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Summary 

 

Crop yield estimation has always been an important part of high precision agriculture. 

Knowing at any point in time how many of a farmer’s crops are still healthy is key in optimizing 

labor and reducing waste in resources. This is not only beneficial for the farmers’ own business 

but is also beneficial for the environment. With advancements in technology, more specifically 

Unmanned Aerial Vehicles getting better and cheaper it is a feasible option to deploy UAVs 

for data acquisition for agricultural purposes.  

However data acquisition alone is not enough, interpretation of the data is just as important 

if not more important than raw data acquisition. Data needs to be converted into practical 

knowledge that can be further used by the farmers. One such practical knowledge is knowing 

how many plants a farmer has in his field at a specific point in time. However data 

interpretation by an expert can be time-consuming and costly. That is the reason that in this 

study the main goal is to develop a method to automatically count spinach plants by using 

machine vision. 

In this study common machine vision image segmentation algorithms, such as the Excess 

Green Index and Otsu’s method along with deep learning and convolutional neural networks 

will be used in order to create a fully automatic method of counting the number of plants.   

This is achieved by segmenting and binarizing an ortho-mosaic of a spinach field. The result is 

a binary image, where all the true pixels represent pixels that belong to a spinach plant.  By 

training a neural network to recognize individual spinach plants and classify them as such, the 

number of pixels per individual spinach plant can be automatically calculated. Afterward by 

diving the total amount of pixels by the average amount of pixels per plant the number of 

spinach plants can be calculated. 

The outcome of this study is that the automatic algorithm performs is capable of taking an 

input image and returning the number of plants in that image. While there was no reliable 

ground-truth to validate the results of the used ortho-mosaics. Tests on smaller images where 

the plants could be counted by hand showed that the algorithm is capable of automatically 

counting the number of plants with an accuracy of 90%.  The study also tested this approach 

on an ortho-mosaic of a smaller resolution and it still performs as expected. With the biggest 

error being 9.6% meaning that the algorithm is capable of counting plants from ortho-mosaics 

with different spatial resolutions.  
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1. Introduction 

 

1.1 Research problem and context 

 

Crop yield estimation and crop monitoring is a very valuable asset within agriculture. It is not 

only important for estimating the yield, weed control, disease detection. But it can also have 

a real impact on the economies of countries and the environment (Hayes & Decker, 1996) 

Improper crop monitoring can lead to a waste of valuable resources such as water and 

fertilizers.  

Traditionally crop estimation and monitoring require manual labor, the field manager or the 

landowner still has to monitor the crops physically. This is time-consuming and can be prone 

to human error. Therefore there is a need in agriculture of more automation, that would not 

only take away the manual labor of land surveying but would also be more accurate, cheaper 

and more robust.  

With recent advancements in technology, it becomes more feasible to solve these issues 

automatically and remotely. The increasing availability of the Unmanned Aerial Vehicle (UAV) 

is a potential solution to remotely and quickly acquire data on a plot of land without the 

manual labor that would be required traditionally(Rokhmana, 2015; Sarron et al., 2018). The 

land manager/owner does not have to survey the plot manually but can deploy a UAV in order 

to take aerial photographs from the crop that can be further analyzed.  

 The benefits of UAVs are that they can be flown at lower altitudes with greater safety than 

manned aircraft due to the absence of flying personnel, thereby increasing the resolution. 

UAV acquired data is also much more accurate than satellite imagery and can provide data 

very quickly, more than 500ha per day (Rokhmana, 2015).  Deploying a UAV is therefore much 

more cost effective than a manned aircraft such as a survey plane or a helicopter. As Hunt et 

al. (2010) put it:  “Low-cost, light-weight sensors are critical for the development of UAVs as a 

cost-effective platform for image acquisition“ UAVs are already used in precision agriculture 

to improve profitability and productivity by providing data (Tokekar, Hook, Mulla, & Isler, 

2016).  However only image acquisition and remote sensing are not enough.  

 While using UAVs are a cheaper and faster way to collect aerial data, without a translation 

into information this data collection has very little added value. The land manager or owner 

has little benefit from aerial photographs without any translation to practical knowledge. 

However by applying machine vision, valuable information can be extracted from the 

photographs. For example, the yield can be automatically estimated by counting the number 

of plants or detect diseases by automatically tracking the growth of plants (Hunt et al., 2010).  

This type of analysis is often referred as Object-Based Image Analysis (OBIA) or in the case of 

georeferenced imagery Geographic Object-Based Image Analysis (GEOBIA) (Feng et al., 2015). 

The main difference between image segmentation or GEOBIA and more traditional GIS 
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applications such as Regionalization is the focus of the datasets. While Regionalization is more 

focused on Vector datasets image segmentation deals with raster-based imagery which is 

much easier to acquire. There are still other options in GIS to automatically classify raster 

images, such as performing clustering with the image classification tools like ArcGIS or Orfeo, 

among others. However type of unsupervised classification is often not as reliable for the 

identification of singular objects (Weih & Riggan, 2010).    

 

While there are many different applications possible with image segmentation this research 

will focus on implementing machine vision in order to count the number of spinach 

automatically in a plot of land by using orthorectified aerial images acquired from UAVs. The 

choice for spinach is not only due to the availability of the data but also because spinach is 

highly consumed and produced crop in the Netherlands. In 2017 the Netherlands exported 46 

million Euros worth of spinach (Statista, 2018). This research is part of a bigger project lead by 

Dr. Joao Valente of the Wageningen University & Research in the subject of Spinach 

Management.  Very High Resolution (VHR) orthorectified aerial photographs of a spinach field 

was available. The dataset is made when the spinach plants were 10 weeks old at different 

resolutions.  

 

1.2 Research objectives 

 The objective of this research is to develop an algorithm that automatically counts the 

number of spinach present in a plot of land from an ortho-mosaic built from aerial 

photographs acquired with a small quad-rotor. 

In order to fulfill this goal these research questions have been made: 

1. How can aerial photographs be automatically segmented in order to count the number 

of spinach plants by using machine vision? 

2. How can the ground truth be calculated when there is no ground truth data? 

3. How does the algorithm perform when using a dataset of a different spatial resolution? 
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2. Literature review: 

 

This chapter will form the basis of theory that will be of importance in this thesis. This 

chapter will mainly focus on an exploration of the different segmentation algorithms and 

some general ideas and definitions of UAV and aerial photography will be given.  

 

 2.1 Unmanned Aerial Vehicles 

An unmanned aerial vehicle (UAV), also known as Drone is an aircraft that is not operated by 

a human on board. A UAV can be either operated remotely or autonomously by using 

sensors(Al-Kaff, Martín, García, De La Escalera, & Armingol, 2017). UAVs were first developed 

and exclusively used for military purposes. With the developments in technology, the use of 

UAVs has become more and more popular among the research community. They are easier to 

operate, cheaper and smaller than regular aircrafts which make them a great substitute for 

aerial photography (Al-Kaff et al., 2017). Computer vision plays a big role in the current 

applications of UAVs. These applications can be as simple as aerial photography but can also 

be complex such as search and rescue missions. With the use of computer-vision UAVs can be 

used for a whole range of applications such as terrain mapping, exploration, and monitoring. 

 

2.2 Aerial photography 

Photo interpretation is an analytical tool and has an important value to research in the context 

of urban and landscape studies. The use of this method or technique is well-known and 

continue its growing (Gilliam, 1972). Another benefit of photos is that they are easy to 

interpret by humans. People with no expertise in a particular field are still able to interpret 

and analyze aerial photos because there is no need for special knowledge of photographic and 

photogrammetric processes.  Aerial photos provide a basis for defining problems, are useful 

for knowing study areas, planning field trips for expeditions, mapping, as well as studying 

inaccessible areas. The photos are also of value as permanent records of continuously 

landscape changes in specific time and place. 
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The components of an aerial camera normally include a lens, inner cone, focal plane, outer 

cone, drive mechanism and magazine (Schenk & Quarter, 2005).  There are many distinct 

configurations of cameras with different lenses, angles, focal plane distance, etc. In order to 

calculate the scale of the photos, one needs the focal length of the photograph (f) and the 

elevation difference between the flying height of the camera (H) and the height of the object 

above the datum (Figure 1) (Philpot and Philipson, 2012). 

