
Ontological Traceability using Natural Language Processing

A master thesis presented by

Edder de la Rosa Benitez

Submitted to the
Department of Organization and Information

in partial fulfillment of the requirements for the degree of

Master of Science

in

Business Informatics

Supervisors:
Prof. Dr. Sjaak Brinkkemper
Dr. Fabiano Dalpiaz

Utrecht, Netherlands, July, 2019

Dedication

I dedicate this thesis to my family with a unique feeling of gratitude to my mother, N.
Leonora Benitez, whose education legacy is the most precious that I could have. My
brother, Noel de la Rosa, has never left my side.

I also dedicate this dissertation to my many friends, Galia, Paola, César, Carlos and
José Manuel, who has always been a constant source of support and encouragement
during the challenges of my life.

1

Acknowledgements

I would first like to thank my thesis advisor, Sjaak Brinkkemper of the Department of In-
formation and Computing Sciences at Utrecht University. The door to Prof. Brinkkem-
per office was always open to discuss ideas and debate theories about the thesis. He
steered me in the right direction whenever he thought I needed.

I would also like to acknowledge Fabiano Dalpiaz, in the role of the second advisor
for the valuable feedback with very effective and helpful comments on this thesis.

I am also grateful to the members of the GRIMM project group lead by Sjaak,
where we met with fellow master students. To be part of this project was an enriching
experience and provided a great environment to discuss and share ideas, especially to
Sabine Molenaar, Tjerk Spijkman, Abel Menkveld and Jeroen Venema for sharing your
knowledge and feedback.

Furthermore, I must express my very profound gratitude to my mother and my
brother for providing me with unfailing support and continuous encouragement through-
out my years of study and through the process of researching and writing this thesis.
This accomplishment would not have been possible without them. Thank you.

Finally, a special thanks to my friends, who supported me in the whole process of
this study and incented me to strive towards my goal.

3

Ontological Traceability using Natural Language
Processing

by
Edder de la Rosa Benitez

Abstract

The software development process is continuously evolving to find the right balance be-
tween the real-life problem side with the requirements engineering and the architecture
of the software as part of the solution.

While the software architecture has to deal with different types of artifacts using
different notation, the requirement engineering has, on top, the complexity of the ambi-
guity of the real world as most of its artifact use natural language to capture the required
functionality. To find a solution to link these two areas and the artifacts among them is
one of the practical problems that look to narrow the gap between the expected solution
and the actual solution.

The use of ontologies is an accepted theory as a solution to connect these two
areas and their respective artifacts through the creation of trace links. Such trace links
can track a requirement among the different artifacts. However, the effort to generate
such trace links can be time consuming and not beneficial for the time of development.

This research project aims to propose a solution to automate the software trace-
ability through the use of a conceptual representation of a software artifact. An artifact
in natural language is represented as a sub-ontology and find its match in a Product
Ontology using natural language techniques and tools.

To demonstrate such theory, a proof-of-concept is created to extract an ontology
from a software artifact and fins trace match and trace links among other artifacts. The
results when testing the concepts is remarkable and suitable, and the level of acceptance
in a segment of the software industry is quite promising.

5

List of Figures

1.1 The RE4SA model by Utrecht University 4
1.2 Vision of landscape in a GitLab environment. 7

2.1 Research questions in the problem context. Annotations from spaCy. . . 8
2.2 The engineering cycle adapted from Wieringa(2014). Only the indicated

part is used in this research . 9
2.3 The empirical cycle adapted from Wieringa(2014). 9
2.4 Artifact ontologies as part of a product ontology. 12
2.5 PDD of the first phase. The main deliverable of this phase is a litera-

ture review with the state of the art theories, methods and key concepts
relevant for this study. 13

2.6 PDD of the second phase. 14
2.7 PDD of the validation phase. 15
2.8 PDD of the execution phase. 16
2.9 PDD of the data analysis phase. 18
2.10 Literature research process, adapted from Liston (2006). 19

3.1 The RE4SA model . 21
3.2 Convolutional neural network representation 26

4.1 Layers of linguistic description . 33
4.2 Example of part-of-speech tagging . 34
4.3 Syntactic parse tree meta model . 35
4.4 Syntactic parse tree model . 36
4.5 Discourse structure of a sentence . 38
4.6 Discourse segmentation using lexicalized syntactic trees. 39
4.7 Dependency tree. 39
4.8 POS tag classes distribution, where x axis represents all classes ordered

by number of coincidences and the y axis the density. 41
4.9 Pattern parse tree model . 43
4.10 Ontological ambiguity resolve model. 46

5.1 Example of trace match and trace link in RE4SA. 47
5.2 Dependency conceptual model of a user story 48
5.3 Representation of ontological axioms. 52

6.1 Ontology generator product development context 59

7

6.2 Ontology generator product development context 60
6.3 Class diagram of the OWL object factory 62
6.4 Graph visualization of WebVWOL . 63
6.5 Graph visualization of WebVWOL . 64

7.1 Independent and dependent variables. An arrow between two variables
suggests there is some relation between the two, i.e., a change in the one
variable can lead to change in the other one as well. 66

7.2 Ease of use . 72
7.3 Usability . 72
7.4 Intention of use . 73
7.5 Totals . 73

8.1 Equivalent classes and trace links when matching concepts in OWL lan-
guage . 78

8

List of Tables

2.1 Extraction process parameters and processing. 10
2.2 Text annotation process parameters and processing. 10
2.3 Pattern recognition process parameters and processing. 11
2.4 Ontological classification process parameters and processing. 12
2.5 Activity table related to the PDD in problem investigation phase. . . . 13
2.6 Activity table related to the PDD in inference design phase. 14
2.7 Activity table related to the PDD in validation phase. 15
2.8 Activity table related to the PDD in execution phase. 17
2.9 Activity table related to the PDD in data analysis phase. 18

3.1 CoreNLP language processing features. 27
3.2 NLTK language processing features. 28
3.3 spaCy language processing features. 28
3.4 Table of accuracy based on comparing the manual annotation with the

output of the four libraries (Al Omran and Treude, 2017). 29
3.5 Literature classified by relevance. 29

4.1 English part-of-speech with spaCy tagset. 37
4.2 POS tag pattern notation . 37
4.3 Table of pattern frequency . 42
4.4 Dependency tree analysis . 44
4.5 Dependency tree analysis . 44
4.6 Dependency tree analysis . 44

7.1 Experiment definition. 66
7.2 Variables and their metrics . 67
7.3 Variables and their metrics . 70
7.4 Precision and recall matrix for sub-ontology generation 70
7.5 Sub-ontology generation in OWL language 70
7.6 Precision and recall matrix for sub-ontology match 71
7.7 Sub-ontology generation in OWL language 72
7.8 Combined results of ontology generation and match 72

A.1 Sub-ontology User Stories. 86

B.1 Sub-ontology User Stories. 88

9

Contents

Abstract 5

List of Figures 8

List of Tables 9

1 Introduction 1
1.1 Problem Statement and Context . 1
1.2 Research objective . 4
1.3 Research problem . 5
1.4 Research questions . 5
1.5 Vision . 6

2 Research Approach 8
2.1 Research method . 9
2.2 Problem investigation . 12
2.3 Research and inference design . 13
2.4 Validation . 14
2.5 Execution . 15
2.6 Data analysis . 18
2.7 Literature research protocol . 19
2.8 Research Plan . 20

2.8.1 Phase I . 20
2.8.2 Phase II . 20

3 Literature review 21
3.0.1 The RE4SA model . 21

3.1 Ontologies . 22
3.2 Natural Language Processing . 23

3.2.1 Syntactic NLP . 23
3.2.2 Semantic NLP . 24
3.2.3 Pragmatics NLP . 24
3.2.4 Natural Language Understanding 25
3.2.5 Convolutional neural networks in NLP 25
3.2.6 Tool support . 27

10

4 Linguistic Analysis 32
4.1 Annotation techniques . 32

4.1.1 Layers of Linguistic Description 32
4.1.2 Case analysis . 40
4.1.3 Preliminary results . 40

4.2 Similarity and ambiguity . 44

5 Ontology generation 47
5.1 Trace links and trace match . 47
5.2 Formalization . 48
5.3 Algorithms . 54

5.3.1 Train model . 54
5.3.2 Sub-ontology extraction . 54
5.3.3 Match and merge onologies 55

6 Proof-of-concept Implementation 58
6.1 Scope . 58
6.2 Technology . 58
6.3 Architecture . 59

6.3.1 Ontology extractor . 60
6.3.2 NLP ontology generator . 60
6.3.3 OWL Object factory . 61
6.3.4 Ontology merger . 62

7 Experimental Results 65
7.1 Experimental setup . 65

7.1.1 The treatments . 65
7.1.2 Experimental goal . 65
7.1.3 Hypothesis . 66
7.1.4 Design . 67
7.1.5 Subjects of study . 67
7.1.6 Context . 67
7.1.7 Objects of study . 68
7.1.8 Independent variables . 68

7.2 Execution . 68
7.3 Results . 69

7.3.1 Sub-ontology generation . 69
7.3.2 Sub-ontology match . 70

7.4 Experts evaluation . 72

8 Discussion 74
8.1 Answering the sub research questions 75

8.1.1 Generating ontologies from requirements 75
8.1.2 Indentifying sub-ontologies in a product ontology 76
8.1.3 Finding links between artifacts 77

11

8.2 Main research question . 79
8.3 Conclusions . 79
8.4 Threats to validity . 80

8.4.1 External validity . 80
8.4.2 Internal validity . 81

8.5 Future research . 81

References 82

A User Stories 86

B Survey 88

12

Chapter 1

Introduction

1.1 Problem Statement and Context

Many practitioners have neglected software traceability over the last decades. Appar-
ently because a misconception of the topic or ignoring the benefits. The effort, cost,
discipline and time dedicated to this task to create and maintain trace links may con-
tribute to this impression. It can be quite high in a rapidly evolving software system if
performed fully manually (Cleland-Huang, Gotel, Huffman Hayes, Mäder, & Zisman,
2014).

The Center of Excellence for Software and Systems Traceability (CoEST) takes
the definition of Software traceability as:

“the ability to describe and follow the life of a requirement in both a for-
wards and backwards direction (i.e., from its origins, through its develop-
ment and specification, to its subsequent deployment and use), and through
periods of ongoing refinement and iteration in any of these phases” (Gotel
& Finkelstein, 1994).”

In a requirements engineering context, traceability is about the understanding of
software requirements from high to low level, specifications, goals and the relation be-
tween different layers of information.

The requirement engineering community has performed a large part of traceability
research to try to prove its importance for the software development and impact on the
quality. Higher quality in software can lead to fewer inconsistencies, omissions and,
therefore, fewer defects that can be beneficial for the development time, especially in
testing and maintenance phases (Winkler & von Pilgrim, 2010).

There is, therefore, the need to reduce such inconsistencies that the requirement
engineering is not only responsible. (Kaiya & Saeki, 2006) proposed an analysis method

1

CHAPTER 1. INTRODUCTION 2

based on domain ontology techniques that can be used to abstract concepts in require-
ments.

One of the goals of the requirements analysis is to develop automated high-quality
requirements specifications supported by tools and methods. However, to automate this
process is still a big challenge; most of the problems rely on the fact that requirements
documentation are usually written in natural language (Kaiya & Saeki, 2006).

With more and more business adopting Agile development methods, practitioners
follow an approach to formalise the software development process methodologically
using semi-structured notations. Scrum artifacts such as product backlogs are examples
of a semi-structured notation. A product backlog is a hierarchised list of requirements
organised top-down from high-level requirements to the lower-level, e.g.jobs to be done,
epics and user stories. These groups of requirements are still written natural language
(Robeer et al., 2016) but with a particular standardised format.

Despite the benefits of these methods to standardise the software development,
there are still gaps that inhibit the automation of the traceability of specified require-
ments with their respective atifact. An artifact is any program (i.e. source code), models
(i.e. graphs, data models, process models, simulation models, etc.) related to the soft-
ware development process. One gap identified is the ability to automate the tracking of
a requirement and a target artifact to simulate human cognition process. The goal is to
transform those requirements into a specific artifact with a more formal notation than
natural language. For instance, when a developer needs to implement a new user story,
fist, he needs to evaluate if there already exist the feature or group of features related to
that requirement. If no documentation exists, then he needs to go directly to the code
and identify the places where a change or new code is required. However, the developer
could miss part of the code that not easy to reach, and the requirement not complete.

Natural language processing, text mining and machine learning techniques are re-
search fields that have explored the extraction of information from unstructured text. Us-
ing terminology like lexicons, controlled vocabulary, thesauri and ontologies as knowl-
edge resources. There is a clear need for more extensive models to associate linguistic
information to ontologies. Those models should capture how concepts and relations
are learned, allowing people to relate them to their own linguistic and cognitive system
(Buitelaar, Cimiano, Haase, & Sintek, 2009).

There are new approaches classified as model-driven engineering (MDE) that share
concepts and have different levels of abstraction. These approaches in software consider
models as central artifacts and used not only for documentation purposes and represent
different parts of the requirements. At the same time, they are a simplified part of a

CHAPTER 1. INTRODUCTION 3

system with the finality to share the vision of the stakeholders of the same type, either
technical or functional (Da Silva, 2015).

Software artifacts are constructs with certain syntaxis, semantics and pragmatics.
They contain notation, rules, exceptions and contexts where each linguistic element,
statement or graphical element can or can not use. These artifact notations have different
levels of formality that range from informal, semi-formal to formal. Natural Language,
for example, is considered an informal representation of the reality as the language
can be challenging to analyse. It does not follow a defined format besides the syntax
and grammar. Opposite to this, state diagrams or Petri-nets follow a notation that has
a precise semantics and, therefore, a formal representation of the reality that allows a
formal analysis (Bass, Clements, & Kazman, 2013).

One formal approach in finding better interrelation between requirements and dif-
ferent software artifacts is through ontologies. Ontologies can act as an intermediate
step between the syntaxis, semantics and pragmatics of the natural language and the
target artifact and vice-versa, identifying the “ubiquitous software traceability” defined
as:

“Ubiquitous Software Traceability is software traceability that is always
there, without ever having to think about getting it there, as it is built into
the engineering process, traceability has effectively, ‘disappeared without a
trace.’ Achieved only when traceability is established and sustained with
near zero effort” (Cleland-Huang, Gotel, Huffman Hayes, Mäder, & Zis-
man, 2014).

The context of this study is placed using the Requirements Engineering for Soft-
ware Architecture model (RE4SA) developed by researchers from Utrecht University as
part of the GRIMM project. In the model, an epic story has its counterpart of a module
and a user story with a feature 1.1.

Two initial problems we can identify. First, how to trace requirements in the soft-
ware product and second, how to identify the dependencies of such traces between dif-
ferent artifacts.

Martens (2018) created an approach of traceability method through sub-ontologies
using linguistic terms. A sub-ontology in this case is a sub-group of a product ontol-
ogy. The similarity of terms is determined using a scoring technique when comparing
semantic similarity among two artifacs. This semantic similarity is provided as an ev-
idence of a trace link. However, it is not difficult to determine a match between two
sub-ontologies when they are not in the same level of granularity.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: The RE4SA model by Utrecht University

A broadly accepted definition of an ontology used in this study is:

“An ontology is an explicit specification of a conceptualisation. An on-
tology specifies the concepts, relationships, and other distinctions that are
relevant for modelling a domain.” (Gruber, 1995)

To build domain knowledge ontologies can be applied to different domains (Uschold
& Gruninger, 1996). This domain is specific to the real-life problem that represents, for
instance, health, research, finance, ICT, among others. The ontology domain provides a
context idea about what kind of information is expected to find in an ontology. Thereby,
the importance to know the context of the ontology to facilitate the classification of the
concepts when similar terms are observed.

1.2 Research objective

The main goal of this research is to explore natural language tools and techniques that
can be suitable for ontological traceability in a rapidly evolving software system en-
vironment using agile methods. The main hypothesis of this research is that there are
linguistic patterns and models from an annotated text in agile atifacts that can facilitate
the identification of ubiquitous software traceability through ontologies using supervised
learning.

The main deliverables of this research are a conceptual model of an NLP analy-
sis for ontological traceability and a proof of concept of the model that best suits the
structure of agile artifacts that include epics and user stories. This proof-of-concept will
provide evidence about the advantage and disadvantages of the model in the automation
process of identifying traces between artifacts.

CHAPTER 1. INTRODUCTION 5

1.3 Research problem

With relative new approaches to reduce the risk of failure when developing software, it
is common to find continuous and shorter development cycles. However, there is more
pressure to deliver value to the stakeholders in each cycle. Such value is measured with
the level of usefulness of the delivered increment in each cycle.

This continuous delivery also can imply to have more dependencies among re-
quirements and among different software architecture artifacts.

Dependencies among requirements can be seen when a new requirement gets in
conflict with a set of requirements previously implemented either because previous re-
quirements are not completed or simply contradicts them. This is not very easy to see if
there is no a good knowledge about the architecture of the product.

Dependencies among artifacts can be identified when, for instance, when a re-
quirement requests a change in a feature or a set of feature but such features can depend
from other features. For instance, an save file feature can be dependent of edit file. This
dependency may not be clear as they can be at the same level but in a different location.

The following research problem aims to contribute to software engineering and
stakeholders in a software development context that can be reflected in a higher value of
software and, as a consequence, deliver value to the stakeholders.

Improve software quality through automated ontological learning for soft-
ware, supported by linguistic and neural network models and techniques to
identify the existing ubiquitous traceability — all in the aim to streamline
the software development process and deliver value to the stakeholders.

1.4 Research questions

This research elaborates over software traceability through ontological concepts that can
be extracted from artifacts in natural language. In order to scope this study and reflect
the goal, we define the following research questions:

MRQ: “What kind of relevant ontological information can be extracted
from annotated patterns in software artifacts using natural language process-
ing that facilitates to trace links between them in the Software development
process?”

