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Abstract 
 
With the increase in renewables in the future power mix, fluctuations in the power production become 
larger due to the intermittency of these energy sources. Accurate forecasting of solar energy 
production can help to improve unit-commitment decisions and reduce ancillary costs. Various 
methods can be used for solar forecasting. Most methods, e.g. satellite techniques, often overlook 
small and thin clouds. The high temporal as well as spatial resolution of All Sky Imagers enables the 
opportunity to take these small and thin clouds in to account, even at fast changing cloud conditions. 
Recent efforts at EKO Instruments let to the development of a new cloud detecting algorithm called 
TRINITY. This study aims at comparing the performance of the new TRINITY algorithm in combination 
with an All Sky Imager to the existing BRBG and CDOC cloud detecting algorithms. The new algorithm 
is validated using two approaches. The first method uses shortwave irradiance by determining the 
clearness index and diffuse fraction as proxies for Cloud Cover Fraction. The other method calculated 
the Cloud Cover Fraction by using downward longwave irradiation. Data is provided by two cases 
studies, where data is collected in Utrecht (NL) and Denver (US). Results of the shortwave irradiance 
method show that lowest errors where achieved by using the diffuse fraction as a proxy. Overall, the 
mean absolute error of the new TRINITY algorithm was 12%, whereas the BRBG and CDOC algorithms 
had errors of 17% and 14%, respectively. When differentiating for different sky conditions the TRINITY 
algorithm outperforms BRBG and CDOC at clear sky conditions, whereas in overcast conditions it 
outperforms the BRBG algorithm. Furthermore, the unreliable sunrise and sunset periods affect the 
accuracy of the algorithms and radiation measurements. Excluding the sunrise and sunset improves 
the accuracies with 11%, 15% and 2% for the BRBG, CDOC and TRINITY, respectively. Testing the effect 
of the solar position on the performance of the algorithms showed that the BRBG algorithm is most 
sensitive to low elevation angles, leading to higher errors. The TRINITY algorithm achieved similar 
performance for all elevation angles and is more stable than the other algorithms. For elevation angles 
of 35° and higher, all algorithms perform similarly. Preliminary results for using longwave downward 
radiation show that the accuracies of all algorithms are comparable (53%, 54% and 56% for BRBG, 
CDOC and TRINITY, respectively) with lowest errors for the BRBG algorithm. Overall, TRINITY is found 
to perform best followed by the CDOC and BRBG algorithm. Accurate cloud detection by All Sky 
Imagers will improve the accuracy of short-term solar forecasting. 
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1. Introduction 
 
The ongoing concerns of climate change and energy independency pushes global power systems in the 
direction of sustainable sources for energy production. Within Europe, wind and solar energy will most 
likely be the prominent sources, since these technologies have the highest potential (Bacher, 2008; 
Jacobson & Delucchi, 2011). According to the Sustainable Development Scenario of the World Energy 
Outlook 2017 the installed capacity of wind and solar energy will be higher than the traditional fossil 
fuel-based technologies (International Energy Agency, 2017) in 2040. Breyer et al. (2017) found that 
PV electricity generation can contribute to about 69% of the global energy demand in 2050, which 
exceeds the targets of the Paris Agreement.  
 
With this increase in renewables in the future power mix, fluctuations in the power production become 
larger due to the intermittency of these energy sources. Furthermore, as power production moves 
from a centralized to a more decentralized system, grid stability is likely to decrease (Schäfer, Beck, 
Aihara, Witthaut & Timme, 2017). This increases uncertainty on the power market and in the worst 
case can lead to blackouts. Accurate forecasting of solar energy production can help to improve not 
only electric power quality but can also help to reduce ancillary costs (Wan et al., 2015). Furthermore, 
short term prediction of electricity production improves unit-commitment decisions, optimization of 
total power production, management of the electricity grid and solar energy trading (Bacher, 2008; 
Chaturvedi & Isha, 2016; DeMeo, Grant, Milligan & Schuerger, 2005).  
 
Solar power forecasting is relatively new and is not as widely used as wind energy forecasting, but 
methods are rapidly evolving. Tuohy et al. (2015) distinguishes various methods of radiation 
forecasting. Climatology methods have the longest time horizon for which radiation values can be 
forecasted. These methods use average weather statistics of previous years and use these values to 
make a forecast of over 10 weeks. The Numerical Weather Prediction (NWP) methods have been used 
for many years, but only recently these methods are improved and specialized for solar irradiance 
forecasting. These methods consist of computer models which use current weather variables and 
extrapolate these over a defined time horizon, hereby statistical learning methods are used to improve 
the accuracy of NWP methods (Chaturvedi & Isha, 2016). Six hours to two weeks is the preferred time 
horizon for this method. Statistical learning methods use historical site-specific irradiance data to train 
the methods. By combining this with direct observation of irradiance, solar radiation can be forecasted 
up to 6 hours. Satellite Imagery methods use satellite images with high spatial resolutions to forecast 
solar irradiance. However, temporal resolution is low, which cause these methods to function 
ineffectively at fast changing cloud conditions. Satellite imagery is used best on a time horizon of 1 
minute to 6 hours. Finally, All Sky Imaging (ASI) is a method which uses high resolution ground-based 
cameras which can detect clouds, estimate cloud height and determine cloud motion (Tuohy et al., 
2015). By classifying pixels into clear sky, thin clouds or thick clouds the surface solar irradiance can be 
estimated for the very short term; up to 30 minutes. 
 
Climatology method, NWP models and Satellite imagery have a forecasting horizon focusing on the 
longer term. Due to this low temporal, and often low spatial, resolution, they are inadequate for 
forecasting solar irradiance on the very short term (Chow et al., 2011). A high temporal as well as 
spatial resolution are required to take fast changing cloud conditions in to account. By using an ASI in 
combination with a cloud detecting algorithm the path of cloud vectors can be extrapolating through 
which irradiance values can be estimated. Therefore, this method is highly suitable for accurate 
irradiance prediction for the very short term. Moreover, satellite techniques often overlook small 
clouds or are confused by thin clouds and the earth surface due to a similar brightness and 
temperature (Heinle, Macke, & Srivastav, 2010). The high resolution and more equally coloured 
background makes ASIs a more accurate method in forecasting solar irradiance for the short term. 
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The images taken by an All Sky Imager (ASI) have to be processed to determine and classify clouds. For 
this, algorithms are used. The algorithms use the images as input and evaluate them by using different 
techniques. Before evaluating, the image needs to be corrected for obstructions such as high buildings, 
the camera arm and the scattering of light close to the sun. All these steps are included in the 
algorithm. A widely used evaluating technique is to use the red-blue ratio as a proxy to determine the 
presence of clouds. In a clear sky day, the shorter wavelengths of the light spectrum (primarily blue) 
are scattered more heavily, which results in a blue colour. Whereas the bigger particles in clouds create 
a more uniformly scattering, resulting in a grey colour. By using the difference or ratio of both ends of 
the visible light spectrum, Red-Blue Ratio (RBR) algorithms determine the cloudiness (Kleissl, 2013). 
Furthermore, other algorithms are developed that use a Clear Sky Library (CSL) in addition to the red-
blue ratio. The Cloud Detection and Opacity Classification (CDOC) algorithm, for instance. To run these 
types of algorithms a CSL has to be (manually) selected. This is a selection of clear sky images with 
variating elevation angles. Then an image can be evaluated by comparing each pixel with the pixel of 
the clear sky image.  
 
Recent efforts at EKO Instruments Europe B.V. let to the development of a new algorithm called 
TRINITY. This new algorithm is based on RBR algorithms, but different to previous RBR algorithms the 
TRINITY algorithm is able to classify the cloudiness in multiple cloud thicknesses. Besides, the TRINITY 
algorithm does not need a CSL. Using this new algorithm in combination with an ASI, short term 
irradiance prediction should be done with a higher accuracy compared to previous algorithms. 
However, since this algorithm is newly developed, no research has been conducted regarding the 
performance compared with other cloud detection methods. This has led to the following research 
question: 
 
How does the TRINITY algorithm in combination with an All Sky Imager perform compared to existing 
cloud detecting algorithms? 
 
To answer this research question, the research uses two methods in which the newly defined algorithm 
is validated and evaluated compared to already existing algorithms used for cloud detection. Both 
methods use data originating from two case studies: Utrecht (the Netherlands) and Denver (United 
States). By studying the performance of this new algorithm and comparing this to existing literature, 
the research introduces a new way of short-term solar radiation prediction. By doing so, this research 
adds theoretical knowledge about the performance of the TRINITY algorithm with respect to already 
existing algorithms to the field of solar forecasting, or more general to the field of Energy Science. 
 
This report continues with a literature review, which is used as background information to clarify the 
position of All Sky Imagers as cloud forecasting method with respect to other solar and cloud 
forecasting methods. Then the methodology section describes the methods used, along with a 
description of both case studies. Then, results are given. A discussion interpreters the results and 
denotes research limitations. Finally, a conclusion is given.  
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2. Literature review 
 
To better understand how ASI and their algorithms work, this literature review clarifies the position of 
ASI within the field of solar and cloud detecting methods. This section aims to map the most important 
technologies and methods of forecasting radiation and identifying cloudiness. Although this is a very 
broad field the goal is to provide a comprehensive overview of solar forecasting methods. Tuohy et al. 
(2015) created an overview of these forecasting methods. In this part each category is described and 
assessed in more detail. 
 

Climatology methods 
Climatology methods for predicting future solar radiation and other weather conditions is one of the 
oldest and simplest forecasting approaches. Descriptions and research of this method go back more 
than 50 years (Inman, Pedro, & Coimbra, 2013; Isenson, 1966). The method is also referred to as 
‘persistence forecasting’, this is a forecast where prediction of the present case is based on outcomes 
of similar past cases (Riordin & Hansen, 2002). This means that cyclical, or seasonal, trends are 
observed and extrapolated, which makes the methods static. For instance, if the radiation of a 
particular day is to be known, one averages the radiation measured on that day for as far back as the 
dataset allows (Yankeelov, Quaranta, Evans, & Rericha, 2015). Since climatology methods use 
irradiance data from previous years, the short-time variability of solar radiation is not taken into 
account. So, by not taking into account these stochastic characteristics of solar radiation the method 
becomes inferior to other forecasting methods (Inman et al., 2013). This is supported by Isenson (1966) 
who criticizes the accuracy of climatology methods. However, accuracy can be improved when 
historical data is not leading, but used as input by an experienced meteorological forecaster to provide 
his forecast (Hyvärinen, Julkunen, & Nietosvaara, 2007).  
 
For climatology methods there is not a lot of input data required, the largest problem could be the 
availability of the data. To forecast radiation values for a specific location as precisely as possible one 
needs, ideally, as much historical data as possible measured at the same location. However, since 
meteorological instruments which measure irradiation are costly to acquire and this data is usually 
only collected at meteorological stations or research institutes, availability of data is a common 
limitation. Climatological forecasts provide prediction for the longer time horizon. However, these 
forecasts are mostly used as a first estimation or reference (Campbell & Diebold, 2005). Then, other 
forecasting methods can be used to be more specific. Since climatological methods are often used in 
a very early stage and complemented by more specific statistical learning methods or NWPs, the spatial 
resolution is low. 
 

Statistical learning methods 
Direct observations of radiation can be used for statistical learning methods to forecast future solar 
conditions. These statistical learning methods use historical data of site irradiance to train the learning 
methods. Then, real time data or observations can be used to predict solar irradiance by using the 
trained learning methods (Tuohy et al., 2015). Machine learning, which is part of statistical learning 
methods, can be used in several domains and it enables one to solve complex problems which cannot 
be solved by explicit algorithms. In short, a statistical learning method finds relations between inputs 
and outputs even if the representation is impossible (Voyant et al., 2017). The use of statistical learning 
methods is one of the most common approaches used in solar radiation forecasting, Antonanzas et al. 
(2016) found that 72% of their analysed papers use a statistical learning method. 
 