Figure 1: a schematic overview of the parameters and scale calculation of an aerial 

photograph (Philpot and Philipson, 2012).  
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2.3 Computer Vision Image segmentation algorithms for agricultural use.  

A very important part of computer vision is being able to segment images into various 

meaningful parts that can be used for further analysis. There are many different types of 

algorithms for image segmentation. These algorithms can be broken down into one of three 

categories (Hamuda, Glavin, & Jones, 2016a; Romeo et al., 2013): Color Index based approach, 

Threshold-based approach, and Learning based approach. The main goal of many of these 

algorithms, in general, is to separate the plant material from the soil in the image. The result 

is that you often end up with two distinct classes that are either plant material or non-plant 

material. 

The algorithms that have been selected for further explanations are based on the analysis of 

Hamuda et al. (2016). The selection has been based on the performance of the algorithms as 

evidenced by the survey that Hamuda et al. (2016) have done. The selected algorithms can be 

seen in figure 2. This table shows a summary of the strengths and weaknesses of each of the 

algorithms. 

Algorithm Type Advantage Disadvantage 

NDI 

Woebbecke et 
al. (1993) 

Color 
Index 

-Easy to compute 
-Robustness to lighting 

-Does not perform 
well when the light is 
very high or very low 
- A lot of false 
positives 

ExG 

(Woebbecke, 
Meyer, Von 
Bargen, & 
Mortensen, 
1995) 

Color 
Index 

-Easy to compute 
-Widely used 
-Low sensitivity to 
background errors and 
lighting conditions 
-Good adaptability for 
in- and outdoors 

-Does not perform 
well when the light is 
very high or very low 
 

ExR (Meyer, 
Hindman, & 
Laksmi, 1999). 

Color 
Index 

-Easy to compute 
-Segments soil texture 

-Does not perform 
well when the light is 
very high or very low 
-Not as accurate as 
ExG 

ExGR  

(Meyer, Neto, 
Jones, & 
Hindman, 
2004) 

Color 
Index 

-Good adaptability for 
in- and outdoors 
-Can do both 
extracting green by 
ExG and eliminating 
noise by ExR 

-Does not perform 
well when the light is 
very high or very low 
-Tends to segment 
shadow as plant 

NGRDI 

(Hunt et al., 
2010) 

Color 
Index 

-Reduces difference in 
exposure settings 
selected by digital 
cameras 
-Has two purposes: 
discriminates plants 
and soil and 

-Does not perform 
well when the light is 
very high or very low 
-Limited use 
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normalizes variations 
in light between 
different images 

MExG  

(Burgos-
Artizzu, 
Ribeiro, 
Guijarro, & 
Pajares, 2011) 
 

Color 
Index 

-Good adaptability for 
in- and outdoors 

-Does not perform 
well when the light is 
very high or very low 
 

Ostu’s method 

Otsu (1979) 

Threshold-
based 

-Automatic method 
-Widely used 

-Can produce under 
segmentation 
-Relatively Slow 

Automatic 
Threshold (Kirk 
et al. 2009) 

Threshold-
based 

-Good in handling light 
changes 
-Automatic method 

-Longer computation 
time. 

Figure 2: A table of the different Segmentation algorithms and their Advantages and 

Disadvantages (source: Hamuda et al., 2016) 

 

Normalized difference index: 

This algorithm has been developed by (Woebbecke, Meyer, Von Bargen, & Mortensen, 1993) 

and is a very classic segmentation approach. Woebbecke et al. (1993) used an index similar to 

the vegetation index that uses near-infrared and red light reflectance.  The objective of this 

algorithm is to distinguish plant material from the soil in an RGB image. The algorithm can be 

expressed in the following formula: 

𝑵𝑫𝑰 = 𝟏𝟐𝟖 ∗ ((
(𝐆 − 𝐑)

(𝐆 + 𝐑)
)) + 𝟏 

 

Where G is the green pixel values, R is the red pixel values.  However, the traditional NDI gives 

values ranging between -1 and 1. In order to convert these to RGB pixel values, the result is 

multiplied by 128 and added 1 to provide 256 gray scales. The resulting image is a near-binary 

image(David M. Woebbecke, Meyer, Von Bargen, & Mortensen, 1993).  

 

Excess Green Index (ExG) : 

The ExG is a simple algorithm that computes the amount of excess green in an image. This 

algorithm tries to separate the green from the bare soil. The ExG is a good choice for 

separating green plants from bare soil because it provides a good contrast between the plants 

and the soil. It also provides a near binary image (Woebbecke, Meyer, Von Bargen, & 

Mortensen, 1995).  The Excess Green Index can be expressed as: 

𝑬𝒙𝑮 = 𝟐𝒈 − 𝒓 − 𝒃 
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where r, g, and b are the chromatic coordinates derived from: 

𝑟 =
𝑅′

(R′ + 𝐺′ + 𝐵′)
   𝑔 =

𝐺′

(R′ + 𝐺′ + 𝐵′)
 𝑏 =

B′ 

(R′ + 𝐺′ + 𝐵′)
 

 

R’, G’ and B’ are the normalized RGB coordinates ranging from 0 to 1 and can be derived from: 

𝑅′ =
𝑅

Rmax
      𝐺′ =

𝐺

Gmax
 𝐵′ =

𝐵

Bmax
       

       

Where R,G,B are the actual pixel values and Rmax, Gmax and Bmax is the maximum value for 

the respective colors. (255 for 24-bits images).  

 

 

Excess Red Index (ExR): 

The excess red index is an alternation of the Excess green algorithm in which plant material is 

separated from the background. The separation of reds from the image was inspired by the 

fact that the human eye has more red cones in the retina than green and blue and therefore 

should yield better results when segmenting. However, the excess green algorithm 

outperforms this algorithm (Meyer et al., 1999). 

The ExR can be expressed as: 

𝐸𝑥𝑅 = 1.3 ∗ R − G 

 

 

Excess Green minus Excess Red Index (ExGR): 

The ExGR is a combination of the ExG and the ExR, first used by (Meyer et al., 2004). The ExGR 

can be defined as follows:  

 

𝐸𝑥𝐺𝑅 = 𝐸𝑥𝐺 − 𝐸𝑥𝑅 

 

The objective of the ExGR is to isolate the plant material as well as to reduce the background 

noise that can be found in the excess reds.  

 

Normalized Green–Red Difference Index (NGRDI): 
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The NGRDI is developed due to the fact that the Normalized Difference Vegetation Index 

(NDVI) cannot be used by digital cameras due to the fact that digital cameras often have filters 

that filter out near-infrared wavelengths (Hunt et al., 2010). This algorithm should also 

overcome the issue of differences in exposure time in digital cameras.  

The NGRDI can be expressed as:  

𝑁𝐺𝑅𝐷𝐼 =  
𝐺𝑟𝑒𝑒𝑛 𝐷𝑁 − 𝑅𝑒𝑑 𝐷𝑁

𝐺𝑟𝑒𝑒𝑛 𝐷𝑁 + 𝑅𝑒𝑑 𝐷𝑁
 

Where Green DN and Red DN are the digital values of the green and red bands of the image.  

 

Modified Excess Green Index (MExG) Modified: 

The MExG is a modified version of the Excess green method. The coefficients of the ExG have 

been optimized by using generic algorithm optimization and supposedly outperformed the 

original ExG (Burgos-Artizzu et al., 2011). The resulting coefficients are more robust during 

changing illumination conditions.  

The MExG can be defined as: 

𝑀𝐸𝑥𝐺 = 1.262𝐺 − 0.884𝑅 −  0.311𝐵 

 

 

Threshold-based approaches often solve the problem by reclassifying the image in two 

classes. The plant class and the soil class. Thresholding is often applied by transforming the 

original image in order to distinguish the desired classes (Hamuda, Glavin, & Jones, 2016b; 

Romeo et al., 2013). Selecting the right threshold is very important as a too high threshold will 

incorrectly classify plant pixels as non-plant and a too low threshold will incorrectly classify 

soil as plant pixels(Hamuda et al., 2016b).  