Based on the goal of this research question, and to delimit the scope of this re-
search, it is divided into five sub-questions:

CHAPTER 1. INTRODUCTION 6

RQ1: “How can relevant ontological information from system development
artifacts written in natural language be extracted?”

RQ2 “What patterns from an annotated text in system development artifacts
written in natural language can be identified?”

RQ3: “What NLP techniques are suitable to identify sub-ontologies in an
annotated text in software artifacts written in natural language text using
NLP?”

RQ4: “How can the identified sub-ontologies be related to a software de-
velopment artifact ontology?”

RQ5: “How can a direct trace link be derived from a sub-ontology to spe-
cific system development artifacts?”

1.5 Vision

The vision of this thesis and the proof-of-concept is to explore the integration in a
DevOps environment using requirement engineering, software architecture and agile
methodology. This exploration is performed using GitLab as a DevOps platform and
how to integrate natural language processing techniques to find traces among artifacts
as shown in 1.2. The integration of software architecture applications is not part of this
study but described as part of the vision. The boxes indicated in light grey in the right-
hand side of the figure represent the current platform landscape. The boxes in the black
background in the left-hand side (annotation, pattern recognition and PDO information
extraction) represent the vision areas of future development and the boxes with a light
blue background are the main objectives of this research.

CHAPTER 1. INTRODUCTION 7

Figure 1.2: Vision of landscape in a GitLab environment.

Chapter 2

Research Approach

To help to answer these questions, an explorative analysis in the current literature is
performed together with a Scrum artifact to answer RQ1 and RQ2. Two artifacts are
produced as a result of this study. The first artifact is a conceptual model that comprises
the patterns that a machine can interpret in order to find matches and traces to a defined
ontology from a specified ontology domain to answer RQ3. Several artifacts are created
to automate and support the analysis.

The second artifact is a proof-of-concept that contains this model or can be trained
with a different model to find the sub-ontology related and help to answer RQ4. Finally,
data analysis is performed to derive the direct link between the source artifact and the
target artifact, for instance, a scrum artifact (i.e. user stories) and an architectural artifact
(functional architecture model, feature model, etc.).

Figure 2.1: Research questions in the problem context. Annotations from spaCy.

8

CHAPTER 2. RESEARCH APPROACH 9

2.1 Research method

In order to answer the research questions part of the engineering cycle will be performed
described by Wieringa (2014). The engineering cycle consists of four main steps: treat-
ment design, validation, implementation and evaluation (see figure 2.2). The treatments
for this study will be created. This research focuses on a problem investigation, treat-
ment design and validation. As such, this study is not intended to conduct the whole
engineering cycle, but only the three steps mentioned.

Figure 2.2: The engineering cycle adapted from Wieringa(2014). Only the indicated
part is used in this research

To validate this study hypothesis, this study carries out one cycle of the empirical
cycle as stated by Wieringa (2014). Figure 2.3 provides an overview of the empirical cy-
cle applied to this research, it is divided into five phases that can be cyclically executed.
This study performs only one cycle and analyses the results. The following sections
a detail of each phase is explained more in detail using a process deliverable diagram
(PDD) notation as described by van de Weerd and Brinkkemper (2009) to facilitate the
formalization of the study. The activities or steps are described in figures 2.5 to 2.9 and
tables 2.5 to 2.9.

Figure 2.3: The empirical cycle adapted from Wieringa(2014).

The main goal of each research question can be seen as follows.

CHAPTER 2. RESEARCH APPROACH 10

RQ1: “How can relevant ontological information from system development

artifacts written in natural language be extracted?”

The first challenge faced is to define how relevant ontological information will be
extracted from the text. Relevant information is that information that is usefully towards
the identification of main concepts and relations. As a first step, it is necessary to deter-
mine what type of artifacts are more suitable to get the expected goal, Selected artifacts
need to be in a natural language notation. For this study jobs, user stories and epic
stories will be used as corpus. The result of this process is to generate a corpora ready
to be analyzed as shown in table 2.1 and the nlp method suitable to extract ontological
information.

Input Process Output
Software develop-
ment artifact

Text extraction from the
artifact relevant to this
study and predefined lan-
guage.

Text in natural lan-
guage notation in de-
fined language (cor-
pora).

Determination of natural
language method and tech-
nique that helps to provide
relevant expected informa-
tion.

Natural language
method and tech-
nique.

Table 2.1: Extraction process parameters and processing.

RQ2 “What patterns from an annotated text in system development artifacts

written in natural language can be identified?”

Extracted text from selected artifact is most of the time in an informal or, in the
best case, in a semi-formal notation form. To solve this problem annotation in text is
used to add metadata information to text. This metadata is required to process natural
language and is a basis of this study as it is an essential part of processing text. As
described in table 2.2 a corpora is obtained from the artifact and annotation process is
performed. As a result,

Input Process Output
Corpora Annotation Annotation meta-

data

Table 2.2: Text annotation process parameters and processing.

CHAPTER 2. RESEARCH APPROACH 11

In order to facilitate the understanding of natural language to a machine through
software, it is necessary to annotate this text. In the case of scrum artifacts like epics
and user stories, these have certain notation rules and structure. The assumption here
is that there exist certain patterns that can be identified from an annotated text in those
artifacts. Each artifact can be represented as an ontology and each ontology artifact is
part of a product ontology in a product software development as shown in figure 2.4.

RQ3: “What NLP techniques are suitable to identify sub-ontologies in an

annotated text in software artifacts written in natural language text using

NLP?”

The use of different techniques and tools of natural language processing are the
main means to solve this question. In this case, most frequent patterns need to be identi-
fied in order to identify the affinity of text to an ontology using automatic annotation in
text. Such annotation has to be grouped and classified in order to expose these patterns.
These patterns are defined as classes and comprise one or several tags. spaCy software
provides different NLP libraries that combined with development languages like Phyton
provide adequate means for this purpose. Table 2.3 describes the parameters to process
this step.

The analysis is carried out in several iterations. Each iteration consist in the cre-
ation of an artefact and an analysis of the information obtained to identify relevant pat-
terns. If there is enough information from the patterns obtained then iterations conclude
and the flow of the research continues. One hypothesis of this study is that at least two
annotation techniques are necessary to to find relevant ontological information from a
software artefact. Therefor, at least two iterations are expected from this analysis.

Input Process Output
Annotation meta-
data

Pattern recognition Text ontological
affinity

Table 2.3: Pattern recognition process parameters and processing.

RQ4: “How can the identified sub-ontologies be related to a software de-

velopment artifact ontology?”

Natural language processing annotated text can be integrated to a certain sub-
ontology that leverage from external knowledge. However, it is not completely clear
how to relate such annotation into respective sub-ontologies. As shown in figure 2.1

CHAPTER 2. RESEARCH APPROACH 12

this question explores this aspect and aims to generate a proof-of-concept that helps to
demonstrate the use of this research to answer it. The input for this is the intended ontol-
ogy generated from the natural language processing and categorized as a sub-ontology.
This sub-ontology is mapped to the general ontology to identify the elements of this
sub-ontology into the general ontology.

Input Process Output
Ontological affinity Semantic classification

trees and comparison
Intended ontology

Table 2.4: Ontological classification process parameters and processing.

RQ5: “How can a direct trace link be derived from a sub-ontology to spe-

cific system development artifacts?”

RQ5: Once trace matches are identified to a related sub-ontology it is possible to
derive the link between both artifacts.

Figure 2.4: Artifact ontologies as part of a product ontology.

2.2 Problem investigation

This study starts with a problem research analysis in order to understand further about
the focus of the study performing a literature study with different levels of refinement

CHAPTER 2. RESEARCH APPROACH 13

in order to select relevant literature, identify missing knowledge, build a theory and
create the research questions. Having natural language processing, ontology traceability
and requirement engineering as discovery fields and the gaps traceability in requirement
engineering as the focus of the problem. Figure 2.5 shows a graphical description of this
phase with its respective deliverables.

Figure 2.5: PDD of the first phase. The main deliverable of this phase is a literature
review with the state of the art theories, methods and key concepts relevant for this
study.

MS
ID

Activity Sub-activity Description

MS1
Research
Prob-
lem
Analysis

Define concep-
tual framework

Structure a framework of how to or-
ganize ideas related to traceability
problems and their relation with on-
tologies and NLP.

Define knowl-
edge questions

Identify a gap in the requirement
engineering and define the research
questions.

Structure litera-
ture review

Support the identified gap using lit-
erature and identify research trends
and theories.

Table 2.5: Activity table related to the PDD in problem investigation phase.

2.3 Research and inference design

In this phase a design of the model using the identified NLP techniques and supported
by tools is carried out. In order to identify the accuracy of the model, several measures

CHAPTER 2. RESEARCH APPROACH 14

and metrics are specified. It also specifies what artifacts are used, the necessary required
datasets wither to train and to execute the model.

Figure 2.6: PDD of the second phase.

MS
ID

Activity Sub-activity Description

MS2
Research
infer-
ence
design

Define objects of
study

Identify techniques and methods
relevant for this study,software arti-
facts and most suitable tools to sup-
port the study.

Specify model Using the selected techniques and
method, patterns are preliminarily
identified, and a conceptual model
is created.

Specify measures Measures and metrics are defined to
calculate the accuracy of the model.

Table 2.6: Activity table related to the PDD in inference design phase.

2.4 Validation

The main objective of this phase is to reduce the risk of validity with regards to the
objects of study, models, measurements and design inferences and make sure that all
elements are in line to the purpose of the research and relevant to achieve the main goal
of the study.

CHAPTER 2. RESEARCH APPROACH 15

Figure 2.7: PDD of the validation phase.

MS
ID

Activity Sub-activity Description

MS3 Validation

Determine valid-
ity of OoS

Support why the selected objects
are more suitable for the study.

Validate treat-
ment specifica-
tion

Request ML and linguistics experts
to validate the model.

Validate mea-
surement specifi-
cations

Ensure that measures actually mea-
sure for what is intended to.

Validate infer-
ence design

Request feedback from the research
community to see if the inference
design is valid or not.

Table 2.7: Activity table related to the PDD in validation phase.

2.5 Execution

This phase, as shown in figure 2.8, is a combination with the Annotation Development
Process cycle model (MATTER) from Pustejovsky and Stubbs (2012) into the empirical
cycle. The goal of this phase is to build a model that can be used to identify ontologies,
links and traces from jobs, epics and user stories to later on implemented in a proof of
concept to trace the information contained in those artifacts and describe those ontolo-
gies and relations and demonstrate the feasibility of the model.

CHAPTER 2. RESEARCH APPROACH 16

Figure 2.8: PDD of the execution phase.

CHAPTER 2. RESEARCH APPROACH 17

MS
ID

Activity Sub-activity Description

MS4
Execution

Annotate Create an annotation scheme that
encodes structural descriptions and
properties of the text. A corpus is
generated that can be processed by
a machine.

Train Selected algorithm is trained over
an annotated corpus with a target
ontological model.

Test The algorithm is tested with the
data set.

Evaluate A standardized evaluation of the re-
sult is carried out.

Revise Revisiting the model and annota-
tion specification and make more
robust and reliable the use of the al-
gorithm.

Change model Adapt the model to improve its ac-
curacy and robustness.

MS5 Proof of concept Using the final model, a proof of
concept is developed to make possi-
ble and interaction with the model.

Table 2.8: Activity table related to the PDD in execution phase.

CHAPTER 2. RESEARCH APPROACH 18

2.6 Data analysis

This phase, described in figure 2.9, is comprised of four activities dedicated to describ-
ing the results obtained from the measures, evaluate if it is possible to make generaliza-
tions to the hypothesis, make the possible conclusions with regards to the objective of
the study and provide an answer to the knowledge questions.

Figure 2.9: PDD of the data analysis phase.

MS
ID

Activity Sub-activity Description

MS6
Data
Analysis

Create descrip-
tions

A set of descriptions are created to
state a discussion based on the re-
sults.

Make conclu-
sions

Final conclusions are generated
from the data analysis.

Write an explana-
tion and general-
ization

Explanations of generated conclu-
sions and definition how easy they
can be generalized to other cases.

Answer KQs Answers to knowledge questions
are provided to conclude the study.

Table 2.9: Activity table related to the PDD in data analysis phase.

CHAPTER 2. RESEARCH APPROACH 19

2.7 Literature research protocol

The literature research is divided into four steps in order to identify correctly the essence
of the study an is reflected in figure 2.10. First, terminologies, group researchers, confer-
ences technologies and initial papers are identified in regards to the area to be explored.
There is an initial approach to NLP tools from the literature that starts to be explored at
the same time and that can support the present study.

Figure 2.10: Literature research process, adapted from Liston (2006).

The second phase is an exploratory where specific theories are explored and find
relations between them in order to find common concepts, theories and models that can
share common characteristics related to the topic explored. The third step is a focused
literature review with refined research questions. For this review, several search concepts
are identified to find specific literature. This search was based in following search terms:

• “Natural Language Processing” AND (”Ontology learning” OR “Software trace-
ability”).

• Ontology AND “Model-driven engineering” AND “Software traceability”.

• “Natural Language Processing” and “Requirements Engineering”.

• “Semantic trees” or “Syntactic trees”.

• “Ambiguity” and “Word2vec”

For the fourth step, there is already an idea of the research questions and, therefore,
it is possible to do a refinement of the literature found. In order to do this refinement,

CHAPTER 2. RESEARCH APPROACH 20

the literature is classified and selected. The classification is based on if it is specific
and highly related to the topic or if it is generic and background information. For the
first classification, there is not much literature. In order to ensure the quality of the
research, this literature is analyzed and approved or provided by a specialized researcher
in the area. For the second classification, the literature with more than 150 citations is
considered for the research. This literature should have been published in a recognized
journal or conference.

2.8 Research Plan

This study is organised in two main phases and five deliverables. The first phase covers
what is called pro problem analysis of the research. The second phase includes the
research in four sub-phases that integrates the inference design, validation, execution
and data analysis as previously explained in the research method.

2.8.1 Phase I

The first phase is dedicated to integrate a framework to collect and clarify concepts,
generate the research questions and structure a literature study. A project proposal inte-
grates the first milestone with identified gaps in the research literature and state theory
of how to reduce those gaps.

2.8.2 Phase II

The second phase of this study comprises an inference design, validation, execution and
data analysis as primary activities. During this phase, four milestones are delivered. The
first milestone (MS2) contains the design of the study providing preliminary conceptual
models and the measures used. The second milestone (MS3) is delivered once the ob-
jects of study, conceptual model, measures and inferences. A third milestone (MS4)
considers a conceptual model that will be analysed after one or more cycles of the anno-
tation development. Once analysis reaches the expected goal, a proof-of-concept (MS5)
taking the conceptual model is created to identify ontologies, relations and, as a conse-
quence, traces.

Finally, the last milestone is delivered containing the final discussion, analysis,
conclusions and answers to the research question. This last deliverable concludes this
study and is handed over for the respective revision.

Chapter 3

Literature review

This literature study is explores the most relevant concepts identified in this activity.
The table 3.5 shows an extract of the main hypothesis, key concepts and results of each
research study. This literature will be considered with some additions during the pro-
cess following the same protocol of evaluation. This literature can also be found in the
bibliography section.

3.0.1 The RE4SA model

As introduced before, the context of this study is placed using the Requirements En-
gineering for Software Architecture model (RE4SA) (Blessinga, 2018) shown in figure
3.1. This model has three levels of granularity and a counterpart in both sides, require-
ments engineering and software architecture.

Figure 3.1: The RE4SA model

21

CHAPTER 3. LITERATURE REVIEW 22

From this model, a Job to be done is represented as the application in the architec-
ture side.

At the same time, an epic story is derived in user stories that increase the level
of granularity of the requirement. In case of a module and feature, a group of features
integrates a module.

We define an epic as:

“A large user story that cannot be completed in one iteration of the Agile
method, follows a predefined format template, one motivation, is triggered
by one problem to be solved and describes an expected outcome.”

In order to perform an analysis of artefacts in natural language, We define a user
story as:

“A sentence statement in a defined template that is composed by one role,
one means and a goal or benefit. A means is composed by at least one
action verb, a subject, a direct object and optionally adjectives and indirect
objects.”

3.1 Ontologies

Ontologies have been adopted as a suitable representation of concepts and its relations,
providing considerable support in the identification of traces. Lucassen et al. (2015)
propose an approach to identify links in existing source code and documentation by
inferring implicit relationships between concepts and the use of ontologies. Liu et al.
(2011) and Maedche and Staab (2001) created a way to automate the process of learning
with ontologies through a defined architecture and machines.

One of the main problems identified in requirements engineering is that it deals
with gathering functionality desired by the respective stakeholders. Stakeholder has
different understandings and point of views of the problem that can generate a certain
level of ambiguity between terminologies used. Happel and Seedorf (2006) observed
that ontologies could be used as an approach to describe such requirements that are
mostly in natural language. An ontology model provides a better understanding of the
domain and provides aid in the requirements management and traceability. Furthermore,
authors like Rolland and Proix (1992) and Bernstein and Kaufmann (2006) highlight
the necessity and benefit of tool support in the area of requirements engineering using
linguistic approach methods.

CHAPTER 3. LITERATURE REVIEW 23

Zhang et al. (2008) proposed a method to automate the finding of traceability
links between source code and natural language documents. An ontology-based method
designed to model patterns and their relations between entities in an ontology. This
approach uses standard OWL-DL for capturing the semantics in a domain discourse.
Cleland-Huang et al. (2014) provides some examples of what is the benefit of identify-
ing traces in the artifacts. For instance, the identification of potential side effects from
newly introduced user stories on existing ones and in the whole software. At the same
time, he describes a process perspective in the identification of traces with a traceability
life-cycle.

Martens (2018) presents a systematic approach for the creation of links using an
ontology and a set of linguistic terms extracted from software artifact instances. The ex-
traction of these linguistic terms is fundamental for this study. Natural language process-
ing provides specific techniques to support different real-life problems. Problems like
questioning and answering systems, memorisation, machine translation, speech recog-
nition and document classification (Pustejovsky & Stubbs, 2012) (Happel & Seedorf,
2006).