Statistical learning methods do not need any internal information from the system to forecast 
radiation. Instead, the methods use historical data to determine relations which can be used to 
forecast. The quality and amount of data used for this method are very important (Antonanzas et al., 
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2016). Since historical data is the only input, the quality of this data determines the quality of the 
output data. Furthermore, having a large data set is required. In this way a proper selection can be 
made for the training of the learning methods. Establishing a proper training set can highly affect the 
accuracy. Statistical methods usually provide reliable forecasts for an intra hour time horizon (Diagne, 
Lauret, & David, 2012; Tuohy et al., 2015), however by combining this method with NWP a time horizon 
of 2-4 hours can be achieved. The spatial resolution of statistical learning methods varies a bit, but it 
doesn’t exceed the 10 km (Diagne et al., 2012; Diagne, David, Lauret, Boland, & Schmutz, 2013).  
 

Numerical Weather Prediction 
Current weather conditions are used as input to mathematical models to predict the future weather 
conditions. The mathematical models simulate the processes occurring in the atmosphere. These 
models are called NWP models (Paulescu, Paulescu, Gravila, & Badescu, 2012). Since the processes 
occurring in the atmosphere are too uncorrelated with past data to use statistical learning methods, 
NWP models are used. These types of models do not need historical data and are better suited for day-
ahead predictions (Lorenz et al., 2009). However, since statistical learning methods as well as NWP has 
its own strengths and weaknesses, both methods can be combined to improve the accuracy of the 
forecast. Verbois, Huva, Rusydi, & Walsh (2018) combined a NWP model with their proposed statistical 
learning method and found that it outperformed a climatology forecast and a NWP model forecast for 
the day-ahead forecasting of radiation. For solar radiation forecasts, NWP models are used to 
determine the probability of cloud formation in a defined area and then use this probability to 
indirectly estimate the radiation values by using a dynamic atmosphere model (Voyant et al., 2017). 
 
NWP models only need current weather conditions as input variables. This is particular interesting for 
forecasting irradiance at newly developed solar parks or sites which do not have historical data 
available. The data is usually obtained from a global network of observations and measurements, but 
when enough local data is available the spatial resolution of NWP models can be increased. The main 
input variables for NWP models are: wind, humidity and surface pressure. Besides variables like snow 
cover or sea surface, temperature can, if available, increase the accuracy of the forecast as well (Diagne 
et al., 2013). The time horizon of NWP models is widely discussed and varies between 6 hours and 15 
days ahead. Diagne et al. (2012) and Voyant et al. (2017) state that forecasts beyond 6 hours and up 
to several days ahead are generally most accurate when NWP models are used. At shorter time scales, 
NWP is often combined with post-processing technologies, e.g. Model Output Statistics. This is a 
statistical learning method which can relate the NWP model output with prior observations or other 
data. Using NWP in combination with a statistical learning method can thus increase the accuracy for 
the shorter time horizon. However, NWP models can also be used for the longer time horizon, as Tuohy 
et al. (2015) and Diagne et al. (2013) shows. They describe that NWP models can predict accurate 
weather conditions up to 15 days ahead. Next to the time horizon, the spatial resolution is also very 
dependent on the type of NWP and complementary methods used. Diagne et al. (2013) mention a 
spatial resolution of 16-50 km, where Antonanzas et al. (2016) and Diagne et al. (2012) describe the 
spatial resolution to be ranging from 1 to 100 km. Although this is a large range, the spatial resolution 
of NWP models is often too low to make accurate radiation forecasts which take cloud enhancement 
into account (Mathiesen & Kleissl, 2011). 
 

Satellite imaging 
Another method for predicting the surface solar irradiance at specific locations is the use of 
geostationary meteorological satellites. These satellites follow the rotation of the earth and are thus 
always above the same geographical location. This enables these satellites to scan large areas up to 
several times per hour. In this way, irradiance images can be acquired which provide also information 
about cloud enhancement and motion vectors (Blanc, Remund, & Vallance, 2017). By using at least 
two satellite images taken after one another it is possible to derive cloud motion vectors. These vectors 
can then be extrapolated to forecast the Global Horizontal Irradiance (GHI) for a defined period. 
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Although this method provides better resolutions than NWP models it is still challenging to accurately 
predict solar irradiance when fast changing cloud conditions occur. When using satellite imaging to 
forecast solar radiation in Europe or Africa, the MeteoSat network of satellites can be used. This 
satellite network is part of a much bigger network worldwide which can be used to cover almost all 
areas on earth and provide information of cloud properties and movements, except for the North and 
South Polar extended areas. This worldwide network further exists of the GOES (North and South 
America), FENG YUN (China) and HIMA-WARI (Asia, Australia and New Zealand) families of satellites 
(Blanc et al., 2017).  
 
Before predicting solar radiation from satellite images, the images have to be calibrated with a specific 
location. For this, a Clear Sky Model (CSM) can be used. A CSM calculates irradiance values at clear sky 
conditions based on geographical coordinates. These models usually require data input like aerosol 
content, water vapor, elevation and ozone (Tuohy et al., 2015). The modelled clear sky radiation can 
then be combined with the satellite images, which form the most important inputs. As described, these 
images can be obtained from a worldwide network of geostationary meteorological satellites. The time 
horizon for which this method can be used is clearly shorter than the previous methods described. 
According to Inman et al. (2013) satellite forecasting is ideal for a 30 min to 6 hours horizon. However, 
when satellite images can be taken with a much shorter time interval, the time horizon could even be 
lowered to minutes (Tuohy et al., 2015). This is supported by Kleissl (2013) who mentions a time 
horizon up to 6 hours ahead as well. The spatial resolution of satellite imaging is also better than 
previous methods described. The METEOSAT satellites used to map central Europe are able to provide 
a spatial resolution of 2.5 km, where the GOES-13 satellite used in the United States can even reach a 
spatial resolution of 1 km (Bilionis, Constantinescu, & Anitescu, 2014; Lorenz, Hammer, & Heinemann, 
2004). Most satellites have a spatial resolution somewhere between 1 - 10 km (Inman et al., 2013). 
 

Sky imaging 
Where NWP models and satellite methods used for solar forecasting provide prediction for a longer 
time horizon with appropriate resolution, AISs are used to forecast clouds and irradiance values for 
the very short term. They establish a sub-kilometer view of clouds over e.g. a PV power plant or urban 
area (Chow et al., 2011). ASIs are cameras aimed at the sky which take short interval images by using 
a 180⁰ field of view camera system. In this way, high quality images can be acquired which capture the 
complete horizon. A weatherproof housing enables the cameras to operate continuously and under 
any weather conditions. The cameras ability to take high resolution pictures as well as the lower spatial 
resolution compared to other solar forecasting methods, makes this method more expensive with 
respect to previously described methods. Though, the images taken by these cameras are much more 
accurate in assessing and classifying cloudiness. Consecutive images taken can be used to estimate 
cloud velocity to forecast irradiance values on the very short term. The processing and evaluation of 
the images taken can be done by various algorithms. 
 
This method of solar radiation forecasting does not require a lot of input data. The most important 
source of input data is the ASI itself. This needs to be installed somewhere free of obstructions which 
could block the sky. Then after the enclosed software has been installed and the ASI is calibrated, the 
ASI is ready for use. During this installation the geographical location of the ASI is one of the few 
necessary input data. Longitude, latitude and altitude of the camera has to be determined. The time 
horizon for which this method can be used is clearly lower than previous methods described. With the 
time horizon not exceeding half an hour, literature explains that sky imaging is highly suitable for cloud 
detection and solar forecasting which takes into account the variability of cloud enhancement 
(Antonanzas et al., 2016; Diagne et al., 2013; Kuhn et al., 2017; Tuohy et al., 2015). Just as the time 
horizon used for sky imaging, literature is also very clearly about the spatial resolution of sky imagers. 
This resolution does not exceed 1 km and Antonanzas et al. (2016) mention a minimum value of 2.5 m. 
Kuhn et al. (2017) validated an ASI which used a pixel base of 5 m. 
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ASIs are used in combination with an algorithm. These algorithms are the connecting step between 
the image taken and the solar forecast. The accuracy of the forecast is thus strongly dependent on the 
performance of the algorithm. Chauvin, Nou, Thil, Traore, & Grieu (2015) identify three different 
categories for the existing cloud detection algorithms: thresholding techniques, neural network 
models and more sophisticated approaches. From these categories thresholding techniques are the 
most widely used, because of their simplicity and thus the low computational time. Since this research 
uses a lot of data and the time is limited, the scope will be reduced to algorithms using thresholding 
techniques. Some recently used and researched threshold algorithms are discussed below. Note that 
there are a lot of algorithms developed over the years and some of them will have overlap between 
them. 
 
BRBG 
The BRBG algorithm uses the Blue/Red + Blue/Green ratio to differentiate between clouds and clear 
skies. This method uses the difference in light scattering by clouds versus a clear sky day: in a clear sky, 
light with shorter wavelengths are scattered more heavily, which explains why we observe a blue sky 
(Kleissl, 2013). The output of the algorithm is a factor between 0 and 1 which describes the cloudiness 
of an image (CMS, 2016). In the early stages of sky imaging, a lot of authors have developed cloud 
detecting algorithms based on the red-green-blue colour space. Yang et al. (2015) describes 
alternatives of these algorithms that consider different ratios like R/B, R-B and (R-B)/(R+B) which have 
been used throughout the years. However, the B/R + B/G ratio developed by CMS Schreder is one of 
the most recently studied ratios and commonly used in combination with EKO Instruments ASIs. 
 
CDOC 
The Cloud Detection and Opacity Classification algorithm builds upon the BRBG algorithm and is able 
to classify the cloudiness of an image in three categories: clear sky, thin clouds or thick clouds. Prior to 
running the algorithm, a CSL has to be defined. The algorithm then uses the difference, rather than the 
ratio, between the red-blue ratios of the image and the CSL to determine thick clouds. A Haze 
Correction Factor is used to distinguish clear sky and thin clouds (CMS, 2016; Ghonima et al., 2012). 
These calculations are done for each pixel separately and for the overall evaluation the calculations 
are combined in one figure. The CDOC algorithm provided significantly improved results when 
compared to the original ASI software. The classification of clear sky and thick clouds was correct for 
99% of the cases. For thin clouds the accuracy was 60% (Ghonima et al., 2012). These results were 
calculated by using manual validation of 30 images originating from one case study. 
 
GBSAT & CSBD 
The Green channel Background Subtraction Adaptive Threshold (GBSAT) algorithm developed by Yang 
et al. (2015) is focused on evaluating partly cloudy images. First the algorithm determines whether the 
sun is obscured by clouds. Then clouds are detected based on a background subtraction adaptive 
threshold method. This means that the algorithm detects the solar position, then simulates a clear sky 
picture including circumsolar region. This simulated background image is then subtracted from the 
original image to obtain an image more suitable for cloud detection. The proposed method is 
compared with the R/B, R-B and BSAT methods by human examination. Although these results cannot 
be quantified, the authors conclude that the GBSAT algorithm obtains more satisfactory results, 
especially in the circumsolar and near-horizon regions. However, the algorithm is still sensitive for thin 
clouds in the circumsolar region. The reason was that simulated background could not always 
represent real sky background. Thus, especially for thin clouds this could cause errors. Therefore, the 
algorithm was revised such that a real clear sky background was adopted instead of a simulated 
background. The new Clear Sky Background Differencing (CSBD) algorithm was, as the GBSAT 
algorithm, visually validated and showed a better performance, especially for the thin clouds where 
the GBSAT was vulnerable (Jun Yang et al., 2016). 
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TRINITY 
The newly developed TRINITY algorithm is based on the BRBG algorithm. The blue/red + blue/green 
ratio of the BRBG algorithm outclassed a variety of other ratios in the RGB colour channels (CMS, 2018). 
TRINITY classifies the sky by recognition of cloud contours (objects). The software then assigns ratio 
values to these contours. This creates a hierarchy of cloud objects. This enables the software to 
evaluate a sky image and classify the clouds in multiple layers of thicknesses. A great advantage of the 
new TRINITY algorithm is that the software only needs the underexposed images to provide the same 
quality of evaluation (CMS, 2018). Since the algorithm has recently been developed, no research has 
been done regarding the accuracy nor the relation to other cloud detecting algorithms. 
 