 

Otsu’s method: 

Otsu’s method was first proposed by Otsu (1979) and works by finding the threshold that 

minimizes the weighted “within class” variance. The first step is calculating the histogram and 

probabilities of each intensity level. The second step is setting up an initial weight and the 

initial class and the final step is to iterate through all possible thresholds until the threshold 

corresponds with the maximum “within class” variance (Otsu, 1979).  

The maximum “within class” variance can be expressed as : 

𝜎𝑤
2 =  𝜔0(𝑡)𝜎0

2(𝑡) + 𝜔1(𝑡)𝜎1
2(𝑡) 
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 Where class probability 𝜔0(𝑡) and 𝜔1(𝑡) are calculated from: 

𝜔0(𝑡) =  ∑ 𝑝(𝑖)

𝑡−1

𝑖=0

 

𝜔1(𝑡) =  ∑ 𝑝(𝑖)

𝐿−1

𝑖=𝑡

 

 

Where L is the gray level, i is the pixel level.   

Automatic Threshold selection (Kirk et al. 2009): 

This algorithm introduced a new way for pixel classification of plant or soil by using the 

combination of the Red and Green pixel values. An automatic threshold was used, this 

threshold is based on the assumption that the distribution of the observed variables can be 

found by a mixture of two Gaussians with equal variances((Kirk, Andersen, Thomsen, 

Jørgensen, & Jørgensen, 2009).  

 

 

The threshold dt can be derived from the following formula: 

𝑑𝑡 =
2 ln

𝑝(𝑠)
𝑝(𝑣) 𝜎2 +𝑛𝑣

2 − 𝑛2
2 

2(𝑛𝑣 − 𝑛𝑠)
 

Where p(s) and P(v) can be derived from: 

 

This algorithm can be expressed as: 

𝑝(𝑑|𝑠) =  
1

𝜎√2𝜋
𝑒

−(𝑑−𝑛𝑠)2

2𝜎2                                  𝑝(𝑑|𝑣) =  
1

𝜎√2𝜋
𝑒

−(𝑑−𝑛𝑣)2

2𝜎2  

Where 𝑛𝑠 and 𝑛𝑣 are the soil and vegetation distributions respectively and 𝜎2 is the common 

variance. 
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Convolutional neural network 

One of the learning-based approaches that is often used for image recognition is the convolutional 

neural network or CNN. Convolutional neural networks are a collection of high-performance classifiers 

with a large number of parameters that must be learned from training(Oquab, Bottou, Laptev, & Sivic, 

2014). CNN image classification consists of two main steps: Feature Detection and Feature 

Classification. An input image is first put through a set of image filters, also called convolutional filters. 

Which each activates certain features of the image. After which the image goes through classification 

filters. That finally results in an output classification (MathWorks, n.d.)Figure 3 below shows a 

schematic overview of how this process looks like.   

 

 

Figure 3: Schematic overview of Convolutional neural networks. (MathWorks, 2018) 

 

Transfer learning 

While a CNN can require a lot of training samples a pre-trained network can be used in order to 

overcome the challenges of limited resources. Transfer learning aims to transfer knowledge from a 

pre-trained network in order to repurpose this data to compensate for the lack of information that 

comes from a limited amount of training data (Oquab et al. 2014).  With transfer learning, it is possible 

to retain a pre-trained networks knowledge while training it to a specific problem by providing training 

data of that specific problem (MathWorks, n.d.) 
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3. Methodology:   

 

In this chapter, the used methods will be explained. First a flowchart of the whole process will 

be displayed, afterward the study area and the datasets will be explored and finally, each part 

of the methods will be explained. The flowchart in figure 4 shows the general outline of this 

research. It is a fairly linear process where the algorithm development is followed up by the 

validation and finally the sensitivity analysis will be performed afterward. Each block also 

represents a research question, once one of the blocks are finished the research question that 

goes with it can be answered.  

 

   

 

 

Figure 4: Flowchart of the general outline of this research 
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3.1 Study Area  

The dataset used in this research is provided by Wageningen University and Research. The 

dataset consists of two TIFs one has a resolution of 16mm/pixel and the other of 8 mm/pixel. 

Both datasets have been captured by a UAV in June of 2018, with an average flying height of 

40 and 20 meters respectively. Both datasets are of the same plot of land where spinach is 

being cultivated. The pictures have been taken when the spinach crops were approximately 

10 weeks old. The original imagery that has been used to orthorectify the aerial photos into 

one TIF is also available. These pictures have been acquired by a drone of the brand DJI with 

serial number FC300X. The camera of this model has a focal length of 20mm.   

The initial version is based on a plot of spinach field in the province of Flevoland, nearby 

Lelystad, in the Netherlands. This field has a size of approximately 30.500 m2. The crops on 

the field are spinach that are approximately 10 weeks old.  Figure 5 shows a map of the study 

area.  Due to the confidentiality, the map’s exact location and the coordinates have been left 

out.   

 

 

Figure 5: Map of the study area: The length and width of this field are approximately 285 

meters long and 100 meters wide. This field has a size of approximately 30.500 m2 or about  

  



18 
 

3.2 Data explanation & Pre-processing 

In this research, the data was provided by the courtesy of Wageningen University and 

Research. This data is a very high resolution ortho-mosaic.  For the ortho-mosaics, there are 

two variant available: the 8mm resolution and the 16mm resolution version. 

However, this high-resolution orthophoto is quite big in file size some pre-processing must be 

applied in order to make it manageable. The ortho-mosaic has to been tiled into several pieces 

in order to ensure smooth processing and preventing the computer from running out of 

physical memory. The tiles and the labels of these tiles can be seen in the figure below (figure 

6): 

 

 

Figure 6: Tiling polygon used in order to create 8 pieces of the ortho-mosaic.  

Each of these pieces will get an index A till H and will be processed separately. Piece E will be 

used to develop the algorithm due to its uniformity in regards to the number of plants on that 

piece of the picture.  Figure 7 shows a close up of piece E and gives some more information 

on the characteristics of this piece.  
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Figure 7: Piece E of the ortho-mosaic 

 

 

 

 

 

  

 

 

Figure 8: Zoomed in view of Piece E of the ortho-mosaic. 

 

  

Piece E (zoomed in) 

Has a 

dimension of 

10890x9990 

pixels  

or  

87.12x79.92 

meters 

 

Piece E  
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3.3 Ground Truth 

In order to validate the algorithm, the accuracy of the resulting output needs to be calculated. 

This will be done by comparing the amount given by the algorithm to the ground truth. The 

ground truth refers to the information that has been collected in the study area. In this study, 

two types of ground truths are available: Amount of seeds and plant labeling from the ortho-

mosaic.   

 

Ground truth: Seeds 

According to the experts that have planted the seeds, the field consists of 8-10 seeds per 

meter in each row. On average there are about 9 seeds per meter row. Each row is on a 

distance of 50 centimeters from the next row and has an average length of 283m (figure 9).  

The width of the field is approximately 100m. Which means there are 200 rows in the whole 

field and thus the entire dataset.  

With this information, the number of seeds for the whole ortho-mosaic can be calculated.  

Each row contains on average 2547 seeds, which means there are a total of 509 400 seeds 

planted in the entirety of the field.  

 

 

Figure 9: Schematic representation of the field information regarding the number of 

seeds planted.   
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Ground truth: Manual counting. 

The second ground truth is the estimated ground truth that has been calculated by manually 

counting a small piece of the orthophoto completely.  

For the calculation of the ground truth, a much an even smaller piece of the ortho-mosaic 

will be cut. This is because counting all the plants of the whole ortho-mosaic is a near 

impossibility, manually counting all the plants in a field this big is to labor intensive to 

consider. Figure 10 shows how this piece of image is made. By cutting Piece E of the original 

ortho-mosaic into a much smaller piece this image has been created.  This piece also 

referred to as piece X, is shown in figure 11. This piece is small enough that manual counting 

is feasible and large enough to have enough plants to serve as a sample to perform accuracy 

tests. 