3.2 Natural Language Processing

Chowdhury (2003) started to sport the importance of the study of NLP with previous
studies of NLP text systems by Haas (1996), Mani (1999), Smeaton (1999), and Warner
(1987). In the area of natural language processing Cambria and White (2014) divides
NLP into three different studies, syntactic NLP, semantic categories and pragmatics.
Hirschberg and Manning (2015) published an analysis of the actual status with NLP and
highlighted the challenges and difficulties of its use related to semantics, contexts and
knowledge.

3.2.1 Syntactic NLP

The first category, syntactic NLP, involves categorisation based on unambiguous words
for keyword spotting. This category refers to a lexical affinity using probabilistic meth-
ods to determine the affinity of arbitrary words already spotted and the use of statistical
methods like machine learning algorithms to support the affinity determination. Berland
and Charniak (1999) proposed a method to extract parts of objects using statistical meth-
ods. However, this approach, by itself is minimal. Keyword spotting relies in its reliance
upon the presence of obvious words that only surface features of the prose. For instance,

CHAPTER 3. LITERATURE REVIEW 24

a document related to a noun may not reference this noun in a sentence and might not
be retrieved by a keyword-based search engine.

The basic unit of the syntactic is the word. We take the definition from Crystal
(2011) as:

“A unit of expression which has universal intuitive recognition by native-
speakers, in both spoken and written language.”

Words can be classified according to the properties that share between them. In
this case, we take the definition of word-class as:

“An application in linguistics and phonetics of the general use of this term,
to refer to a set of entities sharing certain formal or semantic properties
(Crystal, 2011).”

One word classification most commonly used is the categorisation of such words
according to their grammatical properties called part-of-speech.

A combination of different words that ordered with a syntactic structure from a
grammar of certain language form a sentence. We take the definition of a sentence as:

“The largest structural unit in terms of which the grammar of a language is
organized (Crystal, 2011).”

3.2.2 Semantic NLP

The second category relates the semantics, where different techniques that leverage in
external or internal knowledge like intrinsic semantics of document methods. Gabrilovich
(2009) published a method for semantic interpretation of unstructured natural language
texts. Gabrilovich (2009) built an NLP engine that utilises a specifically developed
context-free lexicon, lexemes though tokenization and interpret these lexicons. Williams
(2013) analyzed how to obtain identifier names using simple syntactic patterns and syn-
tax identifiers from natural English inconsistent ways using part-of-speech. In this area,
Rindflesch and Fiszman. (2003) proposed a method to interpret linguistic structures to
identify concepts and its relation with a more general idea.

3.2.3 Pragmatics NLP

The third category refers to the semantics that goes from lexical to compositional seman-
tics involving different methods like disclosure structure, argument-support hierarchies

CHAPTER 3. LITERATURE REVIEW 25

and common-sense reasoning (AI). Maynard et al. (2008) provide promising results
from different experiments in the area of information extraction from text. Usually
combining at least two NLP techniques and rule-based approaches or machine learning
using defined measures and metrics for its validation.

Pustejovsky and Stubbs (2012) defines pragmatics in natural language annotation
as:

“The study of how context of text affects the meaning of an expression, and
what information is necessary to infer a hidden or presupposed meaning.”

In this study, the context is the software development using RE4SA model and the
required software artefacts by the model.

3.2.4 Natural Language Understanding

Pattern recognition from natural text is an important task in the process of NLP under-
standing. Muter et al. (2019) described linguistic patterns through an analysis of a large
collection of user stories by identifying the action verbs and a template at user story task
level.

Kuhn and De Mori (1995) built a method to obtain natural language understanding
using semantic rules. These rules are trained, and classification is performed using
semantic classification trees, decision trees and machine learning techniques. Soricut
and Marcu (2003) supports the approach of use parse trees, lexical, syntactic trees and
discourse parser to create a discourse model.

Soricut and Marcu (2003) provides two probabilistic models to identify elements
of discourse building discourse parse trees. These parse trees are used to segment the
discourse dividing the problem into lexicalized syntactic trees and discourse trees. Once
the segment of discourse is identified, then it can be related to the particular part in an
ontology.

A semi-automatically extract domain terminology is used by Quirchmayr et al.
(2018) to extract relevant feature information from an artifact, in this case, user manuals.
NLP techniques are applied to such arifact to obtain feature-relevant information. The
results are measured, and different techniques evaluated.

3.2.5 Convolutional neural networks in NLP

One concept used recently by natural language processing is the use of neural networks.
The need to solve complex problems and find a solution based on the human brain works
generating models of cognition is the basis of this concept.

CHAPTER 3. LITERATURE REVIEW 26

The idea of a neural network is to mimic qualitative reasoning by manipulating
encoded symbols (A. S. Lapedes & Farber, 1988). The brain automatically does this
qualitative reasoning by reasoning all elements in real-world such as space, time pro-
pose, time etc.

To mimic such brain functionality, a neural network divides each element of the
real world into different hidden layers. Each layer contain a group of nodes or neurons
that their task is to receive an input, perform some calculations and produce an output.

This architecture gives the flexibility to perform simultaneous tasks that can work
in the same problem in parallel.

The use of neural networks has been significantly accepted in the creation of sta-
tistical models instead of using the traditional linear model due to its good performance.
A. Lapedes and Farber (1987) used this nonlinear perspective with neural networks in
the prediction of non-linear signals. Churchland and Sejnowski (1990) aboard this prob-
lem from a philosophical perspective and the use of a neural network model in speech
processing, where you have a first layer that is a word in the real world. a hidden layer

that performs a transformation and the output layer that provides the results.
Neural networks are recently used to solve different real-world problems like face

recognition (Lawrence et al., 1997), visual document analysis (Simard et al., 2003) and
most recently to model natural language sentences (Kalchbrenner et al., 2014) or classify
them (Kim, 2014) and many other applications. All these examples share a common
architecture as convulsive CNN.

A convolutional neural network (CNN) has several layers with several nodes or
neurons. When a neuron receives some input, this performs the designated calculation,
and the output serves as in input to another neuron as can be seen in figure 3.2

Figure 3.2: Convolutional neural network representation

CHAPTER 3. LITERATURE REVIEW 27

The use of a CNN can be very convenient in solving the problem of similarity
of terms. Two terms can be similar but may not refer to the same thing, therefore,
ambiguous.

The input of a CNN should be something that can be used to do further calcula-
tions. The use of bag-of-words can handle this problem.

In the bag-of-words, each word in real life is represented as a vector. This vector
is in a repository of vectors that build vocabulary. As a result, you have a repository of
vectors containing the vocabulary.

Mikolov et al. (2013) proposed a model with an architecture of vector represen-
tation known as continuous bag-of-words (CBOW) and skip-gram models (one the op-
posite to the other). These models try to maximise the classification of a word-based
of another word in the sentence; in other words, predict the probability of a word based
on the context or vice-versa. These models use a CNN to its processing, and the results
provided seems acceptable in terms of performance of the architecture model.

3.2.6 Tool support

There are different libraries to support NLP activities in which we can find StanfordNLP
toolkit, NLTK for python, SyntaxNet and spaCy. StanforNLP provides a state-of-the-art
libraries developed in Java and widely used in the NLP comunity. CoreNLP architec-
ture provides different techniques form annotated objects like tokenization, sentence
splitting, part-of-speech tagging, morphological analysis, entity recognition, syntactic
parsing, conference resolution, sentiment classification (Manning et al., 2014). This
tool also provides libraries in Java for visualization of the features, for instance, POS
tagging, entity recognition or syntactic parsing between others.

Language processing feature Functionality
Tokenization Tokenizes the text into a sequence of tokens.
Sentence Splitting Splits a sequence of tokens into sentences.
Part-of-speech tagging Labels tokens with their part-of-speech (POS) tag, using a maximum entropy POS

tagger.
Morphological analysis Generates the lemmas (base forms) for all tokens in the annotation.
Entity recognition Recognizes named (PERSON, LOCATION, ORGANIZATION, MISC) and numer-

ical (MONEY, NUMBER, DATE, TIME, DU- RATION, SET) entities.
Syntactic parsing Provides full syntactic analysis, including both constituent and dependency repre-

sentation, based on a probabilistic parser.
Conference resolution Implements mention detection and both pronominal and nominal conference reso-

lution.
Sentiment Sentiment analysis with a compositional model over trees using deep learning

Table 3.1: CoreNLP language processing features.

Natural Language Toolkit (NLTK) is a tool that works together with Python with
advanced algorithms for NLP. It owns distinct qualities like simplicity, consistency, in-
sensibility and modularity. It has been broadly used in universities and different research

CHAPTER 3. LITERATURE REVIEW 28

projects. Table 3.1 lists the most important modules. This tool also provides visualisa-
tion libraries. However, these are not as sophisticated as in CoreNLP.

Language processing feature Functionality
Accessing corpora Standardized interfaces to corpora and lexicons
String processing Tokenizers, sentence tokenizers, streamers.
Collocation discovery t-test, chi-squared, point-wise mutual information.
Part-of-speech tagging n-gram, back-off, Brill, HMM, TnT.
Classification Decision tree, maximum entropy, naive Bayes, EM, k-means.
Chunking Regular expression, n-gram, named entity.
Parsing Chart, feature-based, unification, probabilistic, dependency
Semantic interpretation Lambda calculus, first-order logic, model checking.
Evaluation metrics Precision, recall, agreement coefficients.
Probability and estimation Frequency distributions, smoothed probability distributions.
Applications Graphical concordance, parsers, WordNet browser, chatbots.
Linguistic fieldwork Manipulate data in SIL Toolbox format.

Table 3.2: NLTK language processing features.

spaCy is an open-source library for NLP written in Python and Cython. It provides
libraries oriented to production usage. Therefore, the flexibility of integration with other
technologies is higher than with research-oriented libraries. Table 3.3 lists the main
features of this technology. This tool also provides some basic visualization in features
like POS, tokenization, entity recognition and dependency parsing. Nevertheless, these
are just necessary libraries that offer a simply plain output the requested feature, but it
can be easily integrated with a Python environment.

Language processing feature
Neural network models
Integrated word vectors
Multi-language support
Tokenization
Part-of-speech tagging
Sentence segmentation
Dependency parsing
Entity recognition

Table 3.3: spaCy language processing features.

Al Omran and Treude (2017) made a series of experiments within state-of-the-art
NLP libraries assuring the level of agreement between them to assign a part-of-speech
and the accuracy. The libraries taken for this study are Google’s SyntaxNet, Stanford
CoreNLP, NLTK Python library and spaCy using three different artifact sources related
to Java programming language: StackOverflow, GitHub ReadMe files and Java API
documentation.

The findings from the study, the source with the highest ratio of correctly identified
token POS tags came from StackOverflow. For general POS tagging, NLTK achieved
the highest agreement in tokenization. Manual annotation POS tags reached 92% com-
pared with the NLTK. For specific POS tags, the manual annotation comparison yield
the highest agreement in the case of spaCy with a 90% of agreement, for instance the
ord ”Length” in a sentence “statement String Length”, both spaCy and NLTK agreed to
take it as a noun (NN) while other libraries tagged the word as a proper noun (NNP).

CHAPTER 3. LITERATURE REVIEW 29

The general finding from the study showed that spaCy library provides the best
overall performance on the data analyzed, table 3.4 shows a comparison table about
the accuracy of each library and manually annotated text. This study provides relevant
information to determine what tool can be more suitable for the research in hand.

Source Comparison Identical to-
kens %

Identical
token/POSg

Identical
token/POSs

Stack Overflow Manual vs. Stanford 97.63 89.21 83.42
Manual vs. SyntaxNet 96.36 89.61 85.56
Manual vs. spaCy 98.14 92.29 89.89
Manual vs. NLTK 99.60 88.38 81.71

GitHub ReadMe Manual vs. Stanford 97.54 84.70 78.14
Manual vs. SyntaxNet 97.36 85.67 82.61
Manual vs. spaCy 94.12 84.54 79.62
Manual vs. NLTK 98.20 86.55 77.12

Java API Doc. Manual vs. Stanford 96.14 84.32 77.89
Manual vs. SyntaxNet 98.29 78.52 75.36
Manual vs. spaCy 97.11 90.79 78.42
Manual vs. NLTK 99.48 90.55 77.17

Table 3.4: Table of accuracy based on comparing the manual annotation with the output
of the four libraries (Al Omran and Treude, 2017).

Taking the most relevant sources of the literature review of this study, we classify
them by level of relevance from high to low to high, it is possible to identify the most
relevant concepts of each publication, the central hypothesis formulated and the methods
used to get the results. An overview of this classification can be seen in table 3.5. The
main results are summarized to evaluate its relevance.

Table 3.5: Literature classified by relevance.

Year Reference Main hypothesis Key concepts Method(s) Results Relev
(2019) Muter et al. Patterns in linguistic analysis

in a large collection of user
stories.

Requirements engi-
neering, user stories,
backlog items, natural
language processing,
sprint tasks.

Stanford Part-of-
Speech

7 elementary action verbs identified
and a template for task labels.

High

(2018) Martens Ontological approach can ul-
timately achieve ubiquitous
software traceability.

Ontological traceability
for software Ontology,
Ubiquitous Software
Traceability, Software
traceability, NLP

PDO traceability
method, Ontol-
ogy mapping

PDO Traceability Method appeared
to be an effective method for the
creation of trace links, using an on-
tology and a set of linguistic terms
extracted from software artifact in-
stances. As soon as the user sto-
ries or feature tests become slightly
more complex, the UTA misses
quite a few trace links.

High

(2015) Lucassen et
al.

Quality user story framework
consisting of 14 quality cri-
teria that user stories should
strive to conform to.

User stories, User
story quality, Language
Processing (NLP)
techniques

NLTK grammati-
cal tagger.

A framework for higher quality user
stories. A conceptual model of a
user story. An initial set of rela-
tionships to indicate here the stories
lack quality

High

(2015) Hirschberg
and Man-
ning

Analysis of the actual status
in natural language process-
ing

Machine translation,
speech recognition,
spoke, dialogue sys-
tems, conversational
agents, linguistic struc-
ture analysis, machine
reading, text-to-speech

N/A Big improvement in speech recog-
nition. ML and deep learning will
lead to further substantial progress
in NLP. The tough problems of se-
mantics, context, and knowledge
will require discoveries in linguis-
tics and inference.

Med

(2014) Cleland-
Huang et
al.

A prior body of work to high-
light the state-of-the-art in
software traceability and to
present compelling areas of
research that need to be ad-
dressed.

Software traceability,
Software engineering

Traceability in-
formation model
(TIM)

Set of research directions in: Trace-
ability Strategizing, Trace creation,
Trace Maintenance, Trace Integrity
and Visualizing Trace Data

Med

(2014) Rong Patterns in linguistic analysis
in a large collection of user
stories.

Requirements engi-
neering, user stories,
backlog items, natural
language processing,
sprint tasks.

Stanford Part-of-
Speech

7 elementary action verbs identified
and a template for task labels.

High

CHAPTER 3. LITERATURE REVIEW 30

Year Reference Main hypothesis Key concepts Method(s) Results Relev
(2014) Kalchbrenner

et al.
Use of convolutional neural
network cab be easily appli-
cable to any language and
does not rely in parse trees

DCNN, sentiment
prediciton, quesiton
classification, sentence
models, k-Max pool-
ing, n-Gram order,
feature graph

Network ma-
chines and
folding

A high perfomance network on
question and sentiment classifica-
tion

High

(2014) Kim CNN model for sentimen
analysis and question classifi-
cation

Pre-trained word vec-
tors, multi-channel
model, single-channel
model, non-static rep-
resentation, word2vec,
CNN

Deep-learning A CNN with one layer of convolu-
tion performs remarkably well

High

(2013) Williams An analysis of POS tag pat-
terns in ontology identifiers
and labels

Extraction of POS tags
and general syntactic
pattern analysis

Natural language
processing and
part-of-speech

Identifier names follow simple syn-
tactic patterns; each type of identi-
fier can be expressed through rel-
atively few patterns; and the syn-
tax of identifiers differs from natu-
ral English inconsistent ways.

High

(2013) Mikolov et
al.

Use of advanced techniques
that improve accuracy in a
word similarity task with
lower computational costs

Similarity, high-quality
word vectors, multiple
degree similarity, re-
current neural net lan-
guage model, bag-of-
words and skyp-gram
models

Neural network
model

High maximization accuracy and
quality vectors using simple models
with simple model architectures

High

(2012) Pustejovsky
and Stubbs

Word2vec model can be de-
rived to different problems.

Word2vec, bag-
of-words model,
Skip-Gram model,
maximization, soft-
max, computational
efficiency, neural
networks, negative
sampling

Formula deriva-
tion

The use of a simplified context def-
inition in a multi-word context

High

(2014) Cambria
and White

Survey article of Overlapping
curves on Syntactics, Seman-
tics, and Pragmatics

NLP, Syntactics, Se-
mantics, Pragmatics

Mentioned: Sta-
tistical, stochastic
graph-based

Based on evolution of NLP accord-
ing to three different paradigms,
namely: the bag-of-words, bag-
of-concepts, and bag-of-narratives
models, NLP research is gradu-
ally shifting from lexical seman-
tics to compositional semantics and
offered insights on next-generation
narrative-based NLP technology.

Med

(2011) Liu et al. Explore existing methods that
can be beneficial to ex-
tract knowledge and develop
biomedical ontologies.

Ontology, Ontology
learning From text,
Ontology Enrichment,
Information extraction,
Natural Language
Processing

Symbolic, Statis-
tical, Symbolic.
Ontology learn-
ing systems:
ASIUM, DOD-
DLE II, HASTI,
KnowltAll,
MEDSYN-
DIKATE,
OntoLearn,
STRING-IE,
Text-To-Onto
Text20nto,
TIMS, WEB- ¿
KB

Fully automated acquisition of on-
tology by machines is not likely in
the near future. Symbolic meth-
ods suffer the limitation of cov-
erage and applicability due to the
requirement of manual acquisition
and codification of lexical knowl-
edge for each domain. Statistical
methods, in general, cannot provide
linguistic insight on their own, a
human expert is required to make
sense of the results.