Overview 
All the indicators of the different solar forecasting methods are summarized, combined and shown in 
Table 1. The time horizon and spatial resolution are visualized in Figure 1 as well. Note that the 
boundaries between different methods are not explicit, and therefore other authors may draw the 
boundaries elsewhere. The purpose of the visualization is to clarify the differences with respect to the 
other methods and to create a broad understanding of the various methods for solar forecasting. 
Figure 1 is based on the data from Table 1. As can be seen from Table 1 and Figure 1, there is some 
overlap between numerous methods. However, each of the methods described serves its own 
purpose. It is therefore important to understand that the methods for cloud and solar forecasting are 
rather complementary than substitutes. Statistical learning methods and satellite imaging for example 
each use different input data. When solar irradiance for a specific site needs to be estimated statistical 
learning methods can provide forecast for a shorter time horizon. However, when the site is remote 
and no historical data is available, satellite imaging may be a more convenient way. Furthermore, part 
of the overlap between methods occurs due to the ability to combine various methods. Statistical 
learning methods can be combined with sky imaging, for example. Finally, the climatology methods 
are shown with a dashed line, since it is hard to quantify the spatial resolution. Literature has shown 
that the spatial resolution is low and the time horizon is long, but these indicators are not and cannot 
be quantified in a reliable way because these methods are used to make first approximations of 
irradiances (e.g. a solar resource assessment before installing PV panels) instead of actual forecasts. 
More reliable and specific forecasts are made by using other methods. 
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Table 1: Overview of solar forecasting methods and their indicators 

Method Input data Time horizon Spatial resolution 

Climatology methods Historical irradiance data > 1 day low 
Statistical learning 

methods 
Historical irradiance data 

(preferably multiple years) 
< 4 hours < 10 km 

Numerical Weather 
Prediction 

Current weather conditions: 

• Wind 

• Temperature 

• Humidity 

• Surface pressure 

• Site specific data (snow 
cover, etc.) 

6 hours – 15 days 1 – 100 km 

Satellite imaging 

Satellite images 
 

Clear Sky Model variables: 

• Longitude 

• Latitude 

• altitude 

1 min – 6 hours 1 – 10 km 

Sky imaging 

All Sky Images 
 

Clear Sky Model variables: 

• Longitude 

• Latitude 

• altitude 

< 30 min < 1 km 

 
 

 
Figure 1: Overview of spatial resolution and temporal horizon for reviewed solar forecasting methods 
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3. Methodology 
 
In this study the application of a new algorithm is explored and assessed. The study validates the new 
TRINITY algorithm as well as the existing BRBG and CDOC algorithms. The TRINITY algorithm is 
compared to the BRBG and CDOC algorithms, since these algorithms are currently being used in 
combination with ASIs provided by EKO Instruments. The research is conducted by analysing two case 
studies. These case studies are performed to validate the new TRINITY algorithm as well as the existing 
BRBG and CDOC algorithms.  
 
Case studies are intensive analyses and descriptions of a single unit or system (Hancock & Algozzine, 
2006). They are mostly used by researchers to understand a specific phenomenon or situation and can 
rarely be generalized (Brown, 1998; Thomas, 2015). Furthermore, case studies are very useful in 
answering ‘How?’ and ‘Why?’ questions and are thus used for exploratory, descriptive or explanatory 
research (Rowley, 2002). Supported by the case study literature, the case study methodology is well 
suited for the validation of the algorithms in this research, since the algorithms can be evaluated and 
validated by using the data collected at the two sites. By running all three algorithms for the same sky 
images and validating this with the irradiance measured on site, a fair and reliable comparison is made 
between all algorithms and thus the performance of the TRINITY algorithm with respect to the BRBG 
and CDOC algorithms is assessed. The algorithms were provided by EKO Instruments, and sky images 
as well as irradiance data were collected at two different sites, which formed the case studies in this 
research.  
 
Since for case study I only shortwave irradiation was measured and for case study II both shortwave- 
and longwave irradiation was measured, the methodology section is divided in two sections. After the 
case studies are described in the data collection part, the methodologies are explained. First the 
methodology for shortwave irradiance data is explained, then the method for using longwave 
irradiance to evaluate the algorithms is explained. Although both methods are very different, it is 
inevitable that there exists some overlap. Concepts and processes are only explained once, even 
though some will be used in both case studies. 
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Data collection 
 

Case study I: Utrecht, the Netherlands 

Within this research a collaboration between Utrecht University and EKO Instruments enabled the 
opportunity to perform the case study. Sky Images were collected at Utrecht University (N 52.08⁰, E 
5.17⁰ at 32m) with the Sky Imager EKO SRF-02. Images were taken with an interval of 10 minutes, with 
each interval 2 images: one normal exposed and one underexposed. Sky images were collected for the 
period June 2013 until December 2016. However, the period from November 2013 till June 2014 was 
not usable, since a crane was obstructing the Sky Imagers view. Next to sky images, three years of 
irradiance data was collected at the same location of the Sky Imager, this data has an interval of 5 
minutes and, next to GHI, existed of Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance 
(DHI). The data of case study I is summarized in Table 2. 
 

Case study II: Denver, United States of America 

The second case study was enabled by data collected by the National Renewable Energy Laboratory 
(Andreas & Stoffel, 1981). EKO Instruments installed the new ASI-16 All Sky Imager in Denver, Colorado 
(N 39.74⁰, W 105.18⁰ at 1829m). The Images were acquired with a 10-minute interval. As in the first 
case study, a normal exposed and an under exposed image are taken at each timestamp. Since the 
timestamps of the images were saved in local time and the TRINITY software had some minor bugs, 
only 17 days of the data available could be used for the case study. All of these days are from January 
2018. Although all cloud conditions (clear sky, thin clouds/haze, partly cloudy, overcast) occurred 
during this period, clear sky conditions were strongest represented. Since the sky imager was 
assembled close to a sun tracker, the arm is appearing in the west part of the image and is changing 
throughout the day. Because of this movement, the arm of the sun tracker could not be excluded from 
the evaluations and thus errors the results obtained by the algorithms. However, since the arm is quite 
thin, the estimated error occurring is less than 1% and is therefore considered to have a very limited 
impact on the results. 
 
Next to the sky images acquired on this site, a pyrgeometer was installed to collect downward 
Longwave (LW) irradiance data. Other data collected on site was GHI, DNI, DHI, sky temperature and 
ambient temperature. The sky imager was synchronized with the other meteorological instruments on 
site. Therefore, the sky imagers and meteorological data have the exact same timestamps. The data of 
case study II is summarized in Table 2. 
 

Table 2: Summary of the case studies 

 Case Study I Case study II 

Coordinates N 52.08⁰, E 5.17⁰ N 39.74⁰, W 105.18⁰ 
Altitude 32m 1829m 

Sky Imager EKO SRF-02 EKO ASI-16 
Time period 01-07-2014/01-07-2016 01-01-2018/17-01-2018 

Time interval 10 minutes 10 minutes 
   

GHI x x 
DNI x x 
DHI x x 
LW  x 

Sky temperature  x 
Ambient temperature  x 
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Data analysis 
 

Shortwave irradiance  

The first analysis uses Shortwave (SW) radiation. This part of the light’s spectrum is visible to the 
human eye and has a wavelength ranging from 380 to 750 nm. This range is called the visible light 
spectrum. Most of the energy emitted by the sun is in the form of visible light, which carries a lot of 
energy (Young & Freedman, 2016). These shortwave radiation in the form of GHI, DNI and DHI is used 
in the analysis, which consists of four consecutive steps. Finally, a decomposition analysis, time-of-day 
analysis and sensitivity analysis are done. 
 

Step 1: Clear Sky Irradiance 

In the first step of the analysis the irradiance values at the location where the Sky Imager is placed is 
calculated for clear sky conditions. This defines maximum radiation values which is used later in step 
2. The radiation values were calculated by using a Clear Sky Model (CSM). This is a model which uses 
meteorological parameters such as solar elevation angle, site altitude or aerosol concentration to 
calculate the clear sky irradiance, i.e. the radiation reaching the ground at zero cloudiness. 
 
Over the years a wide range of CSMs have been developed. Gueymard (2012) has collected and 
analysed 18 different CSMs, from which the REST2, Ineichen/Perez and Hoyt models form the top 3. 
From these models, the Ineichen/Perez model achieves similar performance as the REST2 model but 
does not need site-specific data which the REST2 model does use. Furthermore, Reno, Hansen, & Stein 
(2012) recommend the Ineichen/Perez model for most locations, due to its ease of application and 
high degree of performance. For these reasons, this research uses the Ineichen/Perez model. The 
required inputs for this model are time (year, month, day, hour, minute and seconds), location 
(latitude, longitude and altitude) and Linke Turbidity (LT). The LT factor is a good approximation to 
describe the optical thickness of the atmosphere under clear sky conditions and is dependent on 
latitude, longitude and month of the year. It takes the absorption and scattering of water vapor and 
aerosols into account. The Ineichen/Perez model automatically incorporates the right LT into the 
calculations from a large lookup matrix. This lookup matrix, created by (Remund, Wald, Lefèvre, 
Ranchin, & Page, 2003), is based on specific geographical locations where accurate measurements are 
made. Since the KNMI station in De Bilt (less than 2 km away from Utrecht) is one of these sites, the 
LT is assumed to be accurate. The outputs of the model are GHI, DNI and DHI in Watt per square meter 
(W/m2) at clear sky conditions. The model is run in MATLAB and the output was stored with a time 
interval of 5 minutes.  
 

Step 2: Clear Sky Indices 

After the theoretically estimated radiation values have been calculated by the CSM, these were 
compared with the actual measured radiation values on site. This principle forms the basis of the Clear 
Sky Index (CSI) approach (Marty & Philipona, 2000). This approach is increasingly being used for 
modern solar radiation modelling and forecasting (Engerer & Mills, 2014). Since this case study uses 
shortwave radiation, these CSIs will be denoted as CSISW. The first CSISW which is used is the clearness 
index (Kt) adapted from Cros, Liandrat, Sébastien, Schmutz, & Voyant (2013): 
 
 

𝐾𝑡 =
𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐺𝐻𝐼𝐶𝑆𝑀
 (1) 

 
Where Kt is the GHI CSISW, GHImeasured is the global horizontal irradiance measured on site and GHICSM is 
the irradiance calculated by the Clear Sky Model. When Kt is 1, there are no clouds and measured 
radiation equals estimated radiation. As cloudiness increases, GHImeasured will decrease and thus the 
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CSISW will mainly vary between 0 and 1. However, due to super irradiance the CSISW can sometimes 
become higher than 1. Super irradiance occurs on days where clear sky conditions rapidly change to 
cloudy conditions and vice versa. When the irradiance bends around the edge of a cloud, a temporary 
peak in irradiance occurs which could exceed maximum clear sky irradiance as calculated by step 1.  
 
Next to the clearness index the Diffuse Horizontal Irradiance CSISW, i.e. the diffuse fraction, is used as 
a proxy for Cloud Cover Fraction (CCF) as was done by Butt et al. (2010). They found a very good linear 
relationship between the CCF and the diffuse fraction. The diffuse fraction Kd is the measured DHI 
(DHImeasured) divided by the measured GHI (GHImeasured) and represents the cloud cover (Okogbue, 
Adedokun, & Holmgren, 2009). Contrary to the clearness index the diffuse fraction reaches a value of 
1 at very cloudy conditions and a value approaching zero at clear sky conditions. The diffuse fraction is 
shown in the equation below. 
 