Once Piece X is fully and manually counted, this information can be used to validate the 

algorithm, but also to estimate the ground truth of the other parts of the ortho-mosaic by 

extrapolating the results on a bigger area. This can be expressed as follows: 

 

𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ𝑖 =   𝐴𝑟𝑒𝑎𝑖 ∗  
𝑃𝑙𝑎𝑛𝑡𝑠𝑥

𝐴𝑟𝑒𝑎𝑥
 

 

Where 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ𝑖 is the ground truth of the piece of image that the has to be 

calculated. 𝐴𝑟𝑒𝑎𝑖, the area of that same piece of image. 𝑃𝑙𝑎𝑛𝑡𝑠𝑥 are the amount of plants in 

piece X and 𝐴𝑟𝑒𝑎𝑥 the area of piece x 
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Figure 10: The lines that have been used to cut the image that created piece X.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Full extent of piece X of the ortho    

Piece X 

Has  dimensions of:  

 1680x1600 pixels  

Or 

 13.44x12.8 meters  
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3.4 Automatic plant counting 

 

In this study, an image segmentation approach will be used in order to calculate the number 

of plants in a given field. While six different image segmentation algorithms have been 

presented, in this research the combination of the ExG and Otsu's method has been selected 

as the best fit. This is partly based on the research results of Hamuda et al.  (2016), in which 

the ExG + Otsu’s method have an overall accuracy of 88%. The second reason for the choice 

of the ExG is the simplicity of the method. It is easy to understand and therefore also easy to 

develop with. The basic idea behind this approach is that the image will be converted into a 

binary image with the only pixels on that image being plant pixels. By summing the number of 

plant pixels there are and dividing this by the average amount of pixels that a spinach plant 

has, the amount of plants can be calculated. This approach can be seen in the following 

equation: 

 

  

𝐴𝑚𝑜𝑢𝑛𝑡 𝑃𝑙𝑎𝑛𝑡𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑡
 

 

 

While the total amount of plant pixels is a fairly straightforward procedure of applying the 

segmentation algorithm as described in the literature review. Computing the average amount 

of pixels per plant is a bit more complicated.   

In order to calculate the average amount of pixels per plants, three approaches have been 

developed. The Automatic and the semi-automatic and the manual method.   

In the manual method, the average amount of pixels per plant is calculated by manually 

labeling the UAV image. In this labeling, 200 individual plants are selected that are considered 

single individual plants. The average pixel size of these plants is then calculated. 

In the semi-automatic method, the average amount of pixel per plant is calculated by 

performing a supervised classification. This classification is done in order to get a good 

representation of what an individual plant is. 

And the fully automatic method uses transfer learning in combination with the pre-trained 

network of AlexNet to compute the average size of an individual plant.  
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Figure 12: flowchart of the automatic plant counting algorithm  

 

Figure 12 shows a flowchart with the outline of the automatic plant counting method. The 

blue squares indicate some sort of input data, this can be an image or a value and the green 

squares indicate a process and/or algorithm is applied.  

Step 1 is importing the input image. This can be a TIFF or any other high-resolution 

orthophoto. 

Step 2 is a tiling the input image into smaller tiles in order to ensure smooth processing.  

The third step is the segmentation algorithm. Here the ExG and Otsu’s method will be applied. 

The reason this algorithm has been chosen is due to its simplicity and effectiveness (Hamuda 

et al., 2016a).  The image will be converted to a grayscale image and then converted to a binary 

image, with the green plants getting the value 1 and the rest getting the value 0.  
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Meanwhile, the input image will be processed by AlexNet and the individual plants will be 

identified. These will then be processed in the same manner and the amount average amount 

of pixels per individual plant will be computed. 

Of this process, a semi-automatic and a manual method also exist. The semi-automatic 

method returns the histogram of each blob that has been found which then has to go through 

a supervised classification by iteratively selecting an upper and lower limit for the histogram 

and reviewing the output result. The goal here is to quickly find an upper and lower limit that 

will represent the pixel size of an average plant. Once the result is satisfactory the average of 

this new class is the average pixels per plant. 

In the manual method, the input image first has to be manually sampled for individual plants. 

This is done by an image labeling program manually. Each individual plant has to be put in a 

bounding box that has to be drawn with the software. This will be done by using the labeling 

software LabelImg (Tzutalin, 2015), this is an open source tool that allows for easy labeling of 

pictures by bounding box and allows the labels to be exported to an XML format that can be 

read by other programs.  Of these samples, the average amount of pixels will be calculated. 

All three of these methods will result in an average number of pixels per plant. This number 

then is used to calculate the amount of image for the rest of the images. This is done by using 

the equation previously shown. 
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3.5 AlexNet training  

 

In order for AlexNet to be able to detect individual plants, it has to be trained with a number 

of training samples. In this study, AlexNet has been trained to recognize three distinct classes. 

Individual Plants, Multiple Plants, and Background soil. The training set consisted of 200 

images of individual plants, 130 images of multiple plants and 100 Images of background soil. 

However, of these training images, only 50% will be used to train the network the remaining 

50% will be used to validate the network. Figure 13 shows one of each category of training 

samples.  

After the training of AlexNet, in order to classify the bigger ortho-mosaic pieces some pre-

processing needs to be done. AlexNet only accepts images of a specific size. The images have 

to be 227 by 227 pixels. On top of that individual images has to contain the plant, the image 

that has to be analyzed by AlexNet cannot be too different than the training data.  

For example, if the Network has been trained with images of individual plants. It is impossible 

for AlexNet to classify an image that contains a whole row. So the ortho-mosaic has to be 

processed with a so-called sliding window. This means that the ortho-mosaic will be processed 

in small pieces of equal size, these windows will all be inputs for AlexNet which will then 

classify each small window as either an individual plant, multiple plants or simply background.  

The individual plant images will then be further processed in the same manner as the other 

methods in order to compute the average amount of pixels per plant. This is done by 

automatically binarizing the individual plant images and counting the number of True pixels 

and calculating the average.  

 

 

Figure 13: an example of the training data. Left is a single plant, the middle image is 

multiple plants and right is background soil. 
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3.6 Algorithm validation 

In this stage of the research validity of the algorithm will be tested. This will be done in two 

ways, linear regression will be performed to see if the output results correlate with each other. 

The correlation coefficient will also be calculated in order to check for correlations.  

The algorithm will also be tested by running it with a secondary ortho-mosaic of the same 

place with a different spatial resolution.  

This will be done in order to check whether the algorithm still works and how this affects the 

overall accuracy. This is a fairly basic method of testing the algorithm but a crucial part of the 

research in order to ensure the usefulness of the algorithm.  

The correlations will be calculated in order to test if the values that come out of the methods 

are random or not. If there is no correlation between the two different spatial resolutions that 

means that the methods are not reliable. Considering that the only difference between the 

two ortho-mosaic is nothing but the spatial resolution. More or less the same number of plants 

is expected because physically there are the same amount of plants present in the field.  
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4. Results: 

 

In this chapter, the findings of various trials with the algorithm will be presented. First, the 

results of the ground truth will be discussed. Secondly, the results of the plant counting 

algorithm will be discussed.  

 

4.1 Ground truth results  

In order to be able to validate and make interpret the segmentation results into real numbers, 

some ground truth information is mandatory.  As mentioned in the methods section for this 

study there are two types of ground truths: Amount of seeds planted and Manual counting.  

Figure 14 shows the result of the manual counting, the left image shows the whole image with 

all the hand-drawn bounding boxes. The right image shows a zoomed in the part where these 

bounding boxes can be seen clearly. The resulting image contains 935 plants.  This piece of the 

image has 1680x1600 pixels or 13.44x12.8 meters and an area of 172 m2. Based on these 

numbers the ground truths for all the pieces can be calculated with the formula described in 

the methods section. 