Med

(2009) Gabrilovich Propose a novel method,
called Explicit Seman-
tic Analysis (ESA), for
fine-grained semantic in-
terpretation of unrestricted
natural language texts.

high-dimensional space
of concepts, semantics,
domain-specific world
knowledge, Lexical
databases, Semantic
Interpreter, Term fre-
quency, Link Structure,
high-dimensional space
of concepts, Feature
generation, Text cate-
gorisationcategoriza-
tion, Text classifiers,
Labeled feature vec-
tors, Inter-article links,
Bag-of-words

Latent Semantic
Analysis (LSA).
Text categoriza-
tion, Singular
Value Decom-
position (SVD).
Explicit Seman-
tic Analysis.
Inverted Index
Pruning

The concept-based representation
allows generalizations and refine-
ments to address synonymy and
polysemy partially. ESA results in
significant improvements in auto-
matically assessing semantic relat-
edness of words and texts.

High

(2008) Maynard et
al.

Describe a method for term
recognition using linguistic
and statistical techniques,
making use of contextual
information to bootstrap
learning. And investigate
how term recognition tech-
niques can be useful for
the wider task of informa-
tion extraction, making use
of similarity metrics and
contextual information.

information extraction,
ontology population,
term recognition, On-
tology population,
Semantic Network,
Information Extraction,
tokeniser, sentence
splitter, POS tagger,
gazetteer, finite state
transduction gram-
mar, Orthomatcher,
Measures and metrics,
BDM metric

Boundary words,
NC- Value
method, GATE,
ANNIE, Learn-
ing Accuracy
metric

How NLP techniques can be
adapted to the wider task of in-
formation extraction. While term
recognition generally uses primar-
ily statistical techniques, usually
combined with basic linguistic
information in the form of part-of-
speech tags, information extraction
is usually performed with either
a rule-based approach or machine
learning, or a combination of the
two. Experiments with a new
evaluation metric have shown
auspicious results and clearly,
demonstrate a better evaluation
technique than the Precision and
Recall metrics used for traditional
(non-ontology-based) information
extraction applications.

High

CHAPTER 3. LITERATURE REVIEW 31

Year Reference Main hypothesis Key concepts Method(s) Results Relev
(2008) Zhang et al. A novel approach to re-

establishing traceability links
between existing source code
and documentation to support
software maintenance.

Traceability links,
Traceability, Software
Maintenance, Ontol-
ogy, Text Mining,
Deep links, Ontology
Alignment

Not mentioned The approach allows inferring im-
plicit relations between discovered
concept instances. The linked on-
tologies provide the capability to
perform queries across the bound-
ary between a programming lan-
guage and natural language.

Med

(2006) Bernstein
and Kauf-
mann

Controlled natural languages
offer to bridge the gap be-
tween the end-user and the
logic-based scaffolding of the
semantic web. Propose a
tool that allows users to edit
and query ontologies in a lan-
guage akin to English: GINO

Formal logic, on-
tology editing tool,
querying disconnec-
tion, Semantic Web,
natural language inter-
faces NLI, multi-level
grammar, grammar
compiler, incremental
parser, ontology-access
layer, parse tree, static
grammar rules, OWL

Not described The evaluation with six end users
provides some evidence that novice
users are capable of virtually flaw-
lessly add new elements to an on-
tology. Also, users were confused
with major Semantic Web elements.

Med

(2003) Novichkova
et al.

Create a biomedical domain-
oriented NLP engine called
MedScan that efficiently pro-
cesses sentences from MED-
LINE abstracts and produces
a set of regularized logi-
cal structures representing the
meaning of each sentence.
The engine utilises a specially
developed context-free gram-
mar and lexicon.

Lexicon, Lexeme, Se-
mantic frame, Tokens,
word descriptors, Se-
mantic tree, Semantic
nodes, Attribute slots

Active chart
parser algorithm
(Allen, 1994),
semantic inter-
pretation in LFG
(Sells, 1985)

MedScan performance is satisfac-
tory for the real-time MEDLINE
processing with a coverage rate of
34%.

High

(2003) Soricut and
Marcu

Two probabilistic models to
identify elementary discourse
units and build discourse
parse trees

Parse trees, discourse
segmentation, lexi-
cal, syntactic trees,
discourse parser

Discourse model Sophisticated discourse parsing
model to yield discourse trees at
an accuracy level that matches
near-human levels of performance.

High

(2003) Chowdhury Research activities in NLP. natural language text
processing systems,
text summarization,
information extraction,
information retrieval,
domain-specific appli-
cations

Statistical, Finite
State

Experiments performed show
promising results using NLP

Med

(2003) Rindflesch
and Fisz-
man.

Propose a methodology for
interpreting linguistic struc-
tures that encode hypernymic
propositions, in which a more
specific concept is in a tax-
onomic relationship with a
more general concept.

Semantic processing,
Knowledge represen-
tation, Information
extraction

SemSpec Crucial information is provided by
semantic groups from the Seman-
tic Network and hierarchical rela-
tionships, but a lot of space for im-
provement form the error analysis.

Low

(2001) Maedche
and Staab

Ontology learning architec-
ture

Ontology-learning
process, concept ex-
traction, Lexical entry,
Ontology Engineer-
ing, Workbench, OIL
(ontology interchange
language), DAML-
ONT (DAML ontology
language)

Ontology-
learning

A promising architecture for ontol-
ogy learning that crosses borders of
disciplines.

Med

(1999) Berland
and Char-
niak

A method for extracting parts
of objects from wholes (e.g.
”speedometer” from ”car”)

Semantic, lexicon Statistical Meth-
ods

Given a very large corpus the
method finds part words with 55%
accuracy for the top 50 words as
ranked by the system.

Low

(1995) Kuhn and
De Mori

A new method to build natu-
ral language understanding

Speech understanding,
semantic classification
tree, natural language,
decision tree, machine
learning

Semantic rules
learning

Semantic rules can be learned auto-
matically from training data, yield-
ing successful NLU for applica-
tions.

High

(1992) Rolland
and Proix

The need of support of RE
with tool based linguistic ap-
proach

Linguistic approach,
R.E. support, natural
language analysis,
conceptual schema

Case of case lin-
guistic approach
REMORA
methodology

Generalization of the linguistic ap-
proach using CASE tool

High

Chapter 4

Linguistic Analysis

4.1 Annotation techniques

The way that humans expresses their thoughts through a language can be rather complex
to understand as a whole. Therefore, it is important to divide text written in natural
language in chunks that can be named in tokens that can be classified as a part-of-speech,
then hierarchized in part of a discourse and subsequently can do sentiment analysis in a
narrative classification. This chapter describes a model to extract relevant information in
the context of the RE4SA. The main purpose of the annotation is to generate a collection
of machine-readable texts (subsequently called corpus) that have been produced in a
natural language environment.

4.1.1 Layers of Linguistic Description

To retrieve information inherent in the text, NLP divides annotation into different layers
and differentiates different levels of granularity. The lowest level refers to the syntactics
at a word level or named as a bag-of-words. One level higher the semantics layer or
bag-of-concepts and the pragmatics or bag-of-narratives as the top layer as seen in figure
4.1. The present work is an analysis of the syntactic and semantic level. We consider the
results as a possible solution to a pragmatic problem, analysing the results of the artifact
created and see how behaves taking into account the context.

Different techniques can be used in each layer with the finality to extract infor-
mation. One theory of this work is that the combination of at least two techniques can
provide significant results in the task of finding patterns in software artifacts written in
natural text. Between these techniques, it is possible to find the widely accepted tok-
enization process, the part-of-speech tagging (POs tag), the dependency parsing, entity

32

CHAPTER 4. LINGUISTIC ANALYSIS 33

recognition between others.

Figure 4.1: Layers of linguistic description

Syntactic annotation analysis

The main purpose of the syntactic level is to split the text into individual words defined
as tokens. This demarcation of text is used to classify them in different classes where
each class can represent more than one lexeme. In linguistics, a lexeme is a unit of
lexical meaning in a given language. For instance, in English the words read, reads,
reading belongs to the same lexeme in different forms. One of these forms is used
in dictionaries (as lemmas or citation form). Each token can receive a name that is
categorised defined by the syntactic language rules and can be defined as a member of
a group called part-of-speech. However, at this level, each token has no meaning in the
real world as the semantics of the language provides this meaning and, therefore, it will
be used in the semantic layer. In our example, the word read can be tagged as verb and
book as a noun.

POS tagging makes use of a catalogue and categories of speech classes. The most
commonly identified are verb, noun, adverbs, preposition, pronoun or conjunction. A
tag identifies each class — for instance, VB, NN, RB, IN, PRP, CC, respectively. For
instance, the statement I want to describe myself on my page can be split into nine
tokens. Each token classified in a POS tag can generate the following sequence of tags
PRP VBP TO VB PRP IN PRP JJ NN. A set of these sequences produce a corpus of a
full-text artefact. Taking the definition of copus as:

“A collection of machine-readable texts produced in a natural communica-
tive setting” (Pustejovsky & Stubbs, 2012). A corpus is said to be ”repre-
sentative of a language variety.” (Leech, 2014).

Each POS tag is mapped in a general way of a part-of-speech class, as seen in
figure 4.2, giving a POS tag the lowest level in the speech, It is possible to identify
when, for example, a pronoun is personal, possessive determiner or possessive pronoun.

CHAPTER 4. LINGUISTIC ANALYSIS 34

Figure 4.2: Example of part-of-speech tagging

However, all are classified as a pronoun. The same occurs with nouns and compound
nouns and plural nouns.

It is essential to classify the tokes in the correct POS tags to provide more accu-
rate results and create more precise applications using these techniques. For instance,
question-answering systems, machine translation systems or in this case entity recogni-
tion. Therefore, it is essential to select the most convenient tool to perform such a task
to reduce the number of inaccurate tags that can be a result of ambiguous terms. As
described before, spaCy has been tested with good overall performance compared with
other state-of-the-art linguistic tools (Pustejovsky & Stubbs, 2012)

It is possible to define a syntactic parse tree and analyse the structure of a state-
ment. From a bottom-up perspective, Each token word of a sentence constitutes the
leaves of the tree. Each leave has one and only one POS tag as a parent node. One or
more POS tags can belong to a part-of-speech word class. On or more part-of-speech
classes is subordinated by a phrase. Each phrase can be classified as a noun phrase or a
verb phrase. These phrases belong to a sentence node as can be seen in the definition of
the parse tree in figure 4.3.

As an example for a manual annotation we can extract from a product backlog
a user story from a portal that provides Agile training “As a site member, I want to

describe myself on my page in a semi-structured way so that others can learn about

me”. To perform an annotation, the sentence needs to be divided into words and assign
a POS tag class to each word or token. Once all tokens are tagged and based on our
definition or syntactic parse tree, it is possible to generate a parse tree as shown in figure
4.4.

CHAPTER 4. LINGUISTIC ANALYSIS 35

Figure 4.3: Syntactic parse tree meta model

Syntactic pattern recognition

One of the hypothesis is that there are patterns in software artefacts written in natural
language that exist innocuously. However, we do not think explicitly in that. We use our
empiricism together with syntactic language rules and exceptions to write sentences or,
in some cases, a semi-structured approach like in the case of user stories. However, how
to find these patterns and in what percentage these patterns cover the overall corpus.

To represent such patterns, a specific notation is used. The symbols used to de-
scribe such notation can be seen in table 4.2.

Pattern identification algorithm

POS tagging with spaCy tagger libraries are then performed. The POs tags of each
sentence were written line by line in a new file. Starting with the POS tags followed by
the number of coincidences separated by a character identifier (i.e. ;). The words that
are represented by such tags, e.g. ”PRP VBP PRP$ NN TO VBI; 10; want my rating to
show”.

A POS tag classification are performed in order to identify patterns. A POS class
is defined as:

a sequence of POS tags in annotated text that contains at least one or more
than one POS tag.

A POS tag classification program was developed to make an in-depth syntax anal-
ysis of POS tag patterns and automate the process. First, the first POS tag of the first
sentence is selected and added to a list of POS classes identified. However, To avoid
POS tags that may not be relevant, the following criteria are considered:

CHAPTER 4. LINGUISTIC ANALYSIS 36

Figure 4.4: Syntactic parse tree model

1. The POS class contains at least one type of noun or verb tag in any form.

2. The POS class does not include a space tag.

3. The POS class does not include punctuation tags.

Then, the algorithm starts looking for such POS class over all the corpus and count
the number coincidences of each class found. First, a POS class is formed, taking the
first element i for the row. Then, the POS class is checked if it was previously selected
and processed. If the POS class has not to be chosen yet it is compared to the same
number for tag elements throughout the corpora. Once this is completed, the next class is
selected. The next class is formed taking current POS tag and the following consecutive
tag in a row for each annotated sentence. The process continues for each sentence taking
10 POS tags as a maximum limit for a POS class and considering in between POS tags
as classes as well. Once this limit is reached, then the algorithm starts forming classes
from the position i + 1 of each row in the corpus, starting from i as the first POS tag
of the sentence to the n number of tags in a row. As a result, an accurate amount of

CHAPTER 4. LINGUISTIC ANALYSIS 37

English POS
TAG POS Description TAG POS Description
, PUNCT punctuation mark,

comma
RB ADV adverb

. PUNCT punctuation mark, sen-
tence closer

RBR ADV adverb, comparative

JJ ADJ adjective RBS ADV adverb, superlative
JJR ADJ adjective, comparative VB VERB verb, base form
JJS ADJ adjective, superlative VBD VERB verb, past tense
MD VERB verb, modal auxiliary VBG VERB verb, gerund or present

participle
NN NOUN noun, singular or mass VBN VERB verb, past participle
NNP PROPN noun, proper singular VBP VERB verb, non-3rd person

singular present
NNPS PROPN noun, proper plural VBZ VERB verb, 3rd person singu-

lar present
NNS NOUN noun, plural WDT ADJ wh-determiner
PDT ADJ predeterminer WP NOUN wh-pronoun, personal
POS PART possessive ending WP$ ADJ wh-pronoun, posses-

sive
PRP PRON pronoun, personal WRB ADV wh-adverb
PRP$ ADJ pronoun, possessive

Table 4.1: English part-of-speech with spaCy tagset.

Symbol Description Example
() element delimiter
* zero or more occur-

rences
(NN)*

+ one or more occur-
rences

(NN)+

| alternative IN |ON
? previous character

is optional
NNS?

Table 4.2: POS tag pattern notation

coincidences of each class can be obtained and used as an input for the identification of
patterns.

It is necessary to order the classes by the number of coincidences to find the most
representative classes of the whole corpus.

Once the most representative classes are identified, they are simplified in an ex-
pression using the notation described in table 4.2.

CHAPTER 4. LINGUISTIC ANALYSIS 38

Semantic annotation analysis

The syntactic analysis gives an idea from the lowest level of the linguistic analysis and
the patterns that people use to describe requirements in English language. However,
these patters are not related to a meaning but only yo a phrase that can be a noun phrase
or a verb phrase. Therefore, it is necessary to analyze the corpus from a semantic level.

It is necessary to identify the discourse of a sentence. To have a better understand-
ing of what is a discourse, this can be defined from its elements and represented as a
tree. We take the definition of discourse as:

“A discourse structure is a tree whose leaves correspond to elementary dis-
course units (edu)s, and whose internal nodes correspond to contiguous
text spans (called discourse spans) (Erdmann, Maedche, Schnurr, & Staab,
2000)”.

Taking the previous example in figure 4.9, it is necessary to create the discourse
structure of the sentence. Erdmann et al. (2000) characterizes each node by a rhetorical
relation such an (attribute) or an (enabler). Within the rhetorical relation is also labeled
as (satellite) or (nucleus). An arrow links the (satellite) to the (nucleus) and is labelled
by the rhetorical relation. In figure 4.5 it is possible to see this example in a discourse
tree. The horizontal lines correspond to text spans, vertical lines to (nucleus) and the
arrows labelled with corresponding rhetorical relation.

Figure 4.5: Discourse structure of a sentence

This disclose model is still in a sentence-level that is very abstract and generic.
Therefore, it has to be segmented into smaller parts to divide the problem. For this, a
discourse segmentation and discourse parsing is used.

Discourse segmentation is the segmentation of text in non-overlapping segments.
Combining the lexycalized syntactic parse model, the parse tree model and the discourse
structure in such a way that it is possible to identify the the links between segments. As
in our example, in figure 4.6, it is possible to identify three segments each segment with
two sub-segments as can be ween in figure 4.6. The first segment from left to right an

CHAPTER 4. LINGUISTIC ANALYSIS 39

attribute relationship is created between a satellite and the nucleus, in this case, the nu-
cleus is a subordinated clause SBAR (Clause introduced by subordinating conjunction).
The other bub-segments are linked to the nucleus as enablers.

Figure 4.6: Discourse segmentation using lexicalized syntactic trees.

The semantic annotation is necessary at this level. To identify the information
to the concepts and how these concepts are related between them. NLP provides dif-
ferent techniques to perform this annotation like dependency parsing or lemmatization.
For this study, a dependency technique is used to identify patterns to extract desired in-
formation. Dependencies can be identified from the tree, for instance, the words (want,
describe on, in) and (so) generate a dependency over a segment and a dependency within
the same phrase that belongs. The word (want) has a dependency on a nominal subject
(nsub) form the pronoun (I). (Myself) has a dependency of a direct object (dobj) form
the verb (describe), (My own page) has a object of a preposition (pobj) form (on).

As seen in the discourse tree, a discourse structure of a sentence can act as a unit
of a group of words (noun phrase, verb phrase). Those words are related to a grammar
function concerning the other words of the sentence (e.g. subject, direct object, indirect
object). To help in the task of discourse parsing a dependency parse tree is used to
model the discourse of a sentence. Dependency trees are represented by directed arch
that connect a word head with a dependent. Each arch has a head with a dependent with
a semantic dependency relation and these arches from a rooted tree as seen in figure
4.10.