𝐾𝑑 =
𝐷𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
 (2) 

 

Step 3: Calculating CCF with the algorithms 

This step involves the creation of the CCFs by running the algorithms. The FINDCLOUDS software 
(version 3.2.0.1) was used to run the BRBG and CDOC. The new algorithm was run by the newly 
developed FINDCLOUDS TRINITY software (version 4.0). The images taken by the ASI were used as 
input for the software. Since a lot of data is available, processing this data required substantial 
computing power. Therefore, small test samples were used till the software was calibrated and an 
appropriate output had been established. The calibration of the software consists of adjusting the 
offset angle, the zenith angle, centring of the image and determining the horizon and CSL. After 
calibration, the output for the BRBG algorithm is a CCF on a scale from 0 to 1, whereby zero is no clouds 
and one stands for complete overcast. The CCF of the BRBG algorithm is denoted as CCFBRBG. The CDOC 
algorithm exists of a cloudiness fraction (CCFCDOC) as well, which co-exists of a thin cloud fraction and 
thick cloud fraction. The output format of the algorithms (BRBG and CDOC) by using the FINDCLOUDS 
software is shown in Table 3. 
 

Table 3: Example of the output of the BRBG and CDOC algorithms 

Date Time BRBG CDOC Thick Thin 

12-01-2018 12:25:00 0.04 0.40 0.13 0.27 
12-01-2018 12:30:00 0.10 0.59 0.38 0.21 
12-01-2018 12:35:00 0.09 0.87 0.73 0.14 
12-01-2018 12:40:00 0.02 0.73 0.71 0.02 

 
The new FINDCLOUDS TRINITY software evaluates sky images in a different way than the BRBG and 
CDOC algorithm. Although the new algorithm incorporates the BRBG method, it is mainly based on 
object detection. This software only needs the under exposed images to calculate cloudiness. The 
output format, however, is the same as the previous algorithms. A CCFTRINITY of 0 represents clear sky 
conditions, where a CCFTRINITY of 1 corresponds with overcast conditions. An example of the new 
TRINITY algorithm output is shown in Table 4. Where ‘Ext’ represents the extension of the image, an 
extension of 01 denotes a normal exposed image and an extension of 02 denotes an underexposed 
image. 
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Table 4: Example of the output of the TRINITY algorithm 

Date Time Ext Cloudiness 

01-07-2014 07:00:00 01 0.71 
01-07-2014 07:00:00 02 0.76 
01-07-2014 07:10:00 01 0.69 
01-07-2014 07:10:00 02 0.72 
01-07-2014 07:20:00 01 0.71 
01-07-2014 07:20:00 02 0.76 
01-07-2014 07:30:00 01 0.74 
01-07-2014 07:30:00 02 0.78 

 

Step 4: Calculating metrics 

In the final step of the case study the CCFs of the algorithms was related with the estimated CSIs. In 
this step the accuracy of the algorithms was determined and thus the performances of all algorithms 
were compared. The CSIs are calculated with an interval of 5 minutes, where the CCFs have an interval 
of 10 minutes. Therefore, the measured irradiance values were reduced to a 10-minute time interval. 
Besides, a linear interpolation method was used so that the CSIs match the exact timestamps of the 
sky images taken. To avoid misalignment of sky images and irradiance data during summer, there is 
accounted for daylight savings by adjusting the UTC Offset from 2 to 1. Furthermore, the CCFs from 
the FINDCLOUDS software contradicts to the clearness index: a high CCF represents cloudy conditions, 
where a high value of the clearness index represents clear sky conditions. Therefore, 1 – Kt was used 
to evaluate the algorithms. 
 
Since the quality of this research is highly dependable on the quality of the data used, the irradiance 
data obtained has been examined. For this, the method of Reindl & Beckman (1990) is used. They state 
that extreme data as well as data which violate physical limits, needs to be excluded. Therefore, four 
thresholds were defined which are used to filter out unreliable data. Data which satisfied the following 
criteria were excluded from the analysis: 
 

1. Kt > 1 
When the global solar radiation is exceeding the extra-terrestrial radiation, i.e. when measured 
GHI is exceeding the theoretical maximum GHI calculated by the CSM. 

2. Kd > 1 
When the diffuse fraction is higher than 1, the measured DHI exceeds measured GHI, which 
violates physical laws since GHI = DNI*cos(θ) + DHI, whereas DNI ≥ 0. 

3. Kd > 0.8 and Kt > 0.6 
A diffuse fraction higher than 0.8 represents cloudy conditions, whereas a clearness index 
higher than 0.6 represents clear sky conditions. This criterion is used to eliminate this 
contradicting and unreliable data. The same limits were used as in Reindl & Beckman (1990). 

4. Kd < 0.9 and Kt < 0.2 
As the previous criterion, this statement excludes contradicting data. A diffuse fraction lower 
than 0.9 represents clear sky conditions, whereas a clearness index lower than 0.2 represents 
cloudy conditions. The limits are adapted from Reindl & Beckman (1990). 

 
Finally, the database of the sky images used was not 100% complete as well. For unknown reasons sky 
images were missing. All calculations for these timestamps were deleted and not used for the 
evaluation of the algorithms. Sky images taken during sunrise and sunset are evaluated by the software 
as well. However, especially in winter, these images with low elevation angles can be very dark and 
the algorithms classify the pictures as cloudy while in fact the images may display a clear sky. Therefore, 
the software excludes images from the evaluation when it is classified as a dark image. They are not 
used in determining the accuracy of the algorithms and the evaluation by using statistical criteria. 
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Throughout the irradiance forecasting literature different evaluation metrics are used to determine 
errors between predicted and measured values. However, one metric, the Root Mean Square Error 
(RMSE), is used in much of the evaluations (Feng et al., 2017; Reno et al., 2012; Richardson et al., 2017). 
This metric squares the difference at each timestep before averaging, which gives a relatively high 
weight to large errors. This metric was used in the research and is shown in the equation below. 
Furthermore, the Mean Absolute Error (MAE), adopted and adjusted from Feng et al. (2017) was used. 
This metric measures the average magnitude of errors in a set of forecasts and is shown below. 
 

𝑅𝑀𝑆𝐸 = √
∑ (𝐶𝐶𝐹𝑖 − 𝐶𝑆𝐼𝑆𝑊(𝑖))2𝑁

𝑖=1

𝑁
 (3) 

 

𝑀𝐴𝐸 =
∑ |𝐶𝐶𝐹𝑖 − 𝐶𝑆𝐼𝑆𝑊(𝑖)|𝑁

𝑖=1

𝑁
 (4) 

 
With CCFi the cloud cover fractions of BRBG, CDOC and TRINITY. CSISW(i) is the clear sky index (Kt and 
Kd) at time step i and N is the total number of timesteps. For both metrics a result of zero indicates a 
perfect evaluation of the cloudiness. As the value for RMSE or MAE increases, the error increases and 
thus the cloudiness is not evaluated correctly. The metrics were calculated for each algorithm and for 
each CSISW. Results are shown in a matrix to give a clear overview of the performances with respect to 
each other.  
 

Decomposition analysis 

After the overall performance of the algorithms was evaluated, a more specific analysis with respect 
to the sky conditions was done. Hereby it was possible to test the algorithms at specific conditions, 
e.g. one algorithm might be more accurate at clear sky conditions while another algorithm may 
perform better when detecting thin clouds/haze conditions. Therefore, the data obtained after step 4 
described above, is divided in 3 parts: clear sky, partly cloudy sky and overcast sky. Although a more 
specific division could be made, e.g. dividing the data in 9 classes of cloudiness, this simple approach 
is chosen and adapted from (Luiz, Martins, Costa, & Pereira, 2018) since it is hard to determine the 
boundary between different cloud thicknesses. 
 
To distinguish between different sky conditions the clearness index or diffuse fraction is used. The CCF 
of the proxy yielding the lowest MAE and RMSE at step 4 of the main analysis is used to classify the 
data as clear sky, partly cloudy sky or overcast sky. Therefore, the CCF (1 – Kt or Kd) was first converted 
in to octas. Octas are a method to determine the cloud cover by estimating the fraction of the sky 
covered with clouds to the nearest eight (Jones, 1992). In this research the CCFs are converted in to 
octas by using the thresholds described in Luiz et al. (2018). These thresholds, with the corresponding 
sky conditions, are shown in Table 5. As can be seen from this table the clear sky, partly cloudy and 
overcast conditions are defined as x ≤ 2 octas, 3 octas ≤ x ≤ 5 octas and x ≥ 6 octas, respectively, where 
x represents 1 – Kt or Kd. 
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Table 5: Octas to Cloud Cover Fraction conversion and the corresponding sky conditions 

Octas Fraction Sky condition 

0 0 ≤ cloud cover < 0.11 Clear sky 
1 0.11 ≤ cloud cover < 0.22 Clear sky 
2 0.22 ≤ cloud cover < 0.33 Clear sky 
3 0.33 ≤ cloud cover < 0.44 Partly cloudy sky 
4 0.44 ≤ cloud cover < 0.56 Partly cloudy sky 
5 0.56 ≤ cloud cover < 0.67 Partly cloudy sky 
6 0.67 ≤ cloud cover < 0.78 Overcast sky 
7 0.78 ≤ cloud cover < 0.89 Overcast sky 
8 0.89 ≤ cloud cover ≤ 1 Overcast sky 

 

Time-of-day analysis 

The results can further be specified when accounting for the time of the day. During sunrise and sunset, 
the sky imager makes images as well. However, images with low elevation angles are found to have 
lower blue/red pixel ratios than the ones at higher elevation angles (Huo & Lu, 2009). This increases 
the chance of errors when detecting clouds during sunrise and sunset. The images in the dataset used 
which are taken during sunrise and sunset have a lower brightness than images taken during the day. 
Some of the images are too dark for evaluation and thus the algorithms evaluate this as cloudy 
conditions, while in fact these are clear sky conditions quite often. Although the software uses an 
[exclude by Ratio] option, which should exclude dark images from the evaluation, dark or ambiguous 
images are still used. Moreover, the shortwave irradiance data measured during sunrise and sunset 
are less reliable than data measured during the day. The high zenith angle affects the irradiance 
measured which could cause the clearness index and diffuse fraction to fluctuate very strongly. To 
account for these unreliable periods the sunrises and sunsets are filtered out of the evaluation. The 
dataset will be reduced to timestamps between 9 am and 3 pm and the accuracies of the algorithms 
are specified for hour of the day. 
 

Solar position analysis 

In addition to the time-of-day analysis the effect of the solar position on the performance of the 
algorithms is specified as well. Since the sky images are made with a fish-eye lens, visibility at the 
horizon is lower compared to the centre of the image. Thus, the algorithms responsible for detecting 
clouds have more trouble accurately detecting clouds in the near-horizon area than clouds which are 
situated right above the sky imager (CMS, 2016). By plotting the performance of the algorithms (MAE 
and RMSE) against the elevation angles, the effect of the solar position on the accuracies of the 
algorithms is assessed.  
 

Sensitivity analysis 

Since there was a difference of 19 seconds between the sky images which have been made and the 
irradiance which has been measured, the irradiance data has been interpolated to account for this 
error. At every 10 minutes, the irradiance data was interpolated. If an image is partly cloudy, the 
algorithms will assess it with a CCF of e.g. 0.5. If, then the irradiance is measured through a gap in the 
cloud cover the CSISW can assess this image with a CCF of 0. To account for these errors while evaluating 
the algorithms, the irradiance data was averaged, instead of interpolated. By taking one-hour averages 
of the irradiance data as well as the CCFs of the algorithms, the results can be recalculated while 
excluding the short-term variability of the irradiance data. 
 