  

Figure 14: Example of a fully counted and labeled piece X. Contains 935 plants 

 

Figure 15:  table of all the ground truths per ortho piece  

 
A B C D E F G H 

GT: 
Approximation 17696 15399 15307 13602 14715 13358 15351 14634 

GT: Seeds 58662 51048 50742 45090 48780 44280 50886 48510 

Area of piece (in 
m2) 

3259 2836 2819 2505 2710 2460 2827 2695 
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4.2 Individual plant size: Manual 

 

As mentioned in the methods. This method is the most reliable but also the most time-

consuming method. This can take up an hour up to several hours of manual work in terms of 

drawing boxes in an image.   

 In this method, the Ortho-mosaic is being visually inspected and manually 200 individual 

plants will be sampled. In this case, the researcher labels plants that are clearly individual 

plants. The selected image for this method is one of the original aerial photographs. For this 

process Piece E as described in the methods sections has been used. While this method is 

more accurate the amount of  

Figure 16 shows the labeled image. Each white box represents a box drawn around a plant 

that was deemed an individual plant. In total 200 individual plants have been identified. This 

data is then exported to an XML file and used to further analyze and compute the average 

area in pixels. Figure 17 shows the histogram of the areas of the labels that have been 

manually created.  The mean pixels for all the labeled plants are 240 with a standard deviation 

of about 126.78px pixel.  When converting this to centimeters the resulting size for an average 

plant is 644.26 cm2 or approximately 23x28cm. Figure 18 shows each individual labeled plant 

cropped out to a separate image.  

 

                  

Figure 16: manually labeled aerial image. The top image shows all the labeled image. The 

bottom image shows an individual plant with the average dimensions in cm.  
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Figure 17: histogram of the manual single plant computation results  

 

 

 

 

Figure 18 : Example of some cropped single plants obtained by manual labelling in the 

orthophoto. 

  

 px cm 

Mean in pixels 240  192 

Standard Deviation 126.78 101.6 

Sample size 200   
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4.3 Individual plant size: Semi-Automatic 

 

The semi-automatic method has been performed as described in the methods.  

 By doing the supervised classification method as described in chapter 3.2, a  class of pixel sizes 

has been determined in which individual plants are located. This class has an upper limit of 

400 and a lower limit of 100 pixels. Using this range the labeled image has been filtered to 

only include this range and the histogram and its statistics have been calculated. Figure 19 

shows the histogram of the piece E of the ortho-mosaic with the statistics. This distribution 

has a mean of 224 pixels and a standard deviation of 84 pixels.  According to this distribution, 

the average individual plant is 224 pixels big. Figure 20 shows the labeled photo with the 200 

automatically labeled plants.  

 

 

  

 

  

 

Figure 19: Histogram of the range of individual plants. X -axis shows the number of 

pixels,  Y-axis the frequency. 

  

 pixels Cm 

Mean in pix 224 179.6  

Standard 
Deviation 

84 67 

Sample size 200  
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Figure 20: Figure 4.0: The automatically labeled image of Piece E of the ortho-mosaic. 200 

random plants within the range of 100-400 pixels have been automatically labeled.  
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4.4 Individual plant size: Automatic 

 

In this method, AlexNet has been used in order to find individual plants. The table in figure 21 

shows the classification results of piece E. In the whole image AlexNet was capable of finding 

64 individual plants. While it may seem a low amount, these are plants that are almost 

certainly individual plants. Figure 22 shows the individual plants found by AlexNet. 

By applying the same segmentation as described in the methods these plants can be binarized 

and the average amount of pixels can be calculated. The result of doing so is 253 pixels. This 

means that the average amount of plants as calculated by the automatic method is 253. 

 

Category Amount 

Single plant 64 

Multiple plants 3145  

background 25348 

Figure 21: The classification results of piece E 

 

 

 

Figure 22: The individual plants found by AlexNet. 
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4.2 Algorithm results: 

 

The result of the segmentation and labeling can be seen in figure 21.  The left image shows a 

zoomed-in version of the labeled binary image. The right image shows the labeling on the 

original RGB image. By comparing the two images it is possible to see that the algorithm works 

well in identifying the plants. However, the algorithm is not capable of distinguishing 

individual plants and therefore plants that grow very close to each other will be seen as one 

object. Each object in the binary image contains, therefore, one or more plants.  

 

 

Figure 23: Results of the segmentation and labeling algorithm. Left shows the binary image 

and right shows the labeling on the RGB image.  

 

This segmentation results in the total amount of white pixels. By dividing this number by the 

average pixel per plant the number of plants can be calculated:  

 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑃𝑙𝑎𝑛𝑡𝑠 =
𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑝𝑒𝑟 𝑜𝑏𝑗𝑒𝑐𝑡 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑡
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Figure 24 shows the amounts of plants per ground truthing method for each of the pieces of 

the ortho-mosaic. The table shows for each of the pieces the number of plants that are a result 

of the semi-automatic method, manual method, full automatic method, ground truth: Manual 

and ground truth: seeds.  
 

A B C D E F G H Total 

Manual 
Method 

23310 24193 21119 24765 20930 24530 20314 21222 180 382 

Semi-Auto 24975 25921 22627 26533 22425 26282 21765 22738 193 267 

Full-Auto 22112 22950 20034 23492 19855 23269 19271 20131 171 114 

GT: 
Approximation 

17696 15399 15307 13602 14715 13358 15351 14634 120 059 

GT: Seeds 58662 51048 50742 45090 48780 44280 50886 48510 397 998 

 

Figure 24: the resulting amount of all the ortho-mosaic pieces with the number of plants 

along with the ground truths for the 8mm ortho-mosaic.  

 

 

Figure 25 shows the errors between the different methods and the ground truths.   

 
 

A B C D E F G H 

Error Approx. – 
Manual (%) 

31,7 57,1 38,0 82,1 42,2 83,6 32,3 31,7 

Error Seeds - Manual 
(%) 

60,3 52,6 58,4 45,1 57,1 44,6 60,1 60,3 

Error Approx. -Semi 
Auto (%) 

41,1 68,3 47,8 95,1 52,4 96,7 41,8 41,1 

Error Seeds – Semi 
Auto(%) 

57,4 49,2 55,4 41,2 54,0 40,6 57,2 57,4 

Error Approx. – Full 
Auto (%) 

25,0 49,0 30,9 72,7 34,9 74,2 25,5 25,0 

Error Seeds – Full 
Auto (%) 

62,3 55,0 60,5 47,9 59,3 47,5 62,1 62,3 

 

Figure 25: Errors of the methods in percentages.  
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Figure 26: graph of all the ortho-mosaic pieces with the number of plants along with the ground 

truths. 
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5. Algorithm analysis 

 

In order to make sure the results of the algorithm is not a result of pure randomness, a few 

tests will be done to prove this. There will be three major tests that will be done in order to 

shed more insight into the results these tests are: Running the algorithm on a piece with 

known parameters. Doing a statistical analysis of the results and finally running the algorithm 

on a different dataset with a different spatial resolution to ensure it also works on different 

datasets.  

 

 

5.1 AlexNet training results 

 

In order to evaluate how well AlexNet is trained the training results, as well as the testing 

results, will be discussed. The table in figure 27 shows the training results of AlexNet. This 

table shows along with how many iterations have been used to train AlexNet also the time 

elapsed during the training method. In total it took 1 minute and 7 seconds to train Alexnet 

with 3 classes and 150 iterations. However, this has been done with a fairly powerful GPU 

(Nvidia GTX 1060 3GB). The table also shows that after the 50th iteration the mini-batch 

accuracy reaches 100%.  

 

Epoch   Iteration   Time Elapsed 
hh:mm:ss    

Mini-batch 
Accuracy   

 Mini-batch  
Loss 

Base Learning 
Rate   

1 1 00:00:00 43.75% 1.0671 0.0010 

10 50 00:00:21 100.00% 9.6754e-06 0.0010 

20 100 00:00:44 100.00% 0.0002 0.0010 

30 150 00:01:07 100.00% 3.4573e-06 0.0010 

Figure 27: Table of the training results of Alexnet.  

 

As mentioned in the methods section, 50% of the training sample has been used to test the 

accuracy of AlexNet after the training finished. The result of this is an overall accuracy of 0.98. 