Figure 4.7: Dependency tree.

The use of parse trees helps to facilitate the reading of the semantic dependencies.
And at the same time, it is possible to detect patterns in dependency trees. However, it

CHAPTER 4. LINGUISTIC ANALYSIS 40

gets complicated if there are patterns that do not form any pattern and only generates
noise in the analysis. Based on the discourse segmentation tree, it is possible to see that
phrases that are noun phrases are more relevant to take into the analysis and splitting in
noun chunks.

The dependency pattern analysis is carried out taking the training data sets used
in the syntactic analysis and reading only noun chunks form the parse tree. The depen-
dency annotation is performed to the three different data sets using a developed artefact.

Pragmatics analysis

The main goal of this study is at the level of pragmatics. The proof-of-concept indents
to facilitate this analysis by answering the main research question.

Syntactic and semantic analysis are evaluated in a context to try to solve a real-life
problem; in this case, how to trace requirements through trace links between software
artifacts.

Chapter 7 describes the results of the proof-of-concept are described, and the anal-
ysis and discussion of them in chapter 8.

4.1.2 Case analysis

To identify such patterns and facilitate the analysis, two artefacts are developed to auto-
mate and aid in such task performed in three different cases.

The artefact used for this analysis is a data set of user stories. Each user story is
included as a sentence.

The first case contains a collection of 97 user stories. These user stories are re-
quirements from a system to manage training and sponsors in a website.

The second case includes a data collection of 55 user stories form a poker game
system.

The third case is a sample data set with 210 user stories from a system to facilitate
storage and sharing of research information.

4.1.3 Preliminary results

POS-tag analysis

Taking the classes ordered from the higher number of coincidences and looking for the
most representative, We obtained a distribution positively skewed with a long tail with

CHAPTER 4. LINGUISTIC ANALYSIS 41

those patters with less representative in the corpus as shown in figure 4.9, where a) is
the distribution count of POS classes of a data set of 97 user stories, b) 55 and c).

Figure 4.8: POS tag classes distribution, where x axis represents all classes ordered by
number of coincidences and the y axis the density.

From the first data set, a total of 1,090 different classes were identified with a total
of 3,884 coincidences. When ordered by frequency from the class with most number of
coincidence to the class with the least, the top 132 contained 2,612 of the coincidences.
This give us a 67.25% concentration of the whole corpus and the rest of the classes
counted less than 7.

From the second data set, a total of 361 different classes were identified with a

CHAPTER 4. LINGUISTIC ANALYSIS 42

total of 2,117 coincidences. Ordered by the frequency from the class with most number
of coincidence to the class with the least, the top 51 contained 1,666 of the coincidences.
This give us a 78.69% concentration of the whole corpus.

From the third data set, a total of 2,771 different classes were identified with a total
of 9,503 coincidences. Ordered by the frequency from the class with most number of
coincidence to the class with the least, the top 313 contained 6,662 of the coincidences.
This give us a 70.10% concentration of the whole corpus. Each class in the top 40 had
more than 30 occurrences in the whole corpus.

It is possible to look for specific patterns in selected POS classes taking the ob-
served annotation. The table 4.3 show the identified patters and their frequency.

Pattern Frequency
IN* DT NN+ PRP* 1.353
PRP* VBP TO VB* 758
(NN+ |NNP) PRP 392
IN DT NN+ 380
TO VB DT* 299
JJ NN |NNS 75
DT NNP 47
NN CC 23

Table 4.3: Table of pattern frequency

From the patterns determined above, it is possible to identify specific characteris-
tics of the language. The pattern 2, for instance, contains the POS class ”PRP VBP”,
where PRP is a personal pronoun like ”I” and VBP is a verb in a non-third person sin-
gular present, for instance, ”want” or ”like”. This is more like a desire or wish of the
personal pronoun. In the context of a requirement is only the confirmation the something
is required or not. Therefore, it can be discarded as an action verb.

Another observation is, for instance, in patterns one and four starts with the POS
tag IN, that is a preposition or subordinating conjunction. This is very logical as every
user story has the preposition ”As” and it can be considered as part of the user story
template. As a result, it is discarded as part of the patterns.

CHAPTER 4. LINGUISTIC ANALYSIS 43

Figure 4.9: Pattern parse tree model

There is also a common relation between patterns. For instance, there is a possibil-
ity that pattern 1 and 2 can be connected through the PRP and patterns 2 and 3 through
the POS class ”TO BV”. If we take all these common classes and leaving out POS tags
that are not part of a template, personal pronouns and verbs that are not in an infinitive
form, the patterns can be simplified as follows:

1. JJ* (NN+ — NNS+ — NNP+ — CC+)*

2. (MD+ (TO+ — VB*)*) VB* ((NN)+ — (NNS)+)*

The representation of these patterns represented in figure 4.9, where the crossed
curve among several arrows indicates a logical operator OR. They represent 80% of
the corpus. These patterns answer the research questions RQ1 and RQ2 partially. The
model needs to be completed going up one level with a semantic analysis in the follow-
ing section.

Dependency analysis

From the first case, a total of 864 dependencies are found. 84% of the dependencies are
concentrated in three main groups, nominal subjects (nsub), objects of possession (pobj)
and direct object (dobj). Within the group nsub it is possible to observe that in 94.6 %
the header of the dependency is a VERB with three main POS tags, VBP, VB and VBZ
as can be seen in table 4.4.

For the second case, the same tendency can be observed. With a total of 390
dependencies 93.33% of the dependencies are nominal subjects, objects of possession
and direct object. Within the group nsub in 88.03 % the header of the dependency is a
VERB with three main POS tags, VBP, VB and VBZ as can be seen in the table 4.5.

For the third case, with a total of 1188 dependencies, 93.01% of the dependencies
are nominal subjects, objects of possession and direct object. Within the group nsub in
98.03 % the header of the dependency is a VERB with three main POS tags, VBP, VB,
BVN and VBZ as can be seen in table 4.6.

CHAPTER 4. LINGUISTIC ANALYSIS 44

POS Head-
tag

Dependency Sum Abs.
prop.

Rel.
prop.

nsub 250 28.94%
ADP-IN pobj 290 33.56%

dobj 187 21.64%
VERB nsub 259 29.98%
VERB-VBP nsub 74 8.56% 28.57%
VERB-VB nsub 137 15.86% 52.90%
VERB-VBZ nsub 34 3.94% 13.13%
FOR dobj 32 3.70% 17.11%
OF dobj 40 4.63% 21.39%
ON dobj 30 3.47% 16.04%
TO dobj 35 4.05% 18.72%

Table 4.4: Dependency tree analysis

POS Head-
tag

Dependency Sum Abs.
prop,

Rel.
prop.

nsub 142 36.41%
ADP-IN pobj 113 28.97%

dobj 109 27.95%
VERB nsub 142 36.41%
VERB-VBP nsub 71 18.21% 50.00%
VERB-VB nsub 47 12.05% 33.10%
VERB-VBZ nsub 7 1.79% 4.93%
FOR dobj 0 0.00% 0.00%
OF dobj 0 0.00% 0.00%
ON dobj 0 0.00% 0.00%
TO dobj 0 0.00% 0.00%

Table 4.5: Dependency tree analysis

POS Head-
tag

Dependency Sum Abs.
prop.

Rel.
prop.

nsub 357 30.05%
ADP-IN pobj 452 38.05%

dobj 297 25.00%
VERB nsub 354 29.80%
VERB-VBP nsub 212 18.85% 59.89%
VERB-VB nsub 117 9.85% 33.05%
VERB-VBN nsub 10 0.84% 2.82%
VERB-VBZ nsub 9 0.76% 2.54%

Table 4.6: Dependency tree analysis

4.2 Similarity and ambiguity

Software requirements are mostly collected in artifacts written in natural text. The new
methodologies and methods like Agile and scrum have contributed to a better organiza-
tion and standardisation of them. However, there are still areas that can be improved as

CHAPTER 4. LINGUISTIC ANALYSIS 45

humans tend to be unconsciously ambiguous.
One solution to this problem is trying to create more strict rules when generat-

ing requirements like the use of templates or tools that help to reduce the ambiguity
of terms. However, this can become very difficult to handle due to the fact that the
new methodologies require continuous iterations. Each iteration in small cycles with
different groups or teams integrated by people interacting in the same context.

People think differently and may have a different vocabulary or express itself in a
certain way due to other external factors like culture or different mother language. As-
suming that somehow ambiguity exists and will be challenging to get rid of it. Another
solution proposed to solve this problem is through the use of probabilistic models that
can resolve in an efficient way such ambiguity introduced.

The bag-of-words models seem that provide a right solution in the representation
of a vocabulary. This model uses a repository of vectors in a matrix that represents the
vocabulary.

To have a repository of word vectors by itself, however, is a starting point in the
classification or prediction of the context. The context of a word is defined by its neigh-
bors in a sentence. If a word shares quite often the same neighbors we can say that there
is a context for this word. If we can establish the what is the probability of having a
context given a word or having a word given a context.

The Word2vec models seem that provides an effective solution to this problem.
These models use a repository of vectors in a matrix that represents the vocabulary and
a repository matrix of context vectors that contain all the vectors that surround a word
in question.

One of the sub-research questions (RQ4) states that how a sub-ontology can be
identified in a software development artifact. This can be performed comparing each
term of the sub-ontology by each term in the PO. However, it was assumed that ambi-
guity is there and at the moment we have to live with it.

If two concepts are syntactically equal, we can say that we are talking about the
same concept. But, what happens when two concepts are very closely related?. If one
person introduced the ambiguity, then it is easy to solve the problem. When two or more
people introduce an ambiguous concept, then the solution is more complicated as maybe
a discussion is necessary to agree in a resolution.

When new requirements are intended to be implemented, there is a high possibility
that may contain terms that may be similar and the same and similar but not the same.
This study proposes to create a model using Word2vec architecture to solve this problem.

The model is integrated by the two dimensions used by Word2vec vocabulary and

CHAPTER 4. LINGUISTIC ANALYSIS 46

context, plus another class dimension called domain context. This third dimension will
be in charge to resolve an ambiguity once an ambiguity was detected in the first two
dimensions.

The model then will consist of three layers that process word vectors, context
words and domain context words as classifiers, as shown in figure 4.10. As a result, we
would be able to resolve if a concept is similar or not based on a general context and a
domain context.

Figure 4.10: Ontological ambiguity resolve model.

Taking the model used by Mikolov et al. (2013) we have our general knowledge
context vectors (W) and we add a second class that is our domain context vectors (W”),
we have the following softmax formula as:

uj = hW ′(.j))W
′′(.k)) (4.1)

P (wo,j|wI) = yj =
exp(uj)∑V

j′=1 exp(uji))
(4.2)

A model trained with GloVe vectors in Common Crawl and OntoNotes with 685k
vectors is used as general vocabulary and general context. A custom model trained with
Gensim with vectors generated in the domain of the system is used as a domain context
using Gensim’s neural network in python libraries to generate the model.

The domain context is determined by the domain ontology taking as a base the
total set of user stories that is used to generate the product ontology.

Chapter 5

Ontology generation

This chapter intends describe the pragmatic problem and make a formalization of the
analysis performed during the development of this research using different artefacts and
create the basis for the ontology generation.

Based on such formalization, it is intended to generate a sub-ontology of different
artefacts to find trace matches to finally establish trace links between various software
development artefacts written in natural language.

5.1 Trace links and trace match

It is a usual software development practice to start making corrections or adding new
functionality directly in the code without a systematic method, knowledge of the original
authors of the code or simply the loss of track of versions.

Figure 5.1: Example of trace match and trace link in RE4SA.

An example is taking one of the cases of the analysis, having one feature from the
realised architecture and manually generating the ontology and another sub-ontology

47

CHAPTER 5. ONTOLOGY GENERATION 48

from a user story. It is possible to detect a match in the ontology and as a consequence,
an existing link between different artefacts.

Figure 5.2: Dependency conceptual model of a user story

This trace link can indicate that there is an event that affects such features that are
interrelated by such trace link as can be seen in figure 5.1. An event can be derived by a
change, correction or creation of new feature.

The conceptual model of the dependencies can be seen in figure 5.2. The role
is derived from one and only one object of preposition dependency — the action verb
from the nominal subject. The means from several or no direct object dependencies and
the benefit can have a combination of direct objects and nominal subjects that basically
contain non-action verbs that describe more benefits of the action verb, e.g. ”so others
can learn about me”.

The format of how user stories facilitate the application of such statements in a
well-formed user story that consists of only one role, one action and one direct object
with the option to have several adjectives or indirect objects as defined by van de Weerd
and Brinkkemper (2009):

“A user story µ is a 4-tuple µ = { r, m, E, } where r is the role, m is the
means, E = e1, e2,. . . is a set of ends, and f is the format. A means m is a
5-tuple m = { s, av, do, io, adj } where s is a subject, av is an action verb,
do is a direct object, io is an indirect object, and adj is an adjective.”

5.2 Formalization

To been able to compare concepts of a sub-ontology and been able to trace links be-
tween artefacts, first, it is necessary to generate such sub-ontology. Each sub-ontology
can be generated by processing the ontological information extracted from the corpus

CHAPTER 5. ONTOLOGY GENERATION 49

and identifying a relationship between the ontological information using the different
patterns identified in the analysis.

The combination of such patterns from syntactic to semantic layers can provide
enough information to map them into concepts and relations in an ontology.

From the semantic tree, each POS category is part of a phrase. Such phrase can
be a noun phrase or verb phrase that are part of a segment in a statement. Therefore, we
define a phrase as:

Definition 1. Phrase

Let be w a word, p a phrase.

w ∈ p A word is an element of a phrase

np (p) A phrase p is a noun phrase

vp (p) A phrase p is a verb phrase

∀ w ∃ p (np (p) ∨ vp (p))→ ((w ∈ p))

Each word is identified by a POS tag and each POS tag is part of a part-of-speech
category. Then, a word is assigned according to its semantic function.

Definition 2. POS and POS tag

Let be w, a word, t a POS tag and c a category,

pos(w , t) A word w has a POS tag t

category(t , c) A POS tag has a catogory c

∀ w ∃ pt (pos(w, t) ∧ category(t, c))

In the same way, there exists a class that contains a group of POS tags that can be
part of a pattern that holds similarities with other POS classes. Therefore we can define:

Definition 3. Frequent POS class

Let be P1, P2 pattern 1 and pattern 2, t a POS tag, c a POS category and

Ac an annotated corpus,

t ∈ P A POS tag is an element of a pattern

CHAPTER 5. ONTOLOGY GENERATION 50

∀ pt ∃ t ∈ Ac

∃ t ((tc ∈ P1) ∨ (t ∈ P2)→ (t ∈ Ac))

From a dependency tree, there exists a dependency in a phrase that is defined as a
head and dependent.

Definition 4. Dependency

Let be np a noun phrase, h a head and dp a dependent.

∀ np ∃ dependency (h , dp)

Example: ”As a site member”

dependency (As, a site member)

pobj (As, a site member)

As stated before, a dependency has a head, dependency and dependent elements.
Therefore, we can define the following corollaries:

When a dependency is a pobj (object of preposition) and the segment is before an
action verb then the dependent segment is a source concept.

Corollary 1. Let be pi a noun phrase, pj a verb phrase, avp is an action verb
phrase, h a head and dp a dependent.

∃ pi ∈ (p1, p2, ... pn) where (i < j) ∧ (pj = avp)

dependency(pi) = dobj(h , dp)

For all dependencies dobj (direct object) and where the head POS category is a
VERB and POS tag a VB then we can say that the head is an action verb and the depen-
dent is a target concept.

Corollary 2. Let be w a word, dobj a dependency, h a head and dp a de-
pendent.

cat(w, verb) A word has a category VERB

tag(w, vb) A word has a tag VB

∀ dobj ∃ w dependency (h , dp) where h ∈ (cat(w, verb) ∧ tag(w, vb))
⇒ h ≡ action verb ∧ dp ≡ target concept

CHAPTER 5. ONTOLOGY GENERATION 51

When the dependency is a nsub (nominal subject) and the head POS category is
a VERB and POS tag a VBP then the head is a non-action verb. There can be only one
action verb in a sentence.

Corollary 3. Let be w a word, dobj a dependency, h a head and dp a de-
pendent.

cat(w, verb) A word has a category VERB

tag(w, vbp) A word has a tag VBP

∀ dobj ∃ dependency (h , dp) where h ∈ (cat(w, verb) ∧ tag(w, vbp))
⇒ ∃!a(a = h)→ a 6= h

When the dependency is a pobj (object of preposition), the head is a POS(ADP)
the tag(IN) and the segment is after the action verb then the dependent is a target concept
or a further description of the concept or properties.

Corollary 4. Let be pobj a dependency, h a head, tc a target concept, npi a
noun phrase, avp is an action verb phrase, and dp a dependent.

cat(w, adp) A word has a category ADP

tag(w, in) A word has a tag IN

∀ pobj ∃ dependency (h , dp) where h ∈ (cat(w, adp) ∧ tag(w, in))→
dp = tc⇒ ∃ pi ∈ (p1, p2, ... pn) where (i > j) ∧ (pi 6= avp) ∧ dp ∈ pi

An ontology is integrated by concepts and relations between those concepts. The
representation of the relation between two concepts of an ontology can be defined as:

Definition 5. Ontology relation

Let be c a concept.

∃ C : Set(Concept).(∀c ∃.action(cs ,ct) ∧ cS∈ C) where cs is a source

concept and ct is the target concept.

To represent such statement in logical predicates containing ontological information,
we first define a source and target concepts. Two concepts are connected and related
between them with the action verb as can be seen in figure 5.3. The source and the
target concept can be the same concept.

CHAPTER 5. ONTOLOGY GENERATION 52

Figure 5.3: Representation of ontological axioms.

Taking the web ontology language we can define that:

Definition 6. Web Ontology OWL A web ontology is a set of axioms ∀a∈D

σ = { a1, a2, a3, ... an } where a is an axiom and D is the domain. ∃a∈
{ c, o, d, k, dt, as } where c is a class, o is a object property, d is a data

property, k is a key, dt is a data type definition and as is an assertion.

