydrological models and their suitability for drought forecasting in (sub-
Saharan) Africa. Physics and Chemistry of the Earth. 
https://doi.org/10.1016/j.pce.2013.07.003 

Velázquez, J. A., Schmid, J., Ricard, S., Muerth, M. J., Gauvin St-Denis, B., Minville, M., et al. (2013). An 
ensemble approach to assess hydrological models’ contribution to uncertainties in the 
analysis of climate change impact on water resources. Hydrology and Earth System Sciences, 
17(2), 565–578. https://doi.org/10.5194/hess-17-565-2013 

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index 
sensitive to global warming: The standardized precipitation evapotranspiration index. 
Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1 

Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., & Weingartner, R. (2007). Mountains of the world, 
water towers for humanity: Typology, mapping, and global significance. Water Resources 
Research. https://doi.org/10.1029/2006WR005653 

Wackernagel, H. (1998). Multivariate geostatistics: an introduction with applications. Springer-
Verlag. 

Wada, Y., Wisser, D., & Bierkens, M. F. P. (2014). Global modeling of withdrawal, allocation and 
consumptive use of surface water and groundwater resources. Earth System Dynamics, 5(1), 
15–40. https://doi.org/10.5194/esd-5-15-2014 

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., & Viterbo, P. (2014). The WFDEI 
meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim 
reanalysis data. Water Resources Research, 50, 7505–7514. 
https://doi.org/10.1002/2014WR015638.Received 

Werner, M., & Gründermann, G. (2014). Lesson 1: Using the EartH2Observe data portal to analyse 
drought indicators. Using the EartH2Observe Data Portal to Analyse Drought Indicators, 1–30. 

Wilhite, D. A. (2000). Drought as a natural hazard: Concepts and definitions. In Drought: A Global 
Assessment (pp. 3–18). New York: Routledge. https://doi.org/10.1177/0956247807076912 

Wolter, K., & Timlin, M. S. (2011). El Niño Southern Oscillation behaviour since 1871 as diagnosed 
in an extended multivariate ENSO index (MEI. ext). International Journal of Climatology, 
31(7), 1074–1087. 

Yamazaki, D., Kanae, S., Kim, H., & Oki, T. (2011). A physically based description of floodplain 
inundation dynamics in a global river routing model. Water Resources Research, 47(4), 1–21. 
https://doi.org/10.1029/2010WR009726 

Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental 
Reviews, 19, 333–349. https://doi.org/10.1139/a11-013 

Zhao, M., Held, I. M., & Vecchi, G. A. (2010). Retrospective forecasts of the hurricane season using a 
global atmospheric model assuming persistence of SST anomalies. Monthly Weather Review, 



64 
 

138(10), 3858–3868. https://doi.org/10.1175/2010MWR3366.1 

 