 

  



22 
 

Longwave irradiance 

 
The downward longwave irradiance data which was measured on site, enables the opportunity to 
estimate the CCF based on the sky emissivity (CCFLW). The shortwave irradiance emitted by the sun is 
absorbed by clouds and the earth’s surface, these bodies then re-emit the energy in the form of 
longwave radiation with a wavelength of 4-100 μm and thus reaches the earth as infrared radiation. 
The amount of longwave radiation reaching the earth’s surface thus mainly depends on the presence 
of water vapor and aerosols in the earth’s atmosphere(Cheng & Nnadi, 2014). Therefore, the LW 
irradiance measured at the earth surface will be highly influenced by clouds. Since this method uses 
the infrared part of the light’s spectrum, it can be used to estimate CCFs even when there is no daylight. 
In this case study the CCFLW was estimated by comparing the measured LW irradiance with the 
estimated clear sky emittance. The CCFLW was then used to evaluate the three algorithms. 
 
The method which was used in this case study is based on the determination of CCF using LW radiation 
data by Luiz, Martins, Costa, & Pereira (2018). It calculates the CCFLW using meteorological parameters 
like air temperature, relative humidity and atmospheric pressure. The equation that is given for 
calculating the CCF by using the LW irradiance data is shown below. 
 

𝐶𝐶𝐹𝐿𝑊 = (𝐿𝑊 − 𝐿𝑊𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑠𝑠)/(1 −∈𝐶) ∗ 𝜎 ∗ 𝑇𝐶
4 (5) 

 
Where LW is the LW irradiance for each timestep. LWcloudless is the lowest hourly mean LW irradiance, 
i.e. the LW for clear sky days. σ is the Stefan Boltzmann constant (5.67*10-8 Wm-2K-4), TC the cloud 
base temperature and ∈c is the clear sky emittance. The ∈c was calculated with the next equation. 
 

∈𝐶=
𝐿𝑊𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑠𝑠

𝜎 ∗ 𝑇𝑎
4  (6) 

 
Where Ta is the mean dry bulb temperature for the same period as LWcloudless. Since the LW irradiance, 
dry bulb temperature and cloud base temperature are all measurements, the CCFLW can in some cases 
exceed the range of 0-1. Therefore, the CSI approach of Marty & Philipona (2000) is used to adjust and 
normalize the data. 
 

𝑒𝑎 = 6.1094 ∗ 𝑒17.625∗𝑇𝑎/(243.04+𝑇𝑎) (7) 
 

∈𝑎=
𝐿𝑊

𝜎 ∗ 𝑇𝑎
4 (8) 

∈𝐶= 1.24 ∗ (
𝑒𝑎

𝑇𝑎
)

1/7

 (9) 

 
𝐶𝑆𝐼𝐿𝑊 = ∈𝑎/∈𝐶 (10) 

 
First the CSILW is calculated with the equations above. Note that the CSILW can become higher than 1 
and thus is not the same as CSISW. ∈a is the emittance of the sky and ea is the vapor pressure at the 
earth’s surface adapted from (Alduchov & Eskridge, 1996). The dry bulb temperature Ta used in 
equation 7 is in Celsius, whereas in other equations Ta is in Kelvin. Then for every timestep with 
CSILW > 1.05 the CCFLW was set to 1 and with CSILW < 0.89 the CCFLW was set to 0. These thresholds were 
adapted from Luiz et al. (2018). If there were still CCFLW values higher than 1, a normalization was 
applied according to the equation below (Luiz et al., 2018). 
 

𝐶𝐶𝐹𝐿𝑊
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖)

= (𝐶𝐶𝐹𝐿𝑊(𝑖) − min(𝐶𝐶𝐹𝐿𝑊))/(max(𝐶𝐶𝐹𝐿𝑊) − min(𝐶𝐶𝐹𝐿𝑊)) (11) 
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The normalized CCFLW values now range from 0 to 1. To calculate the fit of the CCFLW and cloudiness 
values, the normalized CCFLW values were used to calculate the RMSE and MAE again according to 
equations 3 & 4 shown , where  CCFi is the CCFnormalized(i). 
 
These CCF values, as well as the CCFs of the algorithms, are then converted into octas according to the 
method explained at the decomposition analysis and the thresholds shown in Table 5. Then the 
accuracy is determined for the situations where the CCFLW and CCFs of the algorithms have the same 
octas. This is also done for a difference of 1 and 2 octas.  
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4. Results 
 
The results section consists of two analysis. The first analysis is based on the SW irradiance method 
and used the SW data of the first case study. After the data analysis a decomposition analysis, time-of-
day analysis and sensitivity analysis are shown. The sensitivity analysis uses the SW irradiance of the 
second case study as well. Then, the results of the LW irradiance method are shown. This part only 
uses the LW irradiance obtained from case study II. 
 

Shortwave irradiance 
 

Data analysis 

The first step of the case study analysis is calculating the clear sky irradiance at the location where the 
irradiance measurements are made. Therefore, the Ineichen/Perez CSM is run in MATLAB for the 
geographical coordinates of Utrecht University. In Figure 2 and Figure 3 the results of the CSM are 
plotted against the measured irradiance values for a clear sky day and partly cloudy day, respectively. 
 

 
Figure 2: Irradiance for a clear sky day (2014-07-23) 

 
Figure 3: Irradiance for a partly cloudy day (2014-07-01) 

 
As can be seen from the figures above, irradiance values align quite good with the clear sky model at 
a clear sky day and irradiance values fluctuate very strongly on a partly cloudy day. In Figure 2 
measured GHI forms a good fit with clear sky GHI (RMSE = 19.77), where DNI and DHI values deviate 
slightly from the clear sky model (RMSE = 85.46 and RMSE = 56.17, respectively). This could be due to 
measurements errors, but more likely the clear sky model is not perfectly accurate. Kato et al. (1997) 
found that a difference of 5% relative to the measured irradiance is typical, whereas clear sky diffuse 
irradiance can be overestimated with more than 40%. Although the CSM used is not perfectly accurate 
small deviations between measured and modelled values are not uncommon. In Figure 3 fast changing 
cloud conditions cause the irradiance values to fluctuate very strongly, sometimes even leading to 
super irradiance events. 
 
After the clear sky irradiance values were calculated, the CSIs are determined for each timestamp for 
which a sky image is available as discussed in step 2. The distribution of the clearness index and diffuse 
fraction for two years of irradiance data are shown in the histograms of Figure 4 and Figure 5, 
respectively. 



25 
 

 
 

Figure 4: Histogram for the clearness indices 

 
 

Figure 5: Histogram for the diffuse fractions 

From these figures it can be seen that the clearness index mostly varies between 0 and 0.5 and that 
most Kd values are near a value of one. This makes sense, since the Netherlands has 44 clear sky days 
on average according to the clear sky days defined in Table 5, whereas the average number of overcast 
days is 205 per year. The rest of the days are partly cloudy (KNMI, 2019). From Figure 4 one can see 
that super irradiance events occur often, especially Kt values higher than 1.5 cannot be due to the clear 
sky model errors and most certainly result from super irradiance events. 
 
Then, the FINDCLOUDS and TRINITY software are used to evaluate the sky images. For each timestamp 
the cloudiness is given by the BRBG, CDOC and TRINITY algorithm. In Figure 6 until Figure 9 sky images 
are shown, including the evaluations of the three algorithms. This is done for a clear sky, thin 
clouds/haze conditions, partly cloudy and complete overcasts conditions, respectively. All images are 
manually selected and are representative for the particular cloud conditions. The Figures show that 
the BRBG algorithm only distinguishes clear sky (blue) or clouds (grey), the CDOC algorithm 
distinguishes clear sky (blue), thick clouds (grey) and thin clouds (white) and the TRINITY algorithm 
distinguishes multiple layers of cloud cover.  
 
From Figure 6 one can see that all algorithms perform good at clear sky conditions. The blue sky is 
clearly visible for the software and the BRBG and CDOC algorithms show almost zero cloudiness. The 
TRINITY algorithm has difficulties with classifying the near sun area. The refraction of the light causes 
a slightly lighter colour at the bottom part of the image. The algorithm classifies this as (thin) clouds. 
This is not only an error occurring at the TRINITY algorithm. The BRBG and CDOC algorithms have this 
as well, though this mostly occurs at sky images with low elevation angles, i.e. especially in the winter 
months. Figure 7 displays thin clouds or hazy conditions which is found to be one of the most 
challenging events;. Since this is a mix up of clear sky and cloudy conditions, the results of the algorithm 
vary widely. As can be seen the BRBG algorithm classifies the image with 0.64, where the CDOC and 
TRINITY algorithms value the image at 1.00 and 0.95, respectively. Based on manual observation, the 
TRINITY algorithm appears to be evaluating the image most accurately, which is due to the multiple 
layer classification. At Figure 8 a partly cloudy image is shown. All algorithms perform good in this case 
as can be seen from the cloudiness values which don’t deviate a lot from each other. The clear contrast 
of sky and clouds in these conditions enable the algorithms to evaluate partly cloudy images accurately. 
Figure 9 shows the image and evaluation of a complete overcast event. The BRBG and TRINITY 
algorithms classify the image accurately, both with a CCF of 1.00. the CDOC algorithm, however, 
misclassifies a part of the near sun area. As a result, the CDOC algorithm falsely classifies 7% of the 
image as clear sky. This is an error which occurred often when using the CDOC algorithm and can be 
seen as typical for this algorithm, the BRBG and TRINITY algorithm did not have this kind of error. 
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CCFBRBG = 0.01 

 
CCFCDOC = 0.00 

 
CCFTRINITY = 0.02 

Figure 6: Evaluations of a clear sky image (2014-07-23 11:00:00) 
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CCFBRBG = 0.64 

 
CCFCDOC = 1.00 

 
CCFTRINITY = 0.95 

Figure 7: Evaluations of a thin cloud/hazy sky image (2014-07-19 08:30:00) 
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Figure 8: Evaluations of a partly cloudy sky image (2015-04-01 14:00:00) 
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CCFBRBG = 1.00 

 
CCFCDOC = 0.93 

 
CCFTRINITY = 1.00 

Figure 9: Evaluations of a complete overcast sky image (2015-04-17 09:50:00) 

 
Next, the results of all the evaluations are combined and shown in Figure 10. The boxplots in this Figure 
summarize the CCFs of the algorithms. The histograms provide additional information regarding the 
distribution of the data. All three algorithms reach the highest frequency for a cloudiness level near a 
value of one. This is in line with the distributions of the clearness index and diffuse fraction as shown 
in Figure 4 and Figure 5, which also show that overcast conditions are more usual than clear sky 
conditions. As the boxplots and histograms show, the CDOC and TRINITY algorithms differ from the 
BRBG algorithm in the sense that the data is more concentrated near the value of one. For the BRBG 
algorithm the middle 50% of the data has a lower bound of 0.3, where for the CDOC and TRINITY 
algorithm this is around 0.7 and 0.6, respectively. To quantify the differences between the algorithms, 
the MAE and RMSE are calculated for all combinations of the algorithms. The results are shown in 
Table 6. As can be seen, both metrics yields the lowest error for the comparison CDOC-TRINITY, while 



27 
 

the highest errors are the combinations of CDOC and TRINITY with BRBG. Thus, the evaluations of the 
CDOC and TRINITY algorithm are much closer related with each other, than when each of these 
algorithms is compared with the BRBG algorithm. These results align with the results from Figure 10 in 
which the CDOC and TRINITY algorithms assign higher cloudiness values to the evaluated images. 
 