The representation of the axioms in figure 5.3 in the same definition but with the restric-
tion that the concepts are different and from the definition, it can be the same concept as
well.

Different artefacts have different ontologies but share similar concepts that are
basically the same concept. The same occurs with sub-sets of the same artefact. For
instance, user stories that have not been implemented yet and made modifications to
the current implemented functionality generate a sub-ontology that already exist in the
PDO. We define these concepts as:

Definition 7. Concept

Let be c a concept, A an artefact, o an ontology, Os a sub ontology, Op a

product ontology and Od a product ontology domain.

∃ c ∈ Os ⊂ Op ⊂ Od where Os ⊆ A

At the same time, there are concepts that belong to the artefact sub-ontology but
are still not present in the PDO. We can consider this functionality and features that will
be integrated into the system. These new concepts are defined as:

Definition 8. Sub-ontology

Let be c a concept, A an artefact,o an ontology, Os a sub ontology and Op

a product ontology and Od a product ontology domain.

∃ o ∈ Os 6⊂ Op ⊂ Od where Os ⊆ A

CHAPTER 5. ONTOLOGY GENERATION 53

In order to identify such sub-ontologies, it is necessary to create the ontology of the
artefact or the sub-set of the artefact to facilitate the process of comparison of objects.
Having created such ontology, it is necessary to compare the concept with each concept
of the product ontology one by one in order to identify similarities and establish that
an existing ontology has been found. When two concepts have equal names or similar
names and share the same properties as data types, we can say that they are the same
concept.

In the context of the RE4SA, the relation of two concepts can represent a feature or
set of features when processing user stories as an artefact and modules or sub-modules
when processing Epic stories. However, there are concepts that do not have a direct
relationship with a feature or a module, such as the case of quality requirements, for
instance, a requirement to reduce the time of a feature to process or the amount of
storage required during the execution. This type of requirements needs to be somehow
described in the concept to know what other relationships and concepts as by itself
remains abstract and difficult to automate.

In software development, there is a practice to keep a linguistic relationship with
the name of the feature and the coded functions or objects and methods in object-
oriented programming(OOP) this is in order to facilitate reading the code in a logical
way. This linguistic relation can be seen, for instance, in the case three epic stories con-
tain the name of the module to which they refer the set of user stories in the form of
a noun. As a result, it is possible to establish a trace link between the concept and the
module either in the functional model or in the code.

In the same way, a feature or group of features can be linguistically related to a
concept in the ontology. Therefore, a trace match can be established.

Definition 9. Let be f a feature, F a group of features, r a relationship, A

an artefact, c a concept, Os a sub-ontology and Op a product ontology.

(∀ f ∈F ∧ F∈A) ∃ (c ∧ r) ∈ Os ⊂ Op⇒ TraceMatch(c, r, F)

When two concepts of different artefacts share the same match, then we can say
that there is a trace link between them.

Definition 10. Let be A an artefact, c a concept, r a relationship, Os a

sub-ontology and Op a product ontology.

(∀ f ∈F ∧ F∈A) ∃ c ∈ Os ⊂ Op⇒ TraceMatch(c, F)

CHAPTER 5. ONTOLOGY GENERATION 54

5.3 Algorithms

The previous formalization is the base to create logical expressions and the algorithms
to generate and merge ontologies. Such algorithms are used in the proof-of-concept
built as part of this study.

5.3.1 Train model

To create domain context first, it is necessary to build the vocabulary to such domain.
The vocabulary is represented as a matrix of vectors of each word and stored in a model.

To establish the context of the vocabulary, text data about the domain contain im-
plicit ubiquitous information about the context of each word. This implicit information
is present according to the neighbors of each word. The model is trained with such in-
formation in a context matrix with previous built vocabulary. With more train data there
are higher probabilities to have a better context of the domain.

The detailed sequence is described in the algorithm 1.
Algorithm 1: Train Domain Model

Data : The artifact instance in natural text
Result: A trained model

1 Read artifact instance
2 split artifactData in lines dataLines
3 for all dataLines do
4 split dataLines in words wordData

5 for all wordData do
6 build vocabulary with word vector

7 train(model) with dataLine

8 return model

5.3.2 Sub-ontology extraction

The extraction of ontological data has the artifact in natural text and divided by sen-
tences, each sentence expected to be in a different line.

The ontological information is extracted from each line in form of axioms and
classified according to the different patterns. The classification can be as a concept
or relationship. Once it is classified then the axiom is added to the sub-ontology and
continue the extraction process with the rest of the lines.

This extraction from a software artifact is summarized in the algorithm 4.

CHAPTER 5. ONTOLOGY GENERATION 55

Algorithm 2: Sub-ontology extraction
Data : The artifact instance in natural text
Result: An OWL sub-ontology

1 Read artifact instance
2 split artifactData in lines dataLines
3 for all dataLines do
4 T ← get dataLine dependency and POS tree.
5 axioms← identify patterns in T
6 for all axioms do
7 if axiom is a concept then
8 ax← axiom concept data

9 if axiom is a relation then
10 ax← axiom relation data

11 add(ax) to subOntology

12 update subOntology

13 return subOntology

5.3.3 Match and merge onologies

In order to identify a sub-ontology in a product ontology, it is necessary to parse each
concept of the sub-ontology and find a similar term in the product ontology. When two
concepts are identified as similar, then a match is created between both concepts. Once a
match is identified the new relations that involve the matched concept should be added.

To resolve if two concepts are similar or not, there is a first comparison of both
concepts using the CommonCrowl and OntoNotes trained model as common context,
If two concepts are considered similar based on certain parameter, a second similarity
comparison is executed taking the dot product of the common context model and the
domain context trained data model to resolve the similarity based on a predefined pa-
rameter. The similarity is automatically calculated, taking the cosine of the euclidean
product of both context word vectors.

If a concept is not identified in the product ontology, then it is added to it as a new
concept. The process is described in the algorithm 3.

CHAPTER 5. ONTOLOGY GENERATION 56

Algorithm 3: Ontology merge
Data : The artifact instance in natural text and Product Ontology in OWL

language
Result: A merged ontology

1 Read artifact instance
2 Set common similarity parameter
3 Set domain similarity parameter
4 Read productOntology instance
5 Assign all elements of productOntology to a productOntologyMerged

6 Extract subOntology from artifact instance
7 for all subOntologyConcepts do
8 for all productOntologyConcepts do
9 if subOntologyConcept is equal to productOntologyConcept then

10 change subOntologyConcept attribute as equivalent
11 add(subOntologyConcept) to productOntologyMerged

12 add(subOntologyConceptRelations) to productOntologyMerged

13 else
14 s← commonSimilarity(subOntologyConcept,

productOntologyConcept)
15 if s above parameter then
16 s← commonAndDomainSimilarity(subOntologyConcept,

productOntologyConcept)
17 if s above parameter then
18 change subOntologyConcept attribute as equivalent
19 add(subOntologyConcept) to productOntologyMerged

20 add(subOntologyConceptRelations) to
productOntologyMerged

21 if no equivalent concept found then
22 change subOntologyConcept attribute as new
23 add(subOntologyConcept) to productOntologyMerged

24 add(subOntologyConceptRelations) to productOntologyMerged

25 return productOntologyMerged

CHAPTER 5. ONTOLOGY GENERATION 57

Algorithm 4: Common and domain similarity of two concepts
Data : Terms a and b
Result: Similarity probability pc

1 ya = P (a|commonContext) ∗ (a|domainContext)
2 yb = P (b|commonContext) ∗ (b|domainContext)
3 pc = (ya ∗ yb)/(‖ ya ‖ ∗ ‖ yb ‖)
4 return pc

Chapter 6

Proof-of-concept Implementation

This chapter describes a proof-of-concept created to generate ontologies and sub-ontologies
and identify trace matches between artefacts in a given product ontology.

6.1 Scope

The scope of this PoC is restricted to the extraction and visualisation of ontologies and
sub-ontologies from user stories that follow a proper user story template. The generation
of a sub-ontology is automated using NLP techniques. However, the product ontology
can be either generated from a set of user stories or created manually using Web OWL
language.

Based on ontology generation and formalization, a proof-of-concept is developed
to generate and identify ontologies and sub-ontologies supported by a graphical interface
under the following requirements. These basic requirements are:

1. Easy to integrate with other technologies.

2. Graphical output in a web environment.

3. Generation of ontologies from the text written in natural language.

4. Comparison of ontologies and identification of coincidences.

6.2 Technology

To fulfil the basic requirements, a combination of different technologies are selected
considering the time constraints. The extraction and generation of ontologies are devel-
oped using Python.

58

CHAPTER 6. PROOF-OF-CONCEPT IMPLEMENTATION 59

Web OWL is the language specification used to describe an ontology and Web-
VOWL 1.1.4 for the visualization of an ontology using web owl language.

WebOWL is a web application developed in JavaScript. The use of JavaScript
facilitates its integration in web environments such as GitLab, GirHub, or any other
web platform. WebOWL was created to visualize ontology elements such as concepts,
relations, data types in the shape of a directed graph.

The mean to communicate between Python and WebVOWL is though JSON files
defined by a web owl language to facilitate the transfer and interaction of the ontologies
between systems.

In Web OWL language a concept is named as a class, a relation between two
concepts as a propertyattribute. Therefore our definition of the relation between two
concepts can be redefined as:

Definition 11. Property attribute

Let be c a class ∃C : Set(Class).(∃.PropertyAttibute(d ,r) ∧ d ∈ C ∧ r ∈
C) where d is a domain and r is the range.

6.3 Architecture

The system can be deployed in a Linux server. All components run in an Apache web
server as an open-source cross-platform as can be seen in figure 6.1. Its execution using
Eclipse is optional and convenient when running a stand-alone. The interface with the
user is through a web browser.

Figure 6.1: Ontology generator product development context

The system has four main modules, the ontology extractor, the NLP ontology gen-
erator, and OWL object factory, the ontology merger and the OWL object factory as
represented in the functional architecture in figure 6.2.

CHAPTER 6. PROOF-OF-CONCEPT IMPLEMENTATION 60

Figure 6.2: Ontology generator product development context

6.3.1 Ontology extractor

The ontology extractor takes as an input an already existing ontology in web owl lan-
guage. This ontology can be a product ontology that contains all the concepts that de-
scribe the current system. A product ontology can be created manually in WebVOWL,
generated from a software development artefact as user stories using the NLP ontology
generator or a combination of both.

It is very rare that already exist an ontology of a product or make it available.
Therefore, the NLP ontology generator automates this task that automatically an ontol-
ogy can be generated. However, the generated ontology may or may fully represent the
current system features. Therefore, there is a flexibility that the ontology can be man-
ually manipulated and changed according to the architect or any other role that has a
complete picture of the product.

If changes are performed in the product ontology using the graphic interface that
provides WebVOWL, then the ontology can be exported again in a JSON file format and
stored locally. This brings high flexibility, especially when concepts are not linguisti-
cally directly related, and further descriptions need to be changed or added.

The ontology extractor reads this web owl statements and transforms it into an
internal structure of lists. The module does not perform any transformation of the data
or tags, only the data structure. It is assumed that the syntax of the ontology is correct
as no consistency checks are additionally performed.

Finally, the module makes available the ontology in an internal structure to the
ontology merger module for further processing.

6.3.2 NLP ontology generator

This module is responsible for reading the software development artefact. Using natural
language techniques, it can generate a sub-ontology, or a product ontology, in case that

CHAPTER 6. PROOF-OF-CONCEPT IMPLEMENTATION 61

the selected artifact describes the whole product.
To generate an ontology, it is necessary to read the artefact and keep it in a structure

that can be available for its processing. Each line represents a statement containing only
the basic elements of a user story. This means, to have only one role, one action verb
and a predicate but does not require to use a user story template. However, it needs to
be written in an active voice, e.g. ”the user should be able to change his password...”
instead of ”...the password is changed by the user”.

The NLP ontology generator parses line by line of the file and divides into tokens,
POS tagging and dependencies taking into consideration only noun chunks.

Using the tagged information, a pattern recognition is performed using the corol-
laries previously described and extract the relevant ontological information of each sen-
tence. This information is classified according to their properties.

When a group of axioms are identified, then the module requests the OWL factory
the create requested objects. This factory is in charge to generate and combine the ax-
ioms according to its syntax as axiom objects. These objects are represented as classes,
class attributes, properties and property attributes that keep the ontological information
in a simplified version of the OWL language. For instance, when two concepts and a
relation between them are identified, the ontology generator requests the object factory
of such sub-ontology objects.

There are other characteristics or attributes of a concept that are identified by the
pattern recognition. Such as additional information is included in the ontology as part
of the description of the concept and helps to describe the concept.

Once the parse of the entire file is parsed, the ontology generator requests to object
factory the generated data of the sub-ontology. Then it makes it ready and available for
the use of the ontology merger module in an internal format.

6.3.3 OWL Object factory

The OWL object factory is the most object-oriented programming (OOP) module. The
main function is to generate axiom objects based on the ontological information pro-
vided by the ontology generator.

As described in previous chapters, the basic unit in the web owl language is the
axiom. An axiom is represented as a class in OOP. An axiom has specific attributes like
id, axiom name and type and respective methods to return these properties. Each object
knows the syntax of their attributes and is capable of returning its attributes in the owl
language syntax.

CHAPTER 6. PROOF-OF-CONCEPT IMPLEMENTATION 62

Figure 6.3: Class diagram of the OWL object factory

Different classes inherit from the axiom class such as Class, ClassProperty, Clas-
sAttribute and property attribute as described in the class diagram of figure 6.3. This
class design allows the factory to generate the objects. It does not need to know the
syntax of the web OWL language, as this is encapsulated in each axiom of each class.
Therefore, this is transparent for the factory.

6.3.4 Ontology merger

The product ontology and the artefact sub-ontology are the main inputs of the ontology
merger. These ontologies are combined by searching each axiom of the sub-ontology in
the product ontology.

The ontology merger takes a class axiom of the sub-ontology and looks for sim-
ilarities in the axiom classes of the product ontology. Once it is determined that two
classes are similar, then we can say that we found a match of concepts or trace match.
The sub-ontology class is created as an equivalent type class. Graphically this can be
seen represented as a circle with a double border.

The comparison of concepts is performed using word vectors and semantic simi-
larity. These vectors are grouped in a model. This model can be extended by including
vectors of new vocabulary or removing them. Word vectors can be generated using dif-
ferent models like the bag-of-word model (CBOW) introduced in Mikolov et al. (2013).
This study takes the model “en core web md” provided by spaCy. This model is trained

CHAPTER 6. PROOF-OF-CONCEPT IMPLEMENTATION 63

with vectors of words in English and other languages. Based on such vectors, it is pos-
sible to determine the proportion of similarity between two words from 0% to 100%
similar.

Depending on the model, the proportion then comparing words is higher if the
model is trained with words in the domain of the ontology. If we talk about a health
product systems, vectors with words of medicine vocabulary can increase the precision
of finding the right trace matches.

This study takes the basic model with a proportion of similarity between two sub-
ontology name words above 90% to identify a concept match. If the sub-ontology name
does not match, then a second search is performed in the description of the product
ontology in order to find a similarity with the same criteria.

Figure 6.4: Graph visualization of WebVWOL

If an axiom name is not found in the product ontology, it can mean that it refers
to a new feature that it is not implemented yet. In this case, a new axiom is created in
the product ontology and identified as “external” to differentiate them from the rest of
the ontology. In WebVOWL this is represented in dark blue circles and can be easily
recognised from the rest of the ontology.

Once the sub-ontology is merged and identified in the product ontology, a new
product ontology is generated and can be graphically displayed using VewVOWL. Fig-
ure 6.4 is an example of the result of this process. The sub-ontology indicates a new
functionality in the form of new concepts represented in dark blue circles and the rest of
the product ontology in light blue circles.

CHAPTER 6. PROOF-OF-CONCEPT IMPLEMENTATION 64

Figure 6.5: Graph visualization of WebVWOL

A better perspective of part of the graph can be seen in figure 6.5 where actions
are concentrated in a few roles, e.g. ”a researcher”. A ”data request” concept is added
with a further description ”a research proposal” from the sub-ontology. The user story
that generated this concept is written as “As a researcher, I want to fill data request

including a research proposal so that I can submit it as a whole”

Chapter 7

Experimental Results

This chapter describes the proof-of-concept as a treatment, goals, variables, hypothesis
and data collection procedure of the experiment that answers the research questions.

7.1 Experimental setup

7.1.1 The treatments

Ontology extraction and ontology merge are the main solution proposed to the practical
problem of between the requirements engineering and the software architecture through
traceability among artifacts.

From one side, the ontology extraction intents to conceptualize the requirements
that re written in natural text. From the other side, the Ontology merge in the PoC
automates the match of ontologies and identification of sub-ontology concepts.

To determine the relative accuracy of the theory raised by this research, the proof-
of-concept is used as a treatment artefact. This PoC implements the main concepts
described previously in this study.

7.1.2 Experimental goal

The experimental set-up entails to study at what level the treatment in study facilitates
the extraction and identification of sub-ontologies in a PO.

A set of independent variables are used as an input to be used by the treatment.
The results are measured in different dependent variables relevant to measure the goal
of this setup.

The main goal of the experiment is to determine the quality of the treatment with

65

CHAPTER 7. EXPERIMENTAL RESULTS 66

different independent variables. We define quality as a general measure of completeness,
efficiency, performance, usefulness and viability, as shown in figure 7.1.

Object of study Purpose Focus Stakeholder Context factors
Ontology merge
PoC

Measure
variables

Quality Architect, Soft-
ware developer

RE4SA, univer-
sity

Table 7.1: Experiment definition.

The completeness is measured using precision and recall, having an ontology man-
ually created manually from one of the artifacts to be measured and considered as our
gold standard.

To measure the efficiency, the number of correct concepts identified or matched
divided by the time that take the process is taken.