Meaning all of the remaining images that AlexNet had for validation it was able to correctly 

categorize 98%. Figure 28 and 29 show the confusion matrix and a table of the Precision, Recall 

and F1-scores of this test.  The F1-scores for this training result is 0.97, 0.98 and 0.97 for the 

Individual plants, background, and multiple plant classes respectively. This is an almost perfect 

f1-score meaning that the trained model is almost perfect in classifying these three classes.  
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Because the purpose of this classification is to get individual plants and calculate the average 

amount of pixels, the effect of AlexNet misclassifying an individual plant is minimal. Therefore 

false negatives, in this case, are not worrying.  However false positives can affect the 

calculated average size of a plant, if the false positives are significantly larger than a single 

plant, the average size will also increase. But from the test results and the F1-scores, it’s 

possible to conclude that the chance of this occurring is very minimal.  

 

 

Figure 28: Confusion matrix of the three classes.  
 

Recall Precision F2-score 

IndividualPlant 0,97 0,96 0,97 

background 0,98 0,98 0,98 

multplePlant 0,97 0,97 0,97 

Figure 29: Recall, Precision and F2 scores. 
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5.2 Performance test 

In the first test, small pieces of the image will be cut out and processed. The output results 

will then be compared to the number of seeds and the actual amount of plants counted by a 

human. In order to do this fives sets of five different pieces of the image have been cut out. 

These images consist of a single row with different lengths. The images have been cut into 1 

meter, 2 meters, 4 meters, 5 meters, and 10 meters. There are in total of 25 images.  Figure 

30 shows one of each image. 

 

 

Figure 30: The cropped row images.  

These 25 images have been processed by the algorithm in the same way as the ortho-mosaic pieces. 

On top of that, the amount of plant in each image has been counted by a human. Figures 31 through 

35 show the results per image size.  
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Figure 31: Results of 1-meter images. 

Figure 32 Results of the 2-meter images. 

Figure 33: Results of the 3-meter images. 

Figure 34: Results of the 5m meter images. 

Figure 35: Results of 10-meter images. 

 

 

 

 
Amount Accurac

y % 
Amount  Accurac

y % 
Amount Accurac

y % 
Amount Accurac

y % 
Amoun
t 

Accuracy 
% 

Manual 11,2 88,0 13,7 85,8 15,5 44,9 11,2 93,4 13,2 98,2 

Semi 12,0 80,0 14,7 77,6 16,6 33,8 12,0 100,0 14,2 90,9 

Auto 10,6 93,8 13,0 91,7 14,7 52,9 10,6 88,6 12,6 96,6 

Count 10  12  10  12  13  
Seeds 18 55% 18 66% 18 55% 18 66% 18 72% 

 
Amount Accuracy 

% 
Amount  Accuracy 

% 
Amount Accuracy 

% 
Amount Accuracy 

% 
Amount Accuracy 

% 

Manual 31,5 87,5 39,3 87,7 35,6 98,4 34,6 95,2 35,7 95,0 

Semi 33,8 79,4 42,1 79,7 38,1 91,1 37,1 87,7 38,3 87,5 

Auto 29,9 93,3 37,3 93,5 33,7 96,4 32,8 99,4 33,9 99,6 

Count 29  28  23  29  22  
Seeds 45 64% 45 62% 45 51% 45 64% 45 48% 

 
Amount Accuracy 

% 
Amount  Accuracy 

% 
Amount Accuracy 

% 
Amount Accuracy 

% 
Amount Accuracy 

% 

Manual 33,3 85,1 28,2 99,3 26,0 86,9 30,3 95,4 22,3 98,5 

Semi 35,7 76,8 30,2 92,1 27,9 78,8 32,5 87,9 23,9 91,3 

Auto 31,6 91,0 26,7 95,5 24,7 92,7 28,8 99,3 21,2 96,2 

Count 29  28  23  29  22  
Seeds 36 80% 36 77% 36 63% 36 80% 36 61% 

 
Amount Accuracy 

% 
Amount  Accuracy 

% 
Amount Accuracy 

% 
Amount Accuracy 

% 
Amount Accuracy 

% 

Manual 5,7 94,2 7,1 98,6 5,3 94,3 7,2 97,6 7,3 78,3 

Semi 6,1 99,0 7,6 91,4 5,7 86,8 7,7 90,2 7,8 69,6 

Auto 5,4 89,4 6,7 96,2 5,0 99,8 6,8 97,2 6,9 84,5 

Count 6 
 

7 
 

5 
 

7 
 

6 
 

Seeds 9 66% 9 66% 9 55% 9 77% 9 66% 

 
Amount Accuracy 

% 
Amount  Accuracy 

% 
Amount Accuracy 

% 
Amount Accuracy 

% 
Amount Accuracy 

% 

Manual 73,2 96,9 50,4 98,8 78,6 87,7 77,8 96,3 69,5 97,9 

Semi 78,4 89,5 54,0 94,1 84,2 79,6 83,3 88,9 74,5 95,1 

Auto 69,5 97,8 47,8 93,7 74,6 93,4 73,8 98,4 65,9 92,9 

Count 71  51  70  75  71  
Seeds 90 78% 90 56% 90 77% 90 93% 90 78% 



41 
 

 

 

From these results, it is clear that the algorithm performs as expected. The manual and fully 

automatic methods both yield accuracies of over 90% consistently. However, the semi-

automatic method performs the worst with an accuracy of 66% at best and 48% at worst. This 

can be explained by the fact that this method is very susceptible to human error during the 

supervised classification.  

However, this test can be extended to piece X of the ortho-mosaic, considering the whole of 

piece X is also manually counted as well.  The results of this test can be seen in figure 36. In 

this piece, the manual method has an accuracy of 90.8%. The semi-automatic has an accuracy 

of 72.0% and the fully automatic method an accuracy of 95.9%. These results are very much 

in line with the calculations of the single rows.  

  

 Amount of plants Accuracy 

Manual 1028 90.8% 

Semi-Auto 1299 72.0% 

Auto 975 95.9% 

Hand count 935  

GT Seeds 3096 30% 

Figure 36: The accuracy numbers of Piece X of the ortho-mosaic 

 

Maybe an even more important outcome of this analysis is that the number of seeds is a big 

overestimation in comparison to the actual amount of plants that are found in the different 

rows. The last row in figures 31 through 35 show the accuracy of the number of seeds in 

comparison to the amount of hand counted plants. This data shows that in the best case 80% 

of the seeds have germinated and grown into a plant but in the worst cases, about 48% of the 

seeds have become a plant. This loss of seeds is important because it renders the use of seeds 

a ground truth useless.   
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5.3 Sensitivity analysis  

 

In order to check the sensitivity of the algorithm the same algorithm with the same methods 

has been applied to a secondary dataset of the same field at the same time, but with a 

different spatial resolution. The ortho-mosaic pieces, as well as piece X, will be compared 

with an ortho-mosaic and piece X of 16mm/pixel.  

The results of this second run can be seen in figures 37 through 41.   

 
 

A B C D E F G H Total 

Manual 24904 24562 21366 24240 21258 23901 22200 22875 185 306 

Semi-Auto 27232 26785 23570 26770 23233 26593 24002 24930 203 115 

Full-Auto 24151 23755 20903 23742 20605 23585 21287 22110 180 138 

GT: Approximation 17696 15399 15307 13602 14715 13358 15351 14634 120 059 

GT: Seeds 58662 51048 50742 45090 48780 44280 50886 48510 397 998 

Figure 37: the resulting amount of all the ortho-mosaic pieces with the number of plants along 

with the ground truths for the 16mm ortho-mosaic. 

 
 

A B C D E F G H 

Error Approx. – Manual (%) 53,9 73,9 54,0 96,8 57,9 99,1 56,4 70,4 

Error Seeds Manual (%) 53,6 47,5 53,5 40,6 52,4 39,9 52,8 48,6 

Error Aprrox. -Semi (%) 36,5 54,3 36,6 74,5 40,0 76,6 38,7 51,1 

Error Seeds – Semi (%) 58,8 53,5 58,8 47,3 57,8 46,7 58,2 54,4 

Error Approx. – Full Auto (%) 40,7 59,5 39,6 78,2 44,5 78,9 44,6 56,3 

Error Seeds – Full Auto (%) 57,5 51,9 57,9 46,2 56,4 46,0 56,4 52,8 

 

Figure 38: Errors of the methods in percentages.  
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Figure 39: graph of all the ortho-mosaic pieces with the number of plants along with the ground 

truths for the 16mm ortho-mosaic. 