 
Figure 10: Data distribution of the algorithm’s evaluations for the entire dataset 

 
Table 6: Differences of the three algorithms with respect to each other (MAE and RMSE) 

 Mean Absolute Error Root Mean Square Error 

 BRBG CDOC TRINITY BRBG CDOC TRINITY 
BRBG x 0.1680 0.1326 x 0.2667 0.2123 
CDOC 0.1680 x 0.0814 0.2667 x 0.1577 

TRINITY 0.1326 0.0814 x 0.2123 0.1577 x 
 
Before the CSIs and the CCFs of the algorithms can be compared, extreme data has to be filtered out 
according to the thresholds described in the methodology. Then, all the remaining timestamps are 
used for further calculations. For each algorithm two scatter plots are shown in Figure 11, one using 
the clearness index and one using the diffuse fraction. From these figures one can see that overcast 
conditions (top right corners) occur much more than clear sky conditions (bottom left corners) in 
Utrecht. This makes sense, since the Netherlands have an oceanic climate and cloudy conditions are 
more common than clear skies. On average, only 14% of the days are clear sky days in the Netherlands 
(KNMI, 2019). 
 
In Figure 11 the difference between the clearness index and diffuse fraction for validating the 
algorithms are shown. All Figures on the left side (clearness index) are scattered more widely than the 
Figures on the right side (diffuse fraction). The top left corners, and to a lesser extent the bottom right 
corners, have a higher density of data points for the clearness index than for the diffuse fraction. This 
means that the clearness index is less correlated with the CCFs of the algorithms than the diffuse 
fraction. This is best visible for clear sky conditions. The Figures on the left seem to tend to a random 
distribution, whereas the Figures on the right seem to have a funnel structure. So, when looking at a 
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proxy for the comparison of the algorithms with a CSISW, the diffuse fraction is more suitable than the 
clearness index. 
 
When looking at the scatter plots of the diffuse fraction one can see that all algorithms perform good 
at clear sky conditions. In the bottom left corners all data points are concentrated and form the 
beginning of a funnel. As the cloudiness increases the funnel structure, which ideally should be a linear 
line from [0,0] to [1,1], becomes wider. This holds especially for the BRBG algorithm. So, conditions 
with a cloudiness higher than around 0.3 are prominently responsible for the scattering in the Figures. 
Finally, all algorithms have a high density of data points in the top right corners. This are the overcast 
conditions and all algorithms appear to evaluate most of these situations correctly. These findings 
settle with the results of the visual inspection, where the thin clouds/haze conditions are seen as most 
challenging for the algorithms. 
 
When taking a closer look at the differences between the algorithms, it can be seen that all algorithms 
have a similar shape. However, the BRBG algorithms has a funnel structure which is less abrupt, or 
steep, than the CDOC and TRINITY algorithms. This means that a higher diffuse fraction results in a 
higher cloudiness for the CDOC and TRINITY algorithms compared to the BRBG algorithm. Thus, as the 
amount of clouds increase the effect on the cloudiness of the CDOC and TRINITY is higher than on the 
BRBG. This could be due to, e.g. the fact that the CDOC and TRINITY algorithms are able to classify 
multiple cloud thicknesses. Furthermore, the BRBG has a lot of data points in the bottom right corner 
which decreases the accuracy of this algorithm. The CDOC on the other hand, has for the full range of 
diffuse fractions a lot of data points where the cloudiness is 1. These problems occur less when using 
the TRINITY algorithm. However, for a more accurate comparison one should look at the results of the 
metrics explained in the methodology.   
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Figure 11: Scatter plots of CSIs against CCFs of the algorithms 

The data from the scatter plots in Figure 11 is then used to calculate the MAE and RMSE. Results are 
shown in Table 7. As can be seen from this table the values for the RMSE are higher than the MAE, 
which is due to the squaring of the error in the RMSE metric. Differences between the two datasets 
are thus enhanced in the RMSE metric. According to the RMSE, the BRBG algorithm performs best 
when compared with the clearness index and the TRINITY algorithm performs best when compared 
with the diffuse fraction. The MAE is lowest for the BRBG algorithm compared with the clearness index 
and TRINITY performs best compared with the diffuse fraction. Furthermore, the results in the table 
support the statement that the diffuse fraction is a better proxy than the clearness index. For each 
metric calculated, the use of the diffuse fraction results in a lower value and thus a smaller error 
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between the two datasets. Besides, the differences between the three algorithms is smaller when 
using the diffuse fraction compared with the clearness index. Thus, the diffuse fraction is a better proxy 
for evaluation the algorithms in this analysis than the clearness index. 
 
When taking a look at the MAE with the diffuse fraction, one can see that the TRINITY algorithm 
performs best with an average error of 12.18%. Although this is considerably better than the BRBG 
algorithm, the CDOC algorithm also performs similar with an average error of 13.74%. The 
performances of the algorithms compared to each other does not change according to the RMSE. Only 
the differences between them are increased. The MAE values calculated with the clearness index are 
much higher than the values calculated with the diffuse fraction. Since these values vary between 
26.74% and 33.31% it can be stated that using the clearness index as CSISW is far less accurate than 
using the diffuse fraction. 
 

Table 7: RMSE and MAE of the three different algorithms (Case Study I) 

MAE CLEARNESS INDEX DIFFUSE FRACTION 

BRBG 0.2674 0.1675 
CDOC 0.3331 0.1374 

TRINITY 0.3218 0.1218 
RMSE   
BRBG 0.3387 0.2579 
CDOC 0.4150 0.2189 

TRINITY 0.3940 0.1979 
 

Decomposition analysis 

Since the results of Table 7 show that the diffuse fraction yields lowest MAE and RMSE, the Kd is used 
to classify the data into clear sky, partly cloudy sky and overcast sky as described in the methodology. 
The results of the decomposition analysis are show in Table 8. From this table one can see that the 
partly cloudy situations are the most challenging to evaluate by the algorithms. This category includes 
the thin clouds/hazy conditions as shown in Figure 7. As described earlier these sky conditions are hard 
to be recognized by the algorithms, since it is a mix of clear sky and cloudiness. This is supported by 
the fact that all algorithms have the highest MAE at the partly cloudy sky. The error values under these 
conditions are similar for the different algorithms. Furthermore, the RMSEs at partly cloudy sky are all 
remarkably high, compared to other sky conditions. The BRBG algorithm performs average at clear sky 
and partly cloudy conditions, but the performance at an overcast sky is worse than the other 
algorithms, where the MAE is 76% higher than the other algorithms. The RMSE is also significantly 
higher at these conditions (66%). The CDOC algorithm, however, performs best at overcast conditions, 
while performing bad at clear skies. Where the MAE is 54% higher and the RMSE is 95% higher than 
the other algorithms, other algorithms perform better at clear sky conditions. Finally, the TRINITY 
algorithm outperforms BRBG and CDOC at clear sky conditions and in overcast situations outperforms 
BRBG, while the difference with the CDOC remain very low. Overall, the TRINITY algorithm achieves 
the best results for clear sky situations, all algorithms perform similarly at partly cloudy conditions, 
while the CDOC and TRINITY achieve the lowest error at overcast conditions. 
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Table 8: Results of the decomposition analysis: algorithm performance at different sky conditions 

MAE Clear sky Partly cloudy sky Overcast sky 

BRBG 0.1430 0.2201 0.1625 
CDOC 0.2200 0.2679 0.0837 

TRINITY 0.1091 0.2541 0.0922 
RMSE    
BRBG 0.1611 0.2587 0.2771 
CDOC 0.3235 0.3148 0.1425 

TRINITY 0.1657 0.3010 0.1672 
 

Time-of-day analysis 

Next to the interpolation error, the effect of dark images in the evaluation was also examined. Table 9 
shows the results of the analysis when excluding the sunrise and sunset. In this analysis only data which 
was measured between 9 am and 3 pm was used. As can be seen from this table, the values of the 
clearness index do not significantly differ when compared to the original evaluation. When looking at 
the diffuse fraction, however, the MAEs have decreased with 11%, 15% and 2% for the BRBG, CDOC 
and TRINITY, respectively. All values for the MAE have thus become lower. This means that excluding 
the periods with low elevation angles improves the accuracy of the algorithms, where the effect is 
largest for the BRBG and CDOC. This is in line with what was expected, namely that a low elevation 
angle causes unreliable shortwave irradiance data and that the algorithms would perform worse when 
the image is darker. To elaborate more on the effect of the time of day and to look closer at the effect 
on the different algorithms, the MAEs for all algorithms are specified for the hour of the day in Figure 
12. The diffuse fraction is used since the MAEs are much lower compared with the clearness index. In 
the figure, the value of the hour of the day e.g. 7 represents all MAEs calculated for data obtained 
between 7 pm and 8 pm throughout the entire dataset. 
 

Table 9: Results of sensitivity analysis (including/excluding sunrise and sunset) 

 Including Sunrise and Sunset Excluding Sunrise and Sunset 

MAE Clearness index Diffuse fraction Clearness index Diffuse fraction 
BRBG 0.2674 0.1675 0.2898 0.1485 
CDOC 0.3331 0.1374 0.3315 0.1173 

TRINITY 0.3218 0.1218 0.3440 0.1190 
RMSE     
BRBG 0.3387 0.2579 0.3617 0.2334 
CDOC 0.4150 0.2189 0.4044 0.1796 

TRINITY 0.3940 0.1979 0.4166 0.1942 
 
From Figure 12 one can see that all algorithms obtain the lowest errors somewhere between 9 am and 
3 pm. After 3 pm the MAEs of all algorithms increase, especially the error of the BRBG algorithm is 
prominent. After a small drop at 7 pm, for which there does not seem to be a logical explanation, the 
errors are very high at 8 pm. When looking at the algorithms, one can see that the BRBG algorithm has 
the highest errors for most of the hours per day, except for the early morning and late evening. During 
these times the BRBG algorithm performs better than the CDOC algorithm. This CDOC algorithm has 
high errors at sunrise and sunset, however during the day it achieves the lowest errors compared to 
the other algorithms. The TRINITY algorithm seems to perform good in the morning as well as during 
the day. Only evaluations obtained after 8 pm acquire a high MAE, however, the low amount of data 
points for this hour is decreasing the reliability.  
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Figure 12: Performance of the algorithms specified for each hour of the day, throughout the entire dataset 

 

Solar position analysis 

Since the solar position changes for each hour of the day throughout the year, the MAEs and RMSEs 
are plotted against the elevation angles in Figure 13 and Figure 14, respectively. From these figures 
one can see that the BRBG has the highest errors at low elevation angles. The CDOC algorithm 
outperforms the TRINITY algorithm for the very low elevation angles, whereas it yields higher errors 
than the TRINITY algorithm for elevation angles of 10° to 35°. For elevation angles of 35° and higher, 
all algorithms have a similar performance and the effect of the solar position on the performance of 
the different algorithms seems to be strongly reduced. 
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Figure 13: MAEs of the algorithms specified for each elevation angle, throughout the entire dataset 
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Figure 14: RMSEs of the algorithms specified for each elevation angle, throughout the entire dataset 
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Sensitivity analysis 

To account for the error which could occur when interpolating the irradiance data, the results of the 
analysis when using hourly means is shown in Table 10. In the analysis the CCFs of the algorithms as 
well as irradiance data is averaged over the hour. The table shows that both CSISW do not change a lot. 
When looking at the clearness index the BRBG algorithm still has the smallest errors. When comparing 
the diffuse fractions of both analyses one can see that the results have been levelled. The use of the 
hourly means for all of the data results in a difference of MAE less than 0.03 per algorithm. Though 
CDOC has a slightly lower error than the TRINITY and BRBG algorithms, all algorithms have a similar 
performance. The BRBG algorithm has endured the highest decline of the errors (-21% and -24%), 
which could indicate that these algorithm outputs fluctuate more strongly than the other algorithms. 
For the CDOC and TRINITY algorithms the differences are smaller.  
 