The performance is measured taking the time of the process with either the extrac-
tion or the match ontologies process.

Finally, to evaluate the usefulness and the viabilty,

Figure 7.1: Independent and dependent variables. An arrow between two variables
suggests there is some relation between the two, i.e., a change in the one variable can
lead to change in the other one as well.

7.1.3 Hypothesis

We take part in the research questions and create a hypothesis on each to help reach this
goal.

• RQ3 : H1. There exist at least two NLP techniques that are suitable to identify
relevant ontological information from a software development artifact.

• RQ4 : H2. When using two NLP techniques and recognizing patterns, there is
suitable ontological information to identify sub-ontologies related to a software
development artefact.

• RQ5 : H3. When using NLP similarity techniques to match concepts, there is
ontological information to identify a sub-ontology in a product ontology.

CHAPTER 7. EXPERIMENTAL RESULTS 67

Variable RQs Metric
Completeness RQ3 Precision and recall
Efficiency RQ3

RQ4

Calculated as effective match / time

Performance Time taken to generate and merge
ontologies.

Usefulness RQ5 Average survey grade.

Table 7.2: Variables and their metrics

7.1.4 Design

The set-up for the dependent values is divided into two phases. The first phase involves
the execution of the proof-of-concept in two activities. The first activity is designed to
evaluate the dependent variables when generating an ontology and the second activity to
assess the variables when identifying a sub-ontology in its respective product ontology.

The second phase consists of the execution of different interviews to scrum and
non-scrum practitioners, showing the core concepts of this study and the application of
a survey. The results of the survey can give an idea about the viability and usefulness of
this kind of tools with people from the industry.

Based on the independent variable selection, a group of data set consisting of user
stories are collected. These independent variables are the input for the proof-of-concept
under the same conditions in different sessions. Dependent variables are calculated from
observed values produced by the proof-of-concept and the application of surveys after
executing the generation and identification of sub-ontologies.

7.1.5 Subjects of study

A group of 6 people with an IT background, especially in software development, are se-
lected to perform the demos of the system. It was required to have a working experience
of at least five years. 66.7% of people interviewed had worked in Agile environments
for some years, meanwhile the other 33.3% not at all. None of the subjects had an idea
what the demo will be about before the execution of the interview.

7.1.6 Context

To execute the test in a real-life problem, a request for collaboration with development
experts of Yoda system was requested and generously accepted. Yoda (acronym of your
data) is a system that provides an integrated digital environment for researchers. Yoda
was created to facilitate the daily work of researchers of storing, sharing and publish
information.

CHAPTER 7. EXPERIMENTAL RESULTS 68

The interviews and the demos were scheduled individually. In some cases, via
remote, the person was not facially in the country at the moment of this study.

Business professionals are selected to take part in the interviews, including devel-
opers as agile practitioners, consultants and agile practitioners.

The same example demo was performed to all people interviewed. A definition of
what an ontology was given to the interviewees. Then, an explanation of the concepts of
what a product ontology and a sub-ontology are. After that, a demo of the system was
executed with the option to ask some questions. Finally, the filling of a survey about the
shown functionally concerned to this study was carried out.

7.1.7 Objects of study

The proof-of-concept is built as a back-end and added as an extension of the open-source
system WebVOWL that is used as a graphic interface to the users. The main object of
study is the added functionality added to the front-end and delivered as a proof-of-
concept. This was explained to the people interviewed in order to void confusion about
the concept and the functionality provided by the front-end.

7.1.8 Independent variables

The first independent variable is the linguistic model used to perform the NLP pro-
cessing. For this study the sayen core web sm v2.1.0 model is used for tagging and
similarity recognition. The model has 20,000 unique vectors with 300 dimensions. The
parameter to consider if two concepts are similar is set to ¿90%.

The second variable is the custom model trained with data from the product ontol-
ogy.

The third variable is a product ontology generated beforehand with a set of user
stories with status ”done” from the product backlog.

The fourth variable is software development artefact. This artefact is in the form
of user stories written in natural language in a text file. Each line in the file is a different
user story. For this study, a random set of 50 user stories that belong to different epics
with status ”to do” are selected.

7.2 Execution

The first phase is carried out in a controlled environment where the tool is deployed and
100% available only for the researcher for its use.

CHAPTER 7. EXPERIMENTAL RESULTS 69

The product ontology is uploaded into the server in a son file and then the artefact
with the new requirements is also uploaded in a txt file.

Once both artefacts are uploaded, then the sub-ontology is generated, and the re-
sult is visualised as a graph using WebVWOL. Then, the number of right concepts and
relations in the produced sub-ontology are counted, the same for the number of concepts
and relations ignored.

With the product ontology already uploaded and the sub-ontology generated, the
next step is to proceed with the identification of the sub-ontology into the product on-
tology. This action is performed by triggering the tool and observe the results.

The second phase of the study is performed to each person in a semi-structured
interview, followed by a demonstration of the proof-of-concept and the filling of a survey
about the concept. Then, the results are collected for further analysis.

7.3 Results

The results are divided into two result sets. The first set to evaluate the performance
of the proof-of-concept when generating a sub-ontology, and the second set with the
results produced by the identification of a sub-ontology in a product ontology match.

7.3.1 Sub-ontology generation

To perform this task, it was necessary to take out a few user stories that were not clear,
incomplete or in a different format. The final data set contained 39 user stories. The
time to generate the JSON within the OWL language lasted approx 18 seconds. The
generation was the only process in execution at the moment of the test.

From the data set, it was expected to find 12 roles, 31 relations and 37. The
expected concepts and relationships were analysed and translated into ontology terms
manually, as seen in table 7.3.

From the results obtained, it was possible to observe that all roles involved in
the sub-ontology are identified. However, the precision decreased when identifying
concepts related to those roles and as a result, the related relations between them as
well.

A relation between concepts gets lost as a result of the missing target concept. The
main reason for this problem is that few user stories are written in passive voice or there
is a possibility that two roles are involved. This can be reflected in the recall result in
table 7.5.

CHAPTER 7. EXPERIMENTAL RESULTS 70

Role concept Relation Target concept
Geo researcher store my HPTlab

annotate my TEClab data
have EPOS metadata schema

Researcher Fill data request
split firstname/lastname
receive email notifications
download system metadata
include my metadata
enter metadata bounding box coordinates
depublish an archived data package
specify specify my data package type
locate a data package based on its EPIC PID
want help

data manager
want my metadata schema
want all persistent identifiers of a package
archive a published package at DANS
want/know group within my category
know which groups a user belongs
have a search group feature
detect inactive groups
approve a data request

board member view research proposal evaluations
DMC member review a research proposal
Admin display the actual checksums

have an overview of all user autorisation changes
User see bounding box

access Yoda
reference a data object

iRODS admin keep indefinately keep info
Yoda admin refactor Intake module GRP groups
data receiver want login and have a list of jobs shared with me
Ron researcher download a folder and its content
Data sender share my distribution job

add data to my distribution job
want/view my distribution jobs and their details
create data distribution job
want login the data distribution service

Table 7.3: Variables and their metrics

Actual values
Positive Negative Total

Predicted values Positive 73 6 80
Negative 13 2 15

Total 86 8 N

Table 7.4: Precision and recall matrix for sub-ontology generation

Measure Result value
recall 0.85
precision 0.92
F1score 0.88
Efficiency 4 /s
Performance 18s

Table 7.5: Sub-ontology generation in OWL language

7.3.2 Sub-ontology match

Once the product ontology and the sub-ontology are available, it is possible to start the
process to identify the sub-ontology in the product ontology.

CHAPTER 7. EXPERIMENTAL RESULTS 71

As described before, it is necessary to identify similar concepts shared between the
sub-ontology and the PO. This matching of concepts is carried out comparing every con-
cept in the sub-ontology and find a similarity of terms in the PO. Once it is determined
that tho concepts are similar then a match is created and the new concept is declared as
an equivalent class in terms of OWL language.

The concepts identified correctly in the sub-ontology generated was taking in to
account for the matching analysis.

The total time of the matching was 35.45 seconds. The poof-of-concept was the
only process in execution in the server, and the graphical interface provided feedback
once the process finished.

To facilitate the task of the analysis, the json file was downloaded from the server.
The file containing all classes and attributes was analysed manually to evaluate the cor-
rect matches in the PO and the identification of new concepts as new classes added to
the ontology. The new classes are identified as external in OWL language as they are
still not implemented yet.

The program identified correctly 40 matches out of 41 expected. All roles were ,
but few concepts without a match detected.

Concepts that were identified similar because of the context used were also iden-
tified, system and metadata, Yoda and Yoda system, a folder and research folder, EPOS

metadata schema and metadata, Researcher and Geo researcher, datamanager and data

manager are some examples.

Actual values
Positive Negative Total

Predicted values Positive 40 2 42
Negative 1 0 1

Total 41 2 N

Table 7.6: Precision and recall matrix for sub-ontology match

The precision and the F1score range above 0.95 with a calculated recall of 0.98.
However, the efficiency decreased significantly. One factor that heavily impacts the
performance is the fact that the look for similarity between terms. The similarity triggers
a task that calculates the translation from word to vectors. Multiple sums or dot products
are automatically triggered, first, the word-vector against the vocabulary-matrix and
second, with the context vector-matrix to identify the context of the two words. Another
factor is the complexity of the code due to the need for nested iterations to process
graphs or lists as internal data structures.

CHAPTER 7. EXPERIMENTAL RESULTS 72

Measure Result value
recall 0.98
precision 0.95
F1score 0.96
Efficiency 0.19 c/s
Performance 425s

Table 7.7: Sub-ontology generation in OWL language

Measure Ontology
generation

Sub-ontology
match

Combined

recall 0.85 0.98 0.91
precision 0.92 0.95 0.94
F1score 0.88 0.96 0.92
Efficiency 4 /s 0.19 c/s 2.1 /s
Performance 18 s 425s 221.5

Table 7.8: Combined results of ontology generation and match

7.4 Experts evaluation

A critical aspect of this study is to analyse if the concept of generating ontologies from
text and identifying them in a product ontology. Then, contributing to the identification
of trace links and, as a result, the possibility reaches the desired goal.

It is essential to analyse and evaluate that the theory presented by this thesis can
have a real benefit in the area of study. The implementation of this concept can provide
real beneficial value for software development practitioners to facilitate their work.

The opinion of experts in the area is a good indicator to assess if the current path
is appropriate or not.

The second phase of the experimental setup involved an interview with experts
with long experience in the IT industry with and without experience in Agile methods.

All experts interviewed had small or no notion about what an ontology is. Once a
definition was given, then the relation with a conceptual map, conceptual model, knowl-
edge map was related in some cases. At the moment of the interview, 83% had more
than ten years in the IT industry.

Figure 7.2: Ease of use Figure 7.3: Usability

CHAPTER 7. EXPERIMENTAL RESULTS 73

One of the hypothesis is that it is possible to extract relevant ontological informa-
tion from natural text. The facilitation to transform from text was pointed out by one of
the interviewees:

Passing from text to process and probably solution design.

Another hypothesis is that there is enough ontological information to identify a
sub-ontology in a PO. This hypothesis can be supported by the idea to have an overview
of the whole system in one single artefact was highlighted for one of the interviewees:

Gives a clear one-view overview, and it seems very flexible.

To further confirm this impression of the concept, a survey is performed. The
survey evaluates the interviewee’s impression about the ease to use of the concept itself,
the usefulness and the intention to use a tool with the characteristics shown.

The survey is filled by each interviewee based on the perception of the whole
concept of the functionality, no in the interface itself.

Figure 7.4: Intention of use Figure 7.5: Totals

Three factors are indented to be measured with this survey. The first factor mea-
sures their perception of the ease of use. Despite that the interviewees can not have a
complete manipulation of the proof-of-concept, it is asked about their perception from
the demo shown.

The second factor is about their perception about the usability of the tool to have an
idea if they believe that the concept can be useful if it is integrated into the development
process.

The third factor is about their intention to use a tool that applies such ontology
concepts.

Finally, all results are tantalised, as shown in figure 7.5. These results give an
estimation of the overall factors and have an indication about the the purpose of this
study from experts opinion.

Chapter 8

Discussion

The importance of the relation between Requirements Engineering and Software ar-
chitecture is very well known. The adoption of new methodologies has increased the
attention to straightening this relation. Such is the case of Agile and Scrum methods
where small increments. Each increment has to deliver specific value to the organisation
implementing it.

This thesis explored two main problems. First, the fact that requirements are col-
lected, gathered and stored in the best case in a semi-formal format written in natural
text (e.g. User Stories, Epic stories, etc.). And second, the lack of support to find a trace
between the requirement and the architecture. These two problems prevent an effective
delivering of value on each increment due to inconsistencies or delays in the process.

The solution explored to solve these problems is the use of an intermediate layer
between the requirements and the architecture defined as an ontology. Taking the re-
quirements as the starting point, perform a linguistic analysis and finalise with the cre-
ation of a proof-of-concept produced from the finding of this research.

The results of the literature review and the available information from software
development artifacts were used to gather the essential elements to develop this thesis.
Research methods, linguistic techniques and tools found were part of such elements that
contributed in sequence to solve each research sub-question.

The following sections will detail how each research sub-question was gradually
answered and how the clarification of the main research question came to light. Subse-
quently, the conclusions are drawn in this research. Finally, the threats that can affect
the validity and hints for further research are discussed.

74

CHAPTER 8. DISCUSSION 75

8.1 Answering the sub research questions

The five sub research questions formulated in this thesis were gradually answered in
the same order as they were formulated. The answers of each sub question served as an
input for the next question formulated. To facilitate their identification, the sub questions
in three sections. First, those concerned to the generation of sub-ontologies. Then, the
ones related to the identification of sub-ontologies in a Po ontology to finally find the
links among the artefacts.

8.1.1 Generating ontologies from requirements

Requirements drive every software product. From there the importance of their correct
generation and use.

Up to now, most of the requirements are created in natural language and does not
follow a clear formal structure for its creation. Therefore, the first research was created
to find the necessary information mostly from the literature.

In the literature review it was possible to find state-of-the-art concepts, models,
techniques and tools that can be used in the the processing of natural language.

The first finding was that NLP is a broad field with different techniques that con-
cerns with the interaction between humans and computers.

Tokenization, Part-of-speech, dependency parsing, entity recognition between oth-
ers were identified as techniques to detect patterns from software artefacts in natural lan-
guage. Both techniques provide a representation that can be formalized in an algorithm
or abstracted in a model.

The second finding is the availability of different tools that automate the process
of annotation of text as a corpus. Between those tools it was possible to identify the four
most reliable and open source, Stanford CoreNLP from Stanford University, SyntaxNet
and spaCy under MIT license and NLTK from NLTK project.

Each tool was compared and evaluated to determine what would be the most suit-
able for this study. spaCy was at the end selected due to its facility to use it in software
production environments, the available models and the facility to integrate with different
systems though python development.

The third finding was the use of convolutional neural networks with word predic-
tion models like Word2vec to help in the problem of ambiguity and the similarity of
concepts. In the following subsection, we will discuss further these models.

These three findings contributed to solve the first sub research question stated as:

CHAPTER 8. DISCUSSION 76

RQ1: “How can relevant ontological information from system development
artifacts written in natural language be extracted?.”

To help to solve RQ2 and RQ3, a set of artifacts were created and used to perform
a linguistic analysis in several iterations. Each iteration was consisting of the selection
of one NLP technique, the creation of an artifact to automate the tagging process, per-
form the annotation and analyse the results. The process of identifying patterns started
bottom-up from the syntactic level towards the pragmatic level.

The first two iterations provided significant pattern information. However, each
pattern individually did not give enough knowledge to create an ontology that could
reflect the purpose of the requirement. Therefore, in the third iteration, it was decided to
combine both techniques. As a result, it was possible to identify a more precise pattern
and enhance the conceptual model of the structure of a user story with NLP ontological
information.

RQ2 “What patterns from an annotated text in system development artifacts
written in natural language can be identified?”

RQ3: “What NLP techniques are suitable to identify sub-ontologies in an
annotated text in software artifacts written in natural language text using
NLP?”

From the experimental results of the proof-of-concept and the surveys performed
to expert, it is possible to identify that the generation of ontologies is very useful in terms
of precision and ease of use. The precision was measured with 0.92%, which is a good
indicator of the usability of the concept. However, the recall is not as good with a score
of 0.85%, indicating that there is still some space of improvement in the generation of
sub-ontologies, possibly by adopting another NLP technique that helps to increase the
precision and recall.

8.1.2 Indentifying sub-ontologies in a product ontology

One significant characteristic when using ontologies is that it is possible to identify
dependencies in artefacts and with other concepts. Therefore, the importance to define
a sub-ontology of new requirements in the product ontology.

The simplest way to do this is by selecting each concept of the sub-ontology and
compare it with each concept of the PO and iterate until all concepts are identified.

However, a simple comparison may not be precise as some concepts can be similar
and be the same or be similar but not the same concept.

CHAPTER 8. DISCUSSION 77

The use of Word2vec models is an excellent approach to tackle such kind of prob-
lems derived from the introduction of ambiguous terms. Such model enhanced with a
third dimension representing the domain, it is possible to increase the accuracy in the
resolution of ambiguity.

From the concepts marked as similar and considered the same concept we can
find, for instance, the similarity between dataset and data Geo researcher. Using the
Glove model, the similarity between both terms scored higher than 90% whereas with
the domain model scored less than 69%. Another example observed is the similarity
between the concepts my data and my HPTlab data. The first concept scored high with
the GloVe model but less than 80% with the domain model.

One subjective aspect of this model is up to what extent you can say that the two
concepts are similar or not. What would be a proper criteria to say that two concepts
are similar having the probabilities of a word given a context, We could say that below
90% of probability is not considered the same concept The other aspect is if there are
enough train data to do this determination, if not the model needs to be trained with
more domain information with the context in order to perform better.

Probably this may not solve the complete problem but is a right approach when
resolving the ambiguity. Therefore, there is enough information available to answer the
sub-question RQ4:

RQ4: “How can the identified sub-ontologies be related to a software de-
velopment artifact ontology?”