 

 

 

Figure 40: graph of all the ortho-mosaic pieces with the number of plants for both 8 and 16mm 

ortho-mosaics. 

 

 

 

 

Figure 41: Error percents between 8mm and 16mm ortho-mosaic  
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A B C D E F G H 

Error (%) Manual 8mm-16mm 6,4 1,5 1,1 2,1 1,5 2,6 8,4 7,2 

Error (%) Semi 8mm-16mm 8,2 3,2 3,9 0,8 3,4 1,1 9,3 8,7 

Error (%) Auto 8mm-16mm 8,4 3,3 4,1 1,1 3,6 1,3 9,4 8,9 



44 
 

When comparing the results of the 8mm to the 16mm ortho-mosaic pieces results, it is 

possible to conclude that the algorithm performs the same way in both datasets. In figure 34 

both results are shown. The same patterns can be seen in both datasets. Figure 35 shows the 

errors between the two resolutions and from this can be concluded that the errors are 

relatively small with the biggest error being 9.4% and the smallest being 0.88%. This means 

that the algorithm is capable of counting the plants with input data that has half the spatial 

resolution. 

 

Figure 41 shows piece X for the 16mm ortho-mosaic. By comparing the results of the 8mm 

piece X to the 16mm piece X it should also give an indication of how the algorithm performs 

on a piece of land with known parameters. Figure 42 shows the result of Piece X 16mm 

processed by the algorithm and figure 43 shows the errors between the 8mm Piece X and 

the 16mm piece X. The semi-automatic method, in this case, has the worst error of 23%, the 

manual and fully automatic methods perform much better with errors of only 13% and 9% 

respectively. This falls in line with the earlier findings where the algorithm performs with an 

error of approximately 10%.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Piece X 16mm version 
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 Amount of plants Accuracy 

Manual 904 96% 

Semi-Auto 1001 93% 

Auto 890 95% 

Hand count 935 100%  

Figure 42: Results of the algorithm for the 16mm version of PieceX  

 

Method Error 

Error (%) Manual 8mm-16mm Piece X 13% 

Error (%) Semi 8mm-16mm Piece X 29% 

Error (%) Auto 8mm-16mm Piece X 9% 

Figure 43: Error results between PieceX 8mm and   
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5.4 Correlation  

 

In order to check if the results between the 8mm and 16mm are not a result of randomness, 

the Pearson’s correlation coefficient will be calculated. The correlations between each 

method of a spatial resolution will be calculated. This means that the correlation coefficient 

for Manual Method 8mm and 16mm, Semi-Automatic method 8mm and 16mm and  

Automatic method 8mm and 16mm will be calculated along with the regression line.  

Figures 44 through 46 show the results of the correlations. The manual, semi-automatic and 

automatic methods have a correlation coefficient of 0.846, 0.900 and 0.901 respectively. This 

means that the results between the different spatial resolutions have a high correlation. From 

this, it’s possible to say that the output results from these methods are not just random 

numbers but are related to each other. 

 

 

 

 

Figure 44: Regression line between Manual Methods 8mm and 16mm. With a correlation coefficient 

of 0.846 
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Figure 45: Regression line between Semi-automatic Methods 8mm and 16mm. With a correlation 

coefficient of 0.900 

 

Figure 46: Regression line between Semi-automatic Methods 8mm and 16mm. With a correlation 

coefficient of 0.901 
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6. Discussion 

 

In this section, the limitations of the research will be discussed. These can be either 

assumption that had to be made during the research or things that fell outside of the scope of 

the research that can be crucial to improving the methods used. Along with that some of the 

choices made will also be discussed. 

 

6.1 Compared to other studies  

Crop detection is a common application of machine vision. Being able to remotely distinguish 

plants from crops and the soil is a very valuable application for agriculture (Montalvo et al., 

2012). Also, a lot of research has been done on how to detect crops and weeds. Most 

applications still rely on crop models that evaluate how a plant’s responds to its genotype, 

environment and different cropping systems (Sarron et al., 2018). 

 Søgaard & Olsen (2003) attempted this by applying an RGB color transformation to turn the 

images into grayscale. And then applying a method to extract the green plant material.  

Wheeler (2006) wanted to detect crop rows from an image and did this by transforming the 

original RGB to grayscale but afterward splitting the images into eight horizontal bands. These 

rows show a periodic variation in intensity due to the crop spacing, using the already known 

information about the camera and the fields, Wheeler could calculate the row spacing of each 

of the horizontal bands.  

UAV imagery for crop detection is often used in combination with other remote sensing data. 

Senthilnath, et al. (2016) used a UAV to acquire aerial photographs of a tomato field and used 

spectral-spatial classification to classify the images in tomato and non-tomato.   

Fontaine & Crow (2006) used the Blob method to search for areas within a grayscale picture 

of white pixels of a size equal to or greater than 200. This area, or blob, is then compared with 

the centerline and its center of gravity is compared to the whole picture. Then these blobs are 

categorized as plants. 

Torres-Sánchez et al. (2015) used UAV acquired aerial imagery to segment herbaceous crops. 

In this research, they used various segmentation and thresholding algorithms, including Otsu’s 

method, excess green (ExG) and the NDVI.  

Sarron et al. (2018) used UAV captured imagery to use GEOBIA and combined this with a 

Digital Surface model in order to model the tree structure of mangoes and estimate the yield.  

Ubbens et al. (2018) use deep learning to count the leaves of rosette plants. In this study 

Ubbens et al. (2018) use real data alongside a synthetic model of the plant in order to train a 

neural network, that is capable of counting on real plants.  
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Dobrescu, et al. (2017) use a similar method as Ubbens et al. (2018). In which they train a 

neural network to count the number of leaves of a rosette plant. However, in this study, they 

use data from real rosette plants and combine this with plants of other species.  

Ribera et al. (2017) use deep learning in order to count crop plants from UAV images. In this 

study, Ribera et al. (2017) use regression to estimate the number of plants in an ortho-rectified 

UAV image.  

However, research on Spinach plants (Spinacia oleracea)  counting specifically is missing in 

recent literature. Most research on Spinach yield estimation is done on how the plant reacts 

to environmental factors and not on how spinach yield can be estimated. Therefore this 

research is one of the first researches that attempt to come up with an approach that fully 

automatically can count the number of spinach plants from UAV-imagery by using machine 

vision.  While there are other studies that use deep learning to achieve similar goals, the major 

difference between this study and a study like Ribera et al. (2017) is that in this study deep 

learning is only used to compute the average size of a single spinach plant. While in the other 

approaches the neural network is doing the counting. The benefit of an approach like in this 

study is that the training samples can be very limited and still yield relatively good results.   

 

6.2 Ground truth limitations 

A very important metric in studies about yield estimation and machine vision is the ground 

truth. This number is crucial for validation purposes. In this study, the real ground truth was 

unfortunately absent. This is not just a matter of incomplete data but, especially for fields of 

this size having an accurate ground truth is an impossibility. This is not only very time 

consuming and resource demanding but often times also subjected to human error. Just 

manually counting a small piece of the image with about 950 plants took about 3 hours of 

manual work. Counting 8 pieces of the image with at least 20 000 plants in them accurately 

would have been an incredibly difficult and very time-consuming undertaking.  

In substitute for this, there was the number of seeds planted by the landowners and 

estimation has been done by extrapolating the counting results of a small piece of land. While 

this gave some idea on how many plants there could have been it was far from a perfect 

metric. This can be seen back in the error numbers in figure 25. These numbers are relatively 

high and inconsistent between the pieces of the ortho-mosaic. This has two major reasons. 

The amount of seeds is a very high over-estimation of the number of actual plants that have 

successfully germinated and thus actually became plants. This can also be seen in the tests 

that have been done with a single linear meter of land. In these tests, the number of seeds is 

nearly double the number of plants that have been counted.  