The SW irradiance measurements of case study II are measured 19 seconds after the sky images have 
been made. Therefore, the SW irradiance values are interpolated to make the analysis possible. To 
further examine the effect of this interpolation on the results, the SW irradiance method is applied to 
the data of case study II as well, since for this case study all data collection is synchronized no 
interpolation is needed. The results are shown in Table 11, along with the results of case study I. The 
results in the table show that the errors are higher for case study II than the first case study, though 
the differences are small. When looking at the diffuse fraction the influence of interpolation in case 
study I is neglectable, since the results are more accurate than the results of case study II. When looking 
at the clearness index the results are more accurate in case study II than in case study I, however the 
errors are still higher as when using the diffuse fraction. Furthermore, the results of both case studies 
are similar with respect to the different algorithms. When using the clearness index as a proxy, the 
BRBG algorithm performs best in both case studies. When using the diffuse fraction as a proxy the 
ranking of the algorithm is identical for both case studies. Although the values for the MAE are a bit 
higher, the TRINITY algorithm still outperforms the BRBG and CDOC. Since the values of the metrics 
shown in Table 10 do not change a lot when averaging the data for each hour and the results in Table 
11 show that the errors of case study I (interpolation) are lower than the results of case study II (no 
interpolation), it becomes clear that the interpolation error is small. The variability of the irradiance 
data thus only has a minor influence on the result of the analysis. 
 

Table 10: Results of sensitivity analysis (10-minute interpolation vs hourly mean) 

 10-minute interpolation Hourly mean Difference 

MAE Clearness 
index 

Diffuse 
fraction 

Clearness 
index 

Diffuse 
fraction 

Clearness 
index 

Diffuse 
fraction 

BRBG 0.2674 0.1675 0.2972 0.1330 11% -21% 
CDOC 0.3331 0.1374 0.3399 0.1281 2% -7% 

TRINITY 0.3218 0.1218 0.3483 0.1300 8% 7% 
RMSE       
BRBG 0.3387 0.2579 0.3601 0.1956 6% -24% 
CDOC 0.4150 0.2189 0.4116 0.1789 -1% -18% 

TRINITY 0.3940 0.1979 0.4165 0.1843 6% -7% 
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Table 11: Results of both case studies for the SW irradiance method 

 Case study I Case study II Difference 

MAE Clearness 
index 

Diffuse 
fraction 

Clearness 
index 

Diffuse 
fraction 

Clearness 
index 

Diffuse 
fraction 

BRBG 0.2674 0.1675 0.2166 0.2105 -19% 26% 
CDOC 0.3331 0.1374 0.2944 0.1714 -12% 25% 

TRINITY 0.3218 0.1218 0.3038 0.1637 -6% 34% 
RMSE       
BRBG 0.3387 0.2579 0.3023 0.3142 -11% 22% 
CDOC 0.4150 0.2189 0.3747 0.2540 -10% 16% 

TRINITY 0.3940 0.1979 0.3967 0.2514 1% 27% 
 
Since in case study I the difference in the MAE and the RMSE calculated with the clearness index is less 
significant when using the hourly mean of all data when compared to the diffuse fraction, it can be 
stated that this index is less correlated with the CCFs of the algorithms than the diffuse fraction is. 
Figure 15 shows the scatter plots of CCFs and clearness index and diffuse fraction for hourly means, 
which are similar to Figure 11. As can be seen from this figure, the scatter plots on the left (clearness 
index) still not correlate with the CCFs as does the diffuse fraction (plots on the right). The plots using 
the clearness index tend towards a random distribution. Since taking the hourly mean of the data yields 
similar results as 10-minute interpolation it can be stated that the clearness index is less correlated 
with the algorithms output. Therefore, results obtained by using the diffuse fraction should mainly be 
used to determine meaningful conclusions. 
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Figure 15: Scatter plots of CSIs against CCFs of the algorithms (by using hourly means of all the data) 
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Longwave irradiance 
 

Data analysis 

The CCFs and CSIs (LW) are calculated and shown in Figure 16 below. As can be seen there is a clear 
distribution between clear sky situations (CCFLW = 0) and cloudy situations (CCFLW = 1). The CSI used for 
this longwave irradiance data distinguishes between clear sky (CSILW < 1) and cloudy sky (CSILW > 1) as 
was discussed by Marty & Philipona (2000). From this figure one can see that clear sky conditions and 
complete overcast conditions dominate the dataset used.  
 

 
Figure 16: Relationship between the normalized Cloud Cover Fraction CCFLW and the Clear Sky Index CSILW 

 
After the CCFs have been calculated, the sky images of the new location are evaluated by the 
algorithms. To assess the evaluation results of the algorithms, but also the accuracy of the LW 
irradiance method used, Figure 17 till Figure 20 display four situations (clear sky, thin clouds/haze, 
partly cloudy and overcast conditions) as was done in case study I. Figure 17 shows the results for a 
clear sky situation. As can be seen all algorithms assign a value higher than 0. The near sun area is hard 
to evaluate, especially at images with high zenith angles. In Figure 18 a thin clouds/hazy situation is 
displayed. Again, the scattering of the light in the near sun area is affecting the output of the 
algorithms. Where the BRBG and CDOC classify the rest of the sky as clear sky, the TRINITY algorithm 
classifies this as hazy. Based on the visual inspection of this image, the TRINITY algorithms seem to 
perform better at these challenging conditions, whereas according to the LW method the BRBG 
algorithm seems to perform best. However, the LW methods seems not to be correct here, since clouds 
can be observed visually while the CCFLW is zero. In Figure 19 the sun is already out of the scope of the 
image. All algorithms seem to evaluate this image correctly, however the CDOC and TRINITY have a 
higher cloudiness than BRBG. Especially at the cloud edges and thinner cloud sections the CDOC and 
TRINITY look better. Finally, the BRBG and TRINITY algorithm evaluate the overcast condition in Figure 
20 perfectly. The CDOC, however has a small error. The area near the sun is evaluated as clear sky, 
which is probably due to an incomplete CSL. This has also affected the CDOC evaluation in the previous 
images. 
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For each situation in Figure 17 till Figure 20 the CCFLW is shown. For the clear sky and overcast images, 
the CCFLW was 0 and 1, respectively. Despite these values being perfectly accurate for this conditions, 
the thin clouds and partly cloudy situations are less accurate. The thin cloud situation has a CCFLW of 0. 
Since thin clouds occur on this image, the CCFLW value is not right. However, the range of the algorithm 
evaluations (0.22-0.67) already show that results can vary widely in these conditions. Next, the 
calculated CCFLW is 0 for the partly cloudy situation as well. There are clearly thick clouds here and the 
algorithms evaluations are high (0.58-0.78). Therefore, there seems to be an error occurring in the 
data measured or in the method used to calculate the CCFLW. 
 

 
Normal (CCFLW = 0) 

 
CCFBRBG = 0.02 

 
CCFCDOC = 0.04 

 
CCFTRINITY = 0.04 

Figure 17: Evaluations of a clear sky image (2018-01-02 11:00:00) 

 
Normal (CCFLW = 0) 

 
CCFBRBG = 0.22 

 
CCFCDOC = 0.38 

 
CCFTRINITY = 0.67 

Figure 18: Evaluations of a thin cloud/hazy sky image (2018-01-18 11:00:00) 

 
Normal (CCFLW = 0) 

 
CCFBRBG = 0.58 

 
CCFCDOC = 0.76 

 
CCFTRINITY = 0.78 

Figure 19: Evaluations of a partly cloudy sky image (2018-01-05 15:40:00) 

 
Normal (CCFLW = 1) 

 
CCFBRBG = 1.00 

 
CCFCDOC = 0.94 

 
CCFTRINITY = 1.00 

Figure 20: Evaluations of a complete overcast sky image (2018-01-08 11:00:00) 
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After the algorithms have evaluated the sky images the output is used to calculate the accuracy. 
Therefore, the CCFLW and CCFs of the algorithms are first categorized in octas. Then the accuracy is 
calculated by counting the amount of times the CCFLW and algorithms displayed the same cloudiness 
in octas, this is also done for ± 1 octas and ± 2 octas. Results are shown in Table 12. This table shows 
that the TRINITY algorithms is most accurate, although the differences are only 3.25% and 1.47% 
compared to BRBG and CDOC, respectively. When the accuracies are measured with a difference of 1 
or 2 octas the performance increases substantially. However, differences between the algorithms stay 
constant or decrease. 

Table 12: Accuracies of the algorithms according to the CCFLW 

 Accuracy (%) 

 (± 0 octas) (± 1 octas) (± 2 octas) 

BRBG 52.67 65.65 73.51 

CDOC 54.45 68.17 76.02 

TRINITY 55.92 69.21 77.07 

 
To assess the quality of the accuracies calculated above, the MAE and the RMSE are also calculated for 
this data set. Therefore, the actual CCFLW and CCFs of the algorithms are used, i.e. not the octas. In this 
way, the error between CCFLW and algorithm evaluation can be determined most accurately. The 
results are shown in Table 13. The MAE of the BRBG algorithm is lowest, followed by the TRINITY 
algorithm. The MAE of the CDOC algorithm is substantially higher than the other algorithms, which is 
probably due to the incomplete CSL as discussed earlier. When looking at the RMSE however, the CDOC 
and TRINITY algorithm yield comparable results. 
 

Table 13: RMSE and MAE of the three different algorithms (Case Study II) 

MAE CCFLW 

BRBG 0.2283 
CDOC 0.3299 

TRINITY 0.2596 
RMSE  
BRBG 0.3717 
CDOC 0.4606 

TRINITY 0.4750 
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5. Discussion 
 
With an increasing amount of intermittent renewable electricity generation in to the power mix, the 
importance of accurate and reliable energy production forecasts becomes more important. For the 
short term (< 30 min) sky imaging is one of the most important methods of forecasting PV generation. 
A method which is widely used in PV-farms. This research aimed at studying the performance of various 
cloud detecting algorithms in combination with an ASI provided by EKO Instruments. By assessing the 
performance of the new algorithm with respect to previously defined algorithms, new insight is gained 
in the field of sky imaging and the knowledge base of cloud detection algorithms is enlarged. 
 
The SW irradiance method is based on two years of measurements with a total of 22.973 images used 
after the data was filtered. The visual inspection at the SW irradiance method showed that the BRBG 
and TRINITY algorithms performed best, while the CDOC algorithm had trouble with evaluating thin 
clouds and overcast conditions. The MAE and RMSE turned out to be substantially lower when using 
the diffuse fraction compared to the clearness index, furthermore the scatter plots as shown in Figure 
11 and Figure 15 show that the output of the algorithms correlate much better with the diffuse fraction 
than with the clearness index. The results when using the diffuse fraction show that the TRINITY 
algorithm performs best.  
 
The additional decomposition analysis shows that the BRBG algorithm performs worse at overcast 
conditions, with a 76% and 66% higher MAE and RMSE compared to the other algorithms, respectively. 
The CDOC algorithm as trouble identifying clear sky conditions. With a MAE 54% higher and a RMSE 
95% higher than the other algorithms, the BRBG and TRINITY algorithms have a higher accuracy at clear 
sky conditions than the CDOC algorithm. The TRINITY algorithm is more stable than other algorithms 
and shows good performance at all sky conditions (see Table 8). The time-of-day analysis shows that 
when looking at the diffuse fraction, excluding the sunrise and sunset improves the accuracies with 
11%, 15% and 2% for the BRBG, CDOC and TRINITY, respectively. The solar position analysis shows that 
the BRBG algorithm is most sensitive to low elevation angles, leading to higher errors. The TRINITY 
algorithm achieves similar performance for all elevation angles and is more constant than the other 
algorithms. For elevation angles of 35° and higher, all algorithms perform similarly as shown in Figure 
13 and Figure 14.  
 