8.1.3 Finding links between artifacts

The creation of trace links will not be possible without the use of a common language. A
common language that is formalized, standardized and accepted in the software indus-
try to construct ontologies. This language helps to encode knowledge about a specific
domain.

There exist several ontology languages. The selection of the language depends
on the needs of the stakeholders in question. There is no right ontology language, but
the adoption of one is a must when working with ontologies if you expect to share that
knowledge in an automated way.

The WebOWL markup ontology language is used based on the needs of this study
and the need to have a formal language that can interact with the different modules of
the proof-of-concept.

CHAPTER 8. DISCUSSION 78

For the proof-of-concept, a simplification of the WebOWL is created but can be
extended to reflect more needs of the stakeholders like inheritance or detailed data types.

In the proof-of-concept, the NLP extractor collects the ontological information.
Based on the patterns found, classifies the text from the artifact in a sub-ontology. Then,
it is translated to the OWL language by the OWL factory.

From the product ontology, you can have each module or feature in the system
represented as an OWL class. An OWL class can be equivalent to another class. If a
feature or a group of features have an equivalent class in the product ontology, then it
is clear that a trace link can be identified between the ontology and the feature. The
creation of feature or module classes, however, is not part of this study.

Figure 8.1: Equivalent classes and trace links when matching concepts in OWL language

When we proceed to identify a sub-ontology in a PO, we identify a match when
two concepts are linguistically similar in the common and product domain. This match
is recognized as an equivalent value in the OWL ontology language.

When this match is established it is possible to track all the equivalent values of
the class and, as a result, the links between the artefacts either modules or features as
can be seen in figure 8.1. This answers the sub-question RQ5.

RQ5: “How can a direct trace link be derived from a sub-ontology to spe-
cific system development artifacts?”

CHAPTER 8. DISCUSSION 79

8.2 Main research question

In order to answer the main research question, five sub-questions are created to divide
the problem into different parts. Each sub-question provided certain value to help in the
answer of the MRQ.

MRQ: “What kind of relevant ontological information can be extracted
from annotated patterns of software artifacts using natural language pro-
cessing that facilitates to trace links between them in the Software develop-
ment process?””

Taking each answer to each sub research question, we can summarise that:

• The extraction of ontological information can be done with available NLP tech-
niques and tools.

• Part-of-speech and dependencies are suitable to discover patterns in text artifacts.

• It is possible to create an ontology-based on such patterns and using a defined
ontological language.

• A sub ontology of an artefact can be identified in a product ontology.

• Once a concept in a product ontology matches with a concept in the sub-ontology
an equivalent relation is created and, therefore, it is possible to find trace links
between artefacts.

As a result, the relevant ontological information extracted from a software artifact,
in this case, user stories, are: concepts relations between concepts, external concepts and
equivalent concepts and the trace links are automatically derived from each equivalent
concept as described in figure 8.1.

Taking the experts’ survey results is possible to have an indicator that the integra-
tion of anthologies in the software development process may not be too difficult to adopt
and possibly will reduce the development time and increase the value delivered to the
stakeholders.

8.3 Conclusions

As part of this study, several sub research questions are formulated to answer the main
research question. With the main research, question answered, we can draw a conclusion
about this study and its process.

CHAPTER 8. DISCUSSION 80

The creation of small artifacts or sub-artifacts helps to reduce the time the analysis
of NLP annotation, especially when a big corpus need to be analysed with hundreds of
line statements.

The combination of at least two NLP techniques is necessary to extract relevant
knowledge from text. If they are combined with a convolutional neural network, the
effectiveness of finding this knowledge can be increased.

The use of ontological tools as a layer between the requirement engineering and
software architecture can provide a good solution to reduce the software development
time and reduce the inconsistencies between them. Ontology match and artifact links
are examples of how this time can be reduced by automating the task to find the traces
between the requirements and the software architecture.

Dependencies between concepts are more clearly seen in an ontology. This re-
duces the risk to have inconsistencies in the architecture.

Finally, this can be part of the solution of the traceability problem that currently
exists between the Requirement Engineering and the Software Architecture together
with current methods available and implementing models like RE4SA that contribute in
the formalization of the process of software development.

8.4 Threats to validity

In retrospective to the validity treats, some factors are identified from the process of this
research.

8.4.1 External validity

Several external threats can be involved, especially when working with text written in
natural language. There was a special effort pot on to mitigate those threats. Never-
theless, there is always a possibility to have them when coming from external sources.
For instance, the training data to resolve similarity may not be enough to determine the
complete domain of the ontology. New ambiguous terms could have been accepted or
rejected because of lack of domain context.

For this study, only one case was selected to test the proof-of-concept. A further
test is needed using different data sets and the context domain to validate the accuracy.

From the people interviewed, there is a possibility that their opinion may not be
the same when manipulating the tool. However, as per their experience and complete
independence from this study, there is no reason to think that their opinion could change

CHAPTER 8. DISCUSSION 81

easily.

8.4.2 Internal validity

The adoption of a research method helped to mitigate most of the internal threats.
The tool support was important to reduce errors from manual activities by gener-

ating small artifacts to facilitate the analysis.
This study was conducted by one researcher with the same role as a developer.

There was strict control to validate the results through software tools to mitigate actions
that could harm the validity of the study. Despite such effort, more experiments need
to be conducted in a controlled environment to correct any bug that could have been
introduced to validate the concept completely.

8.5 Future research

This research explored only one part of the study of ontologies using natural language
processing. NLP techniques and the use of ontologies should be explored to provide a
better understanding of the real world to a machine through computational programs.

Further use of convolutional neural networks is one of them that can be highly
helpfully to reach this goal. It can be a good area of opportunity to identify what is
the context of a sentence in a context domain to classify it better. Another area is to
classify each noun in a sentence taking the whole domain and identify the right context.
However, this may require some computational resources or parallel techniques.

References

Al Omran, F. N. A., & Treude, C. (2017). Choosing an nlp library for analyzing software
documentation: a systematic literature review and a series of experiments. In
Proceedings of the 14th international conference on mining software repositories

(pp. 187–197).
Bass, L., Clements, P., & Kazman, R. (2013). Architectural tactics and patterns. Soft-

ware Architecture in Practice, 214.
Berland, M., & Charniak, E. (1999). Finding parts in very large corpora. In Proceedings

of the 37th annual meeting of the association for computational linguistics on

computational linguistics (pp. 57–64).
Bernstein, A., & Kaufmann, E. (2006). Gino–a guided input natural language ontology

editor. In International semantic web conference (pp. 144–157).
Blessinga, R. (2018). Designing the automated greenhouse-matching requirements

and architecture for startup product specification using epic stories (Unpublished
master’s thesis).

Buitelaar, P., Cimiano, P., Haase, P., & Sintek, M. (2009). Towards linguistically
grounded ontologies. In European semantic web conference (pp. 111–125).

Cambria, E., & White, B. (2014). Jumping nlp curves: A review of natural language
processing research. IEEE Computational intelligence magazine, 9(2), 48–57.

Chowdhury, G. G. (2003). Natural language processing. Annual review of information

science and technology, 37(1), 51–89.
Churchland, P. S., & Sejnowski, T. J. (1990). Neural representation and neural compu-

tation. Philosophical Perspectives, 4, 343–382.
Cleland-Huang, J., Gotel, O. C., Huffman Hayes, J., Mäder, P., & Zisman, A. (2014).

In Software traceability: trends and future directions (pp. 55–69).
Crystal, D. (2011). A dictionary of linguistics and phonetics (Vol. 30). John Wiley &

Sons.
Da Silva, A. R. (2015). Model-driven engineering: A survey supported by the unified

conceptual model. Computer Languages, Systems & Structures, 43, 139–155.

82

References 83

Erdmann, M., Maedche, A., Schnurr, H.-P., & Staab, S. (2000). From manual to semi-
automatic semantic annotation: About ontology-based text annotation tools. In
Proceedings of the coling-2000 workshop on semantic annotation and intelligent

content (pp. 79–85).
Gabrilovich, . M. S., E. (2009). Wikipedia-based semantic interpretation for natural

language processing. Artificial Intelligence Research, 34, 443–498.
Gotel, O. C., & Finkelstein, C. (1994). An analysis of the requirements traceability

problem. In Proceedings of ieee international conference on requirements engi-

neering (pp. 94–101).
Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge

sharing? International journal of human-computer studies, 43(5-6), 907–928.
Haas, S. W. (1996). Natural language processing: toward large-scale, robust systems.

Annual review of information science and technology (ARIST), 31, 83–119.
Happel, H.-J., & Seedorf, S. (2006). Applications of ontologies in software engineering.

In Proc. of workshop on sematic web enabled software engineering”(swese) on

the iswc (pp. 5–9).
Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing.

Science, 349(6245), 261–266.
Kaiya, H., & Saeki, M. (2006). Using domain ontology as domain knowledge for

requirements elicitation. in requirements engineering. 14th IEEE International

Conference, 189–198.
Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural

network for modelling sentences. arXiv preprint arXiv:1404.2188.
Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882.
Kuhn, R., & De Mori, R. (1995). The application of semantic classification trees to nat-

ural language understanding. IEEE transactions on pattern analysis and machine

intelligence, 17(5), 449–460.
Lapedes, A., & Farber, R. (1987). Nonlinear signal processing using neural networks:

Prediction and system modelling (Tech. Rep.).
Lapedes, A. S., & Farber, R. M. (1988). How neural nets work. In Neural information

processing systems (pp. 442–456).
Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A

convolutional neural-network approach. IEEE transactions on neural networks,
8(1), 98–113.

Leech, G. (2014). The state of the art in corpus linguistics. In English corpus linguistics

References 84

(pp. 20–41). Routledge.
Liu, K., Hogan, W. R., & Crowley, R. S. (2011). Natural language processing methods

and systems for biomedical ontology learning. Journal of biomedical informatics,
44(1), 163–179.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S. (2015). Forging
high-quality user stories: towards a discipline for agile requirements. Require-

ments Engineering Conference, 126–135.
Maedche, A., & Staab, S. (2001). Ontology learning for the semantic web. IEEE

Intelligent systems, 16(2), 72–79.
Mani, I. (1999). Advances in automatic text summarization. MIT press.
Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014).

The stanford corenlp natural language processing toolkit. In Proceedings of 52nd

annual meeting of the association for computational linguistics: system demon-

strations (pp. 55–60).
Martens, A. (2018). Ontological traceability for software (Unpublished master’s thesis).

Utrecht University.
Maynard, D., Li, Y., & Peters., W. (2008). Ontology learning and population: Bridging

the gap between text and knowledge. In (chap. 4). IOS Press.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.
Muter, L., Deoskar, T., Mathijssen1, M., Brinkkemper, S., & Dalpiaz, F. (2019). Re-

finement of user stories into backlog items: Linguistic structure and action verbs.

(Accepted for publcation)
Novichkova, S., Egorov, S., & Daraselia, N. (2003, Sep). Medscan, a natural lan-

guage processing engine for medline abstracts. Bioinformatics (Oxford, England),
19(13), 1699–706.

Pustejovsky, J., & Stubbs, A. (2012). Natural language annotation for machine learn-

ing. ” O’Reilly Media, Inc.”.
Quirchmayr, T., Paech, B., Kohl, R., Karey, H., & Kasdepke, G. (2018). Semi-automatic

rule-based domain terminology and software feature-relevant information extrac-
tion from natural language user manuals. Empirical Software Engineering, 1–54.

Rindflesch, T. C., & Fiszman., M. (2003). The interaction of domain knowledge and lin-
guistic structure in natural language processing: interpreting hypernymic propo-
sitions in biomedical text. Biomedical informatics, 36(6), 462–477.

Robeer, M., Lucassen, G., van der Werf, E., J. M., Dalpiaz, F., & Brinkkemper, S.
(2016). Automated extraction of conceptual models from user stories via nlp.

References 85

2016 IEEE 24th International Requirements Engineering Conference (RE), 196–
205.

Rolland, C., & Proix, C. (1992). A natural language approach for requirements engi-
neering. In International conference on advanced information systems engineer-

ing (pp. 257–277).
Rong, X. (2014). word2vec parameter learning explained. arXiv preprint

arXiv:1411.2738.
Simard, P. Y., Steinkraus, D., Platt, J. C., et al. (2003). Best practices for convolutional

neural networks applied to visual document analysis. In Icdar (Vol. 3).
Smeaton, A. F. (1999). Using nlp or nlp resources for information retrieval tasks. In

Natural language information retrieval (pp. 99–111). Springer.
Soricut, R., & Marcu, D. (2003). Sentence level discourse parsing using syntactic and

lexical information. In Proceedings of the 2003 conference of the north ameri-

can chapter of the association for computational linguistics on human language

technology-volume 1 (pp. 149–156).
Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and applica-

tions. The knowledge engineering review, 11(2), 93–136.
van de Weerd, I., & Brinkkemper, S. (2009). Meta-modeling for situational analysis

and design methods. In (pp. 35–54). IGI Global.
Warner, A. J. (1987). Natural language processing. In Annual review of information

science and technology, vol. 22 (pp. 79–108).
Wieringa, R. J. (2014). Design science methodology for information systems and soft-

ware engineering. Springer.
Williams, S. (2013). An analysis of pos tag patterns in ontology identifiers and la-

bels (Tech. Rep.). Technical report, Technical Report TR2013/02, Department of
Computing, The

Winkler, S., & von Pilgrim, J. (2010). A survey of traceability in requirements engi-
neering and model-driven development. Software and Systems Modeling, 9(4),
529–565.

Zhang, Y., Witte, R., Rilling, J., & Haarslev, V. (2008). Ontological approach for the
semantic recovery of traceability links between software artefacts. IET Software,
2(8), 185–203.

Appendix A

User Stories

Table A.1: Sub-ontology User Stories.

US ID User Story
Y-0001 As a geo researcher I want to store my HPTlab data in YoDa So I can

annotate my HPT lab data according none analog modelling subdomain
Y-0002 As a geo researcher I want to annotate my TEClab data in YoDa accord-

ing to the analog modelling subdomain definition
Y-0003 As a researcher I want to fill data request including a research proposal

so that I can submit it as a whole
Y-0004 As a researcher I want firstname/lastname split in metadata schema
Y-0005 As a GEO user I want my data harvested via OAI-PMH with EPOS

GFZ-ISO schema
Y-0006 As a data manager I can approve a data request so that the distribution

process can start
Y-0007 As a board member I can view research proposal evaluations submitted

by DMC members
Y-0008 as a researcher i can opt to receive email notifications on submit
Y-0009 As a DMC member I can create and submit a review of a research pro-

posal and data request
Y-0010 as a Ron Researcher i can download a folder and its content so that I

have an easy way of incidentally work with files
Y-0011 As a researcher I want help to lookup my personal PID so that I can add

it to metedata
Y-0012 As an admin I want ichk to display the actual checksums upon mismatch

so that I can analyze the cause
Y-0013 As a user I want to see a bounding box on the landingpage so that I can

easily see the location of the data
Y-0014 As a researcher i want to search in a better way
Y-0015 As a datamanager I want my metadata schema compliant with DANS
Y-0016 As a researcher I want to download system metadata with the published

data package

86

APPENDIX A. USER STORIES 87

ID User Story
Y-0017 As a researcher I want my metadata to be included in DANS export
Y-0018 As a researcher I want to enter metadata bounding box coordinates us-

ing maps so I can useEPOS schema
Y-0019 As as user I want to access Yoda via my own domain name so that I

have a branded application
Y-0020 As a researcher I want to depublish an archived data package
Y-0021 As a datamanager I want all persistent identifiers of a package updated

after archiving
Y-0022 As a datamanager I want to archive a published package at DANS
Y-0023 As an iRODS admin I want to indefinately keep info on crucial events

so that I have a provenance log
Y-0024 As a datamanager I want to know that a group within my category has

not been active for 3 months so that I can detect inactive groups
Y-0025 As a Yoda admin I want to have an overview of all user autorisation

changes so that I can analyse incidents
Y-0026 As a datamanager I want to know to which groups a user belongs so that

I can manage my community
Y-0027 As a researcher I want to specify my data package type so that I can

have types other than dataset
Y-0028 As a user I want to reference a data object in my package as the value

of a metadata field so that i can describe the function of an object in my
data package

Y-0029 As a Yoda admin I want: Refactor Intake module GRP groups to IN-
TAKE groups

Y-0030 As a GEO reseacher I want to have EPOS metadata schema so that I can
comply with European metadata standard for EPOS

Y-0031 As a datamanager I want to have a search group feature in the group-
manager

Y-0032 As a data receiver I want to be notified of data being shared with me so
that I know I can download files

Y-0033 As a data sender I want to share my distribution job
Y-0034 As a data receiver I want login and have a list of jobs shared with me
Y-0035 As a data sender I want to add data to my distribution job
Y-0036 As a data sender I want to view my distribution jobs and their details so

that I am informed about my distribution job
Y-0037 As a data sender I want to create a data distribution job
Y-0038 As a data sender I want to login the data distribution service
Y-0039 As a researcher I want to locate a data package based on its EPIC PID

so that I can find vaulted data packages

Remaining user stories available under request of disclosure and with system owner
agreement.

Appendix B

Survey

Table B.1: Sub-ontology User Stories.

Factor Question
1 2 3 4 5

Ease of
use

I find the idea very complex and difficult to under-
stand.
Overall, I found the use of ontologies very difficult to
use
I completely understood the purpose of the tool.

ine Us-
ability

I believe that tools like that reduces the time when
developing software products.
I believe that it will be very difficult to apply a similar
tool in a software development environment
Overall, I found concept of the tool very useful.
Overall, I found the concept of the tool does not pro-
vide an effective solution to traceability in software
development.
I believe that using tools like that will help to reduce
effort to identify development objects when a busi-
ness process is changed by any reason.

Intention
to use

I will definitely would try to integrate a tool like that
in software development.
I will definitely use a tool to generate ontologies and
sub-ontologies of the requirements.
I will not use any tool like that at all in the future.

88