The other ground truth metric that has been used in this study is also not perfect. This is the 

result of an extrapolation of a small piece of land. But the problem with this is that the whole 

field is not one uniform whole but has a lot of difference between the pieces. Even within the 

same piece of land, there are a lot of differences. This could be mitigated by counting multiple 
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pieces of land evenly distributed all over the whole ortho-mosaic. But this is extremely time-

consuming as just counting one piece took about three hours.  

Because of these two unreliable ground truths, it is hard to say anything about the actual 

number of plants in the bigger ortho-mosaics. Even though the algorithm performs well, based 

on the tests done on small parts of the image. The only thing that can be said about the 

number of numbers calculated is that based on tests done on smaller, local images the 

algorithm has an accuracy of about 90%.    

The most ideal situation would be redoing this study with a real-world ground truth instead 

of a calculated estimation or the number of seeds planted. However, unless its an 

experimental setting or a study with a lot of resources to allocate this metric will be missing, 

especially in a field of considerable size.  

 

6.3 Counting algorithm limitations 

In this study, the counting algorithm that has been used is a very simple approach that has 

some limitations. First of all, it assumes that all the plants in the field are spinaches. While this 

is true for the most part. It is inevitable that some unknown species of weeds can be in 

between the rows. The algorithm has no way of filtering this out. Secondly, the actual formula 

used to calculate the number of plants by diving the number of plant pixels by the average 

amount of pixels per plant has trouble dealing with closely growing plants. When two plants 

grow very close to each other there is bound to be overlap between the plants. This results in 

fewer plant pixels in the binarized image which in turn results into a lower amount total plant 

pixels in the image. Which then incorrectly results in a lower amount of plants than there 

would actually be in reality. This type of close vegetation also results in a difficulty counting 

for a human being as the overlap makes it hard to tell if a plant is one big plant or two very 

closely growing plants.  

This approach also only works for spinach plants that have been planted in rows with no green 

vegetation in between the plants and in between the rows. If there were any other type of 

green vegetation in between the rows the algorithm would not be able to distinguish the 

spinach from the green vegetation and would render the approach useless. This could be 

solved by switching to a more learning based approach instead of a mostly image 

segmentation based approach  
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6.4 AlexNet limitations 

 

While the usage of AlexNet in this study has been limited and only used to automatize the 

computation of the average amount of pixels per plant. The usage of AlexNet brings some 

limitations. The first limitation that there is, that is specific to this study is the relatively low, 

but still sufficient amount of training and validation data used.  

But an even bigger limitation of AlexNet is the input requirements. AlexNet only takes images 

with a size of 227 by 227 pixels. When comparing this to the resolution of the ortho-mosaic 

this means that each image used as an AlexNet input has a real-world size of 1.81x1.81m with 

the 8mm resolution and 3.6x3.6m with the 16mm resolution. On these scales, it is impossible 

to get an image that only contains individual plants. So some clever image manipulation has 

to be done. In this study, the image has been processed by dividing it into small chunks of 

50x50 pixels and 25x25 pixels for the 8mm and the 16mm resolution respectively.  Afterward, 

each of these chunks has been resized to the appropriate input size. This approach works with 

the dataset used here, due to the very high resolution. But it would not work as well for lower 

resolution imagery due to the fact these input images would lose too much detail and become 

too blurry. Figure  47 shows an example of the original 227 by 227 ortho image alongside the 

resized image that is suitable for AlexNet to classify. Left is the original 8mm Ortho-mosaic 

image cut into 227 by 227. The middle is a 50 by 50 pixels image of the 8mm resized to 227 by 

227 image. Right is a 25 by 25 pixels image of the 16mm ortho-mosaic and then resized to 227 

by 227 pixels 

In the most ideal case to have an ortho-mosaic in which 227x227 pixels correspond to a real-

world size of approximately 40x40cm the spatial resolution of this ortho-mosaic would have 

to be approximately 0.7mm/pixel. Which is sub-millimeter level and currently not feasible 

with commercially available UAVs.  

 

 

Figure 47:  227 by 227 pixels images. Left is original scale, the middle is 8mm 
Image magnified and right is 16mm image magnified.  
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7. Conclusion 

 

This research has attempted to create a new method in which machine vision is applied to 

count the number of plants in UAV derived aerial imagery. While there were many other 

studies that have tried to estimate crop yield, not much had been done on the yield estimation 

of spinach plants. The goal of this research was therefore to create an algorithm capable of 

counting plants from aerial imagery.  

When setting out to do this research three research questions were written: 

1. How can aerial photographs be automatically segmented in order to count the number 

of spinach plants by using machine vision? 

2. How can the ground truth be calculated when there is no ground truth data? 

3. How does the algorithm perform when using a dataset of a different spatial resolution? 

In this last section, these questions will be answered one by one based on the presented 

results in the previous sections.  

 

7.1 Research question 1 

The first question can be answered in many different ways, but the proposed method in this 

research is by using image segmentation techniques along with some statistical analysis. The 

general outline, as described in the methods section, is that the images should be segmented 

into a binary image. In this binary image, the true values in this image should represent the 

plant pixels and the false values anything else. This can be done by applying the ExG + Otsu’s 

method to not only binarize the image but also to cluster each blob of True values to create 

objects that represent one or more plants. By counting the true pixels and dividing them by 

the average amount of pixels per plant the number of plants can be computed.  

The difficulty in this method is not the segmentation or the clustering, but the computation of 

the average amount of pixels per plant. In this research, there are three methods on how the 

average amount of pixels per plant. However only one of them is fully automatic. In the so-

called semi-automatic method, a supervised classification needs to be performed in order to 

come up with a class that represents the average amount of plants. In the manual method, 

sampling and labeling are used to get a sample of individual plants which then will be used to 

compute the average amount of pixels per plant. In the fully automatic method, AlexNet has 

been trained to automatically find individual plants that are used to calculate the average 

amount of pixels per plant. 

By using the full-automatic method the total amount of plants in the study area is 

approximately 170 000 plants with an error of about 10%. Meaning that the algorithm is 

capable of getting 90% of the plants.  

7.2 Research question 2 
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An even greater challenge can be determining the Ground Truth when no accurate field 

information is available. In this study, two types of ground truths have been calculated. One 

was an estimation that was derived through manual counting of a piece of the ortho-mosaic. 

And the second was using the number of seeds planted. However, in the end, it became 

apparent that the number of seeds used was not a good measure as a seed planted does not 

necessarily mean that a plant will grow per seed planted. In the validation part of the report, 

it can be seen that depending on the piece of land only 30% of the seeds actually grew into 

plants.  

But to answer the research question, the most effective and accurate way of getting a ground 

truth from high-resolution aerial imagery is by manually counting it. But in cases, like these 

where there are too many plants to count effectively a second best option is to count a small 

sample and extrapolate the results to the rest of the ortho-mosaic. However, even this 

method has its limitations as seen by a large number of errors caused by this extrapolation 

method and heterogeneity of the crop in the field. It can be said that this is only effective for 

narrowing down the amounts, but for large areas, it is too unreliable to conclusively use it as 

ground truth.  

 

7.3 Research question 3 

An algorithm is only valuable if the results are correct and if it works on other datasets. For 

this reason, the algorithm has been tested on a different dataset with a different spatial 

resolution to ensure that it performs the same way for a different dataset. Both the 8mm 

ortho-mosaic as well as the 16mm ortho-mosaic both yield more or less the same results. 

Which makes a sense considering it is the same exact piece of land but only with a different 

spatial resolution.  As seen as in figure 35 the errors between the two spatial resolutions are 

at worst 9%. Meaning that the algorithm works well for both 8 and 16 mm. However, as 

discussed in the AlexNet limitations the full-automatic method’s performance decreases 

significantly when the spatial resolution gets smaller. This is due to the limitation of AlexNet 

only being able to use images of 227 by 227 pixels. While the algorithm still performed well 

with 16mm. It is hard to say if it would still work with an even lower resolution such as 32mm.  
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