Since the dataset of the second case study has SW irradiance as well, the SW irradiance method is also 
applied to case study II. For the diffuse fraction the errors were 16-34% higher in case study II, whereas 
for the clearness index the errors were up to 19% lower in case study II. No explanation could be found 
for these contradicting indices. Therefore, the differences are most likely due to the small dataset of 
case study II. Where case study II uses only 17 days of data, case study I uses 2 years of data. Besides, 
all data of case study II was measured in January and thus only data from the winter months (with low 
elevation angles) could be included. This data with low elevation angles caused higher errors as was 
seen in the decomposition analysis. It is expected that using a larger dataset will improve the quality 
of the results and better align the clearness index and diffuse fraction. However, comparing the results 
of both case studies when using the diffuse fraction yields the same ranking of the algorithms, besides 
using the clearness index yields a comparable result as well. Therefore, considering the performance 
of the algorithms and the decomposition-, time-of-day-, solar- and sensitivity analysis, overall TRINITY 
is found to perform best followed by CDOC algorithm and the BRBG algorithm. 
 
The LW irradiance method is based on 17 days of measurements with a total of 955 images used in the 
analysis. Although all cloud conditions (clear sky, thin clouds/haze, partly cloudy, overcast) occurred 
during this period, clear sky conditions were strongest represented. Therefore, the dataset used is not 
ideal and the results are preliminary. The visual inspection shows that the TRINITY algorithm performs 
best, especially at thin cloud/hazy conditions. The CDOC algorithm performs worst, which is partly due 
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to the incompleteness of the CSL. The MAEs and RMSEs of all algorithms are significantly higher than 
results obtained by the SW irradiance method, especially for the CDOC and TRINITY algorithms which 
errors more than double (Table 7 and Table 13). However, according to the LW method the BRBG 
performs best, followed by the TRINITY algorithm. Since the RMSE is much higher than the MAE for 
the TRINITY algorithm compared to the other algorithms, one can conclude that the TRINITY output 
has more extreme outliers than the other algorithms. So, because the accuracy and RMSE of TRINITY 
is highest, the outliers of the evaluated timestamps must have a larger error. In other words, when the 
TRINITY algorithm does not evaluate an image correctly, the error is larger than when the other two 
algorithms wrongly evaluate the image. The accuracies of all algorithms are shown in Table 12. With a 
difference of zero octas the accuracy of the BRBG algorithm is 52.67%, whereas Luiz et al., (2018) found 
an accuracy of 64% when using the same methodology. With a difference in accuracy lower than 12% 
and a much smaller dataset, the results obtained are of comparable reliability.  
 
Based on the visual inspection and the algorithms performances it can be stated that using LW 
irradiance as a proxy for cloud cover is less accurate than using SW irradiance. The visual inspection of 
the algorithms at the SW irradiance method shows that the CCFSW better represents the outputs of the 
algorithms compared to the CCFLW calculated with the LW irradiance method. Especially for the thin 
cloud/partly cloudy situations the CCFSW appears to be more accurate than the CCFLW. Furthermore, 
comparing the results of Table 7 and Table 13 shows that the MAEs when using the diffuse fraction are 
27%, 58% and 53% lower than when using the LW irradiance method for BRBG, CDOC and TRINITY, 
respectively. 
 
Limitations of the research 
Since the irradiance values used in the research are very dependent on the weather variability, several 
limitations are inevitable. GHI measurements made on partly cloudy days do not always represent the 
actual cloud conditions. When, for example, the cloud cover is 80% and the GHI is measured at the 
other 20%, which forms a gap in the clouds an error occurs. The cloud detecting algorithms will classify 
the cloud cover as 80%, whereas the clearness index would classify the cloud cover as 0%. The same 
occurs when there is an almost clear sky, but a few clouds are blocking the path between the sun and 
the pyranometer. This under- and over estimation of the cloudiness affects the results of the analysis. 
However, the effect on the differences between the algorithms is expected to remain small, since the 
same clearness index is used for all algorithms. Besides, part of this unreliable irradiance data is filtered 
out by using the thresholds described in step 4 of the SW irradiance method. 
 
For determining the clearness index, the clear sky irradiance values are calculated by using a CSM. As 
can be seen from Figure 2, especially the measured DNI and DHI deviate a bit from the clear sky DNI 
and DHI, respectively. The CSM GHI has a better fit with the measured GHI. The fit between measured 
and calculated irradiance values thus only appears to affect the calculation of the diffuse fraction. 
However, this fraction is subject to another error. At clear sky days the DHI does not reach a value of 
zero. Since diffuse irradiance is caused by water vapor, ozone and other particles in the sky there will 
always be DHI at clear sky days (as shown in Figure 2). Consequently, the diffuse fraction at clear sky 
days will always be higher than 0. This can be seen from Figure 11 in which there are no data points 
with an x-value smaller than 0.1. nonetheless, the diffuse fraction has a good fit with the algorithms 
evaluations and the effect of this error on the results are foreseen to be small, since the proxy is used 
for all algorithms. Besides, cloudy conditions occur much more in the Netherlands than clear sky 
conditions, which reduces the effect on the results. 
 
The shortwave irradiance was measured with a pyranometer, while longwave irradiance was 
measured with a pyrgeometer. Both instruments have a field of view of 180°. The sky images are made 
with an EKO SRF-02 and ASI-16 sky imager for case study I & II, respectively. The view of these sky 
imagers is, however, restricted to a zenith angle of 70°. This leaves an effective field of view of 140° 
for the sky imagers. Thus, the irradiance is measured over a larger area than the cloudiness of the 
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algorithms covers. Setting the zenith angle of the cloud detection algorithms to 90° would decrease 
the quality of the analysis, since detecting clouds near the horizon is very hard and is more prone to 
errors than detecting clouds at low zenith angles is. Reducing the field of view of the irradiance 
measurements equipment would be best. However, for both case studies historical datasets were used 
which contained irradiance measurements in standard formats. 
  
Theoretical implications 
The research conducted introduced and validated a new cloud detecting algorithm. By comparing the 
newly developed algorithm with existing algorithms, the strengths and weaknesses of the new 
algorithm as well as the overall performance was added to the theoretical knowledge base of sky 
imaging, or more general to the literature of cloud detection and irradiance prediction methodologies. 
By forecasting the short-term irradiance more accurately the stability on the power market can be 
increased and e.g. unit-commitment decisions can be optimized.  
 
Furthermore, the research introduced, next to the LW irradiance method, a new method of validating 
a cloud detection algorithm. By using the diffuse fraction, instead of the clearness index, more accurate 
results were obtained. Were Calbó, González, & Pagès (2001), Cros et al. (2013), Pagès, Calbó, & 
González (2003) use the clearness index to distinguish between clear and cloudy skies, this research 
adapted the diffuse fraction approach (Butt et al., 2010) to classify the cloudiness and applied it to 
validate a cloud detection algorithm in combination with an all sky imager. In this way, the new 
algorithm is validated quantifiably, whereas other authors (Ghonima et al., 2012; Kazantzidis, 
Tzoumanikas, Bais, Fotopoulos, & Economou, 2012; J Yang et al., 2015; Jun Yang et al., 2016) used 
human observations as a reference point to validate cloud detection algorithms. 
 
Recommendations 
To better evaluate the accuracies of cloud detecting algorithms it is recommended to synchronize data 
measurements better for future work. By synchronizing the time at which sky images are made with 
the time at which irradiance (SW & LW) is measured, the interpolation error can be excluded entirely. 
Furthermore, data collection at a shorter time interval (e.g. every 60 seconds) increases accuracy of 
the analysis by taking weather variability into account more effectively. The only condition is, however, 
that enough storage capacity is present. 
 
To improve the quality of new work validating the TRINITY algorithm or other new cloud detection 
algorithms, the dataset used can be enlarged. This only holds for the second case study. Due to a 
software bug this research could only use data collected for 17 days, whereas more data was available. 
The results obtained by the LW irradiance method are thus seen as preliminary and by expanding the 
dataset in future work statements and conclusions can be enhanced. 
 
Further, it is recommended to include more geographical locations in future studies. The lack of 
sufficient data in the second case study limits an accurate comparison between the different locations. 
By using multiple sites with different latitudes and longitudes different climates can be taken into 
account and the performance of all algorithms can be assessed more comprehensively. When 
comparing different geographical locations, it is recommended to use the same sky imagers and 
measurements equipment at all sites. Consequently, it is important to reduce the field of view of 
pyranometers and pyrgeometers to 140°. In this way all data collected represents the same area in the 
sky. 
 
Finally, it is recommended to create new insights in the proxies used to estimate cloud cover. Where 
some research uses human observations to validate cloud detecting methods (Ghonima et al., 2012; 
Kazantzidis et al., 2012; J Yang et al., 2015; Jun Yang et al., 2016) others (Calbó et al., 2001; Cros et al., 
2013; Luiz et al., 2018; Marty & Philipona, 2000; Pagès et al., 2003) use a more quantified approach. A 
detailed and comprehensive review of cloud cover proxies such as the clearness index, diffuse fraction 
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or downward longwave irradiance is missing. Not only would this shed light on the accuracies and 
differences between the proxies, it could also provide a uniform approach for evaluating cloud cover 
or solar irradiance forecasting methods.  
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6. Conclusion 
 
The work in this study focusses on answering the following research question: How does the TRINITY 
algorithm in combination with an All Sky Imager perform compared to existing cloud detecting 
algorithms? To provide a broader understanding of existing cloud detection and to clarify the position 
of sky imaging within the field of solar and cloud forecasting methods a literature review maps and 
identifies similarities and differences between these methods. Then three cloud detecting algorithms 
(BRBG, CDOC and TRINITY) are evaluated by two different methodologies. Two years of shortwave 
irradiance data from Utrecht University in combination with a clear sky model is used to calculate the 
clearness index and diffuse fraction. The FINDCLOUDS software evaluated the sky images and each 
algorithm calculated the Cloud Cover Fractions for each image. The correlation between these 
fractions and the indices is then determined by calculating the Mean Absolute Error and Root Mean 
Square Error. This analysis was based on 2 years of collected data. Data from Denver (US) is used to 
calculate the Cloud Cover Fraction based on downward longwave radiation considering 17 days of 
data. The methodology is adapted from Luiz et al. (2018).  
 
Results show that the diffuse fraction has the closest fit with the data and leads to the most accurate 
results. For the shortwave irradiance method, the TRINITY algorithm performs best with a MAE of 0.12, 
whereas the BRBG and CDOC have a value of 0.17 and 0.14, respectively. The decomposition analysis 
shows that the CDOC algorithm has difficulties evaluating clear sky images. At partly cloudy conditions 
all algorithms perform similarly, whereas at overcast conditions the BRBG algorithm has highest errors. 
The TRINITY algorithm performs good at all sky conditions and is more stable than other algorithms. 
The time-of-day analysis shows that excluding the sunrise and sunset periods improves the accuracies 
of all algorithms. The results of the solar position analysis show that the BRBG algorithm turns out to 
be most sensitive to low elevation angles, leading to higher errors. The CDOC algorithm is more 
accurate than the BRBG algorithm, but is still fluctuating a lot with a changing solar position. The 
TRINITY algorithm is more accurate than the BRBG algorithm as well, besides it is the most stable for 
the range of elevation angles. The preliminary results for using longwave downward radiation show 
that the accuracies of all algorithms are comparable (53%, 54% and 56% for BRBG, CDOC and TRINITY, 
respectively) with lowest errors for the BRBG algorithm. MAEs are, however, significantly higher for 
the LW method compared with the SW method. Therefore, it can be concluded that the SW irradiance 
method is most accurate. The newly developed TRINITY algorithm has the best overall performance. 
Furthermore, it turns out to be good at all sky conditions and more stable at low elevation angles. 
Therefore, the implementation of the TRINITY algorithm in combination with an ASI will improve the 
accuracy of short-term solar forecasting. 
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